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H I G H L I G H T S

• We propose a deep learning methodology to detect and localize faults in LV grids.

• The method is generalizable and not limited by the number of sensors.

• It is the first method to localize high-impedance faults in LV grids.

• An analysis of the hindering factors is presented.

• Deep neural networks are shown to outperform other methods from the literature.

A R T I C L E I N F O
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A B S T R A C T

Power outages in electrical grids can have very negative economic and societal impacts rendering fault diagnosis
paramount to their secure and reliable operation. In this paper, deep neural networks are proposed for fault
detection and location in low-voltage smart distribution grids. Due to its key properties, the proposed method
solves some of the drawbacks of the existing literature methods, namely a method that: 1) is not limited by the
grid topology; 2) is branch-independent; 3) can localize faults even with limited data; 4) is the first to accurately
detect and localize high-impedance faults in the low-voltage distribution grid. The generalizability of the method
derives from the non-grid specific nature of the inputs that it requires, inputs that can be obtained from any grid.
To evaluate the proposed method, a real low-voltage distribution grid in Portugal is considered and the ro-
bustness of the method is tested against several disturbances including large fault resistance values (up to 1000
). Based on the case study, it is shown that the proposed methodology outperforms conventional fault diagnosis

methods: it detects faults with 100% accuracy, identifies faulty branches with 83.5% accuracy, and estimates the
exact fault location with an average error of less than 11.8%. Finally, it is also shown that: 1) even when
reducing the available measurements to the bare minimum, the accuracy of the proposed method is only de-
creased by 4.5%; 2) while deep neural networks usually require large amounts of data, the proposed model is
accurate even for small dataset sizes.

1. Introduction

Power outages can lead to serious consequences of both economic
and societal nature, ranging from production loss to risk to health and
safety [1,2]. Weather conditions [3], equipment failures [4], accidents
and unpredictable events such as vandalism, hacking or equipment
theft, are some of the causes of power outages. Faults in distribution
grids account for 80% of the customer electricity interruptions, with

single-phase-to-ground faults being the most frequent type of fault and
three-phase faults the most severe one [5].

The system average interruption duration index (SAIDI), i.e. the
average time a costumer has no electricity service, is used to measure
the reliability of distribution grids. In Europe, in 2016, most countries
presented a SAIDI inferior to 100 min per year per customer, with a
clear improvement tendency over the last years [6]. This is mainly at-
tributed to the fact that smarter and more efficient functionalities,
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introduced by the smart grid concept, are being integrated in dis-
tribution grids.

In a recent study [7], ENEDIS, the main French distribution system
operator (DSO), in collaboration with ADEeF, the French DSO asso-
ciation, reported profits of €3.3 millions per year from the im-
plementation of self-healing tools in a medium voltage (MV) smart dis-
tribution grid. At the same time, the benefits of just a situation
awareness tool in a Finnish DSO substantially reduced the cost of power
outages [8]. Based on these real examples, it is clear that fault diagnosis
tools are not only needed for grid stability but they are also paramount
to reduce costs and to increase profits.

According to the different definitions of a smart grid [9-12], one of
its key features is the ability to self-heal with the aid of advanced me-
tering and communication tools and intelligent monitoring, aiming at a
more secure, cost-effective and reliable operation. The backbone of self-
healing strategies are the fault detection and fault location processes.
However, despite the serious effects of power outages described above,
many utilities still rely on customer phone calls to detect or localize a
fault [13]. As a result, researchers have long been trying to automatize
these processes.

In this context, the available fault location methods can be divided
in three main categories: a) the conventional methods, including im-
pedance-based and traveling-wave methods, b) the knowledge-based
methods that use artificial intelligence and c) hybrid methods. From the
first category, impedance-based methods are the most widely used
basically due to their simplicity. Traveling-wave methods, although
initially applied to transmission systems, have been used for distribu-
tion systems as well. Reviews of the conventional methods are provided
in [14-16]. In the second category, different aspects of artificial in-
telligence have been employed to tackle the fault location problem
including: a) artificial neural networks [17-19], b) support vector ma-
chine neural networks [18,20] and c) fuzzy logic [21,22]. Finally,
neural networks and fuzzy logic have been used in combination with
conventional methods to create hybrid tools [23-25].

1.1. LV grid characteristics

The LV grid is the final link that connects customers with the dis-
tribution substation. Although initially designed to follow the ‘‘fit and
forget'' doctrine, DSOs face now several challenges because of the in-
tegration of renewable energy sources and the bidirectional flow of
energy they entail. Particularly, due to the necessity of the installation
of renewable energy sources to fight climate change, DSOs are being
forced to shift their attention to the monitoring of the LV grid.

Compared to the MV distribution grid, the LV grid presents a more
complex structure. In detail, the LV grid presents five big differences
[26]:

• Radial structure with an increased number of branches.
• Multi-phase and unbalanced operation.
• Unbalanced distribution of loads and generation units both per
phase and topologically.
• A big variety of conductors connecting the nodes of the grid with a
wide range of resistance (R) and reactance (X ) values.
• The resistive nature of distribution lines ( >R X/ 1).

As a result, despite the desire of the DSOs for automated fault de-
tection and location techniques, the above characteristics in combina-
tion with the limited availability of sensors in LV grids, pose con-
siderable obstacles in the development of such techniques.

1.2. Literature review

In spite of the reasons listed above, researchers have mostly focused
on the development of fault detection and location methods for the MV
grid, neglecting the more complex case of the LV grid. Particularly, only

a handful of methods have been recorded for the LV distribution grid,
with the oldest one dating back to just 2012.

In [27] a fault detection and location method based on a current
phase-angle difference analysis is proposed; in terms of fault location,
the method is very limited as only the faulty sector is identified without
a precise estimation of the fault location. Another approach was tested
in [28] where the operational status of smart meters is taken into ac-
count to determine the fault location area. Moreover, in [29] a method
to detect and localize non-technical losses was developed by comparing
current values from smart meters with the current value at the trans-
former level; an estimation of the non-technical losses, e.g. electricity
theft, location is achieved with an accuracy of 85%. Furthermore, the
authors of [30] propose the use of the current signal injection tech-
nique, a more conventional method, to monitor deviations of im-
pedance characteristics in the nodes of the grid and to locate the faulty
node/area. Another approach is described in [31], and it involves the
use of the Park vector representation of the voltage sag produced after a
short-circuit fault to identify the fault type but also to get an idea of the
proximity of the fault location. A fault diagnosis method based on
gradient boosting trees is proposed in [32] but it is limited to a branch
identification and does not provide a distance estimation. In addition,
an attempt to apply a graphic method in LV grids was made in [33] with
the fault location process based on the extracted voltage profile across
the faulty branch. Finally, a conceptual method of fault detection and
location is proposed in [34] based on data from sparse sensors along the
grid.

1.3. Motivation

To ensure the success of the energy transition, fault diagnosis
methods are paramount to mitigate the reliability issues of renewable
energy sources. In this context, methods that detect, identify and locate
faults have been widely researched across several domains: photo-
voltaics [35,36], electric batteries and electric vehicles [37], thermal
storage [38], wind farms [39], fuel cells [40,41], gas turbines [42], gas
supply [43], thermal power plants [44], or even household appliances
[45]. Moreover, on higher voltage levels, researchers have also tried to
increase the reliability of the transmission grid [46] and to predict
cascading effects and blackouts [47]. However, despite the success of
fault diagnosis methods in all these applications, reliable and accurate
methods for fault detection and location in LV grids are still missing.

In particular, one of the main issues of the existing fault detection
methods is that they are grid-specific. As it is clear from the literature
review, despite the generalization properties of the conventional
methods for MV grids (impedance-based or travelling wave), none of
them have been applied to LV grids. This is not just a coincidence:
impedance-based methods present limited accuracy and identify mul-
tiple possible locations for a fault [13,16]; this problem renders them
impractical for the case of LV grids where multiple branches exist. Si-
milarly, traveling-wave methods can also be seriously affected by the
presence of multiple branches, which hinder the distinction between
waves [13,16]. Finally, both impedance-based and traveling-wave
methods depend on line parameters that in LV distribution grids vary a
lot; as a result, their accuracy would not be very good.

The existing methods, while they overcome the issues of conven-
tional methods with the use of data-driven approaches, have several
issues of their own. Particularly, while they are in general more accu-
rate, they are very specific to the grid topologies under study as they
cannot be easily generalized to new grids, and require a lot of data from
smart meters. In addition, with the exception of two studies [29,33], the
existing methods do not provide an estimation of the fault location, but
instead they are limited to the identification of the faulty area/line.

Another problem with the existing fault detection and location
methods in LV grids, is that they all consider a limited number of fault
scenarios in their case studies. For example, in terms of fault locations,
only one fault location is considered in [27,28,48], two in [30], five in
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[29] and ten in [33]. As many parameters can influence the fault lo-
cation process, such a small number of fault scenarios is not enough to
validate the existing methods.

Finally, the last limitation in the current literature is that, even for
the methods proposed for MV grids, most methods only focus on faults
with low fault resistance values that rarely surpass the 100 . Taking
into account that faults with a higher fault resistance can occur, e.g. in
the case of non-technical losses (fault resistances can be higher than
500 ) or when a downed conductor touches the earth (fault resistances
reach up to 1500 ), the need for fault detection and location techni-
ques that cover these cases, i.e. large fault resistances and LV dis-
tribution grids, is evident.

1.4. Contribution

In this paper, in order to fill the described scientific gap, a deep
learning method is proposed that addresses all these issues. In detail,
the contribution of the paper is fourfold and proposes:

1. A fault detection and fault location method that can perform three
different tasks: detect the occurrence of a fault and identify a faulty
feeder, identify a faulty branch, and localize the position of the fault.

2. A data-driven method that, while being very accurate, is not limited
by the grid topology nor the number of sensors, but that can detect
and localize faults independently from the grid structure or avail-
able information.

3. A method that can detect and localize faults even when the data are
very limited. In particular, the average accuracy decreases only
slightly in the case of extremely limited measurements.

4. The first method that can accurately detect and localize faults of
high fault resistance values in the LV distribution grid.

As neural networks have proven to be more accurate than analytical
methods [18,19,49,50] in solving the fault location problem in MV
grids, four of these methods are used as a benchmark [18,48,50,51].
Moreover, as a direct comparison with methods designed for MV is not
always fair, one conventional method for the LV case [33] is also
considered.

The paper is organized as follows: first, Section 2 introduces the
field of deep learning. Then, Section 3 defines the proposed method for
fault detection and fault location. Next, Section 4 describes the con-
sidered case study to evaluate the proposed method. Section 5 presents
the results and discusses the merits of the proposed method. Finally,
Section 6 compares the accuracy of the proposed method with others in
the literature.

2. Deep learning

As one of the aspects of this work is the use of deep learning (DL) and
deep neural networks (DNNs), in this section, a brief overview on this
topic is provided.

2.1. Introduction to deep learning

In recent years, the research on neural networks has achieved sev-
eral breakthroughs that have lead to what is now known as deep
learning. In particular, due to these breakthroughs, the usage of neural
networks whose depth is no longer limited to a single hidden layer is
now possible. These deeper neural networks have systemically proven
to be better at estimation problems in several applications due to their
better generalization properties [52].

While this success of DL models initiated in computer science ap-
plications, e.g. image recognition [53], speech recognition [54], or
machine translation [55], the benefits of DL have also spread in the last
years to several energy-related applications [56-64]. Among these
areas, time series forecasting is arguably the field that has benefited the

most [56,59,61,63,64].
As mentioned in the introduction, despite the success of DL in all

these energy-related areas, there has not yet been, to the best of our
knowledge, an attempt to bring its ideas and models to the field of fault
detection and fault location in LV distribution grids.

2.2. Deep neural networks

In general, a neural network is nothing else than a model F X W( , ),
with parameters W, that uses some input features X in order to predict
some variable of interest Y [62]. Thus, to use the neural network for a
given task, i.e. to predict Y , one only needs to gather a dataset
ST = =X Y{( , )}k k k

N
1 and use this dataset to estimate the optimal para-

meters Wa that best fit the dataset. Let us define the input of a neural
network by = x xX [ , , ]n

T
1 and the output by = y yY [ , , ]m

T
1 . Let us

also define the number of neurons of the kth hidden layer by nk and by
= z zz [ , , ]k k kn

T
1 k the state vector in the same layer. Using these defi-

nitions, a general DNN with two hidden layers can be represented as in
Fig. 1.

In this model, the parameters W are the weights establishing the
mapping connections between the different neurons of the network. In
detail, the mapping equation of a general neuron i in the kth layer is
given by:

= +z f bW z( · )ki ki ki k ki1 (1)

where fki represents the activation function of the neuron, zk 1 the
values of the neurons of the previous layer, i.e. k 1, Wki the matrix of
weights establishing the connection between all the neurons of layer
k 1 and neuron i in the kth layer, and where bki is the so-called bias
parameter of the neuron. Typical activation functions are the sigmoid
function, the hyperbolic tangent function, or the rectified linear unit.

2.3. Training

The process of estimating the model weights is usually called
training. Given the previously defined set =X Y{( , )}k k k

N
1, the network

training is done by solving a general optimization problem with the
following structure:

=
gk Y F X Wminimize ( , ( , ))

W k

N

k k
1 (2)

where gk is the problem-specific cost function. For grid fault diagnosis,
this cost function varies depending on the specific task (more details on
this will follow later in Section 3.3.4).

Fig. 1. Example of a DNN.
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2.4. Hyperparameter and feature selection

In addition to the weights, the network has several parameters that
need to be selected before the training process. Typical parameters
include the number of neurons of the hidden layers, the number of
hidden layers, the type of activation functions or the learning rate of the
stochastic gradient descent method. To distinguish them from the main
parameters, i.e. the network weights, they are referred to as the net-
work hyperparameters.

Besides hyperparameters, DNNs need to perform another selection
before the training process: the input features. Particularly, an adequate
set of input features is key to obtain accurate models: a large set of
irrelevant features will lead to inaccurate models that are hard to train;
similarly, a small set that misses relevant input features will produce
models with low accuracy.

The reason why both hyperparameter and features need to be se-
lected before the training process is because these parameters cannot be
optimized using a derivative-based method. In detail, while the best
approach to optimize the weights of the neural network is to use some
state-of-the-art gradient descent method, features and hyperparameters
need to be optimized using black-box methods since the relation be-
tween features/hyperparameters and the output of the DNN cannot be
defined (in general) using a differentiable function.

In practice, to optimize the hyperparameter and features, a search
method is usually employed. This method iteratively selects different
combinations of hyperparameters and features, trains the neural net-
work with each of these different combinations, and finds the set of
hyperparameters and features that lead to the most accurate model. To
do so and to avoid data contamination, the dataset is usually divided
into three subsets:

• Training dataset: the dataset used for training the DNN, i.e. esti-
mating the weights.
• Validation dataset: the dataset used for optimizing hyperparameters
and features.
• Test dataset: an out-of-sample dataset2 that is used to evaluate the
final method and compare against existing ones.

2.5. Further contributions of deep learning

An important thing to note is that deep learning is more than just
deep neural networks. In particular, while the success of these models
has been usually linked to the depth of the networks, the field has also
benefited from a series of developments and contributions that have
made possible the training of deep networks and the attainment of more
accurate models. In this context, there are three key developments that
have been crucial in the success of DL:

• Optimization algorithms: the traditional optimization algorithm for
training neural networks, i.e. gradient descent method with back-
propagation, had multiple limitations when training deep neural
networks, e.g. computational cost or getting stuck at bad local
minima. The appearance of several stochastic gradient descent
methods, e.g. Adam [65], facilitated the training of deep networks,
the attainment of better local minima, and the reduction of the
computation cost of training.
• Regularization techniques: without appropriate regularazation, due
to the large amount of parameters, DNNs can easily overfit the
training data. To avoid that, new regularization techniques, e.g.
dropout [66], had to be developed.
• Activation functions: training deep networks with standard

activation functions, e.g. sigmoid and hyperbolic tangent, leads to
networks that are not that accurate. The appearance of new acti-
vation functions, e.g. the rectifier linear unit (ReLU), lead to more
accurate neural structures.

As a result, when developing deep neural networks and other deep
learning models, it is important to consider all these factors in order to
obtain accurate networks that can be trained efficiently.

3. Fault detection and location method

The basis of the proposed algorithm is to use a DL model in order to
solve the different fault diagnosis tasks. However, in order to obtain an
accurate model with the desired properties, it is not enough to train a
DL model with grid data. Particularly, the method has to be designed to
be robust, to be grid-independent, and to be accurate even when the
information is limited. To obtain such a method, careful consideration
has to be paid to the model design.

3.1. Grid independence

One of the key properties of the proposed method is that it is in-
dependent of any grid topology, i.e. it can be estimated using data from
multiple grids and branches and it is not restricted by the number of
sensors nor the grid topology.

Standard data-driven models usually lack the above property as
their inputs are based on the real measurements on the grid. As an
example, if we consider a model that uses voltage measurements along
the grid, it is clear that the number of inputs will vary for each branch,
e.g. a branch with five measurements will provide five inputs while a
branch with two measurements will provide two inputs. In this context,
it is not easy to derive a generalizable model that can be applied to both
branches. Instead, it is easier to derive a model for each branch.

While the described approach works reasonably well, it prevents
data-driven methodologies to generalize to new grids. In particular,
while they might perform well for a given grid topology, they might fail
to locate faults when conditions change. In addition, due to their grid
dependence, they cannot be used in other grids than the one where they
have been estimated, and they always require new data when the
models are deployed in a new grid. This obviously poses a problem as
gathering new data is not always possible and, even when it is, it
usually has associated costs.

In this paper, the proposed method avoids the issue of non-gen-
eralizability via two of its componenets: a) a simple pre-processing step
and b) considering branch-independent inputs. In detail, any input to
the model representing measurements along the grid/branch is pre-
processed via an interpolation function to obtain a set of inputs that
always has the same size. By doing so, the method becomes general-
izable as the inputs of any grid/branch always have the same size. In
addition, the feature set avoids branch specific features, e.g. branch
length or branch resistance and reactance, so that the model can be
applied to a different grid as its inputs do not dependent on the branch/
grid topology. Finally, with these two components, not only does the
method becomes generalizable, but the DNN becomes more accurate
due to regularization. In detail, it has been empirically shown that by
forcing DNNs to learn multiple related tasks, the performance and
learning speed can be improved [62,67,68]. Hence, as the DNN is
trained to solve different tasks, i.e. to identity faults from different
branches/grids, its performance is expected to improve.

This interpolation function maps any set of measurements to a set of
values representing the same measurements as if they were coming
from equally spaced sensors inside each branch. In particular, if we
consider the case of three interpolated measurements per branch, we
would interpolate the real measurements to obtain one measurement at
the beginning, another at the end of the branch, and a third one in the
middle. While the distance between the sensors would be obviously

2 A dataset that is never used during training and that is used to evaluate the
accuracy of the method in unseen data. This is needed to ensure the method
does not overfit.
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equal within a branch, the interpolated distance would naturally
change between branches. An example of this interpolation method is
provided in Fig. 2, where branch 1 and 8 equipped with seven and five
voltage sensors respectively, after the interpolation, end up both with
five voltage measurements this time at fixed locations within each
branch. More specifically, since in this case the desired number of
measurements per branch was selected to be five, a choice that will be
explained later, consequently the fixed interpolated sensor locations
inside each branch were at the beginning, the middle and the end of
each branch and at the intermediary locations of 25% and 75% of the
branch length. As mentioned above, this interpolation method guar-
antees the uniformity of the input dataset and renders the method
generalizable to other grids since it does not depend on the number of
sensors per branch. In addition, it should be noted that a minimum of
two measurements per branch are required for the interpolation step.
Given the fact that one of those two can be the one at the substation
level, at least one more along each branch would be required for the
interpolation method to work. To further clarify this interpolation
process the detailed algorithm is provided in Algorithm 3.

Algorithm 1 Creation of Voltage matrix – Interpolation

1: #i: branch number
2: #n: desired number of interpolated voltages
3: #V m: vector of voltage measurements for branch i
4: procedure VOLTAGE_INTERPOLATION (V m, i, n)
5:
6: #Obtain locations of measured voltages in branchi
7: =X X X[ , , ]k1 = sensorLocations(i)
8:
9: #Generate equally spaced locationsX int

10: #of the virtual/interpolated voltages
11: l = readBranchLength i( )

12: =X l[0, , , , ]l
n

l
n

int
1

2
1

13:
14: #Generate vector of virtual/interpolated voltages
15: V int = interpolate(V X X, , )m int

16:
17: Return: V int

18:
19:
20: #n is the desired number of interpolated voltages
21: procedure GENERATE_VOLTAGE_MATRIX(n)
22: =V []grid

23: #B: total number of branches
24: for =i B1: do
25:
26: #Read measured voltages at branch i
27: #k : total number of nodes in branch i
28: =V V V[ , , ]k

m
1
m m = readVoltages(i)

29:
30: #Generate virtual/interpolated voltages
31: =V V V[ , , ]n

int
1
int int =

voltage_interpolation(V i n, ,m )
32:
33: #Append interpolated voltages to matrix

34: =V
V
V
Vn

grid
1
int

grid

int

35:
36: Return:V grid

It is important to note that, unless the voltage decay is linear, the in-
terpolation method adds an extra error to the measurements. This is
however not important as: a) the error introduced by the interpolation
method is smaller than the measurement error and b) the DNN is
trained with the noisy data so the this noise is implicitly included in the
model.

Besides the interpolation step the model considers branch-in-
dependent features. In particular, branch-specific features, e.g. branch
length, type of conductors or branch resistance and reactance, are

disregarded. By doing so, the model can be applied to a different grid as
its inputs are not branch-specific.

3.2. Limited data

A second key property of the algorithm is that it can detect and
locate faults even in a grid where the amount of data is limited, e.g. in a
grid where measurements are only available at the beginning of the
feeder and at each terminal point.

The main problem to remain accurate even when data is limited is
the fact that data-driven methods tend to overfit under those condi-
tions. Therefore, to accurately detect faults even with limited data, the
method needs to extract the maximum amount of information from a
given set of inputs, while avoiding the extraction of information that is
too specific to that set of inputs.

To do so, a prediction model is proposed that has the potential of
generalizing to different data, together with data from different sources.
For the model that can generalize to different data, a DNN is con-
sidered. For data from different sources, data from different branches
and data with different types of faults and noise levels are considered.

The motivation behind this is that it has been empirically shown
that DNNs can learn features that can, to some extent, generalize across
tasks [62,67,69]. In this case, by having a DNN that learns to locate
faults under different situations, a model is obtained that can generalize
and extract useful information even when data are limited. There are
some possible hypotheses that could explain why this methodology
improves the performance:

1. The simplest explanation is the amount of data: as more data are
available, the DNN can learn more relevant features. Moreover, as
the data are related, the DNN has more data to learn features that
are common to all sources.

2. A second reason is regularization: by solving different tasks, the
DNN is forced to learn features useful for all sources and to not
overfit to the data of a single source.

3.3. Prediction model

While the diagnosis methodology involves different components,
the key element of the proposed method is the prediction model itself.
As motivated in the previous sections, a DNN is considered for multiple
reasons, namely, its generalization capabilities, which allow to identify
faults even with limited data, and the success of these type of models in

Fig. 2. Representation of the interpolation scheme to obtain equally spaced
measurement.
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multiple applications.
However, to obtain a highly accurate model, employing a DNN is

not enough. Particularly, the inputs, hyperparameters, and training of
the DNN need to be carefully optimized.

3.3.1. Model inputs
One of the most important aspects to have an accurate prediction

model is to select the optimal set of input features. In the proposed
method, in order to always consider a set of optimal inputs, a feature
selection method is considered. In particular, for any given diagnosis
task, the method considers the information that the DSO might have
available and then, during training, it performs a feature selection using
the tree-structured Parzen estimator (TPE) [70]. The selection of this
algorithm has been done because of its success in other energy-related
applications [62-64]. To define this set of available input features, three
aspects need to be taken into account: a) how the method detects and
locates faults, b) the requirements of the method to be generalizable,
and c) the fact that faults are time-dependent events.

For the first consideration, independently of the diagnosis task, the
fact that the method detects faults by evaluating the status of each grid
branch needs to be taken into account. Therefore, the set of input fea-
tures has to contain data that models the status of each branch.

For the second consideration, as motivated before, the feature set has
to avoid branch specific features, e.g. branch length or branch resistance
and reactance, and employ interpolated measurements. In particular, for
the model to be applied to a different grid, the input of the network
cannot be branch-specific. Similarly, if the number of voltage measure-
ments depend on the branch, any proposed method would be, not only
grid-specific, but branch-specific. To address this, the proposed method
interpolates the measurements along each branch to represent the same
measurements as if they were coming from equally spaced sensors. Hence,
for an application in a different grid it suffices to respect the format of the
input features without modifying other elements of the method.

It should be underlined here that the scenario of identical branches
is entirely theoretical as in practice they are heterogeneous in various
ways: a) length, b) number and length of sectors, c) line characteristics
of every sector and d) connected PV and loads per phase and node. On
top of that, as mentioned earlier, the method does not take into con-
sideration branch-specific parameters such as branch length. So even in
the case of two branches within the same feeder with the same length,
the algorithm will not be affected.

For the third consideration, the set of input features should be able
to model, not only the status of each branch, but also the evolution of
this status. As an example, to identity whether a fault has occurred, the
method should not only consider the status of the grid under the fault,
but also the status of the grid before the fault; by doing so, the method
can more reliably identify faults as it has a representation of the grid
under healthy conditions.

Based on these three considerations, to detect and locate a fault at
time t , the set of all possible input features is defined as:

• Ni branch voltages at time t obtained by interpolation of the real
branch measurements into five equally spaced measurements.
Selecting Ni is a design choice. In the case study of Section 4, it was
observed that =N 5i is a good enough parameterization.
• The current at time t at the beginning of the feeder where the branch
is located.
• The generation and load in the distribution grid.
• The same four elements (voltage, current, generation and load) but
5 min before t .In particular, data are recorded on intervals of 50 ms.
Then, to evaluate if a fault is happening at a given moment, the
method considers the measurements of the voltage, current, and
load/generation 5 min before. The goal of considering previous
measurements is to have a recent snapshot of the grid during
healthy operation. Thus, both pre-fault and post-fault values are part
of the input dataset.

The complete process of creating the input feature dataset is de-
scribed in Fig. 3.

Although, smart meters nowadays are capable of providing mea-
surements every 1 to 10 s [71], due to restrictions imposed by the
current telecommunication technology in the supervisory control and
data acquisition system (SCADA), this measurement frequency de-
creases to only once every 15 min [72]. Even though, ideally, having a
picture of the grid just the moment before the fault occurrence would
increase the reliability of the method, the 5 min interval that was
chosen above is justified as a realistic expectation in the near future.

As a final remark, it is important to note that the optimal set of
features might vary from task to task, e.g. the optimal features for de-
tecting faults might differ from the set for locating faults.

Fig. 3. Flowchart of the model input dataset creation process. N indicates the
number of the total studied fault scenarios.
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3.3.2. Hyperparameter optimization
Besides optimizing the inputs, to obtain an accurate model, it is

paramount to optimize the DNN topology. For the proposed method, to
obtain an optimal DNN structure, an optimal selection is performed
using a large set of hyperparameters.

For the optimization, the hyperpamaters of the DNN are simulta-
neously optimized together with the input features, i.e. the tree-struc-
tured Parzen estimator algorithm [70] is employed to simultaneously
obtain the optimal hyperparameters and the optimal features. The use
of the tree-structured Parzen estimator to do this selection was moti-
vated by the success of the method in other energy-related studies
[63,64].

To maximize accuracy of the model, the method considers a large
set of hyperparameters that models almost all possible DNN config-
urations. These hyperparameters are listed in Table 1 together with
their possible ranges.

Most of the hyperparameters on the table are self-explanatory. The
exception are the activation function and the data normalization. For
the activation functions, we refer to [73] for a detailed definition. For
the data normalization, Uniform uniformly normalizes the data to [0, 1]
and Gaussian standardizes the data to follow a Normal distribution.

3.3.3. Training
In order to estimate the optimal network, i.e. optimal DNN weights

W, optimal input features and optimal hyperparameters, the same
procedure is repeated:

1. Consider a dataset =X Y{( , )}k k k
N

1 containing data pairs representing
all possible input features X and the relevant output Y to be iden-
tified (see also Section 3.3.4).

2. DivideST = =X Y{( , )}k k k
N

1 in three subsets: training (60%) + valida-
tion (20%) + test (20%).

3. Perform the feature and hyperparameter optimization using the
training and validation dataset:
• The training dataset is used to solve (2.3) and estimate the
weights W.
• The validation dataset is used as an out-of-sample dataset to select
the optimal features and hyperparameters.

4. Using the optimal network, evaluate its performance on the test
dataset.

To solve (2), the Adam optimizer is used [65]. In addition, to avoid
overfitting, i.e. estimate a DNN that fits perfectly to the training dataset
but it cannot generalize to new data, the network is trained in combi-
nation with early stopping and out-of-sample data to evaluate its per-
formance.

3.3.4. Network outputs and cost function
While the procedure to optimize the features, hyperparameters, and

network weights is independent of the fault diagnosis task, the output
of the DNN and its cost function varies with the problem. Several steps
are necessary to pin point the exact location of the fault. First of all, the

occurrence of the fault should be detected, then the faulty feeder and
branch should be identified and finally, the exact distance of the fault
within the faulty branch should be estimated. Following the above se-
quence three fault diagnosis tasks were designed for the DNN.

• Fault detection and feeder identification: detecting whether a
feeder has a fault can be modeled with a classification network. In
particular, for each branch-related input X , the output Y is defined
to be 1 or 0 to respectively denote that the branch has a fault or that
the branch has no fault and is in a healthy feeder (the data from
those branches who are healthy but in a faulty feeder were ex-
cluded). Then, for training, the neural network can simply minimize
the binary cross-entropy loss (standard loss for classifying between
two classes). In real time, this network can simply be applied to all
the branches of a feeder to identify whether there is a fault on the
feeder.
• Branch identification: identifying the faulty branch in a faulty
feeder is a very similar task to identifying a faulty feeder. However,
instead of labeling 1 and 0 the branches in and out of faulty feeders,
only branches within a faulty feeder are considered. For all these
branches, the output is defined as 1 for the faulty branch and as 0 for
the healthy branch in a faulty feeder (data from healthy branches in
healthy feeders were excluded). In real time, once the feeder is
identified with the fault detection and feeder identification network,
this network is run to identify the faulty branch. As it is a binary
classification problem, the network considers again the binary cross-
entropy loss.
• Fault distance estimation: unlike the previous two tasks, esti-
mating the distance at which the fault occurs is no longer a classi-
fication problem but a regression problem. To solve it, the subset of
faulty branches is considered. Then, each output Y is defined as the
distance at which the fault occurred. As the method has to be length-
independent, the faulty distance is normalized between [0,1]. For
the loss function, the standard mean squared error is considered. In
real time, once the branch has been identified by the previous net-
works, this network indicates the fault distance.

3.4. Representation

To provide a better understanding of the method, Fig. 4 represents
the different components of the proposed methodology and how they
relate to each other.

3.5. Generalizability of the method

The generalizable property of the method does not imply that the
method can be estimated in one grid and then use in the context of a
completely different grid. In particular, while the method can be ap-
plied to different grid topologies or different grid characteristics, it is
advisable to retrain the algorithm (if possible) for each grid considered.
This ensures that the accuracy is maximized as the algorithm is tailored
to the specific characteristics of the grid. While being less critical, it is
also advisable to retrain the algorithm if a permanent change occurs in
the grid, e.g. a line is upgraded.

In the same context, as the method is based on identifying faults per
branch basis, no retraining is needed for the case of grid maintenance or
servicing. Particularly, if a fault occurs when works are being carried
out in another feeder or another branch, the method accuracy will not
be affected as its accuracy only depends on the branch under fault. The
latter remains unaffected by the servicing in another feeder/fault.

It is important to note that the retraining step is not mandatory: the
method is still expected to detect faults when changes occur.
Particularly, as it is trained with general inputs, e.g. normalized/in-
terpolated voltages, some of the characteristics employed by the
method to identify a fault, e.g. large voltage drop, would be in-
dependent of the grid characteristics. However, if not retrained, the

Table 1
Model hyperparameters and their possible ranges.

Hyperparameter Range

Batch normalization {0, 1}
Dropout [0, 1]
Learning rate [10 , 10 ]4 1

Activation function {ReLU, softplus, tanh, sigmoid,
selu, PReLU, LeakyReLU}

Number of layers {1, 2, , 7}
Neurons per layer {25, 26, , 400}
Normalization {None, Uniform, Gaussian}
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accuracy of the method will likely decrease, with the drop in accuracy
dependent on the severity of the changes in the grid.

4. Case study

As mentioned in the introduction, the proposed method is evaluated
using a real LV distribution grid in Portugal. In this section, the case
study and the experimental setup are properly defined.

4.1. Grid features

The considered three-phase-four-wire LV grid with a solidly
grounded neutral has two distinct characteristics: a) heterogeneity: the
grid consists of non-homogeneous distribution lines, i.e. conductors of
different lengths, resistaces and reactances are used to connect the
nodes and branches of the grid; b) imbalance: there is an asymmetrical
distribution of the loads and photovoltaic (PV) systems both topologi-
cally and per phase. Moreover, a total of 48 consumers and 18 photo-
voltaic systems are connected to the grid via single phase connections.
The LV grid schematic is presented in Fig. 5 and the described features
are listed in Table 2.

4.2. Grid measurements

As presented in Fig. 5, phase and neutral RMS current measure-
ments are considered in the beginning of each feeder while voltage RMS
measurements are considered to be available on every node of the grid.
For the voltage, in addition to phase RMS measurements, a symmetrical
component analysis is performed to compare which of the two is able to
provide more accurate information for the fault location process.

It is important to note that, as explained in Section 3.1, any mea-
surements along the grid, i.e. the voltages, are transformed to five

equally distanced points by linear interpolation. Moreover, despite
having sensors at every node in the grid, the method is also tested under
the assumption of limited information.

4.3. Simulation environment

In order to perform the study, a realistic simulation framework of
the real LV grid was employed. The simulation framework was provided
by the company Efacec [29] as part of their software suite for modeling

Fig. 4. Conceptual representation of the method.

Fig. 5. Single line diagram of the LV distribution grid.
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LV distribution grids. This simulator can be used for both normal and
faulty operating conditions. The simulation environment uses the
phasor simulation mode in order to reduce computation time as the
voltage and current measurements are based on RMS values. In terms of
data sampling, the environment has a configurable sampling frequency
that for this study was chosen as 50 ms.

In addition, as smart meters are designed with a class 1 accuracy
(± 1%) [29], the simulation environment adds Gaussian errors with a
standard deviation of 1% to the current and voltage measurements.

4.4. Grid effects

In order to perform the different experiments and to evaluate the
method against different disturbances, the LV grid was simulated con-
sidering different effects:

1. Fault location: to evaluate the effect of the location of the fault, faults
were simulated for nine locations within each one of the thirty two
sectors, i.e. 288 fault locations were considered.

2. Fault types: in distribution grids, single-phase-to-ground faults are
the less severe but at the same time the most frequent (they re-
present 70% of the fault cases). On the other hand, three-phase
faults are the most severe but also less frequent (they represent only
5% of the fault occurrences [5]). Consequently, to assess the effect
of the type of fault, the most frequent and most severe faults are
studied. Particularly, for each of the 288 fault locations, 4 fault types
were considered: the three single-phase-to-ground short-circuit
faults (AG, BG and CG) and the three-phase short-circuit fault (ABC).

3. Simultaneity factor: since not all the loads of every consumer are
going to be activated simultaneously, a variable simultaneity factor
was considered [74]:

=
=

D
D

SF
max( )

,
i
N

i

system

1
max (3)

where D is the load demand and N the number of loads. While SF
stabilizes around 0.5 in residential areas of developed countries [74],
the smaller the amount of consumers the more likely it is to suffer
deviations. Since the considered grid only has 48 consumers, for each
fault location and type, three values of SF were considered: 0.3, 0.5 and
0.8.

4. Time of the day: to account for the load and generation variability,
the statistical distribution of the daily generation and load were
considered (Fig. 6a and Fig. 6b). Then, for each fault location/type
and SF, generation and load values for each hour of the day were
sampled.

5. Fault resistance: to study the effect of the fault resistance, 8 random
resistances were sampled for each possible combination of the other
four effects. To sample fault resistances, a log-uniform distribution
between 0.1 and 1000 was considered.

4.5. Data recording and dataset generation

To study the faults, the state of the grid was recorded 150 ms after
the fault occurrence. This is a design choice to ensure that: a) that the
faults are at the early stages of their steady-state and b) that no pro-
tective element acts as inverters are expected to isolate the generators
at 200 ms after a fault occurs [75].

Moreover, based on the described values for the effects, the LV grid
was recorded under 663,552 faulty scenarios:

× ×
× ×

×
=

32 sectors 9 faults per sector
4 fault types 3 simultaneity factors

24 load/gen. values 8 fault resistance values
663552 scenarios. (4)

Besides recording data under faults, the LV grid was also simulated
to generate and record data representing its operating status under
healthy conditions. Particularly, data representing its nominal working
regime are also needed in order to train the DNN. To generate these
healthy data, as the generation and load are the only possible variable
effects, the grid was simulated during normal operating conditions for
65,000 generation and load profiles that were randomly sampled.

As a result, to conduct the experiments, the considered dataset
contains 663,552 datapoints representing faulty conditions and 65,000
datapoints representing healthy operation. However, it is important to
note that this is just the total dataset size as, depending on the ex-
periment, the employed datasets to train the DNN are small subsamples
of this large one (see Section 4.7 for further details).

4.6. Evaluation metrics

The proposed method is designed to solve three different tasks: fault
detection and identification of a faulty feeder, identification of the
faulty branch, and estimation of the location of the fault. Therefore,
depending on the task, different metrics are needed in order to evaluate
the accuracy and performance of the method.

4.6.1. Faulty feeder detection
For the first task, as it is a standard classification problem, two

standard metrics are considered: the accuracy and the F1 score [76]. Let
us define by tp the number of true positives, i.e. the number of times
that a faulty feeder is correctly identified, by tn the number of true
negatives, i.e. the number of times a healthy feeder is correctly iden-
tified, and by fp/fn the number of false positives/negatives, i.e. the
number of times a faulty/healthy feeder is identified but the feeder is
healthy/faulty. Then, the accuracy of the method is defined as:

= +
+ + +

Accuracy tp tn
tp tn fp fn (5)

Similarly, the F1 score is defined as:

=
+

F1 2· precision recall
precision recall

,
(6a)

Table 2
Grid characteristics: minimum and maximum values of branch length, con-
ductor length and R X/ ratio, current and voltage sensors, and total per phase
(PhA B C, , ) contracted and installed power.

Grid Characteristic Value Unit

Branch length 185–640 m
Conductor length 35–210 m
Conductor R X/ 4.27–47.53 –
Current sensors 3 –
Voltage sensors 33 –

PhA PhB PhC
Installed load 75.90 96.60 89.70 kVA
Installed generation 17.90 15.96 23.27 kW

Fig. 6. Generation and load profiles for one day.
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=
+

precision tp
tp fp

,
(6b)

=
+

recall tp
tp fn

.
(6c)

4.6.2. Faulty branch identification
For the faulty branch identification, while it is also a classification

problem, the resulting metrics are slightly different. In particular, the
goal is to identify which of the grid branches is the one with a fault (the
occurrence of the fault itself was already detected in the previous task).
Therefore, the number of times a branch is correctly identified as faulty,
i.e. tp, must necessarily be the same as the number of times that the
other branches are identified as healthy, i.e. tn. Similarly, the number
of fp must be the same as fn. Therefore, it holds that:

= =
+

= =Accuracy F1 tp
tp fn

recall precision
(7)

In other words, the accuracy is simply defined as the number of
times the faulty branch is correctly identified divided by the total
number of times a fault occurs.

4.6.3. Fault location
Since the location of the fault is provided as the distance of that

location from the beginning of the branch, the accuracy of the method
is evaluated in terms of standard fault distance estimation error [77]:

= d d
l

distance error(%) | | ·100estimation actual

total (8)

where destimation and dactual respectively represent the predicted and the
real distances, and ltotal is the total length of the branch.

4.7. Objectives of the study and experiments definition

In order to evaluate the robustness and accuracy of the method
against all the different effects acting on the grid, seven different in-
dividual experiments are performed. In particular, the accuracy of the
method and its variation are analyzed for different: a) depths of the
DNN model, b) voltage measurements, c) resistance values, d) fault
types, e) load demands, f) fault location, g) number of measurements,
and h) dataset sizes.

4.7.1. Effect of DNN depth
One of the premises of using a DL model is the fact that deep models

can generalize better and lead to more accurate predictions. Thus, as a
first experiment, it is necessary to to validate that claim by analyzing
the dependence of the accuracy with the DNN depth.

To analyze the accuracy of detecting faulty feeders, a dataset is built
comprising the 65,000 datapoints representing healthy operation and
65,000 datapoints representing faults (the latter are randomly sampled
from the larger dataset comprising 663,552 datapoints). For identifying
the branch and locating the fault, the full dataset with 663,552 data-
points is employed. In all three cases, as defined in Section 3.3.3, the
dataset is split into training, validation, and test datasets.

4.7.2. Effect of voltage measurement type
A common practice in the literature is to use positive, negative and

zero voltage components instead of the phase voltages. In unbalanced
operation, where negative and/or zero sequence components of the
voltage and current might be present, the use of symmetrical compo-
nents ensures that no information is lost. In this experiment, to validate
this claim, the effect in accuracy of using the two types of voltage
measurements (symmetrical components vs. phase measurements) is
assessed.

The datasets used are the same as the ones defined in Section 4.7.1
for studying the effect of the DNN depth. As for the DNN depth,

considering the results of the previous experiment, the current experi-
ment is performed using a DNN with optimal depth, i.e. 3 hidden layers
for branch identification and 4 hidden layers for fault location.

4.7.3. Effect of fault resistance value
As motivated in the introduction, while methods in the literature

focus on low-impedance faults, high-impedance faults are harder to
locate. More specifically, this difficulty derives from the fact that with
an increase of the fault resistance, the amplitude of the currents flowing
though the faulty branch is severely decreased. Those very small cur-
rents will in their turn decrease the voltage drop across the faulty
branch, bringing the voltages to a level very close to that of normal
operating conditions. To validate the importance of studying high-im-
pedance faults and to show the relevance of the proposed method, the
dependence of the accuracy with the fault resistance value is studied.

The datasets used are the same as for the other two experiments.
However, to compare the dependence of the accuracy with regards to
fault resistance, the datapoints are grouped based on their fault re-
sistance value. In particular, as the fault resistances are sampled from a
logarithmic uniform distribution, they are grouped into six datasets
according to the following fault resistance intervals:
[0.1, 1), [1, 10), [10, 50), [50, 100), [100, 500), [500, 1000).

For the DNN depth, 3 and 4 hidden layers are once again con-
sidered. For the type of voltage measurements, considering the results
of the previous experiment, the positive, negative and zero voltage
components are selected.

4.7.4. Effect of type of fault
The effects and characteristics of a fault do not only depend on the

resistance value of the fault, but also on the type of the fault itself.
Balanced and unbalanced faults can have different effects on the grid
voltage, especially in the negative and zero sequence components
where deviations from the normal operating conditions will be no-
ticeable under unbalanced faults (single-phase-to-ground faults in this
case) [78]. Therefore, to study the accuracy and robustness of the
method, its performance across the four considered fault types is
compared (see Section 4.4 for details).

The dataset is again the same as for the first two experiments.
However, the datapoints are grouped based on the fault type. For the
DNN depth and voltage measurements, again 3 and 4 hidden layers and
positive, negative and zero voltage components are considered.

4.7.5. Effect of load demand
A fifth factor that impacts the effects and characteristics of a fault is

the level of the grid load. As mentioned before (see Section 4.4 for
details), the grid load depends on the statistical behavior of consumers,
which is a function of the hour of the day and the simultaneity factor.
The higher the load demand, the higher the regular voltage drop (under
normal operation) will be across a branch [79]; this makes the voltage
profile between normal operation during high load demand and faulty
operation for high-impedance faults (low voltage drop during a fault)
very similar, and in turn the fault diagnosis process more difficult.

It is important to note that this study focuses on the analysis of the
load but not the generation because the load is the dominant factor.
Particularly, being an inverter controlled source, the contribution of the
PV units to the fault current is expected to be limited (the current is
limited at 1.1–1.4 p.u. of normal operation during a fault) [78]. Con-
sequently, the effect of an increased load demand is expected to dom-
inate over that of increased penetration of PVs.

As the load depends on the simultaneity factor, the same dataset as
before is used but with the datapoints grouped based on the three si-
multaneity factors, i.e. 0.3, 0.5 and 0.8. For the DNN depth and voltage
measurements, again 3 and 4 hidden layers and positive, negative and
zero voltage components are considered.
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4.7.6. Effect of fault location
Another influencing factor that is identified in this study, is the

location of the fault. Particularly, the fault depends on the branch itself
and the distance within the branch. In detail, since the grid is hetero-
geneous (see Section 4.1), the longer a branch is the higher the number
of different conductors connecting the nodes are; this in turn increases
the heterogeneity of the grid and hinders the fault location process. At
the same time, nodes further away from the beginning of the feeder will
experience higher voltage drops than those located at the beginning
[79]; thus, the location of the fault within the faulty branch itself is also
influencing the accuracy of the method. For both cases, emphasis is
given in the fault distance estimation task as it is more complex and
vulnerable against these parameters.

In terms of the dataset, the full dataset is considered. For the DNN
depth and voltage measurements, 4 hidden layers and positive, nega-
tive and zero voltage components are considered.

4.7.7. Effect of number of measurements
One of the main advantages of the method is that it can perform

accurately even when the grid information is limited. To assess this
claim and to show that the method can indeed perform well under the
assumption of limited information, the accuracy of the method is tested
when the only measurements available are at the beginning and at the
end of each branch. Then, the performance is compared with the case of
having voltage data at all intermediate nodes. As before, for the DNN
depth and voltage measurements 3 and 4 hidden layers, and positive,
negative and zero voltage components are considered.

4.7.8. Effect of dataset size
A potential argument against the proposed method is the fact that it

might require large amounts of data. Particularly, as it is based on a
DNN, it could be argued that the model is only accurate if it is estimated
using a large dataset.

To refute this claim and to show that the method is accurate even
for small dataset sizes, the method accuracy is also studied as a function
of the amount of available data. In detail, the same large dataset is
considered as for the previous experiment; then, a test dataset of 30,000
scenarios is randomly sampled using an uniform distribution. From the
remaining datapoints not included in the test dataset, another uniform
random sampling is performed to build subsets of different sizes.
Finally, the performance of the method is evaluated across these da-
tasets of different sizes: the DNN is trained with these differently-sized
datasets and all models are evaluated using the defined test dataset. As
before, for the DNN depth and voltage measurements 3 and 4 hidden
layers and positive, negative and zero voltage components are con-
sidered.

4.8. Case study limitations

Five potential limitations of the case study are being addressed here.
These limitations concern: the type of studied faults, the line charging
current phenomenon, the earthing system of the grid, the use of flexible
alternating current transmission system devices and the source of the
data.

First of all, with regards to the studied faults, since the DNN is
trained for short-circuit single-phase-to-ground and three-phase faults
the presence of another type of fault (double-phase-to-ground or phase-
to-phase) may affect the fault location method but not the fault de-
tection one, as will be explained in the next section. In the case of arc
faults a re-training of the DNN is required.

Secondly, in the simulation model, line charging currents, a phe-
nomenon that depends on two parameters: a) the line length (the
phenomenon starts having an impact after several kms) and b) the line
capacitance, are completely negligible in low-voltage distribution grids.
More specifically, in this simulation model, the two reasons that render
this phenomenon negligible are: a) the fact that the maximum length of

a branch is 640 m and b) as in all low-voltage distribution grids, in this
case too, the distribution lines present a mainly resistive nature
( >R X/ 1) thus limiting the effect of the line capacitance on the char-
ging currents.

Additionally, it is important to note that, without loss of generality
and for the sake of simplicity, the case study is based on the most
popular earthing strategy for LV distribution grids: the solidly grounded
neutral, in this case, through a 40 resistance. However, this does not
mean that the proposed method is limited to this type of earthing
system. As the method is generalizable, a new earthing type would only
require a model re-estimation so that the model becomes tailored to the
new earthing type.

Furthermore, in the considered grid model, the installation of flex-
ible alternating current transmission system devices is not taken into
account as it can prove a very expensive solution for low-voltage grids.
The presence of such devices serves at improving the power quality and
will mitigate the amplitude of the produced voltage sag during a fault.
However, since the method is able to detect with 100% accuracy even
very high impedance faults, in terms of fault detection, its accuracy will
not be affected. Similarly for the distance estimation of low-impedance
faults where the effect of such devices will be more visible, as long as
this effect is considered in the modeling of the system and the training
phase of the DNN it is not expected to affect significantly the accuracy
of the algorithm.

Finally, as stated before, the last limitation of this case study is that
the method was evaluated on data acquired from simulations based on
a real distribution grid of Portugal and not on data from field tests.

5. Results and discussion

To analyze and discuss the results, the eight different experiments
are presented individually. However, as the dependence of the accuracy
with regards to the voltage type and fault type did not produce very
interesting results, the analysis of these two experiments is presented in
8 and 9. In addition, for the sake of simplicity, the individual results of
each experiments are not listed in full detail but instead summarized
and explained briefly. Nonetheless, for the sake of completion, the
complete results of all experiments are included in 10.

It is important to note that for each experiment the accuracy of the
method is analyzed individually for two of the tasks that it addresses:
branch identification and fault location. For the other task, i.e. fault
detection, the results are summarized in a single section as the accuracy
of the method for detecting faults does not vary across the experiments.

5.1. Fault detection

As mentioned before, the results for fault detection are not in-
dividually presented for each experiment since the accuracy of the
method for detecting faults does not vary across experiments.

In detail, independently of the number of layers, the method
achieved an 100% accuracy in detecting the fault occurrence and
identifying the feeder under fault. This result is also observed across all
fault resistance values, simultaneity factors, fault locations, number of
measurements, and dataset sizes. When compared with the accuracy for
the other two tasks, this result might seem surprising. However, it is not
so: when a fault occurs in a feeder, all the branches of the feeder get
disturbed. The voltage deviations across the branches of the faulty
feeder and the current increase in the beginning of the faulty feeder
provide the DNN with sufficient information to distinguish faulty from
normal operation and to identify the faulty feeder from the healthy
ones.

5.2. Effect of DNN depth

The first experiment to be discussed involves the method accuracy
as a function of the DNN depth. Fig. 7 summarizes the results of this
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experiment for both branch identification and fault location. For both
tasks, it can be observed how the accuracy improves as the number of
layers increases and then it plateaus when it reaches a certain depth.3

This plateau, i.e. the optimal depth, is reached at 3 and 4 hidden layers
for branch identification and fault location, respectively.

These results validate the premise that using a DL model is very
important as it can generalize better and lead to more accurate pre-
dictions. In particular, it can be clearly observed how shallow networks,
i.e. with 1–2 hidden layers, are not accurate enough and how deep
models are needed in order to fully capture the fault dynamics in the LV
grid.

Another interesting result (not displayed here but listed in 10) is
that the depth becomes more important for higher values of fault re-
sistance. Particularly, deeper neural networks are much more accurate
at locating high-impedance faults than shallow networks: e.g., while the
difference in branch identification accuracy between 1 and 3 hidden
layers is only 0.17% for fault resistances between 0.1 and 1 , this
difference reaches a maximum of 7.33% for fault resistances between
10 and 50 . However, for extra high fault resistance values, i.e. fault
resistances between 500 and 1000 , though still deeper networks are
significantly better (the difference between 1 and 3 layers is 3.77%), the
accuracy increase they offer is less significant compared to high fault
resistance values (i.e. 10–500 ). This can in principle be expected as
higher fault resistances represent cases where it is more difficult to
draw conclusions of whether a branch is under fault and to estimate the
location of the fault. In the extreme case of extra high fault resistance
values (between 500 and 1000 ) even deeper networks have a harder
time locating faults thus making the improvement less significant
compared to high fault resistance values (i.e. 10–500 ).

5.3. Effect of fault resistance value

As a second experiment, the accuracy dependence w.r.t. to fault
resistance is analyzed. Fig. 8 displays the results of this experiment for
both branch identification and fault location. As can be observed, the
larger the fault resistance, the lower the accuracy when identifying
faulty branches and locating faults.

The first thing to note is that the proposed method is highly accu-
rate. Particularly, even for high fault resistance values, the accuracy is
reasonably high: the method identifies faulty branches with an accuracy
between 95 and 70%, and estimates the fault location with an error
between 5 and 20%.

These results validate the importance of developing methods for
high-impedance faults. Particularly, while large resistance values are
obviously harder to predict, the literature is limited to methods for low
fault resistance values.

5.4. Effect of load demand

For the third experiment, the effect of the load demand is analyzed.
Fig. 9 shows the results of this experiment for the branch identification
task. As expected, a decrease of the branch identification accuracy with
an increase of the simultaneity factor, i.e. an increase in the grid load,
can be observed. This decrease is noticed across all the fault resistance
values with the difference between an =SF 0.3 and =SF 0.8 ranging
from 3.8 to 13.2%.

Similarly, the results for the distance estimation task are presented
in Fig. 10. In this case, to show the dominance of the load over the
generation, the method estimation error is not only plotted against the
different values of simultaneity factor, but also against the hours of the
day and the considered generation and load profiles. Regarding the
hour of the day, three regions of load and generation combinations can
be identified: low demand and generation - region (I); medium demand
and high generation - region (II); high demand and low generation -
region (III).

The first observation that can be made is that, as with the branch
identification task, the accuracy of the method decreases with an in-
crease of the simultaneity factor. In addition, the dominance of the load
over the PV generation on the accuracy of the method is evident as all
error estimation curves follow the trend of the load profile curve. In
other words, the distance estimation error increases with an increase of
the load demand but not with an increase of the generation.

These result are expected as with an increase of the activated loads
in the grid, i.e. higher simultaneity factor, voltage drops across the
branches during healthy operation will be more significant, thus
bringing faulty and normal operation voltage values closer together. As
a consequence, it becomes harder to identify a faulty from a healthy
branch and locate a fault.

5.5. Effect of fault location

For the fourth experiment, the effect of the location of the fault in
terms of the faulty branch and the distance within the faulty branch
itself are presented. For the sake of simplicity, the focus is put on the
fault distance estimation task as it is more complex and vulnerable
against these parameters.

Fig. 11 shows the results in terms of the estimation error as a

Fig. 7. Branch identification accuracy and fault location error for different
number of layers.

Fig. 8. Branch identification accuracy and fault location error for different fault
resistance values using 3 and 4 hidden layers respectively.

3 Note that the curves shapes are inverted as one metric represents the ac-
curacy and the other the error.
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function of the branch and the fault resistance. Branches are sorted in
an ascending order with lengths ranging from 185 to 640 m. To give a
different notion of the accuracy of the method, the distance estimation
results are provided in meters instead of percentages. From these re-
sults, two important observations can be made: a) as expected, the fault
distance estimation error increases with increasing branch length; b)
this effect gets amplified with the increase of the fault resistance. This
can be further observed from the maximum and minimum errors, which
respectively occur at the longest branch with the largest fault resistance
values and shortest branch with smaller fault resistance values.

Fig. 12 presents the estimation error as a function of the fault lo-
cation within the branch and the grid load. As before, two observations
can be made: a) as expected, the error increases as the fault gets located
towards the end of the branch; b) this effect gets amplified with the
increase of the activated loads in the grid which will increase the vol-
tage drop across the branch. This can be further observed from the
maximum and minimum errors: the minimum error is 5.68% and occurs
for faults in the beginning of the branch with =SF 0.3; similarly, the
maximum error is 17.26% and occurs for faults at the end of the branch
with =SF 0.8.

The complexity of the LV grid compared to MV distribution grids or
even transmission grids is evident, as mentioned in the motivation. The
increased heterogeneity and imbalance that the LV grids present, hinder
the fault location methods. However, even under the worst conditions
the developed DL method yields a very good accuracy in locating the
fault.

5.6. Effect of number of measurements

One of the key properties of the proposed method is that it can
accurately locate faults even when the sensorial data along the grid are
limited. To test this hypothesis, the accuracy of the method is evaluated
assuming that sensors are only available at the beginning of each
branch (one common voltage measurement for all branches at the
substation level) and at the end of each branch (one voltage measure-
ment at the terminal node of each branch). Figs. 13 and 14 respectively
display the results of this experiment for branch identification and fault
location.

As can be observed, even when the number of sensors is limited, the
average decrease in branch identification accuracy is just 4.6% and the
average increase in fault location error is just 4.4%. Considering that
the accuracy variations when varying fault resistances are larger, it can
be argued that these changes in accuracy are very minor. Therefore,

Fig. 9. Branch identification accuracy for different simultaneity factor values
using 3 hidden layers.

Fig. 10. Distance estimation error for different simultaneity factor values
throughout the day using 4 hidden layers. The main generation (dashed purple
line) and load profiles (solid purple line) are provided in the secondary y axis.
Three distinct regions (I, II and III) of different performance are marked. The
dominant effect of the load demand over the PV generation is shown as the SF
curves follow the trend of the load curve and not so much that of generation.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. Distance estimation error for different types of branches and fault re-
sistance values using 4 hidden layers. Branches are sorted in an ascending order
in terms of length.

Fig. 12. Distance estimation accuracy for different locations of the fault within
a branch.
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these results show that the proposed method does indeed accurately
locate faults even when the number of sensors is limited.

5.7. Effect of dataset size

As a last experiment, the accuray of the method with regards to the
dataset size is analyzed. Fig. 15 displays the results of this experiment
for both branch identification and fault location.

As it could be expected, the lower the dataset size, the lower the
accuracy. Yet, the difference is not as large as one might expect: even
when reducing the size of the training dataset by a factor of 100 (from
300,000 to 3000 datapoints), the average branch accuracy is still 73%
and the fault location error is 13%.

Considering the accuracy of other methods from the literature (see
Section 6), and considering that the smallest training dataset test is 10
times smaller than the test dataset (30000 datapoints), it is clear that
the method performs reasonably well even when the amount of data is
small.

These results are very important as they refute the most important
argument against the proposed method, namely, that the method might
be innacurate for small dataset sizes as it is based on a DNN.

5.8. Further case studies

It could be argued that using more that one case study is necessary

to claim that the method is generalizable. However, the generalizable
property of the method is defined due to the type of inputs that it re-
quires, i.e. inputs that are non-grid specific and that can be obtained
from any grid. In this context, while the accuracy of the method might
depend on the case study, the generalizability of the method does not.

This is not to say that further case studies are not useful.
Particularly, it would be useful to compare the accuracy of the method
in different applications to study how the accuracy varies for different
grids. However, such comparison is out of the scope of this paper as it
requires new grid simulators, data that we do not have, and an analysis
of the influence in the accuracy of each grid characteristic that would
go beyond the current scope.

6. Comparison with literature methods

As a final comparison, the accuracy of the proposed method is
analyzed and compared against other methods from the literature. It is
important to note that, since the method is able to detect a fault oc-
currence with 100% accuracy, no comparative analysis is performed for
this task. Instead, the comparative analysis is divided into two parts:
one for faulty branch identification and the other for fault location
estimation. The objective of this study is not only to provide a com-
parative analysis of the method performance, but to also identify the
differences and limitations in the case studies from literature.

Fig. 13. Branch identification accuracy for less available measurements using 3
hidden layers.

Fig. 14. Distance estimation error for less available measurements using 4
hidden layers.

Fig. 15. Branch identification accuracy and distance estimation error for dif-
ferent dataset sizes using 3 and 4 hidden layers respectively.

Fig. 16. Average branch identification accuracy for different fault resistance
values, 3 hidden layers and an =SF 0.5. The results are compared with the LV
conventional method and with two MV methods.
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It is important to note that, since the case studies are different, the
accuracy differences between the methods cannot be strictly measured
and this comparison is purely qualitative. In addition, most of the
methods from the literature are proposed for the MV grid case, which
obviously differs significantly from the LV case.

6.1. Branch identification

Two methods designed for MV grids [51,80] and one [33] for LV
grids are employed to compare the branch identification accuracy of the
proposed method.

The first method [51] proposes a general faulty branch identifica-
tion approach based on synchronized voltage and current measure-
ments at the point of common coupling of the distributed generators.
The second method [80] is based on phase measurement unit real-time
state estimation and is able to identify the faulted lines of a distribution
grid. Finally, the third method [33] compares the minimum voltage
within each branch of the faulty feeder and considers as faulty, the
branch with the highest voltage drop.

Fig. 16 presents the comparative analysis of the four branch iden-
tification methods mentioned above: the proposed DL method, the
conventional method for LV grids, and the methods for the MV grid
case. The first obvious observation from Fig. 16 is that the proposed
method outperforms the conventional method by an average of 14.56%,
effect that is even more visible for higher fault resistance values. At the
same time, the DL method presents on average better accuracy than the
minimum threshold of [51] and performs slightly worse than [80]. Yet,
even with these similar accuracies, it can be argued that the proposed
method is better than the MV methods as: a) the MV methods from the
literature are only studied for a limited number of fault resistance va-
lues; b) the comparison with methods from the MV grid case is not
exactly fair as the MV case is arguably less complex.

To provide a more thorough comparison, the differences between
the case studies are presented in Table 3. From Table 3, the superiority
of the case study of this paper in terms of considered influencing
parameters (e.g. fault resistance, fault locations and measurement
noise) and the number of the total considered fault scenarios is evident.

6.2. Distance estimation

As with the branch identification task, two methods designed for
MV distribution grids [18,48] and one conventional one for LV grids
[33] are employed to compare the fault location error of the proposed
method.

In [18], neural networks in combination with a support vector
machine method are used to create two fault location schemes. In [48],
a single-end impedance-based method based on time-domain formula-
tion is proposed. Finally, [33] proposes a graphic method based on the
extracted voltage profile.

The results of this comparative analysis are gathered in Fig. 17. To
have a fair comparison, the error metrics are displayed in terms of
meters and not percentual errors as the lines in MV grids are orders of
magnitude longer than those of LV grids. Particularly, long lines would
increase the denominator of (9) and reduce the percentage error, which
in turn would lead to deceiving results. The first conclusion that can be
drawn from Fig. 16 is that the proposed DL method outperforms the
conventional method by an average of 59.29 m. Additionally, not only
does the proposed method perform better than a conventional LV
method, but it also outperforms both MV methods.

To provide a better comparison, the differences between the case

Table 3
Comparison of case studies for branch identification methods.

Parameters Brahma [51] Pignati [80] This case study

Grid 12.4 kV (MV), U.S.A. 10 kV (MV), The Netherlands 400 V (LV), Portugal
Fault types 1ph-G, 2ph-G, ph-ph, 3ph 1ph-G, 2ph-G, 3ph 1ph-G, 3ph
Fault resistance ( ) 1–5 (ph-ph, 3ph), 1–50 (1ph-G, 2ph-G) 1, 100, 1000a 0.1–1000 (63772 different values)
Fault location within the sector 0.05, 0.5, 0.95 0.25, 0.5 9 locations within each sector
Measurements, inputs synchronized I , V at the point of common

coupling of DG
I , V from phase measurement units on
every node

RMS I at the beginning of the feeder, RMSV at
every node

Noise in measurements – 0.016% for voltage, 1.2% for current 1%

a 1000 only for one case.

Fig. 17. Average distance estimation error for different fault resistance values,
4 hidden layers and an =SF 0.5. The results are compared with the LV con-
ventional method and with two MV methods.

Table 4
Comparison of case studies for fault location methods.

Parameters Thukaram [18] Aslan [50] This case study

Grid 11 kV (MV), 52-bus distribution system 34.5 kV (MV), simplified distribution
feeder

400 V (LV), Portugal

Fault types 1ph-G, 2ph-G, ph-ph, 3ph 1ph-G, 2ph-G, ph-ph, 3ph 1ph-G, 3ph
Fault resistance ( ) 50, 60, 70, 80, 90, 100 2, 5, 10, 15, 20, 30, 40, 50, 60, 80, 100 0.1–1000 (63772 different values)
Fault location 0.2, 0.5, 0.8 (within each branch) every 2.5 km (total length of 40 km) 288 locations (9 within each sector)
Measurements, inputs I , V at substation and statuses of circuit breakers,

relays
I , V at one end of the line rms I at the beginning of the feeder, rms V at every

node
Noise in measurements – – 1%
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studies are presented in Table 4 where the superiority of the case study
of this paper in terms of considered influencing parameters (e.g. fault
resistance, fault locations and measurement noise) and the number of
the total considered fault scenarios is demonstrated once again.

7. Conclusions

In this paper, a method based on deep neural networks (DNNs) has
been proposed as a solution to detect and locate faults in low-voltage
(LV) smart distribution grids. The method improves upon the existing
literature by addressing four limitations of existing methods: a) not
being limited by the grid topology but instead being generalizable to
other grid structures; b) being the first method to accurately detect and
localize high-impedance faults in the LV distribution grid; c) being able
to accurately detect and localize faults even when data and the number
of sensors are limited; d) being able to perform not one but three dif-
ferent identification tasks: detect a fault occurence and simultaneously
identify a faulty feeder, identify a faulty branch, and locate the position
of the fault.

To test the accuracy of the method and to study its main properties,
a LV distribution grid in Portugal has been considered. Moreover, to
evaluate the robustness of the method, its accuracy has been measured
against different effects: a) depth of the DNN model, b) voltage mea-
surements, c) fault resistance values, d) fault types, e) load demand, f)
fault location, g) number of measurements, and h) dataset sizes.

Using the experimental results, it is shown that the proposed
method excels in detecting and locating faults as it can detect a faulty
feeder with a 100% accuracy, identify a faulty branch with a 84%
average accuracy, and estimate the actual fault location within a branch
with a average error of 12%. In addition, the method accuracy is
compared against other literature methods and it is shown that the
proposed method can obtain a similar or better performance than state-
of-the-art approaches.

Based on the several simulation experiments the main properties of
the method are demonstrated: a) the method is accurate even when the
number of sensors is limited as even in the extreme case of having only

two available measurements per branch the method accuracy is de-
creased by only 4–5%; b) the method accurately estimates the location
of high-impedance faults; c) the method can be used even when the
available datasets are small. As a final result, the importance of deep
models is demonstrated by showing how the depth of the DNN plays a
significant role in obtaining accurate results.

As future research, the case study will be expanded to the case of
double-phase-to-ground faults and phase-to-phase faults. Moreover, the
method will be tested against different grid topologies.

CRediT authorship contribution statement

Nikolaos Sapountzoglou: Conceptualization, Methodology,
Validation, Formal analysis, Investigation, Data curation, Writing -
original draft, Writing - review & editing, Visualization. Jesus Lago:
Conceptualization, Methodology, Software, Validation, Formal ana-
lysis, Investigation, Data curation, Writing - original draft, Writing -
review & editing. Bart De Schutter: Supervision. Bertrand Raison:
Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgment

This research has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No. 675318 (INCITE). Thanks are
also due to Mr. Konstantinos Kotsalos and the company Efacec in Maia,
Portugal for providing us with the available data of a real semi-rural LV
distribution grid of Portugal.

Appendix A. Effect of voltage measurement type

In this section, the accuracy dependence with regards to the type of voltage measurements is analyzed. Fig. A.18 displays the results of this
experiment for branch identification and fault location. As can be observed, using positive, negative and zero voltage components instead of the more
standard phase voltages leads to a more accurate identification of faulty branches and location of faults.

It is important to note that, while the difference in accuracy between the two types of measurements is minor, these results do validate the
proposed hypothesis. Namely, that the use of symmetrical components ensures that no information is lost during unbalanced operation, and that as a
result more accurate results can be obtained.

Fig. A18. Average branch identification accuracy and fault location error for different voltage measurement types using 3 and 4 hidden layers respectively.
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Appendix B. Effect of type of fault

In this section, the accuracy dependence with regards to the type of fault is analyzed. Fig. B.19 displays the results of this experiment for both
branch identification and fault location. As can be observed, for single-phase-to-ground faults the accuracy is independent of the underlying faulty
phase. However, three-phase faults are easier to locate as their effect on the grid is more severe.

While this result might seem surprising (one might expect the accuracy to depend on the type of fault), it simply validates the robustness of the
proposed method. Particularly, the proposed method is able to accurately identity all faults independently of the underlying cause for the fault. This
also proves that the method is immune to the unbalanced per phase distribution of loads and PVs as they do not seem to affect the results of the
single-phase-to-ground faults.

Appendix C. All experimental results

In this Appendix, we provide a comprehensive list of the obtained results. In detail:

• Tables C5 and C6 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. the DNN
depth.
• Tables C7 and C8 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. the voltage
measurement type.
• Tables C9 and C10 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. the fault
resistance and the grid load.
• Tables C11 and C12 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. the fault
type and the grid load.
• Tables C13 and C14 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. limiting
the number of sensors in the grid to the minimum.
• Tables C15 and C16 respectively represent the dependency of the branch identification accuracy and the distance estimation error w.r.t. the size
of the training dataset.
• Finally, Tables C18 and C17 list the dependency of the distance estimation error w.r.t. to the fault location. Particularly, Table C17 depicts the
dependency w.r.t. the normalized fault location within a branch and Table C18 the dependency w.r.t. the faulty branch.

Fig. B19. Average branch identification accuracy and fault location error for different fault types using 3 and 4 hidden layers respectively.

Table C5
Effect of number of layers on the branch identification accuracy. The metric is computed as the average across all simultaneity factors with the use of symmetrical
components as measurement tool.

Branch identification accuracy (%)
Fault Number of layers Difference

resistance 1 2 3 4 5 6 7 L 3 - L 1

[0.1, 1] 95.73 95.07 95.90 95.83 96.17 95.87 96.03 0.17
[1, 10) 92.23 93.17 94.13 94.37 94.50 93.77 94.30 1.90
[10, 50) 83.30 87.43 88.47 88.10 87.47 87.83 87.10 5.17
[10, 50) 73.87 80.63 81.20 81.30 80.07 81.37 81.10 7.33
[100, 500) 68.07 72.60 74.20 74.13 73.00 74.00 73.37 6.13
[500, 1000] 63.20 65.33 66.97 67.57 65.10 67.97 66.53 3.77

Average 79.40 82.37 83.48 83.55 82.72 83.47 83.07 4.08
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Table C6
Effect of number of layers on the fault distance estimation error. The metric is computed as the average across all simultaneity factors with the use of symmetrical
components as measurement tool.

Distance estimation error (%)
Fault Number of layers Difference

resistance 1 2 3 4 5 6 7 L 1 - L 4

[0.1, 1] 7.51 6.13 4.45 4.38 4.23 3.95 3.68 3.13
[1, 10) 10.26 7.99 6.11 5.73 5.54 5.56 5.22 4.53
[10, 50) 15.51 11.74 9.85 9.21 9.38 9.92 9.38 6.30
[10, 50) 20.16 15.56 13.72 13.49 14.23 14.25 13.95 6.67
[100, 500) 23.43 19.07 17.67 17.16 18.12 18.17 17.41 6.27
[500, 1000] 25.95 22.50 21.20 20.90 21.79 21.27 20.51 5.05

Average 17.14 13.83 12.17 11.81 12.22 12.19 11.69 5.33

Table C7
Effect of the voltage type on the branch identification accuracy. The metric is computed as
the average accuracy for 3 hidden layers and an =SF 0.5.

Fault Identification accuracy (%)

Resistance Phase Symmetrical

[0.1, 1] 91.6 96.7
[1, 10) 89.9 94.5
[10, 50) 83.8 90.6
[50, 100) 77.1 83.0
[100, 500) 70.7 75.3
[500, 1000] 65.6 67.7

Average 79.78 83.90

Table C8
Effect of the voltage type on the distance estimation error. The metric is computed as
the average error for 4 hidden layers and an =SF 0.5.

Fault Estimation Error (%)

Resistance Phase Symmetrical

[0.1, 1] 8.01 4.15
[1, 10) 9.86 5.76
[10, 50) 13.09 9.04
[50, 100) 18.02 13.77
[100, 500) 20.38 17.53
[500, 1000] 21.58 21.45

Average 79.78 83.90

Table C9
Effect of the fault resistance and the load demand on the branch identification accuracy. The metric is computed as the average accuracy for 3
hidden layers and symmetrical components as measurement tool.

Identification accuracy (%)
Fault SF

resistance 0.3 0.5 0.8 Avg

[0.1, 1] 97.4 96.7 93.6 95.9
[1, 10) 97.5 94.5 90.4 94.1
[10, 50) 94.0 90.6 80.8 88.5
[50, 100) 86.3 83.0 74.3 81.2
[100, 500) 78.7 75.3 68.6 74.2
[500, 1000] 72.3 67.7 60.9 67.0
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Table C10
Effect of the fault resistance and the load demand on the distance estimation error. The metric is computed as the average error for 4 hidden
layers and symmetrical components as measurement tool.

Estimation error (%)
Fault SF

resistance 0.3 0.5 0.8 Avg

[0.1, 1] 2.41 4.15 6.58 4.38
[1, 10) 2.55 5.76 8.87 5.73
[10, 50) 5.19 9.04 13.39 9.21
[50, 100) 10.16 13.77 16.55 13.49
[100, 500) 14.23 17.53 19.71 17.16
[500, 1000] 19.03 21.45 22.23 20.90

Table C11
Effect of the type of fault and load demand on the branch identification accuracy. The metric is computed as the average accuracy for 3
hidden layers and symmetrical components as measurement tool.

Identification accuracy (%)
Fault SF

type 0.3 0.5 0.8 Avg

AG 89.8 86.8 81.3 86.0
BG 89.9 85.8 80.0 85.2
CG 89.5 87.1 80.8 85.8
ABC 94.1 92.3 87.1 91.2

Table C12
Effect of the type of fault and load demand on the distance estimation error. The metric is computed as the average error for 4 hidden
layers and symmetrical components as measurement tool.

Estimation error (%)
Fault SF

type 0.3 0.5 0.8 Avg

AG 9.75 7.17 13.02 9.98
BG 10.36 7.25 13.45 10.35
CG 11.28 7.61 13.36 10.75
ABC 7.98 5.14 10.21 7.78

Table C13
Effect of limiting the number of sensors on the branch identification accuracy. The metric
is computed as the average accuracy for 3 hidden layers, an =SF 0.5 and symmetrical
components as measurement tool.

Fault Identification accuracy (%)

Resistance All sensors Limited sensors

[0.1, 1] 96.7 94.4
[1, 10) 94.5 89.9
[10, 50) 90.6 83.2
[50, 100) 83.0 76.7
[100, 500) 75.3 71.3
[500, 1000] 67.7 64.8

Average 84.6 80.1
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Table C14
Effect of limiting the number of sensors on the distance estimation error. The metric is
computed as the average error for 4 hidden layers, an =SF 0.5 and symmetrical com-
ponents as measurement tool.

Fault Estimation error (%)

Resistance All sensors Limited sensors

[0.1, 1] 4.15 8.72
[1, 10) 5.76 12.52
[10, 50) 9.04 16.08
[50, 100) 13.77 18.60
[100, 500) 17.53 20.73
[500, 1000] 21.45 21.28

Average 11.95 16.32

Table C15
Effect of the size of the training dataset on the branch identification accuracy.The metric
is computed as the average accuracy for 3 hidden layers, an =SF 0.5 and symmetrical
components as measurement tool.

Number of training datapoints Branch identification accuracy (%)

3184 72.9
7961 77.4
15,922 82.6
31,845 87.2
47,767 88.6
79,612 91.3
95,535 92.1
159,225 94.6
238,838 95.9
318,451 95.2

Table C16
Effect of the size of the training dataset on the distance estimation error.The metric is
computed as the average error for 4 hidden layers, an =SF 0.5 and symmetrical
components as measurement tool.

Number of training datapoints Distance estimation error (%)

3518 13.99
7037 10.04
14,074 9.02
21,112 7.09
35,186 6.01
42,224 5.46
70,373 5.01
105,560 5.63
140,747 4.45
318,451 4.79

Table C17
Effect of the normalized fault location within a branch on the distance estimation error. This metric is computed independently for each
fault resistance interval as the average error across all simultaneity factors, for 4 hidden layers and with symmetrical components as
measurement tool.

Estimation error (%)
Fault SF

type 0.3 0.5 0.8 Avg

[0, 0.2) 5.69 10.04 13.17 9.63
[0.2, 0.4) 5.95 7.96 8.67 7.53
[0.4, 0.6) 6.76 8.28 10.11 8.38
[0.6, 0.8) 7.42 10.23 13.87 10.51
[0.8, 1] 9.37 12.33 17.28 12.99
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