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Abstract In this work, we explore simultaneous designs of materials selection and
structural optimization. As the material selection turns out to be a discrete process that
finds the optimal distribution of materials over the design domain, it cannot be per-
formed with common gradient-based optimization methods. In this paper, material
selection is considered together with the shape and sizing optimization in a frame-
work of multiobjective optimization of tracking the Pareto curve. The idea of mixed
variables is often introduced in the case of mono-objective optimization. However, in
the case of multi-objective optimization, we still face some hard key points related
to the convexity and the continuity of the Pareto domain, which underline the orig-
inality of this work. In addition to the above aspect, there is a lack in the literature
concerning the industrial applications that consider the mixed parameters. Continu-
ous variables refer to structural parameters such as thickness, diameter and spring
elastic constants while material ID is defined as binary design variable for each ma-
terial. Both mechanical and thermal loads are considered in this work with the aim of
minimizing the maximum stress and structural weight simultaneously. The efficiency
of the design procedure is demonstrated through various numerical examples.
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Fig. 1 Relevant interactions between function, material, geometry and manufacturing process with key
decision-making in the conception process

Keywords Material selection · Shape optimization · Mixed design variables ·
Multiobjective optimization · Genetic algorithms

1 Introduction

It is well understood that material selection plays an important role in engineering
design (Tawancy et al. 2007; Alexopoulos 2007; Matos and Simplio 2006; Guisbiers
and Wautelet 2007; Deng and Edwards 2007; Edwards 2005). However, materials are
generally regarded as the physical attributes of a mechanical system. They are often
considered after the conceptual design stage, such as in detail design (Walker and
Smith 2002; Edwards and Deng 2007; Fredricson 2005). Although the structure is
thus validated in its size and geometry, the final design has to meet with the require-
ments that highly depend on the materials used (Fig. 1). Therefore, the identifications
of appropriate combinations of materials have to be performed and working princi-
ples have to be followed judiciously. In other words, the design task is to compare the
properties of a finite set of materials and select the best one out of this finite set, i.e.,
materials selection or material identification. Compared with other conceptual de-
sign procedures such as topology, shape or sizing optimization (Bendsoe et al. 1994;
Jung and Gea 2006; Zhang et al. 1999, 2007, 2008), material identification is more
critical and it represents about 70% of the product life cycle cost. However, this stage
receives relatively less tool and technique supports in the design process.

In the engineering design community, size, shape, and topology optimization pro-
cedures are three classes of extensively studied design methodologies with assumed
materials (Bendsoe et al. 1994; Zhang et al. 1999; Torstenfelt and Klarbring 2007).
These optimization procedures can be either performed one by one or in an all-in-
one multicriteria optimization manner. In the latest literature, no work has introduced
the idea of simultaneous optimization including the material selection under thermo-
mechanical loading. This is due to the fact that gradient-based algorithms are mainly
limited to continuous variables (Guisbiers and Wautelet 2007; Walker and Smith
2002, 2006; Fredricson 2005; Bendsoe et al. 1994; Walker et al. 1997; Rakshit and
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Ananthasuresh 2008; Kumar and Singh 2007; Ghoreishi et al. 2007) and graph the-
ory is limited only for discrete variables (Rao 2006). Rakshit (2008) considered the
simultaneous optimization of geometry and material selection of statically determi-
nate trusses as a continuous problem. Bendsoe (1994) used the topology optimization
method to determine the structure topology as well as the material microstructure of
desired properties. In his strategy, the micro parameters involved in the constitutive
stress–strain relationship are taken as design variables together with the macro topol-
ogy variables in the optimization problem. The advantage is that different material
properties at each point are determined in the optimized topology. But a material with
such optimized properties may not exist in reality (Hörnlein and Kocvara 2001). Fur-
thermore, having different microstructures for different parts of the structure is rela-
tively challenging with the current state of manufacturing facilities (Edwards 2005;
Edwards and Deng 2007). Although the material selection can be done either be-
fore or after the structure is optimized, an optimal match between the structure and
materials cannot be guaranteed. Therefore, designers should consider structural op-
timization and material selection simultaneously. The corresponding problem may
lead to multicriteria or multiobjective optimization where the Pareto curve may be
discontinuous and not convex.

In this paper, a short description of the heuristic GA approach (Guessasma
and Bassir 2010a, 2010b; Bassir et al. 2007, 2009b; Deb 2007; Goldberg 1989;
Michalewicz 1994; Deb et al. 2002; Holland 1975) is firstly presented. The algorithm
considers the double coding aspects: discrete and continuous to allow the exploration
of simultaneous geometry design and material selection for the structures. The ef-
ficiency of the proposed approach will be demonstrated through one mathematical
function and two mechanical examples of plate and beam structures.

2 Optimization with mixed variables

Because of the mixed nature of the material and geometry optimization, we need an
efficient algorithm that considers the discrete choice of the material selection and
the continuous choice of the geometry profile. On the one hand, the latter can be
performed by means of gradient-based methods once the sensitivity analysis is easily
carried out (Zhang et al. 1999). On the other hand, some combinatory algorithms
can be used (Rao 2006) when only discrete variables are involved. Here, the work
is firstly focused upon the pure discrete problems for which the genetic algorithm
is applied through the binary coding. Secondly, we will describe the binary coding
and the real coding by using a modified version of the NSGA-II (Bassir et al. 2007;
Deb et al. 2002) program for the multiobjective optimization of mixed problems.

2.1 Genetic algorithm

Based on Darwinian survival-of-the best fitness principal that mimics natural bi-
ological evolution, Genetic algorithms (GAs) provide an alternative of traditional
optimization techniques to locate the optimal solutions in a complex landscape.
The theoretical foundations were first led by Holland in 1975 (Holland 1975)
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Fig. 2 Principal function of a
simple genetic algorithm

and since that time, the number of applications and publications concerning GAs
has increased exponentially. In 1989, Goldberg gave signs of nobility to GAs as
an efficient and general method to treat complex optimization problems (Gold-
berg 1989). The principle of GAs described in Fig. 2 is to simulate the evolu-
tion of one population of individuals (randomly chosen) to which we apply dif-
ferent production operators (selection, crossover and mutation). As GAs start the
searching from different initial solutions, a global solution of the problem is ex-
pected (Guessasma and Bassir 2010a, 2010b; Bassir et al. 2007, 2009b; Deb 2007;
Goldberg 1989). This global perspective prevents GAs from being trapped locally
and allows them to explore the overall design domain. Besides, such algorithms deal
with the problem only by virtue of the function values. They can be implemented as
a black box with several entries and one exit (Guessasma and Bassir 2010a).

It is largely demonstrated that the choice of the operators and the representation
of the design parameters are very important in the optimization process.

Three main points are involved when using genetic algorithms: the first point is
the feature of the application: single or multiobjective optimization, the second point
is the design space (discrete, continuous or mixed domain) and the third point is the
constraints handling.

In the case of multiobjective optimization, the operator that performs the selec-
tion is no more the same, because some solutions are not “comparable” any more in
terms of criterion but rather in terms of ranking. The dominance relation that relates
two solutions is therefore a binary operator. In general, the result of this operation
for two individual solutions in the criteria space has two possibilities: either one so-
lution dominates another or the solutions do not dominate each other. For one giving
point in objective function space, it could be dominated or not dominated by another
point, but it could also be “incomparable or non-dominated” to other points (Bassir et
al. 2009a, 2009b; Irisarri et al. 2009). Regarding the generation and selection of the
Pareto optimal set, an ordering technique (sorting process) is required. When using an
evolutionary algorithm for generating such Pareto optimal set. Thus, various ranking
methods have been suggested in the specialized literature. Such methods essentially
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sort the individuals in objective function space before selection. Each member of the
list of possible points in objective function space is assigned a rank. The result of the
dominance ranking is a strict partial ordered list which is used for sorting the points
before employing a desired selection operator. To maintain the diversity of the popu-
lation, these classified individuals are shared with their dummy fitness values. Then
this group of classified individuals is ignored and another layer of non-dominated
individuals is considered. The process continues until all individuals or a part of the
population is classified. Since individuals in the first front have the maximum fitness
value, they always get more copies than the rest of the population.

The strategy within selection process used to represent the binary and real coding
remains the same for both optimizations. In the next sections, we will focus on the
selection operator implemented in NSGA II (Deb 2007; Deb et al. 2002) and the
technical coding for the parameter within the design domain. Modifications used in
the above program will be also described.

2.2 Selection function

In the case of single objective optimization, the selection operator works as follows:
after creating randomly the first generation and evaluating the objective function for
all individuals, we applied the process of selection on the population. There exist a
number of selection operators in the literature of genetic algorithms. The main idea
consists in choosing within a population P an N -number of individuals (to create a
mating pool) that are well adapted to survive, to follow their evolution and to access
to the next generation. The choice of keeping one individual is made by comparing its
fitness function. One characteristic of the selection process is the selective pressure
applied on the population. If this pressure is too strong, we loose the diversity within
the population. If this pressure is too small, the genetic algorithm behaves randomly
like Monte Carlo method. The individual with the greatest fitness value wins the
tournament and is saved for the next generation. This operation (in the case of mono-
objective optimization) is repeated until we obtain individuals for the next generation.
It is entirely possible that some individuals participate in several tournaments: if they
earn several times, they will therefore be copied several times. In this approach, the
selection is strong enough. That is why we often reduce this pressure by decreasing
the probability of selection in the tournament.

In the case of multiobjective optimization, the aim is to find the vector of de-
sign variables x = [x1, x2, x3, . . . , xn]T that minimizes a vector of objective functions
given below.

Min F(x) = (f1, f2, . . . , fk)

subject to gi(x) ≥ 0 i = 1 to m
(1)

The feasible domain (Fig. 3) defined by the constraints will be denoted by �.fi are
called criteria or objective functions and they represent the design objectives. A vec-
tor x∗ ∈ � is called Pareto-optimal solution if there is no vector x ∈ � which would
decrease some criteria without causing a simultaneous increase of at least one crite-
rion function.
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Fig. 3 Feasible domain in the
case of bi-function f1 and f2

When we have mixed variables, the feasible domain includes holes or doted areas
that represent the discrete coding. In this case, the selection operator changes the
strategy and acts as follows: the comparison between two solutions can be achieved
easily by applying the non-dominated sorting idea introduced by Deb in the NSGA
code (Deb 2007; Deb et al. 2002). To continue the iterative process, the principle of
choosing the solution between two solutions i and j is based on the following tree:

• Between two admissible solutions i and j, we choose the one with the best objective
function.

• If solution i is admissible and j inadmissible, we choose the solution i.
• If both solutions i and j are inadmissible, we choose the one with minimum con-

straint violation.

Once we obtain the new generation and the new Pareto fronts in the case of multi-
objective optimization, we apply the crossover and the mutation operators. With this
approach, we are not sure to be located within the feasible domain �. Other operators
such as crossover and mutation remain the same as for single objective optimization.
However, in the case of mixed variables, we are no longer sure to generate a feasi-
ble solution (created from two initial individuals called parents). In the next section,
we will focus on the reason why two admissible solutions can lead to an infeasible
solution.

2.3 Coding of the variables

Binary representation is often used for coding in genetic algorithms. This coding is
based on 0/1 representation in cells that is composed of a long string (individual) as
described in Fig. 4. For instance, assume that parameter xi varies between xi min = 0
and xi max = 31. The length needed for the coding is of 5 cells (00000 for 0 and 11111
for 31).

For each random representation within the variation rang, we can get the real rep-
resentation of one real variable as follows:

x = x + xmax − xmin

2l − 1
Decode(Sx) (2)
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Fig. 4 Variable coding in string
representation (3 parameters of
5 cells represent one individual)

Decode(Sx) represents the integer value that comes from the 0/1 representation and
l represents the string length used to code the variable x (l = 5 in our case).

However, if the variation range is between 0 and 29, we will need also 5 cells
to represent the parameter. In this case, the random function may exceed 29 if we
consider the coding 11111. Here, the idea is that we can either create a new random
function that will be called in the case of combinatory search or use the initial ran-
dom function (already implemented) to create the real parameter and to consider the
around representation (Round function). The first idea became quickly obvious as
during the crossover operator from two admissible solutions the crossover can pro-
duce two inadmissible solutions. The last idea seems easy to implement as it needs
only the Ceil function that exists in almost all the programming languages as C/C++
for instance. The pseudo code of the round function is as follows:

Round (Real Input_Value)
{
Declaration: Real Output_Value; Temp_Value;
Temp_Value = Ceil(Input_Value) − Input_Value;

Test condition: If Temp_Value > 0.5
Output_Value = ceil(Input_Value) − 1;

Else
Output_Value = ceil(Input_Value);

End
Return Output_Value;

}

So even after the crossover, the decoding of the new string will remain within the
variation rang. In NSGA-II used for the multiobjective optimization the same strategy
is also implemented efficiently. In the case of real coding, we do not need to apply
any other modification.

2.4 Constraints handling

To handle the constraints in the GA program, we consider the following composed
fitness function:

F(x) =
{

f (x)

fmax + CV(x) if constraints violated
(3)
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F(x) = f (x) if x is feasible, otherwise F(x) = fmax + CV(x) where fmax is the
objective function value of the most infeasible solution in the population and CV(x)

is the overall normalized constraint violation of the solution x.
Thus, there is no need to have any penalty parameter for handling the constraints

as usually used in the common approaches. Constraints are normalized to avoid the
scaling problems.

3 Numerical experiments

In this section, we start the numerical applications by a multiobjective benchmark
function (convex and discontinuous) often called ZDT3 test function. Then, after the
validation of our strategy, we test it on one square plate with a hole under traction
and thermal loading, then on a multilayer beam fixed in one side and supported by an
elastic spring at the other end.

3.1 Benchmark function with mixed variables in multiobjective optimization

The function ZDT3 is as follows:

Min F1(x) = x1

F2(x) = g(x)

[
1 −

√
x1

g(x)
− x1

g(x)
sin(10πx1)

]

with g(x) = 1 + 9

∑n
i=2 xi

n − 1

(4)

In our case, the number of variables is assumed to be n = 30. Two cases are in-
cluded: in the first case, we suppose that the entire variables vary continuously within
the same rang [0,10] and in the second case, the x1 will be discrete within range
[0,10]. For this benchmark the original rang was [0,1] which gives the Pareto Front
described in Fig. 5. The size of the population is 100 that evaluates along 200 genera-
tions. The probability of the crossover is equal to 0.9 and the probability of mutation
is equal to 0.033.

As the function F1 is equal to x1, the discrete value will be more notable on F1
than on F2 as shown in Fig. 7. However, along F2 we have the continuous variation
that is more linked to variables of x2 to x30. So, the Pareto front reduced quickly
from the original curve in Fig. 6. At the convergence, only integer points along F1
are plotted and correspond to the Pareto solution.

In the following we will apply this strategy to a 2D structure under coupled load
and mixed variables.

3.2 Shape, sizing and material selection optimization for the square plate with a
central hole

The first optimization problem is defined over a square plate with a central hole. Usu-
ally, the plate is manufactured with mono-material, uniform thickness and a circular
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Fig. 5 Pareto front at the convergence (left) and all the populations during the entire optimization process
(right) with continuous variables within rang [0,1]

Fig. 6 Pareto front at the convergence (left) and all the population during the entire optimization process
(right) with continuous variables within rang [0,10]

hole in the centre. For usual applications, the experiential design works well. How-
ever, the experiential design is conservative and fails to achieve a good performance
when the plate endures a more complicated load, such as thermal and static loads.
Selecting proper materials for different areas and designing the size or the shape of
the geometry with a certain optimization method is the advisable way to approach
the optimal design. Due to the double symmetry axes of the model, only a quarter of
the plate has been modelled. Figure 8 illustrates the geometrical model of the plate.
The plate is placed in a non-uniform temperature field which is decreasing linearly
from the centre to the outside. For the sake of simplification, we construct the plate
with four square sub-areas Ai (i = 1,2,3,4). For the ith sub-area Ai (i = 1,2,3,4),
a temperature Ti (i = 1,2,3,4) and a material mi (i = 1,2,3,4) are specified. The
temperature decreases from the centre with a constant step �T for each sub-area,
which can be formulized as Ti+1 = Ti − �T (i = 1,2,3). Usually, a material library
with a total material number of N is predefined for the material selection procedure.
Materials can only be chosen from the material library. For the first example, a mate-
rial library containing N = 6 different materials is used, which is listed with Table 1.
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Fig. 7 Pareto front at the convergence (left) and all the population during the entire optimization process
(right) with mixed variables within the rang [0,10]

Fig. 8 (a) Square plate with a central hole; (b) stresses contours of original design

The shape of the central hole is defined by two parameters r1, r2. When r1 = r2, the
central hole is circular. Otherwise, the central hole is elliptical. The plate is mod-
elled with uniform thickness t , which is also considered as a design variable in the
following examples.

Because of the non-uniformity of the temperature, the distribution of the material
will significantly influence the distortion and the stress concentration of the structure.
Besides the temperature load, a uniform tension F is also applied on two opposite
edges of the plate. Consequently, the basic objective of the optimization problem is
to minimize the maximum stress (σmax) which occurs near the hole or the interface
of two sections. The minimum value of σmax can be achieved by optimally selecting
the material for each component in the structure. At the same time, the total weight of
the plane is taken into account as well. The problem is a multiobjective optimization
considering the minimization of both the maximum stress and the total weight. The
material IDs mi (i = 1,2,3,4) for the ith sub-area are treated as binary design vari-



Shape, sizing optimization and material selection based on mixed 121

Table 1 Material library with 6 materials

Material ID (mi) Name E (GPa) μ α (10−6/°C) ρ (103 kg/m3)

1 Alloy 1 185 0.32 13.8 8.44

2 Alloy 2 178 0.29 13.31 8.89

3 Alloy 3 164 0.32 13.08 8.27

4 Aluminum 70 0.33 23 2.6

5 Copper 100 0.34 20 8.5

6 Steel 200 0.27 15 7.85

Fig. 9 (a) All the population during the optimization process and (b) Pareto optimal front at the conver-
gence

ables, while the parameters r1, r2 and t are real design variables. The optimization
problem is then formulized as follows:

find: {m1,m2,m3,m4; r1, r2, t}
min: {σmax,W }

s.t.

⎧⎨
⎩

mi ∈ {1,2,3,4,5,6} (i = 1,2,3,4)

0.5 cm ≤ r1, r2 ≤ 1.5 cm

0.1 cm ≤ t ≤ 0.5 cm

(5)

where W denotes the weight of the plate.
The model is originally initialized as uniform material distribution with m1 =

m2 = m3 = m4 = 1. The temperatures of the structure are defined as: T1 = 600 K,
�T = 50 K, TRef = 300 K. The central hole is circular with the following radius
r1 = r2 = 1 cm. The thickness of the plate is defined with t = 0.1 cm. The stresses
distribution of the original design is illustrated in Fig. 8b. We can see from the stresses
contours that the stress concentration phenomena take place on the edge of the hole.
In this example, we had not included any additional constraints accepted the ones of
the variables. In Fig. 9a, all the population during the entire optimization process is
plotted. The Pareto front at the convergence (Fig. 9b) shows also the convexity of the
defined problem which is the case in general of such structural examples when we
consider the following functions: stress and weight.



122 X.G. Tang et al.

Fig. 10 (a) The final design of the plate (left) and (b) the associated stress result (right)

From the unfeasible Pareto optimal point front illustrated in Fig. 9b, we can ob-
tain one feasible Pareto point at the convergence. This point represents the nearest
point in terms of metrics to the unfeasible Pareto point. It is noted that, the two
objective functions should be normalized to 0 ∼ 1 to eliminate the effect of quan-
titative scale. The final design of the model is illustrated in Fig. 10a. The optimal
material assignment for each sub-area is m1 = 2, m2 = 3, m3 = 6 and m4 = 6; the
optimal parameters for the central hole is r1 = 0.877 cm and r2 = 1.389 cm which
represents an elliptical shape. The stresses distribution of the final design is illus-
trated in Fig. 10b. From the stresses contours, we can see that the stress concentration
phenomena transfer from the edge of the hole in the original design to the inter-
face of different areas in the final design with an obvious quantitative decrease. The
shape reconfiguration of the central hole and the reassignment of the material se-
lection make significant contribution to improving the structural performance of the
plate.

3.3 Sizing and material selection optimization of a multilayer beam supported by
springs

The second example concerns simultaneously sizing, material and spring optimiza-
tion of a multilayer beam. The beam contains five layers of different materials. One
end of the beam is clamped and the other one is supported by two elastic springs.
Suppose the beam is loaded by a concentrated force in the centre of the upper surface
as well as a uniform temperature load on the whole body. Since each layer is prob-
ably assigned with a different material, the stress concentration may take place in
the interfaces of different layers. A material selection approach is carried out to opti-
mize mechanical and thermal performances of the beam by minimizing the maximum
stress. Meanwhile, the weight of the beam is reduced. Thus, the minimization of the
weight is the other objective function. A material ID mi (i = 1,2, . . . ,5) is consid-
ered as integer design variable for each layer. Meanwhile, the thickness of each layer
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Fig. 11 Multilayer beam

Table 2 Material library with 16 materials

Material ID (mi) E (GPa) μ α (10−6/ °C) ρ (103 kg/m3)

1 185 0.32 13.8 8.44

2 178 0.29 13.31 8.89

3 164 0.32 13.08 8.27

4 160 0.32 14.4 8.24

5 137 0.3 15.5 8.4

6 135 0.3 17.3 7.93

7 73 0.33 24.3 2.7

8 73 0.33 22.7 2.77

9 117 0.30 16.6 8.9

10 44.8 0.35 26.1 1.77

11 196 0.3 12.9 7.4

12 221 0.30 13 8.9

13 193 0.29 17.8 8.03

14 102 0.3 9.36 4.58

15 71.7 0.33 24.7 2.74

16 207 0.29 15.1 7.85

ti (i = 1,2, . . . ,5) and the elastic stiffness K of the two supporting springs are also
considered as continuous design variables. In our example, the beam is specified to
be five-layered, and a more detailed material library containing 16 metal or alloy ma-
terials is predefined for the material selection as shown in Table 2. The design model
of the problem is illustrated in Fig. 11.

The optimization procedure is carried out at two stages. At the first stage, displace-
ments of the structure are not taken into account. So the multiobjective optimization
problem contains no constraints. At the second stage, the maximum displacement is
considered as a constraint. Both kinds of multiobjective optimizations are formulated
as:
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Fig. 12 Pareto optimal front at
the convergence for the first
problem

Problem 1 Multiobjective optimization without constraint

find: {m1,m2, . . . ,m5; t1, t2, . . . , t5,K}
min: {σmax,W }

s.t.

⎧⎨
⎩

mi ∈ {1,2, . . . ,16} (i = 1,2, . . . ,5)

tmin ≤ ti ≤ tmax (i = 1,2, . . . ,5)

Kmin ≤ K ≤ Kmax

(6)

Problem 2 Multiobjective optimization with constraint on displacements

find: {m1,m2, . . . ,m5; t1, t2, . . . , t5,K}
min: {σmax,W }

s.t.

⎧⎪⎪⎨
⎪⎪⎩

umax ≤ u0

mi ∈ {1,2, . . . ,16} (i = 1,2, . . . ,5)

tmin ≤ ti ≤ tmax (i = 1,2, . . . ,5)

Kmin ≤ K ≤ Kmax

(7)

where, mi , ti denote the material ID and the thickness of the ith layer, respectively.
The two objectives, σmax and W , are the maximum equivalent stress and the beam
weight. umax denotes the maximum displacement, while K denotes the spring con-
stant. The upper bound u0 is assigned as 5 cm. In both formulations, the bounds of ti
are defined as [0.1,0.5] (cm), while the bounds of K are defined as [2×104,2×105]
(N/m).

Note that the Pareto optimal front has a convex curve in Fig. 12. However, the
maximum stress function dominates often the design process when compared with
the weight function. In the case, when we introduce constraints on displacement, the
over domination of the maximum stress function decreases quickly as the impor-
tance of the weight increases with displacement effects as illustrated in Figs. 12 and
13, respectively. Most practical optimization problems include several constraints.
Sometimes, we ignore or we increase the importance of some constraints to have an
overview of the design process. Constraints on displacement are also introduced to
get more practical and reasonable results. From the comparison of the Pareto optimal
front of the two problems (with and without constraints) illustrated in Fig. 13, we can
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Fig. 13 Pareto optimal front at
the convergence for the second
problem

Fig. 14 Representation of the Pareto optimal front for problems 1 and 2

note that the Pareto optimal front of optimization problem with constraints is just a
subset of the Pareto optimal front in the optimization problem without constraints.
The Pareto point and the minimum distance point for both problems are figured out
in Fig. 13. In terms of minimum distance between the unfeasible Pareto point and the
feasible Pareto front, the value changes slightly. The optimal design in terms of min-
imum distance point for the optimization problem with constraint on displacement is
illustrated in Fig. 15 with the detailed results listed in Table 3.

4 Conclusions

This article is concerned with simultaneous designs of material selection and geom-
etry optimization under static and thermal loads. Most structural designers have to
design with materials that are already available in the market. This need had become
realistic with the described strategy based on a modified genetic algorithm.
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Fig. 15 The optimal design in
the case of the optimization
problem with constraint on
displacements

Table 3 Detailed result list associated with Fig. 15

Design variables Objective functions

Thickness (m) Material ID Spring constant (N/m) Maximum stress (N/m2) Weight (kg)

0.004959 15 656651968 0.816736

0.004871 10

0.004987 10 97834.625000

0.002321 16

0.001010 10

Materials are selected from a database defined by an index to choose the best
combination with the corresponding structure parameters (sizing and shape design).
This mixed optimization considers either continuous or discreet parameter for the
optimization problem. Different numerical examples are presented to illustrate the
influence of the discrete choice within a continuous range or a database.

The originality of this work come out on the handling of the mixed parameters in
the case of the multi-objective optimization with the difficulties we can face related
to convexity and the continuity of the Pareto domain.

As perspective of the approach introduced in this article, it can be easily extended
to more complicated problems that consider not only sizing and shape optimization
but also topology optimization.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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