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An increasing need for underground infrastructure in The Netherlands requires knowledge
about the behavior of construction in soft soils. In this contribution, attention is focused on
three-dimensional numerical simulation of construction works in soils, i.e. tunneling and
foundations. In order to perform such simulations, robust numerical tools are a first requirement.
The development of such numerical tools will be presented, as well as some typical three-
dimensional test cases such as a guided pipe-jacking and the leaning tower of Pisa.
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Introduction

The density of infrastructure is increasing dramatically almost everywhere in the world. This results
in construction works close to, or under already existing infrastructure. Obviously, damage to
already existing infrastructure needs to be avoided or kept to a minimum.

It is therefore of vital importance that knowledge is obtained about the strength and deformation
behavior of the surrounding soil. In contrast to most engineering materials in which adjustment of
mechanical properties and structural optimization lead to an optimal design, soil is hardly
susceptible to improvement of mechanical properties. At best, it is an extremely costly process.
Furthermore, areas of economic interest such as estuaries mostly contain soils which can be
characterized as extremely weak.

In the past decades, the finite element method has undoubtedly become the most popular tool for
the analysis of the strength and deformation behavior of structures. Due to the advent of powerful
computational hardware it has now become possible to combine realistic material descriptions for
soils with three-dimensional finite element analysis. However, several difficulties still exist.

The most obvious is the finite element modeling itself, i.e. a proper description of the geometry and
boundary conditions which both may change during the calculation process. Furthermore, the
interpretation and visualization of results can be difficult especially in a three-dimensional configu-
ration. In addition, three-dimensional finite element analysis puts stronger requirements on the
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stability of the numerical processes. Both the spatial discretization (the finite elements) and the
material description pose difficulties which mainly originate from a three-dimensional state of
stress and strain. Finally, three-dimensional analysis puts a strong requirement on hardware and
also on the experience of the user.

This study focuses on the nonlinear analysis of the strength and deformation behavior of soil
bodies. Firstly, the development of eight-noded brick elements which are able to simulate volume
preserving and dilatant/ contractant soil behavior will be shown. The issue of element locking will
be addressed and it will be shown that common solutions like the B-bar approach (Hughes 1980)
are unable to simulate dilatant/ contractant soil behavior. Furthermore, stability of the developed
elements will be addressed and their properties are demonstrated in elementary tests and in the
analysis of a square footing. Secondly, the Modified Cam-Clay model will be discussed and utilized
to simulate the construction of a guided pipe-jacking. Thirdly, a double-hardening model for the
behavior of sand will be presented. This model will be utilized for the simulation of the leaning
tower of Pisa. Both for the guided pipe-jacking and the leaning tower of Pisa emphasis is placed on
the performance of the developed elements.

A note on stress and strain definitions
For convenience in a finite element environment, the stress tensor g and the strain tensor ¢ are intro-

duced in a vector format as

T
O = [04x:0yy,0:2,05y,0y2,0,4] M

£ = [Eabyy 0264, 28,,.28,,]" @

in which the engineering shear strains have been utilized instead of the tensorial shear strains.
The hydrostatic pressure and the volumetric strain are defined as

P = (O + Oy + 0y;) &)

Exx + &y + Ex “@

in which “p” is the hydrostatic tensile component and &, is the dilatancy. Upon introduction of the
projection vector & = [1,1,1,0,0, 0]" one can define the deviatoric stresses and strains,

E=-0-pn 5
Y =¢-ie 6

The effective deviatoric stress is defined according to
q = J2'RE ; R = diag[1,1,1,2,2,2] @

The Lode angle 8is defined as
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Volumetric locking

A phenomenon frequently encountered in finite element analysis of mass structures is so-called
“volumetric locking”. This can be conceived as the inability of a discretized system to represent the
deformations of the underlying continuum imposed by the loading, the boundary conditions and
by the constitutive model. To state the problem in simple terms, we refer to the elementary element
patch of Figure 1. For simplicity we have selected simple, constant strain triangles and we have
adopted a plane-strain configuration, so that the out-of-plane strains are zero. Obviously, any
constitutive relation that makes the material incompressible, such as incompressible elasticity, or
Mises-Huber plasticity at fully developed plastic flow, constrains the movement of the right-upper
node to a horizontal line when applying this kinematic constraint to the right-lower element.
Similarly, the left-upper element constrains the possible displacement of this node to a vertical line,
as also indicated in Figure 1. Evidently, no displacements of the node are possible. This observation
is still valid when a large element patch is considered (cf. Hughes 1987). In that case, the deforma-
tions of each element are restrained by the boundary conditions imposed by their neighboring
elements. The result is that an excessively overstiff behavior is obtained in incompressible elasticity
while a severe overestimation of the collapse load is observed in elasto-plastic calculations, if a
proper limit load can be obtained at all. This phenomenon, which occurs particularly for low-order
finite elements in plane-strain, axisymmetric and three-dimensional configurations, is now well-
known in the literature and an abundance of possible solutions have been put forward. One of the
early solutions is the use of special arrangements of elements, such as the crossed triangular patches
(Nagtegaal et al. 1974), the use of reduced or selective integration (Zienkiewicz and Taylor 1989),
which is closely related to the B-bar approach of Hughes (1980), the independent interpolation of
displacements and pressures (Sussmann and Bathe 1987, Van den Bogert et al. 1991), where the
pressure degrees-of-freedom are usually condensed at element level, the mixed approaches, where
especially the Enhanced Assumed Strain concept of Simo and his co-workers has gained much
popularity, and finally the use of higher-order displacement models (Sloan and Randolph 1982,

de Borst 1982), which is maybe the “royal road”, an expensive, but very robust solution.

, S o P v fixed

Fig. 1. Locking of two three-nodel triangular elements for fully developed plastic flow.
While the phenomenon of “element locking” in isochoric deformations has received much attention

in the past, it has not been recognized at a large scale that dilatant or contractant plastic flow
imposes essentially the same kinematic constraint upon the elements. As will be argued below in a
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more rigorous manner, plastic dilatancy or contraction essentially imposes a pointwise relation
between the shear deformation and the volumetric deformation. For the constant strain elements of
Figure 1 this means that if the right-lower element is sheared, a volumetric strain must occur, and
the node can only translate along one of the dashed lines emanating from the node, where the
amount of uplift is governed by the angle of dilatancy y. Similarly, any shearing applied to the
other element also causes volumetric straining, and as a result the movements of the same node are
restricted to the other set of dashed lines. The conclusion is that, similar to the case of isochoric
deformations, which obviously is just a special case (y =0), no movement is allowed and no proper
collapse load can be obtained for ideal plasticity.

Because of the observed locking behavior in low-order elements, numerous improvements of such
elements by mixed methods have been put forward. Due to the strain-driven character of the
integration algorithms that arise from plasticity models, it is convenient to restrict the application of
mixed methods to so-called “assumed strain elements” in which the strain rate is interpolated
independently from the velocity. Examples of “assumed strain elements” are the B-bar method
(Hughes 1980) and the incompatible modes element (Wilson et al. 1971, Taylor et al. 1976). Recently,
Simo and Rifai (1990) have proposed the so-called “Enhanced Assumed Strain concept”. Herein, the
strain rates are assumed to be an additive decomposition of the strain rates following from
compatibility and an additional strain rate field.

The kinematic constraint imposed by dilatant/contractant plasticity

As has been argued before, dilatant/ contractant (and volume preserving) plastic flow imposes a
constraint upon the velocity field of a finite element. This is demonstrated by one of the most
frequently used yield criteria for soils and rocks, the over two centuries-old Coulomb criterion.
Expressed in terms of principal stresses, the Mohr-Coulomb yield function reads:

f = (03~ 01) + }(0s + 0y)sinp—ccos p ©)

with ¢ the angle of internal friction and ¢ the cohesion of the material. A typical feature of the Mohr-
Coulomb criterion is that the intermediate principal stress 0,, 0, <0, <0,, does not enter the yield
function. For an associative flow rule, where the plastic strain rate &¥ is derived by differentiating
the yield function f with respect to the stress tensor @, &¥ = A9f/20, with 1 a proportionality
factor, the above observation implies that there is no plastic straining in the direction of the inter-
mediate principal stress. This property is preserved if a non-associative flow rule is employed, such
that the plastic strain rate is obtained by assuming

o _ 108
s"-/laa (10)

with g a plastic potential function that resembles the yield function f.

g = 3(03—0,) + 3(03 + 0y) sin Y — constant (11)



with yan additional material constant, which is commonly named the angle of dilatancy.
Experiments show that the dilatancy angle y is usually significantly smaller than the angle of inter-
nal friction ¢ (y < ¢). For cohesionless materials, e.g., dry sands, this is a requirement that follows
from thermodynamical considerations (Vermeer and de Borst 1984). The angle of dilatancy controls
the amount of plastic volume change. Defining the volumetric plastic strain rate as

= g+8+8 (12)
and introducing the rate of plastic shear deformation

P =d-8 (13)
one can use eqs. (10) and (11) to derive that

& = YPsiny (14)

which shows that the angle of dilatancy y sets the ratio between the rate of plastic shear defor-
mation and the rate of plastic volume change. For y > 0 an irreversible increase of volume occurs,
while for y < 0 a decrease is predicted (plastic contraction). y = 0 is the special case of plastically
volume-preserving (isochoric) flow. The Tresca plasticity model with an associative flow rule is
obtained by setting ¢ = = 0 in egs. (9) and (11). This yield criterion is often employed to
characterize the mechanical behavior of metals and clays under undrained conditions.

At collapse, the magnitude of the elastic strain rate is negligible with respect to the magnitude of the
plastic strain rate. Hence, relation (14) carries over to the total strain rate and subsequently changes

into
& = ysiny (15)

which effectively imposes a kinematic constraint on the possible velocity field. It is emphasised that
this constraint condition applies irrespective of the value of , and that y = 0 (volume-preserving
plastic flow) is just a special case.

In computations, the Mohr-Coulomb and Tresca yield criteria pose some problems because of the
corners in the yield surface, which may deteriorate convergence of the Newton-Raphson procedure
at global level. Improper handling of the constitutive relation should not obscure the issue of
element locking and especially lack of robustness of the element formulation. Therefore, in the
forthcoming computations the Mohr-Coulomb and Tresca yield functions are approximated by the
smooth Drucker-Prager and Von Mises yield functions

f=q+ap-k (16)
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with “p” the first invariant of the stress tensor and “4” the effective deviatoric stress. In the
calculations presented the material parameters o and k are related to the angle of internal friction ¢

and the cohesion ¢ via

_ bsing _ bccos¢ 17
“3-smp M k=30 17

The Von Mises yield function is obtained for ¢ = 0, so that @ =0 and k = 2c. As with the Mohr-
Coulomb yield function a non-associative flow rule can be obtained, but now with “g” defined as

8 = 4+ Bp - constant (18)

and B a dilatancy factor which can be related to the angle of dilatacy y in a fashion similar to that
between « and the angle of internal friction ¢.

Locking for eight-noded brick elements

We choose the principal axes of the strain rate tensor to coincide with the local &, 7, {-coordinate
system of an element. For the Mohr-Coulomb yield function resembling plastic potential (11),
eq. (15) specializes as

(1-siny)é+ (1 +siny)g, + & = 0 (19)

for any cyclic permutation &, 7, {. Note that in this formulation only the normal strain rates are
involved. This is a direct consequence of a coinciding isoparametric and principal space combined
with the assumption of a Mohr-Coulomb plasticity model.

Fig.2.  Three-dimensional eight-noded brick with all nodes restrained except one.



We now consider an eight-noded brick element with all nodes restrained except one, Figure 2.

The compatible velocities are interpolated in a standard isoparametric fashion as
(én,f) = é(l +8)(1+ )1+ O
(&m0 = 1+ EA+ M+ O (20
Wm0 = 1+ EA+m(1+ Hwp

in which 4, 9, % are the nodal velocities. The normal strain rates are obtained by differentiation of
the velocities with respect to the isoparametric coordinates.

£ 1+n+ ¢+ n¢ 0 0 u
gl =3 0 1+ &+ 0+ EC 0 o @
£, 0 0 1+&+n+énl|w
Eqg. (21) can be written in a more compact form as
€ = Bu (22)
inwhich & = [&, &, &],u = [4,7,%) and
1+n+ ¢+ n¢ 0 0
B=; 0 1+E&+(+& 0 23)
0 0 1+&+n+ ¢
Substitution of eq. (21) into the kinematic constraint (19) gives, after ordering the terms with
coefficients constant, & n, §, &n, &6, n¢
(1-siny)u + (1 +siny) 0o+ w =0 (constant term)
&): (1+siny)o+w =0
(n): (1-siny)u+w =0
: (1-siny)u+ (1+siny)y = 0 24)

(&n): w=0
nf): (1 + siny)v
(8&): (1~siny)u

[
o o

Obviously, the only possible solution is (#, 9, %) = 0. In other words, the elements locks in volume-
preserving and in dilatant flow.

As a possible solution we consider the B-bar element (Hughes 1980). This element is locking-free
under volume-preserving conditions. Formulation of this element only requires a modification of
eq. (22)

& = Bu (25)
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and is therefore easy to implement in a general-purpose finite element code. For the element shown
in Figure 2 this leads to the following form for the normal strain rates

& 1+3(n+{+nd) HE+ L+ & -WE+n+ém) L4
g| = Bi=j| I+ el 143E+{+ED &+ ém ||o 26)
& S+ lrnd)  SE+LHED 1+3(E+n+En)||w

Substitution into the kinematic constraint (19) gives, after ordering the terms
with coefficients constant, £, 0, {, &n, £, ¢

(1-siny)u + (1 +siny) v+ w =0 (constant term)

(&): sinyo = 0

(m: —sinyi = 0

o: —sinyd + sinyv = 0

&) ~(1-siny)i-}(1+siny)v+3w = 0 (27)
nd): (A ~siny)i+3(1+siny)o-}w = 0

(&) +¥1-siny)u-Y1+siny)o-lw =0

which reveals that the B-bar element is not able to accommodate the kinematic constraint (19) for
(4, v, W)= (0,0,0) when y= 0. Hence, locking is expected in dilatant flow. However, it can be
observed from (27) that the B-bar element is indeed locking-free for y=0.

Elements with enhanced strain fields

Obviously, the application of the B-bar element does not solve the problem of element locking in
dilatant plastic flow. The kinematic constraint (19) which is imposed on the element configuration
entails (a): the definition of the shear strain ¥ which is generally dependent on the material model
and (b): an angle of dilatancy which is dependent on the material model and in most cases not
constant. A B-bar method for a non-locking element in dilatant plastic flow would therefore require
the material model to be incorporated into the definition of the strain-displacement relation. This
would destroy the modular structure of a general purpose finite element code and is therefore not
an elegant solution.

A possible solution would be to incorporate incompatible fields into the definition of the strain
rates. This method has been proposed by Simo and Rifai (1990) and is referred to as the “Enhanced
Assumed Strain concept”. The key point of this method is relaxation of the compatibility conditions.
As a result, the strain rates £ are discretized as

£ = Ba+ Ma (28)

in which 4 are the nodal velocities, B is the standard isoparametric discrete strain-displacement
operator, @ are the additional strain rate variables and M contains the shape functions for the addi-
tional strain rate variables. In order to ensure satisfaction of the patch test (Taylor et al. 1986), M has

to meet the requirement



IM dv = 0 (29)
v

Two other conditions which have to be satisfied when constructing the additional strain rate
interpolations (Simo and Rifai 1990) are: (i) the additional strain rate interpolations should be
linearly independent, and (ii) the additional strain rates have to be linearly independent from the
compatible strain rates.

The element stiffness matrix also includes the additional strain rate variables and is given by

[K g al _ |fa (30)
Y Qlla o
Because the strain rate variables @ do not have to be continuous across interelement boundaries,

they can be eliminated at element level so that only the compatible velocities 4 are present in the
global system of equations. The condensed system now attains the following format:

{K—I‘Q“Y }i = fo-rQ"'f, (31)

A rational way to formulate non-locking elements via the Enhanced Assumed Strain method is to
“enhance” each non-constant term in the deformation constraint resulting from a standard isopara-
metric eight-noded brick element c.f. eq. (24) with one additional degree-of-freedom

&): (1+siny)o+w = 0 +ay
m: (I-siny)i+w =0 +o
&) (1-siny)i+(1+siny)s = 0 +ig 32)
(&n): w =0 +0ty
nd): (1+siny)y =0 + 0l
(§&): (1-siny)a = 0 +l
The following “enhancements” to the normal strain rates of the element in Figure 2 have been
considered:
& ) [1+ n+ ¢+ né 0 0 [
g =Bu+Mas=; 0 1+E+L+EL 0 ol + (33a)
£, L 0 0 1+&+n+&n||w
r . I
E00]||0n E&n+0) 0 0 Q4
Ono0||ay* 0 né+ o) 0 &
00 &[0y 0 0 L(&+m] |

The resulting element will be referred to as the eas 6(a) element.
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& _ 1+n+ ¢+ n¢ 0 0 u
|g,| = Bu+Ma=; 0 1+E+C+EC 0 3|+ (33b)
& 0 0 1+&+n+énllw

E0O0||0| [EnELO|{Qs
0no0||&*|en 0 nellas
00 ¢]|as] |0 &ECng|a

The resulting element will be referred to as the £as 6(b) element.

& ) 1+n+ ¢+ n¢ 0 0 u
&) = Bu+Ma=} 0 1+E+C+EL 0 ol + {33¢c)

£, 0 0 1+&+n+én|w

0y

. s

§00(10al 1En&L 0 0 0 0Offg,

0n 0|+ 0 0 gnngo 0ff,

00¢||as] [0 0 0 0 &Cngl

&

1%

which will be referred to as the Eas 9 element (de Borst and Groen 1995).

The favorable properties of the developed elements are demonstrated with elementary tests with
the ideal plastic Drucker-Prager model on regular and distorted elements, Figure 3.

F,a F,a

Q

(a) (b)
Three-dimensional one-element test with roller support for volume preserving and dilatant plastic
Sflow. (a): Rectangular element. (b): Trapezoidal element.

Fig. 3.
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The adopted material parameters are a friction angle ¢ = 30° and a dilatancy angle y = 10°.
An incremental/ iterative Newton-Raphson strategy is applied to trace the equilibrium path.
The computed load-displacement curves are shown in Figure 4.

7r /, 7r
'
6 I s — H8 6
~= B-bar f
51 — EAS 6(a) 5t
o EAS 6(b) ananarene
L « EAS Y -t
of oI
~ ~— H8
w
3 | I .a33333080000800000000000000000000 0089002989982 w 3 ~ Bebar
) — EAS 6(a)
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Fig. 4.  Load-displacement curves for Drucker-Prager model w=10°. (a): Rectangular element of
Figure 3a. (b): Trapezotdal element of Figure 3b.

In Figure 4 we compare the standard eight-noded isoparametric brick element H8, the B-bar
element, the modified incompatible modes element Hm11 (Taylor et al. 1976), and the Eas 6(a),

EAs 6(b) and Eas 9 elements. It is observed that in addition to the well-known locking behavior of the
standard eight-noded isoparametric brick element H8, the B-bar element also exhibits locking
behavior which is even more pronounced. The modified incompatible modes element Hm11 also
exhibits locking behavior (see also Andelfinger and Ramm 1991) and is not able to converge in the
equilibrium-finding iterative procedure for the test depicted in Figure 3a, an issue that will be
elaborated in the next section. All the eas elements formulated in eq. (33) are locking free. It appears
that the £as 6(b) element gives a slightly higher yield plateau than the Eas 6(a) element.

Stability of mixed eight-noded bricks

Another problem that has been given less exposure in the literature than deserved is the danger that
plasticity-type constitutive relations cause spurious element behavior. For this purpose we consider
the element patch of Figure 5. Since the element stiffness vanishes upon ideal plastic behavior, the
degree-of-freedom & will be indeterminate since its value is solely dependent on the tangential
compliance, even when displacement control on the degree-of-freedom “# ” is applied.

The forthcoming discussion is restricted to the stability of a single element. Previously, element
instability has been observed by de Borst (1986) for plasticity type constitutive models and by de
Borst and Rots (1989) for cracking type constitutive models. When a constitutive operator becomes
singular this should cause a mechanism in a single finite element (otherwise the element exhibits
locking behavior). However, in addition to this mechanism, some elements exhibit mechanisms
which are physically unrealistic (spurious). Such spurious mechanisms will lead to either physically
unacceptable solutions or to divergence of the global (equilibrium-finding) iterative procedure.
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.7 F.u

Fig.5. A three-noded line element patch. When this patch is loaded into the ideal plastic regime,
the degree-of-freedom « is indeterminate due to a vanishing stiffness.

In non-associative plastic flow without hardening, the elasto-plastic tangential matrix reads:

T
o2 (34)
n om

D =D-

in which D is the elastic stress strain relation, n = gf/d0 is the normal to the yield surface and
m = Jg/d0 is the flow direction. This matrix is singular since m is an eigenvector associated with a
zero eigenvalue. This can be illustrated for the case of pure shear. In case of Von Mises or Tresca

plasticity the elasto-plastic stiffness matrix D reads:

1-v v v 0

er _ E v 1-v v 0 (35)
1+v)1-2v) v p 1-v0
0 0 0 0

which is singular due to a zero shear stiffness. This means that for any interpolation containing
additional shear strain rates, this state of stress cannot be represented due to indeterminacy of the
additional shear strain rates at the onset of plastic flow. The modified incompatible modes element
Hm11 is equipped with such independent shear strain rate interpolations (Andelfinger and Ramm
1991). Hence, this element will exhibit unstable behavior which is observed from Figure 4a.

As a further illustration we will consider the case of pure tension or compression. In ideal plasticity
the elasto-plastic tangential stiffness matrix has exactly one zero eigenvalue at smooth parts of the
yield surface as has been shown above. This must result in one zero eigenvalue on element level for
trilinear elements. Additional eigenvalues that arise at element level due to the additional strain
rates will result in spurious mechanisms, which are not resisted by surrounding elements.

An eigenvalue analysis has been performed on the element stiffness matrix for the respective eight-
noded brick formulations. The result is summarized in Table 1, which contains the number of zero
eigenvalues of the resulting element stiffness matrix after elimination of the additional strain rate
variables for an ideal plastic Mohr-Coulomb model with friction and dilatancy angles ranging from
0° to 30°.
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Table 1. Number of zero eigenvalues for different eight-noded three-dimensional formulations.
Pure tension Mohr-Coulomb ideal plasticity.

HS8 B-bar Hm11 EAS 6(a) EAS 6(b) EAS 9
Regular 1 1 4 1 1 X
Distorted 1 1 1 1 1 1

It is observed from Table 1 that the spurious mechanisms caused by adding Enhanced Assumed
Strain modes tend to vanish upon distortion of the element. The Hm11 element has three additional
zero eigenvalues for a rectangular configuration. For the Eas 9 element condensation (31) could not
even be performed. The reason is singularity of the submatrix Q, see Groen (1997).

Footing analysis to demonstrate element properties

The properties of the discussed eight-noded brick elements are now demonstrated via the
calculation of so-called “bearing capacity factors”. According to Terzaghi (1943), the limit load of a
foundation can be assumed as the superposition

go = cN.+gNg+ 73BN, (36)

In which g, is the ultimate pressure, “c” is the cohesion, “4” is the applied pressure, yis the soil’s
specific weight and “B” is the width of the foundation. N, N, N, are the “bearing capacity factors’
for cohesion, pressure loading and weight, respectively. Here, we will focus on the bearing capacity

factor for weight loading which can be expressed as

N, = 20 (37)

The applied material model is a Drucker-Prager plasticity model with a friction angle ¢ = 30° and a
dilatancy angle y = 10°. The elastic properties of the material are Poisson’s ratio v = 0.3 and Young's
modulus E = 10 GPa, which should be regarded as a dummy stiffness. The coefficient of lateral earth
pressure K, has been assumed 0.43. An incremental/ iterative Newton-Raphson strategy has been
applied to trace the equilibrium path. A square footing has been considered, Figure 6. The obtained
load-deformation curves for the different element formulations are shown in Figure 7.

It is observed that both the B-bar element and the standard eight-noded trilinear isoparametric
brick tend to overestimate N, substantially. As in the elementary test from Figure 3, the B-bar ele-
ment results in an even higher estimation of N, than the standard isoparametric brick. Furthermore,
itis observed that the £as 9 element and the modified incompatible modes element Hin11 diverge in
an early stage of the loading process. It appears the Eas 6(b) element performs better than the Eas
6(a) element since premature divergence was found for the latter element.
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Modeling of Clay

Modified Cam-Clay

The model which is discussed in this contribution belongs to the class of critical state models which
originates from the work of Roscoe and his co-workers at the University of Cambridge (Roscoe and
Schofield 1963, Schofield and Wroth 1968). The original idea was further developed by Roscoe and
Burland (1968) to the Modified Cam-Clay model, nowadays the most widely used elasto-plastic
model for the description of the mechanical behavior of clay.

The advantage of the Modified Cam-Clay model lies in its apparent simplicity and its capability to
represent (at least qualitatively) the strength and deformation properties of clay realistically.
Commonly observed properties such as an increasing stiffness as the material undergoes compres-
sion, hardening/ softening and contractancy/dilatancy behavior, and the tendency to eventually
reach a state in which the strength and volume become constant are all captured by the Modified
Cam-Clay model. Moreover, calibration of the model requires only a few conventional laboratory
tests.

The material description starts most conveniently with the hydrostatic components. The increasing
bulk stiffness for increasing compression is modeled by

p= —%é‘v = K& loading (38)
p=-L& = Ké, unloading (39)
K



A" and k" will be referred to as the “modified compression index” and the “modified swelling
inde:x”, respectively (Figure 8a). As unloading is assumed to be elastic eq. (39) can be expressed

using elastic components only

p=-Li = K& (40)
K

ln(*p) I \\_pc/ l

(a) )] ,
Fig. 8. Material description for Modified Cam-Clay. (a): Compressive behavior. (b): Yield function and
plastic potential.

For three-dimensional stress states also deviatoric components have to be specified. When eq. (40) is
taken as a point of departure the assumption of isotropy, together with a constant Poisson’s ratio o,
gives

G, = ’;‘ 1-2v (41)

The yield function is given by the expression

f=q+Mpp+p) (42)

in which p, is the pre-consolidation pressure, Figure 8b. Associative plasticity is assumed so that
eq. (42) also defines the plastic potential. Consequently, the plastic volumetric strain & is given by

& = igfp = AM*@2p +p.) 43)

The deviatoric plastic strain ¥” is given by

7° = 24 - 3iRE )
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Fig.9.  Drained triaxial compression p_, / p, < 2. The associative flow rule predicts contractancy. Hence,
eq. (46) predicts hardening. Eventually, monotonic loading leads to a stress ratio q/p = -M where
purely deviatoric ideal plastic flow is predicted.
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Fig. 10.  Drained triaxial compression p, [ p,>> 2. The associative flow rule predicts dilatancy. Hence, eq.
(46) predicts softening. Eventually, monotonic loading leads to a stress ratio g/p = -M where
purely deviatoric ideal plastic flow is predicted.

At this point it is convenient to define the isotropic Over-Consolidation Ratio (ocr,) which reflects
the relationship between the initial pre-consolidation pressure p_ and the current compressive
pressure —p

ocr, = B¢ (45)
P
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Combination of definition (45) with the plastic flow direction (43) leads to the observation that
when ocr,<2 contractancy is predicted while when ocr, > 2 dilatancy is predicted by eq. (43).
Hardening/softening is determined from combination of eq. (38) and eq. (40) and the condition that
during loading a stress point remains on the yield surface. This results in the following form for the

evolution of p,
Po_ & (46)
Pe A-x

Eq. (46) shows that contractancy leads to an increase of p, (hardening) and dilatancy leads to a
decrease p, (softening). This behavior is most conveniently illustrated with a conventional drained
triaxial compression test. The stress path in the Rendulic plane, which is representative for this test,
is shown in Figure 9 and Figure 10. It is observed that when the initial value of the Over-Consolida-
tion ratio is smaller than two (p.,/p, < 2) plastic contractancy and subsequently hardening behavior
is observed, Figure 9. If, on the other hand, the initial Over-Consolidation Ratio is significantly
larger than two (p_,/p, >> 2), plastic dilatancy and subsequently softening is predicted, Figure 10.
This leads to the observation that in the Modified Cam-~Clay model it is the Over-Consolidation
Ratio that is responsible for the hardening/softening and contractancy / dilatancy behavior rather
than the pre-consolidation pressure p,.

Figure 9 and Figure 10 show that for constant stress paths eventually a state is reached where purely
deviatoric flow is predicted. Subsequently, eq. (46) predicts ideal plastic flow. Such a state is called
the critical state and is identified by _

1-_m 47)
?

The Modified Cam-Clay model is most suitable for lightly over-consolidated clays, for which the
contractancy and hardening behavior are well predicted. A possible improvement which gives
more accurate predictions for the coefficient of lateral earth pressure K; = 0,/ 0, can be found in
Van Eekelen and Van den Berg (1994). For heavily over-consolidated clays, the prediction of the
material behavior is less accurate (Wood 1990). ‘

The Modified Cam-Clay model is integrated over a finite increment according to a fully implicit
Euler backward algorithm (Borja 1991) including consistent tangential operators.

Analysis of a guided pipe-jacking

In The Netherlands, the Drinking Water Service Company of the province of South Holland has
constructed a pipeline system of approximately 60 km using a guided pipe-jacking method.

The resulting surface settlements have been measured (Van den Broek et al. 1996). A three-
dimensional analysis with the Modified Cam-Clay model is utilized for the prediction of the surface
settlements.

Two top deposits have been modeled. The tunnel has a diameter of two meters and is located in the
lower deposit with its center at seven meters below the surface. The interface between the upper
deposit and the lower deposit is located two meters below the surface.
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For the upper deposit, a compression index A = 0.15 and a swelling index ¥ = 0.015 have been
assumed. For the lower deposit A = 015 and ¥ = 0.03 are adopted. Furthermore, M = 0.877, a
density of 15 kN/m?, an initial isotropic Over-Consolidation Ratio ocr,, = 1.1 and a Poisson’s ratio v
= 0.2 are adopted for both deposits. The computations have been performed with standard eight-
noded isoparametric elements, B-bar elements, and with the gas 6(b) element.

Two types of analysis have been performed: (a) drained analysis in which it is assumed that the soil
skeleton is completely responsible for the deformations ; (b) undrained analysis in which it is
assumed that the deformations are determined by parallel action of soil and water content. Under
undrained conditions the water content enforces a zero volume change upon the deformations, both

in the elastic and in the plastic regime.

removal soil & addition tunnel pregrouting loss & loss over TBM

Fig.11.  Deformations at the different phases of the loading process.

The calculation has been performed in three phases:

1. (drained, one step) The gravity load is applied. It has been assumed that the tunnel lining is
already present but has no weight yet. The tunne! lining has been assumed to be rigid.

The weight of the soil is modeled by a point-load downwards. Moreover, it is assumed that
the Tunnel Boring Machine is in-line with the tunnel lining. After the gravity load is
applied, the horizontal stresses are calculated with a coefficient of lateral earth pressure

Ky = o/0, = 06. .

2. (drained/undrained, four steps) The weight of the tunnel lining is applied simultaneously
with the removal of the weight of the soil in the tunnel in four steps. This has been simulated
by application of a net load [WEIGHT TUNNEL LINING - WEIGHT soiL] downwards. As the tunnel lining
is lighter than the removed soil this results in an uplift of the tunnel lining and Tunnel Boring
Machine.

3. (drained/undrained, twenty-five steps) Pregrouting loss around the tunnel lining is simulated
by contraction of the tunnel lining which has been assumed to be ten percent of the volume of
the tunnel. Loss due to the boring process is simulated by a contraction of seven percent of the
volume of the tunnel around the Tunnel Boring Machine (18m). The tunnel boring front has been
supported by an overburden pressure of 0.1 bar, typical for the guided pipe-jacking method.

Not all factors that influence the deformation have been taken into account, for instance consoli-

dation effects, the stiffness of tunnel lining and Tunnel Boring Machine and steering effects of the

Tunnel Boring Machine have not been considered. However, the primary objectives of this simula-

tion are: (a) to give at least a qualitative representation of the surface settlements; and (b) to investi-



gate the behavior of different eight-noded brick element formulations in a typical boundary value
problem.

The surface settlements after the removal of soil and addition of the tunnel lining under drained
conditions are displayed in Figure 12. The surface settlements resulting from the calculation with
pregrouting loss and loss over the Tunnel Boring Machine under drained conditions are displayed

in Figure 13.
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Fig.12.  Surface settlements after the removal of soil and addition of the tunnel lining for the drained
analysis. (a): Settlements parallel to the tunnel. (b): Settlements 22.5 m behind the front of the
Tunnel Boring Machine.
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Fig. 13.  Surface settlements resulting from pregrouting loss and loss over the Tunnel Boring Machine for

the drained analysis. (a): Settlements parallel to the tunnel. (b): Settlements 22.5 m behind the

front of the Tunnel Boring Machine.

The plastic strain distributions under drained conditions are shown in Figure 14. The surface settle-
ments after the removal of soil and addition of the tunnel lining under undrained conditions are
presented in Figure 15. The surface settlements resulting from the calculation with pregrouting loss
and loss over the Tunnel Boring Machine under undrained conditions are displayed in Figure 16.
The plastic strain distributions for the different element formulations under undrained conditions

are shown in Figure 17.
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Fig. 14.  Plastic strain distributions after pregrouting loss and loss around the Tunnel Boring Machine

under drained conditions. (a): Standard isoparametric eight-noded brick element. (b): B-bar

element. (c): EAs 6(b) element.
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Surface settlements after the removal of soil and addition of the tunnel lining for the

Fig. 15.

undrained analysis. (a): Settlements parallel to the tunnel. (b): Settlements 22.5 m behind

.the front of the Tunnel Boring Machine.
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Surface settlements resulting from pregrouting loss and loss over the Tunnel Boring Machine for
the undrained analysis. (a): Settlements parallel to the tunnel. (b): Settlements 22.5 m behind the
front of the Tunnel Boring Machine.

A comparison between Figures 1214 (drained conditions) and Figures 15-17 (undrained con-
ditions) shows that for drained conditions larger settlements are predicted. In case of the removal of
the soil and addition of the tunnel lining (phase 2, cf. Figures 12 and 15) the smaller surface

1072

1073

@

Fig. 17.

(®) ©

Plastic strain distributions after pregrouting loss and loss around the Tunnel Boring Machine

under undrained conditions. (a): Standard isoparametric eight-noded brick element. (b):
B-bar element. (c): Eas 6(b) element.
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settlements under undrained conditions are due to the fact that the water content acts parallel to the
soil skeleton and thus leads to an increased stiffness. In case of the contraction of the tunnel lining
and of the Tunnel Boring Machine (phase 3, cf. Figures 13 and 16) the smaller surface settlements
under undrained conditions can be attributed to the fact that the water content enforces volume
preserving deformations upon the soil skeleton. Since very lightly over-consolidated material has
been assumed drained conditions result in contractancy and consequently in larger surface settle-
ments. It can be observed from the computed surface settlements (Figures 12-13) as well as from the
plastic strain distributions (Figure 14) that the different element formulations do not show signifi-
cant differences under drained conditions. On the other hand, under undrained conditions severe
locking behavior is observed for the standard eight-noded brick element. This becomes apparent
both from the inability to represent a realistic surface settlement pattern (Figures 15~16) as well as
from a severe overestimation of the plastic strains (Figure 17).

Modeling of sand

A double-hardening model

While the Modified Cam-Clay model is able to capture a large number of phenomena that occur in
clayey soils with only a few parameters, it cannot describe typical phenomena that occur in sands
such as simultaneous hardening and dilatancy. A possible extension would be to assume that the
plastic behavior in shear is independent from the behavior in compression. This approach was first
suggested by Drucker et al. (1957) who suggested a spherical cap on the Drucker-Prager yield
surface. Later, Dimaggio and Sandler (1971), Lade (1977), Molenkamp (1980) and Vermeer (1980)
followed the same approach in which, in addition to shear failure, compressive deformations were
modeled by a cap. More recent models integrate the shear and compressive behavior into a single
surface (Desai 1980, Kim and Lade 1988, Lade and Kim 1988a, 1988b).

In this contribution, the plastic behavior in shear and in compression will be modeled indepen-
dently. This allows the formulation of a model which remains close to established concepts such as
Rowe’s stress-dilatancy theory (Rowe 1962) and the formulation of the compressive behavior simi-
lar to the Modified Cam-Clay model.

q
6sing
3-sing P
. VB
Gsiny 1
3-siny 1
=P
In(-p) Pe
(@) ()

Fig. 18.  Material description for the double-hardening model. (a): compressive behavior. (b): yield function
and plastic potential.



As in the Modified Cam-Clay model, an increasing bulk stiffness for increasing compression is

modeled by
p= —f,é‘, = K&  loading (48)
p = -L&, = Ké, unloading (49)

3

with A" the “modified compression index” and ¥ the “modified swelling index” (Figure 18a).
As unloading is assumed to be elastic eq. (49) can be expressed using elastic components only

p=-B& = K& (50)
K

When eq. (50) is taken as a point of departure, the assumption of isotropy, together with a constant
Poisson’s ratio o, gives the following expression for the tangent shear modulus G,

G, = g 1-2vp 1)

—— it on Mohr-Coutomb ¢=35°
——~ fit on Mohr-Coulomb ¢=15°
—— Drucker-Prager

Fig.19.  Yield function (52) in the deviatoric plane.

Shear failure is assumed to occur on a Drucker-Prager type failure surface

o= (Lpemseyy, oo 2
in which ¢ is the friction angle, and @ and n are parameters which include the effect of the Lode
angle ¢. A projection of the yield function (52) in the deviatoric plane is shown in Figure 19. Optimal
properties regarding convexity are obtained when n = -0.229 (Van Eekelen 1980). Convexity is then
retained for a < 0.7925, which corresponds to a fit through all the corners of the Mohr-Coulomb
criterion for a friction angle of 46.55°. Pastic flow on the shear failure surface (52) is assumed to be
non-associative and is determined by the Drucker-Prager plastic potential
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in which wis the dilatancy angle. This assumption of a Drucker-Prager plastic potential is
motivated by experimental results from Kim and Lade (1988) which indicate a plastic potential close
to a Drucker-Prager contour in the deviatoric plane.

During compaction, plastic straining is described by the compression cap

fo=p+Bg-pl (54)

where associative plasticity is assumed. In eq. (54), fis a shape parameter which is used to fit the
prediction of the coefficient of lateral earth pressure K, = 6,/ 6, (Van Langen 1991). p, is a measure
for the current degree of over-consolidation and can be determined from an isotropic Over-Consoli-
dation Ratio (ocr,) similar to the Modified Cam-Clay model

ocR, = -%f (55)

or alternatively, from an Over-Consolidation Ratio (ocr) which is based on the size of the cap (54)
and thus includes the effect of the effective deviatoric stress

OCR,, = P (56)

NP+ Bq’

The plastic strain rates are assumed to be an additive decomposition of plastic strain rates £} on the
shear failure surface (52) and plastic rates £ on the compression cap (54)

6% = &0+ €3 (57)

This leads to the following expression for the volumetric plastic strain rates

P _ '331 -a_f_z_ A Gsml[l A 58
&= 1179;+lzap = AlS—sinl[I*.zph (58)

and for the deviatoric plastic strain rates

P = 11‘.}% a‘f;—fg -k gRTﬁ + 13RE (59)

Friction hardening is assumed according to

sing = sing(y &) (60)
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in which y ¥ is defined as the effective deviatoric plastic strain on the failure surface
(Vermeer 1980) which is defined in a rate form

rie = JYIURY ! (61)

Eq. (61) leads to a convenient relationship between the rate of the plastic multiplier on the failure
surface A; and J}Eff

Ve = A (62)
Dilatancy is assumed to obey Rowe's stress-dilatancy theory in triaxial compression

. _ sing-sing,, 63
YT T singsing., ©3)
in which ¢, is identified as the so-called “friction angle at constant volume (Vermeer and de Borst
1984). The evolution of hardening on the cap (54) is derived from the loading function (48), eq. (50)
and the condition that during compressive loading a stress point is located on the cap (46).

This results in the following form for the evolution of p,

Pe | Bz (64)
Pe A-x

in which &, is the plastic volumetric strain rate on the cap.

The Modified Cam-Clay model is integrated over a finite increment according to a fully implicit
Euler backward algorithm (Borja 1991) which has been extended to three stress invariants
(Groen 1997). The algorithm is amenable to exact linearization, which enables the derivation of a

consistent tangential operator.

Analysis of the leaning tower of Pisa

The leaning tower of Pisa is a challenging problem in geomechanics. A three-dimensional numerical
simulation has been carried out in order to investigate the effect of the lead blocks that have been
applied on the high-side of the tower in 1993 in order to reduce the inclination.

It is not the objective of this calculation to give a quantitative representation of the deformations
under the tower. The geotechnical conditions as well as the loading conditions on the foundation of
the tower are simply too complicated. Moreover, the uncertainty in the constitutive parameters is
too large to give any realistic prediction of the true deformations that occur in the subsoil under the
tower. However, the three-dimensional character as well as the relatively clear classification of the
constitutive parameters makes the leaning tower of Pisa an excellent benchmark for assessment of
the performance of the adopted double-hardening model as well as for the performance of the
Enhanced Assumed Strain elements.

Calabresi et al. (1993) have performed triaxial tests on the soil deposits underneath the tower and
have proposed Modified Cam-Clay parameters for the clayey deposits and Mohr-Coulomb
frictional parameters for the sandy deposits. The material parameters proposed by Calabresi et al.
(1993) are adapted to the double-hardening model, Table 2.
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It is assumed that the respective friction angles do not change during the loading process.
The parameter o is adjusted such that a fit through all the corners of the Mohr-Coulomb yield
function is obtained for each deposit. Furthermore, a dilatancy angle y= 0 and a Poisson’s ratio

v = (.12 are assumed for all deposits.

The foundation of the tower is assumed to have a density p = 21.43 [kN/nm’], a Young’s modulus of
E =1.5x10°[ kPa ], a Poisson’s ratio v = 0.12 and a coefficient of lateral earth pressure K, = 0.92.
Alternatively, a set of material properties has been used with a linear elastic approximation for the

compressive behavior (Grashuis 1993), Table 3.

Table 2. Material properties for the respective deposits under the tower. The material parameters
proposed by Calabresi et al. (1993) are adapted to the double-hardening model.

depth [m] E [kPa) K r sin(¢) OCR K, pIkN/m?)

0-14 - 000486  0.0481 0.555 42 0.92 21.43

1454 - 0.00495 0.049 0.554 3.0 0.79 19.17

5.4-7.4 1,25x10* - - 0.559 - 0.45 15.40

7.4-17.8 - 0.014 0.107 0.446 1.35 0.69 18.49

17.8-22 ~ 0.0151 0.0722 0.479 1.8 0.67 19.64

22-24.4 1.8x10* - - 0.564 - 0.43 20.40

24.4-37 - 0.0106 0.0851 0.424 1.1 0.56 21.66

Table 3. Material properties for the respective deposits under the tower. The compressive indices
in Calabresi et al. (1993) are approximated by a linear elastic compressive stiffness based
on the inijtial stress state (Grashuis 1993).

depth [m] E [kPa sin(¢) K, pIkN/m]

0-14 3x10° 0.555 0.92 2143

14-54 3x10° 0.554 0.79 19.17

54-74 1.25%10* 0.559 0.45 15.40

74-178 8x10° 0.446 0.69 18.49

17.8-22 1.4x10* 0.479 0.67 19.64

22-24.4 1.8x10* 0.564 0.43 20.40

24.4-37 2.5x10* 0.424 0.56 21.66




Three different formulations for the eight-noded brick element are compared: the standard

isoparametric element H8, the B-bar element and the Eas 6(a) element.

The vertical stress state under the tower is initialized with the self-weight of the soil skeleton.

The horizontal stresses are then calculated with the coefficient of lateral earth pressure

Ky = 6,/0, . Drained conditions have been assumed (i.e. no influence of the ground water

on the deformation behavior). The loading history is simulated by three phases:

1. The weight of the tower is applied in twenty-nine steps under drained conditions.

2. The moment on the foundation due to the inclination of the tower is applied in twenty steps
under drained conditions.

3. The weight and the moment due to the lead-blocks are applied in eight steps. Both drained

conditions and undrained conditions are simulated.

() (d)

Fig. 20.  Incremental deformations for the material properties listed in Table 2. (a): After application of the
weight of the tower. (b): After application of the moment due to the inclination of the tower.
(c): After application of the lead-blocks on the high side of the tower under drained conditions.
(d): After application of the lead-blocks on the high side of the tower under undrained conditions.

Figure 20 shows the incremental deformations as a result of the loading history for the material
properties listed in Table 2. A salient feature of these material properties is that the application of
the lead blocks under drained conditions tends to increase the inclination of the tower, Figure 20c.
Figure 21 shows the applied moment versus the inclination of the tower. It is observed that the
material parameters listed in Table 2 give an inclination of approximately 1.2° while the simulation
with the material parameters listed in Table 3 gives a much softer response (an inclination of
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approximately 3.5°). It is also observed that the different formulations for the eight-noded brick
element do not show spectacular differences.

Figure 22 shows the Von Mises stress distributions after application of the lead blocks for the
different eight-noded brick element formulations under drained conditions for the material
properties listed in Table 2. Figure 23 shows the Von Mises stress distributions after application of
the lead blocks for the different eight-noded brick element formulations under undrained
conditions for the material properties listed in Table 3.

1.00 1.00
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0.95 0.95

0.90 0.90

/ Undrained
0.85 0.85

0.9 1.0 1.1 1.2 1.3 28 3.0 3.2 34
Inclination (degrees) Inclination {degrees)

@ ®)

Fig. 21. Moment versus inclination of the tower. (a): Utilizing the material parameters from Table 2.
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(b): Utilizing the material parameters from Table 3.
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Fig. 22.  Von Mises stress distributions after application of the lead blocks under drained conditions with
the material properties from Table 2. (a): standard isoparametric element. (b): B-bar element.
(c): £as 6(a) element.
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Fig. 23.  Von Mises stress distributions after application of the lead blocks under undrained conditions
with the material properties from Table 2. (a): standard isoparametric element. (b): B-bar element.

(c): £AS 6(a) element.

It is observed from Figure 22 and Figure 23 that the stress patterns obtained with the different
element types do not show spectacular differences. However, the stress patterns obtained with the
standard isoparametric element are somewhat oscillatory compared to the other element types,

especially in the undrained case.

Conclusions

The performance of low-order elements has been scrutinized in volume preserving and dilatant
plastic flow. The Enhanced Assumed Strain concept (Simo and Rifai 1990) has been adopted in
order to remedy the characteristic locking behavior. Elementary tests as well as a realistic boundary
value problem indicate the favorable properties of the proposed eight-noded bricks. All the
analytical considerations have been performed under the assumption of a Mohr-Coulomb plasticity
model in which the principal stress/ strain axes coincide with the isoparametric axes. However, it
has been demonstrated that volumetric locking can also be avoided for trapezoidal element shapes
and for a realistic boundary value problem. Also, it has been observed that the B-bar element, after
a initially weaker response, can exhibit an even stiffer response than the standard eight-noded

isoparametric brick in dilatant plastic flow.
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The Modified Cam-Clay model has been presented. An anaiysis of a guided pipe-jacking has been
performed to assess the performance of different eight-noded brick elements in combination with
the Modified Cam-Clay model under drained and undrained conditions. It has been observed that
the different element formulations do not give significant differences for this problem under
drained conditions. However, under undrained conditions the standard eight-noded isoparametric
brick element revealed pronounced locking behavior which followed from the observation of
unrealistic deformation patterns as well as from a significant overestimation of the plastic strains.
A double-hardening model has been presented for the behavior of sand including non-linear elastic
behavior similar to the Modified Cam-Clay model. The leaning tower of Pisa has been used as a
benchmark to assess the performance of the double-hardening model. A comparison between
different eight-noded brick element formulations has been given for this benchmark. An interesting
observation is that the parameters adopted here in combination with drained behavior yielded a
further inclination of the tower as a result of the application of the lead blocks.

Both the simulation of the guided pipe-jacking and of the leaning tower of Pisa were performed in a
reasonable number of steps (30-60) with a Newton-Raphson iterative scheme. This underlines the
applicability and performance of modern computational techniques such as described in Borja
(1991) to three-dimensional geotechnical applications. Also, from both simulations it has been
observed that the differences between the element formulations are minor in drained analysis. From
this it can be concluded that the difference between the element formulations only becomes signifi-
cant when the influence of the deformation constraint becomes sufficiently large. This is for instance
the case in undrained analysis where volume preserving conditions are present throughout the
computation or during calculation of collapse loads as has been exemplified by the determination of

bearing capacities of the square footing.
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