
A study of demand oblivious routing
algorithms

Jose Luis Almodovar Chico

PVM 2012-072

A study of demand oblivious routing
algorithms

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Jose Luis Almodovar Chico
born in Madrid, Spain

Network Architectures and Services Group
Department of Telecommunications

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Copyright c⃝ 2012 Jose Luis Almodovar Chico.
No part of the material protected by this copyright may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording or by
any information storage and retrieval system, without the permission from the author and
Delft University of Technology.

A study of demand oblivious routing
algorithms

Author: Jose Luis Almodovar Chico
Student id: 1546694
Email: joseluis.almodovarchico@gmail.com

Abstract

Nowadays, people make use of communication networks (e.g. Internet) everyday
and expect high quality from the offered services. Providing a good quality of service
and optimizing the utilization of the network resources are the main objectives in de-
signing a routing. It has always been believed that traffic demands play an important
role in this design because the better the traffic demands are known, the more properly
they can be allocated. However, understanding and estimating these traffic demands is
not a trivial task.

In 2002 Räcke asked himself an important question: “how important is accurate
knowledge of traffic demands for obtaining good utilization of the network?” This
marked the beginning of a new kind of routing algorithms: the demand oblivious rout-
ing algorithms or oblivious routing. These routing algorithms ignore the current status
of the network when making routing decisions and they only base their decisions on
the source, destination of the flows and, in certain cases, some random values. These
kind of algorithms have evolved a lot during the last years in three different directions.
Nevertheless, according to the knowledge of the author, there has been no study until
now that evaluates the performance of algorithms from these three branches.

Firstly, this thesis will present a complete and exhaustive study based on the three
papers that originated the different kinds of oblivious routing. Then, a framework will
be developed to compare these three algorithms under the same conditions and with
a range of metrics from theoretical calculations to more practical ones. Finally, based
on the results obtained, possible improvements for these families of algorithms will be
suggested.

Thesis Committee:

Chair: Dr. Ir. F. A. Kuipers, Faculty EEMCS, TU Delft
Committee Member: Dr. M. M. de Weerdt, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Doerr, Faculty EEMCS, TU Delft

ii

Preface

First of all, I would like to thank Joanna Pelc and Hendrik van Antwerpen for all their
advices and support. I would also like to thank Javier Martin for his collaboration in this
thesis and his comments about my report. And, I would like to thank my supervisor Dr. Ir.
Fernando Kuipers for his guidance and support along the months that took me to complete
this work.

This MSc means the end of a stage in my life. It would be impossible to name one by
one all the persons that have made this time unforgettable for me but I couldn’t write this
acknowledgement section without thinking about Andre, Ruben, Diogo, Andreia, Isabel,
Nerea, Mariana, Melati, Pipe, Mauro and all the people from SoSalsa. I would also like to
thank Eliza for all the good times during the last year and a half and all her support.

And last but not least, I want to thank my family for being the way they are, for loving
me the way they love me and for believing on me no matter what.

To all of them, THANKS!

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Structure of the thesis . 3

2 Oblivious routing 5
2.1 Routing algorithms . 5
2.2 Oblivious routing . 6

3 Oblivious routing algorithms 9
3.1 Introduction . 9
3.2 The network model . 10
3.3 Räcke’s algorithm and its approximation 10
3.4 Applegate and Cohen algorithm . 19
3.5 Two-phase algorithm . 23
3.6 Conclusions . 26

4 Simulations and results 29
4.1 Introduction . 29
4.2 Framework . 30
4.3 Performance results . 39
4.4 Robustness results . 41

5 Conclusions and Future Work 47
5.1 Future work . 48

Bibliography 49

v

CONTENTS

A Appendix 53

vi

List of Figures

1.1 Different uses of the Internet nowadays. 1

2.1 Oblivious routing path representation . 7
2.2 Valiant’s trick . 7

3.1 Hierarchical decomposition of a graph . 12
3.2 A decomposition of a graph using the binary partitioning algorithm and the

associated decomposition tree . 14
3.3 Example of network path selection . 14
3.4 Example of a “stuck” situation and its resolution 15
3.5 Path reduction . 15
3.6 Example of non-connected subgraphs resulting from an iteration of the partion-

ing algorithm. 17
3.7 The reduction from undirected to directed graphs 20
3.8 Hose’s model . 24
3.9 Two-phase routing . 25

4.1 Example plot of R− value . 33
4.2 Example contour plot from the framework . 33
4.3 Mesh networks. 35
4.4 Ring Networks. 36
4.5 Bimodal distribution. 37
4.6 Totem snapshots. 38
4.7 Performance analysis . 43
4.8 Robustness contour plots for Abilene’s network 44
4.9 Robustness contour plots for RediMadrid’s network 45

vii

Chapter 1

Introduction

Like other current successful technologies, e.g. GPS, Internet was developed by the
USA army for military purposes. During its conception, nobody could have expected the
importance that Internet has nowadays, with 2,110 millions of users world-wide in 2011.

The truth is that Internet has been a victim of its own success: it was not meant to be such
an enormous network with users’ expectations and demands far from the ones at the early
days of email and world-wide web (WWW). Nowadays users demand access to Internet
anywhere, anytime and with a high quality of service (QoS). To satisfy these demands,
Internet service providers (ISP) need to design reliable and high capacity networks.

Figure 1.1: Different uses of the Internet nowadays.

1

Introduction

However, it does not matter how well a network is designed if it does not include a
proper routing scheme and an adequate policy of flow control. In other words, a good
design needs to come with a wise selection of the paths that messages will follow and a
control policy of the amount of data we introduce to the network at the same time.

Focusing on routing, the question would be: what is a wise selection? Certainly, this
question is not an easy one and it has been the point of many studies and researches. One
of the conclusions from these studies is the possibility of calculating an optimal routing
if the volume of traffic the network is expected to carry is known. In this situation, we
can calculate the best possible set of routing paths from a Linear Programming problem
(LP problem) according to an objective function (e.g. minimizing congestion, latency ...).
Therefore, now the challenge is to deduce the Traffic Matrix (TM) that the network needs
to route.

Current Internet applications like voice-over-IP, video-on-demand and peer-to-peer are
characterized as having unpredictable traffic patterns. Besides, these applications have re-
duced dramatically the time-scales at which the traffic changes dynamically, making it im-
possible to extrapolate the past patterns to the future. This makes it hard to measure or
estimate traffic demands accurately.

There have been several studies that propose models to estimate traffic demands for a
network [27] [21], but the most one can get are innacurate approximations. Hence, ISPs
over-provision the capacity of their networks in order to be sure that the expectations from
their clients can be satisfied. However, this lead to ISP networks being under-utilized to
levels below 30%.

These difficulties in obtaining accurate estimations from the traffic demands raise an-
other question: is it mandatory to have a good knowledge of the traffic matrix to design a
good routing? In other words, how well can we design a routing with no knowledge of the
traffic? And, how well will it perform? The answers to these questions rely on the study of
a new way of routing: oblivious routing.

Oblivious routing, or oblivious demand routing, refers to routing techniques that ignores
the current network status when making routing decisions. In fact, for an oblivious algo-
rithm, a routing path only depends on the source node, the target node and some random bits
when using random techniques. This way of routing has generated a lot of literature, espe-
cially after Räcke demonstrated in 2002 [24] the existence of oblivious routing techniques
with surprisingly good results for general networks.

In general, there are three main different research paths on which most of the literature
and studies about oblivious routing based their work. The most representative algorithms
that originated these three paths are presented in the following three papers:

1. First of all, the paper “Minimizing congestion in general networks” [24], where Räcke
developed an innovative framework based on decomposition techniques and random
probabilities that achieve a link congestion which is within the bound of polylog(n)
times the optimal congestion.

2. The second the paper is the one called “Making Routing Robust to Changing Traffic
demands: Algorithms and Evaluation” [9], written by D. Applegate and E. Cohen,

2

Introduction 1.1 Structure of the thesis

which developed a polynomial-size linear programming (LP) formulation that calcu-
late the algorithm with the best oblivious ratio for a given network.

3. Finally, in the paper “Oblivious routing of Highly Variable Traffic in Service Overlays
and IP backbones” [16], Murali Kodialam, T.V. Laksham, James B. Orlin and Sudipta
Sengupta extended the two-phase routing technique to general networks.

During this thesis we will present the first comparison, to the author’s knowledge, be-
tween these three different algorithms. Our focus is to develop a framework to perform
realistic tests, according to topologies and traffic demands, from a network administrator’s
point of view. We will evaluate the performance and robustness of these routing strategies,
and compare them to the Open Short Paths First (OSPF) algorithm.

Finally, we will conclude whether oblivious routing is a suitable technique to be used
in real scenarios and we will identify which of the three most representative approaches
performs the best.

1.1 Structure of the thesis

The remainder of this thesis will be organized as follows. In Chapter 2 we will talk
about prior art and we will introduce oblivious routing. We will dedicate Chapter 3 to study
and analyze meticulously the three papers mentioned above. We will present in Chapter 4
the framework used to test the algorithms and the results of these tests. Finally, in Chapter
5 we will list the conclusions derived from this thesis work and we will include a section to
propose future work.

3

Chapter 2

Oblivious routing

2.1 Routing algorithms

The main purpose of a communication network is to carry information between its
nodes. In order to exchange this information, a set of paths or routes between source and
destination nodes must be determined.

The mission of a routing algorithm is choosing the best paths in order to satisfy a goal.
This goal normally consists of minimizing a cost (e.g., congestion, latency, . . .) and it is
generally dictated by requirements of the communication network and the service offered.
The main objective is to provide good quality of service and to optimize the utilization of
the network resources.

However, choosing a routing algorithm is not a trivial decision and there are several
factors that need to be considered [12]:

1. Load balancing: A proper algorithm will balance the load across the network chan-
nels, even in situations with non-uniform traffic patterns.

2. Path length: A good routing algorithm also keeps path lengths as short as possible,
reducing the number of hops and the overall latency of a message.

3. Resiliency: This feature is critical for systems with high-reliability demands. The
ability of an algorithm to adapt in case of failure can make the difference between a
system being able to continue working or not.

Selecting a proper set of routing paths is an important decision to make, which directly
affects the performance of the network. Therefore, this decision needs to be based on reli-
able parameters, but not all the existing routing algorithms consider the same information
at the time of making a decision. According to this point, we classify the routing algorithms
in [26]:

• Adaptive routing algorithms: These strategies base their decisions on the current net-
work state (e.g., paths chosen, knowledge of the requested traffic, . . .). The term
adaptive refers to their ability of dynamically adjusting the paths to the current state

5

2.2 Oblivious routing Oblivious routing

and demands of the network. Although this approach seems ideal, it has severe dis-
advantages that make its implementation a difficult task and, therefore, a not very
cost-effective solution:

– It requires the operator to continuously monitor the network state and distribute
this information through the nodes of the network, which produces extra over-
head that affects the performance of the network.

– The network information needs to be reliable but the unpredictable Internet traf-
fic patterns make the process complex.

– Adapting routes can take a while depending on the amount of information to
process, the number of parameters to take into account, and the size of the net-
work. This processing time directly increases the delay of the traffic carried by
the network, which can be unacceptable for some services.

• Oblivious routing algorithms: These schemes ignore the network state entirely. The
routing decisions do not depend on earlier requests or current traffic at the network.
This makes its implementation much easier than in the case of adaptive routing. Be-
sides, there is no overhead added to the network and neither extra delays caused by
any path adaptation process because the routes are picked up beforehand and stay
fixed.

The main idea behind oblivious routing is providing a routing that, although it may not
perform optimally in specific situations, can perform better than adaptive algorithms
in a range of different cases without modifying the selected routes.

In the next section, we will go deeper in the study of oblivious routing. Apart from
giving a formal definition, we explain the origins of the idea and its development, which
will help the reader to understand the algorithms we will present in Chapter 3.

2.2 Oblivious routing

Oblivious routing, also referred to as demand oblivious routing, is a routing technique
that picks a set of routing paths between each pair of nodes in advance without knowledge
of traffic demands. The path taken by a packet only depends on its source-destination pair
and, maybe, a random choice to select one of the options (see Figure 2.1). Formally, obliv-
ious routing can be defined in terms of probability as [28]:

”An oblivious routing strategy is specified by a set of paths P and a function w assign-
ing a weight or flow ratio to every path in P. w has the property that, for every source-
destination pair (s, t), the set of paths Ps,t for ∑q∈Ps,t w(q) = 1.”

Oblivious routing techniques have been under study during a long time. The first ap-
proaches applied oblivious routing theory into specific network instances. The most suc-
cessful and famous result from this period was work done by Valiant and Brebner [30],

6

Oblivious routing 2.2 Oblivious routing

s

1/8

1/4

1/8

t

1/2

Figure 2.1: A system of optional paths for the pair (s, t). The numbers indicate how a flow
from s to t has to be split among the paths.[28]

who performed the first worst-case theoretical analysis for oblivious routing on a hypercube
network. This oblivious routing technique is known as Valiant’s trick and it works in the
following way:

Algorithm: For a network G=(V,E) for every packet with source-destination pair (s, t),
the algorithm chooses a random intermediate destination v with probability cap(v)/cap(V)
and sends the packet first along a flow path from s to v and then along a flow path from v to
t.

Intermediate
Node (v)

(s) (t)
Destination

Node
Source
 Node

Figure 2.2: For every pair (s, t), the traffic is sent through and intermediate node v.

Where V is the set of nodes from the hypercube network and E the set of links, and the
operator cap() represents the capacity1 of the node v or the node set V , respectively. Using
Valiant’s trick in a d-dimensional hypercube, any balanced multi-commodity flow problem2

(BMFP) can be routed with congestion at most 4d [28].

1Given a graph G = (V,E) with links capacities c, we define the capacity of a node v ∈V as:

c(v) = ∑
w∈V

c(link(v,w))

and the capacity of a node set U is defined as c(U) = ∑u∈U c(u).
2Is a multi-commodity flow problem in which the sum of the demands of the commodities originating and

terminating in node v is equal to cap(V) for every v ∈V . We define multi-commodity flow problem as a network
flow problem with multiple commodities (flow demands) between different source and sink nodes.

7

2.2 Oblivious routing Oblivious routing

In 2002 Räcke presented a framework for minimizing congestion in general undirected
networks [24]. This framework consisted of transforming any network into a tree with
nearly equivalent communication characteristics (e.g., the same bandwidth between node-
pairs, the same bottlenecks, . . .), where the congestion-related problem will be solved and
then translated back into the original network.

Surprisingly, the use of the framework in general undirected networks achieves a com-
petitive ratio3 of O(log3n) with respect to the congestion of the network links, where n
is the number of nodes of the network. The main drawback is that the algorithm requires
solving NP-hard problems and, therefore, is non-polynomial time algorithm.

Nevertheless, Räcke’s result represented a milestone in the study of oblivious routing
algorithms. This result was improved and extended in various ways by several researchers:

• In 2003, Räcke, Azar et al. [10] presented a polynomial time algorithm based in linear
programming techniques that selects the optimal oblivious routing for any network.
However, part of the solution consisted on using the complex ellipsoid method4 to
cope with the infinite number of constraints produced by the Linear Programming
(LP) formulation.

• Applegate and Cohen [9] published an algorithm that computes the optimal rout-
ing scheme by an LP problem with polynomial number of variables and constraints,
which meant an enormous improvement in running time and complexity compared to
the Ellipsoid solution.

• Harrelson et al. [14] presented an improved partitioning algorithm for obtaining trees
with nearly equivalent communication characteristics, that works in polynomial time.

Other researchers followed different paths in their works. In 2004, based on Valiant’s
trick, two-phase routing was proposed as an oblivious routing scheme for general networks
[17][31].

In general, most of the researches and innovations done on oblivious routing are based
on or make direct reference to one of the three researching paths mentioned. In the following
chapter, we will explain each of them in detail.

3The performance of an algorithm A is evaluated by comparing it to an optimal algorithm OPT , which has
full knowledge of the input sequence in advance and can process it optimally. Given an input sequence σ, let
CA(σ) and COPT (σ) denote the congestion produced by A and OPT , respectively when processing σ. Algorithm
A is called c-competitive if there exists a constant a (independent of σ) such that CA(σ) ≤ c ·COPT (σ)+a, for
any sequence σ [24]. This method to compare algorithm performances is known as competitive analysis.

4The ellipsoid method is an iterative method for minimizing convex functions, which finds an optimal
solution in a finite number of steps. The ellipsoid method generates a sequence of ellipsoids whose volume
uniformly decreases at every step, thus enclosing a minimizer of a convex function.

8

Chapter 3

Oblivious routing algorithms

3.1 Introduction

Our objective in this chapter is to study the three most representative different ap-
proaches in the field of oblivious routing. We will explain them from a theoretical and a
practical point of view. At the end of the chapter, we will present some conclusions that
will be useful to establish a comparison framework.

The three oblivious routing methods we will study are:

• The first method belongs to the results presented by Räcke in 2002. In the paper “Min-
imizing congestion in general networks” [24], Räcke developed an innovative frame-
work based on decomposition techniques and random probabilities that achieves a
congestion within the bound of polylog(n) times the optimal congestion.1 However,
the techniques used by Räcke derive in NP-hard problems and, hence, approxima-
tions started appearing. We will work with the approximation developed by Bryan
Hughes in his PhD dissertation [15].

• The second method refers to the paper called “Making Routing Robust to Changing
Traffic demands: Algorithms and Evaluation” [9] written by D. Applegate and E.
Cohen. The authors developed a polynomial-size Linear Programming (LP) formu-
lation that gives the best oblivious routing for a given network. In other words, the
algorithm obtains the oblivious routing that minimizes the congestion on the network
compared to the optimal routing the most.

• The last method is called two-phase routing, developed in the paper ”Oblivious rout-
ing of Highly Variable Traffic in Service Overlays and IP backbones” [16] written
by Murali Kodialam, T.V. Laksham, James B. Orlin and Sudipta Sengupta. This ap-
proach is based on the work from Valiant [30], which basically consists of routing
the traffic through a set of intermediate nodes instead of routing it directly to the
respective destinations.

1The congestion is defined as the maximum relative load over all network links, where relative load of a
link is defined as total amount of traffic at the link divided by the capacity of the link.

9

3.2 The network model Oblivious routing algorithms

In the following sections, we will present these algorithms together with their respective
pseudo codes and LP formulations. Our implementations were developed in C++. Param-
eters and data were introduced to the program in xml format and the LP formulations were
solved with Cplex [1].

3.2 The network model

The three algorithms work with different kinds of networks: directed and undirected
networks. Therefore, we need a network model that includes both cases and uses each one
when it is required.

• Undirected networks will be modeled as G = (V,E), where V represents the set of
nodes of the network and the E the set of links. We use n to denote the number of
nodes and l the number of links (|V |= n and |E|= l, respectively).

• Directed networks are going to be represented by G = (V,A), where V represents the
set of nodes and A the set of arcs. We use n to denote the number of nodes and m the
number of arcs (|V | = n and |A| = m, respectively). For any node i ∈ V , we denote
by IN[i] ∈ A the sets of arcs directed into a node i and by OUT [i] ∈ A the set of arcs
directed out of the node i.

A weight function cap : E → R+
0 describes for a link e ∈ E the link-capacity. In the case

of a directed network, we will be talking about arc-capacity.
The demand traffic matrix will be defined by a matrix D: a n× n nonnegative matrix

which diagonal entries are 0. Each entry of the matrix, di, j, specifies the traffic that needs
to be carried from the source i to the destination j.

We use the notation f and g to refer to routings and flows respectively:

• The routing is specified by a set of values fi, j(e) ≥ 0 that represent the fraction or
percentage of demand from i to j (di, j) that is allocated at e ∈ E (fi, j(a) ≥ 0 in the
case of directed networks). To obtain the traffic allocated in a link, we will need to
compute fi, j(e) ·di, j.

• The shorthand gi, j(e)≥ 0 denotes the traffic demand value from i to j present at e ∈ E
(gi, j(a)≥ 0 in the case of directed networks). Therefore, gi, j(e) = fi, j(e) ·di, j

3.3 Räcke’s algorithm and its approximation

3.3.1 Introduction

As we already mentioned in previous sections, Räcke developed a mechanism to con-
struct an oblivious routing algorithm for any symmetric network [24] (networks where link-
capacities are the same in both directions of the link, like most of large backbone networks)
or, in other words, for undirected networks. However, some of the techniques used lead to
NP-complete problems and, hence, to exponential-time procedures.

10

Oblivious routing algorithms 3.3 Räcke’s algorithm and its approximation

In Bryan Hughes’ approximation [15], the author circumvented these exponential-time
procedures by replacing them with more resource-friendly techniques. Although these ac-
tions invalidate the guaranteed bounded congestion from Räcke’s method, this loss can still
be acceptable for many applications.

In the following sections, we will present both techniques and a detailed implementation
of Bryan Hughes’ approximation.

3.3.2 Räcke’s algorithm

The crux of the algorithm consists of finding a good decomposition tree and then show-
ing that it is possible to route in the original graph almost as well as in the tree graph, with
some minimal losses. In other words, Räcke transforms a general network into a tree net-
work with the desired equivalent communication characteristics (e.g., the same bandwidth
between node pairs, the same bottlenecks, etc), finds the tree paths between every pair of
nodes, and then transforms these paths back to the general network. Therefore, this frame-
work can be applied to any problem that has an efficient tree solution. This process is called
the bisimulation technique.

The Bisimulation Technique

This technique is carried out in three steps:

1. Transforming a given problem instance I (i.e. a routing request between nodes u,v ∈
V) on the general graph G to a problem instance It on the tree network T : I is trans-
lated into T using a predetermined mapping function π1 : V →Vt (which corresponds
to a hierarchical decomposition that generates a Virtual Tree Network) resulting on a
problem instance It . Therefore, when a message is sent between two nodes u,v ∈ V ,
a corresponding message is sent between two nodes π1(u),π1(v) ∈Vt .

2. Finding the path between nodes π1(u) and π1(v), which is the solution to It : To find
a path in a tree network, we only need to find the two independent paths from nodes
π1(u), π1(v) to the root node, concatenate them at the root node and then remove any
common intermediate nodes.

3. Transforming the solution to It on the tree network back onto a general graph G: This
transformation is performed by using a randomized mapping π2 : Vt → V , where
π2(π1(v)) = v,∀v ∈ V . This mapping needs to be randomized (i.e. it selects one
of many paths randomly), because there are typically more nodes in the tree T than
in the graph G. Said differently, one node in G is represented by multiple nodes in T
and, thus, there are multiple paths in G given a single path in T .

The Virtual Tree Network

As we already mentioned, the virtual tree network is constructed using a hierarchical
decomposition H. H starts with a general graph G and divides it into smaller sub-graphs.
These sub-graphs are recursively partitioned until the last sub-graphs contain a single node

11

3.3 Räcke’s algorithm and its approximation Oblivious routing algorithms

in G. The partition of the graph is performed in such a way that the cut is of minimum
sparsity,2 which minimizes congestion in the network.

This decomposition process results in a natural tree, TH , which is referred to as the
decomposition tree corresponding to the hierarchical decomposition H. Each tree node
corresponds to a set or cluster of nodes HV = {v : V ∈ V} from the general graph G. This
decomposition method is also called laminar since the subgraphs resulting from the cuts
form a laminar set.

a

b

c
d

e

f

g

h

i

j

level 0

level 1

level 2

level 3

a b e h i j

f g

c d

Figure 3.1: A hierarchical decomposition of a graph and the associated virtual tree [25].

The generated tree network has the following properties:

• The bandwidth or capacity of a link in the tree is defined as:

capt(xt ,yt) := cap(X ,Y) := ∑
x∈X ,y∈Y

cap(x,y) (3.1)

which describes the total bandwidth that is available between nodes of the subset X
and nodes of the subset Y . Where cap(x,y) denotes the bandwidth or capacity for the
link (x,y) ∈ E. Besides, X ⊂ Y or Y ⊂ X because one subset represents the cluster
from a parent tree node and the other represents the cluster from one of its children.

• The level of a tree node is defined as l + 1, where l is the level from the parent tree
node. The level of the root node is 0.

• The weight of a tree level is defined by the function wl : 2V → R+
0 for every level

l ∈ {0, ...,height(TH)}. Informally, we can express the weight as the capacity of all
links leaving the set for nodes in the higher level nodes:

wl(X) := ∑
e∈V×V and level(e)≤l

cap(e) (3.2)

One may still ask why a routing performed in this virtual tree network is that efficient.
The fact is that routing a multi-commodity flow problem on the associated virtual tree net-
work decreases the maximum link congestion compared to the optimal flow on the original

2The sparsest cut problem is to bipartition the set of nodes so as to minimize the ratio of the number of
links across the cut divided by the number of nodes in the smaller half of the partition.

12

Oblivious routing algorithms 3.3 Räcke’s algorithm and its approximation

graph. Although we will not go into details, the main reason lies in the fact that the tree
links represent the upper-bounds on the capacity between a cluster or subgraph and the rest
of the graph.

Räcke presented all required mathematical arguments to valid all these methods and
results, together with more extensive explanations. This level of detail is beyond the scope
of this MSc thesis, but for interested readers we strongly recommend Section 2.3.3 and
Section 2.3.4 from Räckes Ph.D. dissertation [25].

3.3.3 Bryan Hughes’ approximation

The key of Hughes’ approach is to substitute some complex techniques used by Räcke
by more resource-friendly techniques. The techniques to be replaced are: routing tree gen-
eration and path selection.

Routing tree generation

The objective is selecting a partitioning algorithm, easy to implement, to translate the
general graph G into a tree network TH . Hughes decided to use an algorithm that performs
single cuts: the binary partitioning algorithm [18].

Before performing any cut, the algorithm calculates the shortest paths, based on hop
count, among all the nodes in the graph G. This information will be used to choose the
following cut-points. Once the calculation is performed, the following routine is repeated
at every (sub)graph until the leaves of the tree only contain a single node:

1. Find the shortest path lpath from all of the nodes in the (sub)graph and mark the end
nodes as uend and vend .

2. Order the remaining nodes in the (sub)graph according to their distance from uend (ac-
cording to the results from the shortest path calculation performed at the beginning)
and set the cut-point c in the middle of the list.

3. Execute the “rule of thirds”: The cut-point c is shifted until the distance between c
and uend , identified as cdist , is within the range lpath/3 ≤ cdist ≤ 2 · lpath/3. This rule
prevents that nodes far away from each other are grouped together.

Once the tree network is generated, we calculate the weights for each graph node within
every tree node X . For this purpose, the author makes use of the formula proposed by Räcke
(Equation 3.2):

wl(u ∈ X) := cap(u)/cap(X) (3.3)

This formula states that the weight is defined as the capacity ratio between node u and all
graph nodes in the tree node’s parent, represented by the set X . In the case of the root node,
the capacity is defined as the total capacity of the network (Equation 3.4).These weights
will be used to take routing decisions as explained in the following section.

wl(u ∈V) := cap(u)/cap(V) (3.4)

13

3.3 Räcke’s algorithm and its approximation Oblivious routing algorithms

a

e

c

d

b

f
g

h

j

i

a,b,c,d,e,f,g,h,i,j

a,c,d,e,f b,g,h,i,j

a,c,d e,f b,j g,h,i

a c,d e f b j g h,i

c d h i

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 3.2: A decomposition of a graph using the binary partitioning algorithm and the
associated decomposition tree [15]. It would be interesting for the reader to compare this
figure with Figure 3.1

Path selection

The first goal is finding the tree path: the path from the source node to the destination
node in the tree network. For this purpose, after localizing the source and destination leaves,
we trace the paths from both of them to the root node and then we concatenate them.

The second step is translating this tree path into a graph path: we translate the tree
nodes (which represents a set of graph nodes) from the tree path into single graph nodes.
This translation is performed by assigning random values to each graph node of a tree node
and then selecting based on this randomization and the weight of the nodes (Equation 3.3).

a,b,c,d,e,f,g,h,i,j

a,c,d,e,f b,g,h,i,j

a,c,d e,f b,j g,h,i

a c,d e f b j g h,i

c d h i

Level 0

Level 1

Level 2

Level 3

Level 4

a a

d

c

a

d

c

e

f

a

d

c

e

f

a

b

c

d

e

f

g

h

i

j

e

f

f

Figure 3.3: Example of network path selection [15].

The drawback of this process is that the path selection algorithm gets “stuck” if it
chooses a graph node non-connected in the original graph to any of the graph nodes of
the set from the next tree node. When this situation occurs, the algorithm must step back-
wards, removes the selected graph node (so it will not be chosen again) and then selects
a new one. In the following section, we will introduce an improvement to the algorithm
which will easily solve these situations.

14

Oblivious routing algorithms 3.3 Räcke’s algorithm and its approximation

Figure 3.4 presents an example of a “stuck” situation: in this case, node d is selected
in the fifth iteration but it has no connectivity with nodes e and f . Therefore, the algorithm
steps backwards, removes d from the options and selects a new node (in this case node e).

a

e

c

d

b

f
g

h

j

i

a,b,c,d,e,f,g,h,i,j

a,c,d,e,f b,g,h,i,j

a,c,d e,f b,j g,h,i

a c,d e f b j g h,i

c d h i

Level 0

Level 1

Level 2

Level 3

Level 4

a a

d

c

a

d

c

e

f

a

d

c

e

f

a

b

c

d

e

f

g

h

i

j

e

f

f a a

d

c

a

d

c

e

f

a

d

c

e

f

a

b

c

d

e

f

g

h

i

j

e

f

f

x

Figure 3.4: Example of a “stuck” situation and its resolution

Finally, we remove any redundant graph node and every possible cycle in the graph path
selected.

a c b c e f f

a c e f

Figure 3.5: Path reduction [15].

15

3.3 Räcke’s algorithm and its approximation Oblivious routing algorithms

The fact that the path selection decision is based on random values means that there is
more than one possible solution in most cases. The author suggests running the selection
algorithm a high number of times (100 times according to the PhD dissertation [15]) and
then choosing the most visited path as the chosen graph path.

3.3.4 Implementation

Our implementation is based on the one presented by Bryan Hughes in his PhD dis-
sertation [15]. We will pay attention to the reasons why some decisions were taken and
we will present small changes introduced in the approximation to improve the algorithm
performance and results.

We can divide the implementation into three independent parts: binary partitioning
algorithm, node weight algorithm and path selection algorithm. Each part will be accom-
panied by a pseudo code that reflects steps taken and operations performed.

Binary partitioning algorithm

The first step is to calculate the shortest paths among every node from the graph G. We
will use a common implementation from the Dijkstra algorithm [23] where we assign a cost
equal to 1 to every link. In this way, the cuts would be based on hop counts and not on other
factors (e.g. capacity of the links), contributing to obtain the most connected subgraphs
possible during consecutive cuts.

There are two important reasons for the shortest path calculation to be the first step of
the algorithm:

• On one hand, calculating all the shortest paths at once at the beginning of the pro-
cess and storing these results so the algorithm can use them later will save time of
computation.

• On the other hand, although the author does not specify anything about it, the algo-
rithm is able to perform cuts that, in some cases, result on non-connected subgraphs
(see Figure 3.6). Dijkstra’s algorithm cannot be used in these situations because it
does not converge into a solution in non-connected subgraphs. Calculating the short-
est paths at the beginning of the process helps us avoid this problem.

All the actions performed within the decomposition of the graph and the generation of
the tree graph are detailed in the following pseudo code. The pseudo code presents a recur-
sive method which runs until the leaves of the tree only contain a single node.

16

Oblivious routing algorithms 3.3 Räcke’s algorithm and its approximation

H

F G I J B

HF G I

J B

Figure 3.6: Example of non-connected subgraphs resulting from an iteration of the partion-
ing algorithm.

Algorithm 1 Partition algorithm
1: given shortest path set Pmin and (sub)graph Gp

2: if |P|= 1 then
3: store the node in a leaf (the left and right pointers will be NULL)
4: return
5: else
6: find pmax ∈ Pminp , where Pminp ∈ Pmin is the shortest path set for Gp

7: sort the nodes in Gp according to distance from the endpoint uend ∈ pmax

8: set cut point c
9: if |P|= 2
10: c = 1
11: else
12: c = |Gp|/2 (rounded always to the higher volume)
13: end if
14: if cdist ≤ lpath/3 or cdist ≥ 2× lpath/3 then
15: shift until lpath/3 ≤ cdist ≤ 2 · lpath/3
16: end if
17: group nodes below c with uend and nodes above c with vend
18: create child nodes of Gp, Gc1 , and Gc2 , containing the two groups
19: end if

Node weight algorithm

The calculation of the node weights is a simple operation that we detail with the follow-
ing algorithm.

17

3.3 Räcke’s algorithm and its approximation Oblivious routing algorithms

Algorithm 2 Node Weight Algorithm
1: given (sub)graph Gc and its tree node parent Gp

2: for all v ∈ Gc do
3: set wl(v) = 1+ cap(v,Gp)
4: end for

The capacity between a graph node v in the child tree node Gc and all graph nodes in
the parent tree node Gp is calculated and stored as the weight from node. In the case of the
root node, the weight will be calculated as the capacity between a graph node v and the rest
of the graph nodes.

We will force the weights of all the nodes in the cluster of the tree to be 1 by default.
We need to take this action because the algorithm for finding graph paths can get stuck due
to the non-connected subgraphs generated by the partitioning algorithm. In this case, the
same nodes can be selected until we reach a cluster where there is connectivity with other
nodes.

Path selection algorithm

The path selection algorithm is responsible for constructing the tree path between both
node leaves (source and destination) and then translating this tree path into a graph path.
This translation is based on the weights of the nodes and some random values. However,
because the partition algorithm can generate non-connected subgraphs, this translation can
lead to disconnected graph paths. Therefore, in order to prevent these results, we introduce
one more parameter in the decision process within the translation: the connectivity between
the possible chosen nodes.

Algorithm 3 Path Selection Algorithm
1: given source node u and destination node v
2: find tree paths Ptu and Ptv , and concatenate them (only one root node)
3: set the current tree node index, x, to point to the source node u (i.e. to index 1)
4: repeat
5: generate random numbers, R, for all nodes in the next tree node
6: set P = R ·W · connectivity to nodex−1
7: select graph node, g, with the highest probability p ∈ P
8: if there is no p > 0 then
9: remove the node from future decisions
10: decrement x
11: else
12: store the graph node g into the network path
13: increment x
14: end if
15: until x point to destination node v
16: remove any redundant node and cycle from the network path

18

Oblivious routing algorithms 3.4 Applegate and Cohen algorithm

3.4 Applegate and Cohen algorithm

3.4.1 Introduction

In previous sections, we presented the oblivious routing algorithm developed by Räcke
that provides a uniform congestion bound of O(log3n) for every undirected graph. However,
a better oblivious routing solution with a lower competitive ratio than the bound of O(log3n)
may potentially exist for a specific graph.

Based on this possibility, Y. Azar, E. Cohen and Räcke et al. wrote a paper [10]
which presents a polynomial time construction that gives the best possible oblivious rout-
ing scheme for any given network. The techniques used in this paper are based on Linear
Programming (LP) and differ completely from everything presented in previous sections.
However, although this LP problem has a polynomial number of variables, it has infinitely
many constraints (one set of constraints for every possible traffic matrix). To solve this sit-
uation, the authors applied the Ellipsoid method [2] with a separation oracle, but even this
method was still too complex.

In [9], Applegate and Cohen concluded that the optimal oblivious routing scheme could
be computed by an LP problem with a polynomial number of variables and constraints.
They developed a simpler model by formulating the dual problem from the separation or-
acle (check section 3.4.2) and using it to replace the exponential set of constraints. This
new and simpler approach represents an enormous improvement on the running time and
simplicity compared to the use of the ellipsoid method.

In the following sections, we will explain these two methods. The explanation and de-
tails of the proofs and theorems provided by the authors, together with the ellipsoid method
itself, are considered to be beyond the scope of this MSc thesis.

3.4.2 Räckes LP problem and the ellipsoid method

As said in the previous section, it was shown in [10] that an optimal oblivious routing
can be computed by solving an LP problem with a polynomial number of variables but
infinitely many constraints. Before introducing the LP formulation from this approach, it
is important to clarify that the authors work with directed networks. They present a well-
known reduction from undirected graphs to directed graphs that replaces each undirected
link e = (u,v), with capacity cap(e), with the directed gadget u;x;y;v which consists of
five arcs: four arcs e1 = (u;x);e2 = (v;x);e3 = (y;u);e4 = (y;v), all of them with infinite
capacity, and the arc e5 = (x;y) with capacity cap(e). Therefore, we will only consider arcs
in this section.

The following formulation defines the LP problem, which will be referred to as “master
LP”. The objective is to minimize the congestion of the network by choosing the routing
that uses the lowest amount of capacity in every link (Equation 3.5).

19

3.4 Applegate and Cohen algorithm Oblivious routing algorithms

x y

∞
∞

∞
∞

b(e)

v

u

v

u

b(e)

Figure 3.7: The reduction from undirected to directed graphs [25]

objective minimize r
constraints

1. f is a routing
2. ∀arc(a) ∈ A,∀TMs D with OPTU(D) = 1 :

∑i j
fi j(a)·di j
cap(a) ≤ r

(3.5)

The variables of the LP problem are the set of routing variables fi j(e) and the minimiza-
tion variable r. The routing variables fi j(e) denote for a link e the fraction of flow from i
to j of value 1, which means that the value from the variable has to be within the range
[0,1]. We can route the traffic demands di j using a routing scheme f by simply scaling each
unit flow fi j by the factor di j. The demand matrix (or traffic matrix) D = [di j] is an n× n
non-negative matrix where the diagonal entries are 0 and the rest ≥ 0.

The condition that f is a routing implies a set of linear constraints, known as “routing
constraints”, which defines a unit single-commodity flow from i to j of value 1:

∀a ∈ A ∀i∀ j ̸= i : fi j(a)≥ 0
∀i∀ j ̸= i : ∑a∈OUT (i) fi j(a)−∑a∈IN(i) fi j(a) = 1
∀k∀i ̸= k∀ j ̸= k, i : ∑a∈OUT (i) fi j(a)−∑a∈IN(i) fi j(a) = 0

(3.6)

Constraint 2 is referred to as the “congestion constraint”. To explain the meaning of
this constraint, we need to introduce some definitions:

• ∑i j fi j(a)di j represents the traffic on the arc a carried by the routing f . The total flow
on the edge divided by its capacity cap(a) is defined as congestion on the arc. The
congestion of the network using a routing f and with a demand matrix D is:

congestion(f ,D) = maxa∈Acong(a, f ,D)

• Constraint 2 is evaluated for every arc of the network and for every D with OPTU(D)=
1, where OPTU(D) makes reference to the optimal utilization of the network for the

20

Oblivious routing algorithms 3.4 Applegate and Cohen algorithm

traffic matrix D. We can define the utilization of a network as the maximum arc uti-
lization while using a routing f . Hence, the optimal utilization of the network refers
to the utilization of the network made by the optimal routing, which is the routing
that minimizes the maximum arc utilization (MxAU):

OPTU(D) = min f MxAU(f ,D)

Finally, we only include traffic matrices with OPTU(D) = 1 because the competitive
performance ratio is invariant to scaling. Thus, instead of considering all TMs it is
sufficient to consider the TMs D with OPTU(D) = 1.

If we must evaluate the Constraint 2 for every arc of the network and for every traffic
matrix with OPTU(D) = 1, it results in an LP problem with infinitely many constraints. In
order to solve this problem, the authors applied the ellipsoid method using the following
separation oracle for the constraints:

• Input: A network G, a capacity function b(.), and an assignment of all variables from
the master LP.

• Output: Either, a confirmation that all constraints in the master LP are fulfilled, or a
“violated constraints”. This means:

– a violated routing constraint (master LP constraint 1) that shows that f does not
constitute a routing scheme

– a violated congestion constraint (master LP constraint 2)

• Implementation: the constraints from the master LP can be tested by solving the
following “slave LP” problem for each arc a and testing if the objective is ≤ r or not:

objective max ∑i j fi j(e) ·di j/cap(e)
constraints

1. ∀ pairs i → j : {gi j(a)|a ∈ A}is a flow demand di j

2. ∀ edges e : ∑i j gi j(e)≤ cap(e)
3. ∀ pairs i → j : di j ≥ 0

(3.7)

Summarizing, this method gives the oblivious routing scheme that achieves the best
possible competitive performance ratio for a given network G. In the next section we will
explain how, from the master and slave LP formulations, Applegate and Cohen derived a
simpler LP problem.

21

3.4 Applegate and Cohen algorithm Oblivious routing algorithms

3.4.3 Applegate and Cohens LP formulations

The main objective of Applegate and Cohen [9] is to deliver a simpler LP with a polyno-
mial number of variables and constraints that allows to efficiently process larger networks.
The easiest way is to directly combine the master and slave LPs, which will result in a sin-
gle polynomial size LP instance. However, such an approach results in a quadratic problem
where we cannot apply the solving methods for LP problems anymore. The authors tackled
this obstacle by taking the dual problem from the separation oracle (slave problem from the
previous section and using it to replace the exponential set of constraints of the master LP
problem.

This method works for undirected networks, but is based on the LP problem from sec-
tion 3.4.2. Therefore, a relation between links and arcs has to be introduced: the term
link− o f (a) is the link between the two end points of an arc a. The capacity of the link
is the sum of the capacities from the arcs. Regarding flows and routing, they used the
following notation for the sum of flows on both directions of a link:

fi, j(e) = ∑
a:link−o f (a)=e

fi, j(a) (3.8)

All these modifications lead to the following LP formulation:

objective minimize r
constraints:

1. f is a routing
∀ links e ∈ E :

2. ∑i j cap(h) ·πe(h)≤ r
3. ∀ pairs i → j : fi j(e)/cap(e)≤ pe(i, j)
4. ∀ nodes i,∀ arcs a = (j,k) :

πe(edge-of(a))+ pe(i, j)− pe(i,k)≥ 0
5. ∀ links h ∈ E : πe(f)≥ 0
6. ∀ nodes i : pe(i, i) = 0
7. ∀ nodes i, j : pe(i, j)≥ 0

(3.9)

This LP has O(ln2) variables and O(nl2) constraints. The set of variables are the rout-
ing variables fi j(e), the minimization variable r, the link weights πe(h) and the variables
pe(i, j), defined as the length of the shortest path from i to j according to the link weights.
The variables πe(h) and pe(i, j) belong to the dual LP problem from the slave LP.

The first constraint makes reference to the set of “routing constraints”, presented in
Section 3.4.2. In this case, the constraints will be evaluated over arcs and not over links.
The translation will be possible by introducing the equation for the sum of flows on both
directions of a link to this set of constraints.

Constraints 2, 3 and 4 are the result from the dual problem from the slave problem. The
calculation of the dual problem is out of the scope of this MSc thesis, but we encourage
the reader to consult Sections 6c and 6d from [9]. This allows the authors to replace the

22

Oblivious routing algorithms 3.5 Two-phase algorithm

exponential number of constraints (for all possible paths) from the previous approach with
a small polynomial number of constraints. Constraints 5, 6 and 7 are bounding constraints
for the variables of the problem.

As we already mentioned in the introduction of this chapter, we used CPLEX [1] to
solve the LP formulations. In general, other LP solvers can be used but it is important to
be sure that the solver includes the Interior-Point algorithm, cause Applegate and Cohen
specified this algorithm to solve their LP problem.

The main disadvantage of LP problem is the number of variables that the problem gen-
erates: O(l · n2 + l2). As the networks we use have more nodes and links, the number of
variables will grow really fast and, hence, we require a computer with high memory capacity
to allocate such a problem.

3.5 Two-phase algorithm

3.5.1 Introduction

This algorithm represents a totally different approach from the previous algorithms pre-
sented in this chapter. While in Section 3.3 and Section 3.4 the traffic from source to destina-
tion is carried along “direct” paths, here we present a routing through a set of intermediate
nodes (also called two-phase routing). The origin of this approach can be traced back to
Valiant’s Load Balancing [30], where Valiant proposed a randomized scheme for processor
interconnection networks. However, Valiant’s work was only valid for hypercube networks.

In 2004 [17], two phase routing was proposed for general networks as an oblivious rout-
ing scheme for handling traffic variations subject to aggregate ingress-egress constraints.
We will work with one of the most recent implementation of two-phase routing, included
in the paper presented by Kodialam, Laksham, Orlin and Sengupta [16]. In the following
sections we will present the theory of such routing, an implementation method and the LP
formulations to calculate the routing.

3.5.2 Traffic variation model and Two- phase routing theory

Traffic variation model

In this case, although the specific current traffic load on the network is unknown like in
previous approaches, they use a constraint traffic model: the Hose model [13]. This model
bounds the total amount of traffic that enters (leaves) a node in the network by the total
capacity of all external egress (ingress) links at that node.

We will identify the upper bounds on the total amount of traffic entering and leaving the
network at node i by Ri and Ci, respectively. The allowable traffic matrices D = [di j] for the
network are constrained by these ingress-egress link capacity bounds, so:

∑
j∈N, j ̸=i

di j ≤ Ri ∀i ∈ N ∑
i∈N,i̸= j

di j ≤Ci ∀i ∈ N

23

3.5 Two-phase algorithm Oblivious routing algorithms

R
i

C
i

i

Figure 3.8: Ingress-egress constraints from Hose’s model [16].

Therefore, for given Ri and Ci, we can denote the following set of traffic matrices as
feasible candidates to be routed within the network:

D(
−→R ,

−→C) = {[di j] / ∑
j∈N, j ̸=i

d ji ≤ Ri and ∑
i∈N,i ̸= j

di j ≤Ci ∀i ∈ N} (3.10)

The authors use λ ·D(
−→R ,

−→C) to indicate the set of all the traffic matrices in D(
−→R ,

−→C)
whose entries are multiplied by λ. The Hose model defines the throughput as the maximum
multiplier λ such that all the matrices in λ ·D(

−→R ,
−→C) can be feasibly routed under given

link capacities (by some routing scheme).

Two-phase routing

Two-phase routing has been proposed [31], [16] as an oblivious routing scheme for
general networks to handle arbitrary traffic variations subject to aggregate ingress-egress
constraints (i.e., the Hose model). As the name indicates, the routing scheme operates in
two phases:

• Phase 1: Predetermined fraction α j of the traffic entering the network at any node is
distributed to every node j independent of the final destination of the traffic.

• Phase 2: Each node has to route the traffic received during the first phase for a dif-
ferent destination than itself to that respective destination.

Note that the traffic split ratios α1,α2, ...,αn in Phase 1 are such that ∑n
i=1 αi = 1. In

[31] the split ratios were constrained to be equal while the authors from [16] considered a
general scheme with possibly unequal split ratios.

24

Oblivious routing algorithms 3.5 Two-phase algorithm

3.5.3 Implementation

A simple method of implementing this routing is creating fixed bandwidth paths between
the nodes. Basically, we can set up tunnels between the respective nodes, differentiating the
ones used in Phase 1 and the ones used in Phase 2. The critical reason why this scheme
works is because the bandwidth required for those tunnels depends on the ingress-egress
capacities Ri, Ci and on the traffic split ratios α j but never on the (unknown) individual
entries of the traffic matrix.

For a better understanding, we will now calculate the bandwidth requirements that we
will have to satisfy for Phase 1 and Phase 2 tunnels.

• Phase 1: Let us consider a node i with max incoming traffic Ri. Node i sends an
amount of αi ·Ri from this traffic to each intermediate node j ∈ N. At the end of
Phase 1, the node has received αi ·Rk traffic from another node k.

Intermediate

Node

Destination

Node

Source

 Node

Source

 Node

Intermediate

Node

Destination

Node

Phase 1
Routing

Phase 2
Routing

Physical View Logical View

Phase 1
Tunnel

Phase 2
Tunnel

Figure 3.9: Two-phase routing [16].

• Phase 2: We can compute the traffic at node i from node k and destination j as αi ·dk j,
where dk j is the demand from node k to node j. Then, we can consider that the
summation of all the traffic at node i and destination to j at the beginning of Phase
2 is ∑k∈N αi ·dk j ≤ αi ·C j. Therefore, the traffic demand from node i to node j, as a
result, of Phase 2 is at most αi ·C j.

In conclusion, traffic demands in Phase 1 and Phase 2 result in a maximum total demand
from node i to node j of αi ·Ri+αi ·C j. In other words, in order to implement the two-phase
routing, we only need to effectively route the fixed matrix D= [di j] = [αi ·Ri+αi ·C j] which
does not depend on any specific traffic matrix D ∈ D(

−→R ,
−→C).

25

3.6 Conclusions Oblivious routing algorithms

3.5.4 LP formulations

From section 3.5.1 we know that the only assumptions about the traffic are the limits
imposed by the ingress-egress constraints at each node. From section 3.5.2 we know that
we need to effectively route the fixed matrix D= [di j] = [αi ·Ri+αi ·C j]. Now, we formulate
the linear programming problem to solve these two issues and choose a routing scheme that
maximizes the throughput λ (calculated as λ=∑i∈N αi). At the end, the resulting split ratios
αi will be divided by λ to normalize them (in order to accomplish that ∑n

i=1 αi = 1).

objective max ∑i∈N αi

constraints
∀i, j,k ∈ N

1. ∑e∈OUT (k) gi j
e −∑e∈IN(k) gi j

e = α j ·Ri +αi ·C j If k=i
∑e∈OUT (k) gi j

e −∑e∈IN(k) gi j
e =−α j ·Ri −αi ·C j If k=j

∑e∈OUT (k) gi j
e −∑e∈IN(k) gi j

e = 0 other
2. ∀e ∈ E ∑gi j

e ≤ cap(e)
3. ∀i ∈ N αi ≥ 0
4. ∀e ∈ E,∀i, j ∈ N gi j

e ≥ 0
(3.11)

There are two sets of decision variables: the fraction of traffic (split ratio) that will
be routed to node i in the first phase denoted by αi and the flow value from source i to
destination j over link e denoted by gi j

e .
Constraint 1 corresponds to the multi-commodity flow problem to route a flow of αi ·Ri+

αi ·C j from source i to destination j. Constraint 2 represents the link capacity limitations of
the network.

There are three aspects of this formulation, known as “link flow based formulation”, that
need to be taken into consideration:

• This LP formulation does not minimize the congestion on the network; hence, no
competitive ratio is guaranteed like in Section 3.3 and Section 3.4. Instead, what the
authors guarantee is a throughput that the network will be able to offer.

• This formulation generates a high number of variables: O(l · n2), which will require
a computer with high memory capacity to be solved.

• The authors do not specified any concrete algorithm to solve this problem. Therefore,
we decided to use the simplex method for LP problems.

3.6 Conclusions

In this chapter we have presented 3 different oblivious routing algorithms which rep-
resent 3 totally different approaches. While in Section 3.2, the method is based on de-
composition techniques and random values, Section 3.3 and Section 3.4 are based on LP

26

Oblivious routing algorithms 3.6 Conclusions

formulations. However, Section 3.3 is based on calculating direct paths between the re-
spective source and destination, while Section 3.4 proposes routing the traffic through a set
of intermediate nodes. These LP formulations introduce a high number of variables and,
hence, we need a computer with high memory capacity to solve these LP problems.

Secondly, while the first two algorithms try to minimize the congestion at the network
and give some bounds in the competitive ratio performance, the third algorithm just tries
to maximize the throughput at the network and it is not able to guarantee any competitive
ratio. However, while the Applegate and Cohen algorithm provides the best oblivious rout-
ing regarding to congestion, Räcke’s algorithm just offers a congestion bound for general
networks. Besides, every approach is based on a paper which presents its own performance
results with their own parameters to compare the oblivious routing with other optimal rout-
ings (e.g. shortest path routing).

In conclusion, after a detailed study of the three approaches proposed, the challenge
for the next chapter is to create a framework that enables us to perform tests on the three
approaches under the same conditions to be able to compare them. To our knowledge, this
is the first comparison between these algorithms.

27

Chapter 4

Simulations and results

4.1 Introduction

The main objective of this thesis is to develop a common framework to test the de-
mand oblivious routings presented in chapter 3 under the same conditions. According to the
knowledge of the author, this is the first time that these three algorithms are compared.

The three papers studied use different metrics in the performance analyses of their al-
gorithms:

• In the paper “Minimizing congestion in general networks” [24], Räcke performs a
competitive analysis1 to support his results. The author presents an algorithm that
guarantees a competitive ratio of O(log3n) with respect to the congestion links.

• In “Making Routing Robust to Changing Traffic demands: Algorithms and Evalua-
tion” [9], D. Applegate and E. Cohen define a new metric: the oblivious ratio. This
ratio measures the performance of the algorithm relative to the best possible solution
under all possible traffic matrices (TMs) for the chosen network.

• The two-phase routing aims to maximize the throughput at the network, factor also
used as main metric of their evaluation. Murali Kodialam and et al. define in “Obliv-
ious routing of Highly Variable Traffic in Service Overlays and IP backbones” [16]
the throughput as the maximum multiplier λ such that all matrices in λ ·τ(−→R ,

−→C) can
be feasible routed. The matrix τ(−→R ,

−→C) refers to the Hose Model [13] studied in
section 3.5. Nevertheless, the throughput is the reciprocal metric from the maximum
link utilization (MxLU) and, therefore, directly related to the link congestion.

Nevertheless, these three different analyses are based on theoretical calculations and, in
some case, only on some simulations. One may ask, how would these algorithms perform
in real life? How will they behave with different traffic matrices (TMs)? Are they as good
in practice as in theory? And if I were a network administrator, which one would I choose?
During the rest of this chapter we will try to give an answer to these and more questions
about the algorithms studied.

1Competitive analysis has been explained in section 2.2

29

4.2 Framework Simulations and results

4.2 Framework

4.2.1 Objectives

The framework presented in this thesis has three main objectives:

• Analyzing the three algorithms presented in chapter 3 under the same conditions.

• Extracting as much information as possible from different tests in order to increase
the knowledge about the performance of these algorithms and being able to make
recommendations.

• Presenting realistic scenarios, according to topologies and traffic demands or traffic
matrices (TMs).

4.2.2 Tests: metrics and reference routing algorithms

In Chapter 2 we already studied the three main factors that a network administrator
should consider when choosing a routing: load balancing and path length (which will be
reflected in the performance of the routing) and the resiliency (or, in other words, the ro-
bustness of the routing against failures in the network).

In the following subsections, we will present the metrics used in our tests and we will
talk briefly about the Open Shortest Paths First (OSPF) algorithm, included in the analysis
to compare how the studied algorithms perform with respect to algorithms used in daily life.
All the formulation we present can be used in the case of directed networks just translating
the metrics used from links to arcs.

Performance metrics

Our analysis comprises theoretical and practical metrics. Theoretical metrics can give
a really good overview on the general performance of the routing, because they are not
linked to any specific case. However, they are based on worst case scenarios and never on
specific traffic matrices (TMs). Hence, they do not provide realistic pictures of the routing
performance in real situations. Practical metrics can focus in specific situations, because
they are linked to TMs, but their reliability is associated with the reliability of the TMs.
Including both kind of metrics in our framework, we can cover more possible scenarios and
we will be able to extract reliable conclusions.

• Theoretical metrics

1. Oblivious ratio: The oblivious ratio measures in the worst-case scenario for a
routing, how far it is from the optimal routing calculated for that situation. In
other words, it tells us that for any possible situation, the routing performance
will be in a range of [1, oblivious ratio] times the optimal routing performance.
We choose to add this metric to our framework because it provides us with an
idea of how the routing performs in general. However, it does not show how the

30

Simulations and results 4.2 Framework

routing behaves inside the interval [1, oblivious ratio]. This means that routings
with worse oblivious ratio can perform better in real situations with real traffic
matrices (TMs) than routings with a lower oblivious ratio.
The oblivious ratio is defined as the performance ratio (check Equation 4.2) of
a routing with respect to all possible TMs (D).

PERF(f ,D) = maxD∈DPERF(f ,D) (4.1)

To calculate the oblivious ratio of a routing, we introduce the arc flows to the
linear programming problem (LP) from Section 3.4.3 and solved the problem
for this fixed values.
Finally, calculating the oblivious ratio is reciprocal to calculating the highest
possible throughput in the network because the throughput is reciprocal to the
maximum link utilization (MxLU). In other words, the routing with the low-
est oblivious ratio experiences the highest possible throughput in the network.
Therefore, there is no need to introduce special metrics for the two-phase rout-
ing algorithm case.

2. Quality of the routing: In [20] the author defines the quality of the routing based
on two factors: the path dispersion and the path variation. The first one is
concerned with how many paths exist between each Source-Destination (SD)
pair as specified by the routing. The second one refers to how much the paths
between each SD pair differ from the shortest path of the SD pair and how much
they differ from each other.

At the end, these parameters are translated into the number of flows allocated
at every link and the average percentage of traffic that these flows carry.

• Practical metrics

Performance ratio: For a specific TM, the performance ratio evaluates the maximum
link utilization (MxLU) of the routing f divided by the minimum possible link uti-
lization given a TM D.

PERF(f ,D) =
MxLU(f ,D)

OPTU(D)
(4.2)

The MxLU for a routing f given a TM D is defined as the maximum of the total flow
on a link divided by the capacity of that link, over all the links in the network.

MxLU(f ,D) = max(i, j)∈links
∑a,b da,b · fa,b(i, j)

capi j
(4.3)

Finally, an optimal routing for a certain TM D is a routing which minimizes the
maximum link utilization. This routing is computed by solving the LP formulations
corresponding to the multi-commodity flow problem for the specific TM. Therefore,

31

4.2 Framework Simulations and results

we can define the optimal utilization (OPTU) for a routing f give a TM D as the
minimum MxLU possible.

OPTU(D) = min f | f is a routing MxLU(f ,D) (4.4)

Robustness metrics

First of all, we define routing robustness as the routing response to perturbations or
changes in the network. In our case, these perturbations will be characterized by a number
of links removed from the network due to random unintentional failures.

The routing robustness will be measured in terms of availability. We define availability
of the routing as the number of Source-Destination pairs (SD pairs) over the total number of
possible SD pairs in the network which are still connected by a remaining complete path. In
other words, how many SD pairs the routing still can connect after the removal of a number
of links.

Although availability is simple to measure in most situations, in our case there is a situ-
ation we need to face: the routing algorithms provide flows2 and not paths3 as results. The
problem appears with Applegate and Cohen’s algorithm, from which flow results we cannot
extract the paths that the traffic will follow because there are cases where multiple sets of
paths give the same flow results. However, we can easily calculate the flows generated in a
network from a set of paths.

In this framework, we have decided to solve the mentioned situation calculating the
availability over the flows for all the routings: when a number of links fails, we check
whether the remaining links where is allocated traffic from i to j (so fi, j(e) ̸= 0) we can
construct a complete connected path or not. Although, we lose capacity on measuring
robustness for concrete situations, the suggested framework provides a fair comparison be-
tween all the routing analyzed because they will be treated in the same way.

We need to measure this availability for different situations: first for all the scenarios
where one link is removed from the network, then for all the scenarios where two links are
removed from the network and so on until all the links are removed.

In [22] Van Mieghem and Doerr et al. presented a definition and a framework to com-
pute topological network robustness. They interpret network robustness as a compatible
measure for network response to perturbations or challenges (such as failures or external
attacks) imposed on the network. Here, we present an adaptation of this framework to
compute the robustness of routing algorithm solutions4.

The framework consists of measuring a proposed R−value parameter, which is function
of a routing r to analyze. The network will be expressed by a graph G, defined by a set N
of n nodes and a set L of l links.

2The implemented routing algorithms provide a list of variables fi, j(e) (check section 3.2) which reflect
the percentage of traffic between i and j allocated in link e.

3We understand by path the route that a package follows to go from a source do a destination.
4 This work has been developed jointly with Ir. Javier Martin Hernandez, Phd. candidate at Network and

Services researching group, Faculty EEMS, TUDelft

32

Simulations and results 4.2 Framework

Rr1

Rr2

Figure 4.1: Example where r1 is considered more robust routing than r2

We will measure this R-value along a set of perturbations. We identify the perturbations
or challenges P as the sets of |Pk| links removed from the network G. Every perturbation |Pk|
represents a state of the network and it has an associated R-value. Therefore, any realization
can also be expressed as a sequence of R-values, denoted R[k]0≤k≤n, where R[0] represents
the absence of perturbations. Then, we plot this sequence of R-values obtaining an contour
plot along the vector of perturbations.

The R−value represents the availability of the routing r as links are randomly removed
from the graph. This R− value will help us to compare the robustness of two or more rout-
ings: if r1 and r2 are routings solutions for a network G and Rr1 > Rr2 , then r1 is considered
more robust than r2.

Reference

Axis

Average

10% p.

20% p.

30% p.

40% p.

60% p.

70% p.

80% p.

90% p.

100% p.

Figure 4.2: Detailed explanation of the contour plot

As we already mentioned, there are multiple possible scenarios for every perturbation
|Pk|. The number of these possible scenarios grows exponentially with the number of links
the network consist of and, hence, we need to fix a number of iterations at every P (1000
iterations per P in our case). In the end, we have a set of R-values for every perturbation
and a contour plot representing the function R− value, as illustrated in figure 4.2.

Figure 4.2 shows the robustness of an example routing for a network. The x axis rep-
resents the percentage of links removed from the network and, the y axis determines the

33

4.2 Framework Simulations and results

Räcke Racke
Applegate and Cohen AC
Two phases Two P
Shortest Paths (Cost = Inv. Capacity) SP W
Shortest Paths (Cost = Inv. Capacity + Distance) SP L

Table 4.1: Algorithms and acronyms.

robustness measured in means of availability. The contour plot comprises different col-
ored regions representing different percentiles. The continuous line represents the mean or
average of the availability values in the contour plot. We also provide a red dotted line as
reference axis, which illustrates a linear function between the availability and the percentage
of links removed (the availability decreases linearly to the number of links removed).

Algorithms

As we already mentioned, the framework presented will evaluate the performance and
robustness of the three algorithms presented in chapter 3. In our analysis we will also in-
troduce the Open Shortest Paths First (OSPF) algorithm to have an idea if oblivious routing
algorithms can perform better than algorithms already used in daily life or not.

Nevertheless, OSPF algorithms provide shortest paths for every SD pair based on a
given cost associated to the links of the network. This cost is fixed by the network ad-
ministrator and, hence, it is unknown for us. Therefore, we will work with two different
approaches:

• Cost based on capacity: based on the recommendations made by Cisco, we calculate
the weights of the links as the inverse of their capacities.

wl =
106

cap(l)
(4.5)

• Cost based on capacity + length of the paths: we extend the previous cost by adding
the length of the paths (in km) to the equation, so delays are also take into account.

wl =
106

cap(l)
+ length(l) (4.6)

In the following table we present the algorithms that will be part of our analysis next to
the acronyms we will use in the rest of this chapter.

34

Simulations and results 4.2 Framework

4.2.3 Scenarios

Topologies

Two of the papers studied in Chapter 3 make use of topologies from the project Rock-
etfuel [29] in their tests. Although these topologies belong to real networks, the authors
modify them in ways that are not explained with enough detail (i.e., approaching Point of
Presence, reducing links, using old topologies, . . .). This fact creates two problems: the
impossibility of directly relating results presented in the different papers and enormous dif-
ficulties in reproducing and validating5 the experiments from the paper.

We have chosen four real research networks for our analysis: Abilene network [3]
(America), Rediris network [6] (Spain), RediMadrid network [5] (Madrid) and Surfnet net-
work [7] (The Netherlands). The main reasons for this choice are:

1. They are research networks and, in most of the cases, the state owns the network.
This point is important because in their respective webpages one can find much more
information about the network (specially detailed topology maps) than in the case of
private networks.

2. They represent a good combination of mesh and ring networks, the two mostly used
topologies over Internet nowadays.

(a)Abilene (b)Rediris

Figure 4.3: Mesh networks.

Table 4.2 presents the most important characteristics of these networks for our analysis.
We fix the capacities of all the links in the four networks to 10gbps, which means that we
ignore the different link capacities in the case of RediMadrid. The main reason to act this
way are the limitations of our Traffic Matrices model (explained in the next section). The
model we use assign traffic randomly between SD pairs, not taking into account that nodes
connected to links with less capacity should receive less traffic. Therefore, as future work,
it would be interesting to extend the analysis to traffic models that take into account this

5In our specific case, the validation of the implemented algorithm is not that important in the case of two-
phases routing and Applegate and Cohens algorithm because they ar based in linear programming formulations

35

4.2 Framework Simulations and results

(a)RediMadrid (b)Sur f net

Figure 4.4: Ring Networks.

Abilene Rediris RediMadrid Surfnet
number of nodes 11 17 9 20
number of links 14 29 11 23
min. node degree 2 2 2 2
max. node degree 3 10 6 8
av. node degree 2.54 3.35 2.4 2.3
topology mesh mesh ring ring
network dimesion national national regional national

Table 4.2: Research networks parameters.

particularities of this kind of networks randomly and study if this situation produces any
change in the behavior of the analyzed routings.

Finally, in the case of two-phase routing, it is necessary to know the incoming and
outcoming capacities at every node of the network (Ri and Ci respectively, section 3.5.2).
We consider that the nodes from the networks are connected to outside nodes by links with
the same capacities from the ones in the network. Therefore, the values from Ri and Ci will
be 10gbps in every case.

36

Simulations and results 4.2 Framework

Traffic matrices

Different techniques have been developed to estimate traffic matrices (TMs) [21]. In this
thesis, we use the bimodal family of synthetic TMs, where the traffic demands are generated
by a mixture of two Gaussians. For each Source-Destination pair, a biased coin is flipped
deciding which of the two Gaussians distributions will give value to the flow.

Figure 4.5: Bimodal distribution.

The model allow us to simulate the traffic behavior in network backbones studied and
described in [11], where a small number of flows generate a large fraction of the total traffic,
while a large number of flows generate a small fraction of it. This phenomenon is known as
“elephants and mice phenomenon” and the authors demonstrated that it is a stable pattern
in the network throughout the day.

To simulate this phenomenon, we will make use of the bimodal distribution. Based on
this distribution we generate six sets of TMs in our analysis in each scenario (TM1, TM2,
TM3, TM4, TM5 and TM6), each one of them contains 1000 matrices. In the first set
(TM1), the average of 20% of the flows will be three times the average of the rest. In the
second set (TM2), the average of 20% of the flows will be four times the average of the rest,
and so on.

This model of TMs has already been used by Applegate and Cohen in their paper [9],
which also included the gravity model in their test. However, we discard using this second
model because the inference of traffic flows without real data does not give reliable results.
The other two papers do not present any test where TMs are used.

4.2.4 Traffic engineering toolbox TOTEM

To perform the test and evaluate the results, we use the open source traffic engineering
toolbox TOTEM [19],[8]. The toolbox TOTEM is designed and developed by the E-NEXT6

6E-Next was a Network of Excellence (NoE) funded by the European Commission under the 6th IST
program

37

4.2 Framework Simulations and results

partners. The functionality of TOTEM needs to be extended to be able to introduce the rout-
ing results from the oblivious routing algorithms. Besides, TOTEM already incorporates
implementations of the multi-commodity flow routing that will be useful to develop more
complete comparisons and evaluations. Totem also provides different methods for traffic
matrices generation which include the bimodal family.

Figure 4.6: Totem snapshots.

However, the toolbox does not adapt exactly to our needs and we need to modify aspects
of the algorithms results:

1. TOTEM works with directed networks, while two of the studied algorithms work with
undirected networks:

• In the case of Räcke’s algorithm, the results can be directly used for directed
networks, but the competitive ratio of O(log3n) is not guaranteed anymore.
However, the limit is already not guaranteed because we are working with an
approximation of the algorithm.

• In the case of Applegate and Cohen’s algorithm, the authors introduced a lemma
[9] (lemma 5.4) to derive directed networks from undirected networks without
affecting the optimal oblivious ratio. We only need to replace each edge e by
two anti-parallel arcs that have the same capacity as e. However, one of the
conditions is to apply symmetric TMs, which are not really common in the real
world. Therefore, we can use the results obtained from the LP formulation,
but the oblivious ratio promised by Applegate and Cohen cannot be guaranteed
anymore.

2. TOTEM also includes a complete implementation of the OSPF (Open Shortest Paths
First) routing. However, when the OSPF routing is performed TOTEM activates some
measure against the congestion over which we have no control (e.g. choosing more
than one shortest path if possible,...). Therefore, we implement our own version of
the shortest paths algorithm, based on the Dijkstra’s algorithm [23].

One may ask why we chose TOTEM. First of all, it is much easier to use than other
simulators, like ns [4]. It is really handy for network administrators who want to test their
network in some situations. Secondly, TOTEM already includes many traffic and topology

38

Simulations and results 4.3 Performance results

generation tools, routing mechanisms and a powerful engine to process results. And last
but not least, TOTEM is an open source traffic engineering toolbox created by the research
community for the research community.

The main drawback is that evaluations are restricted to the TM introduced. This method
is not as flexible as other simulators, like ns, where you have the control to modify the traffic
from any SD pair at any moment without introducing a new TM.

Finally, TOTEM provides a command-line mode where the tool executes the actions
included in an xml format file called “scenario”. This mechanism allow us to automatize
the tests. In [8] the reader can find manuals on how to use TOTEM and to develop new tools
for it.

4.3 Performance results

We start with the performance analysis based on the theoretical metric mentioned: obliv-
ious ratio and quality of the routing. During this section we will use the acronyms presented
in Table 4.1. In the case of the network RediMadrid, we will not analyze the SP L routing
because is a regional network and the link length is not long enough to be taken into consid-
eration. In Table 4.3 we present the oblivious ratios of the routings in the different networks.

As expected, AC has the lowest oblivious ratio in all the cases. This result was easy to
predict, because the objective of the LP formulation from Applegate and Cohen’s algorithm
is to minimize this value. However, having the lowest oblivious ratio does not guarantee
that the routing is going to perform the best in every situation.

The rest of the algorithms cannot compete with AC, although SPW and SPL oblivious
ratios are not that far in the case of ring network. Actually, all the oblivious ratios from
the algorithms are lower in ring networks that in mesh networks. The reason behind this
behavior is than the path diverse in ring networks is lower than in mesh networks, and,
therefore, the routing choices are lower.

Table 4.4 evaluates the quality of the routings in the different networks. The first con-
clusion we can extract is that AC and Two P allocate many more flows at the links than the
rest of the routings. This situation is a consequence of the multipath nature of these two
algorithms. Racke behaves similarly to the shortest paths algorithms, which is expectable
because both of them provide single paths for every SD pair.

There is a trade-off between the congestion in a network and spreading the traffic be-
tween more than one path. In most of the cases, spreading the traffic into a higher number
of links helps to reduce the general congestion of the network. But there is a limit after
which you are flooding the network and the congestion of some links can start being really
high. This is a good concept to keep in mind during our next test.

Figure 4.7 illustrates our practical performance analysis. For each network, we present
two graphs: the left one shows the behavior of the performance ratio of the routings for
the different TMs, and the right one shows the maximum link utilization (MxLU). The first
one allows us to compare the performance of the routing with the optimal routing for those
specifics TMs, while the second one gives us an idea of how fast the network congests with
each algorithm.Due to the random nature of the traffic matrixes used in our experiments, we

39

4.3 Performance results Simulations and results

Racke AC Two P SP W SP L
Abilene 4 1.85057 8.66667 4 3
Rediris 7 1.9672 12.87 4 6
RediMadrid 4 1.6 4.9 2 X
Surfnet 3 1.71 8.5 2 2

Table 4.3: Oblivious ratio of the routings for the different networks

Abilene (110 SD pairs) RediMadrid (72 pairs)
Av n flows Av % traffic per flow Av n flows Av % traffic per flow

Racke 10.25 100.00 7.65 100.00
AC 43.78 30.50 20.68 40.50
Two P 37.6 37.50 37.86 48.7
SP W 9.5 100.00 6.6 100.00
SP L 9.7 100.00 X X

Rediris (272 SD pairs) Surfnet (380 SD pairs)
Av n flows Av % traffic per flow Av n flows Av % traffic per flow

Racke 10.59 100.00 20.82 100.00
AC 81.32 21.67 87.3 38.09
Two P 61.46 43.67 152.43 40.11
SP W 10.28 100.00 25.48 100.00
SP L 11.17 100.00 25.57 100.00

Table 4.4: Quality of the routings.

perform 1000 iterations for each TM set (1 iteration per traffic matrix at each TM set).7

From a general view, we can extract the following conclusions:

• The routing AC is the oblivious routing algorithm from the ones studied in Chapter 3,
that gives the best performance in all the cases. In most of the cases, its performance
can beat and even win the performance from SP W .

• Surprisingly, the approximation of Räcke’s algorithm, being a randomized algorithm,
does not perform that far from the optimal routing. Its results are quite promising,
specially in the mesh networks we analyzed where its performance ratio is at most
1.6 for the traffic model we have work with.

• The routing Two P gives the worst results from the three oblivious routing algorithms
studied.

• The SP W gives performances similar to AC. We have not studied this algorithm as
a demand oblivious routing algorithm, but it also does not take any traffic demands
into account when picking the paths.

7The statistical results (mean and standard deviations) from this experiment are shown in appendix A.

40

Simulations and results 4.4 Robustness results

Now we will study the performance analysis for each network:

• Abilene: In this case, shortest paths seems to be the best option. However, AC does
not perform that far from it. If we take a look at the MxLU, both algorithms are
quite similar in most of the cases. It is interesting to point out that in this case, Racke
performance is not that far from AC and it is even better than SP L.

• Rediris: It is remarkable that the behavior of most of the routing stays stable along the
different TMs. Only SP C breaks this tendency. Rediris is a bigger and more dense
network than Abilene. The degree of the nodes is higher and, in this specific case,
AC performs much better than SP C in most of the cases. It would be interesting to
use similar networks and different TMs generation methods in future analyses to see
if this behavior remains.

• RediMadrid: The behaviors of all the routings seem to be quite correlated. A possi-
ble explanation for this effect is that in a ring network the possibilities of choosing
different paths which contains different links are lower than in mesh networks. Once
more, AC and SP C perform the best. RediMadrid is a regional network, quite small
in comparison with the rest of the networks, so we do not perform the SP L routing
in this case.

• Surfnet: Like in the case of RediMadrid, the behavior of the routings seems also to
be correlated. The network is bigger than RediMadrid and all the routings give better
performances in this case.

4.4 Robustness results

We will only perform a robustness analysis of the routing in two of the four networks:
Abilene and RediMadrid. Our objective is to establish a comparison of the robustness from
the routings and study if the topology affects to its behavior.

Figure 4.8 presents the availability of the different routings according to the percentage
of links removed from the networks. The first conclusion we can extract is that two-phase
routing and AC routing are more robust that the rest because their averages are higher than
the rest, which makes sense because both routings are multipath. More in detail, AC seems
to behave more robust that two-phases because until the 20% of removed links, the mean
stays at 1 (all SD pairs connected).

Another insightful variable to evaluate is the number of links that need to be discon-
nected for the availability of the routing to drop below 0.5. In the case of two-phases and
AC it is necessary on average to disconnect at least the 50 percent of the links for the avail-
ability to go under 0.5, while in the rest of the cases it is only 40 percent.

Figure 4.9 represents the robustness study of routings for the ring network RediMadrid.
The results are quite similar to the case of Abilene, where two-phase routing and AC routing
are more robust than the rest again. However, it is interesting to point that the behavior from
the two-phase and AC routing look more similar to each other in this network, as well Racke
and Shortest paths do with each other. This fact makes sense because in ring networks the

41

4.4 Robustness results Simulations and results

path diversity is lower and, therefore, the removal of links affects in an equal way to the
availability of all of them. Besides, we can see how in this case, the averages of the contour
plots tend to approach the reference linear function (dotted red line), where disconnecting a
link means disconnecting a SD pair.

Again, it is necessary to remove at least 50% of the links in average so the availability
of the multipath’s routing goes under 0.5.

42

Simulations and results 4.4 Robustness results

TM1 TM2 TM3 TM4 TM5 TM6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Traffic Matrices

pe
rf

or
m

an
ce

 r
at

io

AC
SP

W

Racke
Two

P

SP
L

TM1 TM2 TM3 TM4 TM5 TM6
40

50

60

70

80

90

100

110

120

130

Traffic Matrices

m
ax

. l
in

k
ut

ili
za

tio
n

AC
SP

W

Racke
Two

P

SP
L

(a)Abilene network: Performance Ratio (b)Abilene network:Max Link Utilization

TM1 TM2 TM3 TM4 TM5 TM6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Traffic Matrices

pe
rf

or
m

an
ce

 r
at

io

AC
SP

W

Racke
Two

P

SP
L

TM1 TM2 TM3 TM4 TM5 TM6
30

40

50

60

70

80

90

100

110

Traffic Matrices

m
ax

. l
in

k
ut

ili
za

tio
n

AC
SP

W

Racke
Two

P

SP
L

(c)Rediris network: Performance Ratio (d)Rediris network:Max Link Utilization

TM1 TM2 TM3 TM4 TM5 TM6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Traffic Matrices

pe
rf

or
m

an
ce

 r
at

io

AC
SP

W

Racke
Two

P

TM1 TM2 TM3 TM4 TM5 TM6
30

40

50

60

70

80

90

100

110

Traffic Matrices

m
ax

. l
in

k
ut

ili
za

tio
n

AC
SP

W

Racke
Two

P

(e)RediMadrid network: Performance Ratio (e)RediMadrid network:Max Link Utilization

TM1 TM2 TM3 TM4 TM5 TM6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Traffic Matrices

pe
rf

or
m

an
ce

 r
at

io

AC
SP

W

Racke
Two

P

SP
L

TM1 TM2 TM3 TM4 TM5 TM6
40

60

80

100

120

140

160

180

Traffic Matrices

m
ax

. l
in

k
ut

ili
za

tio
n

AC
SP

W

Racke
Two

P

SP
L

(f) Surfnet network: Performance Ratio (g)Surfnet network:Max Link Utilization

Figure 4.7: Performance analysis

43

4.4 Robustness results Simulations and results

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty
100806040200

% of removed links

(a)Two P (b)AC
1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

(c)Racke (d)SP W
1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

(e)SP L

Figure 4.8: Robustness contour plots for Abilene’s network

44

Simulations and results 4.4 Robustness results

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

(a)Two P (b)AC
1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

1.0

0.8

0.6

0.4

0.2

A
v
a
ila

b
ili

ty

100806040200

% of removed links

(c)Racke (d)SP W

Figure 4.9: Robustness contour plots for RediMadrid’s network

45

Chapter 5

Conclusions and Future Work

We have presented the first comparison, to the author’s knowledge, between the most
representative oblvious routing algorithms: Räcke’s algorithm, Applegate and Cohen’s al-
gorithm, and two-phase routing algorithm. After a detailed theoretical study of each of al-
gorithm, we have tested their performance and robustness and compared them to the Open
Shortest Path First (OSPF) algorithm. Our general conclusion is that oblivious routing algo-
rithms represent an interesting choice to take into consideration by network administrators
when they have to select a routing method for their networks.

We conclude from our theoretical study that Applegate and Cohen’s algorithm and two-
phase routing are the easiest to implement, although the linear programming (LP) formu-
lation from the first one required more time to be understand and introduce into the solver.
However, both LP formulations generate a high number of variables, which represent a
problem if we want to run this algorithms in a regular computer.

On the other hand, Räcke’s algorithm is hard to implement and its techniques derive to
NP-hard problems. Therefore, approximations to this algorithm are needed. In this thesis
we have used the one developed by Hughes. The good side of the algorithm is that it does
not present problems with memory consumption as the other two.

From our performance analysis we conclude that Applegate and Cohen’s algorithm
gives the best performance results in all the scenarios. It is interesting to remark that the
OSPF performance can compete with Applegate and Cohen’s algorithm, and it also does
not take into consideration traffic when picking the paths.

Surprisingly, the approximation from Räcke’s algorithm gives a performance not as far
from the optimal routing as we would expect from a randomized algorithm. On the contrary,
two-phase routing performs really bad. The main reason behind this bad performance is that
routing paths are calculated from source to intermediate nodes and from intermediate nodes
to destination nodes independently. Therefore, in many cases there are links repeated over
the same path, so the traffic goes over the same link two times.

Regarding to robustness, Applegate and Cohen’s algorithm and two-phase routing al-
gorithm are the most robust ones because they provide multiple paths for every source-
destination pair.

Finally, if we had to choose one of the three oblivious routing algorithms presented,
we would choose Räcke’s algorithm. The main reasons for this choice are that it does not

47

5.1 Future work Conclusions and Future Work

present problems of memory (so it is able to run in regular computers), a simple approx-
imation gives performance results not extremely far from the optimal routing, and there
are plenty possibilities of improving Hughes’ approximation (e.g. searching for a tree that
looks like more like the one with equivalent communication characteristic of the original
graph, make the algorithm choose more than one possible path for every SD pair, . . .).

5.1 Future work

We can classify the possible future work in three different paths:

1. Extending and improving the analysis framework: We suggest using real traffic data
and synthetic traffic models different than the bimodal distribution, studying of the
worst case scenario for every routing, and introducing the Quality of Service (QoS)
to the analysis.

2. Developing a new approximation for Räcke’s algorithm: The two main points would
be developing a multipath routing version and looking for a more suitable routing tree
generation technique than binary trees.

3. Studying possibilities of reducing the number of variables of the LP formulation from
Applegate and Cohen’s algorithm. If we could reduce this number, we could also
think about introducing the Hose’s model to the LP formulation from Applegate and
Cohen.

48

Bibliography

[1] Cplex large-scale mathematical programming software. http://www.cplex.com.

[2] Ellipsoid method. http://www.utdallas.edu/ dzdu/cs7301/ellipsoid-1.pdf.

[3] The internet2 network. http://www.internet2.edu/network/.

[4] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[5] Redimadrid. http://www.redimadrid.es/.

[6] Rediris. http://www.rediris.es/.

[7] Surfnet. http://www.surfnet.nl/.

[8] Toolbox for traffic engineering methods. http://totem.run.montefiore.ulg.ac.be/.

[9] David Applegate and Edith Cohen. Making routing robust to changing traffic de-
mands: algorithms and evaluation. IEEE/ACM Trans. Netw., 14(6):1193–1206, De-
cember 2006.

[10] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal obliv-
ious routing in polynomial time. pages 383–388, 2003.

[11] Supratik Bhattacharyya, Christophe Diot, and Nina Taft. Geographical and temporal
characteristics of inter-pop flows: View from a single pop. European Transactions on
Telecommunications, 13, 2002.

[12] Door William J. Dally and Brian Towles. Principles and practices of interconnection
networks. Morgan Kaufmann., 2003.

[13] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakrishnan,
and Jacobus E. van der Merive. A flexible model for resource management in virtual
private networks. SIGCOMM Comput. Commun. Rev., 29(4):95–108, August 1999.

[14] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decompo-
sition to minimize congestion. 2003.

49

BIBLIOGRAPHY

[15] Bryan Hughes. An Oblivious Routing Scheme for Parallel Computing in General
Embedded Networks. PhD thesis, Texas Technical University, 2010.

[16] Murali Kodialam, T. V. Lakshman, James B. Orlin, and Sudipta Sengupta. Oblivious
routing of highly variable traffic in service overlays and ip backbones. IEEE/ACM
Trans. Netw., 17(2):459–472, April 2009.

[17] Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta. Efficient and robust routing
of highly variable traffic. 2004.

[18] Hang T. Lau. A Java Library of Graph Algorithms and Optimization. Chapman and
Hall/CRC, 2006.

[19] G. Leduc, H. Abrahamsson, S. Balon, S. Bessler, M. D’Arienzo, O. Delcourt,
J. Domingo-Pascual, S. Cerav-Erbas, I. Gojmerac, X. Masip, A. Pescapè, B. Quoitin,
S. P. Romano, E. Salvadori, F. Skivée, H. T. Tran, S. Uhlig, and H. ı́mit. An open
source traffic engineering toolbox. Comput. Commun., 29(5):593–610, March 2006.

[20] Yuxi Li, Janelle Harms, and Robert Holte. A simple method for balancing network
utilization and quality of routing. In In Proceedings of ICCCN, pages 71–76, 2005.

[21] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix
estimation: existing techniques and new directions. SIGCOMM Comput. Commun.
Rev., 32(4):161–174, August 2002.

[22] P. Van Mieghem, C. Doerr, H.Wang, J. Martin Henandez,
D.Hutchison, M. Karaliopoulos, and R.E.Kooij. A frame-
work for computing topological network robustness. 2011.
http://www.nas.its.tudelft.nl/people/Piet/papers/RobustnessRmodel TUDreport20101218.pdf.

[23] Piet Van Mieghem. Data Communications Networking. Techne Press, 2006.

[24] Harald Räcke. Minimizing congestion in general networks. pages 43–52, 2002.

[25] Harald Räcke. Data Management and Routing in General Networks. PhD thesis,
Universitt Paderborn, 2003.

[26] Harald Räcke. Survey on oblivious routing strategies. In Proceedings of the 5th
Conference on Computability in Europe: Mathematical Theory and Computational
Practice, CiE ’09, pages 419–429, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz, Jen-
nifer Yates, and Yin Zhang. Experience in measuring backbone traffic variability:
models, metrics, measurements and meaning. pages 91–92, 2002.

[28] Christian Scheideler. Lecture 3: Basic routing theory i. course: Theory of network
communication. Course: Theory of Network Communication, 2002.

50

BIBLIOGRAPHY

[29] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies with
rocketfuel. In In Proc. ACM SIGCOMM, pages 133–145, 2002.

[30] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. pages
263–277, 1981.

[31] Rui Zhang-shen and Nick Mckeown. Designing a predictable internet backbone with
valiant load-balancing. pages 178–192, 2005.

51

Appendix A

Appendix

In this appendix we present the statistical results from the performance test described in
section 4.3.

Abilene
MCF Two P AC

Mean Stdev Mean Stdev Mean Stdev
TM1 39,372 4,0511 72,13 6,746 48,843 4,659
TM2 44,796 5,32 90,63 8,39 55,517 6,018
TM3 44,99 6,9277 85,78 10,719 57,055 7,877
TM4 55,83 7,96 112,87 12,767 64,8 9,09
TM5 55 9,4 110,38 14,49 73,93 10,944
TM6 68,07 10,835 125,36 15,686 83,73 12,37

Racke SP W SP L
Mean Stdev Mean Stdev Mean Stdev

TM1 53,306 6,7114 45,178 5,2576 59,476 7,1273
TM2 61,249 8,358 52,375 6,82 67,609 9
TM3 67,579 10,68 58,714 8,7075 73,898 11,9757
TM4 73,016 12,83 65,085 10,26 77,786 13,93
TM5 78,749 14,72 67,40 11,88 84,5 16,2
TM6 94,44 16,61 82,89 14,21 102,51 18,9

Table A.1: Abilene statistic results

53

Appendix

Rediris
MCF Two P AC

Mean Stdev Mean Stdev Mean Stdev
TM1 31,974 2,5103 67,797 4,9362 35,199 1,9301
TM2 36,094 3,5072 75,086 6,7726 39,559 2,7123
TM3 40,266 4,3801 83,15 8,3680 43,896 3,2238
TM4 44,755 5,3182 91,129 9,7839 48,771 4,5581
TM5 6,43 98,739 11,42 53,282 5 77,247
TM6 52,775 6,943 107,14 12,999 57,953 5,966

Racke SP W SP L
Mean Stdev Mean Stdev Mean Stdev

TM1 51,809 5,6356 38,765 2,8274 62,04 4,261
TM2 57,684 6,1673 41,425 4,0535 69,394 6,2925
TM3 63,664 7,1854 43,72 5,2734 76,62 8,179
TM4 70,378 9,52 55,055 6,85 84,314 9,8
TM5 10,976 61,36 7,439 92,019 11,18
TM6 83,801 12,21 76,565 9,64 98,855 13,27

Table A.2: Rediris statistic results

RediMadrid
MCF Two P AC

Mean Stdev Mean Stdev Mean Stdev
TM1 26,045 3,46 60,362 7,14 32,988 4,05
TM2 32,885 4,56 68,565 9,86 38,137 5,45
TM3 28,135 5,58 75,455 11,14 43,017 6,56
TM4 30,925 6,78 84,093 13,65 48,51 7,98
TM5 49,705 7,62 91,836 15,61 53,431 9,08
TM6 56,135 8,77 100,70 17,7 58,9 10,46

Racke SP W SP L
Mean Stdev Mean Stdev Mean Stdev

TM1 48,412 7,87 32,819 4,83 X X
TM2 55,218 10,12 38,386 6,34 X X
TM3 61,546 12,56 43,837 7,66 X X
TM4 68,492 14,66 49,896 9,25 X X
TM5 74,542 16,74 55,032 10,49 X X
TM6 82,45 19,45 61,31 11,74 X X

Table A.3: RediMadrid statistic results

54

Appendix

Surfnet
MCF Two P AC

Mean Stdev Mean Stdev Mean Stdev
TM1 45,59 0,988 78,203 1,83 53,55 1,079
TM2 58,335 2,2815 93,948 3,98 65,44 2,5
TM3 62,94 3,59 110,13 6,13 77,37 4,08
TM4 75,835 4,99 126,75 8,26 89,39 5,65
TM5 90,04 6,14 144,34 10,73 101,74 6,91
TM6 95,915 8,13 160,50 12,73 114,03 8,99

Racke SP W SP L
Mean Stdev Mean Stdev Mean Stdev

TM1 65,97 2,18 53,746 1,55 54,253 1,513
TM2 78,435 4,82 66,121 3 66,62 3,01
TM3 90,67 6,94 78,796 4,89 79,32 4,96
TM4 104,42 9,62 91,82 6,91 92,27 6,99
TM5 117,58 11,71 105,07 8,2 105,63 8,28
TM6 130,32 14,81 118,47 10,82 118,95 10,945

Table A.4: Surfnet statistic results

55

