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2.1 Introduction
The idea of sourcing critical raw materials (CRMs) from mine tailings and waste rocks surges from
(1) the need for contributing to the supply of metals that are critical for the economy and society,
(2) the economic stimuli to support the already costly environmental management, and (3) the
improvements in extraction and processing efficiency of mineral resources in general. For achieving
resource efficiency, it is necessary to implement improved mining and processing methods. Buxton
and Benndorf (2013) stated that material characterization using sensor-derived data enables the
optimization of the processes along the mining value chain. It does so by, among others, discrimi-
nating ore from waste, ensuring the quality and homogeneity of the material that is fed at different
stages of mining and processing, and ensuring the product’s adherence to quality specifications.

It is then understood that to ensure the success in the recovery of CRMs from mine waste
deposits, it is necessary to elucidate the attributes not only of the ore (CRMs in this particular
case) but also of the host material in general. For doing this, it is essential first to define the
scope and stages of a project to explore mine residues as a possible resource (Dominy,
2018). Then, decisions must be made depending on the type of material that needs to be
analyzed and the best analytical techniques to identify all the relevant attributes. In this
sense, a comprehensive understanding of mine waste material targeting CRMs potential is
facilitated by implementing a sensor-based approach for material characterization.

The characterization of mine residues in the view of mineral recovery must provide the
following information:

• the occurrence of recoverable minerals and their sources;
• the possible distribution of recoverable minerals inside the waste deposit;
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• the mechanisms of metal enrichment;
• geometallurgical properties;
• possibilities for metal recovery;
• recommended reprocessing methods; and
• anticipated impacts of a site reintervention.

If a geoenvironmental assessment is also in the scope of the characterization, the assess-
ments should include aspects, such as the likelihood of occurrence of waste waters, type of
chemistry expected, impacts, and leaching pathways (GARD Guide, 2018).

The characterization of mine residues should be an interdisciplinary work that combines
geology, mineralogy, geochemistry, hydrology, biology, and engineering. Ideally, the charac-
terization works should be based on the definition of waste units that depend on the scope
of the study and are supported by reliable legacy data. Furthermore, the standard analysis
and test works (e.g., static and kinetic tests) should be complemented with low costs and
rapid tests for screening the material on-site (Parbhakar-Fox & Lottermoser, 2015).

Even though there are inherent differences among mine waste storage facilities depending
on, for example, the type of commodity, techniques for mineral processing, and regulatory
framework, this chapter seeks to provide a general approach toward the sampling and charac-
terization of mine residues in the view of CRMs recovery. Given the large variability of types of
CRMs and the multiple types of mine residues where they can be possibly sourced (see
Chapter 1), this work will address the bauxite residues as a case study. Nevertheless, other
types of mine residuals will be considered when possible. In the following sections, we over-
view different sampling strategies and the techniques used to recover material by assessing
their advantages and disadvantages. The characterization section focuses on analytical techni-
ques rather than on test works. We present a selection of geochemical, mineralogical, and
other techniques that can be used either in field environments or in the laboratory to study
the main properties of the waste material. Overall, this review offers a tool for implementing
better practices in the sampling and characterization for the revalorization of mine residues.

2.2 Critical raw materials in bauxite residues
The Bayer process is the standard method for beneficiating bauxite ores to recover alumina;
this process uses an alkaline chemical attack with sodium hydroxide (NaOH). After the
extraction of alumina, other components of bauxite considered impurities do not dissolve or
are converted to sparsely soluble compounds disposed of as bauxite residuals, also some-
times referred to as red muds (Gräfe et al., 2011; Klauber et al., 2011; Power et al., 2011).
Although the exact composition of bauxite residue depends on the type of bauxite and the
process parameters of the Bayer process (Gräfe et al., 2011), an approximate mineral
and chemical composition can be described in Tables 2�1 and 2�2, respectively. Secondary
mineral phases formed during the Bayer process, such as hydrogarnet (Ca3(Al,
Fe)2(SiO4)y(OH)4(32y)), cancrinite (Na6Ca2CO3, Al6Si6O24U2H2O), perovskite (CaTiO3), and
gibbsite Al(OH)3, are also present in the bauxite residues. Other factors influencing bauxite
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residue composition are NaOH content, heat and pressure conditions used during digestion,
as well as chemical additives used (Liu et al., 2007). Karstic-type bauxites are richer in rare
earth elements (REEs) in comparison with lateritic bauxites. The REEs are most likely to be
associated with iron and titanium minerals that remain unchanged after digestion.

Table 2–1 Mineral composition of bauxite residues.

Mineral Chemical formula Range (wt.%)

Hematite α-Fe2O3 7�29
Goethite α-FeOOH 7.3�24.3
Magnetite Fe3O4 0�8
Diaspore α-AlOOH 0.5�0.6
Boehmite γ-AlOOH 1�9.6
Gibbsite Al(OH)3 1�5
Quartz SiO2 1.2�4.9
Rutile TiO2 1.1�5.4
Anatase TiO2 0.3�5
Sodalite Na8[Al6Si6O24][(OH)2] 2.7�24
Cancrinite Na6[Al6Si6O24]U2CaCO3 0�51
Calcite CaCO3 1�11.2
Perovskite CaTiO3 0�11.5
Kaolinite Al4Si4O10(OH)8 Variable
Imogolite Al2SiO3(OH)4 Variable
Ilmenite FeTiO3 Variable
Hydrocalumite Ca4Al2(OH)12 Variable
Amorphous Variable

Source: From Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-
earth-containing industrial process residues: A critical review. Journal of Cleaner Production, 99, 17�38. https://doi.org/10.1016/j.
jclepro.2015.02.089; Gräfe, M., Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and associated chemistry.
Hydrometallurgy, 108(1�2), 60�79. https://doi.org/10.1016/j.hydromet.2011.02.004.

Table 2–2 Chemical composition of bauxite residues from karstic bauxites
determined by X-ray fluorescence (wt.%).

Bauxite origin Refinery Al2O3 Fe2O3 SiO2 TiO2 CaO Na2O

Turkey Seydisehir 20.24 39.84 15.27 4.15 1.8 9.43
Turkey Seydisehir 20.24 39.84 15.24 4.15 1.8 9.43
Ex Jugoslavia Birac Alumina 14.14 48.5 11.53 5.42 3.96 7.5
Greece Alumine de Grece 15.6 42.5 9.2 5.9 19.7 2.4
Turkey Seydisehir 17.27 37.72 17.1 4.81 4.54 7.13
Greece Alumine de Grece 15.85 48 6.96 7.06 14.84 3.26
Greece None 16.94 39.34 6.95 4.79 13.2 2.1
Turkey Seydisehir 19.1 37.6 15.7 4.9 2.4 9.5
Hungary Ajka 14.8 42.1 13.5 5.2 6.1 8.9

Source: Adapted from Gräfe, M., Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and associated chemistry.
Hydrometallurgy, 108(1�2), 60�79. https://doi.org/10.1016/j.hydromet.2011.02.004.
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Even though the data available on the content of CRMs in bauxite residue are scant,
some studies have indicated that the residues may be rich in valuable CRMs, such as scan-
dium (Sc), vanadium (V), gallium (Ga), REEs, and other valuable elements [e.g., nickel (Ni),
zinc (Zn), zircon (Zr), chromium (Cr)] (Binnemans et al., 2015; Deady et al., 2016; Deady,
2014; Ochsenkühn-Petropulu et al., 1994; Ujaczki et al., 2018). Furthermore, some studies
report that bauxite residue is enriched in REEs compared to the bauxite ore by a factor of
two (Ochsenkühn-Petropulu et al., 1994). This enrichment takes place due to the fact that (1)
the extraction of alumina (Al2O3) leads to a concentration of other metals and (2) some pro-
cessing plants combine ores from different origins (e.g., Mediterranean bauxites processed
together with Caribbean bauxites). For example, the average concentration of REEs in baux-
ite from the Parnassos�Ghiona mountains in Greece is 506 ppm, whereas the average con-
centration of the resulting bauxite residue is 1040 ppm (Ochsenkühn-Petropulu et al., 1994).
In addition, bauxite residues from two case study sites, one in Greece and the other in
Turkey, have been found to contain an average of B1000 ppm of total REEs content, with
higher prevalence of light rare earth elements (LREEs) over heavy rare earth elements
(HREEs). Although this is relatively low grade compared with typical primary REE deposits
(up to 80,000 ppm), it is of interest because of the large volumes available and the cost bene-
fits of reprocessing waste (Deady et al., 2016).

Recovering scandium from bauxite residue is of high economic interest, as the metal
represents more than 95% of the economic value of REEs in bauxite residue (Binnemans
et al., 2015). However, there is little information available on the mineralogy of REE-bearing
phases in bauxite residues. Furthermore, the nature and mechanisms causing variations in
REEs distribution in bauxites are highly complicated, hindering understanding of the distri-
bution and nature of the REE-bearing phases and minerals in the residues (Deady et al.,
2016). Even though the association of REEs with iron and manganese phases is widely
acknowledged in the literature, much more work is necessary to fully understand the distri-
bution and mineralogy of REEs in bauxite residues. This will allow precise economic quanti-
fication of the potential REEs resources and could aid the development of new and more
efficient leaching processes (Binnemans et al., 2015; Deady et al., 2016).

Bauxite residues might contain small quantities of radionuclides (from 232Th and 238U
chains). Therefore they can be classified as Technologically Enhanced Naturally Occurring
Radioactive Material (TENORM), falling under the legislation for Naturally-Occurring
Radioactive Materials (Gu et al., 2012; O’connor et al., 2013). Because of this, legal con-
straints need to be considered when planning the intervention or repurposing of tailing sites.

Bauxite residues and red muds are solid solution mixtures ranging in initial solids content
from 20% to 80% by weight, depending on the disposal method of the refinery. Bauxite residue
consists of approximately 70% crystalline phases and 30% amorphous materials (Table 2�1).
The mineral phases in bauxite residue are related to the content of the original bauxite ore
(e.g., diaspore (AlO(OH)), boehmite (polymorph of g-AlO(OH)), gibbsite, Fe-oxides and hydro-
xides, kaolinite(Al2Si2O5(OH)4)) and the secondary mineralizations that are formed during the
Bayer process (e.g., perovskite, sodalite (Na4(Al3Si3)O12Cl), cancrinite, hydrated Ca-silicates,
calcium aluminates, sodium carbonates) (Binnemans et al., 2015; Gräfe et al., 2011). CRMs in
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bauxite residue are present in iron and titanium minerals (e.g., hematite, titanite, perovskite);
LREE ferrotitanates are formed during the Bayer process digestion by an in situ transformation
of the precursor bauxite LREE minerals contained in the bauxite feed. Minor amounts of LREE
are found as carbonates and phosphates, referring to the partial resistance of these phases to
Bayer process digestion conditions. HREEs are found in bauxite residue yttrium-phosphate
phases (xenotime/churchite) (Vind, Malfliet, Bonomi, et al., 2018).

2.3 Sampling methods
The evaluation of the potential of reprocessing mine residues should be supported by credi-
ble information about the resources. This information can include historical records, but it
must also contain a formal collection of data from the waste deposit (Bertrand, 2015; Muir
et al., 2016). However, sampling mine residues is a challenging task. The compositional, spa-
tial, and size heterogeneity of waste deposits makes using classical statistical methods prob-
lematic (Sädbom & Bäckström, 2018; Smith, 2000). The collection of samples and
subsequent testing should be based on the specific objectives of a sampling campaign and
should be well defined in the early stages of the project (Lapakko, 2002). The following sec-
tion describes various types of physical collection of samples for mine waste rocks and tail-
ings and the techniques that allow optimal recovery of sampling material.

2.3.1 Sampling strategies

When assessing the possible environmental impacts associated with mine wastes or the fea-
sibility of reprocessing them, an exploratory or screening phase must be carried out to get an
overview of the general characteristics of the deposit. Depending on the findings of this
phase, a more detailed characterization can be performed for more precise identification of
the recoverable resources. These differences also imply different approaches for sampling. It
is also important to highlight that every mining site is unique, and site-specific information
must always be considered to revise the sampling strategy.

The sampling of waste deposits will vary for waste rocks or tailings as their configuration and
composition are different. Waste rocks are carried by dump trucks to the disposal site; the move-
ment of the particles during the hauling process results in particle size segregation. Therefore
waste rocks are composed of intercalated layers of coarse and fine-grained material. In contrast,
for tailings storage facilities (TSF), the disposal methods depend upon the water content of the
tailing and the topography of the tailings dam. The methods for material discharge include sub-
aerial slurry, subaqueous slurry, paste, and dry deposition. The material in the tailings may also
be segregated by grain size depending on the methods used at the latter stages of mineral pro-
cessing (GARD Guide, 2018). Furthermore, the composition of the uppermost layers in a TSF
might differ from the rest of the deposit since it has been exposed to (GARD Guide, 2018)
enhanced weathering and leaching (Price, 2009).

When sampling waste rocks and tailings, it is crucial to ensure good representability of all
geological materials present in the waste deposit. Therefore the number of samples must be
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adequate to represent the total variability of the material. According to the GARD Guide
(2018), ensuring representability entails:

• Compositional representation of all major materials based on the definition of geological
units. Such units are few and robust during the screening phase, but that gradually
increases detail and accuracy along with multiple sampling phases.

• Spatial representation in both the vertical and horizontal profile.
• Sampling method, that is, focussed versus random, depending on the specific objectives

of the characterization program.

Price (2009) offered a comprehensive overview of the aspects that must be considered on
the definition of sampling units, sample size, sampling storage, and preparation, among others
applied to the characterization of drainage chemistry of sulfidic materials. However, most of
the proposed protocols are equally applicable to evaluating the potential of reprocessing mine
waste deposits. Hereby, we summarize some of those aspects.

2.3.1.1 Definition of geological units
To define the geological units and ascertain spatial representation, it is relevant to acquire
legacy data of the waste deposit. This would include project type and history, geologic mate-
rials (excavated and processed), weathering environment (consider local and regional condi-
tions), and mine components (methods of extraction and processing, rehandling, and
secondary treatment). To ensure good geological and geochemical representation, a couple
of samples collected using targeting sampling can be added within units with different physi-
cal, geochemical, and mineralogical properties. Ideally, the entire particle size distribution
(PSD) should also be included among the material sampled.

2.3.1.2 Sample size
The area, volume, and length of individual samples should be based on the terrain’s possibil-
ities and the objectives of the sampling campaign. The sample size will depend on the spatial
variability, the intended analyses and tests, and their requirements for accuracy and preci-
sion. During sampling, compositing samples must be avoided as it can mask properties spe-
cific to individual samples or result in misinterpretation of the results. Overall, it must be
avoided to composite samples collected at different times, over vast distances, and from dif-
ferent geological units. Additional samples must be collected in the case of quality assurance
and quality control assessments (QA/QC) or additional analyses and if the analyses are car-
ried on different particle size fractions.

2.3.1.3 Sample storage and preparation
Appropriate sample storage must ensure that the geochemical conditions of the field are pre-
served (e.g., aerobic/anaerobic conditions). To avoid further alteration of the minerals, the
samples must be air or oven dried at temperatures not higher than 40�C, or frozen if analy-
ses of sulfide oxidation would be performed. During physical preparation, autogenous parti-
cle grinding should be avoided and the effects of sample preparation on the targeted
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material properties should be considered. Likewise, the use of any chemical additives must
be compatible with the subsequent analyses.

2.3.1.4 Reporting information
Although it might seem trivial, it is essential to highlight the relevance of good reporting
practices during a sampling campaign. Organized and clear records regarding date, name of
the samples, location, sample size (area, volume, length), type of material, project, and sam-
pling technique are essential to conduct good analytical and test work and avoid misinter-
pretation of the results. In addition, it is helpful to keep a visual description of the samples
and a photographic record of the samples and sampling conditions (e.g., the shape of the
deposit, vegetation cover, vegetation type, etc.).

2.3.1.4.1 Sampling for the screening
The exploratory phase is used as a preliminary screen to assess the potential of a reproces-
sing project without any significant expenditure. The objective is to gather a general overview
of the waste deposit and prioritize areas for further assessment. This phase does not produce
any factual findings in terms of resource estimation, the viability of processing of the mate-
rial, or plans for the mitigation of environmental impacts. The primary outcome from the
exploratory phase is a recommendation on whether to proceed or abandon the reprocessing
project (Muir et al., 2016).

At this stage, samples would be more likely collected using grab sampling, with special
care on ensuring appropriate deposit coverage. For this, a sampling grid that enables the col-
lection of 15�30 samples is recommended. To minimize the sampling errors, Smith (2000)
proposed a method where the mine waste dump is divided into at least 30 cells of roughly
equal surface area, and one sample is collected at the center of every cell. Sädbom and
Bäckström (2018) suggest adapting the number of samples depending on the type of mine
waste: often, tailings are more homogeneous than waste rocks and therefore would require a
smaller amount of samples. For the design of the grid, these authors propose to set the grid-
sample distance as follows:

waste area

number of samples
5 area per sample (2�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area per sample

p
5 distance between samples (2�2)

For example, in the sampling of a tailings site with an area of 30,000 m2 where 15 samples
would be collected, the area per sample (cell size) would be 2000 m2, and the sampling
space B45 m.

Regarding the amount of material collected, Sädbom and Bäckström (2018) suggest that,
given the higher heterogeneity of waste rocks, every waste rock sample must weigh 2�5 kg,
whereas for the more homogeneous tailings, only 500 are required, always ensuring good
representation of all particle sizes.
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2.3.1.4.2 Sampling for detailed characterization
The sampling for detailed characterization seeks to explore the vertical profile, and therefore
it is most likely to be conducted using drilling techniques. This type of sampling requires a
more careful approach in the grid design using sampling theory (Lapakko, 2002). An optimal
drilling grid defined using a geostatistical approach provides quantitative measures for
resource estimation (Abzalov & Newman, 2017). In cases where the particle size is one of the
targeted properties, attention must be paid that the chosen drilling technique can recover
complete cores. For shallow sampling, trenches are recommended (Price, 2009).

Nevertheless, the sampling program must be designed with consideration of the site’s
characteristics and the resource material. According to the principle of 3D effective con-
trol on tailing dams, transects should be arranged at 50�200 m dot spacing, depending
on the size and detail of the site (Muir et al., 2016; Pan et al., 2014). The discharge his-
tory, execution condition of the tailings dam, and geometry of the deposit should also be
considered. Notably, an excessive number of sampling points next to the dam’s walls or
next to historical feed points should be avoided since they are a potential source of bias
(Muir et al., 2016).

Samples collected for the detailed characterization of waste rocks are likely to be used for
long-term field-based tests in cells with tens to hundreds of drill cores or large test pads with
tones of mine rock material (Jamieson et al., 2015). In the latter case, collecting all particle
sizes is a challenging task, particularly in the cases of open-pit mines where the particle size
can reach up to 3 m. Therefore the sampling is restricted to particles smaller than 12 cm,
being samples between 2 mm and 12 cm considered representative of the coarse size fraction
(Price, 2009).

The samples collected for the detailed characterization of waste rocks and tailings usually
undergo static or kinetic tests. The static tests are carried out on small subsamples of pulver-
ized rock material (around 10 g). To ensure the representability of the subset sample, ade-
quate techniques for sample preparation, handling, and splitting must be used. The samples
used for kinetic tests are larger in volume, but only a few to tens of samples are required per
study. The samples for such studies usually consist of coarsely crushed rocks for waste rocks
test works, whereas for tailings the samples are simulated (Jamieson et al., 2015).

2.3.1.4.3 Sampling for determination of acid rock drainage and waste waters
One of the biggest concerns associated with managing mine wastes is the generation of vast
amounts of poor-quality wastewater. The best-known type of wastewater is acid rock drain-
age (ARD), although mine drainage, in general, can be classified as acidic (pH 0�5), circum-
neutral (pH 6�8) or strongly basic (pH 8�12). It can also be radioactive, corrosive, and
highly toxic (Nordstrom, 2011). ARD is produced through geochemical mineral weathering
reactions that mobilize metals and metalloids (metal leaching) and other contaminants,
causing severe environmental impacts (Jamieson et al., 2015). The mitigation of the impacts
caused by ARD and metal leaching requires predictions of mineral reactivity and drainage
quality to optimize waste storage conditions and effluent treatment.
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In this context, the sampling and characterization of mine wastes also aim to provide
accurate information about the intrinsic rock characteristics that can result in ARD or metal
leaching (Jamieson, 2011; Parbhakar-Fox & Lottermoser, 2015; Price, 2009). For selecting a
sampling method in this case, it must be taken into account that the target of the characteri-
zation is the detection of sulfides that are precursors of ARD, carbonate minerals that act as
neutralizers, and problematic concentrations of metals and metalloids (Jamieson et al.,
2015). In some cases, it is possible to use the same samples for both the evaluation of repro-
cessing potential of the waste and ARD and metal leaching determination. Attention must be
paid that the methods for samples’ handling and the intended test works are adapted to the
aims of the study.

2.3.1.4.4 Sampling of mine residues using a geometallurgical approach
Most of the work developed around mine wastes focuses on the prediction of ARD forma-
tion. Thus it is not surprising that the sampling and characterization techniques for mine
wastes are focused on identifying ARD precursors. Consequently, the practices for mine
waste characterization most commonly follow the wheel approach proposed by (Morin &
Hutt, 1995) that aims at classifying the waste rocks for predicting ARD risks. However, the
scope of the work on mine wastes is broadened by the fact that mine residues are increas-
ingly seen not just as an environmental liability but also as an opportunity for mineral recov-
ery and revalorization. In that sense, the wheel approach has been criticized as it does not
consider textural measurements and does not integrate geometallurgical data. In addition,
other reference works, such as the Global ARD (GARD Guide, 2018), do not offer specific
standards for sampling and characterization.

To improve ARD prediction and to offer valuable information for mineral recovery from
mine wastes, mine residues should be studied more comprehensively. Following this princi-
ple, (Parbhakar-Fox, 2017) proposed an approach for characterizing mine residues that com-
bines geochemistry, mineralogy, texture, and geometallurgy (GMTG). This approach focuses
on the number of samples and the accountability for the material variability of the mine
waste. For doing this, it is necessary to define not only geological units, as proposed by the
(GARD Guide, 2018; Price, 2009), but also geometallurgical and geoenvironmental units,
depending on the target of the study. The geometallurgical units are those intended for pur-
poses of mineral recovery; they are ore type(s) with a unique texture, composition, and pro-
cesses that result in similar metallurgical performances. The geoenvironmental units have
similar textural, mineralogical, and chemical properties that control the generation of ARD
and metal leaching (Parbhakar-Fox & Lottermoser, 2015).

In terms of sampling, the GMTG approach distinguishes between operational and histori-
cal sites. Following the recommendations of the (GARD Guide, 2018), the sample selection
in operational sites must be based on the predefined units, and the samples must represent
different size fractions of each type of material. For general characterization, the GMTG
approach suggests collecting drill cores with 50 m of lateral distance and at least 50 m of
depth to create a waste rock model. For detailed characterization, the size of the sampling
grid should be between 2 and 50 m, depending on the variability of the mine waste deposit
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(Parbhakar-Fox, 2017). For sampling of the historical sites, it is advised to collect 8�12 sam-
ples from each significant unit (assuming one unit accounts for approximately 2% of the total
rock volume). Alternatively, collect one sample of 1.5 kg per 20,000 t of waste rock (i.e., 50
samples/Mt). Before these samples undergo conventional characterization (e.g., kinetic and
static tests), they should be characterized, if possible, in situ. Information of interest, in this
case is sample’s geochemistry, mineralogy, and texture (Parbhakar-Fox, 2017).

2.3.2 Sampling techniques

The heterogeneity of the deposits is not the only challenge in mine residue sampling. Mine
waste deposits are often unconsolidated material, which brings sampling issues, such as sta-
bility, sample contamination, and preservation. A better sample recovery is possible today,
thanks to the recent developments, but the difficulty in accurately identifying these subsur-
face materials still remains a problem in some circumstances (Annels, 1991). The adequate
assessment of CRMs in mine tailings requires high-quality samples that can provide a precise
estimation of the metals’ content and their distribution in the vertical profile. Among
the plethora of sampling techniques, only those that permit high-quality sampling must be
considered. Complementary to an adequate sampling technique, it is also necessary to count
with well-trained operators who understand the importance of applying a rigorous procedure
during sampling. Furthermore, the sampling theory must be followed with as much care as
possible to reduce the losses due to poor sampling (Ortiz & Magri, 2014).

2.3.2.1 Grab sampling
Grab sampling is the simplest method for the collection of waste material. There is no speci-
fication for the equipment to be used, and the material is often collected in uncontrolled
conditions. However, it is recommended to retrieve the samples with a stainless-steel trowel
to avoid contamination and place them in a bucket upon collection. Air-dried samples are
stored in a plastic bag or a paper soil-sampling bag to ensure complete drying of the sample
(Smith, 2000). This sampling technique is only used for the screening of a waste deposit.

2.3.2.2 Trench sampling
It is one of the simplest methods for sampling unconsolidated material. A pit or a trench is
dug by using a hydraulic excavator. This technique offers the advantage of exposing the
sequence in situ and enables retrieving big particles (e.g., cobles) that cannot be recovered
with drilling techniques. However, the excavation depth is limited by the water table and can
cause substantial disturbance to the area (Annels, 1991). This method is common for shallow
and dry deposits, or for obtaining bulk samples during a detailed investigation stage.

2.3.2.3 Auger drilling
Drilling using an auger is a widely used technique for obtaining samples of unconsolidated
material like sand, gravel, or clays. It is popular due to the lower costs of operations: the equip-
ment can be easily carried to the testing site and only one person is required to perform the
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sampling (Annels, 1991). In this drilling system, the material is cut and broken with a simple
blade bit mounted on the end of a rotating string of rods. Hand augers collect the material in a
small barrel behind the bit, which is then pulled from the ground, and emptied when full.
Screw or sleeved augers pass the material to the surface through a spiral screw thread along
the rod string; this system is usually mounted on the back of a small truck or trailer
(Marjoribanks, 2010). Fig. 2�1 shows the design of both hand and screw augers.

The depth limit for using hand augers is 2 m. Screw and sleeved augers reach greater
depths (up to 45 m). The borehole is drilled and sampled in 1�1.5 m increments to provide
suitable information on grade variation throughout the vertical profile of the waste deposit.
The depth of the hole might be affected by the sand/slime stability, which is a function of
the moisture content and particle size. After collection of every sample, the blades should be
cleaned to avoid contamination (Muir et al., 2016).

2.3.2.4 Reverse circulation drilling
Reverse circulation (RC) drilling is a type of rotary percussion drilling. It has evolved due to
the need to produce better quality samples, particularly below the water level (Annels, 1991).
In this system, various rolled bits mounted on the end of a rotating string of rods cut and
break the rock. High-pressure air pumped to the face of the bit down the center of the rods
lubricates the cutting surfaces and helps to remove the broken material. In RC drills, the
material is recovered through a separate tube inside the drill stem (Marjoribanks, 2010).
Fig. 2�2 presents a diagram with the principles of RC drilling. RC rigs designed for drilling

FIGURE 2–1 Diagram illustrating the main components of auger drills. From Marjoribanks, R., & Marjoribanks, R.
(2010). Drilling: A general discussion the importance of drilling (pp. 75�84). Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-540-74375-0_5. Reproduced with permission from Springer Nature.
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soft rocks usually use a smaller compressor and roller or blade instead of a tungsten carbide
drill bit (Abzalov & Abzalov, 2016).

Unlike auger drilling, RC drilling recovers the entire sample, including any water, except
for any cobles larger than the internal diameter of the rods (Annels, 1991). Contrary to auger-
ing, the continuous sampling eliminates the need to remove the drill string from the bore-
hole. However, the fact that this system requires a compressor and additional equipment
increases the costs of the operations. Therefore RC drilling is only recommended for detailed
“second phase” drilling, where higher quality of samples is required.

2.3.2.5 Air coring
Air core is a type of specialized RC drilling that uses a small annular bit to cut a solid core of
rock from relatively soft material. The bit produces short sections of core that are recovered
in the same fashion as an RC rig. This system is most suitable for penetrating and coring
soft, sticky clays, which may clog a standard blade bit (Marjoribanks, 2010).

2.3.2.6 Sonic drilling
Sonic drilling is a vibratory drilling method in which rotating weights from the drill rig’s rota-
tion unit send a vibration into the rod string and core barrel assembly. The sonic drilling
method applies vibration to the drill string at a resonant frequency (typically between 50 and
120 Hz), which can fluidize particles adjacent to the drill string and significantly reduce

FIGURE 2–2 Diagram of the principles of RC drilling. RC, Reverse circulation. From Marjoribanks, R., & Marjoribanks,
R. (2010). Drilling: A general discussion the importance of drilling (pp. 75�84). Springer Berlin Heidelberg. https://
doi.org/10.1007/978-3-540-74375-0_5. Reproduced with permission from Springer Nature.
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friction (Fig. 2�3). This approach can provide rapid casing advancement down very straight
holes with minimal or no fluid injection, produces relatively clean sidewalls and good core
recovery, and generates minimal waste (Dinwiddie & Stothoff, 2013). Sonic drilling can be
applied to relatively soft rocks and unconsolidated formations, including hard till and cob-
bles and boulders, and is particularly useful for monitoring tailings impoundments (Latimer,
2010). Sonic drilling is usually performed by track-mounted rigs allowing them free move-
ment on unconsolidated sands and the soft clay formations (Abzalov & Abzalov, 2016). Even
though this method is relatively costly, it might be cost-effective in terms of labor when
numerous boreholes are required.

The sonic technique aims to collect representative undisturbed samples of nonconsoli-
dated sands, which are essential for an accurate estimation of resources of the mineral sand
deposits. Sonic drilling is the only technique that allows obtaining a continuous sample of
the soft unlithified sedimentary formations, such as mine residues, in a cost-effective man-
ner. As a result, sample integrity is significantly better than the other techniques, and the
possibility of sample contamination is minimized (Abzalov & Abzalov, 2016).

2.3.3 Summary

Conducting an adequate sampling campaign is a critical step in the characterization of mine
wastes. First and foremost, the general aims of the overall campaign or study must be clearly
identified to select the most appropriate sampling strategies and, subsequently, sampling
techniques. Next, with a clear scope, it is crucial to define the units (geological, geometallur-
gical, geoenvironmental) and the sampling scale (general/screening, detailed) and plan the
analysis and test works that will be carried out. Finally, all these parameters set the basis for
making decisions regarding grid density, number of samples, volume, duplicates, etc.

The selection of the proper technique or combination of techniques is usually a trade-off
between speed, cost, required sample quality, sample volume, logistics, and environmental

FIGURE 2–3 Diagram of the principles of Sonic drilling. From Abzalov, M., & Abzalov, M. (2016). Drilling techniques
and drill holes logging (pp. 39�77). Springer International Publishing. https://doi.org/10.1007/978-3-319-39264-6_4.
Reproduced with permission from Springer Nature.
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considerations. The specific requirements of the sampling program and the type of mine res-
idue play an essential role in the choice of the drilling technique for detailed characteriza-
tion. In addition, the level of consolidation of the material, amount of water in the waste
deposit, and depth must be taken into consideration. Table 2�3 presents a summary of the
main characteristics of every drilling technique presented here.

2.4 Analytical techniques for material characterization
To assess whether CRMs can be recovered from waste residues, it is essential first to assess
the feasibility of such a project. Two main attributes must be considered at the initial stage:
(1) determination of the presence of the target elements and (2) their association with the
minerals in the deposit, which will determine the suitability of extraction. Using the concepts
and methods of geometallurgy generally applied for standard mineral beneficiation is an
excellent approach for mine residues (Dominy, 2018). It entails combining geochemical and
mineralogical techniques to understand the composition of the waste material fully.
Applying geometallurgy to the characterization of mine residues is embraced by the GMTG
approach (Parbhakar-Fox, 2017). GMTG complements the traditional static and kinetic tests

Table 2–3 Drilling techniques for sampling mine waste deposits.

Drill type Indications Advantages Disadvantages

Auger drilling Geochemical sampling in the
few upper meters of
unconsolidated material

Human portable; contaminated
mixed sample; quick; cheap

Poor penetration; sleeve augers
depend on the power source

RC drilling Geochemical sampling in
hard and soft rock to
200 m plus

The sample might be
contaminated; large sample
volume; rock-chip composite
returns (it loses context/textural
relationships); relatively quick

Large, heavy rig or light-weight
rig transported on the back of
a 43 4 vehicle (requires an air
compressor); no structural
data; poor hole orientation
control; some sample
contamination/loss below the
water table

Air coring Geochemical sampling where
good geochemical
sampling and sampling of
soft clays is required

Small rock-core return; minimal
contamination, relatively quick

Small sample size; needs a source
of air

Sonic drilling Geochemical sampling; good
for coring and monitoring

Accurate and continuous coring;
minimal contamination; Ability
to catch intact sample in
unconsolidated material:
preserves layering and fine scale
textures.; no fluid dilution

Equipment is relatively costly

RC, Reverse circulation.
Source: Modified after Marjoribanks, R., & Marjoribanks, R. (2010). Drilling: A general discussion the importance of drilling (pp. 75�84).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74375-0_5. Reproduced with permission from Springer Nature.
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(carried out mainly for ARD determination) with techniques that consider the texture of the
material and its geometallurgical properties. It also emphasizes characterization techniques
that can be used directly on the field to retrieve real-time information and aid in the (re)defi-
nition of geometallurgical and geoenvironmental units. Following the principles of geometal-
lurgy, GMTG also stresses the importance of determining mineralogical properties as means
of understanding mineralogical reactions that lead to leaching and metal mobility that might
lead to metal enrichment or ARD generation (Parbhakar-Fox et al., 2018). The following sec-
tion presents a review of chemical, mineralogical, and other supporting techniques for the
detection of CRMs with emphasis on in-the-field techniques, as proposed by the GMTG
approach, using the characterization of bauxite residue as an example of mine wastes.

2.4.1 Geochemical characterization

The determination of the presence of CRMs in bauxite residue is achieved through geochem-
ical characterization. In the screening phase, the objective of the geochemical analysis is to
indicate which CRMs are present in the tailings and give an initial estimation of the possible
concentrations. Because of this, the techniques do not require high analytical sensitivity. The
accuracy of this estimation varies depending upon the representability of the collected sam-
ples, particularly in the vertical profile, as metal concentration might be determined by ele-
ment mobility. For resource estimation, that is, better quantification of the metal
concentration in the tailings, it is necessary to use more specialized techniques with higher
precision and sensitivity.

Many methods used for the geochemical characterization of mine residues are typically
applied to rocks and soil samples. The analysis can be divided into destructive and nondestruc-
tive methods; destructive methods involve the dissolution of a solid sample (Jamieson et al.,
2015). Among the instrumental methods available currently, X-ray fluorescence (XRF) spectrom-
etry, laser-induced breakdown spectroscopy (LIBS), and inductively coupled plasma atomic
emission spectroscopy (ICP-AES) have proven to be extremely useful. Nevertheless, instrumental
neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS)
are commonly used for REE determination in different kinds of materials (Balaram, 2019). The
following section presents a description of these techniques, and Table 2�4 presents a compari-
son of their performance based on the detection limit for some CRMs.

2.4.1.1 X-ray fluorescence
XRF is a well-established technique for qualitative and quantitative analysis of most chemical
elements (excluding the lightest ones). An X-ray tube is used to generate secondary X-rays
emissions from a particular element in a sample; the intensity of the emissions is propor-
tional to the concentration of the element in the radiated area. Bench units are commonly
used in laboratory settings, whereas portable hand-held units (pXRF) are suitable for field
applications (Jamieson et al., 2015; Lemière, 2018; Bodénan et al., 2015). The detection limits
are often higher than for the other analytical methods (Table 2�4), with the portable units
having lower sensitivity than the bench ones. Portable instruments are most useful as rapid
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screening tools to identify enriched areas or assist in designing a sampling program for
detailed analyses (ThermoFisher, 2017b). New technological developments quickly improve
the number of detected elements, detection limits, and data acquisition speeds.

CRMs, particularly REEs, have been successfully identified in Greek bauxite residue using
XRF (Borra et al., 2016; Ochsenkühn-Petropulu et al., 1994). The reported values are in the
magnitude of the tens and hundreds of ppm. Even though XRF is a reliable technique, it is
relatively insensitive to the REEs; nevertheless, it has advantages over other methods regard-
ing accuracy, speed, and costs. Because of the high detection limits, many determination
methods involve separation and preconcentration procedures to provide an accurate deter-
mination (Balaram, 2019). Recently portable XRF is being successfully used for on-site field
quantification of REEs, including lanthanum (La), cerium (Ce), praseodymium (Pr), and neo-
dymium (Nd), and typical REE pathfinders in geochemical exploration studies, including
yttrium (Y), thallium (Th), and niobium (Nb) (Balaram, 2017). However, a recent study con-
ducted by Gallhofer and Lottermoser (2018) showed that the spectra collected from certified
reference materials presented poor accuracy and false positives associated with spectral
interferences. Critical elements may be determined in common geological materials when
pronounced peaks occur in the spectra and that matrix match of standards and samples is
essential. Hence, XRF spectra should be routinely reviewed to identify erroneous quantifica-
tion due to spectral interferences.

Table 2–4 Detection limits of rare earth elements and Sc obtainable by some popular
instrumental analytical techniques.

Element XRF (µg/g) LIBS (µg/g) INAA (µg/g) ICP-AES (µg/g) ICP-MS (ng/mL)

LREEs La 10.10 10.00 0.19 0.50 12.74
Ce 22.10 � 0.03 0.10 0.61
Pr 9.10 40.00 � 0.02 0.72
Nd 1.80 500.00 3.03 1.00 2.45
Sm 8.20 40.00 0.08 1.30 0.98

HREEs Eu � 5.00 0.03 2.60 0.37
Gd 7.10 200.00 � 0.50 0.98
Tb � 60.00 0.10 0.70 0.07
Dy 9.30 10.00 � 0.60 1.41
Ho � � � 0.80 0.07
Er � 30.00 � 0.10 0.11
Tm � 30.00 � 0.08 0.37
Yb � � 0.08 1.60 0.37
Lu � 20.00 0.04 0.40 0.02
Y 6.40 � � 0.80 3.68
Sc � 2.00 � 0.05 11.03

HREEs, Heavy rare earth elements; ICP-AES, inductively coupled plasma atomic emission spectroscopy; ICP-MS, inductively coupled
plasma mass spectrometry; INAA, instrumental neutron activation analysis; LIBS, laser-induced breakdown spectroscopy; LREEs, light
rare earth elements; XRF, X-ray fluorescence.
Source: From Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and
environmental impact. Geoscience Frontiers, 10(4), 1285�1303. https://doi.org/10.1016/j.gsf.2018.12.005. Creative Commons license.
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XRF, and in particular pXRF, has been used successfully, for example, for in situ sampling
analysis of waste rocks from Pb�Ag mining (Bertrand, 2015). In this case, pXRF was used for
chemical screening analyses at the dump surface and on grab samples. The pXRF results
demonstrated the homogeneity of waste piles from similar beneficiation schemes, which
influenced the strategy for metal recovery. In the same study, the tailings from a former
tungsten mine were also analyzed; the on-site pXRF results enabled the identification of two
facies along with a redox profile by analyzing the tungsten (W), copper (Cu), and arsenic
(As) contents.

2.4.1.2 Laser-induced breakdown spectroscopy
LIBS is a nondestructive technique that utilizes a pulsed laser beam to ablate a small amount
of material on the surface of a sample and break it down into a plasma consisting of atoms,
ions, and free electrons. The chemical composition of a material can be characterized by
measuring the radiative emission of the plasma with a spectrometer. The amount of detected
elements with this technique is more extensive than with XRF. Even though LIBS can be
used for both qualitative and quantitative characterization, differences in sample composi-
tion, crystallinity, density, grain size, hardness, and surface roughness make the careful cali-
bration of an LIBS system an essential requirement for quantitative compositional analyses
(Harmon et al., 2013; Yaroshchyk et al., 2010). LIBS sensor systems currently available
include laboratory instruments, hand-held instruments (Lawley et al., 2021), and conveyor
belt scanners (Laser distance spectrometry, 2017; Secopta, 2017; Sonicsampdrill, 2017). The
most significant advantage of LIBS is its ability to make real-time identification of different
metals, including REEs and non-metals, in seconds (Bhatt et al., 2018).

Some CRMs, including REEs, have been identified in geological samples using LIBS
(Bhatt et al., 2018). Detection limits can range between 10 and 100 mg/g for most REEs in
common applications (Table 2�4), with precisions generally ranging from 3% to 5%. For
homogeneous materials, an error of less than 2% can be achieved (Balaram, 2019). Bauxite
ores have also been characterized using this technique (Fahad et al., 2019).

Kuhn et al. (2016) developed a prototype of a core scanner working with LIBS to estimate
the presence of metals in mine tailings. By doing elemental mapping, the researchers could
draw conclusions related to the distribution of the metal-bearing minerals and to identify the
zones with elevated metal concentrations. Using a similar instrumental set-up, (Müller et al.,
2021) detected REE-rich areas in highly heterogeneous geological materials. LIBS enabled
the spatial and geochemical analysis of the REE-bearing minerals in the analyzed samples.

2.4.1.3 Instrumental neutron activation analysis
INAA is a versatile and highly sensitive technique for detecting the concentration of major,
minor, and trace elements. The sample is subjected to a neutron flux in a nuclear reactor
where the stable nuclei absorb neutrons and become unstable radioactive nuclides that
decay, generating gamma rays. The energy emitted by the gamma rays is characteristic of
the elements that generated it, and the intensity can be used to determine their abundance.
This technique is prevalent because nuclear reactions and decay processes are virtually
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unaffected by the chemical and physical structure of the material during and after irradia-
tion. Several workers have applied the INAA technique to determine REEs at extremely low
concentrations in different earth and environmental samples (Table 2�4). For precise REEs
determination, it is necessary to use synthetic standards that match the sample matrix.
Despite its precision, INAA is not a popular analytical technique as it is time-consuming, not
independent, requires a reactor nearby, and involves longer cooling times for certain ele-
ments (Balaram, 2019).

Several researchers have applied the INAA technique to determine REEs at extremely low
concentrations in different earth and environmental samples. For example, Vukotić (1983)
used INAA for detecting REEs [except for Pr and erbium (Er)] in different types of bauxites.
Anawar et al. (2012) assessed REEs bio-accumulated in tailings from a copper-sulfide area,
finding differences in enrichment between LREEs and HREEs in lichens.

2.4.1.4 Inductively coupled plasma atomic emission spectroscopy and inductively
coupled plasma mass spectrometry

There are several techniques based on inductively coupled plasma (ICP) spectrometry.
These are destructive techniques based on the ionization of the sampled material after diges-
tion in an appropriate medium. If a complete elemental analysis is desired, total or near-
total dissolution by strong acid mixtures is the typical course, followed by the analysis of the
resulting solution by ICP (Jamieson et al., 2015).

One of the ICP techniques is ICP-AES, also known as ICP Optical Emission Spectroscopy
(ICP-OES). In this technique, plasma ionization produces excited atoms that emit electro-
magnetic radiation at element-characteristic wavelengths as they return to ground state.
ICP-AES can measure up to 60 elements simultaneously with high sensitivity (Table 2�4).
However, to determine REEs in geologic materials, it is necessary to separate and preconcen-
trate the samples (e.g., by precipitation, solvent extraction, and ion exchange) before the
measuring procedure to avoid spectral interferences (Balaram, 2019).

ICP-MS is a form of ICP with excellent sensitivity, minimal interferences, good precision,
and accuracy (Balaram, 2019). The technique relies on linking the ICP to a mass quadrupole
spectrometer; the ions are separated based on their mass-to-charge ratio, and a detector
receives an ion signal proportional to the concentration. ICP-MS is an excellent analytical
technique due to its extremely low detection limits (Table 2�4), high sample throughput, the
requirement of minimal quantities, element versatility (major, minor, trace, and ultra-trace),
and isotopic detection (Balaram et al., 1995). Currently, the ICP-MS technique is being
extensively applied for the accurate determination of REEs in different types of materials
(Balaram, 2019).

2.4.2 Mineralogical characterization

Mine residues present a higher diversity of mineral phases than the naturally occurring
materials at the Earth’s surface. This makes it more challenging to identify and quantify
minerals in mine wastes (Jamieson et al., 2015). Nevertheless, the recovery assessment for
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CRMs in mine wastes, such as bauxite residue, should also involve the mineralogical charac-
terization of the material. Besides determining the presence of CRMs, it is necessary to eluci-
date how the metals are hosted in the bauxite residue, that is to say, find their relationship
with the minerals. This information is essential for understanding the mobility of the metals
—which affects their spatial distribution—and for selecting the techniques for the recovery
and processing of the CRMs.

In the case of bauxite residues, the mineralogical characterization should involve techni-
ques that can detect the residual minerals from the beneficiation process, the newly formed
minerals as a consequence of the Bayer process, and the amorphous phases (Table 2�1).
Likewise, the geochemical techniques, the techniques for mineral characterization can be
nondestructive or destructive and have varying levels of accuracy. Some of the techniques
for the mineral characterization of mine wastes include X-ray diffraction (XRD), different
forms of infrared (IR) spectroscopy, and Raman spectroscopy.

2.4.2.1 Infrared spectroscopy
IR reflectance spectroscopy has become a popular technique among geochemists and miner-
alogists since it is relatively rapid, inexpensive, and requires little or no sample preparation.
As a consequence, IR is becoming increasingly established in the mining industry in applica-
tions, such as mining monitoring (Guatame-Garcia & Buxton, 2020; Kirsch et al., 2018), ore
sorting (Dalm et al., 2017), and characterization of slurries (Haavisto & Hyötyniemi, 2011). IR
is used to determine the mineral composition, bonding of the molecules, and mineral struc-
ture. In this way, it is possible to identify minerals based on their functional groups, for
example, clay minerals (OH), carbonate minerals (CO3), and silicates (SiO4) (Farmer, 1974).
In addition, the enhanced sensitivity of modern spectrometers and the versatility of the sam-
pling capabilities have facilitated the development of laboratory and field instruments. More
interestingly, they have opened the possibility of making direct interpolations between these
environments (Madejová et al., 2011).

Depending on the application and instrumentation, the IR spectrum is recorded in fre-
quency or wavelength units. For laboratory applications, frequencies are expressed in wave-
numbers (cm21), whereas for remote sensing, hand-held, and online applications, it is
common to use wavelength expressed in micrometers (μm). For convenience in instrumen-
tation and sampling, the IR spectrum is split into ranges depending upon the application
field and the units’ usage. Since this review is oriented toward mining and processing on-site
applications, the remote sensing, hand-held, and online convention is used. In this sense,
the units appear in wavelengths, and the spectral ranges are defined as visible�near IR
(VNIR), short-wave IR (SWIR), mid-wave IR (MWIR), and long-wave IR (LWIR). Table 2�5
presents the wavelength and wavenumber equivalent for these spectral ranges.

The main mineral features occur in the LWIR and MWIR ranges. Most of them are a conse-
quence of the metal�oxygen (M�O) stretching modes and the metal�hydroxyl (M�OH) bend-
ing and lattice modes. On the other hand, the secondary features are strongly present in the
SWIR range and involve mainly OH groups. All these spectral features make possible the identi-
fication of a significant portion of the mineral species (Hunt, 1977; Madejová et al., 2011).
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The recent technological advances and the growing demand for IR spectroscopy have
increased the affordability of IR instruments. The technological improvements are especially
moving toward analyzing the sample “as is,” minimizing or avoiding any sample preparation,
and shortening the time required to record the spectra (Chryssikos & Gates, 2017).

The potential applications of IR instruments also depend on the type of sampling needed
to analyze a particular material. Some instruments require the preparation of KBr pellets or
thin films to enhance the signal, particularly in the MWIR and LWIR ranges. Other instru-
ments allow the use of pressed powders or solid specimens instead, which is more
suitable for geological materials. Instruments designed to be used in field applications allow
the use of samples with little or no preparation, that is to say, powders and solids. In these
cases, the spectral response can vary according to samples’ characteristics, such as grain
size, surface roughness, and porosity (Rost et al., 2018; Salisbury & Wald, 1992).

Different modes of analysis are possible depending on the recording geometry of the
instruments. According to King et al. (2004), the most frequently used geometries for geolog-
ical applications are attenuated total reflectance (ATR), specular reflectance, and diffuse
reflectance. ATR is perhaps the most used method for laboratory characterization. The ATR
uses a special prism to produce internal reflections from the surface of a given material.
Specular reflectance, also known as bidirectional or external reflectance, uses an incident IR
beam at an air/sample interface; the intensity of the reflected beam depends on the direction
of the incident energy and the surface characteristics of the sample. Diffuse reflectance mea-
sures the scattered and reflected light diffusely, especially from loose powders, requiring
minimum or no sample preparation. The instrument can also integrate an interferometer
that collects the so-called Fourier-transform IR (FTIR) spectra.

2.4.2.1.1 Visible�near infrared and short-wave infrared spectral reflectance
Spectrometers, such as the pioneer portable IR mineral analyser (PIMA) or the analytical
spectral devices (ASD) FieldSpec, have been used since the 1990s. Nowadays, they are well
known as an important mineral characterization tool for geologists and mineralogists
(Thompson et al., 1999). These are dispersive instruments that record point data in the VNIR
and SWIR ranges. Following the same principle, there has been significant development of
hyperspectral imaging systems to analyze drill cores and hand samples. Examples of this
technology are the SisuROCK hyperspectral core logger (SPECIM) and the Hylogger system
(CSIRO) (Schodlok et al., 2016). Similar observations can be made using remote sensing

Table 2–5 Equivalent wavelengths and wavenumbers of the main spectral ranges.

Spectral absorption band or range Wavelength (µm) Wavenumber (cm21)

VNIR range 0.35�1.00 28,571�10,000
SWIR range 1.00�2.50 10,000�4000
MWIR range 2.50�7.00 4000�1429
LWIR range 7.00�16.00 1429�625

LWIR, Long-wave infrared; MWIR, mid-wave infrared; SWIR, short-wave infrared; VNIR, visible�near infrared.
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airborne and satellite images. These techniques have been used, for example, in the map-
ping of areas with bauxite outcrops or for the monitoring of red muds (Ibrahim et al., 2018;
Marion & Carrère, 2018).

Hyperspectral core scanning images have been extensively used for mineral exploration
and resource estimation (Dalm et al., 2017; Fox et al., 2017; van Ruitenbeek et al., 2019).
Surprisingly, their use in the characterization of mine wastes has started to develop only
recently. While the focus so far has been on the environmental aspects related to the genera-
tion of ARD (Cracknell et al., 2018), there is a growing interest in the use of this technology
for the prospectivity of critical metals in mine wastes (Hubbard, 2020).

Reflectance spectroscopy in the VNIR and SWIR ranges uses specular reflectance and can
detect several of the minerals present in bauxite red muds. The iron-oxide reflectance spec-
trum strongly reflects the visible and near-IR region due to various electronic transitions
(Hunt, 1977). Specifically, goethite features occur due to ion charge transfer at 0.50 μm and
iron-oxide at 0.95 μm (Ramanaidou et al., 2015). The bauxite ore minerals have distinctive
absorption features in the SWIR range due to the hydroxyl molecule (Hunt, 1977). REE-
bearing compounds are known to produce sharp absorption features in the VNIR to SWIR
regions. Exploitable spectral differences for identifying REE-bearing fluorocarbonates include
a distinct absorption band at 2.243 μm and the one around 1.965 μm, which separate differ-
ent mineral species (Turner et al., 2014).

2.4.2.1.2 Mid-wave infrared and long-wave infrared spectral reflectance
Since the main spectral features appear in the MWIR and LWIR regions, many overlaps are
solved. Absorption bands between 8 and 12 μm might allow a better differentiation among
REE-bearing phosphates (Laakso et al., 2019). These regions can, in many cases, enable bet-
ter differentiation of the bauxite ore minerals and the amorphous phases present in the
bauxite residue. Identifying oxide minerals in the MWIR and LWIR ranges is not possible as
they do not present any features in this region.

Measurements with high spectral resolution and high signal-to-noise ratio can be
acquired with laboratory setups that use ATR or FTIR spectrometers. These can be classified
as semidestructive methods since they require KBr pellets or powder samples. Recent tech-
nological developments have made it possible to use FITR spectrometers in portable devices
that retrieve point data from rock samples. It is also possible to acquire hyperspectral images
in the LWIR range using the same imagers as described above, although with lower resolu-
tion (spatial and spectral).

Bauxite ore minerals and associated Fe and Ti phases have been successfully character-
ized in laboratory environments using ATR and FTIR spectroscopy (Ruan, 2005). FTIR
portable devices have been used to monitor the quality of bauxite ores in mineral produc-
tion environments (Eyers, 1999; McGuiness, 2005). Aluminum phases have also been iden-
tified with this same type of instruments (Guatame-Garcia & Buxton, 2018). Drill core
scanning of mine wastes in the LWIR range (also known as thermal IR—TIR—or IR ther-
mography) to detect and visualize the temperature response of sulfide oxidation (Knobloch
& Lottermoser, 2020).
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Even though clear absorptions in the VNIR and SWIR ranges cannot be confused with
those of other minerals, the presence of iron oxides, active in the same wavelength range,
can hamper the detection of the REEs even in small quantities (Boesche et al., 2015).
Moreover, the spectral features of different REEs overlap both in the VNIR and SWIR wave-
length regions, making it challenging to identify with certainty the presence of a specific rare
earth element in a mineral in many cases (Turner et al., 2014, 2016).

2.4.2.2 Raman spectroscopy
Raman technology is used to record the Raman scattering that materials produce due to the
photon emissions caused by molecular vibrations. Raman scattering can be measured by
illuminating a material with a monochromatic light source and measuring the emission spec-
trum with a spectrometer. The Rayleigh scattering is dependent on the wavelength of the
light source, which is commonly a laser. However, the Raman scattering is independent of
the wavelength of the light source; therefore almost any type of laser can be used. Raman
sensors are mainly used for qualitative analysis (Gaft, 2005). Quantitative analysis is possible
but requires careful calibration.

Laboratory and hand-held instruments are available for Raman analyses (Sciaps, 2017;
ThermoFisher, 2017a). Point data and microscopic images are well-established methods for
the collection of Raman measurements. More recently, applications for drill-core imaging
have been emerging (Wells & Ramanaidou, 2015).

Raman spectroscopy can be used to detect CRM-related minerals. For example, it has
shown promising results in the characterization of Fe-bearing minerals (Wells &
Ramanaidou, 2015) and bauxite ores (Faulstich et al., 2011; Ruan et al., 2001). In addition,
the artifacts in the Raman spectrum are being used for identifying REEs using Raman spec-
troscopy (Lenz et al., 2015).

2.4.2.3 X-ray diffraction
XRD is a nondestructive technique that provides detailed information about the crystal struc-
ture, chemical composition, and physical properties of materials. First, the sample is irradi-
ated with incident X-rays, then the intensity and the angle of the scattered X-rays are
measured. Then, the interpretation of the mineralogy and structure of the sample is made by
matching the diffraction patterns against databases with patterns from several mineral and
industrial compounds.

XRD is a well-established technique that has been widely applied to characterize mine
waste mineralogy (Jamieson et al., 2015). However, to generate quantitative mineralogical
data from multiphase mixtures, as is the case of mine tailings, it is necessary to use the
Rietveld method for crystal structure refinement (Rietveld, 1969). Furthermore, the complex-
ity of the mineral assemblages in bauxite residues makes challenging the identification of
clear diffraction peaks necessary for mineral identification. Moreover, while some mineral
phases might be present at high concentrations, others are present as solid solutions that
cannot be matched with a database. All these issues can be overcome by using the Rietveld
method (Santini, 2015):
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• rietveld refinement-based methods quantify multiple minerals present in a sample
simultaneously;

• accommodate nonideal mineral compositions (due to isomorphous substitution of Al for
Fe in iron oxides);

• correct for other sample-related effects on peak shape and area, such as particle size and
preferred orientation;

• allow quantification of X-ray amorphous content (which can be particularly useful for
geochemical modeling and process optimization).

2.4.3 Microanalysis

Since mine waste samples are made of mineral mixtures, their characterization should also
involve the analysis of individual grains. Furthermore, textural analysis at the microscale is
also required to identify the mineralogical hosts of the environmental and economic ele-
ments of interest, detect the mobility of elements, and understand the reactivity and devel-
opment of secondary mineral phases. For this kind of analysis, it is common to prepare thin
sections (Jamieson et al., 2015). When a thin section is bombarded with electrons or protons
to generate X-rays, then the corresponding analytical method is called scanning electron
microscopy (SEM) or electron probe micro analysis (EPMA) (Terzano et al., 2019). SEM pro-
vides high-resolution images rather than quantitative analyses. In contrast, EPMA is opti-
mized to collect quantitative data in concentrations as low as a few hundred ppm (Jamieson
et al., 2015); however, the minimum particle size that EMPA can analyze is 1 μm (Vind,
Malfliet, Blanpain, et al., 2018).

The combination of high-resolution microscopic images obtained with SEM and analysis
with software, such as QEMSCAN (Quantitative Evaluation of Minerals by using SCANning
electron microscopy) and MLA (mineral liberation analysis), is advantageous in the charac-
terization of fine-grained materials, such as tailings, soil, and contaminated sediments.
Because of the high resolution, individual minerals can be characterized, enabling a particle-
by-particle characterization, including chemical composition, shape, and size (Jamieson
et al., 2015).

2.4.4 Other techniques

Another essential aspect in the characterization of mine residues is the evaluation of individ-
ual grains. Their size, shape, and texture greatly influence the chemical and mineral attri-
butes and therefore the most feasible methods for their characterization. Furthermore, some
of these properties are highly relevant to the selection of residue reprocessing strategies. The
methods used for the characterization of particles in mine wastes are often those used in soil
testing. The most common physical analyses are PSD, specific surface area (SSA), and spe-
cific gravity (SG). Several microanalysis techniques for the mineralogical characterization of
individual grains are also widely used. Other techniques for evaluating a mine waste deposit
as a whole include gamma-ray spectroscopy and fluid chemistry.
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2.4.4.1 Laser granulometry
The particle size of bauxite residues averages 2�100 μm with a typical range of 100 nm to
200 μm (Gräfe et al., 2011). However, the particle size and texture of the residues depend on
the location within the disposal area (Gräfe et al., 2011; Nikraz et al., 2007). These variations
influence chemical parameters, such as pH and Na, Ca, and Mg concentrations (Fig. 2�4).
Since most of the particles consist of silt and clay, one of the most common methods for
measuring the PSD is wet sieving. Particles smaller than 200 μm can be further studied using
hydrometer analyses. For the smallest particles, methods, such as turbidimetry and electron
microscopy, are recommended. However, an alternative and more efficient method is the
laser particle size analyzer.

Laser granulometry, or laser diffraction, is commonly used to determine PSD. This tech-
nique can measure particles as small as hundreds of nanometers up to several millimeters
(Malvern Panalytical, 2021). When circular or spherical particles are illuminated with a laser
beam, they scatter the light into a certain angle, which is the basis for particle size determi-
nation (Heuer & Leschonski, 1985). Large particles scatter light at small angles, whereas
small particles scatter light at large angles. While the scattering angle is only a function of
the particle size, the scattering intensity is a function of the particle size, the refraction indi-
ces of the particle and the dispersant, the wavelength of the incident radiation, and the scat-
tering angle (Dur et al., 2004; Malvern Panalytical, 2021).

The laser diffraction technique uses the Mie theory of light scattering to calculate the
PSD. For small particles (,1 μm), the calculations are based on the Rayleigh�Debye�Gans
theory, whereas for particles larger than the incident wavelength (B. 1 μm), the Fraunhofer
theory is more appropriate. Rayleigh�Debye�Gans and Fraunhofer’s theories require deter-
mining the refractive index of the solid phases and the dispersant (Dur et al., 2004).
However, for particles larger than 50 μm, it is possible to use the Fraunhofer approximation,
which does not require any knowledge of the sample’s optical properties (Malvern
Panalytical, 2021). Regardless of whether the particles are stationary or moving, the scatter-
ing pattern remains the same. However, under- or overestimations occur for platy-shaped

FIGURE 2–4 Particle size variations along a red mud disposal area and their influence on pH. From Gräfe, M.,
Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy,
108(1�2), 60�79. https://doi.org/10.1016/j.hydromet.2011.02.004. Reproduced with permission.
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particles as the calculations assume that the particles are spherical. This is particularly the
case of clay minerals (Gorączko & Topoliński, 2020). The PSD calculated with laser diffrac-
tion is expressed in volume units, surface area units, or number of particles (Dur et al., 2004;
Malvern Panalytical, 2021).

Laser granulometry presents several advantages compared to other PSD techniques. First
of all, this technique outperforms other particle size measurement techniques in speed,
reproducibility, and simple handling (Heuer & Leschonski, 1985). Second, laser granulometry
can size very fine particles compared to other methods (e.g., sieving, sedimentation) (Dur
et al., 2004). In the characterization of tailings, laser diffraction has become one of the pre-
ferred techniques for determining particle and aggregate size distributions. For example,
Jiangang et al. (2012) presented a case study of reprocessing of ultrafine molybdenite tailings.
Laser granulometry was used to study the original mineral particles and agglomerates to
optimize the parameters for the recovery of residual ore. In a similar case, Dubos et al.
(2018) used laser diffraction in industrial manganese dust and sludges to evaluate critical
parameters to design appropriate agglomeration processes.

2.4.4.2 Techniques for the determination of specific surface area and specific gravity
The average SSA of bauxite residues is 32.76 12.2 m2/g and ranges between 15 and 58 m2/g
(Gräfe et al., 2011). The SSA is defined as the total surface area of a material per unit of
mass. There are several methods for determining SSA, which can be classified into methods
based on the adsorption of gas or the adsorption of polar liquids. The gas adsorption meth-
ods are deemed as a measure of the external surface area, whereas the polar liquid methods
also account for the internal surface area (e.g., micropores, interlayer space) (Heister, 2014).
The most frequently used methods for SSA determination are the physisorption of nitrogen
gas at 77K (BET-N2) (adsorption of gas method) (Fagerlund, 1973) and the retention of ethyl-
ene glycol monoethyl ether (adsorption of polar liquids method) (Gregg et al., 1967).

In soil science, SG refers to the ratio of the density of the solid’s volume to the density of
any equal volume of water at 4�C. It is conventionally determined using the He pycnometer
method for coarse-grained materials or the density bottle method for materials of all grain
sizes (ASTM, 2007). An alternative method for fine-grained materials is the shrinkage test
procedure (Prakash et al., 2012).

2.4.4.3 Techniques for determination of mineral hardness
The hardness of a material is a property that measures the susceptibility to breaking. In the
characterization of mine wastes, this property can be one of the indicators of breaking
behavior in the case of mineral reprocessing or how quickly acid minerals become exposed
to weathering and cause ARD. Most of the existing techniques are destructive and require
sample preparation procedures. However, the EQUOtip rebound hardness test (Keeney &
Nguyen, 2014) is not destructive and can be used on drill-core samples. It measures the
material’s hardness based on a calculation of the speed of the impact rebounds of the probe
over a sample. The hardness criterion is site-specific and must be defined based on test
work (Parbhakar-Fox, 2017).
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2.4.4.4 Fluid chemistry
The properties of the particles present in mine waste deposits (i.e., the solid interface) are
also influenced by the interactions with the fluids that circulate through the deposit (i.e., the
liquid interface). Therefore it is also important to use fluid chemistry to obtain a comprehen-
sive overview of the entire deposit. The measurements of the bauxite residue alkalinity and
associated physicochemical characteristics are carried out with analysis, such as pH, acid-
neutralizing capacity (ANC), sodium (Na1), electrical conductivity (EC), and surface charge
(Gräfe et al., 2011).

Many researchers consider the measurement of pH as the master variable because most
reactions are, in a way, a function of pH. Measuring pH is a simple technique conducted in
the field or the lab using pH meters. The ANC, also known as alkalinity, measures the amount
of mineral acid required to reach a specific pH point. This ANC can be best measured in the
laboratory by a process known as back titration. The method involves dissolving the antacid in
excess of acid and then titrating the acidic solution against a known base concentration until
the endpoint is reached. Detection of Na1 in clay�water mixtures is relevant since it can be
related to the total alkalinity of red mud, poor aggregate structure, cementation, and dust for-
mation. High concentrations of Na1 result in high EC, which relates to physical behavior, such
as dispersion and coagulation. Conductivity is measured with a probe and a meter: voltage is
applied between two electrodes in a probe immersed in the sample water. The inter- and
intraparticle behavior of waste material in the presence of water depends on the particles’ sur-
face charge. This affects not only gross macroscopic physical behavior, such as rheology,
aggregation, and coagulation, but also the entire range of particle chemistry. The surface
charge is measured in the laboratory using the so-called zeta-potential.

2.4.4.5 Gamma-ray spectroscopy
Since bauxite residues are classified as TENORM materials, investigating their radiation levels
is essential to ensure the safety of a CRM recovery project. The radiation dose can be detected
using a radiation detector, such as a Geiger�Mueller tube. The Geiger tube generates a pulse
of electrical current each time radiation passes through the tube and causes ionization. Each
pulse is electronically detected and registers as a count (Qin & Wu, 2011). The radiation can
also be measured by using spectral gamma-ray logging, which indicates the contribution of K,
U, and Th to the total gamma-ray signal. The gamma-ray spectrum can be detected using
portable spectrometers and scintillometers. They are increasingly being used to help calibrate
airborne gamma-ray spectrometers, support geological field mapping, soil mapping, environ-
mental applications, and monitor radioactive waste pollution (Richards, 2001).

2.4.5 Summary

A comprehensive characterization of mine wastes, particularly bauxite residue, focusing on
detecting CRMs, involves mainly geochemistry and mineralogy. The geochemical characteri-
zation provides a direct approximation to the CRM content, whereas the mineralogical one
gives information about the possible hosting minerals and possible mechanisms of mobility
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and enrichment. The analysis can be performed with different levels of detail either in a lab-
oratory environment or directly at the waste site depending upon the availability of analytical
instruments. Other techniques that involve the characterization of physical properties,
microscopy, and fluid chemistry support the geochemical and mineralogical analyses.
Table 2�6 gives a summary of the techniques reviewed in this section.

2.5 Characterization of mining residues using remote
sensing

Earth observation (EO) tools can be very useful for the preliminary mapping, quantification,
and monitoring of the mining residues, usually abandoned, in harsh environments, and with
limited possibilities for full sampling campaigns. Some EO sensors measure the portion of
incoming solar radiation reflected by surface materials across several spectral bands (i.e.,
passive sensors). The physical principles that govern the data acquisition with these sensors
are those of IR spectroscopy, introduced in Section 2.4. The spectral reflectance patterns for
common land-cover types, such as water, bare soil, and vegetation, are well-constrained.
Because of this, a remotely sensed image can be an input for classification algorithms, indi-
cating the presence of mining, infrastructures, stockpiles, and tailings at the time of image
acquisition. Some advantages of using EO concern the availability of free and easy-to-access
data and the continuity of data in time with subsequent continuous land monitoring.

Outside the mining industry, academics and civil society organizations have employed
EO to analyze the impacts of mining for various purposes. In this framework, most analyses
have addressed mapping pollution and environmental variables in both active and aban-
doned mining areas, combined with imaging spectroscopy for directly identifying minerals
and soils containing pollutants as an indicator of contamination. The review done by
(Werner et al., 2019) is quite an exhaustive document on the use of remote sensing as a
guide for sampling and environmental monitoring to demonstrate the impact of mining
activities. Liang et al. (2021) provided a global-scale spatial assessment of mine areas using
EO data, identifying more than 5189 tailings ponds covering approximately 1884 km2 of the
Earth’s surface. Such assessment seeks to facilitate a more systematic global management of

Table 2–6 Summary of the techniques for characterization of mine wastes.

Geochemistry Mineralogy Other techniques

Laboratory
based

XRF LIBS INAA ICP-AES
ICP-MS

Infrared spectroscopy Raman
spectroscopy XRD

EMPA SEM MLA Fluid chemistry

Field based Portable XRF
Portable LIBS

Infrared spectroscopy Mineral hardness Gamma-ray
spectroscopy pH

EMPA, electron micro probe analyzer; ICP-AES, inductively coupled plasma atomic emission spectroscopy; ICP-MS, inductively coupled
plasma mass spectrometry; INAA, instrumental neutron activation analysis; LIBS, laser-induced breakdown spectroscopy; MLA, mineral
liberation analysis; SEM, scanning electron microscopy; XRD, X-ray diffraction; XRF, X-ray fluorescence.
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mine wastes. All studies have proved that traditional old mining activities significantly affect
the surrounding environment because of the lack of policies concerning tailings materials,
leading to massive redistributions downstream from their original dumpsite to the rivers. On
the other side, more recent mining activities are subjected to strict regulations, which,
together with raising awareness, led to remediation and constant monitoring of closed min-
ing sites.

2.5.1 Acquisition of earth observation data

Passive EO systems are normally classified based on their spatial and spectral resolutions.
Depending on the pixel size (i.e., ground cell), the spatial resolution is subdivided into low
(1 km3 1 km), medium (10 m3 10 m to 80 m3 80 m), and high (,1 m3 1 m). The spectral
resolution depends on the number of bands in which the electromagnetic spectrum is cap-
tured. Passive EO systems capture the energy of the electromagnetic spectrum in the VNIR,
SWIR, and LWIR (conventionally known as TIR in EO applications) ranges. Multispectral sen-
sors record 3- to 12-wide bands (0.5�15 μm), whereas hyperspectral sensors record hun-
dreds of narrow bands (10�20 nm). These differences in bandwidth imply that hyperspectral
images contain substantially more data than multispectral ones (Limpitlaw, 2006).

The uses of EO data are also dependent on the acquisition modes. Data collected from
satellite platforms and crewed/uncrewed airborne vehicles (UAVs) allow different area cover-
age and spatial and spectral detail levels. Images collected using satellite platforms permit
surveying large extensions of the Earth’s surface with periodical revisit times, which are ideal
for developing monitoring tools in mine waste environments. In contrast, airborne vehicles
allow for higher spatial and spectral resolution images that can be acquired in scheduled
deployments and customized paths. These characteristics are favorable for specific targets,
both in space and time.

2.5.1.1 Satellite (Spaceborne)
Satellite imagery has been used for several decades. Rathore and Wright (1993) reviewed the
use of remote sensing to assess the impacts of coal mining and ascertained that the improve-
ments in satellite imagery (e.g., higher resolution) would benefit the mapping of mine sites.
The type and quality of information retrieved for mine waste surveys have considerably
evolved since launching the Landsat missions in the 1970s. The first studies using these mul-
tispectral/medium spatial resolution images could only be used for regional surveys and the
identification of different types of land use (e.g., mine waste, water body, active mine, inac-
tive mine, and reclaimed land). Given the periodicity of the generation of EO images, those
categories could be used to detect changes in time using multitemporal datasets. In those
early days, image processing was not automated, and there was seldom integration with
other data sources, making all the work quite demanding. Nevertheless, the results marked
the path for the potential use of satellite data for detecting waste mine disposal sites (Anuta
& Bahethi, 1982).
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Advancements in technology and data analytics now permit to use multi- and hyperspec-
tral space-borne sensors to map the spatial extent of mine waste surfaces and retrieve com-
positional information. For example, Mielke et al. (2014) mapped the 900-nm absorption
characteristic of iron as a potential proxy for monitoring the extension of mine residues in
South Africa. The researchers compared this feature in multispectral Landsat ETM1 ,
Landsat-8, ASTER, and hyperspectral Hyperion images to assess the potential of the multi-
spectral Sentinel1 2 and hyperspectral EnMAP missions. They concluded that EO data from
space-borne platforms constitutes a building block of a multisensor process chain for mine
waste management.

2.5.1.2 Crewed aircraft (airborne)
Crewed airborne platforms became popular in the 1990s with the launch of the airborne visi-
ble/IR imaging spectrometer (AVIRIS) instrument and became widespread in the study of
mine waste sites. Airborne EO campaigns usually carry multi- and hyperspectral instruments
with medium to high spatial resolution. The area coverage is determined by the flying path,
typically in the scale of tens of kilometers, which is most suitable for local surveys.

One of the most used hyperspectral sensors is mounted on airborne platforms in the
Australian HyMap system. An example of multitemporal studies of mine wastes concerns
monitoring the Odiel River path on July 17, 2005, August 4, 2008, and August 13, 2009 (Buzzi
et al., 2014). The sensor has 128 wavebands from 436 to 2485 nm with a spectral resolution
of 15 nm in the 436�125 nm wavelength range, 13 nm in the 140�180 nm wavelength range,
and 17 nm in the 195�248 wavelength range. Over the abandoned mining sites of the
Iberian Pyrite Belt, it was possible to detect mineral changes (due to the weather) and
anthropic interventions (due to remediation of mining sites) over the years. The HyMap
2005 flight pictured the state of the facilities before any recovery activity. The HyMap 2008
flight showed the ash dam covered by dry grass, completely recovered, and the surroundings
clean, free from any pyrite weathering product, which was mechanically cleaned over the
dumps. However, oxidation persisted due to the movement of machinery. Finally, the
HyMap 2009 flight evidenced that the mud from the mill tailings dam was removed. The oxi-
dation state in the crusts started to decrease due to the dismantling of the ore processing
plant, buildings, and machinery.

2.5.1.3 Uncrewed aircraft (drone-borne)
The first reports of the deployment of lightweight UAVs equipped with spectrometric cam-
eras date from the 2010s. In 2013 a study led by the United States Geological Survey sought
to determine if UAVs could provide cost-effective, high-resolution imagery. The data
retrieved by UAVs carrying optical systems and commercial cameras aided in identifying
abandoned mine waste sites, determining their significance, and supporting cleanup endea-
vors (Cress et al., 2015). The deployment of UAVs allows the cost-effective acquisition of data
with very detailed spatial resolution and small spatial coverage for environmental applica-
tions (Honkavaara et al., 2013).
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Acquiring EO data with UAVs for mine waste studies has numerous advantages. UAVs
improve accessibility to remote and dangerous (e.g., unstable terrains) areas that would be
difficult or even impossible to survey by personnel on the ground. Systems carried by UAVs
are commonly tailored to the particular needs of a project, and a single UAV can carry differ-
ent sensors. Using UAVs makes it possible to perform fieldwork campaigns where remotely
sensed and ground-truth data (e.g., pXRF or portable IR spectrometers) can be used simulta-
neously. The combination of technologies has also shortened campaign planning times
(Jackisch et al., 2018; Said et al., 2021).

2.5.2 Applications in mine residues

The applications of remote sensing platforms equipped with optical systems (VNIR, SWIR,
and TIR) in mining are predominant in the exploration and exploitation phases. In mine
waste management, the applications focus on soil and water pollution (i.e., stream sedi-
ments, concentration of hazardous minerals and metals, ARD), and ecological restoration
[i.e., distribution of vegetation (out of the scope of this chapter)] (Park & Choi, 2020).
However, applications in the detection of valuable minerals and opportunities for revaloriza-
tion are still developing.

2.5.2.1 Stream sediments
Various researchers have used EO to map sediments redistributed in the rivers downstream
mining areas and to characterize the mineralogical variability. For example, Ferrier (1999)
worked on waste rock and tailings produced from mining activities, focusing on environmen-
tal pollution of materials and trace elements of tailings using airborne mapping and high
imaging spectrometer data of the Rodalquilar mining area in Spain. On the same mining
site, more recently, Choe et al. (2008) used the spectral variations associated with the pres-
ence of heavy metals in stream sediments to characterize the distribution of areas affected
by heavy metals Fig. 2�5. The studies showed how the dispersion of contaminated material
could be obtained from imaging spectrometer data. The considered spectral absorption fea-
ture parameters showed the potential to detect heavy metals. The image-derived spectral
parameters showed some efficacy in screening the streamlines affected by heavy metals to
detect environmental pollution.

As a different example, Pascucci et al. (2012) used field and spectral analyses in combina-
tion with EO airborne hyperspectral data to map red mud dust waste in a bauxite tailings
dam (red mud) located near Podgorica in Montenegro. The researchers identified the mate-
rials’ dominant mineralogy and optical characteristics to map the red mud distribution on
bare soils and river waters. The retrieved information is suitable for developing effective
intervention policies and monitoring programs.

2.5.2.2 Mineral and metal contamination
Farrand and Harsanyi (1997) used the AVIRIS system to detect pollution in the Coeur
d’Alene River, Idaho, taking place due to the underground silver mines near Kellogg, Idaho.
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Specifically, they used the constrained energy minimization (CEM) technique to determine
the ferruginous elements of mining origin in the river (ferrihydrite). Using a specific con-
straint, CEM uses a finite impulse response filter to pass through the desired target while
minimizing its output energy resulting from a background other than the desired targets. A
correlation or covariance matrix was used to characterize the unknown composite back-
ground. A similar, more recent work, again using AVIRIS hyperspectral imagery calibrated by
field observation, was done by (Mars & Crowley, 2003) over a phosphate mining zone in
Idaho. In this work, metal pollutant concentrations in both vegetation and water were
mapped. Specifically, eighteen mine waste dumps and five vegetation landcover types were
analyzed and mapped in southeast Idaho. Relative amounts and directions of surface water
flow associated with each mine dump were analyzed using digital elevation data and com-
bined with information on stream gradients and riparian vegetation cover, providing spatial
information on variations in selenium concentrations.

2.5.2.3 Acid rock drainage
Most of the EO applications in mine wastes concern the study of generators of ARD and their
environmental implications, as in the example of (Swayze et al., 2000). The spectral mapping

FIGURE 2–5 Streamlines and maps of concentration of heavy metals (Pb, Zn, and As) obtained by comparison
between samples and hyperspectral images for the Rodalquilar mining area, Spain. Modified from Choe, E., van
der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., & Kim, K.-W. (2008). Mapping of heavy metal
pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing:
A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222�3233. https://
doi.org/10.1016/j.rse.2008.03.017. Reproduced with permission.
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of the Venir pile traverse wastes within the California Gulch Superfund Mining Site near
Leadville (CO, USA) was obtained using AVIRIS. Specifically, the study showed how detecting
jarosite at the surface has a high potential for proving the presence of acidic water. However,
areas lacking jarosite at the surface may still generate acidic drainage Fig. 2�6. The authors
concluded that in the case of remediated mine waste, the detection of acid mine drainage
could be hindered by the presence of neutral material and vegetation. On the other hand,
vegetation growth and features detectable by remote sensing can act as indicators of the
presence/absence of acid drainage and pollutants.

A similar study used hyperspectral cameras deployed in a UAV to detect jarosite and goe-
thite in the Zokolov Lignite District in the Czech Republic. Identifying the absorption bands
characteristic of iron-bearing minerals formed the basis of mineral maps that were later cor-
related with the distribution of ground-based pH measurements. This study also showed that
EO surveys improve sampling campaigns’ logistics and quality. Flores et al. (2021) combined

FIGURE 2–6 Spectral traverse and AVIRIS mineral maps overlaid on a high-spatial-resolution aerial photograph of
the Venir traverse mine waste. AVIRIS, Airborne visible/infrared imaging spectrometer. From Swayze, G. A., Smith,
K. S., Clark, R. N., Sutley, S. J., Pearson, R. M., Vance, J. S., Hageman, P. L., Briggs, P. H., Meier, A. L., Singleton, M. J.,
& Roth, S. (2000). Using imaging spectroscopy to map acidic mine waste. Environmental Science & Technology, 34
(1), 47�54. https://doi.org/10.1021/es990046w.
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UAVs-acquired VNIR hyperspectral imagery with constrained hydrogeochemical data to
assess the surface water quality in the Odiel-Tintillo River confluence (Spain). The authors
detected gradual changes in the parameters that control water quality, particularly those
related to the spatial distribution of secondary Fe minerals. In this study, the data acquisition
times were faster than traditional monitoring approaches, particularly in areas of remote or
dangerous access.

2.5.2.4 Revalorization of mine wastes
In recent years, the improvements in spatial and spectral resolution combined with multi-
source data integration and modern data analytics have significantly leveraged the use of EO
data for the revalorization of mine residues. Nowadays, it is possible to detect particular
components in mine wastes and study their dynamics from space. For example,
Kasmaeeyazdi, Dinelli, et al. (2022) used Sentinel-2 imagery to map the occurrence of cobalt,
chromium, copper, and iron in legacy mine wastes in North Italy. The researchers surveyed
the large area covered by the images to detect spots of metal enrichment that have the
potential for revalorization of the mine wastes and are of interest for a more detailed
investigation.

Aiming to assess the potential of recovering secondary raw materials, Kasmaeeyazdi,
Braga, et al. (2022) compared Sentinel-2 multispectral images (ESA Copernicus program)
with PRISMA hyperspectral images (Italian Space Agency ASI). The researchers proposed a
procedure to map the concentration of metals on the surface of the residues at different
scales and resolutions and evaluate the possible sources of environmental issues.

2.5.3 Summary

The characterization and monitoring of mine waste sites have greatly benefited from the
deployment of EO systems. A wide range of spatial scales (i.e., space- and airborne) and
spectral ranges (i.e., multi- and hyperspectral) makes EO a versatile tool. Combined with
ground-truth data (i.e., analytical techniques introduced in Section 2.4), EO can retrieve
information about the composition and surface distribution of mine waste materials.
Identifying those patterns is critical for accurately interpreting stream sediment behavior,
metal contamination estimations, and ARD predictions. Consequently, implementing similar
approaches as those used for mine waste revalorization has promising potential.

2.6 Data analytics and digitalization
The characterization of mine residues using ground-, laboratory-based, and EO tools pro-
duce vast amounts of data. This situation is only likely to continue with the deployment of
sensor networks and online sensors (Ghorbani et al., 2022). Transforming all that data into
information and knowledge that stakeholders can ultimately use is the ultimate goal of the
characterization works. The generation of models and optimized processes based on smart
algorithms are the future of the raw materials sector (EIT Raw Materials, 2020). As a result,
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in the last years there have been huge developments that aim to increase the efficiency in
the minerals industry by using various combinations of instruments, data, and data analytics
(Ghorbani et al., 2022).

Historically, data collection, management, and storage have largely depended upon the
immediate goals of the company or project. However, the conditions in which data is stored
can either hinder or enhance the value of the information (Kauppila et al., 2019). In recent
years there has been more awareness of implementing strategies that enable the extraction
of the best value from data. Such strategies comprise good practices in data acquisition, data
integration, data analysis, and data sharing (Kinnunen et al., 2022). High volumes of data
from varied sources, which have veracity and value, are regarded as big data (Ghorbani
et al., 2022). The strategies to generate and manipulate big data and convert it into knowl-
edge make a difference between descriptive and predictive/prescriptive data analytics
(Kinnunen et al., 2022).

The European Institute of Innovation and Technology (EIT) identified six pillars for the
digital transformation in the raw materials sector (EIT Raw Materials, 2020). The first two of
them—artificial intelligence (AI) and machine learning (ML); virtual reality (VR) and aug-
mented reality (AR)—largely depend upon data generated by sensors. Statistics, computa-
tional simulations, data science, and other forms of data analytics and visualization
inherently make part of these pillars (Ghorbani et al., 2022).

2.6.1 Data analytics and machine learning

In the characterization of mine residues, data analytics aims to enhance the value of data by,
on the one hand, integrating geochemical and mineralogical data and, on the other hand,
making extra- or interpolations across different spatial scales (i.e., from a few micrometers to
piles of hundreds of meters). However, thoughtful integration of datasets must be aware that
all sensor technologies have limitations. Therefore to take full advantage of those technolo-
gies, there are different techniques for data fusion at pixel/point level (i.e., fusion of original
data followed by classification) or feature level (i.e., extraction of discriminative features fol-
lowed by fusion of extracted features) (Ghamisi et al., 2021).

Implementing ML tools offers an alternative to ground-truth data in cases where sample
collection is not accessible. Machine learning tools do not focus on mineral or element
abundance but create fit-for-purpose units (Ghamisi et al., 2021). In the characterization of
mine residues, these units can be the same or similar to those used in the sampling strate-
gies (Section 2.3), that is to say, geological, geometallurgical, or geoenvironmental units. In
addition, some of the extracted features or units might be scale invariant. In these cases, ML
algorithms can aid in mapping activities at different scales and create a smooth flow of infor-
mation from the micro- to the macroscale (e.g., from hand samples to drill cores, mine faces,
outcrop, and regional observations) (Thiele et al., 2021).

Integrating data of different nature (e.g., different sensor technologies, different scales)
implies that the data is collected separately, imposing an additional challenge for data pro-
cessing. As a solution, there is also a trend in developing single instruments that collect
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different types of data (Krupnik & Khan, 2019). Nevertheless, data integration, either from
the instrumentation or data analytics standpoint, is certainly the best approach to depend
less on ground-truth data and process data in real-time to allow rapid decision-making and
process adaptation (Ghamisi et al., 2021).

2.6.2 Virtual and augmented reality and modeling

The information and knowledge generated by ML algorithms and other data analytics are
the input for more complex forms of data usage. For example, VR and AR have been pro-
posed for monitoring mine waste deposits (Benndorf et al., 2022). Based on the data integra-
tion of multiscale and multisensor technologies, it is possible to develop AR-based platforms
that characterize the dynamic processes in waste dumps. Furthermore, the integration of EO
data, ground data, and AI is commercially used for applications throughout the mining value
chain (EIT Raw Materials, 2020). Visualizing the information in an AR environment and pro-
ducing information in real-time enables stakeholders to make better-informed decisions.

Mining residues can also be characterized by the data modeling approaches used for
resource estimation. Data collected from testing and monitoring can be used as input to inte-
grate the mineralogy of the waste deposit into geostatistical and geospatial models. In addi-
tion, the block models used typically for resource estimation can be applied to assess the
potential of recovering residual ores in mine residues and the potential of generating ARD
(Vaziri et al., 2022).

2.6.3 Outlook

Overall, collecting data from multiple sources at different scales and its subsequent digitali-
zation constitutes the basis for identifying the potential of recovering valuable minerals from
mine waste residues. Storing data in digital form and transforming it into useful information
for stakeholders supports monitoring activities and can provide accurate knowledge of the
availability, location, and quantity of recoverable minerals. Furthermore, digital platforms
can enable the valorization of mine waste deposits by creating waste-to-resource matches
(Kinnunen et al., 2022). A challenge remains in keeping the data accessible while still in
compliance with the data protection protocols of the mining companies. Nevertheless, the
availability of data and the creation of digital solutions are essential for managing and valo-
rizing mine residues and enabling a fully integrated life-cycle approach to the entire mining
value chain (European Commission, 2020).

2.7 Conclusions
This chapter reviewed the techniques, instruments, and methods suitable for mine residue
sampling and characterization. We focused on the most relevant aspects for assessing the
possible recovery of CRMs using the prospectivity of bauxite residue as an example.
Throughout this review, we emphasized that embracing geometallurgical approaches for
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sampling and characterization is significantly advantageous. From a mineral prospectivity
standpoint, it was necessary to distinguish different phases of sampling. The screening phase
covers large areas, has broad sampling units, and does not require high accuracy of the char-
acterization results. The detailed sampling provides more specific information on the CRMs’
content and indicators of ARD generation and wastewater and has refined material units,
and the results are target specific. The strength of implementing geometallurgical concepts
in the sampling phase is that it integrates parameters that are immediately aligned with the
aims of the following characterization works. In this sense, the review of the characterization
techniques also emphasizes those that can provide information directly at the sampling site.
The advantage of using field-based characterization techniques is twofold: (1) it provides
real-time information that can be used for sampling selection and optimization and (2) it
gives information on the undisturbed and fresh material, which can be helpful in quality
control or calibration of the laboratory techniques. Great knowledge from the mine waste
dump at a larger scale can be also obtained using EO methods, which provide an overview
of the mineral content and other materials. The characterization of mine residues must be
an iterative process that increases in detail and accuracy while refining the specific objectives
of the study at hand.

Despite the diversity of techniques and instruments, significant challenges can affect the
success of a characterization campaign. For example, the lack of documentation or historical
data about waste dumps can hinder the planning for the sampling works and bring consider-
able uncertainties. Furthermore, the outcomes of a study depend on the quality and repre-
sentability of the sampled material. Achieving those two aspects can be a difficult task in
environments where accessibility for workers and machines is troublesome. On the other
hand, the possibility of acquiring different types of data at various scales demands high skills
from researchers to make decisions. Data analytics and digitalization become then an inte-
gral part of the characterization tasks. researchers should choose the combination of techni-
ques suitable for the type of material subjected to characterization, while providing complete
information for the stated aims. In this sense, there are significant opportunities for develop-
ing a combined approach for material characterization, both at the technical level (e.g., phys-
ical combination of instruments) and in the data analysis.
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