
Hybrid Optimization of Low-
Thrust Many-Revolution Tra-
jectories with Coasting Arcs
and Longitude Targeting for
Propellant Minimization
Master of Science Thesis
July 13th, 2017

David Jimenez-Lluva

Fa
cu

lty
of

Ae
ro

sp
ac

e
En

gi
ne

er
in

g





HYBRID OPTIMIZATION OF LOW-THRUST
MANY-REVOLUTION TRAJECTORIES WITH

COASTING ARCS AND LONGITUDE
TARGETING FOR PROPELLANT

MINIMIZATION

MASTER OF SCIENCE THESIS
JULY 13TH, 2017

by

David Jimenez-Lluva

Faculty of Aerospace Engineering,
Delft University of Technology

Author: D. Jimenez-Lluva

Supervisors: Ir. B.C. (Bart) Root TU Delft
Ir. A. (Antonio) Lozano GMV

Thesis committee: Prof. Dr. Ir. P.N.A.M. (Pieter) Visser TU Delft
Ir. K. (Kevin) Cowan TU Delft
Ir. B.C. (Bart) Root TU Delft
Ir. A. (Antonio) Lozano GMV

This thesis is confidential and shall only be read by the committee members within the duration of the embargo.
It shall not be made public until July 13th, 2022.

Cover image: artist’s conception of advanced Solar Electric Propulsion (SEP). Presented in NASA’s Asteroid Redirect Mission Proposal in
2014. It is taken from http://www.nasa.gov/multimedia/imagegallery/image_feature_2487.html

http://www.nasa.gov/multimedia/imagegallery/image_feature_2487.html




PREFACE

This report finalizes the 42 ECTS thesis project that culminates the Master of Science (MSc) in Aerospace En-
gineering at Delft University of Technology (TU Delft). It was preceded by a detailed literature study aimed at
identifying rooms for improvement in state-of-the-art techniques within the field of low-thrust many-revolution
trajectory optimization. Some of the most relevant findings of this literature study are briefly mentioned again
in this report. Readers of this thesis are expected to have a basic understanding of mathematics, astrodynam-
ics, and optimal control theory. Thus, readers who seek a fundamental insight to these topics and readers who
may be interested in further continuing this research are encouraged to request the literature study report from
the author or one of the supervisors.

This MSc thesis project entails a cooperation between the author, TU Delft and GMV Innovating Solutions
(GMV). As a technology business group with a strong leadership in space engineering, GMV has a profound in-
terest in the continuous innovation of their software products and that is the nature of this thesis project. GMV
sprouted in 1984 as a start-up led by the dean of the aerospace engineering faculty of the Madrid Polytech-
nical University (UPM). Its name originally stood for "Flight Mechanics Group" (in Spanish "Grupo Mecánica
de Vuelo") and, as it may suggest, GMV’s original activities revolved around satellite flight mechanics, mission
analysis, as well as satellite navigation and simulation. In its early stages, GMV earned several contracts in
international tenders held by the European Space Agency (ESA). In 1988, GMV received the ESA award for Ex-
cellence in Orbital Mechanics, which contributed to the international reputation for its high quality specialized
services.

Nowadays, GMV Innovating Solutions has become a technology business group that maintains a strong leader-
ship in space engineering and has diversified into eight additional markets. GMV partly attributes this compet-
itive success to its personnel policy, and proactively aims to attract some of the most promising and passionate
MSc students through its involvement in university teaching as well as internships and thesis research projects
such as the project at hand. This has proven to be a unique opportunity that the author highly recommends to
other students interested in these fields.
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ABSTRACT

Electric Propulsion (EP) has become one of the most efficient technologies for spacecraft propulsion. In con-
trast to conventional chemical propulsion, the low thrust force generated by EP thrusters can deliver a mo-
mentum transfer to the spacecraft that is up to twenty times greater, for an equivalent propellant expenditure.
Despite decades of heritage, the topic of low-thrust spacecraft trajectory optimization remains an active field
of research, with many approaches available yet much room for improvement. This MSc thesis presents the
development of a novel methodology for low-thrust many-revolution trajectory optimization. It employs the
state-of-the-art hybrid technique to harness the strengths of both indirect and direct optimization methods.
Its indirect nature efficiently reduces the number of optimization variables and its direct counterpart provides
an unmatchable flexibility in terms of a configurable force and perturbation model as well as operational con-
straints handling. This methodology was already shown in literature to be highly reliable for minimum-time
trajectories. The research hereby presented maintains these results while enabling it to optimize minimum-
propellant trajectories through a mechanism that allows for coasting (non-thrusting) arcs. This approach is
additionally combined with an orbital averaging scheme to reduce the propagation load at the expense of ac-
curacy for the rapidly changing variables. Nonetheless, it retains the continuous integration scheme to en-
able final geodetic longitude targeting in combination with propellant-minimization, which the former hybrid
methodologies were incapable of solving for. The trajectory simulator is coupled with an enhanced objective
function that reduces the user fine-tuning effort, and with a differential evolution algorithm that leads to a
flexible global optimization process with a practical computational effort.

This research is the outcome of the cooperation between the author, Delft University of Technology, and GMV
Innovating Solutions, a technology business group with a strong leadership in space engineering. The specific
interest of application of this research lies in many-revolution planetocentric trajectories, such as an orbital
transfer to Geostationary Earth Orbit, where there are growing market opportunities for all-electric satellite
platforms. The resulting software, integrated as part of GMV’s Flight Dynamics solution, allows the user to
include orbital perturbations and perform a multi-objective optimization with respect to time-of-flight, pro-
pellant expenditure, and final geodetic longitude. This research constitutes a quantum leap for the hybrid
optimization method because it shows that its accuracy in propellant-minimization is comparable to the an-
alytical global optima despite the simplified co-state dynamics. Furthermore, it is a significant advancement
for space mission design and satellite operations because it demonstrates the superior convergence perfor-
mance of the hybrid methodology relative to GMV’s implementation of the indirect approach, particularly in
complex problems that combine multiple optimization objectives with varied orbital perturbations and oper-
ational constraints fulfillment.
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ẋ Derivative of variable x with respect to time

x Average value of variable x

ẋ Averaged value of the derivative of variable x with respect to time

d
d t Derivative of a variable with respect to time⊙

Out-of-plane direction, indicates that a vector points outwards from the page

LATIN SYMBOLS

CF Scaling factor in the DE optimization process -

CR Cross-over factor in the DE optimization process -

D Number of optimization parameters in the DE optimization process -

E Eccentric anomaly rad

F Objective function to be minimized in an optimal control problem -

H Hamiltonian of the optimal control problem -

Isp Specific impulse of the spacecraft engine s

a J2 Acceleration vector due to the J2-perturbation km·s−2

J2 Constant corresponding to the Earth J2 perturbation -

L Modified equinoctial element L rad

L Lagrange term in the Hamiltonian of an optimal control problem -

NP Population size in the DE optimization process -

Nar cs Number of co-state arcs within the entire trajectory -

O Astep Propagation step in the orbital averaging process days

Pi n Input power to the spacecraft engine W

Q Matrix containing the unit vectors that define the RSW reference frame -

RE Radius of Earth km

St Switching function in the bang-bang optimization problem -

T Thrust force of the spacecraft engine mN

Tor b Orbital period s

∆V Velocity increment km·s−1

W Weight vector of the terms in the aggregate objective function -

ix



x CONTENTS

Wm Weight of the propellant expenditure in the aggregate objective function -

Wq Weight of the q th state element in the aggregate objective function -

Wr Weight of the experienced radiation fluence in the aggregate objective function -

Wt Weight of the time-of-flight in the aggregate objective function -

a Semi-major axis km

ad Total disturbing acceleration vector km·s−2

æ Vector containing the first five Keplerian elements and the geodetic longitude -

ar Component of the total disturbing acceleration along q̂r km·s−2

as Component of the total disturbing acceleration along q̂γ km·s−2

aT Acceleration vector due to the thrust force km·s−2

aw Component of the total disturbing acceleration along q̂h km·s−2

b Vector containing the auxiliary offset factors in the scaling procedure -

d Vector containing the auxiliary scaling factors in the scaling procedure -

e Eccentricity -

f Modified equinoctial element f -

g0 Earth’s gravitational acceleration at sea level km·s−2

g Modified equinoctial element g -

h Specific angular momentum kg·km2·s−1

i Inclination rad

j Modified equinoctial element j -

k Modified equinoctial element k -

m Instantaneous total mass of the spacecraft kg

mpr op Propellant mass consumed by the spacecraft throughout a trajectory kg

n Mean motion of the spacecraft rev·s−1

nk Number of integration steps per revolution -

ns Number of co-state discretization nodes within the entire trajectory -

œ Vector containing the classical Keplerian elements -

p Modified equinoctial element p, equivalent to the semi-latus rectum km

q̂γ Unit vector defining the s-direction in RSW reference frame -

q̂h Unit vector defining the w-direction in RSW reference frame -

q̂r Unit vector defining the r-direction in RSW reference frame -

r Distance between the spacecraft and the central body km

r Position vector km

s Auxiliary variable in the optimal control law derivation -

t Time s

t f Transfer time days

u Control vector containing the control parameters -

v Velocity vector km·s−1

vx Component of the velocity vector in the x-direction of the ECG frame km·s−1



CONTENTS xi

vy Component of the velocity vector in the y-direction of the ECG frame km·s−1

vz Component of the velocity vector in the z-direction of the ECG frame km·s−1

w Auxiliary variable in the optimal control law derivation -

x Component of the position vector in the x-direction of the ECG frame km

x State vector containing the modified equinoctial elements and the total mass -

∆x Integral of the state vector approximated through numerical integration

y Component of the position vector in the y-direction of the ECG frame km

y Design vector containing the optimization parameters -

z Component of the position vector in the z-direction of the ECG frame km

GREEK SYMBOLS

α Thrust in-plane (yaw) steering angle, measured w.r.t. q̂γ rad

β Thrust out-plane (pitch) steering angle, measured w.r.t. the orbital plane rad

γ Flight-path angle rad

ε Vector containing the error between x t ar g et and x f i nal -

η Thruster efficiency -

θ True anomaly rad

λ Co-state vector in the Hamiltonian of an optimal control problem -

µ Earth’s gravitational parameter km3·s−2

φ Eclipse half-angle rad

ω Argument of pericenter rad

Λαq Constant related to the q th element in the Hamiltonian derivative w.r.t. α -

Λ
β
q Constant related to the q th element in the Hamiltonian derivative w.r.t. β -

Λ Geodetic longitude rad

Φ Mayer term in the Hamiltonian of an optimal control problem -

Φ′ Geodetic latitude rad

Ψ Radiation fluence proton/cm2

Ω Right ascension of the ascending node rad

SUBSCRIPTS & SUPERSCRIPTS

ä∗ Optimal value of a variable according to Pontryagin’s minimum principle

äT Transpose of a matrix or vector

ä0 Initial value of a parameter

älb Lower bound(s) of variable or vector in the optimization process

ämax Maximum achievable value of a parameter

äub Upper bound(s) of variable or vector in the optimization process

ä f Final achieved value of a parameter at the terminal boundary condition

äsc Scaled variable or vector

äsi mp Integral of a variable approximated through Simpson’s scheme



xii CONTENTS

ät Desired target value of a parameter at the terminal boundary condition

ätr ap Integral of a variable approximated through the trapezoidal scheme

ACRONYMS

AOF Aggregate Objective Function

BC Boundary Condition

CI Continuous Integration

DE Differential Evolution algorithm

DV Design Vector (contains the optimization parameters)

ECI Earth-Centered Inertial reference frame

ECEF Earth-Centered Earth-Fixed reference frame

EP Electric Propulsion

EOM Equations of Motion

EPTOS Electric Propulsion Trajectory Optimization Software

EVENTS GMV FDO’s Events Analysis Tool Available within focusleop ®

ESA European Space Agency

FDO Flight Dynamics and Operations (division of GMV Space)

GA Genetic Algorithm

focusleop ® GMV’s toolbox for Launch and Early Operations Phase

focussuite ® GMV’s Flight Dynamics and Operations software solution

GEO Geostationary Earth Orbit

GMI Generalized Island Model

GMV GMV Innovating Solutions

GSG Galileo Second Generation

GTO Geostationary Transfer Orbit

GUI Graphical User Interface

HOSTEP Hybrid Optimization Software for Trajectories with Electric Propulsion

IGEOR Initial Guess for Electric Orbit Raising

KKT Karush-Kuhn-Tucher (optimality condition)

LC Legendre-Clebsch (optimality condition)

LEO Low Earth Orbit

LEOP Launch and Early Operations Phase

MEE Modified Equinoctial Elements

MEO Medium-Earth-Orbit

MOO Multiple Objective Optimization

MSc Master of Science

NASA National Aeronautics and Space Administration

NLP Non-Linear Programming

OA Orbital Averaging



CONTENTS xiii

OCP Optimal Control Problem

PROPAG GMV FDO’s Propagation Tool Available within focusleop ®

PaGMO Parallel Global Multi-Objective Optimizer

RAAN Right Ascension of the Ascending Node

RK4 Runge-Kutta 4 fixed-step integration scheme

RK4(5) Runge-Kutta 4(5) variable-step integration scheme

RKF7(8) Runge-Kutta-Fehlberg 7(8) variable-step integration scheme

SB Shape-Based optimization approach

RSW Radial-Transverse-Normal reference frame

SEP Solar Electric Propulsion

SEPSPOT Solar Electric Propulsion Trajectory Optimization Program

SMART Specific, Measurable, Achievable, Relevant, and Time-bound

SSTO Super-Synchronous-Transfer-Orbit

SV State Vector (contains the orbital elements and spacecraft mass)

TFC Thrust Fourier Coefficients

TOF Time-of-Flight

TPBVP Two Point Boundary Value Problem

TU Delft Delft University of Technology

UPM Technical University of Madrid (Universidad Politecnica de Madrid)

V&V Verification and Validation





1
INTRODUCTION

“Impossible today will be possible tomorrow.” – Konstantin Tsiolkovski.

Electric Propulsion (EP) is among the most efficient technologies for spacecraft propulsion. It can reach a mo-
mentum transfer to the spacecraft that is up to twenty times greater than that of classical chemical propulsion,
per kilogram of propellant [Sabbadini et al., 2002]. As compared to the high-thrust manoeuvres of conventional
chemical engines, the low-thrust force generated by EP thrusters can be applied continuously and, over time,
it can equally accelerate a spacecraft using considerably less propellant mass. Thanks to the technological
advancements in the recent decades, EP has become a means for station keeping in Geostationary Earth Orbit
(GEO) [Byers and Dankanich, 2008], altitude maintenance (such as the GOCE mission [Drinkwater et al., 2006]),
and even interplanetary flight (such as Deep Space-1 [Rayman et al., 1999], SMART-1 [Koppel and Estublier,
2003], Hayabusa [Nishiyama and Kuninaka, 2012], and DAWN [NASA, 2015]). Therefore, private space entities
are investing in similar concepts, and some companies such as Boeing have already developed fully electric
platforms to deliver payloads from Geostationary Transfer Orbit (GTO) to GEO [Feuerborn et al., 2013].

The classical trade-off in mission planning is whether to aim for the fastest trajectory, and possibly increase
the revenues that result from earlier operations, or to aim for the most propellant-efficient trajectory. Natu-
rally, there have long existed many simulation and trajectory optimization tools for this purpose. However,
this new era of fully electric satellites raises a need for new methodologies. In contrast to high-thrust chemical
manoeuvres which can be modelled as impulsive, electric engines operate continuously and deliver low-thrust
forces. Consequently, the equations of motion are different and, more importantly, there is a vast amount of
optimization variables because the thrust vector can be adjusted at every second of a typically 200 day trajec-
tory [Geffroy and Epenoy, 1997]. Since the profits to be gained with EP are significant (namely a lower launch
mass, a higher payload capability or an extended lifetime), this raises the need for new generations of accurate
and robust methodologies to simulate and optimize low-thrust electric propulsion trajectories.

1.1. LOW-THRUST TRAJECTORY OPTIMIZATION HERITAGE

With the development of EP technology over the recent decades, the field of low-thrust trajectory optimiza-
tion has gained a lot of interest. In interplanetary applications, the use of Shape-Based (SB) approaches is
predominant [Taheri and Abdelkhalik, 2016; Hoving, 2015; Roegiers, 2014; Gondelach and Noomen, 2015; Gil-
Fernandez and Gomez-Tierno, 2010]. However, these usually perform worse in many-revolution trajectories
[Wei and Changhou, 2011], i.e. those that exceed ten revolutions, which is the focus of this thesis.

In addition to SB approaches, there have been many other strategies developed to yield optimal and near op-
timal trajectories. These can generally be classified into direct methods, such as [Betts, 1994; Taheri and Ab-
delkhalik, 2016], or indirect methods, such as [Geffroy and Epenoy, 1997; Sanchez and Campa, 2014]. Indi-
rect approaches employ calculus of variations to analytically derive the optimality conditions of the Optimal
Control Problem (OCP), and thus solve the Two-Point-Boundary-Value-Problem (TPBVP) in an analytical way.
From the optimization objective function and the known system Equations of Motion (EOM), one may set up
the Hamiltonian. The first and second derivative of the Hamiltonian with respect to all control parameters
allow to find the optimal control settings, whereas the derivatives with respect to the state variables yield the
corresponding system co-state EOM. Readers who are not familiar with optimal control theory may find a use-
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ful insight in well established sources such as [L. S. Pontryagin et al, 1964]. On the other hand, direct approaches
transcribe the OCP to a parameter optimization problem that can be solved through Non-Linear Programming
(NLP) by iteratively calculating sets of control parameters that satisfy the EOM and Boundary Conditions (BC),
while minimizing the objective function.

Whether direct or indirect methods are better suited for low-thrust optimization problems is debatable. Thanks
to the analytical formulation, indirect methods converge to global or near-global optima, whereas direct meth-
ods only converge to local optima [Geffroy and Epenoy, 1997]. Conversely, indirect methods are problem spe-
cific and a minor change in the formulation, such as incorporating an orbital perturbation or an operational
constrain, requires deriving the entire TPBVP again [Geffroy and Epenoy, 1997]. This analytical TPBVP deriva-
tion not is a labour intensive task that requires a profound understanding, but also leads to assumptions that
may be too significant for certain applications [Boudestijn, 2014]. On the other hand, direct methods offer an
unmatchable flexibility in this respect as the inclusion of perturbations simply requires adding extra terms to
the EOM, and the addition of operational constraints can be achieved through logical statements in the algo-
rithm. Nonetheless, direct methods often yield inaccurate co-states or no co-state information at all [Benson
et al., 2006]. Lastly, indirect methods are known to have a more limited radius of convergence that direct meth-
ods [Betts, 1998], and varied combinations of optimization objectives, perturbations and constraints may not
be feasible in indirect methods due to the analytical formulation complexity. To this day, there are yet frequent
advances and new techniques being developed [Taheri and Abdelkhalik, 2016], and there is still much room for
improvement in this field of research due to the problem complexity.

Within GMV, the Flight Dynamics and Operations division (FDO) is currently in the later development stages
of a commercial software toolbox to optimize low-thrust planetocentric trajectories, such as an orbital trans-
fer to GEO, where there are growing market opportunities for all-electric satellites. Two core elements of this
toolbox are a high-fidelity optimizer known as Electric Propulsion Trajectory Optimization Software (EPTOS)
and an a priori optimizer labelled Initial Guess for Electric Orbit Raising (IGEOR). IGEOR employs an indirect
optimization method [Montealegre-Avila, 2015] based on the work presented in [Geffroy and Epenoy, 1997;
Sanchez and Campa, 2014]. It consists of a single shooting method where the optimization variables are the
initial values of the system co-states, which are optimized using a differential evolution algorithm. A detailed
insight about single shooting and further discretization schemes can be found in [Jimenez-Lluva, 2016]. The
underlying mathematical formulation in IGEOR allows for coasting (non-thrusting) arcs and its indirect na-
ture guarantees a globally optimal solution. However, the inherent limited convergence of the indirect method
only allows for incorporating Earth-shadow regions and second-order Earth oblateness effects. Nonetheless,
although it cannot incorporate operational constraints or further orbital perturbations, it serves as a near op-
timal a priori solution that can be accurately refined by EPTOS. EPTOS consists of a parallel shooting method
that divides the entire trajectory into segments, each of which is solved through an indirect shooting approach
similar to IGEOR [Corneliu et al., 2015]. Continuity constraints are implemented at the boundaries between the
trajectory segments and the resulting problem is solved in a direct approach using an NLP optimizer suitable
for very large and non-linear problems. This direct nature allows for a full near-Earth orbital perturbations
model and is very successful in refining a near optimal trajectory. Conversely, it has the drawback that the
solution may only be a global optimum if the initial guess is sufficiently close to it.

1.2. THE ROLE OF THE A PRIORI SOLUTION IN OPTIMIZATION

Complex optimization problems often exhibit large objective function fluctuations and it is important to dis-
tinguish between local and global optima, as illustrated in Figure 1.1. The former are points which are the
most extreme within a limited domain of the design space, whereas the later are points that constitute the
minimum or maximum value over the entire design space. Some algorithms, such as the gradient descent al-
gorithm shown in Figure 1.2, are only capable of local optimization and therefore, require an a priori solution
to initialize the search within the optimization process. Hence, the choice of the optimization algorithm is very
important for both indirect and direct formulations as it determines is an initial guess is required and whether
the resulting optimum is local or near global.

The sensitivity of an optimization algorithm to the a priori solution is referred to as robustness [Kluever, 2010].
The literature study preceding this thesis identified that metaheuristic optimization algorithms are most ro-
bust [Jimenez-Lluva, 2016], with the Differential Evolution (DE) algorithm [Storn and Price, 1997] being most
suitable for complex problems such as that of low-thrust many-revolution trajectories. Nonetheless, it must
be clarified that albeit capable of global optimization, the DE algorithm may not converge to the global opti-
mum due to its randomized search technique. Additionally, the convergence performance depends on the DE
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parameters specified by the user and the search stopping criteria. It should also be clarified that, despite this
random nature, the DE implemented in this thesis can still benefit from an input a priori solution to limit the
search space and thus lessen the computational load.

Figure 1.1: Illustration of local and global optima [Dunphy,
2014].

Figure 1.2: The gradient descent algorithm [Klukas,
2015].

Depending on the problem formulation and the design vector to be optimized, an a priori solution may consist
of a thrust profile, such as the direct approach in [Betts, 2000], or the initial co-state values, such as the indirect
shooting method in [Sanchez and Campa, 2014]. Nonetheless, the output solution can be modified to satisfy
different input requirements. For example, IGEOR can intake the initial co-states from a previous optimization
to simulate the trajectory, and the corresponding thrust profile can be stored to be later input in EPTOS. This
allows the results of the methodology presented in this thesis to replace the a priori solution of IGEOR despite
the different underlying formulation and design vector.

In the case of EPTOS, the a priori solution is of critical importance. This is because the underlying NLP opti-
mizer may only yield a local optimum if this initial guess is far from the global optimal trajectory. Additionally, it
may also drastically affect the convergence rate and whether it does converge to a feasible trajectory in the first
place. For this reason, IGEOR was developed using an indirect formulation that satisfies the analytical optimal
dynamics and was combined with a DE algorithm that yields near global optimum values of initial co-states.
However, its indirect nature limits the amount of orbital perturbations and simultaneous optimization objec-
tives that may be implemented. This does not constitute a significant weakness for simple problems such as a
minimum Time-of-Flight (TOF) GTO-GEO trajectory because EPTOS can evaluate the full near-Earth pertur-
bations model and refine the solution without difficulties. However, when the optimization of EPTOS further
incorporates propellant-minimization, final geodetic longitude targeting, or intricate operational constraints
such as a maximum slew-rate; the simplified a priori solution of IGEOR proves to be too far from a near global
solution, and EPTOS has difficulties converging to a feasible trajectory that satisfies these needs. Nonetheless,
the trade-off between TOF, propellant expenditure, and final geodetic longitude is of paramount importance
to the positioning of GEO satellites as well as rendez-vous applications. Therefore, the recommendations of
the GMV engineer who developed IGEOR [Montealegre-Avila, 2015] were to develop a method that can yield
near optimal a priori trajectories that already satisfy such objectives and constraints. Since direct optimization
methods are known to be most flexible in this regard, the author decided to investigate the extent to which a
hybrid methodology may yield more suitable a priori solutions.

1.3. HERITAGE OF THE HYBRID OPTIMIZATION METHOD

The control parametrization method, often referred to as the “hybrid” approach, harnesses the benefits of
both direct and indirect optimization methods, while avoiding their corresponding weaknesses. It was first
presented in [Kluever and Pierson, 1995] and further developments are studied in [Kluever, 2010; Boudestijn,
2014; Gomez, 2015]. This methodology employs the first order optimality conditions of the OCP to analytically
derive the optimal control parameters as function of the system states and co-states. Instead of further de-
riving the analytical EOM of the system co-states to complete the TPBVP like indirect methods, it implements
the previous optimal control equations in a direct optimization approach. The resulting methodology is more
efficient than a purely direct approach because it avoids solutions that do not satisfy the optimal control con-
ditions. Additionally, the hybrid method retains the high flexibility of direct approaches such that additional
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orbital perturbations or operational constraints can be readily added to the system dynamics without altering
the mathematical foundation, which would need to be re-derived when using an indirect method.

In [Kluever and Pierson, 1995], the thrust magnitude was assumed constant and the control parameters were
the two thrust steering angles. Through the first and second derivatives of the Hamiltonian with respect to these
control angles, the optimal equations for each angle are derived as function of the system state and co-state
at every epoch. Hence, the optimization variables become the system co-states instead of the original thrust
control parameters. Whereas the thrust steering angles vary very irregularly at every second of the entire tra-
jectory, the system co-states behave more smoothly and are linearly interpolated among a discrete set of nodes
equally spaced in time. Therefore, this method considerably reduces the amount of optimization variables and
hence the complexity of the NLP problem as well as the computational load. Additionally, it evaluates whether
the spacecraft is within the Earth shadow region and automatically sets the thrust magnitude to zero.

In [Kluever, 2010], an Orbital Averaging (OA) technique is implemented to the original method in order to sig-
nificantly reduce the computational propagation load. Instead of evaluating every propagation step within
all revolutions of the trajectory, the OA approach employs an averaged state derivative to propagate the state
directly over several revolutions at a time, with steps of up to five days. Because the state of low-thrust trajec-
tories changes so smoothly and gradually, this method considerably reduces the propagation effort without a
considerable loss of accuracy. Nonetheless, the variation becomes significant over five days so the averaged
derivative needs to be updated regularly. In a test case for the minimum-time LEO-GEO transfer optimization,
the resulting optimal TOF of 199.0 days is shown to be very accurate when compared to the 198.8 days solution
from the Solar Electric Propulsion Trajectory Optimization Program (SEPSPOT) [Sackett et al., 1975], a widely
used indirect approach developed by NASA.

In [Boudestijn, 2014], the previous method is re-derived using Modified Equinoctial Elements (MEE), which is
superior to the classical Keplerian element state representation [Jimenez-Lluva, 2016]. Although Earth-shadow
eclipses are incorporated, all other orbital perturbations are neglected. The results are validated with the mini-
mum TOF test cases presented in [Kluever, 2010], and the new formulation is shown to have a broader scope of
application as it does not suffer from the inherent discontinuities of the Keplerian state representation. This re-
search is continued in Gomez [2015], where the force model is further refined by incorporating gravity gradient
perturbations, an atmospheric model, third body perturbations, and a radiation fluence model. Additionally,
a mechanism for multi-objective optimization is implemented to allow for trade-offs between different perfor-
mance objectives. The results for minimum-TOF trajectories are validated with those of the previous hybrid
studies and Pareto fronts are produced for the CleanSpace-One mission to illustrate the optimal combinations
of TOF, propellant mass, and experienced radiation fluence.

The weakness of the hybrid methods developed in these studies is its limited applicability to minimum pro-
pellant optimization. Although every study investigated minimum propellant test cases, the final mass results
deviated significantly from the optimal results indirect methods like SEPSPOT. Gomez [2015] acknowledged
that these hybrid formulations are ill-conditioned for minimum propellant cases due to the constant thrust
magnitude assumption. This is to be expected because continuous thrust is less efficient than variable thrust,
since there are regions of the trajectory where the effect of the thrust input is less effective or undesirable.
To further improve the hybrid methodology, it is clear that a mechanism must be implemented to allow for
coasting (non-thrusting) arcs throughout the trajectory and therefore improve the accuracy of the minimum
propellant solution.

In theory, the hybrid approach should be less accurate than indirect methods since the simplified co-state dy-
namics do not satisfy the analytical optimal EOM, but the previous studies showed that it yields high accuracy
in minimum-TOF trajectory optimization when compared to the analytical global solution from indirect meth-
ods. Given the computational efficiency of the hybrid method, and more importantly due to the flexibility of its
direct nature, the author decided to continue the research of Gomez [2015] and develop a novel hybrid method-
ology capable of evaluating coasting arcs beyond the Earth shadow regions and targeting the final geodetic lon-
gitude. The corresponding software prototype newly developed is referred to as Hybrid Optimization Software
for Trajectories with Electric Propulsion (HOSTEP), and is incorporated within GMV’s low-thrust optimization
toolbox to evaluate the suitability of its solution as initial guess to GMV’s high-fidelity optimizer.

1.4. LOW-THRUST COASTING ARCS HERITAGE

Several promising approaches to accomplish coasting arcs have been identified in literature. This section
briefly describes how to model coasting arcs through Fourier series representations of the thrust control as
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well as thrust or specific impulse modulation to implement .

1.4.1. THRUST MODELLING USING FOURIER SERIES

In [Hudson and Scheeres, 2009], a set of averaged Keplerian EOM is derived as functions of 14 Thrust Fourier
Coefficients (TFC) based on eccentric anomaly. Moreover, the authors derived an offset correction for these
EOM because some higher order effects of the Fourier series are not captured in the averaging process. These
averaged secular EOM are then used to propagate a trajectory that is given a step input function for one of the
thrust components, yielding very accurate results. In [Hudson and Scheeres, 2011], two methods are developed
for low-thrust many-revolution optimization: an indirect approach that analytically solves the TPBVP and a
least squares approach. The least squares approach is not deemed suitable for the scope of this thesis because
it yields a single control law for the entire trajectory that does not allow for intermittent thrusting. The indirect
method demonstrates the potential of the TFC concept as it allows thrust magnitude variations throughout
the trajectory and hence coasting arcs. However, indirect methods were already deemed unsuitable due to
their limited flexibility, requiring a new derivation for the inclusion of additional perturbations in the model.
In [Ko and Scheeres, 2014], Ko and Scheeres showed that a particular set of six essential TFCs can yield very
similar results as the set of 14 TFCs presented in [Hudson and Scheeres, 2009]. The author believes it may be
possible to combine the hybrid approach from [Gomez, 2015] with this TFC technique. However, the author
also identified simpler approaches in literature and deemed this method undesirable based on the complexity
and analytical effort required to re-derive the TFC formulation in equinoctial state representation.

1.4.2. THRUST AND SPECIFIC IMPULSE MODULATION

In [Kluever, 2004], a modification of the original hybrid approach is presented that allows for variable specific
impulse Isp , instead of assuming a constant thrust magnitude. This control laws that stem from this strategy
could be re-derived in equinoctial state representation and combined with the former hybrid methodology
from [Gomez, 2015]. By applying the first order optimality conditions to the new Hamiltonian, an analytical
equation can be derived for the optimal Isp as a function of the trajectory states and co-states. In fact, the
equations for the optimal thrust steering angles would remain unaffected by the variable Isp modification, and
one would just need to implement an additional equation. However, this study shows that the propellant mass
benefit of Isp modulation does not outweigh the required additional hardware mass.

A similar strategy is presented in [Gao and Kluever, 2004], where interplanetary low-thrust trajectories are stud-
ied using a modified hybrid method in combination with multiple shooting and a mechanism for coasting arcs
through a variable thrust magnitude T . The results are promising in comparison to previous interplanetary
studies, but indicate that the overall formulation is unsuitable for many-revolution problems. Nonetheless,
the coasting arc mechanism may be adjusted to the problem at hand. This method differs from Isp modula-
tion in that the Hamiltonian is linear in T , so deriving the Hamiltonian does not yield a discrete equation for
the optimal T , but a singular control problem. Consequently, T may be zero, maximal, or a value in between,
depending on the sign of a switching function. The advantage is that, like the variable Isp mechanism, the ad-
ditional switching function for the optimal thrust magnitude T can be analytically derived without altering the
equations for the optimal thrust steering angles. Therefore, the author deemed it most convenient to re-derive
this switching function using MEE and combine it with the research of [Gomez, 2015] to allow for coasting arcs
in the optimization process and thus develop a novel hybrid optimization methodology.

1.5. PROBLEM STATEMENT

This section distinguishes between project objectives and research questions. The former is related to the
project sponsor requirements for the software prototype functionality and performance, whereas the research
questions are aimed at extending the scientific research presented in previous literature.

1.5.1. PROJECT OBJECTIVES

The recommendations of Montealegre-Avila [2015], the GMV engineer who developed IGEOR, were to imple-
ment a full near-Earth perturbation model, implement a flexible constraint handling functionality, and en-
hance the propellant-minimization and final geodetic longitude targeting abilities, which were significantly
limited in IGEOR yet are of paramount importance for GEO positioning and rendez-vous applications. The so-
lution deemed most promising by the author is to employ a hybrid combination of direct and indirect methods
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based on the research in [Gomez, 2015] and investigate whether it may potentially replace IGEOR in GMV’s tra-
jectory optimization toolbox. Furthermore, the recommendations of Gomez [2015] were to improve the hybrid
methodology by implementing a mechanism for coasting (non-thrusting) arcs, implementing a mechanism for
final geodetic longitude targeting, and upgrade the DE algorithm to a self-adaptive DE, such as the one avail-
able in ESA’s Parallel Global Multiobjective Optimizer (PaGMO). The latter recommendation is not deemed a
priority because it is more related to perfecting the performance rather than enhancing the scientific relevance
of the new method. Moreover, it is not deemed a priority to implement a full near-Earth perturbations model or
extensive operational constraints because these are known to be easily implemented in direct methods [Betts,
1998].

Due to the commercial nature of this project, copyrights, and compatibility reasons, the software developed in
[Boudestijn, 2014; Gomez, 2015] cannot be employed in this project and a new prototype must be developed
from scratch. Given the ambition of the previous recommendations and the limited time available for this
thesis project, the author prioritized the sub-objectives as follows:

1. Develop the GUI and platform for the commercial high-level prototype Hybrid Optimization Software
for Trajectories with Electric Propulsion (HOSTEP) while guaranteeing compatibility with all other func-
tionalities of GMV’s focussuite ® toolbox, such as PROPAG, EVENTS, and EPTOS.

2. Reproduce the hybrid methodology published in [Boudestijn, 2014], including orbital averaging, and de-
velop an improved objective function that lessens the fine tuning effort required by the user for different
optimization problems.

3. Implement the multi-objective optimization functionality presented in [Gomez, 2015] as well as Earth-
shadow eclipses and second-order Earth oblateness perturbations.

4. Extend the hybrid methodologies previously published in literature by incorporating a mechanism adapted
from the strategy in [Gao and Kluever, 2004] to allow for coasting (non-thrusting) arcs in the optimization
process.

5. Compare the optimal minimum-time GTO-GEO trajectory with the results obtained with the indirect
method in [Geffroy and Epenoy, 1997; Sanchez and Campa, 2014; Montealegre-Avila, 2015], and attempt
to reproduce the time-propellant Pareto front presented in [Sanchez and Campa, 2014].

6. Extend the former hybrid methodology by enabling targeting of the final geodetic longitude, and com-
pare its performance in rendez-vous problems with that of the indirect method presented in [Sanchez
and Campa, 2014; Montealegre-Avila, 2015].

The resulting project objective is formulated as follows:

“Design and program a novel Hybrid Optimization Software for Trajectories with Electric Propulsion
(HOSTEP) that continues the research presented in [Kluever and Pierson, 1995; Boudestijn, 2014;
Gomez, 2015] by incorporating coasting arcs, a partial near-Earth perturbation model and a multi-
objective optimization functionality with respect to time-of-flight, propellant expenditure, and final
geodetic longitude, while demonstrating an equivalent or superior performance relative to the ana-
lytical indirect methodology presented in [Sanchez and Campa, 2014; Montealegre-Avila, 2015]”

1.5.2. RESEARCH QUESTIONS

The following research questions aim to bridge the scientific gaps by providing results and objective conclu-
sions that have not been previously presented in literature:

“To what extent can a hybrid combination of indirect and direct optimization methods using a
multi-objective technique and a mechanism for coasting arcs yield superior optimal solutions than
the analytical indirect method implemented in [Montealegre-Avila, 2015], specifically for minimum-
propellant optimization problems of low-thrust many-revolution trajectories, while simultaneously
allowing for targeting of the final geodetic longitude?”

This question is divided into the following sub-questions for ease of the later discussion:

1. To what extent can the hybrid method employed in [Kluever, 2010; Boudestijn, 2014; Gomez, 2015] be
successfully modified to incorporate a mechanism for coasting (non-thrusting) arcs?
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(a) To what extent can a thrust switching function strategy similar to those shown in [Kluever, 2004;
Gao and Kluever, 2004] be incorporated into the problem formulation to model coasting arcs and
what is the effect on the accuracy and convergence of the algorithm?

2. To what extent can targeting of the final geodetic longitude be incorporated in the trajectory optimization
process of this modified hybrid methodology?

(a) Can the targeting of the final geodetic longitude be accomplished through the numerical optimiza-
tion process and if so, would this be more suitable that incorporating it in the problem Hamiltonian?

(b) How do the convergence properties of the hybrid method compare with those of indirect methods
for rendez-vous optimization problems?

3. To what extent can this modified hybrid methodology yield more adequate a priori solutions than the
current indirect optimization approach [Montealegre-Avila, 2015] employed by the project sponsor?

(a) How adequate is the relative performance for both minimum-time, minimum-propellant, and rendez-
vous problems in terms of solution accuracy, problem flexibility, user effort, and computational
performance?

1.6. STRUCTURE OF THIS REPORT

This thesis report is divided into the following six chapters: introduction, methodology, results, discussion, and
conclusion. The introduction briefly describes the purpose of this thesis, the relevant heritage, and the research
question. Chapter 2 describes the necessary details to reproduce the novel hybrid optimization methodology
developed in this thesis. This includes the astrodynamics foundation, the formulation of the OCP, the propa-
gation approaches, as well as the verification and validation activities. Chapter 3 provides the research results
and the corresponding factual observations, whereas chapter 4 reveals the author’s interpretations and own
opinions of the results. Chapter 5 summarizes the conclusions and recommendations of this thesis research
project. Appendix A explains the complete derivation of the OCP. Appendix B explains the details about the soft-
ware tool developed, HOSTEP. Lastly, Appendix C provides additional data of the results cases and Appendix E
specifies the hardware software employed for this project.





2
METHODOLOGY

“Perfection is not attainable, but if we chase perfection we can catch excellence.” – Vince Lombardi.

This chapter provides the necessary details to reproduce the hybrid optimization methodology developed in
this thesis. The reference frame, state representation, and the equations of motion are explained first, followed
by the orbital perturbations. Section 2.4 describes the optimal control problem and reveals the optimal control
laws, are analytically derived in Appendix A. Section 2.4 also describes the Differential Evolution algorithm and
multi-objective optimization approach. Section 2.5 describes the two alternative propagation approaches em-
ployed, namely continuous integration and orbital averaging. Lastly, section 2.6 and 2.7 reveal the verification
and validation activities respectively.

2.1. FRAMES OF REFERENCE

The chosen reference frame to express the disturbing forces on the spacecraft is the RSW radial rotating body
frame [Vallado, 1997, p. 43] because the Equations of Motion (EOM) are readily available in this frame with the
desired coordinate system from previous low-thrust trajectory studies [Betts, 2010; Falck and Dankanich, 2012;
Boudestijn, 2014; Gomez, 2015]. The RSW frame is defined in Equation 2.1 and illustrated in Figure 2.1.

Q = [
q̂r q̂γ q̂h

]= [
r

‖r ‖
(r×v )×r
‖r×v‖‖r ‖

r×v
‖r×v‖

]
(2.1)

The unit vectors q̂r , q̂γ, and q̂h indicate the r-, s-, and w- directions, respectively. q̂r is aligned with the radius
vector, q̂h coincides with the angular momentum vector, and q̂γ completes the right-handed reference frame.
The vectors r and v are the position and velocity vectors that constitute the Cartesian components in an Earth-
Centered Earth-Fixed (ECEF) frame, which is described in the upcoming paragraphs. γ denotes the flight-path
angle and h is the specific angular momentum.

Figure 2.1: Illustration of the RSW frame. Figure 2.2: Thrust angles in the RSW frame.

Based on this reference frame, the thrust acceleration vector is defined by its magnitude ‖aT ‖ and two angles:
the yaw steering angle α and the pitch steering angle β, as shown in Figure 2.2. It is worth mentioning that the
yaw steering angle is usually measured with respect to the velocity vector but it is extended here to incorporate
the flight-path angle γ. Hence, the thrust acceleration vector can be decomposed as,

9
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aT
T = ‖aT ‖

[
sinαcosβ, cosαcosβ, sinβ

]
(2.2)

Moreover, the thrust acceleration magnitude can be computed as the fraction of thrust force T over instanta-
neous spacecraft mass m [Kluever, 2010, p. 117]:

‖aT ‖ = T

m
= 2ηPi n

mg0Isp
(2.3)

which varies with thruster efficiency η, input power Pi n , Earth’s gravitational acceleration at sea level g0, and
specific impulse Isp . It is worth mentioning that the methodology hereby presented does not employ inputs
Pi n and η, because the use of T enhances compatibility with EPTOS and IGEOR. Some previous low-thrust op-
timization studies such as [Boudestijn, 2014] do employ these parameters and Equation 2.3 is used to calculate
the corresponding T values.

For the state representation of the trajectory, both an Earth-Centered-Inertial (ECI) and an ECEF reference
frame are employed, depending on the coordinate system under consideration. Keplerian coordinates and
Modified Equinoctial Elements (MEE) are expressed using the ECI J2000 frame. An ECI reference frame is a
right-handed frame centered at the Earth’s center of mass, with the x- and y- axes lying on the equatorial plane
and the z-axis aligned with the North pole. The J2000 frame is selected because it is most commonly used. As
its name may suggest, the x-axis is aligned with the mean equinox’s position at noon (12:00 terrestrial time)
on January 1st, 2000. It should be mentioned that ECI frames are not exactly inertial as the Earth’s acceleration
varies throughout its orbit about the Sun, but this effect is neglected in this thesis. For the specific application of
targeting the final geodetic longitude of the satellite, which is interesting for the positioning of GEO satellites,
the MEE state vector at the final time t f is converted to geodetic coordinates, which are expressed about an
ECEF reference frame. An ECEF frame is similar to ECI with the exception that its primary axis is fixed to a
specific meridian and co-rotates with the Earth [Vallado, 1997, p. 39]. In this thesis, the Earth-Fixed Greenwich
(ECG) frame is the chosen ECEF frame.

2.2. STATE REPRESENTATION AND EQUATIONS OF MOTION

The classical Keplerian orbital element representation defined in Equation 2.4 is useful to express the initial
and final Boundary Conditions (BC) due to its intuitive meaning. These parameters include the semi-major
axis a, eccentricity e, inclination i , right ascension of the ascending node (RAAN) Ω, argument of perigee ω,
and true anomaly θ. These can be physically identified in Figure 2.3 and Figure 2.4.

œT = [
a, e, i , Ω, ω, θ

]
(2.4)

Figure 2.3: Keplerian elements a and e [Wakker, 2010]. Figure 2.4: Keplerian elements i ,Ω, ω, and θ [Wakker,
2010].

Nonetheless, Keplerian elements exhibit two important singularities: Ω is undefined for i = 0,π rad and ω is
undefined for e = 0. Boudestijn [2014] investigated the significance of the zero inclination discontinuity and
concluded that its behaviour is detrimental for applications in planetocentric trajectory optimization. The
propagation test case of the referenced study is shown in Figure 2.5 and features an Earth-bound orbital trans-
fer intended to cross the equatorial plane. Instead of actually crossing the equatorial plane towards the target
orbit with a negative inclination, the propagation became ill-conditioned due to a wrinkle effect at i = 0 rad.
Boudestijn [2014] argued that as the inclination becomes zero,Ω suddenly increases by π rad due to the singu-
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larity, thus causing the inclination to become positive in the next propagation step. This repeating behaviour
causes the wrinkle effect and prevents the propagation from crossing the equatorial plane, which is unaccept-
able for the problem at hand because some orbital transfers of interest may not be simulated.

Figure 2.5: Illustration of the "wrinkle" effect experienced with a Keplerian state representation [Boudestijn, 2014].

For this reason, all internal computations of HOSTEP employ MEE, which are an alternative state representa-
tion approach that do not exhibit the singularities of Keplerian elements. MEE were proposed in [Walker et al.,
1985] and further improved in [Walker, 1986], and are defined by Equation 2.5 to Equation 2.10. The survey in
[Hintz, 2008] concluded it is the only non-singular coordinate set for all values of eccentricity and inclination,
and a recommended choice for "the integration of orbits with special and general perturbations as well as dif-
ferential corrections in orbit determination."

p = a
(
1−e2)

f = e cos(ω+Ω)

g = e sin(ω+Ω)

(2.5)

(2.6)

(2.7)

j = tan

(
i

2

)
cosΩ

k = tan

(
i

2

)
sinΩ

L =Ω+ω+θ

(2.8)

(2.9)

(2.10)

where the original MEE element h is referred to as j in this thesis to avoid confusion with the specific angular
momentum h of the trajectory. The MEE set can be converted back to Keplerian coordinates as follows,

a = p(
1− f 2 − g 2

)
e =

√
f 2 + g 2

i = 2atan

(√
j 2 +k2

)

(2.11)

(2.12)

(2.13)

Ω= atan2

(
k√

j 2 +k2
,

j√
j 2 +k2

)

ω= atan

(
g

f

)
−atan

(
k

j

)
= atan2

(
g j − f k, f j + g k

)
θ = L−Ω−ω

(2.14)

(2.15)

(2.16)

Despite the claims in [Hintz, 2008], it should be noted that the MEE set experiences a singularity when i = π

rad, which causes the elements j and g to become indeterminate. Nonetheless, this corresponds to a purely
retrograde orbit which is unexpected within the scope of application of this thesis research.

The EOM for these MEE orbital elements are given by Equation 2.17 to Equation 2.22, where the MEE and thrust
vectors are expressed in the J2000 and RSW reference frames. These equations were derived from the Gauss’s
form of the Lagrange planetary equations and are employed regularly in low-thrust studies [Betts, 1994; Falck
and Dankanich, 2012; Betts, 2015].

d p

d t
=

√
p

µ

2p

w
as

d f

d t
=

√
p

µ

{
sinLar + 1

w

[
(w +1)cosL+ f

]
as − g

w

[
j sinL− l cosL

]
aw

}
d g

d t
=

√
p

µ

{
−cosLar + 1

w

[
(w +1)sinL+ g

]
as + f

w

[
j sinL− l cosL

]
aw

}
d j

d t
=

√
p

µ

s2 cosL

2w
aw

dk

d t
=

√
p

µ

s2 sinL

2w
aw

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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dL

d t
=p

µp

(
w

p

)2

+
√

p

µ

1

w

[
j sinL− l cosL

]
aw (2.22)

where aT
d = [ar as aw ] is the total disturbing acceleration vector experienced by the spacecraft in the RSW

reference frame and µ = 398600.441 km2·s−2 is the gravitational constant of Earth [Wertz, 2009, p. 859]. For
simplicity, the EOM use the auxiliary variables w and s2, which are defined by,

w = p

r
= 1+ f cosL+ g sinL (2.23) s2 = 1+ j 2 +k2 (2.24)

Additionally, the spacecraft mass m is included in the state vector because it is also dependent on the thrust
input through the entire trajectory. The state vector x employed in the computations is defined in Equation 2.25
and the mass flow is defined by Equation 2.26 [Gao and Kluever, 2004]:

xT = [
p, f , g , j , k, L, m

]
dm

d t
=− T

g0Isp

(2.25)

(2.26)

Moreover, the previous Keplerian state vector œ is used to express the initial orbit œ0, but it is modified as
shown in Equation 2.27 to replace the true anomaly by the geodetic longitude Λ. This vector employed to
express the target orbit æt , and final orbit æ f :

æT = [
a, e, i , Ω, ω, Λ

]
(2.27)

Geodetic coordinates – longitude Λ, latitude Φ′, and altitude h – are of interest for terrestrial applications. In
this case, the geodetic longitude is of critical importance for rendez-vous applications and the positioning of
GEO communications satellites. When this type of problem is selected in the Graphical User Interface (GUI)
of HOSTEP, the final geodetic longitude of the spacecraft in calculated and evaluated during the optimization.
It is worth explaining the difference between geocentric and geodetic coordinates, which are defined with the
North and South poles being the two intersections of the Earth’s rotation axis and its surface, the equator being
the great circle halfway between the poles; the parallels being the great circles parallel to the equator; and the
meridians the great circles crossing the poles. The geocentric
latitude, Φ ∈ (−π

2 , π2
]
, is the angle between the equator and the

point of interest, measured along its meridian and at the center
of the geoid (defined positive in the Northwards direction rel-
ative to the equator). Conversely, instead of the Earth’s center,
the geodetic latitude Φ′ employs a plane tangent to Earth’s sur-
face at the sub-satellite point P. This is illustrated in Figure 2.6,
where the geodetic altitude h of the satellite is measured perpen-
dicularly to the Earth’s surface and not along the geocentric ra-
dius vector r [Wakker, 2010]. On the other hand, the longitude,
Λ ∈ (−π,π], is the arc length along the equator measured from
the Greenwich meridian to the point of interest (defined posi-
tive in the Eastwards direction relative to the prime meridian),
with the geocentric and geodetic counterparts being equivalent
becauseΛ is not affected by Earth’s oblateness.

Figure 2.6: Geodetic coordinates [Wakker, 2010].

To calculate the geodetic longitude from the MEE state vector x , the position vector must be computed in
Cartesian coordinates using Equation 2.28 [Betts, 2015]. The geodetic longitude is then given by Equation 2.28.
The calculation of the reminding geodetic coordinates is not necessary but can be found in [Zhu, 1994].

r =
x

y
z

=


r
s2

(
cosL+ (

j 2 −k2
)2

cosL+2 j k sinL
)

r
s2

(
sinL− (

j 2 −k2
)2

sinL+2 j k cosL
)

2r
s2

(
j sinL−k cosL

)
 (2.28)

Λ= atan2
(
y, x

)
(2.29)
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Lastly, the velocity vector can be calculated in Cartesian coordinates as shown in Equation 2.30 [Betts, 2015]. It
should be mentioned that v is only used for the out-of-plane thrusting profile employed in validation test A2,
see subsection 2.7.1. This is because the thrust profile is intended to increase the inclination and the direction
of the out-of-plane thrust vector thus alternates for vz > 0 and vz < 0.

v =
vx

vy

vz

=


− 1

s2

√
µ
p

(
sinL+α2 sinL−2 j k cosL+ g −2 f j k +α2g

)
− 1

s2

√
µ
p

(−cosL+α2 cosL+2 j k sinL− f +2g j k +α2 f
)

2
s2

√
µ
p

(
h cosL+k sinL+ f j + g k

)
 (2.30)

2.3. ORBITAL PERTURBATIONS

One of the main advantages of the direct nature in the hybrid methodology is the flexibility it provides in ad-
justing the force model within the simulator. Conversely to indirect methods, the additional terms correspond-
ing to an orbital perturbation may simply be included in the EOM, without the need to re-derive the analytical
derivation again. The conclusions from the thesis literature study were that several orbital perturbations should
be considered to enhance the accuracy of the a priori solution. This includes Earth-Sun eclipses, Earth’s second
degree zonal harmonic J2 perturbation, third body attractions from the Moon and Sun, radiation pressure from
the Sun, and atmospheric drag if low perigee altitudes are to be studied, such as a LEO or GTO initial condi-
tion. However, this was re-evaluated during the requirements evaluation phase of the thesis and its importance
was deemed less critical than the novel development of the coasting arc and longitude targeting mechanisms.
Therefore, only the most significant perturbations are incorporated: Earth-Sun eclipses and second order zonal
harmonic perturbations, i.e. the J2 effect. Further perturbations were not deemed to have a critical influence
on the research results of the coasting arc and longitude targeting feasibility study. The evolution of the per-
turbing accelerations for a low-thrust GTO-GEO trajectory can be found in [Gebbett, 2014, p. 57] and supports
this decision because the magnitude of the J2 acceleration is comparable to that of the engine thrust. Nonethe-
less, the author recommends extending the force model to incorporate a full near-Earth perturbation model as
it will further enhance the flexibility of HOSTEP and it should not affect the convergence radius of the hybrid
method thanks to its direct nature. Further details may be found in section 5.2.

2.3.1. EARTH SHADOW

HOSTEP’s force model includes an eclipse simulator developed and thoroughly validated by GMV. Its funda-
mental basis is superior to that of the conical shadow model employed in [Boudestijn, 2014; Gomez, 2015],
which only distinguished between umbra, penumbra, and fully illuminated regions. Instead, this simulator
calculates the relative position of the Sun and the Earth and the angle in between, γ, as well as their apparent
radii α and β. When the bodies overlap, as illustrated below in Figure 2.7 and Figure 2.8, the eclipse simulator
calculates the decrease in the observed Sun area and returns the percentage of received sunlight relative to the
100% condition in full sunlight. This procedure is a well established practice and further details may be found
in books such as [Gill and Montenbruck, 2000].

Figure 2.7: Sun- and Earth-satellite angles, not drawn to
scale.

Figure 2.8: Over-positioning of bodies during
eclipse, not drawn to scale.

HOSTEP allows the user to specify the minimum light percentage threshold to power the engines. The thresh-
old employed for the test cases in this thesis is 80%, but the author warns that it may differ significantly for
different satellite platforms and should therefore be adjusted accordingly.
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2.3.2. EARTH J2 PERTURBATION

The J2 perturbation of Earth is the most pronounced zonal harmonic perturbation arising from the geoid’s
non-homogeneous mass distribution, also referred to as oblateness. A fundamental description of this type of
perturbations may be found in well established books such as [Vallado, 1997; Gill and Montenbruck, 2000]. The
J2 perturbing accelerations are defined in the RSW frame as follows [Kechichian, 2000],

ar,J2 =−3µJ2R2
E

2r 4

(
1−12

(
j sin(L)−k cos(L)

)2

s4

)

as,J2 =−12µJ2R2
E

r 4

( (
j sin(L)−k cos(L)

)(
j cos(L)+k sin(L)

)
s4

)

aw,J2 =−6µJ2R2
E

r 4

((
j sin(L)−k cos(L)

)(
1− j 2 −k2

)
s4

)

(2.31)

(2.32)

(2.33)

where s2 is the auxiliary variable previously defined in Equation 2.24, r is the magnitude of the spacecraft’s
radius vector, RE = 6378.136 km is the equatorial radius of Earth and J2 = 1.082626×10−3 is a dimensionless
constant [Wertz, 2009, p. 859]. When the user selects to model the J2 effect in HOSTEP, the previous acceler-
ations are added to the thrust acceleration components to calculate the total disturbing acceleration ad that
can substituted in the EOM Equation 2.17 to Equation 2.22.

2.4. OPTIMAL CONTROL PROBLEM

This section describes how the hybrid methodology approaches the Optimal Control Problem (OCP). First, the
optimal thrust control laws are presented, with the corresponding derivations explained in Appendix A. Af-
terwards, the employed Differential Evolution (DE) algorithm is described, together with the suggested tuning
parameters. Lastly, the mechanism for multi-objective optimization is explained.

2.4.1. OPTIMAL THRUST CONTROL LAWS

This section reveals the equations that yield the optimal thrust steering angles, α∗ and β∗, and the thrust mag-
nitude T ∗. It is important to remember that the hybrid method does not aim to fully solve the Two Point
Boundary Value Problem (TPVBP), like indirect methods, but rather to derive a control law that efficiently
parametrizes the thrust vector and allows to solve the OCP through a direct approach.

The derivation of the optimal thrust steering angles was originally presented in [Kluever, 2010] using Keple-
rian elements, and the formulation using the MEE set was derived in [Boudestijn, 2014]. Unlike the former
hybrid studies, the methodology hereby developed does not assume constant thrust because [Gomez, 2015]
concluded that it severely hinders the solution accuracy for minimum-propellant optimization, relative to the
global optimum from indirect methods. Consequently, a new optimal thrust control law is required.

An OCP entails a system with a state defined by x(t ), a control input defined by u(t ), and system dynamics given
by the set of ordinary differential equations ẋ(t ) = f [x(t ), u(t ), t ]. The objective function of the OCP, hereafter
denoted F instead of J to avoid confusion with J2, is defined in standard form in Equation 2.34.

F =Φ[
x(t f ), t f

]+∫ t f

t0

L [x(t ),u(t ), t ]d t (2.34)

withΦ and L representing the Mayer and Lagrange terms respectively and u(t )T = [
α, β, T

]
the control vector.

According to the optimal control theory developed by Pontryagin [1986], the optimal conditions that yield the
optimum of the TPBVP are those that minimize the Hamiltonian equation defined by Equation 2.35.

H=L+λT · ẋ (2.35)

where the co-state vector λ contains functions of time that can be analytically derived using the transversality
conditions. In essence, these co-states indicate the relative priority of the variation of each state parameter over
time. It is worth mentioning that, unlike the physically intuitive objective function, this Hamiltonian equation
is merely a mathematical tool useful for the analytical derivation of the optimal control laws. For further details
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about the underlying control theory, the reader is referred to the literature study report that precedes this thesis
[Jimenez-Lluva, 2016] and well established books such as [Bryson and Ho, 1975; Pontryagin, 1986]. Boudestijn
[2014], and subsequently Gomez [2015], employed the following Hamiltonian:

H[Gomez, 2015] =λp
d p

d t
+λ f

d f

d t
+λg

d g

d t
+λ j

d j

d t
+λk

dk

d t
(2.36)

which does not feature the MEE element L because it becomes redundant through the use of Orbital Averaging
(OA). The spacecraft mass m is not included in Equation 2.36 either because it is independent of the control
parameters, due to the constant thrust assumption. Since this assumption is no longer applied, the spacecraft
mass is dependent on the variable thrust magnitude. Therefore, the mass flow must be included,

HHOSTEP =H[Gomez, 2015] +λm
dm

d t
(2.37)

Using this Hamiltonian, the optimal thrust control laws are analytically derived in Appendix A. The resulting
optimal thrust steering angles are shown below in Equation 2.38 to Equation 2.41.

sinα∗ =
−

(
Λαf ,1 −Λαg ,1

)
√(
Λαf ,1 −Λαg ,1

)2 +
(
Λαp +Λαf ,2 +Λαg ,2

)2

cosα∗ =
−

(
Λαp +Λαf ,2 +Λαg ,2

)
√(
Λαf ,1 −Λαg ,1

)2 +
(
Λαp +Λαf ,2 +Λαg ,2

)2

sinβ∗ =
−

(
−Λβf ,3 +Λ

β
g ,3 +Λ

β

j +Λ
β

k

)
√(

−Λβf ,3 +Λ
β
g ,3 +Λ

β

j +Λ
β

k

)2 +
(
Λ
β
p +Λβf ,1 −Λ

β
g ,1 +Λ

β

f ,2 +Λ
β
g ,2

)2

cosβ∗ =
−

(
Λ
β
p +Λβf ,1 −Λ

β
g ,1 +Λ

β

f ,2 +Λ
β
g ,2

)
√(

−Λβf ,3 +Λ
β
g ,3 +Λ

β

j +Λ
β

k

)2 +
(
Λ
β
p +Λβf ,1 −Λ

β
g ,1 +Λ

β

f ,2 +Λ
β
g ,2

)2

(2.38)

(2.39)

(2.40)

(2.41)

where Λαq , and Λβq are the constants in the partial derivatives of H with respect to α and β respectively that

correspond to the q th element in x . These constants are defined in equations Equation 2.42 to Equation 2.55:

Λαf ,1 =λ f

√
p

µ
cosβsinL

Λαf ,2 =λ f

√
p

µ

[
(w +1)cosL+ f

]
cosβ

w

Λαp =λp

√
p

µ

2p

w
cosβ

Λ
β

f ,1 =λ f

√
p

µ
sinαsinL

Λ
β

f ,2 =λ f

√
p

µ

[
(w +1)cosL+ f

]
cosα

w

Λ
β

f ,3 =λ f

√
p

µ

(
j sinL−k cosL

)
g

w

Λ
β

j =λ j

√
p

µ

s2 cosL

2w

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Λαg ,1 =λg

√
p

µ
cosβcosL

Λαg ,2 =λg

√
p

µ

[
(w +1)sinL+ g

]
cosβ

w

Λ
β
p =λp

√
p

µ

2p

w
cosα

Λ
β
g ,1 =λg

√
p

µ
sinαcosL

Λ
β
g ,2 =λg

√
p

µ

[
(w +1)sinL+ g

]
cosα

w

Λ
β
g ,3 =λg

√
p

µ

(
j sinL−k cosL

)
f

w

Λ
β

k =λk

√
p

µ

s2 sinL

2w

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

where the square root terms cancel out in the derivation of α∗ and β∗ angles but not in the derivation of T ∗.

They may thus be removed from Λαq but not from Λ
β
q since the latter is to be re-used in the T ∗ control law. It is

worth recalling that the thrust acceleration vector is given by aT
T = ‖aT ‖

[
sinαcosβ, cosαcosβ, sinβ

]
, mean-



16 2. METHODOLOGY

ing the sine and cosine terms can be directly substituted in the EOM and it is not necessary to calculate values
of the steering angles. Nonetheless, these could be calculated through the relationship α= atan2(sinα,cosα),
since both α and β range from −90◦ to 90◦.

The previous control laws are identical to those derived in [Boudestijn, 2014] because the new mass co-state
term disappears during the differentiation process, see the complete derivation in Appendix A. The third con-
trol law corresponding to the thrust magnitude T , however, constitutes a novel enhancement in the hybrid
methodology hereby presented because all previous studies assumed constant thrust. For this derivation, the
Hamiltonian derivative is evaluated with respect to T :

∂H
∂T

=Λβp cosβ
1

m
+

[
Λ
β

f ,1 cosβ+Λβf ,2 cosβ−Λβf ,3 sinβ
] 1

m

+
[
−Λβg ,1 cosβ+Λβg ,2 cosβ+Λβg ,3 sinβ

] 1

m
+Λβj sinβ

1

m
+Λβk sinβ

1

m
−λm

1

g0Isp
= St (2.56)

which leads to a bang-bang control problem, as expected, because the Hamiltonian varies linearly with T .
Thus, the switching function defined by St determines the optimal thrust conditions [Pontryagin, 1986]:

T =
{

0, if St > 0

Tmax , if St < 0 (2.57)

It should be clarified that there may exist a third condition, known as a singular arc, yielding 0 < T < Tmax

if St = 0 and Ṡt = 0. Nonetheless, the duration of such arc is rather limited in practical applications when
compared with the other two conditions and, more importantly, the condition St = 0 and Ṡt = 0 may never be
satisfied due to the numeric nature of the simulation. Therefore, the author decided to neglect the possibility
of singular arcs, thus simplifying the problem to a bang-bang control.

2.4.2. DESIGN VECTOR

The previous control laws show that u∗(t ) = f (x ,λ), such that the optimal thrust components in the RSW
frame can be substituted in the EOM to compute ẋ = f (x ,λ). This nature of the hybrid method significantly
reduces the amount of optimization variables and allows for a practical computation time as compared to
general direct methods such as [Betts, 2010]. In contrast to indirect methods, which derive the co-state EOM
λ̇(t ) and optimize the initial values λ0 [Geffroy and Epenoy, 1997], the hybrid strategy aims to approximate
the optimal co-state dynamics λ(t ) instead of fully deriving the TPVBP to obtain the analytical co-state EOM.
To approximate the optimal co-state dynamics and avoid the need to re-derive the TPVBP for any change in
the problem formulation, the hybrid method artificially defines the co-state values at ns nodes throughout the
trajectory: λ0, λ1, ..., λns . The values at these nodes are then optimized and linear interpolation is employed
in between [Boudestijn, 2014]. These nodes were originally equidistant with respect to the semi-major axis
[Kluever, 2010] but Boudestijn [2014] showed that it is more desirable to distribute them equally in time. To
avoid confusion with with the number of integration steps per revolution, the GUI refers to this as the number
of co-state arcs Nar cs = ns −1. This is illustrated in Figure 2.9 for single and dual co-state arcs.

Figure 2.9: Illustration of the co-state nodes, which are equidistant in time, for Nar cs = 1 and Nar cs = 2, adapted from
[Gomez, 2015].
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The number of co-states to be optimized therefore depends on the number of co-state arcs. Moreover, the
amount of co-states per node depends on whether a minimum-time problem is being evaluated or whether
thrust is variable. In the former case, every co-state discretization node corresponds to five co-states to be
optimized whereas, in the latter case, every additional co-state arc introduces six optimization parameters, i.e.
including the mass co-stateλm . Additionally, the Time-of-Flight (TOF) denoted t f is incorporated in the design
vector as it is required for the propagation [Gomez, 2015; Geffroy and Epenoy, 1997]. Nonetheless, it should be
clarified that t f remains a free variable in the optimal control problem, unless the upper and lower bounds
are manually constrained to a discrete value, and TOF-minimization is accomplished through the objective
function, see subsection 2.4.3. Thus, the two cases depicted in Figure 2.9 would respectively correspond to
11 and 16 optimization variables, for a minimum-time problem, or 13 and 19 optimization parameters if the
thrust magnitude is variable. This hybrid formulation constitutes a single shooting problem, where a set of
given parameters is simulated and the terminal boundary condition of the propagation is evaluated in the
objective function. Further details about single shooting discretization and other alternative schemes can be
found in [Jimenez-Lluva, 2016].

It must be clarified, that the simplified co-state dynamics of the hybrid method should, in theory, hinder the
solution accuracy relative to the analytical global optimum from indirect methods. This could be enhanced
through more sophisticated interpolation methods such as the Chebyshev polynomials described in [Fox et al.,
1968; Mason and Handscomb, 2002]. However, this was deemed unnecessary because the original hybrid
method yielded a high accuracy for the GTO-GEO transfer – with a minimum TOF of 199.0 days for a single
co-state arc [Kluever, 2010] – in comparison to the 198.8-day solution computed with the indirect method in
SEPSPOT [Sackett et al., 1975]. Furthermore, Gomez [2015] demonstrated that although slightly improving
the solution, increasing the number of co-state arcs leads to significant increments in the computational cost.
Therefore, a single co-state arc is used hereafter and the design vector y to be optimized is defined as:

y T =
[

t f , λT
0 , λT

f

]
(2.58)

2.4.3. MULTI-OBJECTIVE OPTIMIZATION

In practical applications, one single optimization objective may not be enough. This is because there are usu-
ally several conflicting mission objectives of high importance, such as the TOF and the required propellant
mass or the radiation experienced by the spacecraft. This raises the need for Multi-Objective Optimization
(MOO) which can be accomplished by assigning relative weights to each objective [Deb et al., 2002]:

F (y) =W1 f1(y)+W2 f2(y)+ ...+Wn fn(y) (2.59)

where F is referred to as the Aggregate Objective
Function (AOF), f is the vector containing the indi-
vidual optimization objectives, y is the vector to be
optimized, and W are the respective multi-objective
weights [Deb et al., 2002]. These weights are criti-
cal to ensure that the individual components of the
AOF vary with similar orders of magnitude, which en-
hances the convergence of optimization algorithms.
Moreover, by varying the weights of each objective,
one may find a broad spectrum of possible combina-
tions that can be illustrated in a Pareto front diagram.
This diagram shows all the possible combinations of
two objectives such that one objective cannot be fur-
ther improved without negatively affecting the other,
which can be very resourceful in the decision mak-
ing process. An example Pareto front is illustrated in
Figure 2.10, which features the GTO-GEO propellant
minimization scenario that is approximated using the
hybrid methodology in section 3.2. Figure 2.10: Pareto front for a GTO-GEO transfer

[Sanchez and Campa, 2014].

Boudestijn [2014] employed two different AOF for the minimum time and minimum propellant case, Equa-
tion 2.60 and Equation 2.61 respectively, both of which evaluate only the first three Keplerian elements a, e,
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and i . Gomez [2015] expanded this AOF to also target elements ω and Ω and to allow for a multi-objective
optimization with respect to TOF, propellant expenditure, and radiation fluence Ψ. The AOF employed in the
indirect method presented in Sanchez and Campa [2014] is shown in Equation 2.63.

F[Boudestijn, 2014], min.time =
3∑

q=1
Wq

∣∣∣œ f i nal
q −œt ar g et

q

∣∣∣+ t f

F[Boudestijn, 2014], min.prop =
3∑

q=1
Wq

∣∣∣œ f i nal
q −œt ar g et

q

∣∣∣+Wm

(
1− m f

m0

)

F[Gomez, 2015] =
5∑

q=1
Wq

∣∣∣x f i nal
q −x t ar g et

q

∣∣∣+Wm

(
1− m f

m0

)
+Wt

(
t f

)+Wr (Ψ)

F[Sanchez and Campa, 2014] =
√√√√ 5∑

q=1
Wq

(
x f i nal

q −x t ar g et
q

)2 +Wλm

(
λ

f i nal
m

)2 +WλL

(
λ

f i nal
L

)2

(2.60)

(2.61)

(2.62)

(2.63)

where œ f i nal
q −œt ar g et

q and x f i nal
q −x t ar g et

q are the difference between the target and final achieved value of

the q th Keplerian and MEE element, respectively. It should be noted that Boudestijn [2014] only targeted the
first three Keplerian elements – a, e, and i – because the others were not included in the Hamiltonian. More-
over, Gomez [2015] did not target the true longitude because he was simultaneously employing the orbital
averaging technique, which sacrifices the information of this rapidly-changing variable, see section 2.5. m0

and m f are respectively the initial and final total mass of the spacecraft, and t f is the final time, i.e. the TOF of

the trajectory. λ f i nal
m and λ f i nal

L are the co-states of the total mass and true longitude respectively, and they are
included in the indirect methodology by Sanchez and Campa [2014] because they are free variables at t = t f

and should therefore yield null values, according to the transversality conditions of the optimal TPBVP [Pon-
tryagin, 1986]. The respective weights W of the parameters were established iteratively in [Boudestijn, 2014;
Gomez, 2015] for every test case. In [Sanchez and Campa, 2014], however, all the parameters are dimensionless
such that it is sufficient to use unitary weights for all constraints in the objective function, and the square root
serves to decrease the numerical value of the residual and hence its fluctuations.

The AOF implemented in HOSTEP harnesses the advantages of the previous examples, and incorporates a more
elaborate scaling procedure to reduce the iterative effort required for every different problem. It incorporates
the deviation from the desired orbit, the TOF, and the propellant expenditure:

FHOSTEP =
6∑

q=1
Wq (εq )2

sc +Wt
(
t f

)+Wm

(
1− m f

m0

)
(2.64)

where εq represents the orbit error æ f i nal
q −æt ar g et

q , which in this case targets the first five Keplerian elements
and the final geodetic longitude. The sc subscript indicates that this error is scaled with respect to a reference
value – the scaling procedure is explained in the upcoming paragraph. The first term aims to minimize the
orbit error for all elements, except the rapidly changing variable θ or L, and retains the squared power strategy
from [Sanchez and Campa, 2014] to prioritize this objective if the deviation becomes too large. The second and
third terms aim to minimize the TOF and propellant expenditure, using the same strategy as in [Gomez, 2015]
because of its effective simplicity. This objective function does not feature a square root like that in [Sanchez
and Campa, 2014] because the author deemed that the minor advantage of a decreased numeric residual might
come at the expense of undesired rapid fluctuations in the vicinity of zero and a potential singularity.

The weights Wq , Wt , and Wm in Equation 2.64 assign a relative priority to each objective, with Wm being au-
tomatically nullified if a minimum-time problem is selected. The scaling procedure developed for (εq )sc , was
intricately devised to allow the weights Wq to be set equal to 1.0 and thereby lessen the iterative effort required
for fine tuning. The user may employ weights of 0.0 for the elements that need not be targeted, such as ω and
Ω in certain a priori applications. The scaling procedure is shown below in Equation 2.68 and aims to scale
the final orbit error such that each element attains a value ∈ (0,1] if the error is below or equal to the specified
requirement, and a value ∈ (1,∞) otherwise. Upon squaring the final orbit error, its contribution to the AOF is
thus nearly neglected if the final orbital elements are relatively close to the target values:

εq =
∣∣∣æt ar g et

q −æ f i nal
q

∣∣∣ q = 1,2,3,4,5,6 (2.65)
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dq = 1

(εq )ub − (εq )lb

bq = 1−kq (εq )ub

(εq )sc = dqεq +bq

(2.66)

(2.67)

(2.68)

where d and b are auxiliary vectors and εub and εlb are the upper and lower bound vectors of the final orbit
deviation. Based on GMV’s experience in flight dynamics and trajectory optimization, the recommended error
upper bound for optimal a priori solutions is provided in Table 2.1.

Table 2.1: Upper and lower bounds of the error between the final and target Keplerian orbital elements.

Keplerian element Lower Bound εl b Upper Bound εub

Semi-major axis a [km] 0.0 100.0
Eccentricity e [-] 0.0 0.01

Inclination i [deg] 0.0 0.1
RAANΩ [deg] 0.0 1.0

Arg. of perigee ω [deg] 0.0 1.0
Geodetic longitudeΛ [deg] 0.0 1.0

2.4.4. DIFFERENTIAL EVOLUTION ALGORITHM

The Differential Evolution (DE) algorithm is a metaheuristic optimization approach that has been shown to be
very suitable for complex global optimization problems [Hoving, 2015; Montealegre-Avila, 2015]. Like many
metaheuristic methods, DE is inspired by proceesses in nature and is a further development of the Genetic
Algorithms (GA) first presented in [Holland, 1975]. Unlike GA, DE evaluates the differences between the parent
solution vectors in each generation before they are crossed over to yield the children solution vector for the next
generation. The factual description of the DE algorithm may be found in the literature study report preceding
this thesis [Jimenez-Lluva, 2016], in the original publication in [Storn and Price, 1997], or in well established
optimization books like [Wahde, 2008].

HOSTEP features a Fortran 90 ® algorithm developed by Wang [2010] based on the original DE methodol-
ogy published in [Storn and Price, 1997]. The decision to implement this algorithm, instead of more sophisti-
cated DE algorithms freely available online, was based on its simplicity as it was readily available in the desired
programming language, and because it had been shown to work well for the low-thrust optimization method
employed in IGEOR [Montealegre-Avila, 2015]. Nonetheless, the author acknowledges the potential of self-
adaptive DE algorithms, such as the one available in PaGMO [Biscani et al., 2010]. The advantage of such
superior algorithm would be an enhanced computational time, because it enables parallel computing, and a
reduced fine-tuning effort for the user, because it automatically optimizes the factors NP , CF , and CR . This was
not implemented in HOSTEP because it does not constitute a critical priority for the methodology prototype,
yet the author recommends it for future work – see further details in section 5.2.

The DE algorithm requires three user inputs: the population size NP , the cross-over rate CR , and the scaling
factor CF . In the original publication, Storn and Price [1997] recommend a population size between 5D and
10D , with D being the amount of optimization parameters, as well as starting values of CR = 0.1 and CF = 0.5.
Their advice is to gradually increase the latter two in case of premature convergence and warn that CR values
between 0.9 and 1.0 might yield poor results albeit showing a faster convergence. In the previous low-thrust
hybrid optimization studies, Boudestijn [2014] employed NP = 7D , CR = 0.6, and CF = 0.6 for wide range of
test cases with two OA arcs (i.e. 7 optimization parameters). In the original indirect method that was used to
develop IGEOR, Sanchez and Campa [2014] used NP = 10D , CR = 0.8, and CF = 0.6. The author found that
the latter combination worked better for the problems analyzed in this thesis, with the increased population
size helping to find better optima and the increased cross-over rate enhancing the convergence rate without
jeopardizing the solution accuracy.

Additionally, the DE available in Wang [2010] was adjusted to allow for a randomized start or to intake a previ-
ous solution depending on the GUI settings. In the latter case, the input solution is used to define the upper and
lower bounds of the optimization parameters, and then the DE process is initiated randomly as usual.
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2.5. STATE PROPAGATION

This section explains the details of the propagation techniques implemented in HOSTEP: Continuous Integra-
tion (CI) and Orbital Averaging (OA). The underlying integration scheme is a fixed-step Runge Kutta 4 (RK4)
regardless of whether CI or OA is selected in the GUI. The decision to implement a fixed-step as integrator
compared to a variable-step scheme was based on the literature study, which concluded that RK4 yields an ac-
ceptable accuracy for a priori low-thrust optimization [Jimenez-Lluva, 2016], and because its simplicity eased
the gradual development of HOSTEP from scratch. Nonetheless, the modular architecture of HOSTEP allows
for easily adding alternative schemes, and the author recommends implementing a variable-step integration
scheme in future HOSTEP versions. This is because the step-size may be significantly increased at certain
parts of the trajectory to reduce the propagation effort without jeopardizing the accuracy. Thorough descrip-
tions about the mathematical logic behind variable-step integration schemes can be found in [Gill and Mon-
tenbruck, 2000]. Particularly, the literature study identified the RKF7(8) scheme as most convenient among
variable-step schemes for low-thrust trajectory optimization applications [Jimenez-Lluva, 2016].

The OA method sacrifices the accuracy of the rapidly changing element (i.e. true anomaly or true longitude) for
computational speed. Its counterpart, CI, yields a high-accuracy propagation for all orbital elements. The pre-
vious hybrid methodologies in [Boudestijn, 2014; Gomez, 2015] employed OA during the optimization process
and CI for the final simulation of the optimal solution. However, this strategy is modified in HOSTEP to allow for
using CI or OA irrespectively of whether the computational mode is optimization or simulation. This is because
the author identified the future potential of HOSTEP to target also the final geodetic longitude in the optimiza-
tion, which may only be possible if HOSTEP can employ CI during optimization – further details can be found
in section 5.2. Therefore, HOSTEP’s GUI allows the user to select CI or OA for either computational mode,
optimization or simulation. Additionally, this architecture makes HOSTEP a resourceful research and com-
mercial tool as it provides the flexibility to compute quick a priori solutions with OA as well as high-accuracy
trajectories with CI. Furthermore, a post-processing option allows for comparing both CI and OA results – if se-
lected together with the optimization mode, this option compares only the final optimized trajectory. Further
information about the operational modes and post-processing options can be found in section B.3.

2.5.1. CONTINUOUS INTEGRATION

The CI propagation scheme is the higher accuracy but more computationally expensive option. It propagates
the state of the orbit in MEE from t = t0 to t = t f using nk propagation steps per revolution, which is defined
by a true longitude variation of L = 2π rad. The use of true longitude, as compared to true anomaly, in CI
propagation is preferred as it provides a useful insight for GEO applications. This sequential process is de-
picted in Figure 2.11. The author designed CI to propagate through discrete revolutions because this logic is
necessary for the OA scheme and can thus be reused. Moreover, this logic easily allows for distributing the
nk propagation steps over an equidistant grid in true longitude instead of time. This is desirable to enhance
the propagation accuracy near the pericentre where orbital perturbations, such as atmospheric drag, are most
prominent [Jimenez-Lluva, 2016]. Nonetheless, since the EOM are expressed with respect to time, the true lon-
gitude propagation step∆L = 2π

nk
is converted to a time step, at every epoch, through∆t =∆L d t

dL , with the value

of dL
d t being readily available from the EOM, see Equation 2.22 in section 2.2.

Both the CI and OA modules were designed to propagate any combination of design parameters, even though
some combinations may lead to hyperbolic orbits, re-entry trajectories, or solutions that do not satisfy the
operational constraints. To avoid ill-conditioning of the optimization process, checks are implemented within
the CI and OA scheme to avoid such bad solutions. When these violations are detected within the CI or OA
propagation, the propagation process is halted and its output is manually set equal to the initial state vector,
leading to a large objective function residual such that the solution is disregarded by the optimizer. Lastly, the
CI and OA process are designed to stop the propagation when t = t f is reached, even if the current revolution
is not yet completed, to avoid overshooting of the TOF.

2.5.2. ORBITAL AVERAGING

The OA technique was presented in [Gao and Kluever, 2005] and is a powerful approach to reduce the compu-
tational propagation load of each trajectory simulation throughout the optimization process [Jimenez-Lluva,
2016]. For example, a typical GTO-GEO low-thrust trajectory with about 200 orbital revolutions [Geffroy and
Epenoy, 1997] is to be propagated using 30 nk propagation steps per revolution. The classical CI technique
would propagate the state vector from every step to the next, starting from the initial state x0 until the target
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Figure 2.11: Work-flow logic of the propagator.

state xt is reached and thus evaluating 30×200 steps. On the other hand, the OA approach aims to evaluate
the 30 steps of only the first revolution, and then average these 30 state derivatives. Instead of proceeding to
evaluate the steps of the next revolution, OA employs this averaged state derivative to propagate the state up
to five days forward [Kluever, 2010]. After this five-day step, the variation of the orbital elements becomes too
significant and the state derivative must be updated by evaluating the 30 nodes of the subsequent revolution
and averaging them again. As compared to CI, OA would thus evaluate only 30×20 nodes, for an OA step-size
of five days, thereby significantly reducing the computational propagation effort. Considering that the opti-
mization process might simulate thousands of low-thrust trajectories until the global optimum is located, the
OA scheme dramatically speeds up the optimization process.

In low-thrust trajectories, the orbital elements vary gradually and smoothly, meaning that the OA technique
can be applied without a significant loss of accuracy. To support this claim, Kluever [2010] employed the OA
technique with five-day time steps in a minimum-TOF LEO-GEO low-thrust transfer optimization. His result
of 199.0 days was very accurate with respect to the 198.8 days solution from NASA’s SEPSPOT indirect opti-
mizer. The OA technique was further employed to numerical optimization of low-thrust trajectories in Gao
and Kluever [2005] [Boudestijn, 2014] [Gomez, 2015], which demonstrated it to be a very effective technique as
it was faster than CI while achieving a satisfactory accuracy.

Figure 2.12: Comparison of continuous integration and orbital averaging.
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Nonetheless, OA has two drawbacks: the information about the micro-variations of the orbital elements is lost
in the process and, more importantly, the propagation of rapidly-changing variables is too inaccurate to be of
use in practical applications. For this explanation, let it be assumed that Keplerian elements are used in the
propagation. Whereas the elements a, e, i , ω, and Ω vary by negligible amounts within a single low-thrust
revolution, the true anomaly θ continuously spans the [0,2π) rad range. It is exactly this rapidly-changing
nature that hinders the accuracy of the true anomaly propagation to such extent that the information can be
considered lost for practical purposes. This behaviour is shown in Figure 2.12, where the initial GTO orbit from
Case A, see section 3.1 was propagated with OA and CI for an out-of-plane thrust profile intended to increase
the inclination.

The micro-variations of the slowly-changing elements within each revolution is not of paramount interest
when generating a priori optimal solutions because only the overall trend is required to determine when the
target orbit is reached. Moreover, many a priori applications do not require accurate information of the satel-
lite’s position within the orbit (i.e. the rapidly changing element θ or L). However, this information is critical to
the success of other applications such as GEO positioning or rendez-vous missions, rendering the OA method
unacceptable. Therefore, HOSTEP is flexible such that the user can choose to employ either CI or OA depending
on the situation. The OA option significantly lowers the propagation effort, and hence the optimization load,
whereas the CI alternative allows for an accurate propagation of spacecraft final geodetic longitude.

PRACTICAL IMPLEMENTATION

The propagation logic within the evaluated revolution in OA is similar to that of the CI process, see Figure 2.11.
The exception is that the revolution is defined by θ = 2π instead of L = 2π and the propagation steps are equidis-
tant in true anomaly θ instead of true longitude L. The latter is accomplished by converting the true anomaly
propagation step∆θ = 2π

nk
to a time step, at every epoch, through∆t =∆θ d t

dθ . The rate of change of θ for a thrust
acceleration input aT in the RSW reference frame is given by the first two terms in Equation 2.69 [Vallado, 1997,
p. 566], where h =p

µp [Vallado, 1997, p. 108]. Additionally, the contribution of the Earth’s attraction is given
by the third term in Equation 2.69 [Vallado, 1997, p. 107]. Equation 2.70 is the simplification that was employed
by [Boudestijn, 2014] and [Gomez, 2015].

dθ

d t
= 1−e2

nae
cosθar,T − 1−e2

nae

2+e cosθ

1+e cosθ
as,T + h

r 2

dθ

d t
≈ na

r

(2.69)

(2.70)

where n =
√

µ

a3 is the mean motion of the spacecraft. This difference with the CI method is critical to capture

and average the secular trend of the system dynamics. This is because L is also influenced by the variations in
ω andΩ and L = 2π might therefore not exactly constitute an orbital revolution.

After the EOM have been evaluated in all propagation steps of one discrete revolution, these nk values of ẋ
are averaged numerically to yield ẋ . The numerical averaging approach presented in [Kluever, 2010] entails a
change of variable in the integration process as follows:

ẋ = ∆x

Tor b
= 1

Tor b

∫ tub

tlb

d x

d t
d t = 1

Tor b

∫ Eub

Elb

d x

d t

(
dE

d t

)−1

dE (2.71)

where tlb , tub and El b , Eub are the lower and upper bounds of the time and eccentric longitude respectively.
The strategy in [Kluever, 2010] is to select these bounds to exclude the Earth shadow region, thus disregarding
any thrust input during eclipse yet maintaining constant thrust elsewhere. This strategy has been modified in
HOSTEP, which integrates over the complete revolution irrespective of eclipses, see Equation 2.71, with thrust
acceleration being automatically set to zero if sunlight incidence is below the user-specified threshold.

ẋ = ∆x

Tor b
= 1

Tor b

∫ t2π

t0

d x

d t
d t = 1

Tor b

∫ 2π

0

d x

d t

(
dθ

d t

)−1

dθ (2.72)

This was done because, although the electric engine cannot be operated in the absence of sunlight [Duchemin
et al., 2011], there may be other important force model contributions during eclipses, such as third body per-
turbing forces, that should not be disregarded within the averaging process [Jimenez-Lluva, 2016]. Moreover,
the use of true anomaly θ is preferred over eccentric anomaly E for this application because it creates a higher
concentration of data points near perigee. Another considerable method adjustment is the calculation of the
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orbital period, Tor b . The original averaging method analytically computed Tor b = 2π
√

a3

µ using the semi-major

axis, a, at the start of the revolution and assumed that the change in a throughout the revolution is negligible
[Kluever, 2010]. Instead, HOSTEP computationally evaluates the sum of ∆t increments for the nk propagation
steps in one discrete revolution, thus yielding a more accurate Tor b .

HOSTEP numerically approximates the integral ∆x in Equation 2.72 in one of three alternative methods: a
part-wise trapezoidal or Simpson’s integration scheme formulated with a constant step-size in true anomaly,
∆xtr ap,θ and ∆xsi mp,θ, or a trapezoidal scheme employing a varying step-size in time, ∆xtr ap,t . Detailed de-
scriptions of these schemes may be found in well-established calculus sources such as [Steward, 2003]. They
are defined by the corresponding formulae below, of which the second expressions are the simplified versions
implemented in HOSTEP:

∆xtr ap,θ ≈
nk−1∑
i=0


[

d x
d t

d t
dθ

]
θ=θi

+
[

d x
d t

d t
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(2.75)
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The previous hybrid methodologies in literature only employed the trapezoidal integration scheme [Kluever,
2010; Boudestijn, 2014; Gomez, 2015]. Simpson’s scheme was implemented in HOSTEP to evaluate its effect
on the accuracy since there is evidence that it is more precise in approximating second degree polynomials in
the proximity of turning points [Steward, 2003]. This was deemed to be of particular interest because, since
the the orbital elements oscillate per revolution and the integration steps are equidistant in θ or L, there are
generally few propagation steps near the apogee for eccentric orbits, which is exactly the turning point of the
sinusoid.

The three schemes were tested for the three GTO-GEO optimized trajectories from Case A1 in chapter 3 and
the results are presented in Table 2.2 and Table 2.3. The inputs for these trajectory simulation are similar to
those shown in Table 3.2, with the computational mode set to simulation instead of optimization and averag-
ing strategy varied according to the scheme being tested. Moreover, the design vectors specified for the three
trajectories include their corresponding TOF from Table 3.3 and co-states from Table 3.5.

The results show that there is no significant difference between the trapezoidal and Simpson’s integration
schemes, but there is a significant improvement when using time as the averaging variable instead of true
anomaly in the trapezoidal scheme. This can be safely stated, not only because the absolute OA error de-
creases for almost all elements, but more importantly because the latter scheme exhibits zero error for the mass
change. Since the mass flow is a linear EOM with respect to time, there should be no error upon averaging it
with a trapezoidal scheme. These results indicate that the calculation of dθ

d t is not as accurate as expected, even
though both Equation 2.69 and Equation 2.70 were tested and yielded no significant difference. Therefore, the
simulations and optimizations presented in the upcoming chapters employ the trapezoidal integration scheme
with respect to time.



24 2. METHODOLOGY

Table 2.2: Comparison of the OA errors for the three Case A1 optimal trajectories using the trapezoidal and Simpson’s
scheme with true anomaly as averaging variable.

Case A1 Solution #1 Case A1 Solution #2 Case A1 Solution #3
Trapezoidal Simpson’s Trapezoidal Simpson’s Trapezoidal Simpson’s

State variable OA error OA error OA error OA error OA error OA error

Semi-major axis a [km] -37.144 -37.237 43.435 43.242 -41.709 -41.808
Eccentricity e [-] 0.014 0.014 0.014 0.014 0.014 0.014
Inclination i [deg] 0.039 0.039 0.206 0.206 0.142 0.1423
RAANΩ [deg] -146.905 -146.884 -14.390 -14.390 -76.259 -76.2632
Arg. of perigee ω [deg] 164.044 164.030 -87.017 -87.022 103.934 103.9437
Total mass m [kg] -0.012 -0.012 -0.009 -0.009 -0.012 -0.012

Table 2.3: Comparison of the OA errors for the three Case A1 optimal trajectories using the trapezoidal scheme with true
anomaly and time as averaging variables.

Case A1 Solution #1 Case A1 Solution #2 Case A1 Solution #3
Tr. anom. Time Tr. anom. Time Tr. anom. Time

State variable OA error OA error OA error OA error OA error OA error

Semi-major axis a [km] -37.144 -72.535 43.435 30.761 -41.709 -24.502
Eccentricity e [-] 0.014 0.011 0.014 0.011 0.014 0.011
Inclination i [deg] 0.039 0.034 0.206 0.207 0.142 0.134
RAANΩ [deg] -146.905 -126.505 -14.390 -6.797 -76.259 -66.778
Arg. of perigee ω [deg] 164.044 95.590 -87.017 -138.185 103.934 46.402
Total mass m [kg] -0.012 0.000 -0.009 0.000 -0.012 0.000

2.6. VERIFICATION ACTIVITIES

This section describes the Verification and Validation (V&V) strategy and activities. The primary objective of
the V&V activities was to avoid the costs of potential troubleshooting in the later development stages. It is
important to notice that the cost of fixing software defects increases exponentially with the project progress
when it is detected. This is shown in Figure 2.13 [McConnell, 1996]. Whereas verification is generally attributed

Figure 2.13: Defect fixing costs as a function of introduction and detection phase [McConnell, 1996].

to the process, “Am I building the product right?", validation is related to requirements, “Am I building the
right product?". V&V can be approached through: test, analysis, demonstration, inspection, and review. Tests
are considered ideal because they are most objective, but often require most resources. Due to this inherent
trade-off, it is desirable to employ other methods as much as possible [Autrán-Cerqueira, 2016].
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The verification activities of large software projects include [Autrán-Cerqueira, 2016]:

• Verification of requirements: ensure compliance with the SMART criterion (specific, measurable, achiev-
able, relevant, and time-bound), ensure specification about when each requirement will be validated,
and ensure traceability between each requirement and its nature.

• Verification of design: ensure that it implements all requirements, ensure that it complies with the design
standards of GMV, and ensure traceability between the requirements and the design architecture.

• Verification of code:

– Traceability: ensure that all files can be traced to design components.

– Coding rules: ensure compliance with existing standard to prevent coding errors and enhance fu-
ture maintainability.

– Dynamic analysis: detect defects that are hard to detect or non-repeatable.

– Unit testing: ensure nominal execution in representative environments, evaluate robustness to un-
expected situations, and ensure coverage of all loops and conditional statements.

– Code inspection: ensure correct and efficient implementation while enhancing cross-learning.

• Verification of integration: perform representative hardware environment tests, evaluate whether results
are as expected, and justify discrepancies.

• Verification of documentation: define who is responsible per activity, what the deliverables are, when
these should be reviewed and submitted, what the general output is, and what the specific outputs are.

As the reader may expect, the limited constraints of this thesis did not allow to scrutinize these activities as one
should do in large scale projects. Nonetheless, this thesis project aims to provide a research feasibility study
rather than critical software development, hence lessening the need for verification and validation activities.
In fact, the last activity in the list above is beyond the scope of this thesis project.

Requirement verification was performed in consultation with the project sponsor. High-level requirements
were assessed and prioritized in the early stages of the project to produce the project objectives list in sec-
tion 1.5. Low level requirements were assessed throughout the code development process. For example, the
interface requirements that allow the validation tools PROPAG and EVENTS to automatically import HOSTEP’s
output manoeuvre and orbit files respectively, were evaluated shortly before the corresponding code imple-
mentation to save by avoiding excessive analysis or the less critical requirements.

Design verification was initiated in the earliest stage because an initial solid foundation for the software archi-
tecture is essential to meet the requirements effectively and efficiently. However, design verification was kept
an iterative process that lasted until the mid-term review, because the thorough understanding of the hybrid
method gained gradually over time allowed for perfecting the architecture and work-flow of HOSTEP. Nonethe-
less, the project sponsor’s insightful input of previous software projects was very valuable in the early stage of
this process. Further details about HOSTEP architecture and work-flow may be found in Appendix B.

Code verification was conducted since the start of the code development process to alleviate the debugging
effort at the end. A considerable effort was made prior to the construction stage in order to understand and
prioritize GMV’s programming rules as well as to identify tips and guidelines such as the "7 complexity rule
of thumb" – maximum 7 public subroutines per module, 7 input/output variables per subroutine, etc. The
unitary test campaign was focused on several subroutines, trading-off the easiness of the unit test implemen-
tations and the criticality of the subroutines with respect to HOSTEP’s overall performance. Dynamic analysis
was applied to automate executions over night and helped identify rare errors arising from bad solutions that
sometimes halted the optimization. Lastly, code inspection was carried out throughout the entire software de-
velopment process with the aid of the software editor debugger, which streamlined the decision coverage and
statement inspection, as well as automated plot generation within the GUI, which allowed for quickly identify-
ing anomalies in the trajectories.

2.7. VALIDATION ACTIVITIES

The HOSTEP validation campaign aims to evaluate its core functionalities and achieve the project objectives
as accurately as possible. The test cases focus on validating the accuracy of the propagator and the eclipse
simulator. The propagation process is validated in comparison with PROPAG, and the eclipses are validated in
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comparison with EVENTS, both of which are commercial and thoroughly validated elements available within
GMV’s focussuite ® toolbox. To enhance the automation of these validation tests, HOSTEP’s GUI features
a post-processing option to output a manoeuvre and an orbit file that can be directly read by PROPAG and
EVENTS respectively – further details about these options can be found in Appendix B. Thus, the simulations
of PROPAG and EVENTS correspond to the same thrust profile and trajectory of HOSTEP. This architecture has
eased the maintenance of these validation tests throughout the code development process and can be contin-
ued in future developments of HOSTEP.

2.7.1. TESTS A1-A3: PROPAGATOR VALIDATION

The propagator is validated in three different test cases: tangential, out-of-plane, and radial thrust profiles,
which are illustrated in Figure 2.14. These profiles are accomplished through hard-coding the thrust steer-
ing angles when the user selects these specific thrust profiles in the GUI – the corresponding values may be
found Table B.1. It is worth recalling that the integration steps within every revolution are equidistant in true
anomaly or true longitude, thus leading to a higher concentration of nodes near perigee in Figure 2.14. For
this validation, all orbital perturbations were disregarded, including eclipses, both in HOSTEP and PROPAG.
The initial orbit was chosen to be a GTO because it combines a high eccentricity with a slight inclination that
should provide a better insight of the simulator behaviour. The initial orbit is taken to be a slightly inclined
GTO: a = 24505.9 km, e = 0.725, i = 7.0 deg, ω = 0.0 deg, Ω = 0.0 deg, and θ = 0.0 deg [Geffroy and Epenoy,
1997]. The spacecraft parameters used are: T = 350.0 mN, and Isp = 2000.0 s, m = 2000.0 kg. The complete list
of inputs and GUI options for these test cases may be found in Appendix C.

Figure 2.14: Visualization of the validation thrust profiles: tangential (top), out-of-plane (middle), and radial (bottom).

The validation results for these test cases are shown in Figure 2.15 to Figure 2.17. These plots present PROPAG’s
results, HOSTEP’s results, and the error of HOSTEP with respect to PROPAG, using CI and OA. The CI simula-
tion employs 30 propagation steps per revolution whereas the OA simulation was repeated for 30, 40, and 50
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propagation steps per revolution and OA steps of 3.0, 4.0, and 5.0 days. The orbital elements studied are the
semi-major axis, eccentricity, and inclination because these provide a more useful and intuitive insight.

TANGENTIAL THRUSTING: TEST A1

The most prominent OA error can be observed in Figure 2.15 for the semi-major axis, which is to be expected
and the highest acceleration component is closer to the tangential direction. As expected, increasing the OA
step-size has a more detrimental effect on the accuracy of the OA approximation because over time, as the or-
bital elements vary further, the averaged (constant) derivative becomes less realistic. Moreover, increasing the
number of integration steps, nk , enhances the OA accuracy due to the nature of the trapezoidal scheme. More-
over, the oscillating nature of the OA error is expected because the CI values exhibit a short term oscillation
whereas the AO propagation has only a secular variation. This is more prominent for eccentricity because the
OA-CI discrepancy is lower, whereas for the semi-major axis, the oscillation is less significant in comparison
with the OA error itself. The CI error observed for a and e is acceptable for a priori optimization. In the case of
inclination, the errors in all curves are too small and can be assumed to be numeric in nature.

Figure 2.15: Test A1: tangential thrust propagation comparison between PROPAG and HOSTEP for a, e, and i using CI and
OA.
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Figure 2.16: Test A2: out-of-plane thrusting comparison between PROPAG and HOSTEP for a, e, and i using CI and OA.

Figure 2.17: Test A3: radial thrust propagation comparison between PROPAG and HOSTEP for a, e, and i using CI and OA.
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OUT-OF-PLANE THRUSTING: TEST A2

In the inclination change scenario, Figure 2.16, the error of the CI propagation is so prominent for the semi-
major axis that it veils the error of the OA approximations. This is because, whereas PROPAG directly employs
numerical integration to compute the state in cartessian component, HOSTEP employs the MEE formulation
derived from Gauss’ form of the Lagrange planetary EOM, Equation 2.5 to Equation 2.10. The author believes
that the assumptions in the original derivation of these EOM cause a discrepancy for prolonged out-of-plane
manoeuvres. In essence, the formulation assumes that out-of-plane thrust accelerations, ur , do not influence
the semi-latus rectum p, since the effect of ur is simply not captured in the corresponding EOM, Equation 2.5.
In practice, however, an infinitesimal ∆V change perfectly perpendicular to the velocity vector does vary the
magnitude of the velocity vector, thereby influencing the semi-major axis. Therefore, the semi-major axis de-
viation in Figure 2.16 is to be expected, but the author deems this acceptable since the underlying OM have
been thoroughly employed in previous trustworthy studies [Betts, 2010; Falck and Dankanich, 2012; Boudes-
tijn, 2014; Gomez, 2015]. Moreover, the author believes that the CI error in eccentricity and inclination are both
related to the deviation in a and the limitations of the underlying EOM. Hence, this test was repeated using CI
with 1000 integration steps per revolution, which resulted in small changes in HOSTEP’s simulation yet signif-
icant alterations in PROPAG’s results; the error in e and i vanished, with the error in a decreasing from 22.64
km to 0.50 km. The author thus concludes that the CI deviation is caused by the EOM limitations and deems
this acceptable for a priori optimization purposes. Regarding the OA results, the eccentricity error exhibits
the expected pattern that a lower number of integration steps nk yields a larger deviation in all OA cases, but
this pattern does not hold for the inclination error. The effect of the OA step on the error is not conclusive for
this test as there is no noticeable pattern. Interestingly enough, the combination of nk = 40 and a 4.0-day OA
step-size yields the smallest e and i error.

RADIAL THRUSTING: TEST A3

The CI error in Figure 2.17 is negligible for the semi-major axis and eccentricity, and can be assumed to be of
numeric nature for the inclination. Similarly, the OA deviation in inclination can be assumed to be caused by
numerical noise. Interestingly enough, the OA approximations show an identical error pattern for a and e. The
oscillating trend of the OA error, most noticeable for the blue data points, is thought to stem from the oscillating
nature of the orbital elements themselves; because the OA data points remain within the oscillation amplitude
of the high frequency sinusoidal CI curve, a small epoch error in the OA data points may lead to a large value
error. This effect may be caused by approximation errors in the data processing process and are thus deemed
acceptable. Nonetheless, the OA results show a secular increase over time that causes the OA approximation to
exceed the oscillation amplitude in larger propagation periods. However, the author deems this secular error
acceptable in comparison with the errors of the tangential thrust test case. Again, the combination of nk = 40
and a 4.0-day OA step-size again yields the smallest a and e error and it therefore recommended. Hence, the
latter combination is employed for the result cases in chapter 3 that employ the OA technique.

2.7.2. TEST B1: ECLIPSE SIMULATION VALIDATION

HOSTEP employs an eclipse simulator that was readily available and validated at GMV. The working principle
of this tool is based on well established approaches, see subsection 2.3.1. Although the author trusts that the
simulator has been readily validated already, the eclipse simulation of HOSTEP has been validated to ensure
correct use and integration of this tool. The results of HOSTEP are thus compared to the results of EVENTS,
one of the commercial tools developed by GMV that can simulate eclipses among other possibilities. To do
so, HOSTEP outputs a trajectory description file that can be automatically read and evaluated by EVENTS.
Additionally, HOSTEP outputs a summary file, which can include either thrusting or coasting arcs, and the
dates corresponding to the eclipses are validated in comparison with the eclipses dates generated by EVENTS,
see Table 2.4. The initial conditions and design vector employed for this validation test are similar to those
from the LEO-GEO trajectory in Case C, see section 3.4. The input settings and the input co-states are shown in
Appendix C. The only difference is that the HOSTEP simulation for this test employs 1000 integration steps per
revolution, instead of the regular 30, to capture the eclipse start and end dates with greater accuracy.

The small discrepancies in the dates of Table 2.4 arise from the differences in computational logic between the
two software tools. Whereas EVENTS employs a constant time step-size of 100 s for this simulation, HOSTEP
uses a discrete number of integration steps per revolution in HOSTEP equidistant in true longitude. Hence,
the results of HOSTEP have been visually inspected to confirm that every in- and out- epoch of EVENTS lie be-
tween two integration nodes of HOSTEP, with one of them corresponding to the in- or out- epochs of HOSTEP.
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Table 2.4: Validation of eclipse dates for the trajectory Test B1.

HOSTEP epoch in HOSTEP epoch out EVENTS epoch in EVENTS epoch out

2000/01/01-12:08:47.854 2000/01/01-12:44:33.825 2000/01/01-12:08:42.924 2000/01/01-12:44:38.600
2000/01/01-13:44:26.184 2000/01/01-14:20:13.527 2000/01/01-13:44:23.034 2000/01/01-14:20:18.645
2000/01/01-15:20:06.821 2000/01/01-15:55:55.538 2000/01/01-15:20:05.452 2000/01/01-15:56:00.999
2000/01/01-16:55:55.514 2000/01/01-17:31:45.608 2000/01/01-16:55:50.182 2000/01/01-17:31:45.668
2000/01/01-18:31:40.778 2000/01/01-19:07:32.249 2000/01/01-18:31:37.229 2000/01/01-19:07:32.655

...
...

...
...

2000/07/02-07:23:43.887 2000/07/02-07:44:06.952 2000/07/02-07:23:14.671 2000/07/02-07:44:24.378
2000/07/02-20:44:57.467 2000/07/02-21:03:10.021 2000/07/02-20:44:25.518 2000/07/02-21:03:30.223
2000/07/03-10:15:02.391 2000/07/03-10:31:01.909 2000/07/03-10:14:38.872 2000/07/03-10:31:15.703
2000/07/03-23:55:02.715 2000/07/04-00:07:09.644 2000/07/03-23:54:16.361 2000/07/04-00:07:49.563
2000/07/04-13:44:26.130 2000/07/04-13:52:35.740 2000/07/04-13:43:51.233 2000/07/04-13:53:10.106

However, it must be noted that the eclipse from HOSTEP is always shorter than that of EVENTS, and the author
recommends adjusting HOSTEP’s logic to extend the simulated shadow arc to the subsequent integration step
to be conservative in the future in case a higher accuracy is required of HOSTEP. Nonetheless, the worst case for
an nk = 30 propagation would be that two nodes are fully shadowed, meaning that the thrust contribution over
2/300 = 5% of the revolution should have been neglected – since these nodes are equidistant in true longitude
for CI – which is deemed acceptable for a priori trajectory optimization.

As a sanity check, the eclipse duration is verified at the initial LEO through simplified analysis. A cylindrical
shadow model is assumed such that the line crossing the start- and end-points of the umbra arc equals the
Earth’s diameter. Therefore, the eclipse arc half-angle φ can be found through sinφ = RE

RE+H , with RE and H
being the Earth’s radius and orbit altitude respectively. The ratio 2φ : 2π thus equals the ratio Tecl i pse : Tor b ,

with Tor b = 2π
√

a3

µ being the orbital period. At the initial altitude of 550 km, φ= 1.17 rad and Tor b = 95.65 min.

This yields Tecl i pse = 35.61 min, which is consistent with the first eclipse cycles in the LEO-GEO transfer.

2.7.3. TESTS C1-C2: OPTIMIZER VALIDATION

The combination of HOSTEP’s simulation and optimization processes is validated in comparison to the ana-
lytical solution developed in [Edelbaum, 1961]. This analytical solution defines the optimal ∆V required for a
low-thrust transfer between two nearly circular orbits with different inclinations:

∆V =
√

V 2
1 −2V1V2 cos

(π
2
∆i

)
+V 2

2 (2.79)

where V1 and V2 are the initial and final circular velocities, respectively, and∆i denotes the inclination change.
The resulting propellant mass corresponding to this∆V can be calculated through Tsiolkovki’s equation:

∆V = g0Isp ln

(
m0

m0 −mpr op

)
(2.80)

where m f and m0 are the initial and final spacecraft mass, respectively, mpr op is the propellant mass, g0 is
the sea-level gravitational acceleration, and Isp is the specific impulse. Lastly, the TOF can be computed by
dividing the propellant mass mpr op by the mass flow rate, which is calculated in Equation 2.26.

Two circular transfers are optimized to validate HOSTEP with respect to the analytical optimal limit. Test C1
features a co-planar transfer from a0 = 7000.0 km to at = 42000.0 km and Test C2 optimizes a non-co-planar
transfer from a0 = 7000.0 km to at = 9000.0 km with an inclination change ∆i = 3.0. The first test scenario
was specifically chosen because it was also optimized in [Gebbett, 2014] using a direct optimization method.
Eclipses and perturbations are disregarded for this optimization because the analytical solution from Edel-
baum and the results from [Gebbett, 2014] assumed continuous thrust. The inputs for Test C1 are shown in
Table 2.5, and the only inputs that are adjusted for Test C2 are the target elements highlighted in blue. Test C2
employed at = 9000.0 km, it = 0.05 deg, and (t f )ub = 4.0 days.

Five DE repetitions were executed for each test, all of them employing Continuous Integration. The upper
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boundary of the TOF was specifically set close to the analytical solution to aid the DE optimizer approach
the optimum as closely as possible within the specified maximum number of iterations. Moreover, the upper
boundary of the final orbit error was more constrained than the recommended values previously shown in
Table 2.1 to refine the solution with better accuracy for these tests. The best solution for Test C1 and Test C2 is
shown in Table 2.6, and their respective convergence is illustrated in Figure 2.18 and Figure 2.19.

Table 2.5: Inputs for the Case C1 trajectory.

Comp. mode Optimization DE mode Random at [km] 42000.0 ∗ (εa)ub [km] 10.0
Var. thrust Off DV source n/a et [-] 0.001 (εe )ub [-] 0.001
Long. target. Off DEr ep [-] 5 it [deg] 0.005 † (εi )ub [deg] 0.01
Nar cs [-] 1 Ni ter [-] 1000 Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
m0 [kg] 300.0 NP [-] 10D ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 1000.0 CF [-] 0.6 Λt [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 3100.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 40.0 (t f )ub [day] 15.0 ‡ a0 [km] 7000.0 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 0.0 e0 [-] 0.001 We [-] 1.0
O Astep [day] n/a λub [-] 1.0×104 i0 [deg] 0.005 Wi [-] 1.0
Avg. scheme Trapez. λlb [-] -1.0×104 Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable Time ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

∗ The target semi-major axis value is adjusted to 9000 km for Test C2.
† The target inclination value is adjusted to 0.05 deg for Test C2.
‡ The allowed maximum TOF is adjusted to 4.0 days for Test C2.

Table 2.6: Validation of the circular orbit transfers Test C1 and C2.

Test C1 Test C2
Time-of-flight Propellant mass Time-of-flight Propellant mass

t f [days] mpr op [kg] t f [days] mpr op [kg]

HOSTEP 14.45 41.37 3.76 10.68
[Gebbett, 2014] 14.60 41.48 n/a n/a
Edelbaum 14.42 40.98 3.62 10.32

Figure 2.18: Convergence of the 5 DE executions for Test C1, zoomed-in for three different ranges of iteration numbers.

Table 2.6 shows that HOSTEP has a high degree of accuracy in comparison with the analytical solution, and
that it performs better than the optimization presented in [Gebbett, 2014]. Figure 2.18 and Figure 2.19 reveal
an adequate convergence for all each executions. Test C1 employed a computational time of 1 hr 26 min,
whereas Test C2 required 2 hr 41 min. Assuming an equal load distribution this yields respectively 17.2 min and
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Figure 2.19: Convergence of the 5 DE executions for Test C2, zoomed-in for three different ranges of iteration numbers.

32.2 min for every complete DE repetition, 1.032 s and 1.932 s per every DE iteration, and 9.38 ms and 17.56
ms per simulation evaluation (since every generation has a population size of NP = 10D = 110). The author
recommends implementing more sophisticated stopping criteria or a superior DE algorithm altogether – see
further details in subsection 4.4.1 – because the graphs above show that the residual improvement in the last
500 iterations is sometimes not worth the corresponding computational time. Nonetheless, this is acceptable
for the scope of this thesis because the computational time is not a primary requirement.

2.7.4. TESTS D1: J2 PERTURBATION VALIDATION

The J2 perturbing accelerations implemented in HOSTEP are validated through comparison with the analytical
secular drift. The same inputs from Test A1 are used to simulate the first 20-days of the GTO-GEO trajectory,
with the thrust set to zero and the J2 perturbation activated. As explained in well established books like [Vallado,
1997; Kluever, 2010], the Keplerian elements a, e, and i exhibit oscillations only, whereasω andΩ experience a
secular drift as a consequence of the J2 effect. This secular drift can be calculated as follows,

Ω̇J2 =
3nR2

E J2

4a2
(
1−e2

)2

(
4−5sin2 i

)
(2.81)

ω̇J2 =
−3nR2

E J2

2a2
(
1−e2

)2 cos i (2.82)

where n =
√

µ

a3 is the mean motion of the spacecraft, RE = 6378.137 km is the Earth’s radius, and J2 = 1.0826269×
10−3 is the dimensionless constant corresponding to the second order Earth zonal harmonic perturbation. The
output of the previous equations is [rad·s−1]. The observed secular drift from HOSTEP’s simulation over 20
days is compared with the analytical solution in Table 2.7.

Table 2.7: Comparison of the secular drift inΩ and ω over 20 days for HOSTEP’s propagation and the analytical solution.

∆ΩJ2 [deg] ∆ωJ2 [deg]

HOSTEP -7.956 15.737
Analytical solution -7.906 15.635

The error between the observed and calculated drift for this period of 20 days is 0.05 and 0.1 deg for Ω and ω

respectively. This is deemed acceptable for a priori optimization because a linear accumulation of this error
would remain below the requirement from Table 2.1 for a typical 137 days GTO-GEO trajectory.
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RESULTS

“The important thing is not to stop questioning.” – Albert Einstein.

This chapter presents the results of HOSTEP for several different test cases. These test cases are described
below in Table 3.1, together with the reference data from literature that is used as comparison. Case A, B,
and C investigate the GTO-GEO transfer because it is the most frequent trajectory for satellites with all-electric
propulsion [Duchemin et al., 2011]. Case A optimizes for minimum-TOF, both with and without the J2 perturba-
tion, and compares HOSTEP’s optimal solutions with those of the reference indirect method. Case B performs
propellant-minimization using the coasting mechanism and reproduces the Pareto front of the propellant mass
against TOF that is available from the reference indirect method. Case C investigates the effect of targeting the
final geodetic longitude in combination with propellant minimization, which was neither attempted in the ref-
erence indirect nor hybrid methods. Lastly, Case D evaluates the LEO-GEO trajectory to compare HOSTEP’s
results with the solutions of the reference hybrid methodologies.

Table 3.1: Description of the different results cases presented.

Test case Transfer Description Comparison data

Case A Minimum-TOF GTO-GEO [Montealegre-Avila, 2015; Sanchez and
Campa, 2014; Geffroy and Epenoy, 1997]

Case B Minimum-propellant GTO-GEO [Sanchez and Campa, 2014]
Case C GTO-GEO with longitude targeting
Case D Minimum-TOF LEO-GEO [Boudestijn, 2014; Kluever, 2010]

3.1. CASE A: MINIMUM-TIME GTO-GEO TRAJECTORY

The GTO-GEO transfer is among the most popular scenarios for commercial applications because the majority
of communications satellites are placed at GEO orbits. The economic incentive for minimum-time optimiza-
tion lies in reaching the target orbit as quickly as possible to reduce the Launch and Early Operations Phase
(LEOP) costs. Moreover, it helps ensure that the system can deliver its services on time, as telecom operators
generally have very tight schedule constraints before loosing the market opportunity.

The solution of HOSTEP for this trajectory is compared with the indirect method employed in [Geffroy and
Epenoy, 1997; Sanchez and Campa, 2014; Montealegre-Avila, 2015]. Since the three studies present a reference
solution that does not include any orbital perturbations beyond the thrust of the engine, the trajectory is first
optimized with HOSTEP in unperturbed conditions. Additionally, the trajectory is also optimized with the J2

perturbation since this case was documented in [Montealegre-Avila, 2015]. It should be clarified that neither
sub-case incorporates Earth shadow regions. Although Geffroy and Epenoy [1997] also presented a solution
including eclipses, the author deemed it inefficient to reproduce this solution because it constitutes a worst
case scenario, thus providing little practical insight at the expense of long simulation times. This is because the
chosen initial conditions lead to shadow regions initially at apogee, yielding a TOF of 240 days, 628 revolutions,
and a propellant mass of 370 kg.

33
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3.1.1. CASE A1: UNPERTURBED TRAJECTORY

Four optimization executions are performed for this scenario to evaluate the effect of the input optimization
parameters. The input parameters for the first, and less optimal, solution are shown in Table 3.2, with the
marked fields being the parameters that are adjusted for the subsequent executions. Every trial is optimized
using a single co-state arc, meaning that the co-state vector λ is defined at two nodes, t = 0 and t = t f , yield-
ing 11 optimization parameters together with the TOF itself. The CI integration option is selected with 40
integration steps per revolution and an O Astep of 4.0 days is selected to compare the optimal trajectory sim-
ulation between the two propagation methods. Since the first execution only yielded a near-optimal solution,
the marked values were adjusted in order to refine the optimized trajectory. The four optimization results are
compared with the reference optima from indirect methods in Table 3.3.

Table 3.2: Inputs for the Case A1 executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust Off DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. Off DEr ep [-] 1 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
Nar cs [-] 1 Ni ter [-] 1000 ∗ Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
m0 [kg] 2000.0 NP [-] 10D ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 350.0 CF [-] 0.6 Λt [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 2000.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 40 (t f )ub [day] 140.0 † a0 [km] 24505.9 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 135.0 e0 [-] 0.725 We [-] 1.0
O Astep [day] 4.0 λub [-] 500 ‡ i0 [deg] 7.0 Wi [-] 1.0
Avg. scheme Trapez. λlb [-] -500 ‡ Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable Time ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

∗ The maximum number of iterations was modified to 2000 and 1500 respectively for executions #3 and #4 in Table 3.3.
† The upper TOF boundary was modified to 139.0, 138.5, and 137.7 days respectively for the subsequent executions.
‡ The upper and lower co-state boundaries were modified set to ±1.0×104 for the subsequent executions.

Table 3.3: Comparison of HOSTEP’s Case A1 results with the analytical optimum from reference indirect methods.

Time-of-flight Revolutions Propellant mass
t f [days] Nr ev [-] mpr op [kg]

HOSTEP, solution #1 138.68 195 213.81
HOSTEP, solution #2 137.95 195 212.70
HOSTEP, solution #3 137.74 195 212.37
HOSTEP, solution #4 137.45 193 211.91
IGEOR [Montealegre-Avila, 2015] 137.41 190 211.86
[Sanchez and Campa, 2014] 137.5 190 212
[Geffroy and Epenoy, 1997] 137.5 190 212

HOSTEP’s best solution differs by only 1 hr in TOF with the analytical global optimum computed with IGEOR.
This shows that, despite its simplified co-state dynamics, the hybrid method can achieve a great accuracy in
minimum-TOF optimization, even when a single co-state arc is employed. The deviation of both HOSTEP and
IGEOR with the other reference indirect implementations is larger, which arises from the differences in the val-
ues employed for the target orbit and the fact that the reference results were presented with a limited precision.
This is because the former indirect methods used et = 0.0001 and it = 0.01 as target, and when IGEOR was exe-
cuted with these adjusted values, it reached exactly the same results upon round-off. Furthermore, HOSTEP’s
results indicate a deficiency in the number of revolutions, which is evaluated based on the true longitude vari-
ation. Since the details about the approach used in the reference indirect methods are undocumented, this
could arise from a difference in the approach used. Nonetheless, HOSTEP’s solution #3 and #4 exhibit a dif-
ference of two revolutions and about 4.5 hr, which is not feasible because the lowest orbital period along the
entire trajectory is 10.6 hr.

As expected, HOSTEP’s solution accuracy worsens as the TOF design space is enlarged. Nonetheless, this is also
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affected by the maximum allowed number of iterations, as may be observed in the convergence plot shown in
Figure D.1. The corresponding computational times for the four HOSTEP executions were 72 min, 84 min, 162
min, and 118 min respectively, under the same conditions using the hardware and software described in Ap-
pendix E. This shows that the effect of increasing the maximum allowed number of iterations is approximately
linear on computational time. The optimization in IGEOR was executed twice, both reaching the same solution
presented in Table 3.3 and requiring 87 and 92 min respectively.

Figure 3.1: Illustration of HOSTEP’s optimal Case A1 trajectory in (a) top, (b) 3D, (c) frontal, and (d) lateral views.

Figure 3.1 illustrates the trajectory evolution over time with the aid of a color scale for HOSTEP’s solution #4.
These projections are very similar to the ones presented in [Montealegre-Avila, 2015], which is to be expected
since the TOF and propellant expenditure are also similar. The color overlap observed near apogee for Fig-
ure 3.1 (b) occurs because the inclination is not exactly zero, which helps to visualize that the optimal trajectory
first raises the apogee altitude, while adjusting the inclination, and gradually decreases it afterwards.

Table 3.4: Comparison of the CI results and OA error for the Case A1 optimal trajectories.

Solution #1 Solution #2 Solution #3 Solution #4
CI result OA error CI result OA error CI result OA error CI result OA error

a [km] 42165.923 -98.533 42164.580 30.756 42164.877 -24.502 42164.684 -32.227
e [-] 2.309E-5 0.011 1.453E-5 0.011 1.129E-4 0.011 5.278E-4 0.012
i [deg] 1.263E-3 0.229 1.685E-3 0.229 2.928E-3 0.115 2.590E-4 0.172
m [kg] 1786.186 0.000 1787.301 0.000 1787.632 0.000 1788.086 0.000

The OA error for the main Keplerian elements of interest – semi-major axis, eccentricity and inclination – is
presented in Table 3.4 and the variation over time of the elements corresponding to solution #4 is shown in
Figure 3.2. The element evolution propagated with CI is very similar to that presented in [Montealegre-Avila,
2015], and the OA approximation closely resembles the CI propagation. It must be clarified that the optimiza-
tion was carried out using CI and only the final trajectory was propagated with both CI and OA to evaluate the
OA error. A closer inspection at the OA errors shown in Table 3.4 reveals that it nearly satisfies the requirements
from Table 2.1 for the best two solutions, and the combination of OA errors is still deemed acceptable for a
priori optimization since the OA error for a is well below the requirement. Consequently, is was decided to
employ OA for the optimization process in Case B.
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Figure 3.2: Comparison between the CI and OA evolution of the main Keplerian elements – (a) semi-major axis, (b)
eccentricity, (c) inclination, and (d) apogee and perigee altitude – for the optimal Case A1 trajectory computed with

HOSTEP.

Table 3.5: Optimal co-states for the four Case A1 solutions computed with HOSTEP.

Solution # Node # λp [-] λ f [-] λg [-] λ j [-] λk [-]

1
1 -0.0480 52.6406 -48.2484 1000.0000 120.7258
2 0.0027 999.9970 15.5347 144.8889 -93.7007

2
1 -0.2841 -1023.5188 -199.3850 4804.5768 404.0099
2 -0.0334 9845.9082 76.2233 4018.6292 -403.6160

3
1 -0.2230 -1639.1706 510.9440 2415.2460 -112.6927
2 -0.0503 9996.3885 -246.3236 6551.9830 218.3890

4
1 -0.1758 -2411.9416 -1.4360 1793.2510 -1.5825
2 -0.0524 9851.1740 -8.2504 5658.9952 -4.0730

The values of the optimal co-states calculated with the hybrid method are shown in Table 3.5. These optimal
co-states differ significantly from those of the reference indirect methods, though this is to be expected due to
the different nature of the hybrid formulation. In essence, these co-states are merely a mathematical tool in the
optimal control theory developed in [Pontryagin, 1986]. It is important to mention that, due to the geometry
of the control laws, the co-states may be scaled by any factor without altering the optimal trajectory. This
also explains why the co-states of different HOSTEP solutions differ from one another. Furthermore, the four
solutions show that the DE scales the optimal co-states in accordance with the imposed co-state boundaries.
Albeit not critical for the accuracy of the solution, the author recommends scaling the co-state for the semi-
latus rectum in future versions of HOSTEP to avoid this effect. For example, one could multiply λp by p to
create a vector of co-states that vary with similar orders of magnitude.
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3.1.2. CASE A2: J2-PERTURBED TRAJECTORY

The inputs for this case are shown in Table 3.6 and are similar to those of the A1 trajectories, with the excep-
tion of the J2 effect perturbation. Table 3.7 shows the comparison of the results from HOSTEP and IGEOR for
the J2-perturbed and unperturbed trajectories. It should be clarified that IGEOR [Montealegre-Avila, 2015] is
based on the indirect methodology developed in [Sanchez and Campa, 2014] which did not present perturbed
trajectories. The projections of HOSTEP’s optimal J2-perturbed trajectory are shown in Figure 3.3.

Table 3.6: Inputs for the Case A2 executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust Off DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. Off DEr ep [-] 1 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
Nar cs [-] 1 Ni ter [-] 2000 Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
m0 [kg] 2000.0 NP [-] 10D ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 350.0 CF [-] 0.6 Λt [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 2000.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 40 (t f )ub [day] 138.5 a0 [km] 24505.9 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 135.0 e0 [-] 0.725 We [-] 1.0
O Astep [day] 4.0 λub [-] 1.0×104 ∗ i0 [deg] 7.0 Wi [-] 1.0
Avg. scheme Trapez. λlb [-] -1.0×104 ∗ Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable Time ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

∗ The upper and lower co-state boundaries were modified set to ±1.5×104 for the fourth execution presented in Table 3.3.

Figure 3.3: Illustration of the optimal Case A2 trajectory from the (a) top, (b) 3D, (c) frontal, and (d) lateral perspective.

Figure 3.3 shows a clear resemblance with the optimal trajectory from Case A1, with a noticeable secular drift
for the argument of perigee in the positive direction, as expected from the analytical secular calculation pre-
viously shown with Equation 2.82. The evolution of a, e, i , and the radius at the apses, which may be found
in Figure D.2, is identical to that of Case A1, except for the inclination which shows only a minor difference.
Moreover, Figure 3.4 compares the CI and OA evolution for this case, revealing a larger OA error than previ-
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ously observed in Case A1. This is to be expected because of the larger disturbing acceleration experienced by
the spacecraft. The comparison of the CI and OA terminal values and the corresponding OA error can be found
in Table D.3 and show that the OA error exceed the requirements when including the J2 perturbation.

Figure 3.4: Comparison between the CI and OA evolution of the main Keplerian elements – (a) semi-major axis, (b)
eccentricity, (c) inclination, and (d) apogee and perigee altitude – for HOSTEP’s optimal Case A2 trajectory.

Table 3.7: Comparison of the four HOSTEP’s solutions for Case A2 with the reference solutions.

Time-of-flight Revolutions Propellant mass Geodetic Longitude
t f [days] Nr ev [-] mpr op [kg] Λ f [deg]

HOSTEP, J2-pert. solution #1 137.78 195 212.46 -92.74
HOSTEP, J2-pert. solution #2 137.72 194 212.35 -67.84
HOSTEP, J2-pert. solution #3 137.71 194 212.32 -61.62
HOSTEP, J2-pert. solution #4 137.71 194 212.32 -63.65
IGEOR, J2-perturbed 137.75 192 212.39 339.22
HOSTEP, unperturbed 137.45 193 211.91 24.80
IGEOR, unperturbed 137.41 190 211.86 208.99

The results of the four executions are shown in Table 3.7. Clearly, the inclusion of the J2 perturbation leads
to a longer TOF for this GTO-GEO trajectory. Nonetheless, it is important to realize that the effect of this per-
turbation varies with the problem under consideration and whether the perturbing acceleration favours the
orbital transfer. In this particular case, the resulting effect calculated with HOSTEP is significantly similar to
the findings from IGEOR [Montealegre-Avila, 2015]. Moreover, despite the slight difference in the et and it tar-
get values, it is also consistent with the results presented in [Geffroy and Epenoy, 1997], which showed a 2 hr
increment in the TOF when incorporating the J2 perturbation. Another important observation is that the final
geodetic longitude varies for the four solutions, which is of particular interest for the later analysis in Case C,
see section 3.3. In all four J2-perturbed trajectories computed with HOSTEP, the final geodetic longitudes lie
within a 30 deg arc that is Westwards with respect to the value for the unperturbed solution. The fact it varies 2
deg for solution #3 and #4 although these are nearly identical, indicates a high sensitivity of the final geodetic
longitude to minute variations in the thrust profile.
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Figure 3.5: Evolution of the thrust components in the RSW frame for the optimal unperturbed and J2-perturbed
trajectories of HOSTEP.

The thrust components in the RSW frame are shown in Figure 3.5 for the unperturbed and J2-perturbed tra-
jectories. Visual inspection of the oscillations confirms that the thrust components in the s- and w-directions
reach maximum values near the apses, as expected, whereas that in the r-direction is maximal near the nodal
points. The overall trend is very similar for both profiles, with only small differences between the oscillation
amplitude at certain regions. Nonetheless, since not all orbital elements are being targeted, these differences
may simply indicate an alternative trajectory solution rather than a direct consequence of the J2 effect.

Lastly, the corresponding co-states of the previous solutions are shown in Table 3.8. The results for the first
three executions are very similar, with the exception of λg and λk which vary accordingly. The latter is to be
expected because Ω remains close to 2π rad for this trajectory – see Figure D.3 – which causes sin(Ω), and
therefore g and k to remain close to zero, and therefore the effect of λg and λk on the trajectory is very small.
For solution #4, every co-state exhibits an increase of a factor of 1.44 with respect to solution #3. This is a result
of the larger co-state boundaries imposed for this execution and confirms the earlier claim that all co-states
can be scaled by an equal factor without a change in the control laws or the resulting trajectory.

Table 3.8: Optimal co-state results from HOSTEP for the four Case A2 solutions.

Solution # Node # λp [-] λ f [-] λg [-] λ j [-] λk [-]

1
1 -0.1895 -2220.1352 -464.3983 2140.6352 -432.7277
2 -0.0589 10000.0000 1955.4042 5793.1818 -2210.9064

2
1 -0.1922 -2391.8218 -188.8911 2298.0134 -146.3361
2 -0.0497 9828.5920 1775.2011 5133.8198 -2366.2391

3
1 -0.1847 -2474.6186 -422.0736 1956.8875 -438.6879
2 -0.0543 10000.0000 1903.5074 5755.0460 -2123.9345

4
1 -0.2662 -3567.3017 -608.4431 2820.9600 -632.3952
2 -0.0783 14415.5563 2744.0119 8296.2182 -3061.7660
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3.2. CASE B: MINIMUM-PROPELLANT GTO-GEO TRAJECTORY

This section demonstrates the novel ability of the hybrid methodology, i.e. to optimize minimum-propellant
trajectories with coasting arcs. The resulting optimal trajectories successfully reproduce the reference Pareto
front computed with the indirect method in [Sanchez and Campa, 2014], revealing an exceptional competency
in terms of solution accuracy. Additionally, this scenario shows the power of the OA technique, which is used
in all sub-cases to lower the computational cost without dramatically hindering the accuracy.

Similarly to Case A, all orbital perturbations are neglected in this case as they are not incorporated in the ref-
erence results. The strategy employed to ease the automation of the different evaluations is to fix the TOF and
optimize the trajectory for propellant-minimization using the inputs shown in Table 3.9. Additionally, OA is
employed with the best settings identified during the validation tests in subsection 2.7.1. Figure 3.6 shows that
the solutions found for a TOF of 150, 175, 200, 225, 250, and 300 days coincide nearly exactly with the Pareto
front of analytical global optima.

Table 3.9: Inputs for the Case B executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust On DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. Off DEr ep [-] 4 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
m0 [kg] 2000.0 NP [-] 10D Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
Nar cs [-] 1 Ni ter [-] 1000 ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 350.0 CF [-] 0.6 Λt [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 2000.0 CR [-] 0.8 Wt [-] 0.0

nk [-] 40 (t f )ub [day] 150.01 ∗ a0 [km] 24505.9 Wa [-] 1.0
Propag. scheme OA (t f )l b [day] 149.99 ∗ e0 [-] 0.725 We [-] 1.0
O Astep [day] 4.0 λub [-] 1.0×106 i0 [deg] 7.0 Wi [-] 1.0
Avg. scheme Trapez. λlb [-] -1.0×106 Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable Time ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] 1000.0
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

∗ The TOF upper and lower bounds were adjusted accordingly for the 175-, 200-, 225-, 250-, 300-day trajectories.

Figure 3.6: HOSTEP’s propellant-optimal solutions for the Case B trajectory relative to the Pareto front presented in
[Sanchez and Campa, 2014].
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The high accuracy with which HOSTEP’s global optima resemble the analytical global solutions is relatively as-
tonishing. Despite employing a single co-state arc, the deviation between the linearized co-state dynamics and
the corresponding optimal EOM does not considerably influence the resulting trajectories. This is an excep-
tional result because it shows that the hybrid method does not necessarily jeopardize the solution accuracy, in
comparison to the analytical global optimum of indirect methods, while being able to harness the enhanced
convergence and flexibility of the direct method. Figure 3.6 also illustrates the random nature of the DE opti-
mizer because some of the four executions for each TOF are not visible, i.e. they yielded a mass expenditure
that exceeds 220 kg. This signifies the importance of executing several DE repetitions for any problem and the
fact that there is room for improvement in the DE algorithm employed.

Figure 3.7: Illustration of HOSTEP’s optimal Case B trajectories and coasting regions (depicted in grey) for a TOF of (a) 137,
(b) 150, (c) 200, and (d) 250 days.

Figure 3.7 illustrates the 2D projection of the optimal 150-, 200-, and 250-day trajectories, as well as the optimal
minimum-time trajectory from Case A1, with the coasting regions depicted in grey. The coasting behaviour is
as expected, with the engine switched off near perigee because the apogee altitude is already close to the target
radius. In particular, the 150-day trajectory exhibits a very similar coasting pattern to that of the propellant-
optimal trajectory calculated in [Montealegre-Avila, 2015] for the same TOF.

Moreover, the comparison of the terminal element values computed with CI and OA for the 250-day optimal
trajectory are shown in Table 3.10. It clarifies that the OA accuracy satisfies the requirement, with the most
significant error occurring in eccentricity. It also shows a 1 kg error in the computed mass consumption, which
is caused by the averaging of the coasting arcs and remains acceptable for a priori optimization.

Table 3.10: Comparison of the final CI and OA values for the 250-day minimum-propellant GTO-GEO trajectory computed
with HOSTEP.

State variable CI result OA result OA error

Semi-major axis a [km] 42062.214 42043.576 -18.638
Eccentricity e [-] 0.002 0.012 0.010
Inclination i [deg] 0.104 0.029 -0.075
Total mass m [kg] 1842.187 1843.146 0.959
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Figure 3.8: Evolution of the main Keplerian elements for the 250-days propellant-optimal GTO-GEO trajectory computed
with HOSTEP.

Furthermore, the CI and OA evolution of the orbital elements for the 250-day trajectory is shown in Figure 3.8.
The evolution of the elements is as expected, with the eccentricity and inclination exhibiting a regular be-
haviour for a GTO-GEO transfer and the semi-major axis experiencing a rapid circularization near the end,
which is also visible in the trajectory 2D projection in Figure 3.7. The evolution of these elements for the
optimal 150- and 200- day trajectories, as well as the comparison of the terminal values, may be found in
Appendix D and are consistent with the previous analysis. The OA technique enabled a faster generation of
optimal trajectories, with an average DE execution time of 30 min, 43 min, and 62 min for the 150-, 200-, and
250-day trajectories respectively. Compared to the 57 min from the Case A1 solutions that were also limited to
1000 iterations per DE execution, this shows again that OA is a tempting alternative for the study of GTO-GEO
trajectories since the error with respect to CI remains acceptable.

3.3. CASE C: GTO-GEO TRAJECTORY WITH LONGITUDE TARGETING

The purpose of this case is to evaluate HOSTEP’s ability to target the final geodetic longitude. As explained in
section 2.4, this is accomplished by extending the Aggregate Objective Function (AOF) to further incorporate
the difference between the achieved final geodetic longitude and the target value. The GTO-GEO longitude
targeting is first demonstrated for minimum-time trajectories with arbitrary geodetic longitude targets. After-
wards, a real trajectory from one of GMV’s customer is first optimized for TOF minimization with longitude
targeting using HOSTEP and subsequently with EPTOS. Lastly, the former GTO-GEO transfer is optimized for
longitude targeting in combination with propellant minimization.

3.3.1. CASE C1: TIME-OPTIMAL SOLUTIONS

Firstly, the minimum-TOF GTO-GEO trajectory from Case A2 is optimized for the arbitrary target values of
Λt =0.0, 90.0, 180.0, 200.0, 240.0 deg. Note that Case A2 was focused on the minimum-time GTO-GEO J2-
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perturbed trajectory without longitude targeting, and that the final geodetic longitude from was -64 deg. The
inputs for this case, which are shown in Table 3.11, are very similarly to those of Case A2. The J2 perturbation is
considered but not the Earth shadow regions. OA is not employed in this case, neither for the optimization nor
for the post-processing propagation, because it is unable to accurately propagate rapidly changing variables
and is therefore unsuitable for longitude targeting.

Table 3.11: Inputs for the Case C1 minimum-time executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust Off DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. On DEr ep [-] 4 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
m0 [kg] 2000.0 NP [-] 10D Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
Nar cs [-] 1 Ni ter [-] 1000 ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 350.0 CF [-] 0.6 Λt [deg] 0.0 ∗ (εΛ)ub [deg] 1.0
Isp [s] 2000.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 30 (t f )ub [day] 139.0 a0 [km] 24505.9 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 135.0 e0 [-] 0.725 We [-] 1.0
O Astep [day] n/a λub [-] 1.0×104 i0 [deg] 7.0 Wi [-] 1.0
Avg. scheme n/a λlb [-] -1.0×104 Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable n/a ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] On date [UTC] n/a WΛ [-] 0.1

∗ This value was modified to 90.0, 180.0, 200.0, 240.0 deg for the consecutive executions presented in Table 3.12.

Table 3.12: Outputs results from HOSTEP for Case C1.

Time-of-flight Revolutions Propellant mass Geodetic Longitude
t f [days] Nr ev [-] mpr op [kg] Λ f [deg]

138.22 197 213.10 0.07
138.08 197 212.89 90.01
138.94 197 214.22 180.00
138.80 195 214.01 200.01
138.21 194 213.10 240.11

The results presented in Table 3.12 demonstrate that longitude targeting with an accuracy of 1.0 deg is possi-
ble with an expense of less than one day in TOF. The average computational time was 116 min per single DE
repetition for all simulations, under the same conditions and using the hardware and software described in
Appendix E. This constitutes a percentage increase of 49% relative to the 72 and 84 min that were required
for solutions #1 and #2 of the Case A1 unperturbed GTO-GEO minimum-TOF trajectory, both of which also
employed 1000 DE iterations. Nonetheless, this is to be expected due to the additional computational cost of
optimizing the final geodetic longitude.

Furthermore, the previous results demonstrate the robust convergence of HOSTEP to a varied range of target
geodetic longitudes. Is it known that the indirect method implemented in IGEOR has convergence difficulties
to target values that are π rad away from the nominal final geodetic longitude. Additionally, it is also unable
to converge to a feasible solution for a range of longitudes Westwards of the nominal final value. The previous
results show that, conversely to IGEOR, HOSTEP can optimize in both West- and Eastwards directions without
noticeable convergence difficulties.

3.3.2. CASE C2: TIME-MINIMIZATION FOR REAL MISSION

Based on the previous promising results, a real mission with electric orbit raising was evaluated. The inputs
for this simulation are shown in Table 3.13. The launch date is omitted for confidentially reasons and eclipses
are thus neglected. This is a very interesting case because the indirect method implemented in IGEOR does
not converge to a feasible solution when targeting the final geodetic longitude. The trajectory is first optimized
with HOSTEP for minimum-time alone and, after narrowing down the TOF design space, it is optimized for
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minimum-time in combination with longitude targeting. The resulting optimized trajectory is then input into
GMV’s high fidelity EPTOS optimizer and the results are compared in Table 3.14.

Table 3.13: Inputs for the Case C2 minimum-time GTO-GEO trajectory with longitude targeting.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust Off DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. Off ∗ DEr ep [-] 4 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
m0 [kg] 3521.0 NP [-] 10D Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
Nar cs [-] 1 Ni ter [-] 500 ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 688.0 CF [-] 0.6 Λt [deg] 176.0 (εΛ)ub [deg] 1.0
Isp [s] 1736.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 30 (t f )ub [day] 130.0 a0 [km] 24468.54 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 120.0 e0 [-] 0.7230 We [-] 1.0
O Astep [day] n/a λub [-] 1.0×104 i0 [deg] 5.9996 Wi [-] 1.0
Avg. scheme n/a λlb [-] -1.0×104 Ω0 [deg] 335.4239 WΩ [-] 0.0
Avg. variable n/a ω0 [deg] 182.0293 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 14.6127 Wm [-] n/a
J2 perturb. [-] On date [UTC] n/a WΛ [-] 0.1

∗ The trajectory was first optimized without targeting the final geodetic longitude to narrow down (t f )ub and afterwards,
the presentedΛt was targeted.

Table 3.14: Comparison of the Case C2 results from HOSTEP and EPTOS.

Time-of-flight Propellant mass Geodetic Longitude
t f [days] mpr op [kg] Λ f [deg]

HOSTEP 123.29 430.48 176.3
EPTOS 123.31 430.52 176.0

The previous results demonstrate that HOSTEP is capable of solving a trajectory for which IGEOR is unable
to converge to a feasible solution. It should be clarified that thanks to the fact that HOSTEP is fully inte-
grated in GMV’s focussuite ®, EPTOS can easily intake and refine the trajectory from HOSTEP within just a
few clicks.

3.3.3. CASE C3: PROPELLANT-MINIMIZATION

To pursue a more realistic scenario, the author decided to optimize for a final geodetic longitude and simulta-
neously minimize the propellant expenditure. To be able to compare the results, this case evaluates the former
GTO-GEO transfer from Case B and variable thrust is employed to generate a Pareto front with respect to TOF
and propellant expenditure. The final geodetic longitude value is fixed at 28.5 deg East as this corresponds
to a highly desired orbital position for GEO communication satellites broadcasting over Europe [EUTELSAT,
2014]. The modified inputs when compared to Table 3.11 are namely: variable thrust “On”, Λt = 28.5 deg, and
Wm =1000.0. Additionally, the TOF is fixed at certain values to enhance the convergence rate of the DE op-
timization process. In Figure 3.9, the resulting solutions are compared with the Pareto front of the analytical
global optima for the unperturbed trajectory without longitude targeting produced using the indirect method
in [Sanchez and Campa, 2014]. The 2D projections of these trajectories are shown in Figure 3.10.
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Table 3.15: Inputs for the Case C3 minimum-propellant executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust On DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. On DEr ep [-] 3 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
m0 [kg] 2000.0 NP [-] 10D Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
Nar cs [-] 1 Ni ter [-] 1000 ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 350.0 CF [-] 0.6 Λt [deg] 28.5 (εΛ)ub [deg] 1.0
Isp [s] 2000.0 CR [-] 0.8 Wt [-] 0.0

nk [-] 30 (t f )ub [day] 150.01 ∗ a0 [km] 24505.9 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 149.99 ∗ e0 [-] 0.725 We [-] 1.0
O Astep [day] n/a λub [-] 1.0×104 i0 [deg] 7.0 Wi [-] 1.0
Avg. scheme n/a λlb [-] -1.0×104 Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable n/a ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] 1000.0
J2 perturb. [-] On date [UTC] n/a WΛ [-] 0.1

∗ The TOF upper and lower bounds were adjusted accordingly for the 175-, 200-, 225-, 250-, 300-day trajectories.

Figure 3.9: HOSTEP’s propellant-optimal solutions for the GTO-GEO J2-perturbed transfer to the 28.5 deg East orbital
position relative to the Pareto front for the unperturbed GTO-GEO trajectory without longitude targeting from [Sanchez

and Campa, 2014].

The results presented in Figure 3.9 demonstrate that the novel hybrid methodology is capable of simultane-
ously optimizing for a target geodetic longitude and minimizing the propellant expenditure. The performance
of the DE algorithm is worse that that observed in Case B, as one of the three executions for some of the TOF
evaluated yields a propellant mass that exceeds 220 kg. Moreover, the results show a propellant difference of up
to about 20 kg relative to the unperturbed results without longitude targeting. One possibility is that the phys-
ical phenomena involved in this trajectory act against the optimization objective. However, the previous tests
for longitude targeting in combination with TOF-minimization did not exhibit large differences with the untar-
geted case. Additionally, the 2D projections of the 150- and 175- day solutions are very similar to the behaviour
observed in Case B. Therefore, this may indicate there is a deficiency in the current optimization process and
HOSTEP cannot converge to a better trajectory within the allowed number of iterations. Another possibility is
that the lack of scaling in the co-state vector is hindering the convergence of the the DE algorithm. However,
since this was not a problem for the minimum-propellant optimization in Case B, the author first recommends
upgrading the DE algorithm to a more sophisticated algorithm and then re-evaluating this case. Nonetheless,
the results demonstrate that the hybrid methodology is capable of targeting the final geodetic longitude while
simultaneously minimizing the mass, and therefore it is superior to the indirect method in IGEOR.



46 3. RESULTS

Figure 3.10: Illustration of HOSTEP’s optimal (a) Case A2 trajectory and optimal Case C3 trajectories and coasting regions
(depicted in grey) for a TOF of (b) 150, (c) 175, and (d) 200 days.

3.4. CASE D: MINIMUM-TIME LEO-GEO TRAJECTORY

This case is aimed at testing the capabilities of HOSTEP in a LEO-GEO transfer and to compare the results
with those of the previous hybrid methodology presented in [Kluever, 2010; Boudestijn, 2014]. To resemble the
reference data as much as possible, his trajectory does not incorporate the J2 perturbation but it does includes
eclipses. The engine switch-off threshold is set to 80.0% of nominal sunlight and the launch date is set to
2000/01/01 12:00:00.000. However, it should be clarified that the reference data do not reveal the sunlight
threshold when the engine is switched off and, more importantly, the launch hour was not specified in [Kluever,
2010]. Continuous thrust is assumed outside of Earth shadow regions and the optimization is performed using
CI. The TOF upper boundary was gradually increased until the optimization converged to a final orbit that
satisfied the requirements. The list of input parameters is shown in Table 3.17, the illustration of the optimal
trajectory over time is illustrated in Figure 3.11, and the main results are presented in Table 3.16.

Table 3.16: Comparison of the Case D results for HOSTEP and reference indirect methodologies.

Time-of-flight Revolutions Propellant mass
t f [days] Nr ev [-] mpr op [kg]

HOSTEP 218.0 1410 193.38
[Boudestijn, 2014] 209.49 n/a 224.67
[Kluever, 2010] 199.0 n/a 192.96

Table 3.16 shows a large TOF discrepancy with the solution from [Kluever, 2010], which may be caused by the
lack precise launch hour information. This is because the Earth shadow regions may dramatically increase the
required TOF if the eclipses take place near apogee. Given the large required computational effort, the author
deemed inefficient to iteratively vary the launch hour. Therefore, the author claims that the comparison with
this reference results is inconclusive.
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Table 3.17: Inputs for the Case D executions.

Comp. mode Optimization DE mode Random at [km] 42165.0 (εa)ub [km] 100.0
Var. thrust Off DV source n/a et [-] 1.0×10−12 (εe )ub [-] 0.01
Long. target. Off DEr ep [-] 5 it [deg] 1.0×10−12 (εi )ub [deg] 0.1
m0 [kg] 1200.0 NP [-] 10D Ωt [deg] 1.0×10−12 (εΩ)ub [deg] 1.0
Nar cs [-] 1 Ni ter [-] 1000 ωt [deg] 1.0×10−12 (εω)ub [deg] 1.0
T [mN] 401.706 CF [-] 0.6 Λt [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 3300.0 CR [-] 0.8 Wt [-] 0.1

nk [-] 30 (t f )ub [day] 218.0 a0 [km] 6927.0 Wa [-] 1.0
Propag. scheme CI (t f )l b [day] 199.0 e0 [-] 0.0 We [-] 1.0
O Astep [day] 4.0 λub [-] 500.0 i0 [deg] 28.5 Wi [-] 1.0
Avg. scheme Trapez. λlb [-] -500.0 Ω0 [deg] 1.0×10−12 WΩ [-] 0.0
Avg. variable Time ω0 [deg] 1.0×10−12 Wω [-] 0.0
Eclipse thr. [%] 80.0 Launch 2000/01/01 θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] 12:00:00.000 WΛ [-] n/a

Figure 3.11: Illustration of the optimized Case D trajectory.

Although the optimal trajectory from HOSTEP also deviates considerably from the result of [Boudestijn, 2014],
the trajectory projections show a large resemblance with the reference results. The trajectory behaves as ex-
pected, with a gradual combination of orbit raising and decreasing inclination. In Figure 3.12, the evolution of
the main orbital elements is illustrated with greater detail and shows a similar pattern to the optimal solution
from [Boudestijn, 2014]. The author believes HOSTEP’s results are superior because the elements’ evolution
in the reference data exhibit a small difficulty in circularizing the orbit in the last few days. The fact that the
later research by Gomez [2015] identified several rooms for improvement in the implementation of Boudestijn
[2014] leads the author to believe this reference result may be flawed.

Another potential reason for the TOF discrepancy with both reference results may be a difference in the employ-
ment of the Earth shadow model. HOSTEP’s simulations switched off the engine when the received sunlight
was below 80% below nominal, and this could be different in the reference solutions since this detail is not
clarified. If the threshold employed in [Kluever, 2010; Boudestijn, 2014] was smaller, this would lead to a longer
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TOF without necessarily an increment in mass expenditure, because thrust is continuous outside shadow re-
gions. Nonetheless, the author acknowledges that this may only partially account for the discrepancy and the
previous arguments likely have a stronger impact.

Figure 3.12: Evolution of the main Keplerian elements for the Case D optimal trajectory.

Figure 3.12 also shows the thrust steering angle evolution from HOSTEP’s solution, which exhibits a very similar
pattern to that obtained by Boudestijn [2014]. This also includes the dip in both steering angles at around t =60
days. The reason why it exhibits step increments is due to the discretization of every revolution with a certain
number of integration steps. This was verified through visual inspection for a large number of integration steps,
nk =1000, and the dip pattern was indeed more continuous.

Lastly, Figure 3.12 also shows that the OA approximation is prone to large errors in this type of trajectory. A
closer inspection at Table 3.18 confirms that the OA errors are well above the requirements previously specified
in Table 2.1. This is not entirely surprising because, the orbital period in LEO is much shorter than that of
GTO, for which the OA error was already large. Together with longer exposure to continuous thrusting in the
LEO-GEO transfer, this leads to an OA error in a and i which is unacceptable even for a priori optimization.
It is possible that an O Astep of 2 days would significantly reduce this error, but it would also mitigate the gain
in computational cost and therefore the incentive to employ OA. It is therefore recommended to implement a
variable step propagator in future versions of HOSTEP, see section 5.2, as it would allow for using a small step
at lower altitudes and increase it as the orbital period becomes longer.

Table 3.18: Comparison of the final CI and OA values for the optimal Case D trajectory.

State variable CI result OA result OA error

Semi-major axis a [km] 42166.803 38259.854 -3906.948
Eccentricity e [-] 0.00033 0.0098 0.0095
Inclination i [deg] 0.0057 0.8932 0.8875
Total mass m [kg] 1006.615 1008.094 1.479



4
DISCUSSION

“Life is 10 percent what happens and 90 percent of how one reacts to it.” – Charles Swindoll.

Whereas the previous chapter presents the optimization results and the corresponding factual observations,
this chapter provides the author’s interpretations and own opinion about the novel hybrid methodology. The
discussion is divided between the scientific aspects of the research presented in this thesis and the practical
aspects of the HOSTEP software tool. The former aims to answer the research questions from chapter 1 and
evaluates the effectiveness of the coasting mechanism and longitude targeting, as well as the suitability of the
methodology for a priori optimization and its performance relative to that of analytical indirect methods. The
latter focuses on the performance of the DE algorithm, the objective function, the Orbital Averaging (OA) tech-
nique, the versatility of HOSTEP and its practical suitability.

4.1. PERFORMANCE OF THE COASTING MECHANISM

The research presented in this thesis has demonstrated that the hybrid method employed in [Kluever, 2010;
Boudestijn, 2014; Gomez, 2015] can be successfully modified to incorporate a mechanism for coasting (non-
thrusting) arcs. The most suitable means to achieve this was originally deemed to be through the use of a thrust
switching function adapted from the research presented in Gao and Kluever [2004]. The results from HOSTEP
confirm that this implementation can successfully model non-thrusting arcs and thus dramatically improve the
flexibility of former hybrid methodologies, which were ill-conditioned for propellant-minimization problems
due to the constant thrust assumption.

The switching function strategy has proven to be a very efficient technique to simulate non-thrusting arcs be-
cause it only requires the addition of two optimization variables for any trajectory discretized with a single co-
state arc, Nar c = 1. Additionally, its performance is very effective and yields a highly reliable accuracy, because
the minimum-propellant GTO-GEO optimal trajectories hereby presented coincide with high fidelity with the
analytical Pareto front developed in [Sanchez and Campa, 2014] with an indirect method. The performance of
this mechanism has exceeded the author’s expectations as a single co-state arc is already sufficient to reach a
high accuracy relative to the analytical global optima.

Moreover, the hybrid method did not experience greater convergence difficulties compared to the minimum-
propellant problem, beyond the two additional design variables and the fact that the design space had to be
increased to allow λm to be significantly larger than the other co-states – this is further elaborated in the DE
discussion, see subsection 4.4.1. This constitutes strong evidence in favour of the hybrid methodology because
the indirect method from [Sanchez and Campa, 2014] that is implemented in IGEOR [Montealegre-Avila, 2015]
has been identified to suffer considerable difficulties in approaching propellant-minimization. Whereas the in-
direct method requires a computationally expensive homotopy process to gradually proceed from a fixed-time
minimum-TOF solution to the minimum propellant trajectory, which does not always converge to a feasible
solution, HOSTEP is capable of finding a feasible solution in all cases tested with only the convergence rate
being affected. To enhance the convergence rate, the TOF was fixed at certain values in HOSTEP’s executions,
which was also deemed to be more insightful and immediate than varying the weights. However, the author
strongly believes that the TOF needs not be fixed and the reason why HOSTEP otherwise required longer com-
putational times is largely due to the limitations of the DE implemented and the lack of co-state scaling, which
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can be overcome in future HOSTEP versions. Furthermore, the hybrid method is fundamentally better suited
for complex optimization cases because the convergence of direct methods is know to be more robust than
indirect methods [Betts, 1998], which is particularly of interest for varied combinations of optimization objec-
tives, orbital perturbations, and operational constraints.

4.2. PERFORMANCE OF LONGITUDE TARGETING

The results of HOSTEP demonstrate that targeting the final geodetic longitude is possible with the hybrid
method and, in fact, superior to the indirect implementation of IGEOR [Montealegre-Avila, 2015] in terms of
the convergence radius. The targeting of the final geodetic longitude is accomplished through the numeri-
cal optimization process by incorporating an additional weighted term in the optimization objective function.
This strategy was deemed superior to the alteration of the Hamiltonian because that would require the addi-
tion of new co-states to be optimized, hence increasing the optimization cost. This constitutes yet a further
leap for the hybrid methodology as it enables the solving of rendez-vous problems, which is a critical func-
tionality for the positioning of GEO satellites. It worth clarifying that this is only possible thanks to HOSTEP’s
versatility as it allows for employing either CI or OA in the optimization process, of which the latter is unable
to accurately propagate the rapidly-changing variable. The previous hybrid studies employed OA throughout
the optimization process and only made use of CI for the precise final propagation of the optimized trajectory
[Kluever and Pierson, 1995; Boudestijn, 2014; Gomez, 2015], rendering the methodology unable to optimize for
a target geodetic longitude due to the unacceptable OA error for the true anomaly.

For the case of longitude targeting, the hybrid methodology is superior to the indirect method implemented in
IGEOR [Montealegre-Avila, 2015] because only the convergence rate is affected by the additional optimization
objective, while the convergence radius remains stable even for large geodetic longitude changes. Conversely,
the complex analytical nature of the indirect method renders IGEOR ill-conditioned for certain target longitude
ranges, for which it is not able to converge to a solution that satisfies the Two-Point-Boundary-Value-Problem
(TPBVP). Nonetheless, this is not surprising because it is widely known that direct methods exhibit a greater
convergence radius in comparison to analytical indirect approaches [Betts, 1998]. The heritage from IGEOR
showed that the indirect method adapted from [Sanchez and Campa, 2014] experiences considerable conver-
gence difficulties for out-of-phase longitude changes and finds no feasible solution at all for a certain range
of longitudes Westwards from the unconstrained solution. Even when disregarding eclipses and altitude con-
straints, the relatively simple combination of J2-perturbations and the objectives of minimizing t f and target-
ing Λ f proved to be too challenging. Conversely, the direct nature of the hybrid method allowed it to excel at
this task and solve a diverse range of longitude targeting scenarios, including those that IGEOR is incapable of
converging for. Moreover, the author is strongly confident that it can incorporate broader orbital perturbations,
more operational constraints, and further optimization objectives with only the computational time being af-
fected. Therefore, the author claims that the hybrid methodology is superior to the current indirect method
implementation in IGEOR for this type of optimization problem.

The results of the hybrid method for the combination of longitude targeting and propellant minimization per-
formed worse than expected. When compared with the Pareto front of the unperturbed GTO-GEO trajectory
without longitude target, the results of HOSTEP show more propellant expensive solutions for all TOF values
evaluated. The fact that the propellant increases by up to 20 kg for the J2-perturbed trajectory with longitude
targeting leads the author to believe there is room for improvement in the formulation. It is possible that the
J2 acceleration opposes the motion of the spacecraft through the trajectory for this particular combination of
inputs. Nonetheless, the author recommends reevaluating this case after implementing a more advanced DE
algorithm and enhanced scaling for the co-state vector. Nonetheless, HOSTEP’s performance for this objective
combination exceeds by far the capabilities of IGEOR. This is because either propellant minimization or longi-
tude targeting on its own is challenging for the indirect method in IGEOR and the combination does not lead
to any feasible solution.

4.3. RELATIVE PERFORMANCE FOR A PRIORI OPTIMIZATION

The question whether the hybrid method in HOSTEP or the indirect method in IGEOR is better suited for a
priori optimization remains highly debatable and depends on the problem type under consideration. As usual,
both the hybrid and indirect method have their corresponding strengths and weaknesses, and the following
discussion is thus divided into the different problem types.

For the task of TOF-minimization, HOSTEP shows room for improvement because it required excessive com-
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putational times. The upper and lower TOF boundaries used for HOSTEP’s Case A executions results were set
very close to the TOF-optimal solution from IGEOR because HOSTEP’s DE process had difficulties, in terms of
convergence rate, reaching the optimal solution when the allowed TOF range was too large. Nonetheless, this
may not a flaw of the hybrid methodology because the previous studies presented in [Kluever, 2010; Boudes-
tijn, 2014; Gomez, 2015] did not exhibit this behaviour. Instead, the author believes this weakness stems from
the limitations of the DE algorithm employed, which is further elaborated in subsection 4.4.1. For the quick
generation of minimum-TOF a priori trajectories, IGEOR is superior to the current version of HOSTEP because
the latter undergoes a much longer computational time and sometimes exhibits difficulties reaching the global
optimum for very large design spaces. Nonetheless, this is to be expected for simple minimum-TOF prob-
lems because IGEOR features less optimization variables. In terms of accuracy, however, the direct nature of
HOSTEP allows it simulate a broader combination of orbital perturbations and operational constraints, which
are not included in the analytical indirect formulation of IGEOR and may perhaps be not possible to capture at
all with an indirect method due to the analytical nature. Any change to the formulation of the TPBVP analyt-
ically derived for IGEOR, such as the inclusion of third-body perturbations, requires re-deriving the complete
TPVBP – i.e. the Hamiltonian first and second derivatives with respect to all controls and all state variables,
the co-state EOM, as well as the transversality conditions – which is a very labour intensive task that cannot be
succeeded without a profound knowledge of the subject. Therefore, IGEOR is a wiser choice for minimum-time
problems with limited perturbations inclusion – only eclipses or J2 perturbation – and limited operational con-
straints – only minimum perigee height and maximum apogee height – because any further addition cannot
be modelled without developing a new IGEOR. Conversely, for minimum-TOF applications that require a full
near-Earth perturbation model or additional operational constraints, HOSTEP is more suitable because these
implementations can be easily incorporated in the hybrid method without altering the optimal control laws.
Nonetheless, the author recommends first calculating an a priori optimal TOF with IGEOR and then refine the
solution through HOSTEP, at least until HOSTEP’s DE algorithm is further improved. Additionally, for the spe-
cific application of GTO-GEO trajectories, the OA technique proved to be efficient and as accurate as required
for a priori optimization and is therefore the recommended choice for HOSTEP, unless longitude targeting is
required, because it significantly reduces the computational load.

In propellant-minimization problems, the novel hybrid optimization method proved to be very effective thanks
to the coasting mechanism. Moreover, the OA technique enabled a faster generation of solutions for fixed-time
GTO-GEO transfers with different TOF. The resulting accuracy is comparable with that of the indirect method
implemented in IGEOR and it only experienced difficulties in reaching the global optima for large TOF solu-
tions. It is known that IGEOR requires an excessive computational time as compared to TOF-minimization
because the homotopy process gradually optimizes for propellant-minimization from a specified minimum-
time solution. The fact that a minimum-time solution is required to begin with, that the optimization process
is significantly elongated, and that IGEOR has difficulties converging to a feasible solution for some trajecto-
ries [Montealegre-Avila, personal communication], renders it inferior to HOSTEP. Furthermore, it is a certainty
that the direct nature of HOSTEP allows it to incorporate more perturbations or constraints, making it a more
suitable choice also for complex problems, and the author is confident that it can cope with these without its
convergence radius being significantly affected.

For the task of longitude targeting, the hybrid method is noticeably superior to the indirect formulation in
IGEOR. First of all, this application requires a high level of accuracy with respect to orbital perturbations, which
cannot be modelled in IGEOR and are generally not included in indirect methods [Geffroy and Epenoy, 1997;
Jiang et al., 2012; Sanchez and Campa, 2014]. Therefore, the hybrid method is fundamentally better suited
since the indirect formulation would otherwise need to be analytically re-derived to incorporate these further
perturbations. Regarding the convergence performance, HOSTEP is also better suited, because there was no
convergence difficulties encountered for a varied set problems with different final geodetic longitudes. Con-
versely, IGEOR exhibits limited convergence when targeting the final geodetic longitude and cannot find fea-
sible solutions for a range of final longitude values Westwards of the nominal final longitude. Nonetheless,
the current version of HOSTEP has difficulties in locating the global optimum for a large design space in TOF.
Therefore, the author recommends first solving the minimum-time problem in IGEOR without longitude tar-
geting and then solving for a certain final geodetic longitude with HOSTEP, with the computed TOF from IGEOR
as an indication to establish the TOF bounds. For the combination of longitude targeting and propellant min-
imization, HOSTEP is undoubtedly better suited because the indirect method implemented in IGEOR cannot
converge to feasible solutions for this problem type. Furthermore, the author believes HOSTEP’s performance
may be improved through enhancing the DE algorithm and scaling the co-states of the mass and the semi-latus
rectum.
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4.4. THE HOSTEP SOFTWARE TOOL

This section provides the author’s discussion on topics that do not constitute a scientific question but are rather
related to the practical performance of the developed hybrid methodology. The discussion first evaluates the
DE algorithm, followed by the propagation technique and the practical suitability of HOSTEP.

4.4.1. PERFORMANCE OF THE DE ALGORITHM

The author believes that the that the reason why HOSTEP sometimes required extensive computational times
is due to the combination of inefficiencies in the DE algorithm extracted from [Wang, 2010] and the rigidity
of the objective function. Nonetheless, the objective function shows great resemblance with that employed
in the indirect method from [Sanchez and Campa, 2014] so the author believes the weakness lies in the DE
algorithm. Additionally, the objective function was specifically engineered towards the requirement of lowering
the fine-tuning effort required for the user, which remains a goal of interest for future developments. It should
be clarified, nonetheless, that the DE algorithm currently implemented was a good choice for this thesis thanks
to its simplicity, its readily availability in Fortran90 and, more importantly, because the computational time
was not a primary requirement. In future work, however, the author recommends investigating superior DE
implementations such as the self-adaptive DE algorithm available in ESA’s PaGMO toolbox [Biscani et al., 2010].
The PaGMO toolbox may be a great choice to lower the computational optimization load because it employs
parallel computing, and it is free for both personal and commercial use. Moreover, the PaGMO optimization
algorithms incorporate many recent developments and state-of-the-art findings in the field of optimization
that are not incorporated in HOSTEP’s DE algorithm since it is based on the original publication from [Storn
and Price, 1997]. Additionally, the self-adaptive DE algorithm available in PaGMO would allows the user to
input a range of CF and CR values instead of specific values, and this would further diminish the fine-tuning
effort by the end user.

Another limitation of the current DE algorithm is its stopping criteria, namely a maximum iteration boundary
and a minimum residual value. For practical purposes it would be desirable to have more sophisticated stop-
ping criteria that take into account the convergence rate of the solutions. For example, the DE optimization
sometimes converges prematurely to a local optimum far from the global solution and it would be desirable
to re-initiate the optimization process if such behaviour is detected. Additionally, the minimum residual value
condition currently implemented is an interesting option when information about the global optimum is avail-
able, because the user can calculate the residual value of the desired solution and set the stopping condition
accordingly. This is not the case in practical applications, however, because the user may not previously know
the global optimum, meaning that HOSTEP’s DE process may only terminate upon the maximum number
of iterations. Ideally, the DE algorithm should terminate the optimization process if the solution has con-
verged to a plateau with minute improvements to the objective function. These functionalities are available in
PaGMO [Biscani et al., 2010] and support the recommendation in favour of its use for future HOSTEP develop-
ments.

4.4.2. PERFORMANCE OF THE PROPAGATION TECHNIQUE

The OA technique adapted from [Boudestijn, 2014] has yielded great performance for the GTO-GEO transfers
and enabled a quicker generation of the Pareto front in section 3.2. Nonetheless, the OA error observed dur-
ing the validation tests A1-A3, as well as the OA error exhibited for the LEO-GEO trajectory, are too large even
for a priori optimization. The author believes there may be room for improvement in the current OA imple-
mentation of HOSTEP because the results presented in [Boudestijn, 2014] may have achieved a higher level
of accuracy, though it is not clearly documented. This was acceptable for this thesis because OA was not a
critical functionality for the feasibility study of coasting arcs and the error remained close to the requirement
imposed for a priori optimization. Nonetheless, the author recommends further investigating the OA imple-
mentation for future HOSTEP versions because it proved to be very effective for practical applications and it
may be improved.

Additionally, the author recommends upgrading the underlying fixed-step RK4 propagation method to a variable-
step propagator. The RK4 was a good choice for this thesis thanks to its simple implementation, because its
accuracy was identified to be acceptable for a priori optimization [Jimenez-Lluva, 2016], and because the com-
putational time was not a primary requirement. Although not necessarily more accurate, a variable-step prop-
agation scheme would reduce the propagation computational cost and is therefore recommended for future
HOSTEP developments. The literature study preceding this thesis concluded that the RKF7(8) is the most suit-
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able variable-step integration scheme. Implementing a variable-step scheme is particularly interesting in com-
bination with OA, because it would decrease the OA error. The reason for this that a fixed O Astep yields larger
discrepancies at lower orbit altitudes, because as the orbital period grows, the number of revolutions decreases
with O Astep and the OA error accumulation thus decreases. In fact, the hybrid method with OA presented in
Gomez [2015] showed that the required O Astep grows gradually over time when using an RK4(5) integration
scheme.

4.4.3. PRACTICAL SUITABILITY OF HOSTEP

HOSTEP constitutes an early commercial prototype whose future versions are envisioned to yield a new com-
mercial software solution. The architecture of HOSTEP was designed towards this long term vision and offers
a flexible platform for the future versions of the HOSTEP commercial prototype. The modular architecture de-
scribed in Appendix B significantly eases the maintenance and enhancement of the software tool. Thanks to
this design and the GUI, the future HOSTEP improvements can be completed rather easily, potentially within
short internships, as the developer needs not understand the complexity of the complete project in detail but
rather only the work-flow within the certain modules. For example, further orbital perturbations – such as
luni-solar third-body attractions, third-order Earth oblateness perturbations, or atmospheric drag – can be in-
corporated through adjustments only in the “Force Model” and “Auxiliary Operations” modules. Similarly, the
multi-objective optimization can be expanded to incorporate the experienced radiation fluence by solely mod-
ifying the objective function within the “Evaluator” module and including the radiation model in the “Auxiliary
Operations” module.

Additionally, HOSTEP’s GUI is fully integrated in focussuite ® to enable the automatic interaction with other
GMV tools within the flight dynamics software product. This enabled a very fast validation throughout the code
development process because the outputs of HOSTEP can be directly read by tools such as EVENTS, PROPAG,
and EPTOS. This was also designed towards commercial long terms to enable not only a priori optimization
during the mission planning phase, but also real-time monitoring and correction of the low-thrust trajectory
with HOSTEP. In fact, the author believes that HOSTEP’s ability to model a full near-Earth perturbations model
together with operational constraints handling and multi-objective optimization makes HOSTEP also a poten-
tial future replacement of GMV’s high-fidelity, EPTOS, because it allows for a priori optimization through OA as
well as precise calculations with CI.





5
CONCLUSIONS AND RECOMMENDATIONS

“Whatever the mind of man can conceive and believe, it can achieve.” – Napoleon Hill.

A novel hybrid methodology has been developed to answer the research question,

“To what extent can a hybrid combination of indirect and direct optimization methods using a
multi-objective technique and a mechanism for coasting arcs yield superior optimal solutions than
the analytical indirect method implemented in [Montealegre-Avila, 2015], specifically for minimum-
propellant optimization problems of low-thrust many-revolution trajectories, while simultaneously
allowing for targeting of the final geodetic longitude?”

The indirect nature of the method efficiently reduces the number of optimization variables and its direct coun-
terpart provides an unmatchable flexibility to handle different problems without the need to re-derive the an-
alytical control laws. The method is demonstrated through a high-level software prototype, enabling a con-
figurable force and perturbations model as well as operational constraints handling and multi-objective op-
timization. The system’s versatility is exploited through a modular software architecture, a flexible work-flow
logic, and an intuitive interface, allowing the user to evaluate the optimization and simulation of minimum-
time and minimum-propellant trajectories as well as targeting of the final geodetic longitude.

5.1. CONCLUSIONS

The purpose of this thesis was to bridge the weakness of former hybrid methodologies through the inclusion
of a coasting mechanism to improve its performance relative to indirect approaches. The results presented in
this thesis constitute a quantum leap for the hybrid optimization methodology in low-thrust many-revolution
trajectory optimization. The original approach was already shown in [Kluever, 2010; Boudestijn, 2014] to be
competitive with indirect methods for minimum-time trajectories, and its potential for multi-objective opti-
mization was demonstrated in [Gomez, 2015]. Additionally, Gomez [2015] revealed the unmatchable flexibility
of the hybrid methodology, as he incorporated a full near-Earth perturbations model in the software previously
developed by Boudestijn [2014] without the need to adjust the mathematical foundation of the approach nor
the optimal control laws, which is far from possible using analytical indirect methods. This thesis has repro-
duced the former hybrid methodology, with the exception of some orbital perturbations, and dramatically ex-
tended its functionality to address the last shortcomings that rendered it inferior to indirect approaches.

The first enhancement is the implementation of the coasting mechanism, which allows the optimizer to evalu-
ate the efficiency of switching the engine off at every integration step and thus optimize for non-thrusting arcs
as well. This constitutes a major advancement because all previous hybrid studies assumed constant-thrust
outside of the Earth shadow regions and, consequently, all results were far from the analytical global optima for
propellant-minimization trajectories. The coasting mechanism employed is based on a thrust switching func-
tion similar to that employed in [Gao and Kluever, 2004] for interplanetary trajectories. This strategy proved to
be very efficient because it only requires two additional optimization variables to accurately model the coasting
arcs over the entire trajectory, for any problem type. Moreover, it is also shown to be very effective because, even
with a single co-state arc, the results for the minimum-propellant GTO-GEO trajectories are very close to the
Pareto front produced with the indirect method in [Sanchez and Campa, 2014]. Therefore, this demonstrates
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that, despite the simplified co-state dynamics, the hybrid methodology can successfully optimize trajectories
with non-continuous thrust and match the accuracy of indirect methods for propellant-minimization prob-
lems.

The other weakness of the former hybrid methodologies was the inability to solve rendez-vous problems. This
is because the Orbital Averaging (OA) embedded in the optimization process sacrificed the accuracy of the
rapidly changing variable for a significantly lower computational load. Whereas most applications do not im-
pose a requirement on the satellite’s position within the final orbit, the success of some other applications rely
critically on the satellite achieving not only an accurate final orbit but also a specific final geodetic longitude.
This has been addressed by implementing both OA and Continuous Integration (CI) in the optimization pro-
cess, allowing for an accurate monitoring of all state parameters when employing CI, though at an increased
computational expense. Moreover, the deviation from the desired final geodetic longitude is included in the
objective function to allow for a precise targeting without modifying the mathematical formulation nor the
optimal control laws. This development breaches through the last weakness of the original hybrid method.
The resulting hybrid method is able to optimize for longitude-targeting without jeopardizing the convergence
radius, which was shown to be the major limitation of the indirect method developed in [Montealegre-Avila,
2015] and is a well-known drawback of indirect approaches in general [Betts, 1998]. Based on an optimal J2-
perturbed GTO-GEO transfer, the hybrid method is employed to target a varied range of geodetic longitude in
both East- and Westwards directions. The results show that longitude targeting can be accomplished through
TOF increments within a day and reveal the robust convergence of the hybrid method. More importantly, it is
shown that accurate longitude targeting can be accomplished while simultaneously minimizing the propellant
expenditure, thus demonstrating the superiority of the novel hybrid methodology over the former hybrid ap-
proaches [Gomez, 2015; Boudestijn, 2014; Kluever, 2010] and the indirect methods [Montealegre-Avila, 2015;
Sanchez and Campa, 2014; Geffroy and Epenoy, 1997] hereby evaluated.

The new implementation of the hybrid methodology from scratch enabled several other adjustments to the
original approach that also enhanced its performance for practical applications. The most prominent is the
new objective function, which was engineered to ease the fine-tuning effort required for the user. Whereas
the former hybrid methods required an iterative tuning of the multi-objective optimization weights, the new
objective function successfully scales the target orbit constraint such that the weights of the state elements
can simply be set to unity, or zero for the elements that need not be targeted. Furthermore, the methodology
is implemented in a high-level commercial prototype referred to as Hybrid Optimization Software for Trajec-
tories with Electric Propulsion (HOSTEP). This prototype is integrated in GMV’s toolbox for the launch and
early operations phase, focusleop ®, which is available in GMV’s commercial flight dynamics software solu-
tion focussuite ®. HOSTEP not only presents an efficient approach to optimize for propellant-minimization
but also an effective method to target the final geodetic longitude. Both features are critical capabilities to en-
able affordable scientific renvez-vous missions as well as outstanding market opportunities for all-electric GEO
communication satellites. Particularly in the latter case, it is important to enable longitude targeting through-
out the electric orbit raising phase because it prevents the detrimental need for reallocation and the significant
operation costs involved when the satellite is not in view of the operator’s own stations.

This thesis shows that the novel hybrid methodology can match the accuracy of the analytical global optima
computed with indirect methods. This is demonstrated both for minimum-time and minimum-propellant tra-
jectories. Its direct nature makes it significantly more flexible than the indirect approach because the orbital
perturbations and operational constraints can be easily modified without the need to analytically re-derive
the Two-Point-Boundary-Value-Problem. Moreover, it is particularly superior to indirect methods for the com-
plex optimization problem of low-thrust many-revolution trajectories because its convergence radius is not
affected by the number of simultaneous optimization objectives, orbital perturbations considered or imposed
constraints. The indirect method presented in [Montealegre-Avila, 2015] exhibited convergence difficulties
in optimizing minimum-time GTO-GEO transfers with longitude-targeting along with eclipse and J2 pertur-
bations. The results hereby presented show that the hybrid method excels at this task and can simultaneously
optimize for propellant-minimization as well as incorporate further orbital perturbations and operational con-
straints without its convergence radius being affected.

5.2. RECOMMENDATIONS

Now that the true potential of the hybrid methodology has been demonstrated for the GTO(7.0◦)-GEO trans-
fer, the author recommends to test a wider scope of applications. To begin with, it is advised to demonstrate
the optimization of orbital transfers to GEO from Super-Synchronous-Transfer-Orbits (SSTO) as well as from
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GTO(28.5◦), which is becoming an increasingly employed transfer since the Falcon9 may launch from Florida
[SpaceX, 2015]. Additionally, the author recommends to evaluate some of the proposed low-thrust transfers
to Medium-Earth-Orbit (MEO) for the all-electric Galileo Second Generation (GSG) mission, of which GMV is
the prime contractor for the ground segment and may vastly benefit from this capability. Additionally, it is rec-
ommended to perform a shadowing campaign of one of the all-electric satellites recently launched by GMV’s
customers. The latter would allow to further enhance HOSTEP’s commercial suitability by studying the devia-
tion of the actual trajectory over time and may help identify further room for improvement. The demonstration
of complex trajectories, such as Molniya eccentric orbits, is also recommended because HOSTEP could also be
a useful resource to GMV’s scientific projects which generally feature non-conventional scenarios.

To enhance the computational effort, improve the stopping criteria of the optimization process, and decrease
the fine-tuning user effort even further, the author recommends upgrading the DE algorithm to the self-adaptive
DE available in PaGMO. This open source multi-optimization software is freely available for both personal and
commercial use, and offers a variety of global heuristic optimization methods. This alternative allows the user
to input a range of CF and CR values which are also optimized, and to select more sophisticated stopping crite-
ria than waiting for the maximum number of iterations [Biscani et al., 2010]. In particular, the Generalized Is-
land Model (GIM) setup of the DE algorithm is recommended mainly because: it allows for parallel computing
using different optimization algorithms and would significantly lower the computational load; the interaction
of parallel populations would further prevent premature convergence to local optima; and the underlying for-
mulation is beneficial to metaheuristic processes due to the vast amount of function evaluations involved [Izzo
et al., 2012]. Furthermore, this toolbox was employed by Gomez [2015] for low-thrust optimization, and he
further recommends employing the homogeneous DE settings, allowing migration and an archipelago of four
islands. Lastly, the author also recommends to scale the Hamiltonian co-states of the element p and the mass
m to create a co-state vector that varies homogeneously. Thus, it is advised to employ λp p instead of λp and
λmm−1 instead ofλm . Having implemented these enhancements to the methodology, it is recommended to re-
evaluate the J2-perturbed GTO-GEO transfer with longitude targeting from Case C3 and demonstrate whether
the observed 20 kg increment relative to the unperturbed case without longitude targeting has been caused by
deficiencies in the current optimization process or by the physical phenomena involved.

To decrease the computational load required by HOSTEP during the trajectory simulation process, the imple-
mentation of a variable-step propagator is advised, namely the RKF7(8) integration scheme. This is particularly
interesting in combination with OA because the constant O Astep proved to be relatively inefficient. Particularly
in the LEO-GTO hereby evaluated, the OA error led to unacceptable approximation errors because a constant
step of 4.0 days was too large for the early revolutions. As the orbital period increases, the O Astep may be in-
creased to maintain a similar number of revolutions, hence decreasing the propagation effort without jeopar-
dizing the approximation accuracy. Another alternative would be to modify the work-flow of the OA algorithm
so that it automatically adjusts the O Astep depending on the instantaneous orbital period.

To further enhance the applicability of HOSTEP, the author recommends extending the forces model to incor-
porate a configurable full near-Earth perturbation model. It should be clarified that this was not needed for
the a priori optimization prototype hereby developed but it is interesting for HOSTEP to become a commer-
cial product. In particular, the author’s advice is to include: luni-solar third-body attractions, because they
significantly affect the inclination of GEO satellites; a solar radiation pressure model, because it creates an
important perturbation force on GEO satellites with such large solar panels required for EP; a model of at-
mospheric perturbations, because a satellite in GTO may experience a considerable deceleration due to drag
near perigee, and third-order Earth oblateness perturbations, because Gomez [2015] demonstrated that their
effect is significant for high-precision optimization of Earth-based low-thrust trajectories. Moreover, the au-
thor recommends implementing NASA’s AP9 radiation model to quantify the experienced radiation fluence by
the spacecraft. Nonetheless, the experience with GMV’s customers is that operators of all-electric satellites are
generally not interested in minimizing the exposure to radiation because the improvements are too small and
not worth the computational effort and the platform should be designed to withstand it in any case.

To increase HOSTEP’s suitability for commercial applications, the author recommends implementing further
operational constraints as a function of the platform specifications. For example, a maximum slew rate con-
straint can be implemented to limit the direction rate of change of the thrust vector. This may be based on the
specification of the thruster assembly if it features a steering mechanism or on the maximum achievable slew
rate of the Attitude Determination and Control System (ADCS) subsystem. Moreover, it is advised to limit the
thrust capacity over time based on the depth of discharge of the batteries and the solar cell degradation over
time, which could be based on empirical data or a radiation fluence model.
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A
ANALYTICAL OCP DERIVATION

This Appendix provides a thorough explanation of how the optimal control laws were derived from the Hamil-
tonian equation. These derivations follow from optimal control theory, which is described in the literature
study report that precedes this thesis [Jimenez-Lluva, 2016] and more thoroughly explained in well established
books such as [Bryson and Ho, 1975; Pontryagin, 1986]. As explained in subsection 2.4.1, the Hamiltonian of
the OCP is as follows:

H=λp
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+λ f
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(A.1)

which can be expanded by substituting the EOM, Equation 2.17 to Equation 2.21, from section 2.2:
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It should be noted that the EOM substituted above only feature the contribution of the thrust force. Should one
desire to include orbital perturbation terms in the EOM, the result of the upcoming derivations would remain
unaffected. This is because these additional terms are not a function of the control parameters and would
disappear in the differentiation process.

The first order optimality conditions, also known as the Karush-Kuhn-Tucher (KKT) conditions, state that the
first derivative of the Hamiltonian with respect to the control variables – T , α, and β – must be zero at a sin-
gular point [Kuhn and Tucker, 2013]. Additionally, the Legendre-Clebsch (LC) condition states that the sec-
ond derivative must be positive for an minimum solution [Bryson and Ho, 1975]. The optimal control law
thus entails three derivations: the optimal yaw and pitch steering angles, as well as the optimal thrust magni-
tude.

A.1. OPTIMAL THRUST YAW STEERING ANGLE

To begin with, the KKT condition is applied to the first order Hamiltonian derivative with respect to α:
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where the constant terms may be replaced by the following auxiliary variables:
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Dividing both sides of Equation A.3 by cosα and rearranging yields:
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From the trigonometric definition of the tangent in a triangle, the following may be concluded:

Figure A.1: Trigonometric relationship.
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Additionally, the Legendre-Clebsch condition states that the second order derivative of the Hamiltonian must
be positive [Pontryagin, 1986] to guarantee that the solution is a minimum point:
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First, the positive alternative of Equation A.9 is substituted in Equation A.10:
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which cannot be true since the square of any sum of numbers is always positive. Conversely, substituting the
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negative alternative of Equation A.9 in Equation A.10 and following the same steps yields the following:(
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which always satisfies the Legendre-Clebsch condition. Therefore, the optimal yaw steering is defined by:
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Although unnecessary, the yaw steering angle can be calculated using the relationship α= atan2(sinα,cosα),
because the steering angles range from −90◦ to 90◦. It is worth recalling that the thrust vector is defined as

uRSW = aT
[
sinαcosβ cosαcosβ sinβ

]T
, rendering this additional step inefficient.

A.2. OPTIMAL THRUST PITCH STEERING ANGLE

The KKT optimality conditions are now applied to calculate the optimal pitch steering angle β. The first deriva-
tive of the Hamiltonian with respect to beta is equated to zero and yields:
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(A.17)

where α=α∗ is assumed and the constant terms may be replaced by the following auxiliary variables:

Λ
β
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√
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Λ
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√
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√
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Λ
β
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√
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1

w
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√
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√
p

µ

g

w

(
j sinL−k cosL

)
Λ
β
g ,3 =λg

√
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√
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√
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(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

It should be clarified that the square root terms have not been removed here because these constant terms will
be re-used later in the optimal thrust magnitude derivation, where the square root terms do not cancel out.
Substituting these constants in Equation A.17, dividing by cosβ, and rearranging leads to:
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tanβ∗ =
−Λβf ,3 +Λ

β
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β
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β
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Λ
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β
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β
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(A.23)

Using the trigonometric relationship in Figure A.1, this implies the following potential solutions:
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(A.24)

(A.25)

To ensure a minimum solution, the second derivative must be positive:

∂2H
∂β2 =−Λβp cosβ∗−Λβf ,1 cosβ∗−Λβf ,2 cosβ∗+Λβf ,3 sinβ∗

+Λβg ,1 cosβ∗−Λβg ,2 cosβ∗−Λβg ,3 sinβ∗−Λβj sinβ∗−Λβk sinβ∗ > 0 (A.26)

Substituting the positive variant of Equation A.24 and Equation A.25 in Equation A.26 and removing the com-
mon denominators yields:
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(A.27)

(A.28)

which can never be satisfied because the sum of two squares is always positive. On the other hand, substituting
the negative variant of Equation A.24 and Equation A.25 in Equation A.26 and simplifying yields:
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which always satisfies the KKT optimality condition. Therefore, the optimal thrust pitch steering is:
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(A.30)

(A.31)

A.3. OPTIMAL THRUST MAGNITUDE

The most promising strategy to accomplish this was identified in [Gao and Kluever, 2004] and the correspond-
ing control law is derived below, using MEE instead of Keplerian elements.
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(A.32)

(A.33)

Since the Hamiltonian is linearly dependent on T , a switching function is defined by St = ∂H
∂T is introduced to

determine the optimal conditions. The problem may yield a bang-bang control with respect to control param-
eter T or it may yield a singular control problem if T can exhibit a value between the upper and lower bounds
[Pontryagin, 1986]:

T =


Tmax , if St < 0

0, if St > 0

0 < T < Tmax , if St = 0 and Ṡt = 0 (A.34)

The necessary conditions for a singular arc to exist are St = 0 and Ṡt = 0 [Pontryagin, 1986], which is deemed
infeasible due to the numeric nature of the simulation. Moreover, singular arcs show a very limited duration
in practical application. Therefore, the author assumed a bang-bang control and neglected the potential third
condition.





B
HOSTEP SOFTWARE TOOL

This chapter describes the software tool developed in this thesis project. First, the main program files are briefly
described and the complete list of user options and input parameters is presented. Afterwards, the architecture
of the program is elaborated, followed with the work-flow logic analysis.

B.1. ALGORITHM ARCHITECTURE

In accordance with software engineering policies of GMV, the HOSTEP software tool was programmed follow-
ing a modular flow-down architecture. This architecture is show in Figure B.1. The reader should notice that
this diagram does not portray the flow of operations but rather aims to illustrate the dependencies of each mod-
ule. The operations flow and logic are illustrated in the next subsection through the work-flow diagram.

Figure B.1: HOSTEP algorithm architecture diagram.

The square boxes in Figure B.1 represent individual algorithm modules. Blue modules were developed from
scratch by the author. Green modules were readily available and validated by GMV, with only moderate mod-
ifications being required from the author. Lastly, peach-coloured modules were GMV libraries that the author
directly incorporated with almost no adjustments. Moreover, the two auxiliary libraries at the bottom that may
appear detached from the rest of the diagram represent the lowest hierarchical level modules, which are used
by almost all other modules of HOSTEP.

The main characteristic of such flow-down architecture is that the information of the intermediate parameter

69
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values throughout the computations shall flow only in the downward direction, thus ensuring only downwards
dependencies and no circular dependencies.

Moreover, the modular nature of the architecture is aimed at easing the potential adjustments throughout the
development process as well as the complexity of debugging campaigns. For example, incorporating an addi-
tional orbital perturbation would require adjusting only the Force Model module.

B.2. ALGORITHM WORK-FLOW

Whereas the previous section described the modular software architecture and its corresponding dependen-
cies, this section aims to provide an insight into the work-flow of the operations in HOSTEP. In Figure B.2 and
Figure B.3, the square boxes describe an action, the rhombuses indicate the name of the module, and the arrow
labels specify the name of the subroutine employed.

Figure B.2: HOSTEP algorithm overall work-flow diagram.

B.3. MAIN FILES

Upon every program execution there are several types of files that can be stored and later imported to repro-
duce a test case. These are the following:

• tkf and nif files: they define the GUI as well as the name, type, and description of all input parameters
and options. Every panel of the GUI is described by a nif file, that generates the corresponding dat file.

• dat files: these files contain the information of the input parameters and options of the GUI. They serve
as a means of storing the specifications of a certain test case, but are also necessary to feed the GUI inputs
to the HOro_ReadOptions module of the program.

• stdout file: this constitutes the standard output of the program. It is the file where the program write the
vital information such as execution messages, warnings, and errors. It may also contain information be-
longing to the individual sub-processes, the extent of which can be adjusted in the "Developer Options".
For example, the user may desire to print the main inputs and outputs of the Orbital Averaging process
and/or the intermediate information within the process. The latter may be resourceful for analyzing an
ill-conditioned test case.

• data files: these contain propagation data stored upon each program execution. The specification of the
data storage and its format is commanded by the HOro_WriteOutput module of the program.

• plt file: defines the data to be plotted in the graphs output tab, its formatting, and labels.
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Figure B.3: HOSTEP algorithm simulation work-flow diagram.

• cof file: defines the GUI and commands the execution. Identifies the nif files that are to appear in the
different tabs of the GUI, specifies the the dat files that store the corresponding information, and links
the computational outputs to the data files where they are stored.

B.4. INPUT PARAMETERS, COMPUTATIONAL MODES, AND POST-PROCESSING

OPTIONS

The GUI of HOSTEP features a broad range of input items such as parameters, computational modes, printing
options, and post-processing options. These are all described in Table B.1 and Table B.1.
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C
INPUTS AND OUTPUTS OF THE VALIDATION

TESTS

The main inputs for Tests A1-A3 are shown below in Table C.1. Moreover, in the "Developer’s options" tab of
the GUI, the option to propagate for a user-specified TOF was ticked and the corresponding value was set to
20.0 days. Additionally, the thrust debugging option was set to tangential, out-of-plane, and radial thrusting for
Tests A1, A2, and A3 respectively. The input vector of co-states is redundant because the algorithm overwrites
the optimal steering angles. To produce the different OA approximations, the values of nk and O Astep are
manually adjusted upon every execution.

Table C.1: Inputs for the Test A1 trajectory.

Comp. mode Simulation DE mode n/a at [km] n/a (εa)ub [km] n/a
Var. thrust Off DV source n/a et [-] n/a (εe )ub [-] n/a
Long. target. Off DEr ep [-] n/a it [deg] n/a (εi )ub [deg] n/a
Nar cs [-] 1 Ni ter [-] n/a ωt [deg] n/a (εω)ub [deg] n/a
m0 [kg] 2000.0 NP [-] n/a Ωt [deg] n/a (εΩ)ub [deg] n/a
T [mN] 350.0 CF [-] n/a Λ [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 2000.0 CR [-] n/a n/a Wt [-] n/a

nk [-] 40 (t f )ub [day] n/a a0 [km] 24505.9 Wa [-] n/a
Propag. scheme CI (t f )lb [day] n/a e0 [-] 0.725 We [-] n/a
O Astep [day] 4.0 λub [-] n/a i0 [deg] 7.0 Wi [-] n/a
Avg. scheme Trapez. λl b [-] n/a ω0 [deg] 1.0×10−12 Wω [-] n/a
Avg. variable Time Ω0 [deg] 1.0×10−12 WΩ [-] n/a
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

The main inputs and options employed for Test B are shown below in Table C.3, and the design vector for this
simulation is shown in Table C.2.

Table C.2: Design vector employed for the simulation in Test B.

t f [days] Node # λp [-] λ f [-] λg [-] λ j [-] λk [-]

218.000
1 -0.021195 -38.677447 42.482983 499.322515 -67.364508
2 -0.000078 24.905070 2.186083 499.380629 43.545684
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76 C. INPUTS AND OUTPUTS OF THE VALIDATION TESTS

Table C.3: Inputs for the Test B trajectory.

Comp. mode Simulation DE mode n/a at [km] n/a (εa)ub [km] n/a
Var. thrust Off DV source n/a et [-] n/a (εe )ub [-] n/a
Long. target. Off DEr ep [-] n/a it [deg] n/a (εi )ub [deg] n/a
Nar cs [-] 1 Ni ter [-] n/a ωt [deg] n/a (εω)ub [deg] n/a
m0 [kg] 1200.0 NP [-] n/a Ωt [deg] n/a (εΩ)ub [deg] n/a
T [mN] 401.706 CF [-] n/a Λ [deg] n/a (εΛ)ub [deg] n/a
Isp [s] 3300.0 CR [-] n/a n/a Wt [-] n/a

nk [-] 30 (t f )ub [day] n/a a0 [km] 6927.0 Wa [-] n/a
Propag. scheme CI (t f )lb [day] n/a e0 [-] 1.0×10−12 We [-] n/a
O Astep [day] 4.0 λub [-] n/a i0 [deg] 28.5 Wi [-] n/a
Avg. scheme Trapez. λl b [-] n/a ω0 [deg] 1.0×10−12 Wω [-] n/a
Avg. variable Time Ω0 [deg] 1.0×10−12 WΩ [-] n/a
Eclipse thr. [%] Off Launch θ0 [deg] 1.0×10−12 Wm [-] n/a
J2 perturb. [-] Off date [UTC] n/a WΛ [-] n/a

Figure C.1 shows the evolution of the Keplerian elements, propagated using CI for the J2-perturbed trajectory
in Test D. Note that, as expected, the J2 effect has no secular effect on the elements a, e, i , and θ.

Figure C.1: Variation of the orbital elements due to the J2 perturbing acceleration over a period of 20 days.



D
INPUTS AND OUTPUTS OF THE RESULT

CASES

This appendix provides additional data about the results cases. For Case A1, the comparison between the CI
and OA propagation of the four optimal trajectories is shown below in Table D.1 and Table D.2. Note that the
large errors for the Ω and ω are to be expected due to the singularities of Keplerian elements when e and i
approach zero values in the vicinity of GEO.

Table D.1: Comparison of the final CI and OA values for the Case A1 optimal trajectory.

Solution #1 Solution #2
State CI OA OA CI OA OA
variable result result error result result error

Semi-major axis a [km] 42165.923 42067.391 -98.533 42164.580 42195.336 30.756
Eccentricity e [-] 2.309E-5 0.011 0.011 1.453E-5 0.011 0.011
Inclination i [deg] 1.263E-3 0.244 0.229 1.685E-3 0.208 0.229
RAANΩ [deg] 308.022 184.321 -123.702 190.050 183.232 -6.818
Argument of perigee ω [deg] 6.131 177.674 171.544 314.267 176.242 -138.026
Total mass m [kg] 1786.186 1786.186 0.000 1787.301 1787.301 0.000

Table D.2: Comparison of the final CI and OA values for the Case A1 optimal trajectory.

Solution #3 Solution #4
State CI OA OA CI OA OA
variable result result error result result error

Semi-major axis a [km] 42164.877 42140.375 -24.502 42164.684 42132.457 -32.227
Eccentricity e [-] 1.129E-4 0.011 0.011 5.278E-4 0.012 0.012
Inclination i [deg] 2.928E-3 0.134 0.115 2.590E-4 0.161 0.172
RAANΩ [deg] 243.163 176.356 -66.807 359.932 179.221 -180.711
Argument of perigee ω [deg] 132.697 179.107 46.467 0.11459 180.081 179.966
Total mass m [kg] 1787.632 1787.632 0.000 1788.086 1788.086 0.000
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Furthermore, the convergence of the four solutions from HOSTEP for Case A1 is illustrated below in Figure D.1,
where the residual range is zoomed in for three different ranges of iteration numbers.

Figure D.1: Convergence of the 4 DE executions for Case A1, zoomed-in for three different ranges of iteration numbers.

Figure D.2 shows the comparison of HOSTEP’s optimal solution for the unperturbed and J2-perturbed GTO-
GEO trajectories from Case A1 and Case A2 respectively. Note that the only difference is a slight variation in the
evolution of the inclination.

Figure D.2: Comparison evolution of the main Keplerian elements – (a) semi-major axis, (b) eccentricity, (c) inclination,
and (d) apogee and perigee altitude – for the optimal Case A1, i.e. unperturbed, and Case A2, i.e. J2-perturbed, trajectories

computed with HOSTEP.
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Table D.3 shows the comparison between the CI and OA propagation of the HOSTEP’s optimal trajectory for
Case A2.

Table D.3: CI and OA results for the simulation of the optimal Case A2 trajectory computed with HOSTEP.

Keplerian element CI OA OA error

Semi-major axis a [km] 42161.18 42159.36 -1.823
Eccentricity e [-] 2.54E-4 7.07E-3 0.007
Inclination i [deg] 0.129 0.005 -0.124
RAANΩ [deg] 359.681 132.682 -226.998
Argument of perigee ω [deg] 345.010 227.899 -117.112
True anomaly θ [deg] 122.264 110.440 -11.825
Total mass m [kg] 1806.02 1805.71 -0.312

Figure D.4 shows the evolution of all Keplerian elements, propagated using CI and OA for the J2-perturbed GTO-
GEO trajectory calculated with HOSTEP for Case A2. Note that the RAAN remains close to 2π rad. Additionally,
it is important to notice that the divergence inΩ andω is caused by the singularities of Keplerian elements near
GEO.

Figure D.3: Evolution of the main Keplerian elements for the J2-perturbed GTO-GEO trajectory computed with HOSTEP
for Case A2.
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Figure D.4 shows the evolution of the Keplerian elements, propagated using CI and OA for the 150-days minimum-
propellant trajectory calculated with HOSTEP for Case B. Additionally, Table D.4 shows the comparison be-
tween the CI and OA terminal propagation values.

Figure D.4: Evolution of the main Keplerian elements for the 150-day minimum-propellant GTO-GEO trajectory
computed with HOSTEP.

Table D.4: CI and OA results for the simulation of the optimal trajectory the 150-day minimum-propellant GTO-GEO
trajectory computed with HOSTEP.

Keplerian element CI result OA result OA error

Semi-major axis a [km] 42161.18 42159.36 -1.823
Eccentricity e [-] 2.54E-4 7.07E-3 0.007
Inclination i [deg] 0.129 0.005 -0.124
RAANΩ [deg] 359.681 132.682 -226.998
Argument of perigee ω [deg] 345.010 227.899 -117.112
True anomaly θ [deg] 122.264 110.440 -11.825
Total mass m [kg] 1806.02 1805.71 -0.312
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Figure D.5 shows the evolution of the Keplerian elements, propagated using CI and OA for the 200-days minimum-
propellant trajectory calculated with HOSTEP for Case B. Moreover, Table D.5 shows the comparison between
the CI and OA terminal propagation values.

Figure D.5: Evolution of the main Keplerian elements for the 200-day minimum-propellant GTO-GEO trajectory
computed with HOSTEP.

Table D.5: CI and OA results for the simulation of the optimal trajectory the 200-day minimum-propellant GTO-GEO
trajectory computed with HOSTEP.

Keplerian element CI OA OA error

Semi-major axis a [km] 42064.756 42029.072 -35.684
Eccentricity e [-] 3.607E-3 7.511E-3 0.004
Inclination i [deg] 0.136 0.012 -0.124
RAANΩ [deg] 8.511 327.564 319.052
Argument of perigee ω [deg] 305.372 9.386 -295.986
True anomaly θ [deg] 113.328 57.959 -55.368
Total mass m [kg] 1834.385 1834.106 -0.279





E
SOFTWARE ENVIRONMENT

HOSTEP has been developed in this thesis from scratch using Fortran 90 ® as programming language. Com-
pared to newer programming languages, it remains highly robust and reliable, and is therefore still commonly
used in the aerospace industry such as the Flight Dynamics and Operations (FDO) division of GMV. All of the
results presented in this thesis have been obtained using the same computer, Intel Core i5-4590 CPU 3300 MHz
and 8.00 Gb RAM, under the same conditions with respect to processor load, etc.

HOSTEP is fully integrated in focusleop ® , which is the Launch and Early Operations Phase product available
in GMV’s FDO software solution focussuite ®. Hence, HOSTEP’s outputs can be directly input to the other
tools within focusleop ® , such as PROPAG and EVENTS which were employed for validation purposes. More
importantly, the low-thrust optimization tools EPTOS and IGEOR have been employed. Thorough details about
these tools may be found in [Corneliu et al., 2015] and [Montealegre-Avila, 2015]. Further information about
focussuite ® is available in the GMV website [GMV, 2006].

This report has been written using LATEX, along with the packages. Unless otherwise referenced, block dia-
grams and flowcharts were composed through Visio 2010 ®, whereas plots and graphs were created using
MATLAB 2014b ®. Figures that have not been referenced were created by the author using Microsoft Office
2013 ®.
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