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Abstract

It has become clear that the global energy system needs to shift away from fossil fuels towards clean,
renewable energy sources. Experience in the past decades has shown that flat-plate solar heat panels
can play a role in the energy system of the future, in particular in solar collector fields for district
heat generation. This thesis concerns the dynamical modelling of such solar district heat plants
(SDHPs). As the upswing of SDHPs occurred rather recently, research on their optimal control is
ongoing. The main challenge for control is to adapt to fluctuations in solar radiation and other
inputs in an optimal way, ensuring a high and stable outlet water temperature to the grid while
minimizing flow fluctuations. Many modelling efforts of single collectors as well as full solar heat
fields have been reported, although mostly in the form of detailed physical models.

In this thesis, a new approach for describing the dynamics of a large flat-plate solar field is proposed.
We develop a continuous-discrete stochastic state space model suitable for prediction and control.
This model form combines knowledge from physics and information from data, thereby allowing for
relatively simple formulations while modelling complex dynamics. Retaining a physically meaningful
model formulation has additional advantages for model development, as analysis of residuals and
outputs can provide information on suitable model extensions. A basic model was formulated and
systematically extended in a forward selection procedure, using a.o. likelihood ratio tests. The
model development was based on May 2017 measurements from an Aalborg CSP solar heat plant in
the municipality of Solrød, Denmark. The models are implemented using the R-package CTSM-R,
which includes parameter estimation methods based on maximum likelihood estimation and the
extended Kalman filter.

It is found that the developed model is suitable for very short term (minutes to hours ahead) to short
term (day ahead) prediction, as needed for control and heat output forecasting of a SDHP. It includes
several new aspects compared to existing models, the most notable being non-parametric modelling
of shading effects and a split of total radiation into diffuse and direct components. Including these
elements improves model predictions considerably, and allows for asymmetric panel efficiency over
the day. Detailed analysis of the model’s predictive performance is provided, including a comparison
to current ISO standard model and the current Solrød control scheme, as well as a cross-validation on
data from different seasons. In future work, the model’s performance when using input predictions
from weather forecasts should be tested. The model should further be used in a model predictive
control scheme in order to improve current SDHP control strategies. This would lead to a smoother
pump operation, thereby reducing electricity consumption, costs, and greenhouse gas emissions.
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Chapter 1

Introduction

Background

The vast majority of the scientific community now acknowledges that human induced climate change
is a fact. In 2013, the International Panel for Climate Change stated that “it is extremely likely that
more than half of the observed increase in global average surface temperature from 1951 to 2010
was caused by the anthropogenic increase in greenhouse gas concentrations and other anthropogenic
forcings together” [1]. Anthropogenic carbon dioxide emissions have primarily come from fossil fuel
combustion and land use change [1].

As a global effort to respond to climate change, the Paris Agreement between members of the
United Nations Framework Convention on Climate Change (UNFCCC) was established in 2015 and
came into effect in November 2016. By ratifying the agreement, 175 parties have agreed to keep
global temperature rise before 2100 well below 2 degrees Celsius above pre-industrial levels, with
the intention to limit the increase to 1.5 degrees Celsius. In order to reach this goal, the emission
of greenhouse gases should be reduced to zero in the upcoming decades [1]. This means that the
global energy system needs to become more energy efficient and shift away from fossil fuels to clean,
renewable energy sources. According to the United Nation Environment Program (UNEP), the Paris
goals can be reached using a wide range of current technically feasible measures [2].

The shift is already visible in investment behaviour: in 2016, “renewables capture two-thirds of
global investment in power plants as they become, for many countries, the least-cost source of new
generation” [3]. Renewable sources for heat production also doubled in 2016. A number of recent
studies come to the conclusion that district heating (DH) will play an important role in sustainable
energy systems [4, 5]. A DH system consists of many buildings connected by a network of pipes,
which allow for the distribution of heat generated at a centralized plant.

The usage of large solar collector fields for district heat generation has been explored in northern
Europe since the 1980s, and has in the recent years expanded significantly in this region [6]. Such
Solar District Heat Plants (SDHPs) usually consist of several rows of large flat-plate collectors
connected in series. The panel’s absorber plate is heated by solar rays, and this heat is absorbed
by a fluid flowing through the panel. A heat pump is used to transfer the generated heat to the
district heating network. Solar heat fields reduce the amount of fossil fuel used for district heating,
resulting in lower greenhouse gas emissions and operation costs.
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Problem statement

As the upswing of solar district heat plants (SDHPs) occurred rather recently, research on their
optimal control is ongoing. The conditions of operation (sun, wind, ambient temperature) show a
wide variety, which poses challenges to modelling the dynamics [7]. The main challenge for control,
compared to fossil fueled plants, is that the source of energy cannot be manipulated and shows
not fully predictable behaviour on short timescales. This is especially an issue in northern Europe,
where weather conditions are often not stable over the day. The control has to adapt to fluctuations
in solar radiation and other inputs in an optimal way, in order to ensure a high and stable outlet
water temperature to the grid, and to prevent boiling.

Current control schemes often show large flow fluctuations, showing a need for more stable flow
regulation. This need was also expressed by Aalborg CSP, commissioner of various solar heat plants
including the Solrød SDHP studied in this research. Smoother pump operation can reduce the
plant’s electricity consumption, and thereby reduce costs and greenhouse gas emissions.

To prevent system overheating on sunny summer days, cool water from the storage tank can be
used. If the storage tank is running out of cold water after several sunny days, the Solrød plant may
need to perform night cooling in order to prevent overheating during the next day. Currently, the
decision to activate night cooling is not based on model prediction, but on personal judgement based
on weather forecasts. A model prediction of tomorrow’s heat production could assist or automate
this decisionmaking for night cooling. In addition, such forecasts are potentially valuable in smart
grid applications, e.g. when planning the use of a heat pump so that it can use excess wind power.

Solar heat panels and fields are considered to show highly non-linear behaviour, with changing
dynamics depending on the operating conditions [8, 9]. Changes in solar radiation can for example
alter the dominant time constant of the process on a very short time scale [8, 10]. It is therefore
widely recognized that traditional control methods are not suitable for the control of such systems,
and that “the performance of PI and PID type controllers will be inferior to model based approaches”
[8]. More advanced, non-linear controllers are therefore needed to control the system over the entire
operation range [9]. Such controllers are based on non-linear models of the plant dynamics.

Research Gap

In the past decades, much research has been done on the modelling of single collectors and solar
fields. This has among others resulted in a widely used ISO standard for performance testing
in the European Union. Most existing models for full plants are detailed physical models, often
implemented in the simulation program TRNSYS. Their parameters are either derived from physics,
obtained from physically detailed sub-models, or taken from performance tests. Such models either
intend to estimate plant performance or to predict power output over a certain period. None of the
plant models intended for power output predictions found in literature used statistical methods to
estimate parameters for a particular plant. Furthermore, accounting for shading effects is a challenge
in these white-box models.

Only few (nonlinear) models intended for the control of solar district heating plants have been
described in the scientific literature. The existing models combine partial differential equations
from physics with parameters fit from data. The models are rather elaborate, distinguishing two
one-dimensional system states (continuous in space) which require a discretization in space. To our
best knowledge, stochastic differential equations (SDE)-based models have never been used for this
purpose.
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SDE-based state space models combine physical knowledge with information from data using meth-
ods from statistics, and are therefore of grey-box form. In past research, such models have been
successfully applied in heat dynamics applications, including the heat dynamics of buildings [11,
12], the heat dynamics of building integrated photovoltaic modules [13], and the heat dynamics of
a single solar heat collector [14]. The promising results of the latter article suggest that the models
can be used to describe the dynamics of entire SDHPs as well.

The stochastic nature of these models allows for the application of statistical methods for structural
model identification, which is a challenging part of model building. The resulting models are rel-
atively simple and data-driven, with parameter estimates that are easily interpretable due to the
physics-inspired model equations [12]. The method further allows for parameter re-estimation from
recent data, so that changes in the system and its performance can be monitored. Non-parametric
methods can be applied in these models, for example to account for shading effects. Grey-box mod-
els can therefore be a promising contribution to solar heat plant modelling, both for performance
monitoring, for the forecasting of heat power production, and for improving control.

Research Aims

The aim of this thesis is to develop a continuous-discrete stochastic state space model model of solar
heat plant dynamics, which is suitable for the following applications:

1. Predicting the outlet temperature of a large solar collector field for improved control strategies
(very short term prediction in the range of seconds to hours)

2. Predicting multiple day ahead heat power production for planning of operation (short term
prediction)

The developed grey-box model should combine knowledge from physics and information hidden in
data in an optimal manner, allowing for a formulation as simple as possible while modelling complex
dynamics. A particular aspect of the models will be to account for shading effects in a data-driven
manner, which is a simple way to improve model predictions considerably.

The result may be a single model suitable for both short and medium term prediction, or two
separate models each suitable for one of the applications.

Methodology

The models will be formulated in order to predict the outlet temperature of the solar field. All
models will be implemented using the free software environment R [15] and the R-package CTSM-R
[16] The latter is documented in Kristensen et al. [17]. This software performs parameter estimation
based on maximum likelihood estimation and the extended Kalman filter, and includes functions for
simulation and prediction given a model and obtained parameter estimates.

A basic model will be formulated, which will then be systematically extended in a forward selection
procedure. The likelihood ratio test and prediction residual plots will be used for model selection
and validation. The final model performance will be evaluated by comparison to current standards
and the control scheme as currently used in the Solrød plant. Furthermore, a cross-validation on
data from different seasons is performed.
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The model development will be based on May 2017 measurements from a solar heat plant located
in Havdrup, a town in the municipality of Solrød, just South of Copenhagen, Denmark. The data
was received from Aalborg CSP, the commissioner of this plant.

Structure of this thesis

The first chapters of this thesis will introduce the reader to relevant (non-)mathematical theory.
Chapter 2 will provide an introduction to solar thermal energy, including SDHPs and the solar heat
plant in Solrød in particular. Next, Chapter 3 presents an overview of previous research on solar
thermal modelling for parameter estimation and improved control. In Chapters 4 to 6, stochastic
state space models and their filtering and parameter estimation methods will be discussed.

The next few chapters relate to methods used in this thesis. Chapter 7 briefly discusses the used
software package CTSM-R. The data set is introduced and prepared for use in Chapter 8. Next,
Chapter 9 describes a model selection procedure that has been used in past research and has been
employed in this research. Chapter 10 introduces all model equations and components that have
been used in the model sequence of this thesis.

Thereafter, the results of the modelling efforts of this thesis are presented. Chapter 11 first shows
the results of MLR model fits as described in ISO standards. Next, Chapter 12 describes the model
sequence that was followed to develop new grey-box models for the solar heat plant. The performance
of the final developed model is elaborated on in Chapter 13, which will also include a cross-validation
on data from other months. Final conclusions are drawn in Chapter 14, which will also include a
critical discussion, directions for practical application, and recommendations for future research.

This thesis is written under the assumption that the reader has knowledge on basic probability theory
and stochastic calculus. Theory on stochastic differentiation and integration will not be treated, but
many good books on these topics exist. For example, Kloeden, Platen, and Schurz’s Numerical
Solution of SDE Through Computer Experiments extensively treats basic theory on probability,
the Wiener process, stochastic integration, and stochastic differential equations (see reference [18]).
Another good source is Basic Stochastic Processes by Zastawniak and Brzezniak (reference [19]).
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Chapter 2

Solar Thermal Energy

This chapter will provide a brief introduction into solar thermal energy and solar district heating in
general. In addition, the particular solar heat plant considered in this thesis will be described.

2.1 Solar Heat Panels

Solar panels capture energy from solar radiation. In solar photo-voltaic (PV) applications, the
radiation energy is converted into electricity, while solar thermal panels or solar heat panels convert
it into thermal energy of some working fluid. Hybrid (PVT) panels exist as well, which are able
to produce both types of energy. This thesis will only concern solar heat panels. More specifically,
so-called flat plate collectors will be discussed, which operate in the low to medium temperature
range. The other common collector type is the parabolic trough collector, which can reach higher
temperatures by concentrating the solar rays.

Typical flat plat collectors have a black background absorber plate covered with insulation layers
and a glazing cover [20]. The glazing is usually made of one or more sheets of glass, which is a
suitable material as it transmits short-wave radiation well while having a low transmissivity of long-
wave radiation. The glazing should prevent convection losses, as well as reduce irradiation losses by
reflecting radiation transmitted by the fluid (a green house effect).

Inside the absorber plate, a pipe containing the heat transfer fluid meanders horizontally, in order
to capture as much heat as possible from the plate [21]. The heat needs to be absorbed rapidly,
so that the system will not overheat [20]. The heat transfer fluid used in such systems is usually a
mix of water and polypropylene glycol, which a.o. has the advantage of anti-freeze protection at low
temperatures.

2.2 Solar District Heat Plants

When the heat generated by solar panels is used to supply district heating networks, the term Solar
District Heat Plant (SDHP) is used to describe the system.

Solar collector fields for DH usually consist of several rows in which large flat-plate collectors are
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connected in series. The rows are in turn connected in parallel. In this way, hundreds of collectors
can be coupled. A heat pump then transfers the generated heat to the DH grid. District heating
grids demand temperatures between 40-100° Celsius [22]. The supplied heat is used for space heating
and domestic hot water.

The systems aim to reduce or replace fossil energy sources for district heating. Due to the inter-
mittent nature of solar energy however, the existing fossil fuel based parts of the district heating
network are usually still in use for period of low solar heat production. In order to keep this to a
minimum, diurnal and/or seasonal heat storage may be installed. Seasonal storage may take the
shape of water pit holes, which can store overproduced heat from summer season.

2.2.1 Solar District Heating in Denmark

Although Scandinavia is perhaps not the most obvious place to capture solar heat, the operation
of SDHPs in this area is now commercially feasible. From the ranking list of European large scale
SDHPs (last updated end of 2016), the 25 largest are located in Denmark [23]. A total of 106 Danish
plants are listed on this ranking.

The fact that district heating networks are already present in many Danish municipalities has no
doubt facilitated the rapid development of the technology in this country [24]. Approximately
60% of Danish buildings heat demand is supplied by district heating [22]. In addition, the Danish
government has set itself the goal of being fossil fuel free by 2050. Due to high fossil fuel taxes,
solar heat production has furthermore become economically beneficial [25]. Solar district heating is
therefore a mature market in Denmark, which can exist without subsidies [22].

2.3 Solar District Heat Plant Solrød

This section is based on information provided by Aalborg CSP, the commissioner of the plant. The
plant is located in Havdrup, part of municipality of Solrød, where it serves a community of 350
households. It was constructed in the period from October to December 2016, and by the end of
January 2017 the plant started to produce energy. After a period of close monitoring and finetuning
the system was delivered to the client, Solrød Fjernvarme, by the beginning of April.

The plant is a commercial project intended to reduce costs for the community, by reducing natural
gas purchases. Another benefit of solar heat production is an ensured stable price of the heat for
the entire lifetime of the project, independent of fluctuating gas prices. The operating costs of a
SDHP are estimated around 0.5 percent of the total capital investment, and mainly come from the
electricity cost for operating the pumps. Panel maintenance is minimal, as there is no need to clean
the surface of the panels due to frequent rain.

The plant, depicted in Figure 2.1a, consists of 11 collector rows connected in parallel. Due to space
constraints, the first two rows are 4 rows in space, but the water flows in series. The first three
rows contain 16 collectors in series, the remaining rows contain 20. This adds up to a total of 208
collectors with a total area of 2569m2. The panels are GreenOneTec GK 3003 large size collectors,
as depicted in Figure 2.1b. The first half of each row has a single glass glazing, whereas the second
half holds a double glass layer. Furthermore, a 1250 m3 accumulation tank is used for multiple-day
storage.

A special feature of this plant is its operation as a stand alone system: the hot water is directly
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(a) Solar field setup (b) Green1Tec GK 3003 large size collector

Figure 2.1: Solar field and solar collector from Solrød

supplied to the grid. Most plants in Denmark operate differently: they exchange heat with a central
heating plant first, which in turn distributes the water to the connected houses [22].

During the summer months, the solar field can supply a large share of the heat demand. In 2017,
almost the whole demand from May to the beginning of September was met by solar heat alone.
The winter months can be productive too: this year’s (2018) first production day was in mid-
February, during which the plant produced more energy than in December and January together
(almost 7 MWh). The field is designed to yield 1300 MWh annually, about 28 percent of the total
heat consumption. The remainder of the heat demand is met using natural gas. Through reduced
natural gas use, approximately 230 tonnes of CO2 are saved annually. Additionally, the plant is
expected to reduce energy costs significantly.

Water with 30% glycol is used as the heat transfer fluid. The piping has been designed to have an
equal flow in all collector rows. An overview of important parameters (some are used by the plant
for current control) is given in Table 2.1.

Parameter Value Unit
Total aperture area Ac 2569 m2

Latitude −55.54 degree
Longitude 12.11 degree

Panel Slope 45 ° wrt ground normal
Panel Azimuth 6 ° wrt S (+ clockwise)

Fluid cf 3980 J kg−1 K−1
F ′(τα)en single glass 0.857 -
F ′(τα)en double glass 0.814 -
F ′U0 single glass 3.083 W/m2K
F ′U0 double glass 2.102 W/m2K
F ′U1 single glass 0.013 W/m2K2

F ′U1 double glass 0.016 W/m2K2

Pmax 1.9 MW

Table 2.1: Overview of Solrød parameters
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Chapter 3

State of the art: modelling solar
heat panels & fields

This chapter will provide an overview of research on models for solar heat applications. Although
this thesis aims to model a field of many connected collectors, two models for single collectors will
be discussed as well. The widely used ISO-standard collector model will be discussed in Section
3.1.1, which represents the state-of-the-art and is the basis for many other models. Section 3.1.2
presents the grey-box SDE model for a single collector by Bacher et al., as this model formed the
basis for the models developed in this thesis. In Section 3.2, an overview of modelling for control of
solar district heat plants will be presented.

3.1 Single collector models

Models for single collectors have been in development over the last few decades. Such models
are usually developed either for the estimation of panel performance parameters (i.e. performance
testing), for the control of small, domestic installations, or for the prediction of heat output. Most
models are based on physical principles, with parameters derived from physics or determined from
data. Black-box approaches have also been reported, for example using Artificial Neural Networks
in [26] or using fuzzy modelling in [27]. Grey-box methods are presented a.o. in [14, 28]. The
black-box approaches will not be discussed in detail.

3.1.1 ISO standard

In order to harmonize the European solar market, the region has set a standard for testing solar
thermal collectors for determining performance parameters. The standard is revised every fifth
year by a research group working for the International Organization for Standardization (ISO). The
most recent version of the method is described in ISO standard 9806:2017 [29], which is considered
the state-of-the-art model for solar collectors [30]. The tests result in the computation of certain
parameters that are an indication of a collector’s performance, among others the panel efficiency
F ′(τα)en, the heat loss coefficient F ′U0, and the temperature dependence of the heat loss F ′U1. In
the equations discussed below, the interpretation of these parameters will become clear.
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The ISO standard distinguishes between a steady state and a quasi-dynamic performance test
method. The steady state model requires clear weather, small solar incidence angle, low diffuse
radiation levels, and wind speed of around 3 m/s. The quasi-dynamic approach allows for a slightly
higher wind speed. In the latter method it is important that the system is exposed to all weather
conditions possible for normal operation of the plant: variability is needed to decouple parameter
estimates.

At every time t, the useful power output per aperture area is defined as:

P = cfQf(To − Ti) (3.1)

where cf is fluid heat capacity, Qf is flow per unit aperture area of the collectors, and To and Ti are
respectively the out- and in-flowing fluid. The quasi-dynamic model equation for Q is given by the
following heat balance (see Nomenclature for overview of symbols):

P =F ′(τα)en[Kτα,b(θ)Gb +Kτα,dGd]− F ′U0(Tf − Ta)− F ′U1(Tf − Ta)2 − F ′Uuu′(Tf − Ta)

+ F ′ε(EL − σT 4
a )− (mC)e

dTf

dt
− a6u

′G− a7u
′(EL − σT 4

a )− a8(Tf − Ta)4 (3.2)

In the most recent version of the ISO standard, all parameters are labelled a1 up to a8, but for
clarity some of the original parameter names have been retained here.

The first term on the right hand side of equation (3.2) represents the energy input from radiation,
which is split into beam and diffuse components. As the term implies, direct (beam) radiation comes
in a direct line from the sun, whereas diffuse radiation is scattered from that beam by molecules,
aerosols, and clouds. The portion of total solar radiation (diffuse + direct) that is diffuse is about 10%
to 20% for clear skies and up to 100% for cloudy skies. The distinction is relevant for the developed
models, because the panel’s energy uptake from these terms depends on the solar incidence angle in
different ways.

Both types of radiation are corrected for the incidence angle: the diffuse radiation is corrected
by a (constant) parameter Kd, whereas the beam radiation is corrected using an Incidence Angle
Modifier (IAM) function Kb(θ). Section 3.1.1 will provide a deeper discussion of this function.
The parameter F ′(τα)en, the zero-loss efficiency, expresses the efficiency of the collector when the
temperature gradient to the ambient, Tf − Ta, equals 0.

The heat loss from the solar collector to the ambient is related to the temperature difference between
the air and the collector with the heat loss coefficient F ′U0. As the collector is often warmer than
the air and does not aim to capture heat from its surroundings, an ideal collector has a low heat
loss coefficient. The second order term in equation 3.2 has parameter F ′U1 which represents the
temperature dependence of the heat loss coefficient. This parameter is often positive (f.e. in [31]),
so that the fraction of heat lost to the environment increases with increasing temperature gradient
(Tf − Ta). The optional term a8(Tf − Ta)4 allows to refine the temperature dependence of the heat
loss coefficient further.

The time derivative of the collector fluid temperature Tf comes into the equation as (mC)e
dTf

dt to
reflect the energy used to heat up the fluid, where the parameter (mC)e represents the thermal
inertia of the system. The sky temperature dependence of the heat loss coefficient is accounted for
with F ′ε(EL − σT 4

a ). This term is usually negative, “as the effective sky radiation temperature is
lower than the ambient air temperature” [29].

Several terms correct for the wind dependence of parameters. The term F ′Uuu
′(Tf − Ta) corrects

the wind dependence of the heat loss coefficient, a6u
′G for the wind dependence of the zero-loss

efficiency F ′(τα)en, and finally a7u
′(EL − σT 4

a ) for the wind dependence of the long wave radiation
exchange.
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Chapter 11 will elaborate on the parameter estimation method as described in the ISO standard,
and it will describe how this method was applied to the Solrød heat plant.

Incidence angle modifier

The following formula has become accepted in scientific literature for the Incidence Angle Modifier
(IAM) for the direct beam zero loss efficiency Kb(θ) (a.o. in [31] )

Kb(θ) = 1− b0
(

1

cos(θ)
− 1

)
(3.3)

The incidence angle θ is defined as the angle between the direction of beam radiation (a straight line
to the sun) and the normal to the (tilted) plane of the solar heat collector. Therefore, θ depends
on the time of the day, day of the year, and on the tilting angle of the solar collectors. The value
of θ is around 90° in the morning, around zero at noon, and increases to 90° again in the evening.
The parameter b0 that determines the slope of the curve, needs to be estimated. For most flat plate
colletors, this equation is considered sufficiently accurate for describing incidence angle effects [32].

Another way of modelling incidence angle effects on direct radiation uptake, is by using the so-called
angle-by-angle method as proposed by Perers [32]. This method involves a splitting of the direct
radiation into different components, each component corresponding to a certain range of incidence
angle. A constant direct beam IAM value can then be estimated separately for each component.

3.1.2 Grey box model

Bacher et al. [14] report a grey-box model sequence for a single solar heat collector using a simplified
heat balance discretized in space. The model is developed with the aim of obtaining accurate
performance parameters. Stochastic state space models are fitted and compared to the 2003-ISO
standard fitting procedure.

The base model in the sequence has the outlet temperature of the solar heat collector To as its
single state variable. The system equation was derived from a simplified heat balance taken from
the previous ISO standard equation [32], which was rewritten to the continuous-discrete grey box
model equations

dTo =
2

(mC)e

(
F ′U0(Ta − Tf) + cfQf(Ti − To)+

F ′(τα)en[Kb(θ)Gb +KdGd]
)
dt+ σdω

yTo,k = To,k + εk (3.4)

In this model, Ti, Ta, Tf, Qf, Gb, Gd are measured variables, and cf is the known heat capacity. All
other variables in Equation 3.4 are to be estimated.

The model is then extended to include multiple states in the flow direction of the panel, as well
as a separate metal component in each of these compartments. All extensions were found to be
significant, and it was concluded that further extensions are likely to improve the model. The
parameter estimates were in agreement with ISO test results. The authors note that experimental
conditions influence the parameter estimates.
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3.2 Models for control of solar district heating plants

The vast majority of existing models for SDHPs are based on first principles, with parameters
derived from physical equations rather than fit from data. Many of these models are developed
using TRNSYS, a detailed ODE-based simulation program. Examples are found in [25, 33–35].
The mentioned papers include models for performance analysis as well as control. Recently, some
nonlinear models based on MLR ([30, 36]) and transfer functions ([37]) have been reported.

As noted by Bava, most plant models are spatially lumped into one collector component. In addition,
the wide majority of existing studies omit the distinction between beam and diffuse radiation, and
do not take shadowing effects into account [25].

3.2.1 Discretized PDE state space model

Most non-linear statistical modelling for control has been done for high-temperature solar collector
fields (parabolic troughs) in for example [10, 38] and summarized in the review [8]. To the best
of our knowledge, the only nonlinear state space models for control of flat plate district heating
applications have been developed by Pasamontes et al. [39] and further extended by de Andrade et
al. [7].

The model includes two state variables: the temperature of the fluid (Tf) and that of rest of the
collector (Tm, for metal). The dynamics of these states are modelled by a set of partial differential
equations

ρmCmAm
∂Tm

∂t
(t, x) = F ′(τα)enG(t)−DoπUma(Tm(t, x)− Ta(t))−DiπUfm(Tm(t, x)− Tf(t, x))

(3.5)

ρfCfAf
∂Tf

∂t
(t, x) = DiπUfm(Tm(t, x)− Tf(t, x))− ρfCfu(t)

∂Tf

∂x
(t, x) (3.6)

This model is continuous in space and time. The outlet temperature To(t) equals the fluid tem-
perature at the end of the collector field, Tf(t, L) where L is the length of the tube. The model
parameters are efficiency parameter F ′(τα)en, the heat loss coefficient Uma from metal to ambi-
ent, and the coefficient Ufm for heat exchange between metal and fluid. All remaining factors are
constants.

Andrade et al. solved this system of PDEs using a discretization in space, where derivatives are
replaced by their finite difference approximations. The resulting ODE system was solved numerically
using an ODE solver. Parameter values were obtained by a genetic algorithm fitting the integral of
squared error criterion. It was assumed that that the parameters “do not depend on state variables,
which has demonstrated to be a valid approximation for the operation range in these kinds of low-
temperature applications” [39]. The model was successfully applied for simulation and control [7].

This model does not take into account shading and incidence angle effects, nor does it account for
the different effects of diffuse and direct radiation.

3.3 Model currently used for control in Solrød

The control aim of the plant is to maintain a stable outlet temperature To at given set point Tset
that is usually around 95 ℃. Besides that, the fluid temperature should not exceed the boiling
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temperature, which would lead to glycol evaporation. Such an event is very undesirable, as the
system would require a full re-start to redistribute the glycol into the water.

In order to reduce outlet temperature fluctuations to a minimum, the water flow is adapted every
second. The desired value of the flow Qf is computed based on the measured variables G, Ti, Ta,
Tset as well as some parameters and constants. For the solar radiation, the average over the past 30
seconds is used as an input, in order to reduce flow fluctuations. However, strong variations in the
flow are still seen on intermittently cloudy days, and these variations are often redundant.

The current power output P is first estimated using the heat balance

P = Ac ·
(
F ′(τα)enG− F ′U0(Tf − Ta)− F ′U1(Tf − Ta)2

)
(3.7)

where the fluid temperature is computed as the average of the inlet and outlet temperature. Based
on this power, the desired flow needed to reach output temperature equal to Tset is computed as

Qf =
P

cf(Tset − Ti)
(3.8)

The parameters in Equations 3.7 and 3.8 are taken from the panel specifications, as given in Table
2.1. For F ′(τα)en, F ′U0, and F ′U1, the average of the single and double glazed panels are taken.

It can be seen in Figure 8.1 that the control succeeds reasonably well in maintaining a constant outlet
temperature. However, even on clear sunny days there it takes some time after the pre-heating phase
before the outlet temperature reaches the set point. This is unnecessarily long, given that the flow
in this period is not at its minimal value. The same effect is seen in the afternoon, where the flow
not at its minimum, but the outlet temperature decreases away from its set point.

From these observations, it becomes clear that the model used for current control can be improved.
The current model structurally overestimates the flow needed to reach the set point temperature.
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Chapter 4

Stochastic State Space Models

This chapter will outline theory on continuous-discrete State Space Models. The basic formulation
of state space models is mainly inspired on Madsen (2007) [40], Maybeck (1979) [41], and Jazwinsky
(1970) [42].

The motivation for developing this type of model has been to find a model formulation that accounts
for uncertainties in a proper manner, and remains suitable for use of known statistical methods such
as maximum likelihood estimation. The state space form is in general appropriate when some
relations from physics are known, as the model is often obtained directly from physical equations
[40].

4.1 Introduction to state space formulation

A state space model describes the dynamics of a physical system and how it is observed. The system
is represented by a state vector : a set of quantities that represents the entire system at any moment
in time [43]. Moreover, the state at any time t should include enough information to determine the
system behaviour for all later times τ > t. In order to have a complete model, the state vector must
include quantities that together describe the system uniquely at a certain time [40]. This means that
two equal realizations of the state vector containing these representative quantities should correspond
to only one state of the complete system. For example, the state vector of a system describing a
particle may include the position and velocity of the particle.

The states of the system may also be hidden in the sense that they are not directly measured. A
Solar Heat Plant model could for example include the state ‘temperature of the fluid in collector 1’,
even when the temperature is only measured in collector 5 .

In the state space models discussed in this thesis there will be an explicit distinction between
measured input variables, measured output variables, and ‘true’ or internal states. The model
describes the evolution of the measured output variable and the internal state variable in two different
equations. The first, called the system equation, describes the evolution of the state vector xt in
time. The second, called the observation or measurement equation, relates the state vector xt to the
vector of observable outputs yt. In the following, only state space formulations of the continuous-
discrete type will be discussed, meaning that the system equation will always be continuous while
the measurements take place at discrete points in time. This is the most natural way to represent
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physical systems, where we assume that the physical process occurs continuously in time, while
measurements can in practice only be discrete.

The system is called forced when the evolution of the system state depends on measured inputs.
State vectors will always be denoted by the letter x, inputs by the letter u, and outputs by y. The
input u is always a known, deterministic variable obtained from measurements. To keep notation as
compact as possible, the model’s dependence on parameter vector θ will not be explicitly written.
The reader should keep in mind that functions and matrices may, in all cases presented, depend on
the parameters.

Definition 4.1 (Deterministic Linear State Space Model). The system equation is of the form

ẋ = F(t)x(t) + B(t)u(t) (4.1)

where x is the state vector, u the input, and F and B are matrices that possibly depend on time.
The observation equation is of the form

yk = H(t)xk (4.2)

where we denote ytk = yk and similarly xtk = xk for simplicity. In order to ensure the existence of
a solution for this system , it is supplemented with an initial condition for the state vector

x(t0) = x0. (4.3)

It should be noted that the linear observation equation can be generalized by adding a term D(t)u(t)
to the right hand side of equation (4.2). However, such a linear system can always be rewritten to
the form without this term by redefining ỹ = y − D(t)u(t). In the rest of this thesis, the input-
dependent term in linear measurement equations will therefore be omitted. The model structure can
be generalized by allowing any function of x, u in the system and observation equation, as follows.

Definition 4.2 (Deterministic General State Space Model). The system equation is of the form

ẋ = f(x,u) (4.4)

where x is the state vector, u the input, and f a function with vector-form output. The observation
equation is of the form

yk = h(xk,uk) (4.5)

and the initial condition is

x(t0) = x0. (4.6)

A state space model explicitly uses information about the system state for the description of its
dynamics and is therefore not of the input-output type, but rather the input-state-output type.
This feature is not present in many other statistical models (such as regression models), which
relate input and output directly. However, when the matrices in Definition 4.1 do not depend on
time, this state space formulation can be shown to be equivalent to linear, time-invariant transfer
function models [41].

This common model formulation uses Ordinary Differential Equations (ODEs) to describe a dy-
namical system. State space formulations are frequently used for control purposes. However, the
deterministic modelling of physical systems has several shortcomings. The next section presents this
discussion as a motivation for developing a stochastic state space model form.
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4.2 Shortcomings of deterministic state space models

An interesting discussion of the intuitive arguments for adding stochasticity to a model is found in
Maybeck [41]. Here it is argued that “to assume perfect knowledge of all quantities necessary to
describe a system completely and/or to assume perfect control over the system is a naive, and often
inadequate, approach”. One reason for doubt is that a deterministic ODE formulation allows for an
infinite deterministic solution of the state given an initial condition. In practice it would never be
considered feasible for a model to give predictions for infinite time.

There are several reasons why the system state predicted by a model can differ from reality:

1. Models leave out the effect of some variables. This may be because it is practically impossible
to include them, they are not measured, or the effect of such variables is negligible

2. Models are inherently simplifications of reality. Even when the effect of a certain input is
included in the model, the form of the equation is an approximation of reality. Equations from
physics are not universal truths, but rather adequate approximations of what is observed in
nature

3. Measured inputs u are subject to noise and uncertainty

4. The system state itself is influenced by uncontrolled, random disturbances

This calls for the addition of a stochastic term to the state equation. Moreover, the measurement
of output variables is subject to noise, which could be modelled by adding a noise term to the
measurement equation as well. As we will see in the stochastic model formulation the next section,
the errors have distinct meanings. The measurement error accounts for deviations of a measured
value from the ‘true’ value of the output, while the system error represents actual deviation of the
system state X from its deterministic value.

A particularly desirable result of including system or process noise in the model is that it accounts
for the auto-correlation of prediction errors often seen in deterministic models. As these models do
not take into account that the error in the previous step may have been a deviation in the actual
state of the system rather than just a measurement error, it cannot include the error information in
its prediction for the next step. This can for example lead to a situation in which an overestimation
of the state at time tk will likely be followed by another overestimation of the state (or negative
error) at time tk+1. This is depicted in Figure 4.1.

When the system and observation equation include error terms, the state and output vector are
stochastic and the model is a stochastic state space model. The next section will explore the form
such a system should have in order to satisfy our needs.
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Figure 4.1: Auto-correlated errors, source = http://support.sas.com/documentation/cdl/en/

etsug/66840/HTML/default/viewer.htm#etsug_autoreg_gettingstarted01.htm

4.3 Stochastic state space formulation

This section will introduce the stochastic state space model form. As argued in the previous section,
two types of errors will be added to the model equations. A straightforward way to include the
system noise is by adding a term to the system equation:

Ẋt = f(Xt,u) + g(Xt,ut, t)Zt (4.7)

where the probability law of the noise process Zt should be known. The addition of a stochastic
error term Zt makes Xt itself a stochastic process. The equation models the evolution of the state’s
probability density over time, rather than the evolution of the state itself.

Unfortunately, a model of this general form is not guaranteed to be useful. The reason for this is
that the probability distribution of Xt and Yt cannot in general be obtained from measurements.
If, for example, Zt is uniformly distributed, very little can be known about the distributions of Xt

and Yt [41]. To obtain a useful model formulation, there are two requirements for the process Zt.
First of all, it should lead to a well-defined differential equation for Xt which can only be the case
if the integral

∫
g(Xt, t)Ztdt is defined in some way. Second, we would like the resulting Xt to be

a Markov process in order to have a model that is useful for predictions. This property allows for
predictions of Xt gives a previous state value Xs (so s < t) with knowledge of Xs only. If Xt were not
Markov, additional information from states before Xs (so states {Xj |j < s}) may be needed for this
prediction, which would be impractical; or even future information on Xt may be necessary, which
would be impossible in applications. If Zt is correlated (i.e. does not have independent increments),
the process {Xt} is not a Markov process [42]. However, when Zt is assumed to be Gaussian white
noise, it can be shown that the resulting Xt is a Markov process ([42], page 92).

By assuming that Zt is white Gaussian noise (Nt), which we recall has the property Nt ∼ dWt

dt , the
equation can also be rewritten in a form that is mathematically well-defined. Then equation (4.7)
can then be rewritten to a stochastic differential equation of the form

dXt = f(Xt,ut)dt+ g(Xt,ut, t)dWt (4.8)

Note that this special case of equation (4.7) has meaning due to the development of stochastic
integrals. In this formulation, the stochastic term is free to depend on the state Xt. In the rest of
this thesis, the model form will be restricted to have function g independent of the system states.
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Therefore, the Itô and Stratonovich interpretation of the integrals are equivalent. The diffusion term
is also taken independent of the states in CTSM, because “this renders parameter estimation more
feasible” [17]. As found by Nielsen and Madsen [44], the use of a Lamberti transformation makes it
possible to incorporate some types of state dependency in the diffusion term, but this is outside the
scope of this thesis as such models have not been used.

This type of system equation will now be used to define the type of state space model that will be
used for the modelling part of this thesis, the continuous-discrete stochastic state space model. The
bold notation for vectors will from now be dropped, but the processes Xt, Wt and the functions f ,
h, and g may still be vector-valued.

Definition 4.3 (Continuous-discrete stochastic state space model). The system equation for state
vector Xt ∈ Rd is of the Itô SDE form

dXt = f(Xt, ut, t)dt+ g(ut, t)dWt, (4.9)

where f : Rd × [t0, t] → Rd is the drift term and g is the diffusion term, a matrix valued function
Rd × [t0, t]→ Rd×m. The discrete measurement equation is of the form

Yk = h(Xk,utk , tk) + εk (4.10)

where k is used as an index to indicate discrete numbered time points tk for k = {0, 1, . . . }, which
may be irregularly spaced in time. The measurement error εk ∼ N(0, Sk(utk , t)) is a white noise
sequence of vector form. The variance of the measurement error, Sk, is thus free to depend on t and
utk . It is assumed that {Wt} and {εk} are independent. It is further assumed that the initial state
X0 is a random variable with a given probability density p0(x).

Note that the Itô interpretation of the SDE is chosen, as this is more suitable for parameter estimation
than the Stratonovich interpretation [17].

We will introduce two special case of this general model, as solutions methods implemented in CTSM
differ for the different model types.

Definition 4.4 (Linear time varying (LTV) stochastic state space model). A continuous-discrete
stochastic state space model is linear time-varying (LTV) if it can be written as a sum of matrix
products with X and u. This corresponds to the following system and observation equation:

dXt = (A(ut, t)Xt +B(Xt, ut, t)ut)dt+ σdWt

Yk = C(utk , tk)Xtk + εk

Note that the diffusion therm σdWt is now assumed independent of u as well. Further assumptions
are equal to those in the Definition of the general model (Definition 4.3).

Definition 4.5 (Linear time invariant (LTI) stochastic state space model). A continuous-discrete
stochastic state space model is linear time invariant (LTI) if the matrices are only functions of
system parameters

dXt = (AXt +But)dt+ σdWt

Yk = CXtk + εk

Further assumptions are equal to those in the Definition of the general model (Definition 4.3).

Input measurements {ut} are usually known at discrete times {t1, t2, . . . } only, while the continuous
system equation requires a value for ut at each time t. Two possible assumptions to solve this problem
are implemented in CTSM: a zero or first order hold on u. Zero order hold keeps u constant until the
next measurement is taken. When first order hold is used, us = uk

uk+1−uk

tk+1−tk (s − tk), corresponding

to linear interpolation between measurements. Only zero order hold has been used in this thesis.
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4.4 Motivation for using Stochastic State Space representa-
tion

The stochastic state space formulation has several advantages, which will be outlined here.

Stochastic state space models are sometimes also referred to as grey box models. As the name
suggests, a grey box model is of a form in between a white box and a black box model, using
both physical knowledge and available data. A white box model is entirely based on equations
from physics, and does not include statistical variations and uncertainties. Once its parameters are
determined (estimated or obtained from physics), it is therefore completely deterministic. A black
box model is identified using data only, without taking physical meaning into account. Each type of
model has its advantages and disadvantages, and the most suitable of the models therefore depends
on the circumstances. When both physical knowledge of the system and data of its behaviour
are available, a grey box model may be appropriate as it can take advantage of both sources of
information. Kristensen, Madsen, & Jørgensen (2004) describe this mix as “a way of combining
the advantages of both model types by allowing prior physical knowledge to be incorporated and
statistical methods for parameter estimation to be applied”. It can be shown that the translation of
the ODE model into a stochastic state space model does not affect the parameters of the drift term,
which means that their physical interpretation is preserved [17]. Therefore, stochastic state space
models provide a way to combine physical knowledge and statistics. The advantage of including
the uncertainty explicitly is that statistical methods can be employed to provide estimates of the
uncertainty of the model and its parameters. Based on the estimated uncertainties, possibly valuable
model extensions can also be identified. Such procedures will be discussed in Section 9.5.

The stochastic state space formulation allows the uncertainty in the model to explicitly depend on
system variables. Furthermore, it distinguishes between system (or process) error and measurement
error explicitly. As said, the process noise can be shown to account for auto-correlation of prediction
errors that are frequently observed in practice. Also due to this explicit handling of noise, the
parameter estimates for grey box models tend to be less dependent on data, “because random
effects due to process and measurement noise are not absorbed into the parameter estimates but
specifically accounted for by the diffusion and measurement noise terms” [17].

Compared to black and white box models, the semi-physical grey box model is often economical
in the number of parameters needed to attain a certain accuracy and of a lower computational
complexity [28].
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Chapter 5

State estimation in stochastic state
space models

Given a set of measurements and a (stochastic state space) model formulation, the next step is to
extract the value of quantities of interest: the system states. This chapter will deal with the question
of estimating these system states in an optimal way.

Depending on the way the measurements are used for state estimation, we distinguish between
filtering (or reconstruction), prediction, and smoothing (or interpolation). Assuming that a time
series of measurements Y is available until time tk, filtering concerns the problem of obtaining Xtk ,
the system state at time τ , from measurements {Yi|ti ≤ tk} obtained up until time τ . This set of
measurements up to tk is denoted Yk. If the information in Yk is used to obtain an estimate of a
future state Xτ for τ > tk, the procedure is called prediction. Finally, if a past value Xτ should be
reconstructed (so τ < tk), the process is called smoothing. The latter will not be discussed here.

The stochastic differential system equation as formulated in Definition 4.3 describes the propagation
of a stochastic process Xt with probability distribution p(xt, t). The SDE is driven by a Wiener pro-
cess which has Gaussian increments. Section 5.1 will present general properties of the propagation,
which will form the basis for explicit filtering methods in the sections that follow.

In the special case of linear stochastic differential equations as in Definition 4.4, it can be shown
that the propagated conditional density remains Gaussian for all t. This property was the basis for
the development of the Kalman Filter for linear stochastic state space models. It was proposed by
Rudolf Kalman in 1960 [45]. The method estimates the conditional probability density of the state
X, given the measurements of Y . This density contains all information about the state of the system
[42]. For linear systems, this method can be shown to be optimal in several way. The basic Kalman
Filter and its optimality properties are treated in Section 5.2. For nonlinear models, the filtering
procedure becomes more complicated, as in this case only the full probability density contains all
possible information about the system state. An approximate filter to be used in such cases, the
Extended Kalman filter, will be discussed in Section 5.3.
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5.1 Filtering in general state space model

This Section will consider filtering in the most general state space model formulation. For conve-
nience this nonlinear continuous-discrete model setup is repeated here

dXt = f(Xt, ut, t)dt+ g(ut, t)dWt

Yk = h(Xtk , utk , tk) + εk. (5.1)

The filtering approach discussed here will consider the state estimation in two steps. First of all, what
would be the optimal prediction of the state X at time tk using previously obtained measurements
Yk at all times up until tk−1? Secondly, how can the new measurement obtained at time tk be used
to update this prediction? In the following, the estimate of Xt given Yk for t > tk will be denoted
X̂t|tk . The estimate of Xtk after incorporating observation Yk is written X̂tk|tk .

The most informative outcome of a filter would be to obtain the full probability density of Xtk|tk
at each time tk. From that, it would be possible to define estimators that are optimal with respect
to a chosen criterion. The filter should start from an initial condition for the probability density of
X0, namely p(x, t0). We would in the prediction stage like to derive an expression for p(x, t|Yk−1)
with t > tk−1. The probability density of a stochastic process generated by an SDE of the form in
Equation 5.1 satisfies the forward Kolmogorov equation. Thus, this distribution propagates from
initial condition p(x, tk−1|Yk−1) while satisfying

∂p(x, t|Yk−1)

∂t
= −∂[p(x, t|Yk−1) · f ]

∂x
+

1

2

∂2[p(x, t|Yk−1) · g2]

∂x2
(5.2)

This equation could in theory be used to derive an expression for the time propagation of the
probability density in between measurements.

At an observation, Bayes’ rule gives the expression

p(x, tk|Yk) =
p(yk|xtk ,Yk−1)p(x, tk|Yk−1)

p(yk|Yk−1)
(5.3)

This expression should be rewritten to contain only known information from the prediction step.
Because Xt is Markov, p(x, t|Yk) = p(x, t|Yk). Using the relation between joint and marginal
densities, the denominator of equation (5.3) is

p(yk|Yk−1) =

∫
p(yk, x|Yk−1)dx =

∫
p(yk|x)p(x, tk|Yk−1)dx (5.4)

where the second equality follows from Bayes’ rule.

However, as argued in Maybeck [41] (page 215), it is not generally possible to obtain the full propa-
gated probability density. This holds both for the prediction and the update step. In the prediction
step the problem is that the Kolmogorov forward equation cannot generally be solved analytically.

One might think a solution could be to find a propagation equation for some of the moments of
the state X. However, as shown in Maybeck ([41] page 199), it is not possible “to generate proper
differential equations for these moments themselves without knowledge of the entire density.” In
fact, the density p(x(t), t) needs to be known for all t just to obtain the first or second moment.
In the linear case however, the problem is simplified and it is possible to obtain exact expressions
for the propagation of the conditional probability density and/or estimates of the state’s first and
second moment. This approach is taken in the Kalman filter, which will be discussed in the next
Section 5.2.
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5.2 The Kalman Filter for linear time varying systems

This Section contains a derivation of the Kalman Filter, a method to do both prediction and filtering
on a linear continuous-discrete state space model.

The Kalman filter considers the propagation of estimates between two measurement times, tk and
tk+1. For a better intuitive understanding, the algorithm is split into a prediction step and an update
step, following Maybeck [41] and Madsen [40]. In the prediction step, which takes place directly after
yk is measured, the algorithm estimates the system state Xtk+1

based on measured output values

Yk = {yk, . . . , y0}. The corresponding estimator, denoted X̂tk+1|tk , is obtained by maximizing the
state’s conditional likelihood function. In the following update step, which takes place just after
yk+1 has been observed, the estimate X̂tk+1|tk+1

is obtained by correcting the predicted X̂tk+1|tk
using the new information in yk+1. As in the prediction step, the estimate X̂tk+1|tk+1

is computed
using the conditional likelihood function.

For convenience, the linear time-variant (LTV) model, of which the LTI model is a subcase, is
repeated here.

dXt =
(
A(ut, t)Xt +B(Xt, ut, t)ut

)
dt+ σdWt

Yk = C(utk , tk)Xtk + εk (5.5)

εk ∼ N
(
0, Sk(utk , tk)

)
(5.6)

In the following, Ctk will be used as a shorthand for C(utk , tk).

5.2.1 Prediction step

Theorem 5.1. Between measurements, the conditional mean and conditional variance of the LTV
model satisfy the ordinary differential equations

dx̂t|tk
dt

= Ax̂t|tk +But for t ∈ [tk, tk+1) (5.7)

dPt|tk
dt

= APt|tk + Pt|tkA
T + σσT for t ∈ [tk, tk+1) (5.8)

where short hand notation is used for matrices in the LTV system and observation equations

A = A(ut, t)

For a proof of this theorem, see for example Jazwinsky [42], Maybeck [41] or the CTSM reference
guide [46].

These equations can be solved to have solution

x̂t|tk = e
∫ t
tk
A(s)ds

x̂tk|tk + e
∫ t
tk
A(s)ds

∫ t

tk

e
∫ s
tk
A(u)du

B(s)ds (5.9)

and using short hand notation Φ(t) = e
∫ t
tk
A(s)ds

the solution for P is

Pt|tk = Φ(t)Pt|tkΦTt + Φ(t)

[∫ t

tk

e
∫ s
tk
−A(u)du

σ(s)σ(s)T e
∫ s
tk
−A(u)du

ds

]
Φ(t)T (5.10)
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To obtain these solutions, integrals over matrix exponentials have to be evaluated. This is a subject
of its own, and will not be discussed here. The derivation is presented in the CTSM mathematics
guide. Section 7.3 will outline how CTSM deals with the computation of the integrals.

For LTV systems, the matrices are constant, and therefore equations (5.9) and (5.10) can be sim-

plified by replacing the integrals in the exponents. For example, e
∫ t
tk
A(s)ds

can be replaced by
eAt.

Predictions for the next measurement ŷk+1|k and its predicted variance Rk+1|k are also computed
from conditional expectation, which gives

ŷk+1|k = Ctk+1
x̂tk+1|tk (5.11)

Rk+1|k = Ctk+1
Ptk+1|tkC

T
tk+1

+ Sk(utk+1
, tk+1) (5.12)

5.2.2 Update step

Following Jazwinsky (reference [42] section 7.2), the change in the state xtk estimated after adding
an observation yk is computed using Bayes rule. The form of the update step was already given in
Equation (5.3). The densities on the right hand side can now be evaluated explicitly, using that the
densities of X and Y remain Gaussian in the LTV case.

The density p(x, tk|Yk−1) is given from the prediction step, a normal distribution with mean and
variance given by x̂t|k and Pt|k from equations (5.9) and (5.10).

The density p(y, tk|xtk ,Yk−1) is the density of the predicted measurement, conditioned all previous
measurements and assuming that the realization of xtk is known to have a certain value, say xtk = x̃.
By the measurement equation (5.5), which has a normally distributed error term, this conditional
density is normally distributed with mean C(utk , tk)x̃ and variance Sk.

The final density in Equation (5.3), p(y, tk|Yk−1), does not assume that the realization of Xtk is
known. The density can be shown to be Gaussian as well, see for example Maybeck ([41], page 211).
It is computed using the system equation and the independence of Yk, σ, and εk. This gives that
p(yk|Yk−1) has mean and covariance equal to the predicted ŷk|k−1 and Rk|k−1 from equation (5.11).
This derivation can be found in more detail in Maybeck ([41], page 211).

Combining these densities, it turns out that p(x, tk|Yk) is Gaussian. This is not a trivial result, but
follows from completing squares as done for example in Jazwinsky ([42], page 197). The mean and
variance of the updated conditional density p(x, tk|Yk) are given by

x̂tk|tk = x̂tk|tk−1
+Ktk(yk − ŷk|k−1) (5.13)

Ptk|tk = Ptk|tk−1
−KtkCtkP

T
tk|tk−1

(5.14)

which together form the update equations. Here, K is the Kalman gain matrix defined as

Ktk ≡ Ptk|tkC
T
tk
R−1
k|k−1 (5.15)

5.2.3 Kalman filter optimality

It can be shown that the linear continuous-discrete system can be rewritten as a discrete-discrete
system, by introducing a so-called state transition matrix. For the discrete-discrete version of the
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Kalman filter, several optimality properties have been derived. For a proof of these properties, the
reader is referred to Jazwinsky ([42] section 7.3).

When the Kalman filter is derived from a Bayesian point of view, the conditional mean arises as
an optimal estimator. because it equals the mean, mode, and median of the propagated density
function of Xt conditional on all previous measurements. [41] In addition, it has been shown that
the estimator X̂t = E[Xt|Yt−1] is the estimate that minimizes the Mean Square Error. In other
words, the error of the estimator has the lowest possible variance among all linear estimators. The
Kalman filter in the discrete-discrete LTI system minimizes the Mean Square Error (MSE) among
all linear estimators.

The Kalman filter can be derived from a least square and a maximum likelihood perspective as
well. Further, the estimate of the Kalman filter is the orthogonal projection of the true state onto
the approximation space. This means that the state estimate and the error of this estimate are
independent.

5.3 Filtering and Prediction in nonlinear models: An Ex-
tended Kalman Filter

The theory in this section is mainly based on standard works by Maybeck [41] and Jazwinsky [42],
as well as the mathematics guide for CTSM [46] and a paper presenting CTSM [17].

A stochastic process driven by a nonlinear SDE is not Gaussian, and therefore it cannot be fully
represented by its mean and covariance. However, “by sampling fast enough relative to the time
constants of the system, it is then reasonable to assume that the conditional density is approximately
Gaussian” [46]. In that case, the continuous-discrete Kalman filter may still be used for prediction
and filtering.

An Extended Kalman Filter (EKF) is a version of the Kalman filter that is adapted to nonlinear
state space models. The EKF version presented here uses the nonlinear equation to produce the
most accurate prediction of the state, while an local linear approximation is used to produce an
approximate version of the update equation. The EKF thus attempts to include nonlinearities into
the model while still exploiting linear estimation techniques. Section 5.4 presents the Iterated EKF,
which attempts to better include nonlinear effects in the filter.

For convenience, the nonlinear continuous-discrete model setup is repeated here.

dXt = f(Xt, ut, t) + σ(ut, t)dWt

Yk = h(Xk, uk, tk) + εk (5.16)

The prediction step

For the prediction step, the model is linearized around the most recent prediction of the state Xt|k.
The approximation is written

f(Xt, ut, t) ≈ f(Xt|tk , ut, t) + Ã(t) · (Xt − x̂t|tk) (5.17)

where

Ã(t) =
∂

∂X
f(X,ut, t)|X=X̂t|tk

(5.18)
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The linearized version of the system equation can be written in the LTV format with A = Ã(t) and
B = f(Xt|k, ut, t)− Ã(t)x̂t|tk . Using the equations from Theorem 5.1, predictions for the conditional
mean and variance are then given by

dx̂t|tk
dt

≈ f(Xt|tk , ut, t) for t ∈ [tk, tk+1) (5.19)

dPt|tk
dt

≈ Ã(t)Pt|tk + Pt|tkÃ(t)T + σσT for t ∈ [tk, tk+1) (5.20)

These ODEs for the propagated conditional mean x̂t|tk and covariance Pt|tk are now approximations,
whereas they were exact for the LTI and LTV systems.

The update step

The update equations of the extended Kalman filter are of the same form as for the LTV system, as
given in equation (5.13). The Kalman gain matrix includes the matrix C, which for the nonlinear
system is approximated as

C̃k(X̂tk|tk−1
, utk , tk) =

∂

∂X
h(X,utk , tk)|X=X̂tk|tk−1

. (5.21)

Similar to the matrix Ã(t), this corresponds to a linearization of the observation equation about
the most recent state estimate, which in the case of the update step is the predicted state after the
previous measurement.

The Gaussianity of the updated conditional density is now an approximation. If the observation
equation contains strong nonlinearities in the state variables, the approximation may be too crude
and the filter may not perform well.

5.4 Iterated Extended Kalman Filter

In the prediction step of the extended Kalman filter, the matrix Ã(t) and C̃k are linearizations
around the most recent state estimate. To reduce the inaccuracy of this approximation due to the
influence of nonlinearities in the function h, an iterative scheme may improve the approximation of
matrix C̃ used in the update step. This option is implemented in CTSM as well.

Suppose we have measured yk, and predicted x̂tk+1|tk . The latter is used in the computation of

C̃k+1, which combined with measurement yk+1 allows for the updated estimate xtk+1|tk+1
. As more

information is included for the updated estimate x̂tk+1|tk+1
, it is probably closer to the ‘true’ value

of the state at time tk+1. Therefore, if C̃k+1 is computed by evaluating the derivative in Equation
(5.21) in x̂tk+1|tk+1

, the approximation of the updated state may improve. This new C may then
be used to perform the update step again, perhaps leading to a state estimate η different from
the original estimate x̂tk+1|tk+1

. This new estimate may again be used to recompute C̃, and the
procedure is repeated until the new estimates of the updated state no longer differ from one another
(i.e. not more than some small threshold number ≈ 10...). The procedure is called the Iterated
Extended Kalman Filter.

This repetition of the update step, starting from η1 = x̂tk+1|tk can be written as:

ηi+1 = x̂tk+1|tk +Ki
k+1(yk+1 − ŷik+1|k) (5.22)
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where

ŷik+1|k = h(ηi, utk+1
, tk+1) (5.23)

Ci =
∂

∂X
h(X,utk+1

, tk+1)
∣∣
X=ηi

(5.24)

Ki
tk+1

= Ptk+1|tkC
T
i R

i
k+1|k

−1
(5.25)

Rik+1 = CiPtk+1|tkC
T
i + Sk+1 (5.26)

The updated covariance matrix Ptk+1|tk+1
can be computed when the iterations have finished at

iteration N by

Ptk+1|tk+1
= Ptk+1|tk −K

N
tk+1

RNk+1|k(KN
tk+1

)T (5.27)

25



Chapter 6

Maximum Likelihood Estimation
in Stochastic State Space models

This section is largely based on the CTSM-R reference guide [47] and an article by Madsen et al.
[17].

Maximum likelihood theory can be used to estimate parameters in a state space model. Maximum
Likelihood Estimation (MLE) makes use of the likelihood function as a measure of how likely a set
of parameters is to have produced the data, given a model. The likelihood function equals the joint
probability density of this set of measurements, viewed as a function of the parameters θ while the
data is viewed as fixed. The MLE estimator θ̂MLE is defined as the set of parameter values that
maximizes the likelihood function. In the following, this will be formalized.

Suppose a measured time series of the output state vector is available, written as

YN = {y0, y1, . . . , yN} (6.1)

For such a set, the likelihood function L(YN , θ) equals the joint probability of these measurements:

L(θ;YN ) = p(YN |θ) (6.2)

As we view the likelihood as a function of the parameters, rather than a function of the data, the
parameter vector θ is part of the equation explicitly. The equality P (A,B) = P (A|B)P (B) can
be used to rewrite the joint probability density in Equation (6.2) as a product of the probability
densities of each measurement individually.

L(θ;YN ) = p(yN |YN−1, θ)p(YN−1|θ) = p(y0|θ) ·
N∏
j=1

p(yj |Yj−1, θ) (6.3)

Then the maximum likelihood estimator is defined as

θ̂MLE = arg max
θ∈Θ
{L(θ;YN )} (6.4)

To evaluate this likelihood function for a given θ, the conditional densities in Equation (6.3) have
to be found. As discussed, this density can generally not be determined exactly.

The Kalman filter and extended Kalman filter are therefore used to iterate through the data sequence
and estimate the conditional mean and covariance at each time point. As these filters assume nor-
mality of the conditional densities, which are completely characterized by their mean and covariance,
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the likelihood function can be rewritten to

L(θ;YN ) =

(
N∏
k=1

exp(− 1
2ε
T
kR
−1
k|k−1εk)√

det(Rk|k−1)(2π)l

)
p(y0|θ) (6.5)

where l is the dimension of y. Note that this expression is exact for LTI and LTV systems, but an
approximation for nonlinear systems. The prediction errors εk = yk − ŷk|k−1 and their covariance
matrices Rk|k−1 are computed by the Kalman filter. If we now condition the likelihood function in
equation (6.5) on y0, the probability p(y0|y0, θ) = 1 and drops out of the expression. Consequently
taking the negative logarithm results in the loglikelihood function

− ln(L(θ;YN )|y0) =
1

2

N∑
k=1

(
εTkR

−1
k|k−1εk) + det(Rk|k−1)

)
+

1

2
N · l · ln(2π) (6.6)

As the logarithm is strictly increasing, the logarithm of any function assumes its optimal values at
the same values as the original function. The loglikelihood can therefore be used instead to find
the MLE estimator as defined in equation (6.4). In fact, CTSM uses the following form of the
optimization problem

θ̂MLE = arg min
θ∈Θ
{− ln(L(θ;YN ))} (6.7)

This form is often favoured over the likelihood in equation (6.5) for numerical considerations: as
the likelihood is a product of many probability densities, its value is often very close to zero. The
larger the data set, the smaller it will be, leading to floating point precision related problems.
The logarithm will convert these small values into moderately large (negative) numbers, which will
enhance the precision of the method.

The negative log-likelihood function will in the following also be referred to as the objective function,
as it will be the objective function for the optimization procedure.

6.1 Adapted likelihood function for robustness

It is desirable for a model and its parameter estimation procedure that the outcome is not too
sensitive to small deviations in assumptions or in the data set. A few outliers should influence the
outcome of the estimation as little as possible. However, it is unknown which measurements are
outliers and which show actual meaningful deviation, perhaps due to unmodelled system behaviour.
Still, the estimation procedure should be protected in some way against the influence of outliers.

Outliers have a large value of εk, the prediction error. As the likelihood function is quadratic in εk,
outliers have a large influence on the value of this likelihood function. This is not desirable, as this
favours the parameter values that fit these outliers well. One solution is to modify the objective
function for values of the quadratic term εTkR

−1
k|k−1εk above some threshold value c2. As suggested

by Huber, the likelihood of this outlier can be made linear in εk above this threshold [48]. The
resulting robust likelihood for observation k is of the form

φ(εTkR
−1
k|k−1εk) =

ε
T
kR
−1
k|k−1εk if εTkR

−1
k|k−1εk < c2

c
(

2
√
εTkR

−1
k|k−1εk − c

)
if εTkR

−1
k|k−1εk ≥ c

2
(6.8)

This function is continuous and continuously differentiable, and the optimization of the objective
function remains feasible [46].
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Chapter 7

The CTSM-R library

This chapter will discuss some aspects of the methods implemented CTSM, the R package that was
used for this thesis.

The package Continuous Time Stochastic Modelling for R (CTSM-R or short CTSM) has been
developed by DTU Compute as a tool to estimate parameters in state space models from data. It
further contains functions to simulate, predict, and filter the state and output variables from new
data sets, using the fitted model. The package is freely available at http://ctsm.info/.

The performance of the implemented algorithms has been tested in several applications [11–14]. Fur-
thermore, an article by Kristensen, Madsen, and Jørgensen compares the performance in parameter
and state estimation of CTSM to another tool, with good performance results for nonlinear systems
with significant diffusion terms [17].

Documentation in the form of a user guide and reference manual are available at the CTSM website.
This chapter is further based on an older version of the Mathematics Guide [46], and the article by
Kristensen, Madsen, and Jørgensen (2004, [17]) which also presents the mathematics behind most
of CTSM’s methods.

7.1 Filtering methods

CTSM distinguishes between LTI, LTV, and nonlinear models in the same way as they were defined
in chapter 4. The filtering method depends on the type of model. For LTI models, the basic Kalman
filter can be used, whereas the other two models require usage of the Extended Kalman Filter.
More specifically, the iterative EKF is used. The EKF is exact for LTV models, whereas it is an
approximation for nonlinear models.

The iterations between measurements continue until the maximum number of iterations is reached
(default is 10), or when the desired tolerance of the measurement equation is met (default is 10−12).
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Filtering initialization

Initial states should either be supplied, or estimated along with the other parameters. In this thesis
only the latter method has been used.

The initial state covariance is computed as:

P0 = Ps

∫ t1

t0

eAsσσT
(
eAs
)T
ds, (7.1)

where A = A((̂x)t0 , u0, t0) or in the nonlinear case it is defined as the Jacobian of f(x, u, t) evaluated
at t0. The form of this equation for the initial covariance is derived from the prediction step as
presented in Equation (5.10), where the previous covariance Ptj |tj is set to zero. The prediction of
the initial covariance is scaled by a pre-specified scaling factor Ps ≥ 1 (default = 1).

7.2 Numerical stability of the Kalman filter

The Kalman filter can be unstable due to rounding errors. Covariance matrices are by definition be
symmetric and positive definite, but due to rounding errors they can become non-positive definite
because of rounding errors. To prevent this from happening, CTSM replaces all covariance matrices
by their square root free Cholesky decompositions: P = LDLT . Here L is a lower triangular matrix
and D is a diagonal matrix with strictly positive entries. This decomposition is known to exist for all
symmetric positive definite matrices. It can be computed without taking square roots, as opposed
to the regular Cholesky decomposition.

To ensure that the updated covariance matrix remains positive, a method proposed by Thornton
and Bierman (1980, [49]) is implemented in CTSM. This method is based on the knowledge that
factorized covariance matrices can be updated as

P ′ = P +GDgG
T (7.2)

where G is a full matrix, and Dg is diagonal. To ensure that P ′ will be positive definite, it is found
by solving the equation:

(P ′ =)L′D′(L′)T = P +GDgG
T (7.3)

for a lower triangular L′ and a diagonial D′ with positive diagonal values. The Cholesky-factorized
form of the covariance matrix allows for an easy evaluation of detP as well, from the insight that
det(LDLT ) =

∑
i dii. This determinant is needed in the objective function, i.e. the loglikelihood

function.

7.3 Evaluation of matrix exponentials and their integrals

To obtain estimates of the states in the Kalman filter, integrals over matrix exponentials have to be
evaluated. These integrals were presented in Chapter 5. As will not be shown here, the integrals
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can be rewritten so that the final integrals that need to be computed are:∫ τk

0

eA·ssds∫ τk

0

eA·sds∫ τk

0

eA·sσσT
(
eA·s

)T
ds (7.4)

The evaluation of such integrals is a difficult task. First of all, it is difficult to find the exponent of
a matrix in an efficient way, and much research has been done to find methods for doing so. For
LTV systems, it is assumed that the matrices are constant between samples, so that the integrals of
exponents can be replaced by eAt. To ensure that this assumption does not influence the solution too
much, the time interval between measurements is sub-sampled and at each sub-interval the matrices
are recomputed.

A Pade approximation with repeated scaling and squaring is used to approximate the matrix expo-
nential eAs , as presented by van Loan (1978, [50]). The implementation in CTSM is based on the
implementation of Sidje (1998, [51]), which will not be further discussed here. If A is singular, a
singular value decomposition of A is performed to transform the matrix and thereby the integrals.
To determine efficiently whether or not A is singular, it is tested whether the reciprocal condition
number:

κ−1 =
1

|A||A−1|
(7.5)

is below a threshold (of around 10−12). The condition number is computed using the 1-norm of
the matrix A and an estimate of the 1-norm of A−1. The expressions obtained for the integrals are
omitted here as they are lengthy and do not illustrate the method further; for further information
see [46]. Separate expressions are obtained for the basic and extended Kalman filter.

7.4 Optimization details

For parameter estimation, the objective function as given in Equation (6.7) needs to be minimized.
CTSM uses a quasi-Newton method to solve this nonlinear optimization task. To solve

min
θ
F(θ) (7.6)

the algorithm aims to find θ such that the gradient of L satisfies

g(θ) ≡ ∂

∂θ
F(θ) = 0. (7.7)

Such minima are sought in an iterative manner. Assume that θi+1 = θi + δ. By computing the first
order Taylor expansion of g around the current estimated solution θi, and assuming that g(θi+1) = 0,
the following relations hold:

g(θi + δ) = g(θi) +
∂g(θ)

∂θ
|θ=θiδ = 0 (7.8)

which can be solved for δ, while denoting the partial derivative in the previous equation by Hi:

δ = −H−1
i g(θi) (7.9)
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When the approximations have been made and δ has been found, the next parameter estimate is
computed as a scaled step from θi in the direction of δ

θi+1 = θi + λδ (7.10)

for some factor λ > 0 such that the objective function is decreased at the new estimate: i.e.
F(θi+1) < F(θi). Finding a suitable value of λ is a soft line search in the direction of δ. For
more information on this procedure, the reader is again referred to the CTSM mathematics guide.
Alternatively, the book by Dennis and Schnabel (1983, [52]) provides further information and proofs.

7.5 Parameter estimation

The parameters are estimated by solving the optimization problem as given in Equation (6.7),
maximizing the loglikelihood. The objective function is modified so that known upper and lower
bounds for parameters can be set. In applications there are often certain limits for the parameter
vector θ to be of physical meaning. Let these boundary vectors be given by θmin and θmax. For each
parameter θi, rather than minimizing the objective function of the original parameter, the function
is minimized with respect to a transformed parameter θti defined as

θti ≡ log

(
θi − θmini

θmaxi − θi

)
(7.11)

The optimization can be unconstrained for θti , because the transformation ensures that the corre-
sponding θi will be within the bounds. This is seen from the inverse transformation

θi =
eθ

t
iθmaxi + θmini

eθ
t
i + 1

(7.12)

which for θti ∈ (−∞,∞) has range (θmini , θmaxi ). A problem is that for θi close to either boundary,
the finite difference derivative θti may be close to zero due to the logarithm’s symmetry in θmini and
θmaxi (see Equation (7.11)). It then seems that the optimum is found.

In case the parameter estimate is close to the boundary, the boundary should be moved if it is not
a hard boundary.

7.6 Built in statistics for evaluation of fit

After the parameters have been estimated, CTSM provides several statistics to evaluate the result.

Estimate of parameter standard error

The uncertainty of parameter estimates can be approximated using the fact that the maximum
likelihood estimator is asymptotically Gaussian with mean θ and covariance H−1. This H is the
Fisher information matrix, a matrix with elements

Hij = −E
[

∂2

∂θi∂θj
L

]
(7.13)
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where L is the loglikelihood [53]. Since the true θ is unknown, H needs to be estimated, which is

done by evaluating the derivatives at the parameter estimates θ̂

Hij ≈ −
(

∂2

∂θi∂θj
L

)
|θ=θ̂. (7.14)

To obtain estimates for the uncertainties of individual parameters, a decomposition of the covariance
matrix H−1 into a diagonal matrix σθ̂ and a matrix R is used

H−1 = σθ̂Rσθ̂ (7.15)

where R is interpreted as the correlation matrix (with entries |Rij | ≤ 1), and (σθ̂)ii the standard

deviation of parameter estimate θ̂i.

The correlation matrix R can be studied on its own. A high correlation indicates that certain
parameter estimates are highly interrelated, which is an indication that the different effects of these
parameters on model outputs cannot be distinguished given the data.

Significance of parameters

For each parameter, CTSM additionally outputs the t-value of a statistic testing its significance,
and the probability that this parameter equals zero. The hypotheses for this test are

H0 : θj = 0 versus H1 : θj 6= 0 (7.16)

The method is further based on the assumption that θMLE is approximately Gaussian. Under this
assumption and H0, the following statistic is t-distributed

z(θ̂j) =
θ̂j
σ̂θ̂j

(7.17)

The t-distribution has degrees of freedom equal to the number of observations (excluding missing
observations) diminished by the number of parameters. When the t-distribution’s degrees of freedom
go to infinity, it approaches the standard normal distribution.

The statistic z expresses how many standard deviations the estimated θ̂ is away from zero. When z
is large (in absolute sense), the probability that the null hypothesis holds is low. The probability to
obtain a value of |z| ≥ z̃ can be calculated using the t-distribution’s cumulative probability function.
This function is however not known explicitly. Therefore, the probability of obtaining |z| ≥ z̃ is
estimated using the transformed statistic zN , which has a standard normal distribution under H0:

zN (θ̂j) = z(θ̂j) ·
1− 1

4DF√
1 +

z(θ̂j)2

2DF

(7.18)

From zN ’s cumulative probability function, we can compute the probability of obtaining the esti-
mated value of θ̂j under the assumption that it is zero. If this probability is lower than a certain
significance level α, often taken at 5%, the null hypothesis should be rejected, and the parameter is
judged significantly different from zero.

Evaluation of optimization results

Finally, the summary of a fit gives the user some insight in the shape of the objective function and
the penalty function at the estimated value of θ.
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The derivative of the objective function with respect to θi, named dF/dPar, shows the steepness
of the objective function in the direction of each parameter. If this value is not close to zero, the
optimum was steep, and may not be a true optimum.

The derivative of the penalty function, named dPen/dPar, should be low as well. If this value is
high, one of the estimated parameter values may be close to its limits. The penalty function may in
this case have influenced the estimated parameters. If possible, the constraints on the corresponding
parameter should be loosened; otherwise the one parameter should be estimated in another way
(using for example profile likelihood).

7.7 Using and testing a fitted model

The package offers functions to simulate, filter, and predict using a parameterized model on the data
used for fitting, or on new data. In the case of new data, it is possible to provide a new initial value
of the state estimates.

The function simulate allows for a simulation of the mean of state and output variables, along with
their standard deviations. The estimates are generated by the (extended) Kalman filter without
updating. These estimates show how the mean state and standard deviation evolve over time,
rather than representing a single realization of the modelled states and outputs. The latter would
be a stochastic simulation, which could be implemented by means of for example a stochastic Euler
scheme. This is not implemented in CTSM now.

The CTSM-R package further contains functions for filtering, smoothing, and prediction. The predict-
function allows for n-step-ahead prediction.
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Chapter 8

Exploration and preparation of the
data set

The main data set used for model building consists of measurements from the Aalborg CSP solar
heat plant in Solrød. It covers the period from May 23 up to and including May 31 2017. The
measurements from this period will be discussed in detail in Section 8.1. After model building,
cross-validation is done on data from the same plant, dated 1-19 June, 1-7 August, 5-11 September,
and 5-11 October 2017. These sets will not be discussed in detail. Section 8.2 outlines how the data
has been manipulated for use in this thesis. This procedure was the same for all different data sets.

8.1 Data exploration

The data set contains many different measured quantities. The inputs used in this thesis are

• Total solar radiation in the plane of the collector

• Temperature set point for the control scheme

• Fluid flow through entire field

• Fluid inlet and outlet temperature in 4 different rows of the collector field

• Ambient temperature

• The control mode of the system (idle, warm-up, etcetera)

The time between values in the data set is 1 minute (although measurements at the plant are taken
each second). All numerical values are thus 1 minute averages. Every hour, there is one exception
to this, as the value for the 59th minute of each hour is missing due to a programming mistake in
the system.

The most important quantities for this project are plotted as a full time series in Figure 8.1, and
for an individual sunny day (Figure 8.2a) and cloudy day (Figure 8.2b). The diffuse and direct
radiation included in the plot are computed from total radiation using a method described later in
Section 10.4. All other quantities are measured.
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Figure 8.1: Overview of important variables in data set: fluid flow, radiation (total, diffuse, direct),
temperatures (Ta, Ti, To). Time series from May 23 up to May 31 2017

(a) Time series for sunny day, May 27 2017 (b) Time series for cloudy day, May 23 2017

Figure 8.2: Overview of important variables in data set: fluid flow, radiation (total, diffuse, direct),
temperatures (Ta, Ti, To).

Weather

Weather conditions varied over the measurement period. As seen in Figure 8.1, the 23, 24, 28, 30
and 31 of May have quite intermittent but high solar radiation intensity, implying partly cloudy
days. On 25, 26, and 27 May the radiation is quite smooth, characteristic for clear sunny days with
little to no clouds. May 29 was cloudy, and the plant was not operating.

Mode of operation

The plant’s control scheme switches between several modes in a 24-hour period. When global
radiation is zero or below a fixed value, the system goes into idle mode. When the system restarts
after a period of idleness, there is a preheating mode in which the flow is kept at a constant (low)
value, until a certain fluid outlet temperature is reached. The preheating phase on the studied days
typically lasts about an hour, but this time varies depending on weather conditions and the time of
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day. In an hour of preheating, the fluid can go through the field around 3 times.

Inlet, outlet, and ambient temperature

After the preheating phase, the inlet temperature remains fairly constant at 55°C. It however shows
some more fluctuations on cloudy than on sunny days (compare Figure 8.2a and 8.2b). At the start
and end of the day, when the preheating phase is activated, some fluctuations in inlet temperature
occur.

The inlet temperature decreases to values around 15°C in several hours after the plant shuts down.
In this it differs from the outlet temperature, which remains above 25°C during the night.

The outlet temperature is the controlled variable. Between 10 AM and 4 PM, it is close to its set
point on most days. It fluctuates more on intermittent days than on clear sunny days.

The ambient temperature is between 8 and 15 degrees Celsius at night, and on most days increases
rapidly in the morning to values from 15-25 degrees. It slowly increases further during the day,
followed by a rapid decrease after sunset again.

Time of passage

The flow in the main circuit is adapted between a minimum of 7m3/h ∼ 1.9L/s and a maximum of
40m3/h ∼ 11L/s at periods of high radiation. There is a minimum flow to ensure turbulent flow.
The piping is designed so that the main circuit’s flow divides equally over the eleven parallel rows.

The volume of one collector is 11.35 liter, so that a row of 20 collectors (neglecting connecting pipes
between the panels) can contain around 230 liters of fluid. This means that it can take between 3
minutes (for high flow) and 20 minutes (in the preheating stage) for the fluid to pass through the
rows of the solar field.

8.2 Data preparation

In order to prepare the data for model development and parameter estimation, a few steps have
been taken:

• The time stamps were converted from local time to GMT (local time = GMT +2)

• For the 59th minute of each hour, a data point was added. For numerical values, this was done
by linear interpolation between the nearest two data points, whereas factors were set equal to
the previous value.

• The unit of the flow was converted from m3/h to kg/(s ·m2), equal to the flow per aperture
area of the solar field.

• The incidence angle between direct solar rays and the panel is added. The computation of this
angle is described in Appendix A
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In order to model the field as one compartment, one input and one output temperature measurement
were chosen: those of the field’s third collector row. The model may later be extended to describe
the four measured rows separately, predicting four different output temperatures.

8.3 Data selection for parameter estimation

A subset of the data suitable for parameter fitting was selected. As the model is intended for usage
during operation, the idle mode dynamics are of interest and these periods are therefore excluded.
Moreover, this part of the data set has different dynamics than during operation: it reflects the
cooling of a still pool of water. As a result of this selection step, one day is removed completely from
the fitting data set, as the plant was not operating.

Furthermore, the preheating phase was removed from the data set. In this period the system
dynamics are quite different from the rest of the day, mainly due to a more variable inlet temperature.
Even when radiation is strictly increasing, the inlet temperature can oscillate slightly in this period,
as some parts of the fluid have heated up more than others.

For the introduction of an Incidence Angle Modifier (IAM) as discussed in Section 3.1.1, the data
was further filtered based on incidence angle. Data points with large incidence angle θ such that
cos(θ) < 0.2 (or θ > 78.5°) were excluded as well. This choice allows the parameter b0 to be of values
in [0, 0.25] for the IAM to remain positive.

In the end of some of the days, the plant switches back and forth from the preheating to the operating
mode. Such periods were also removed from the data set.

The resulting data set is in the remainder of this thesis referred to as D. The set contains 3900
values of each measured variable. The number of measurements included differs for each of the 7
days in the set. The fitting procedure will in some cases be repeated for single days from data set
D for comparison. A typical sunny day will be taken as May 27th, denoted Ds, whereas a typical
intermittent day will be May 23rd, denoted Di. These dates will also be used for plotting model
performance on different weather types.
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Chapter 9

Model Selection and Extension

Model selection is a difficult step in the process of model development. The difficulty lies, among
others, in a lack of objective criteria for model choices. Further, the quality judgement depends
on the model’s purpose. “An purely algorithmic and exhaustive selection procedure is seldomly
feasible, hence iterative methods, in which the modeller is partly involved in the selection, are
commonly applied ” [11].

This Chapter will describe a method to perform model selection and extension on a sequence of
stochastic state space models, which was proposed by Bacher and Madsen [11]. Figure 9.1 shows
the model selection steps as presented in the paper by Bacher and Madsen.

Figure 9.1: Model selection steps
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9.1 First model formulation

An idea central to grey box models is to combine physical knowledge and statistical methods [53].
Therefore, an initial stochastic state space model formulation is usually based on differential equa-
tions known from physics. In a forward selection procedure, it is useful to start with the simplest
possible model that produces reasonable output and follows the main dynamics of the process. A
suitable starting model should provide insight in possible extensions and improvements. It is good
practice to start by using a simple diffusion term, independent of inputs and states. This can be
modified later on, if evidence for input or state dependent diffusion is present. However, if for exam-
ple a mass balance is to be maintained by the model, the drift term may be made state dependent
as done in for example [54].

The model should be formulated such that parameters are structurally identifiable. For example, if
one parameter multiplies all of the others, the parameter set that maximizes the likelihood is not
unique, and one parameters should be fixed.

9.2 Extended models: formulation and fitting

In a forward selection procedure, the model is iteratively extended. The extended models should be
generalizations of the previous iteration’s model outcome, and the extensions should be as small as
possible.

Parameter estimation & evaluation

After the extensions have been formulated, their parameters need to be estimated. The outcome
of the estimation procedure can be evaluated separately. There are cases in which the estimation
procedure does not result in a solution. This may be a result of several problems, such as an explosion
of the state variable, a covariance matrix that is not positive definite, or slow convergence, so that
the maximum number of iterations is reached before finding the solution [46]. This may be a first
indication that a model is not suitable.

If the parameters are successfully estimated, it should be checked that their values are not too
close to the user-set boundaries as described in Section 7. If the boundary is not a strict one, the
parameter estimation should be repeated with relaxed boundaries for the parameter in question [46].

Once all parameters have been estimated well within the set boundaries, some other statistics may
be of use. If the model is accurate enough for the assumption of Gaussian conditional probability
densities to more or less hold (which will probably not be the case for the first modelling attempts),
a t-test can be performed to determine the significance of parameters [53], as explained in Section
7.6.

9.3 Selection of best extension using likelihood ratio tests

The Likelihood Ratio Test is used as a first comparison of model performance. The most significant
extension (with lowest p-value) is chosen. If several extensions have equal or similar p-values, the
extensions with the highest loglikelihood or with the least parameters is chosen. The chosen model
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will be evaluated based on other criteria in the next step of the model selection procedure. If none
of the extended models is significant, the model selection procedure is terminated, and the current
model is accepted.

The Likelihood Ratio Test (LRT) is a method to determine whether an extended model performs
significantly better than a simpler version. When extending a model to include more parameters, the
space over which the likelihood function can be minimized is extended. Therefore, the maximum of
the likelihood function of the extended model will always larger or equal to that of the reduced model.
The likelihood ratio test uses hypothesis testing to determine whether the increase in likelihood is
significant.

The LRT can only be used for nested models, where one is an extended version of the other. Assume
the simple model has parameter values θ0 ∈ Ω0 ⊂ Rd0 , and the extended model has θ ∈ Ω ⊂ Rd.
Then the simple model is a sub-model of the second if

Ω0 ⊂ Ω (9.1)

and d0 < d. In other words, the simple model is a special case of the extended model, and can be
obtained from the extended model by setting some parameters to zero.

As the null hypothesis it is assumed that the simple model is the ‘true’ model, and the true parameter
set describing the data lies in the parameter space of the simple model, that is:

H0 : θ ∈ Ω0. (9.2)

The alternative hypothesis equals

Ha : θ ∈ Ω\Ω0 (9.3)

A quantity used to test the hypothesis is

Λ(YN ) =
supθ∈Ω0

L(θ,YN )

supθ∈Ω L(θ,YN )
(9.4)

As the notation shows, the statistic depends on the data. It expresses how many times less likely
the measurements are observed under the best simple model (with optimal parameters) than under
the extended model (with optimal parameters).

Under the null hypothesis, it has been shown that the test statistic

−2 log(Λ(YN )) = −2 log

(
supθ∈Ω0

L(θ,YN )

supθ∈Ω L(θ,YN )

)
(9.5)

converges in distribution to a χ2 distribution with (d− d0) degrees of freedom as N →∞.

This means that if N is large enough, the probability of the null hypothesis being true while obtaining
the value x of the test statistic (i.e. −2 log(Λ) = x) can be computed from the cumulated probability
function of this distribution. If the probability value is smaller than some significance level (for
example 0.05 for a 5% significance level) then it is significantly more likely to observe the data with
the extended model than with the simple, and the alternative hypothesis should be accepted.

The test cannot prove that H1 is actually true, it only indicates that H1 is more likely to hold than
H0, under the assumption that H0 holds and given the data.
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9.4 Evaluation of selected model

As a first step, it should be checked that the model satisfies some basic requirements, e.g. positive
states that remain finite [54]. Further, the selected model is validated/evaluated based on:

1. Residual white noise properties

2. Residual plots

If the model is judged as unsuitable, the next most significant model extension from the previous
step should be selected and evaluated instead.

Depending on the application of the model, it may be important to check simulation, n-step-ahead
prediction, or both. If the model will be used in a closed loop system, with intermediate mea-
surements becoming available while predicting the state, n-step prediction will be important. This
is for example the case when modelling for control purposes [53]. If the model intends to predict
longer-term system behaviour (given predicted inputs), correct simulation is of greater importance
for model evaluation.

The residuals are defined as:

εk = yk − ŷm|k (9.6)

where m = k + n for n-step ahead prediction residuals. For residuals of simulation the value of
k = 0, that is, the estimates are only based on known initial measurement of y0.

Checking white noise assumptions

Several of the methods used rely on the assumption that the residuals are white noise. If this is
not the case (at least to some extent), parameter estimates will be biased, and the LRT is strictly
speaking not valid. During the model sequence, we will not attach too much value to these properties,
but will check as a validation step that they residuals are approximately white.

The white noise properties of the residuals can be tested both in the time and in the frequency
domain. The (partial) auto-correlation function is used for the former, while the cumulated peri-
odogram is used for the latter.

The sample auto-correlation function (ACF) and sample partial auto-correlation function (PACF)
of the residuals are typically used to assess the predictive quality of the model. The value of these
functions indicates the amount of variation in residual εt that can be explained by variation in the lag-
k residual εt−k. For formal definition of the ACF and PACF, as well as the cumulated periodogram,
see for example [40]. This text also explains how confidence intervals can be computed for these
diagrams.

For white noise, the ACF and PACF only show lag-dependencies outside the 5% confidence band for
1 in every 20 lags. If correlations between current and k-lagged values of the residuals exist, there
will be a significant lag k dependency. In that case the predictive capabilities of the model could be
improved, because the residual at time t− k apparently contains unused information that can help
to improve the prediction at step t [53].

If there is no evidence against the hypothesis of white noise residuals, then the model may sufficiently
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describe the data. There is no evidence that there are systematic errors in the model that can still
be captured [46].

It must however be noted that in practice, residuals are almost never (completely) white. The
residual white noise check is therefore not used as a model selection criterion in the model sequence
of this thesis. Instead, we will check whether the final model’s residuals are at least reasonably close
to being white. Attaching too much value to having white(r) residuals does not generally benefit the
development of a good model. It may for example happen that a beneficial model extension reduces
the residual sizes, which makes smaller residual patterns more visible in the ACF and cumulative
periodogram, thereby appearing to have worse white noise properties.

Residual time series analysis

Time series of the residuals should be plotted and compared to time series of the in- and outputs.
A good model’s residuals depend on the in- and outputs as little as possible, which means that the
the input variables’ effect on the output variable are included in the model.

It is further useful to compare the residuals of the previous model and the extended model, in order
to evaluate if the extension lead to the desired improvement.

9.5 Indications for model extension

First of all, identified relations between inputs and residuals through plotting them against one
another can help the modeller to find useful extensions to the model. If the residuals show a clear
relation to a variable, this may indicate that this variable’s effects are not described (well) by the
model.

Comparing residual and input/output time series plots can also be used to reveal remaining depen-
dencies, and thereby indicate what effects are inaccurately captured by the model [11].

Large diffusion coefficients indicate model deficiencies in the corresponding state. The presence of
significant parameters in the diffusion term is an indication that the corresponding drift term may
be incorrect, which in turn provides an uncertainty measure that allows model deficiencies to be
detected. [53]

If the model is accurate enough for the assumption of Gaussian conditional probability densities to
hold (which will probably not be the case for the first modelling attempts, and perhaps not hold
for the whole sequence), a t-test can be performed to determine the significance of parameters [53],
as explained in Section 7.6. The presence of an insignificant parameter is an indication of model
over-parameterization, and reducing the model may improve it. However, it is important to keep in
mind that removal of insignificant parameters may be physically unreasonable or undesirable due to
model requirements, in which case it may be retained despite the statistical testing [54]. Again, this
is a subjective decision to be made by the modeller.
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Chapter 10

Formulation of grey-box models for
the Solrød solar heat plant

As described in the previous chapter, we will iteratively extend a basic model to find the best possible
model for a SDHP. Extensions come in various forms: additional inputs variables can be included,
additional parameters may be added, simple parameters may be turned into functions (of time, or
of state and input variables). Finally, the spatial setup of the model may be altered by adding more
state variables.

This chapter will introduce the different model extensions that have been considered in the model
sequence for the solar heat plant. The resulting fitted models will be presented and evaluated in the
next chapter. In particular, Section 12.1.3 will provide a motivation for the chosen extensions.

10.1 Base models Tf and To

The initial models for the solar heat plant lump the entire field into one single compartment with
one corresponding state variable. It is further assumed that the fluid temperature in the collector
rows increases linearly between the inlet fluid temperature Ti and the outlet fluid temperature To,
so that the average temperature in the compartment Tf = (To + Ti)/2. The first model equation
is derived as done by Bacher, Madsen, and Perers [55] as described in Section 3.1.2. We however
modified their equation to take into account that the current data set has variable inlet temperature
Ti, as opposed to the data used by Bacher et al. This variable inlet temperature implies that the
relation dTf

dt = 1
2
dTo

dt no longer holds.

To derive a state equation, the following heat balance is taken from Perers [32]

P = cfQf(To − Ti) =F ′(τα)enKθ(θ)G− F ′U0(Tf − Ta)− F ′U1(Tf − Ta)2 − (mC)e
dTf

dt
(10.1)

This equation was discussed in Section 3.1.1, where the physical interpretation of each of the terms
can be found.
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Model Tf

This model takes the average temperature in the collector row as the only system state (Tf). We
substitute To = 2Tf−Ti in the heat balance, and neglect the second order heat loss term. Rewriting
gives state equation

dTf =
1

mC

(
F ′(τα)enG+ F ′U0(Ta − Tf) + 2cfQf(Ti − Tf)

)
dt+ σfdωf (10.2)

From the assumption Tf = (To + Ti)/2 we derive observation equation

To,tk = 2Tf,tk − T i, tk + εobs,tk (10.3)

where the variance V[εobs] = σobs.

In the system equation (10.2), the measured quantities are Ta, Qf, Ti, and G. The parameter cf is
further assumed given. The incidence angle θ is a model input directly computed from the data.
The quantities (mC)e, F ′U0, F ′(τα)en, σf and σobs are parameters to be estimated. For a list of
symbols, see the Nomenclature.

Model To

Another way to derive a model equation from equation (10.1) is to approximate the Tf for the heat
loss term by Tf = (To + Ti)/2, while assuming dTf

dt ≈
dTo

dt . The outlet temperature To is the only
system state.

The resulting system equation then becomes

dTo =
1

(mC)e

(
F ′U0(Ta − Tf) + cfQf(Ti − To) + F ′(τα)enG

)
dt+ σodωo (10.4)

and the observation equation is

yTo,tk = To,tk + εobs,tk (10.5)

where V[εobs] = σobs.

10.2 Including extra terms in heat balance

In the simplest model, the temperature dependence of the heat loss has been neglected. An extension
to the models can thus be to include such effects by introducing F ′U1(Tf − Ta)2 into the equation.

Such models will have FU1 as a part of their name, for example a model could be To FU1.

10.3 Modelling shading: splines

Spline functions will be used to split the global or direct beam radiation in K components, which
peak during different times of day. For each component individually, we will estimate the efficiency
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Figure 10.1: Constructed spline functions, K = 5

parameter ηi. To illustrate the method, the splines on direct radiation will be used as an example
here.

The splines are defined as B-splines based on Time of Day, with boundary knots at sunrise and
sunset (for the May data set, this corresponds to the minute of day 429 and 1182). In a later model,
the choice of boundary knots is changed to the moment of day where cos(θ) = 0.2. The splines had
no pre-specified knots within the boundary knots. Depending on the desired number of splines, the
degree of the used splines was altered. To illustrate the result, the spline functions in the 5-spline
case are shown in Figure 10.1.

The total effective beam radiation at time t is then computed as

Gb,eff(t) =

K∑
i=1

si ·Gb,i(t) (10.6)

where Gdir,i is the component of the radiation computed using spline functions Si(t)

Gb,i(t) = Gb(t) · Si(t) (10.7)

The term in equation (10.6) either replaces the previous effective radiation term F ′(τα)enGb or it
may replace this term and incidence angle dependencies together by replacing Kb(θ)F ′(τα)enGb

Both options will be explored. The models with splines will have Kspline in their name, where K is
the number of splines used for one solar day.

10.4 Splitting total radiation in its diffuse and direct com-
ponents

As the name implies, direct beam radiation comes in a direct line from the sun. For sunny days
with clear skies, most of the solar radiation is direct beam radiation. On overcast days, the sun is
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obscured by the clouds and the direct beam radiation is zero. Diffuse radiation is scattered out of
the direct beam by molecules, aerosols, and clouds. Because it comes from all regions of the sky, it
is also referred to as sky radiation. The portion of total solar radiation that is diffuse is about 10%
to 20% for clear skies and up to 100% for cloudy skies.

At many solar heat plants, including the one in Solrød, only the total radiation in the plane of the
collectors is measured. It would be beneficial to measure the diffuse component of the solar radiation
as well, but as such sensors are very costly it is often decided against this to reduce the installment
costs. Moreover, the complex diffuse radiation measurement devices have a high maintenance cost
[56].

In order to account for the different heating effects of the diffuse and direct components of solar
radiation, we will use a method proposed by Ruiz-Arias et al. ([56], 2010) to split global radiation
into an estimated diffuse and direct component. Note that in Solrød, not global but total tilted
radiation is measured.

The method relies on a regression equation relating the diffuse fraction kd to the so-called clearness
index kt. This clearness index and diffuse fraction are defined as

kt =
IG

I0 cosφZ
(10.8)

kd =
ID
IG

(10.9)

where IG is the horizontal global radiation per m2, I0 is the extraterrestrial radiation per m2, ID
is the diffuse radiation per m2 in the horizontal plane, and φZ is the zenith angle of the sun. Note
that both kt and kd usually have values in (0, 1), with some exceptions that will not be discussed
here.

The extraterrestrial “clear sky” radiation can be computed as

IG = 1367 · (1 + 0.033 · cos(360 · n/365)) cos(φZ) (10.10)

where n is the day of the year. This formula is based on the rotation of the Earth around the Sun,
which is ellipsoidal.

Ruiz-Ariaz et al. derive that the form of the relation between kt and the diffuse fraction kd is of the
form

kd = 0.952− 1.041 · e−e
2.300−4.701kt

(10.11)

which is a sigmoid curve. The form of this equation was selected based on a derivation assuming
uniform Rayleigh scattering, which involved Taylor expansions for the approximation of a logarithm
and a factor 1/kt. The numbers in the equation were estimated specifically for Europe, based on
data sets from 3 stations in Spain and 3 stations in Germany.

The sigmoid form was deemed reasonable based on scatter plots of kt against kd from data. In
addition, sigmoid curves have the nice properties of being real-valued and differentiable with either a
non-negative or non-positive first derivative and one inflection point. Under highly cloudy conditions,
it would be physically reasonable for kd → 1 as kt → 0. This condition is nearly fulfilled by the
sigmoid curve, which takes value kd ≈ 0.95 in this case. “On the other hand, for clear days, the
diffuse fraction is expected to tend to small values, albeit strictly never equals to zero (note that
even a completely clear atmosphere will scatter some amount of solar radiation).” The sigmoid curve
takes values kd = 0.001 in this case.

The resulting split radiation is shown in Figure 10.2
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(a) Sunny day (b) Cloudy day

Figure 10.2: Split radiation into diffuse and direct components

The authors note that especially for intermediate values of the clearness index kt, the possible values
of the diffuse fraction kb are in a wide range. “For instance, for a clearness index of 0.5 [...] the
interval of diffuse fraction ranges approximately from 0.3 to 0.8” [56]. Other predictors such as
temperature or humidity could improve the predictions, however, such measurements are often not
available and the clearness index is the best we can obtain from available measurements.

The models extended with diffuse and direct radiation use the following substitute for the total
radiation term in the heat balance

F ′(τα)enG = F ′(τα)en

(
Kb(θ)Gb +KdGd

)
(10.12)

which has additional parameters Kd and Kb(θ). Parameter F ′(τα)en is set to 1 in some of the
extended models, in order to have a unique solution to the parameter estimation procedure. However,
when Kb(θ) is replaced by an IAM function, parameter F ′(τα)en can in some cases be varied again.
Models that rely on this split will have the component Gsplit in their name.

10.5 Models with incidence angle modifier

The influence of the solar incidence angle on the absorbed radiation can be modelled using IAM
functions, as discussed in Section 3.1.1. Such models replace either the parameter F ′(τα)en (in
case of models with unsplit total radiation G) or the parameter Kb (in models with split G) with a
function of the solar incidence angle θ. This angle is defined as the angle between the panel normal
and the solar rays.

When an IAM function is included, the parameter F ′(τα)en does not need to be fixed, because the
function Kb(θ) is restricted to specific values in the interval [0, 1].

The next Section 10.5.1 will explore the form of the function Kb that would be suitable for the solar
heat plant modelled in this thesis, by plotting the function for several values of its parameter b0
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Figure 10.3: IAM functions for b0 = {0, 0.5, 0.1, 0.15, 0.2, 0.25}. The dots represent values from the
panel specifications, calculated using ISO standard test results.

against the values expected from panel specifications.

10.5.1 IAM based on panel specifications

The two panel types used in Solrød have specifications for the incidence angle correction for the
incidence angles {0, 20, 30, 40, 50, 60, 70, 80, 90}. Plotting the given values against several forms of
the incidence angle modifier, a reasonable range for b0 can be identified for the initialization and
estimate evaluation of the grey box model.

Figure 10.3 shows the IAM for several possible values for b0, based on cmin = 0.20. The highest line
represents b0 = 0, the next b0 = 0.5, and so forth for all b0 ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25}. The panel
specifications correspond to b0 between 0.15 and 0.2, with an outlier close to 0.25. Bacher et al.
[14] found values around 0.2.

10.6 Models with multiple compartments

This section will introduce models with multiple compartments in the flow direction. It is assumed
that these compartments are equal, that is, they have the same properties and therefore the same
performance parameters. The resulting system will have N system states (or 2N if combined with
a metal compartment model, see next section): the outlet temperature from each compartment To,i

for i ∈ {1, . . . , N}.

To illustrate how a model can be extended this way, the system equations for the N–compartment

48



model ToIAM NComp are written out here (for j = 1 . . . N).

dTo,j =
1

(mC)e

(
F ′U0(Ta − Tf,j) + cfQf(To,j−1 − To,j)+

F ′(τα)en
(
Kτα,b(θ)Gb +Kτα,dGd

))
dt+ σo,jdωo,1

(10.13)

where To,0 ≡ Ti. The observation equation involves only the final outlet temperature To,N :

yTo,tk = To,N,tk + εobs,tk (10.14)

where V[εobs] = σobs.

The introduction of more compartments in the flow direction has two expected effects. First, it
increases the freedom in possible temperature profiles in the collector row: from linear to a continuous
combination of N linear functions (still assuming linear temperature profiles in each compartment,
for the heat loss to the ambient). Therefore, the heat loss to the ambient can be modelled more
closely.

Second, and most importantly, the effect of the inlet temperature Ti on the outlet temperature at
the end of the row is expected to be less instantaneous, as the in–flowing water is mixed into the
first compartment before it can affect the temperature in further compartments. This is the reason
that the multi–compartment models have been introduced: previous models showed overly strong
reactions to changes in inlet temperature.

10.7 Models with a metal component

The collector field can in addition be split in the direction perpendicular to the flow direction. The
water in the collector and the panel itself can be modelled separately, adding the panel temperature
Tm as a hidden state. For a model with N compartments in the flow direction, this extensions adds
a metal component (and thus a hidden state Tm,j) for each of them. In this case it is assumed that
no heat exchange takes place between the metal compartments.

Adding a metal compartment aims to improve the modelled response of the outlet temperature to
variations solar radiation. The metal would act as a buffer, so that changes in solar radiation affect
the water outlet temperature less instantly. The extension is thus mainly relevant for partly cloudy
conditions.

For simplicity, the one-compartment metal model equations will be stated here, but they can be
generalized to the N compartment form. The system equations for Tm is

dTm =
1

Cm

(
Ufm(Tf − Tm) + Uma(Ta − Tm)+

F ′(τα)en

(
Kb(θ)Gb +KdGd

))
dt+ σmdωm (10.15)

and one for To:

dTo =
1

(mC)e

(
Ufm(Tm − Tf) + cfQf(Ti − To)

)
dt+ σodωo (10.16)

where we still approximate Tf = (To + Ti)/2.
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The metal compartment has heat capacity Cm that differs from the fluid’s heat capacity (mC)e.
Further new parameters in the model are Ufm and Uma, the respective heat loss coefficients for fluid
to metal and metal to ambient. These have replaced the parameter F ′U0.
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Chapter 11

Parameter estimates according to
EU performance test

This chapter presents the process of applying EU ISO standard [29] performance tests to the studied
solar field. Applying this method resulted in a model equation with parameters fit to the data,
which will be used to judge whether parameter estimates from the developed grey box models
are reasonable. Most importantly, the performance of the models developed in this thesis will be
compared to that of the model from the ISO standards.

As presented in Section 3.1.1, the ISO quasi-dynamic method has heat balance equation

cfQf (To − Ti) = F ′(τα)en[Kτα,b(θ)Gb +Kτα,dGd]− F ′U0(Tf − Ta)

− F ′U1(Tf − Ta)2 − F ′Uuu′(Tf − Ta) + F ′ε(EL − σT 4
a )

− (mC)e
dTf
dt
− a6u

′G− a7u
′(EL − σT 4

a )− a8(Tf − Ta)4 (11.1)

where cf is the known fluid heat capacity, Qf is flow per unit aperture area of the collectors, To,
Tf and Ti are the outlet, average, and inlet temperature,Ta is the ambient temperature, EL is long
wave irradiance, and u is the wind velocity. All other variables are parameters to be estimated as
described in the following.

For flate plate collectors, the ISO standard requires the inclusion of parameters F ′(τα)en, Kτα,b(θ),
b0, Kd, (mC)e, and the heat loss coefficients F ′U0 and F ′U1. This means that these parameters
must be included in the estimation procedure, while the others may be set to zero.

We are restricted by available measurements, and therefore obtain the simplified expression

cfQf (To − Ti) = F ′(τα)enG− F ′U0(Tf − Ta)− F ′U1(Tf − Ta)2 − (mC)e
dTf
dt

(11.2)

If we use split global radiation, we replace G = [Kτα,b(θ)Gb + Kτα,dGd] and thus obtain estimates
of those parameters as well.

The model selection according to ISO standards is based on multiple linear regression (MLR) mod-
elling. The procedure is carried out iteratively. First, all required parameters are included in the
model, and estimated from the data by least square fitting. If this results in parameters with negative
value (which is physically unreasonable) or insignificant parameters (based on t-test as described in
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Section 7.6), the corresponding parameter is set to 0 and the procedure is repeated with the reduced
model equation. This is repeated until all fitted parameters are positive and significant. The method
is an example of a backward model selection procedure. The parameter (mC)e may however not be
set to zero: if it is negative or insignificant it should be estimated separately from the weighted sum
of the panel components’ heat capacities.

The data for estimation should cover 4− 5 days, containing enough variation in weather conditions
and inlet temperature. It is recommended to use ≥ 5 minutes average values. Here, 5 minute average
have been used.

In the following sections, we will follow the ISO procedure to fit two models. The first model will
include only total radiation, whereas the second will work with the split radiation (Gdirect and
Gdiffuse). The final section will discuss and compare their performance.

11.1 Results without split radiation: model MLR1

The least square fit of parameters in Equation (11.2) based on only total radiation first results in the
parameter estimates as given in Table 11.1. The negative value of F ′U1 implies that the procedure
should be repeated with this parameter set to zero.

Estimate Std. Error t value Pr(> |t|)
Fta 0.76 0.01 82.41 0.00

FU0 8.56 0.24 -35.16 0.00
FU1 -0.10 0.01 17.85 0.00
mC 4181.80 331.73 -12.61 0.00

Table 11.1: Parameter estimates first iteration, for total radiation MLR model.

The least square estimates for the reduced model are given in Table 11.2. All parameters now have
the right sign and are significant, which marks the end of the MLR model selection procedure.

Estimate Std. Error t value Pr(> |t|)
Fta 0.86 0.01 95.77 0.00

FU0 4.60 0.12 -38.62 0.00
mC 3885.14 392.95 -9.89 0.00

Table 11.2: Parameter estimates second iteration of total radiation MLR model (with FU1 set to
zero

11.2 Results with split radiation, model MLR2

As a first step, the least square parameter estimates are obtained for the full equation. The resulting
estimates are given in Table 11.3. The parameters b0 and Kd are computed as Ftab0/Fta and
FtaKd/Fta respectively, and therefore their statistics (p-value, variance, etc.) cannot be given in a
simple manner.

The parameter FU1 is negative, and is therefore set to zero in the next iteration.
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Estimate Std. Error t value Pr(> |t|)
Fta 0.67 0.01 77.46 0.00

Ftab0 0.29 0.01 31.87 0.00
FtaKd 0.22 0.03 7.93 0.00

FU0 0.73 0.32 -2.28 0.02
FU1 -0.01 0.00 2.61 0.01
mC 2541.12 226.06 -11.24 0.00
b0 0.44
Kd 0.33

Table 11.3: Parameter estimates first iteration, for split radiation MLR2 model.

The next iteration results in an insignificant parameter FU0 (see Table 11.4), which is therefore set
to zero for the next estimation step.

Estimate Std. Error t value Pr(> |t|)
Fta 0.67 0.01 77.37 0.00

Ftab0 0.30 0.01 40.39 0.00
FtaKd 0.20 0.03 7.47 0.00

FU0 0.01 0.17 -0.09 0.93
mC 2428.98 222.77 -10.90 0.00
b0 0.46
Kd 0.29

Table 11.4: Parameter estimates second iteration (without FU1), for split radiation MLR2 model.

The final estimation result is obtained in the third and last iteration, which estimates only positive
and significant parameters as shown in Table 11.5.

Estimate Std. Error t value Pr(> |t|)
Fta 0.67 0.00 301.16 0.00

Ftab0 0.30 0.01 45.55 0.00
FtaKd 0.19 0.01 28.06 0.00

mC 2422.51 210.05 -11.53 0.00
b0 0.46
Kd 0.29

Table 11.5: Parameter estimates final iteration (without FU0 & FU1), for split radiation MLR2
model

11.3 Discussion and comparison of model MLR1 and MLR2

The obtained parameter estimates will first be discussed. Next, we will explore the predictive
performance of the two models.

Note that the parameter estimates vary considerably between the models. The introduction of
split radiation has a large influence on the parameter estimates. This shows that even the state of
the art efficiency parameter estimation method does not necessarily reveal any ‘true’ parameters:
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Figure 11.1: MLR residuals on Di

the parameters depend on the model equation. An especially surprising difference between MLR1
and MLR2 is that the first has a large heat loss coefficient, whereas the heat loss parameters were
insignificant and thus set to zero in the second model.

The estimated mCe differs considerably between the fits: 3885 for the model MLR1, and 2423 for
MLR2. Both values are reasonable, although the former resembles estimates as obtained by Bacher
et al. more [14]. The efficiency parameter Fta is 0.86 in MLR1 and 0.67 in MLR2. Comparing
this to the value in the panel specifications ( 0.857 for single glass and 0.814 for double glass) shows
that the value for MLR1 matches well, whereas the value for MLR2 is on the low side. In MLR1,
the value of FU0 = 4.60 is very high compared to the panel specifications (3.083 for single glass
and 2.102 for double glass). In model MLR2 this parameter was set to zero. It should further be
noted that the parameter b0 is very large compared to usually obtained parameters. This can be due
to shading effects: the panels on the plant are shaded by trees and other panels in the afternoon,
which may have been captured in the b0 parameter. Finally, the diffuse radiation IAM constant Kd

(only present in MLR2 is of an extremely low value around 0.3, where it is normally expected to be
around 0.9. It is likely that this parameter compensates for the heat loss term being set to zero.

Next, we use these models to predict the outlet temperature given the measured inputs and compute
the corresponding residuals. Note that in these linear regression models, To(tn) is not needed to
compute the estimated To(tn+1). Although the MLR models were fit using 5-minute average data, for
prediction the original 1-minute average version of the data is used. This will facilitate comparison
to the grey box models developed hereafter.

The in this way obtained residuals on cloudy day Di and sunny day Ds are plotted in Figure 11.1
and 11.2, for both model MLR1 and MLR2. Between 9 AM and 2 PM, the models perform almost
equally good, and the residuals are in the range of (−20, 20) on Di and in (−5, 5) on Ds. In the
afternoon, the model MLR2 with split radiation performs considerably better in terms of residual
size. The residuals of fit MLR1 extend from values in the range (−100, 50), whereas the second
model remains within (−50, 50). For both models the residuals are quite correlated, especially on
the sunny day.
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Figure 11.2: MLR residuals on Ds

The developed MLR models will in the following chapter be used for comparison with the grey-box
models.
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Chapter 12

Model selection results

This chapter describes the modelling sequence that was executed as the main research in this thesis.
The applied model selection method was described in Chapter 9. The first section of the current
chapter described the base model selection. The following sections each discuss one extension step.
The last section summarizes the sequence and compares the different extended models.

All models were fit on data set D, that was introduced in Section 8.3.

12.1 Base model selection

To start the model extension procedure, an initial model needs to be selected. This model should
match the data reasonably well, so that applied statistical tests like the t-test and likelihood ratio
test will be valid. The first trial with model Tf is presented here, which was slightly modified to
model To in order to satisfy this requirement. The initial trial Tf is retained in this text, as this
attempt revealed a strong disadvantage of certain model formulations worth remembering for future
research.

12.1.1 Model Tf

Table 12.1 shows the results of the parameter estimation for model Tf based on full 7-day data set
D, as well as single days Ds and Di. The latter is only done for this first model, to investigate
the influence of the weather type on the parameter estimates. The Table shows that the parameter
estimates in this first model are indeed affected by the weather type in the data set.

The optimization in the estimation procedure finished well for all three fits. The parameters were
significantly different from zero, as computed by the t-test (described in Section 7.6). The uncertain-
ties are generally higher for parameter estimates based on the intermittent day than on the sunny
day. The variance of the observation error is much higher for fit Tf i than the other two fits. This
is expected, as clouds are not included in the model and therefore introduce larger errors into the
model.

The values of the parameters are reasonable, but quite far from what they are expected to be based
on ISO test values. The parameters from fit Tf i are closest to such values. We note that the
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Tf Tf s Tf i
Tf0 66.3 ( 0.51 ) 66.9 ( 0.31 ) 66.3 ( 0.62 )
Fta 1.0 ( 0.0059 ) 1.0 ( 0.0097 ) 0.9 ( 0.0095 )

FU0 6.8 ( 0.02 ) 7.0 ( 0.037 ) 5.3 ( 0.11 )
mC 21408.3 ( 568 ) 29932.7 ( 176 ) 10766.5 ( 385 )

sigma f -2.6 ( 0.012 ) -3.2 ( 0.062 ) -2.8 ( 0.032 )
sigma obs -21.9 ( 0.27 ) -29.6 ( 0.31 ) -12.6 ( 0.15 )

Table 12.1: Parameter estimates model Tf

parameter estimates are likely to be influenced by the model equations, an effect that was also
observed in the MLR models of the previous Chapter. When terms are in- or excluded, the physical
meaning of parameters may change. In the final section of this chapter, which summarizes the model
sequence, the evolution of parameter estimates over the models will be discussed.

Furthermore, we emphasize that the parameters from the panel specifications are determined using
the ISO test, and thus correspond to a different model equation than the form used here. As the
current equation is derived from the same heat balance, it is desirable that the parameters stay
within reasonable limits from the ISO parameters. However, it cannot be said that one of the two
methods computes a ‘true’ parameter value.

Model Tf s has high values in the correlation table, Table 12.2. There seems to be too little variation
in the solar radiation to distinguish the influence of radiation and that of in- and outflow of hot
water.

Tf0 Fta FU0 mC sigma f sigma obs
Tf0 1.00 -0.04 0.09 -0.09 -0.08 -0.08
Fta -0.04 1.00 -0.43 0.46 0.39 0.38

FU0 0.09 -0.43 1.00 -1.00 -0.79 -1.00
mC -0.09 0.46 -1.00 1.00 0.79 0.99

sigma f -0.08 0.39 -0.79 0.79 1.00 0.78
sigma obs -0.08 0.38 -1.00 0.99 0.78 1.00

Table 12.2: Correlation table of parameters model Tf s

Simulation and prediction

To evaluate the performance of model Tf, we further investigate simulation and prediction of fit
Tf. The upper panel in Figure 12.1a shows the simulated and measured outlet temperature To; the
lower panel shows the (measured) inlet temperature Ti. The simulation shows that the model is a
reasonable start. The temperature level in the steady state (mid-day) situation matches the true
steady state temperature.

The graphs show that the simulated outlet temperature is very sensitive to changes in the inlet
temperature, which shows large fluctuations in the morning and afternoon. This effect was also
present in simulations for cloudy days, but less easily distinguishable from other fluctuations in
the inlet temperature and therefore omitted here. The measured outlet temperature is not visibly
affected by these fluctuations, which is quite remarkable.

The same effect is seen when the model with fitted parameters is used to predict on the same sunny
day. The residuals (residual = To,measured − To,predicted) are shown in the upper panel of Figure
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12.1b.

Plots of the individual heat flows (omitted here) showed that none of the terms in the system
equation causes these peaks in the predicted and simulated outlet temperature. The measurement
equation must therefore be the source of the problem. As the inlet temperature is included in the
measurement equation, it directly influences the outlet temperature, without interacting with other
heat flows first. This is not physically reasonable and harms model performance, as seen in the
residuals and simulation using this model.

It can be concluded that input measurements, here the inlet temperature, cannot directly be in the
measurement equation. For this reason, further models should take To as the system state, so that
input variables will not need to be present in the measurement equation.
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(a) Simulated and measured To. Lower panel shows measured Ti

(b) Predicted (1 ahead) and measured To, compared to various inputs.

Figure 12.1: Simulation and prediction of model Tf
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12.1.2 Model To

The 1-ahead prediction residuals of model To and Tf on sunny day Ds are shown in Figure 12.2a.
It is clear that model To performs better, mainly because it is less sensitive to changes in Ti. The
residuals on cloudy day Di are clearly reduced as well, but this plot is omitted here for brevity. The
model To will therefore be chosen as the start for the model selection procedure.

(a) Clear sunny day Ds

(b) Intermittently cloudy day Di

Figure 12.2: Residuals (1-ahead) of model Tf and To

The result of simulations with model To, versus simulation of the currently used prediction equation
and the prediction of fit MLR1 is shown in Figure 12.3a and 12.3b. The current scheme overestimates
the output temperature during a large part of the day, as expected from the observed control
behaviour of the plant. On the cloudy day, it is visible that the current scheme is shows large
fluctuations. It seems therefore that even this simple grey-box model captures the plant dynamics
better than the currently used equation. This shows that allowing the outlet temperature at tn+1

to depend on the outlet temperature at tn improves model performance.
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(a) Clear sunny day Ds.

(b) On intermittent day Di.

Figure 12.3: True and simulated outlet temperatures using model To, model MLR1, and current
control equation

12.1.3 Motivation for model extensions

Comparing the prediction residual time series of model To versus input variables reveals several
opportunities for model extension. On sunny day Ds (Figure 12.4), the prediction residuals show
the following model flaws

1. Structural underestimation of To in the first half of the day, thereafter structural overestima-
tion. Especially in the afternoon the residual is very large. Therefore it is expected that the
shading of the panels is causing the pattern. This is also visible on cloudy days, although less
distinguished due to more fluctuations in all variables.

2. Some high residual peaks in the morning, seemingly related to fluctuations in the inlet tem-
perature. This is verified by plotting the CCF for the first 35 minutes of Ds, see Figure 12.5a.
Lag k in this plot corresponds to cor(Ti,t+k, residt), so the plot shows that past values of the
inlet temperature are positively correlated to the current residual

61



3. The residual ACF on sunny days is very significant for lags up to 2.5 hours, see Figure 12.5b.
This is not the case on cloudy days. This means that longer periods of sun are not modelled
well.

Figure 12.4: Model To 1-ahead residual along with input time series on clear sunny day Ds

To improve on these aspects, several extensions are proposed here. For the first, we will use splines
for the non-parametric modelling of a curve, which can describe the changing F ′(τα)en over time. It
will also be tested whether the introduction of an IAM function could improve the modelled influence
of solar radiation.

Two extensions will be introduced in an attempt to reduce the model errors due to inlet temperature
fluctuations. First of all, introducing more compartments in the flow direction may delay the effect
of Ti on To. Secondly, it is possible to manipulate which measurement of Ti should affect the outlet
temperature at time t, by replacing the time series of Ti by a delayed version of it.
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(a) CCF(Ti,residuals) for first 35 minutes of Ds (b) ACF 1-ahead residuals

Figure 12.5: Correlation plots for Ds, using model To

It will be investigated whether more detailed modelling of heat loss can improve the observed high
auto-correlation for sunny day residuals. This will be done by including an second order heat loss
term (i.e. temperature dependence of the heat loss). Including this term would also allow for a more
straightforward comparison between the currently developed model and the ISO standard model.
The introduction of a metal compartment could also improve the modelled heat loss.

On cloudy day Di, it is more difficult to see in the time series plot which fluxes influence the residual,
as all inputs fluctuate simultaneously. We can however infer several aspects that could be improved,
using different plotting techniques.

1. A plot of the Cross-Correlation Function (CCF) between total radiation and the residuals shows
that the residuals are negatively correlated to past radiation measurements (Figure 12.6a).
This means that the increased outlet temperature due to radiation input is overestimated and
perhaps too instantaneous.

2. The CCF between estimated diffuse radiation and the residuals (Figure 12.6b) shows a positive
correlation between past diffuse radiation and current residual, indicating that a high diffuse
component results in small residuals (i.e. overestimated outlet temperature)

3. A time series plot shows overestimation of the outlet temperature in periods of low solar
radiation during the day, corresponding to cloudy moments.

To overcome the first, a metal component may help to delay the effect of solar radiation on outlet
temperature. The separate modelling of diffuse and direct radiation effects are expected to improve
the second and third aspect.

In the following paragraphs, these extensions will be applied.
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(a) CCF between total radiation and residuals (b) CCF between diffuse radiation and residuals

Figure 12.6: Correlation plots for Di, using model To

12.2 First extension

The extensions for model To that have been considered in this first step are the following models:

• Model ToGsplit uses the split radiation as explained in Section 10.4

• Model ToIAM includes an IAM function instead of Fta

• Model ToTm has a metal component, as introduced in Section 10.7

• Model To 2C has two compartments in the flow direction

• Model To splined uses splines to divide Gtotal into several components, which each have their
own efficiency parameter. This method was introduced in Section 10.3

For all extended models, the parameter estimation procedure ended successfully. The loglikelihoods
of the resulting fits are displayed in Table 12.3

We will first decide on the number of splines to be used per day for the To splined model. This
choice will be based on the loglikelihoods, simulations, and predictive performance of the models.
Models with 2 up to 6 splines have been fitted. Based on loglikelihood only, the model with 6 splines
performs best. It remains to be checked with a likelihood ratio test if the extension from each of
the splined models to To 6Splined is significant. The LRT gives p-value < 0.01 for each of these
different tests. Therefore the 6 splined model should be preferred based on loglikelihood.

The simulation and prediction of this model is however barely different from the model with 4 splines.
The model with 4 and 5 splines do not differ at all, and this extension is not significant based on the
LRT. The parameter estimates for FU0, mCe, and To0 are very similar the 4- and 6- spline model
as well (values omitted here). As we would like to pick the best model that is as simple as possible,
based on these observations the model with 4 splines is chosen here for further analysis.
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nr.of.par. Loglikelihood LRT p–value
To 6 -2125.08

ToGsplit 7 -2076.56 0.00
ToTm 10 -2215.09 1.00

To IAM 7 -1928.25 0.00
To2C 8 -533.36 0.00

To 2Splined 7 -1873.28 0.00
To 3Splined 8 -1677.78 0.00
To 4Splined 9 -1589.95 0.00
To 5Splined 10 -1589.91 0.00
To 6Splined 11 -1583.77 0.00

Table 12.3: Overview of models in first extension step: number of estimated parameters, loglikeli-
hood, p-value of LRT compared to base model To.

Now we will consider this splined model and the other extended models combined. All extensions
except the introduction of a metal compartment in ToTm are very significant. The model To2C
with more compartments has the lowest loglikelihood. It does well in 1-step ahead prediction, but
performs badly in simulation as shown in Figure 12.7. The model has a low loglikelihood because the
extra (hidden) state absorbs unreasonably much of the (yet un-modelled) fluctuations, indicating
an overfitted model. This nonphysical behaviour becomes clear when plotting the filtered states, as
shown in Figure 12.8. It may be too early in the model sequence to introduce these compartments
with hidden states.

Figure 12.7: Simulated outlet temperature on Ds for models in first extension step.

For this reason, we will select the model with the next largest loglikelihood, which is one of the
splined models. By the previous discussion, we take model To 4splined. For comparison, we plot
the simulated outlet temperature of the extensions in Figure 12.7. The yellow line, for the chosen
model To 4splined, is closest to the true temperature. This is mainly clear in the afternoon, where
shading of the panels shading occurs. The same holds for prediction, for which the plot is omitted
for brevity.
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Figure 12.8: Filtered states for model To2C on Di.

The 1- and 10-ahead residuals of the chosen model are compared an overview plot in Section 12.7,
Figures 12.22, 12.23, 12.24, and 12.25. These Figures show the residuals of all chosen models in
the model sequence are plotted. The negative residuals in the afternoon on Ds are reduced by the
splines, but it can be seen that the splines do impose a new pattern in the residuals. However, the
residual sizes are largely reduced and the prediction error remains within a range of only 0.5°C for
most of the day. In addition, the sunny afternoon’s residuals are reduced considerably. The cloudy
day prediction is improved as well, as the residual sizes are reduced over the whole day.

The fit To 4Splined has high correlations between the efficiency parameters of neighbouring splined
radiation components. The other parameters do not have high correlations. It is sensible that the
spline coefficients are correlated, as the different components of the solar radiation overlap, and
therefore an increase of one coefficient can be combined with a decrease in the coefficient of the
spline next to it. This may in turn lead to an increase in the coefficient two steps away (for example
an increase in s1 would imply an increase in s4). We would therefore expect negative correlations
between si and si±1 and positive between si and si±2. This is indeed the case for the estimates in
To 4splined.

To0 FU0 mC s1 s2 s3 s4 sigma o sigma obs
To0 1.00 0.02 0.04 -0.07 0.07 -0.03 0.04 -0.00 0.08
FU0 0.02 1.00 0.42 0.61 -0.27 0.58 0.05 -0.06 -0.31
mC 0.04 0.42 1.00 0.44 -0.40 0.60 -0.51 -0.06 -0.40

s1 -0.07 0.61 0.44 1.00 -0.88 0.89 -0.52 -0.04 -0.70
s2 0.07 -0.27 -0.40 -0.88 1.00 -0.89 0.75 0.02 0.70
s3 -0.03 0.58 0.60 0.89 -0.89 1.00 -0.72 -0.06 -0.61
s4 0.04 0.05 -0.51 -0.52 0.75 -0.72 1.00 0.05 0.37

sigma o -0.00 -0.06 -0.06 -0.04 0.02 -0.06 0.05 1.00 0.01
sigma obs 0.08 -0.31 -0.40 -0.70 0.70 -0.61 0.37 0.01 1.00

Table 12.4: Correlation table for the parameters in model To 4splined

In this splined model, the parameters s1 up to s4 determine the estimated effective radiation during
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the day. When dividing this effective radiation by the measured radiation, the panel efficiency Fta
can be computed as a function of time. This is plotted in Figure 12.9b. It shows that until the
afternoon, the panel efficiency parameter F ′(τα)en is quite constant around a value of 0.9. The
parameter is in standard models intended as a constant. Here, it is shown that unmodelled effects
in the afternoon result in different efficiency: the panels are increasingly shaded by one another and
by the trees West of the field. This can be seen in the fitted efficiency, which drops drastically in
the afternoon.

(a) Measured versus effective total radiation G (b) Effectivity F ′(τα)en versus time

Figure 12.9: Visualizing effective total radiation for model To 4Spline (first extension)

The solar radiation is the factor of highest influence on the outlet temperature. Therefore it is
reasonable that the introduction of splines, accounting for shading effects and thereby improving
the solar part of the model, is the first most significant extension.

12.3 Second extension

The extensions for model To 4Splined that have been considered in this second step are the following
models:

• Model ToGsplit splined, which adds the split radiation

• Model ToIAM splined, which includes an IAM for Fta

• Model ToTm splined that has a metal component

• Model To 2C splined, which has two compartments in the flow direction

Of each model type, we will again choose the number of splines that fits the data best, based first
on loglikelihood and thereafter checked using simulation and prediction performance. Next, we will
compare the different model types and select the best model extension.

67



Nr. of par. Loglikelihood LRT p-value
To 4Splined 9 -1589.95

ToIAM 4Splined 10 -1589.93 0.85
ToIAM 5Splined 11 -1670.71 1.00
ToIAM 6Splined 12 -1583.89 0.01
ToTm 4Splined 13 -1334.10 0.00
ToTm 5Splined 14 -1993.66 1.00
ToTm 6Splined 15 -1328.39 0.00
To2C 4Splined 11 -556.08 0.00
To2C 5Splined 12 -442.99 0.00
To2C 6Splined 13 -678.31 0.00

ToGsplit 4Spline 10 -1473.82 0.00
ToGsplit 5Spline 11 -1472.98 0.00
ToGsplit 6Spline 12 -1453.25 0.00

Table 12.5: Overview of models in second extension step: number of estimated parameters, loglike-
lihood, p-value of LRT compared to base model To 4Splined.

Number of splines for each model type

Again, the loglikelihood of the multiple compartment model in the flow direction is the highest, but
for the same reasons as previously this model is not considered suitable. These models in addition
have large values of dF/dPar after the estimation procedure, which indicates that the true optimum
has not been found. These models are therefore not suitable, and none will be chosen as the next
extended model.

The IAM models with 4 and 6 splines have an estimated value of b0 smaller than 0.001. This
corresponds to an IAM of value close to 1 for all angles, so the function does not alter the outcome
of the model much. For this reason, these models are not preferred over the previous model. The
5-splined version of the IAM model has a more reasonable value of b0 = 0.12 (still a little low), but
the estimation procedure ends with high values of dF/dPar, which means that the true optimum may
not have been found. This is also reflected in the large loglikelihood of this model. It is concluded
that the IAM models are not suitable in this extension step.

For the models with split radiation, the likelihood ratio test favours 6 splines over 5 splines and 4
splines with p-values close to zero. Therefore, ToGsplit 6splined is selected.

The metal models with 4 and 6 splines have a low loglikelihood. They perform well in simulation
and prediction. The extension from 4 to 6 splines has p-value = 0.003, therefore 6 splines model
ToTm 6Splined is selected.

It is noted that two models have a lower loglikelihood than the previous model, while it is known
that generalizations of a model should always have a loglikelihood higher or equal than the original.
However, the models in question have 5 splines whereas the previous model had 6. Therefore, they
are in the strictest sense not a generalization of the previous model, and thus it can happen their
loglikelihood is lower. In addition, the estimation procedure of model To IAM 5spline did not find
the true optimum (judged by a large value of dF/dPar).
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Selection of extended model

It remains to choose between the metal model and the split radiation model. Model ToTm 4Splined
has the highest loglikelihood, closely followed by ToGSplit 6splined. The performance of these models
on plots is very similar, although the metal model is slightly better on sunny days and the split
radiation is better on cloudy days. It is concluded that the models are equally suitable in this step.
Therefore, the simpler model ToGsplit 6Spline is selected in this step. Figure 12.22 to 12.25 show the
improvement in residuals of the selected model compared to the previous model, which are mainly
clear in the afternoon of Di. As discussed in Section 12.1.3, we intended this extension to improve
the CCF between estimated diffuse radiation and the residuals. Comparing the new CCF in Figure
12.10 to the initial one in Figure 12.6b, we indeed see reduced correlation. There are however still
several significant correlation bars.

Figure 12.10: CCF between diffuse radiation and residuals on Di, using model ToGSplit 6splined

It is thus found that the radiation split into direct and diffuse components is more significant that
the introduction of an IAM on total radiation G. This is an interesting result, because many solar
heat plants do not measure the two components separately. This result indicates it could be useful
to do so, although the ‘theoretical’ splitting as done now is perhaps good enough.

Figure 12.11a and 12.11b respectively show the effective radiation and the change in efficiency over
the day. This effective F ′(τα)en is again computed as

∑
i siGdir,i/Gb,measured. The model does not

include an IAM as of yet. Therefore, the incidence angle effects are also modelled by this splined
parameter, which should therefore be interpreted as the proportion of measured radiation that is
taken up by the fluid (as a function of time).
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(a) Measured versus effective direct radiation Gdirect (b) Effectivity F ′(τα)en versus time

Figure 12.11: Visualizing effective direct radiation for model To Gsplit 6Spline (second extension)

12.4 Third extension

The extensions for model ToGsplit 6splined that have been considered in this third step are the
following models:

• Model ToIAMGsplit splined, which introduces an IAM function

• ModelToTmGsplit splined, with a metal component

• Model To2C Gsplit splined, with 2 compartments in the flow direction

• Model ToGsplit splined FU1, which includes a second order heat loss term

An overview of all obtained loglikelihoods is given in Table 12.6.

Nr. of par. Loglikelihood LRT p-value
ToGsplit 6Spline 12 -1453.25

ToIAM Gsplit 4Splined 11 -1426.22
ToIAM Gsplit 5Splined 12 -1424.95
ToIAM Gsplit 6Splined 13 -1412.30 0.00

ToTmGsplit 4Splined 14 -1188.73 0.00
ToTmGsplit 5Splined 15 -2275.32 1.00
ToTmGsplit 6Splined 16 -2118.36 1.00
To2CGsplit 4Splined 12 -628.97 0.00
To2CGsplit 5Splined 13 -613.24 0.00
To2CGsplit 6Splined 14 -340.66 0.00

ToGsplit 4Splined FU1 11 -1473.67
ToGsplit 5Splined FU1 12 -1472.64 1.00
ToGsplit 6Splined FU1 13 -1452.96 0.45

Table 12.6: Overview of models in third extension step: number of estimated parameters, loglikeli-
hood, p-value of LRT compared to base model ToGsplit 6Spline.
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Number of splines for each model type

For the ToIAMGsplit splined models, the LRT of the extension from 4 to 6 splines favours the 6
spline model with a p-value ≈ 0. Therefore, model ToIAM Gsplit 6Splined is selected for further
analysis.

The metal models were difficult to fit; only for 4 splines the estimation procedure finished with good
results, which is therefore selected for further analysis. This version also has the highest loglikelihood
of this model type.

In the multi-comparment model, To2CGsplit 6Splined is selected.

For the second order heat loss model ToGsplit Splined FU1, the extension from 4 or 5 to 6 splines is
very significant with a p-value of ≈ 0. Therefore the best of these models is ToGsplit 6Splined FU1.

Selection of extended model

The lowest loglikelihood is once again obtained by the multi-compartment model. For the same
reason as before, this model is not suitable. The extension to the second order heat loss model is
not significant. The metal model and the IAM model remain as suitable extensions.

The LRT p-value is smaller than floating point precision for each of the extensions, so that the
choice can not be based on this test. Model ToTmGsplit 4Splined has the highest likelihood, but
includes an extra parameter compared to ToIAM Gsplit 6Splined. The models are very close in
performance. The metal model is slightly better on cloudy days, which is to be expected because
the clouds cause fluctuations in radiation. The effect of these fluctuations are buffered by the metal,
which is modelled better with the metal component. The IAM model does better on sunny days,
when the incidence angle effects matter most.

However, the metal model starts to perform worse even on cloudy days when the prediction is 10
minutes ahead or more. Another disadvantage of this model is the longer estimation time, and the
additional parameter. Therefore, the IAM model ToIAM Gsplit 6Splined is selected in this iteration.

The main visible effect of the added IAM is reduced afternoon residuals on Ds, see Figure 12.22
and 12.24. This was previously also achieved by the splines, however, in the current case the
residuals on the cloudy afternoon remain unchanged (see Figure 12.25). This shows that the model’s
representation of the direct beam solar component has improved.

The plots in Figure 12.12 show the effectivity parameters of this selected model as a function of time.
The upper panel shows the single parameter F ′(τα)en, which is computed from the parameters s1

to s6 as before. This parameter no longer includes incidence angle affects, as these have now been
explicitly included with an IAM, and therefore only includes shading effects. From this plot, it
should be concluded that there is some shading in mid day already, but this is not the case at
the time of this data set (May). This indicates that the effectivity parameter can no longer be
interpreted alone, but should instead be analyzed combined with the IAM Kd, as these two are
fitted simultaneously. This plot is shown in the lower panel. The splines and IAM function together
allow the effective radiation to take on a shape that is quite different from the previous two selected
models (as previously shown in Figure 12.9 and 12.11b).
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(a) Effectivity F ′(τα)en versus time (b) Effectivity and IAM combined F ′(τα)en · Kb(θ)

Figure 12.12: Visualizing effective direct radiation for model ToIAM Gsplit 6Splined (third exten-
sion)

12.5 Fourth extension

The extensions for mode ToIAM Gsplit 6Splined that have been considered in this fourth step are
the following:

• Model ToIAM Gsplit Splined FU1

• Model ToTmIAM Gsplit Splined, which contains a metal component

• Model ToIAM Gsplit 2C splined, with an additional compartment in the flow direction

Number of splines for each model type

The loglikelihoods of the fits are given in Table 12.7.

The metal models were difficult to fit: only the estimation procedure of the 4-spline version ToT-
mIAM Gsplit 4splined finished successfully. The 5- and 6-spline versions had high values of dF/dPar,
which indicates that the optimum was not found.

The same holds for the multi-compartment models with 5 and 6 splines. Although the likelihood of
the 5-splined model To2C IAMGsplit 5splined is considerably higher than the model that was to be
extended, the optimum found for this model is not a good fit based on simulation and prediction
plots. The 4 spline version of this model is therefore selected for further analysis.

Of the FU1 models, the 6 spline version is the only one of higher loglikelihood than the model that
was to be extended.
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nr. of par. Loglikelihood LRT p-value
ToIAM Gsplit 6Splined 13 -1412.30

ToIAM Gsplit 4splined FU1 12 -1624.75
ToIAM Gsplit 5splined FU1 13 -1415.14 1.00
ToIAM Gsplit 6splined FU1 14 -1404.41 0.00

ToTmIAM Gsplit 4splined 15 -1118.03 0.00
ToTmIAM Gsplit 5splined 16 -1767.74 1.00
ToTmIAM Gsplit 6splined 17 -1756.01 1.00
To2C IAMGsplit 4splined 13 -363.45 0.00
To2C IAMGsplit 5splined 14 -642.40 0.00
To2C IAMGsplit 6splined 15 -1129.97 0.00

Table 12.7: Overview of models in fourth extension step: number of estimated parameters, loglike-
lihood, p-value of LRT compared to base model ToIAM Gsplit 6Splined.

Selection of extended model

As in all previous steps, the two-compartment model has the highest loglikelihood, and is therefore
examined for suitability first. The one-step ahead prediction of this model has smaller residuals
than all other models. However, in further-ahead prediction it soon performs worse than the other
models, except at times where Ti shows fluctuations. This indicates that the model is over-fitted to
the data yet again.

The other two extensions both perform well. They predict and simulate very similar to one another
and the previous model on both sunny and cloudy days. The predictions of the metal models become
slightly worse for further ahead prediction, as shown in Figure 12.13.

Figure 12.13: Residuals of 40-ahead prediction with the metal and FU1-model on Ds.

The estimated parameters are shown in Table 12.8. Their estimates of common parameters b0
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and Kd are similar. The parameter (mC)e has different meaning in the different models: in the
metal model it captures only the heat capacity of the fluid, whereas in the single component model
it represents the total module’s heat capacity. Therefore it is expected to be higher in model
ToIAM Gsplit 6splined FU1, which is indeed the case.

parameter ToIAM Gsplit 6splined FU1 ToTm IAM Gsplit 6splined FU1
To0 76.75 ( 2.8e-01 ) 76.79 ( 8.3e-02 )

Tm10 82.99 ( 2.9e-01 )
b0 0.27 ( 8.9e-05 ) 0.27 ( 1.8e-04 )

Cm 351 ( 1.5e+01 )
F ′U0 2.64 ( 2.3e-02 )
F ′U1 0.012 ( 6e-04 )
Kd 0.656 ( 5.7e-03 ) 0.650 ( 2.8e-03 )

(mC)e 7158 ( 8.7e+01 ) 5288 ( 7.9e+01 )
Ufm 20.18 ( 6.1e-01 )
Uma 2.985 ( 9.8e-03 )
σm -0.199 ( 2.6e-02 )
σo -3.16 ( 1.1e-02 ) -25.55 ( 5.4e-02 )

σobs -29.3 ( 3.1e-02 ) -18.5 ( 5.4e-02 )

Table 12.8: Parameter estimates (standard deviation in brackets) for model
ToIAM Gsplit 6splined FU1 and ToTm IAM Gsplit 6splined FU1

Note that the metal model has a large value of σm, which implies large variation in this state. This
is confirmed when plotting the filtered states over the intermittent day Ds, as shown in Figure 12.14.
The hidden metal state, like the hidden flow compartment state, absorbs much of the un-modelled
effect of clouds. This makes the metal model prone to over-fitting as well.

For practical reasons, the single state model ToIAM Gsplit 6splined FU1 could also be preferred
over the metal model. It is easier to find a good fit for this model. It further is slightly simpler, as
it contains 2 parameters and 1 state equation less. This model is therefore selected in this step.

The estimated effective solar radiation based on the selected model is as depicted in Figure 12.15a.
This effective direct radiation curve includes the influence of the IAM function, with b0 = 0.27 as
estimated. The estimated F ′(τα)enKd over time is plotted in Figure 12.15b.
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Figure 12.14: Filtered states for model ToTm IAM Gsplit 6splined FU1 on Di.

(a) Effective (red) and measured (black) Gdirect (b) Parameter F ′(τα)enKd over time

Figure 12.15: Visualizing effective direct radiation for model on Ds of model
ToIAM Gsplit 6Splined FU1 (4th extension)
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End of model sequence

As an extension from ToIAM Gsplit 6splined FU1, an attempt was made to combine the FU1 and
metal model, to ToTm IAM Gsplit 6splined FU1. The estimation of this model however turned out
not to be feasible in CTSM. The same was true for the introduction of more compartments in the
flow direction. Therefore, the fourth extension step was the final step in this sequence.

In the next section, two small improvements will be introduced into this model. Thereafter, an
overview of the model sequence and the final model performance will be provided.

12.6 Fine-tuning the final model

Finally, we will consider two adaptations to the final model that are not strictly extensions, and
therefore not treated as previously in the model sequence.

First of all, the way the splines are constructed will be adapted, mostly for practical reasons. As the
data set used for fitting does not contain time steps in which 0 < cos θ < 0.2, the splined radiation
situated in such periods of day does not add to the quality of the model. Therefore, boundary
knots will be chosen at the moments in time where cos θ = 0.2, so that the fitting data set D
entirely contains all splined components of the radiation. In addition, the spline functions will now
be constructed using a variable amount of equally spaced (in time) inner knots, while spline order
will be cubic no matter how many splines are constructed. As a result, the bs() spline function in
R constructs the splines independent of the properties of the given data, which is useful when using
the fitted model on other data sets. Moreover, the cubic splines have less overlap, which is desired
in our case as the morning efficiency parameter should for example not influence the efficiency in
late afternoon.

As a second adaptation, the value of the inlet temperature Ti that corresponds to outlet temperature
yTo(tk) at a certain point in time will be altered, in order to account for the time that the water
resides in the collector rows. This will be done in two ways: first by assuming an average delay of
10 minutes, thereafter by estimating the delay for each data point individually. The delays are not
constant over time, because the flow is adapted during the day.

12.6.1 Adapted splines

The final model ToIAM Gsplit splined FU1 was fit with the new spline boundary knots for 4 up to
6 splines. The loglikelihoods of the resulting fits (named final model nk Xspline where nk stands for
“New Knots”) and the corresponding fits with the previous spline method are given in Table 12.9.
For each number of splines, the loglikelihood is higher for the new splines.

The prediction and simulation of the 6-spline model were compared in plots. The only visible
improvement of new spline method is observed in the later afternoon of clear sunny day Ds, both
in simulation and prediction. To illustrate this, the 10-ahead prediction residuals on this day are
shown in Figure 12.16.
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nr. of par. Loglikelihood
ToIAM Gsplit 4splined FU1 12 -1624.75

final model nk 4spline 12 -1419.37
ToIAM Gsplit 5splined FU1 13 -1415.14

final model nk 5spline 13 -1408.00
ToIAM Gsplit 6splined FU1 14 -1404.41

final model nk 6spline 14 -1390.89

Table 12.9: Comparison between the previous and new spline methods for the final model
ToIAM Gsplit splined FU1.

Figure 12.16: Residuals on Ds for the final model with old and new spline method

12.6.2 Delayed inlet temperature

The models in all previous sections related the system equation increment dTo at time tk to the inlet
temperature Ti at the same time point tk. However, as the water resides within the collector rows
for 3 up to as long as 20 minutes, this instantaneous effect of the inlet on the outlet temperature is
not very accurate.

To solve this, two ways of delaying the inlet temperature have been implemented. First, all Ti
measurements were shifted by 10 minutes (roughly corresponding to the delay for average flow in
the data set). The second method computes the delay for each outlet temperature measurement
yTo, based on the flow of the preceding minutes. In this way, it is possible to approximate when
the water that flows out at tk entered the collector row. In this way, the temperature of a column
of out-flowing water is related to the temperature of this same column of water when it flowed into
the row.

These two methods have been applied individually, and combined with the new spline method. The
resulting loglikelihoods of these fits are shown in Table 12.10. The abbreviations nk, dnk, and dsnk
are for Delayed, Smart Delayed, and New Knots, in different combinations.

The effect of the delayed Ti is evident on intermittent days and shortly in the morning and afternoon
of the clear sunny day, which are the moments that the inlet temperature fluctuates most. The

77



Loglikelihood
ToIAM Gsplit 6splined FU1 -1404.41

final model nk 6spline -1390.89
final model Delayed -1231.17

final model SmartDelay -1142.87
final model dnk 6spline -1222.25

final model dsnk 6spline -1138.77

Table 12.10: Loglikelihoods of adapted ToIAM Gsplit 6splined FU1 versions

morning and afternoon peaks are reduced on Ds in 1-ahead prediction for both delay methods, but
only shown for smart delay in Figure 12.17 (inspect more closely in Figure 12.17b).

(a) Whole day (b) Zoom on first 35 minutes

Figure 12.17: Residuals of final model and smart delayed model on Ds

The improved CCF plot between inlet temperature and sunny morning residual is shown in Figure
12.18a (compare to model To, Figure 12.5a).

The inlet temperature delay also reduced some residual peaks on cloudy day Di, indicating that
some of the residual there was also a result of inlet temperature fluctuation. Figure 12.19 shows the
new residuals compared to those of ToIAM Gsplit splined FU1 on this day.

78



(a) Using model final model SmartDelay (b) Using model final model dsnk 6spline

Figure 12.18: CCF between residuals and Ti on first 35 minutes of Ds. Negative lag corresponds to
the relation between past inlet temperature and a later residual value.

Figure 12.19: Residuals of 5-ahead prediction on Di for model ToIAM Gsplit splined FU1 and the
adapted versions with smart delay
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12.6.3 Combined effect

The models with both the new spline method and the (fixed or smart) delayed inlet temperature
combine the improvements of the two different adaptations. The combined ‘smart delay & new knots’
method has the highest loglikelihood (Table 12.10). This model final model dsnk 6spline retains the
CCF improvement between residuals and inlet temperature in the morning of Ds, as shown in Figure
12.18b, and the time series on the sunny day shows the same reduced morning peaks (plot omitted
here). The same holds for the reduced residual peaks on the cloudy day, see Figure 12.20.

Model final model dsnk 6spline, is thus performing better than ToIAM Gsplit 6splined FU1, and
this ‘fine-tuned’ model will therefore be accepted.

Figure 12.20: Residuals of 5-ahead prediction on Di for model ToIAM Gsplit splined FU1 and the
adapted version with smart delay and new spline method

12.7 Summary model sequence

This section will provide an overview of the model sequence, as well as a comparison of the different
models. It further intends to highlight how each of the extensions improved the model performance.

Table 12.11 shows for each chosen model the number of parameters, loglikelihood, and the LRT
p-value of the extension wrt the previous model. Over the sequence, the number of parameters
increased from 6 to 14. Of the latter, 6 parameters are spline efficiency coefficients. The loglikelihood
increased from −6586 to −1134. All extensions were very significant based on the LRT. The final
model is not strictly an extension of the previous, and therefore the LRT is not applied.

80



Model nr .of par. Loglikelihood LRT p-value
Tf 6 -6585.86
To 6 -2125.08 0.00

To 4Splined 9 -1589.95 0.00
fit ToGsplit Gsplit 4Spline 10 -1473.82 0.00

ToIAM Gsplit 6Splined 13 -1412.30 0.00
ToIAM Gsplit 6splined FU1 14 -1404.41 0.00

ToIAM Gsplit 6splined FU1 sdnk 14 -1133.96

Table 12.11: Summary of Loglikelihood and p-value of LRT for all selected models in sequence

Parameter estimates

The parameter estimates have changed over the selected models in the sequence. Table 12.12 summa-
rizes these values. As noted before, in this research we are not aiming to find some ‘true’ parameter
values. Instead we are interested in a model with parameters that fit the data well when used for
prediction and simulation. As the models were derived from the ISO standard heat balance however,
the parameters should be reasonably close to their expected values from such a test. It is useful for
the parameters to keep their original interpretation, a.o. for monitoring plant performance.

Although the model selection procedure did not take the parameter values into account as a selection
criterion, it turns out that the parameter estimates over the sequence moved towards the values
expected from ISO tests. Especially (mC)e showed a steady decrease from a very high (> 20.000)
towards a final value of 6540. This is more in the range as found by Bacher et al. [14]. The same
happened for first order heat loss parameter F ′U0, which in the panel specifications has value 2.1
for double glass and 3.1 for single glass. Diffuse radiation parameter Kd decreased from 0.71 to 0.58
over the last four selected models. As this parameter replaces the factor F ′(τα)en ·Kd in the ISO
model, it is expected to be of a value around 0.81 · 0.9 ≈ 0.73.

The second order heat loss coefficient F ′U1 has assumed values very comparable to the panel speci-
fications 0.013 for single and 0.016 for double glass. The IAM parameter b0 has a rather high value
in all models, but in these models it cannot be interpreted without considering the influence of the
splines. It will therefore be discussed using efficiency plots in the following.
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par. . . . FU1 sdnk . . . FU1 ToIAMGsplit 6spl
To0 76.75 76.75 76.75

b0 0.27 0.27 0.27
FU0 2.20 2.64 3.21
FU1 0.010 0.012

Kd 0.58 0.66 0.66
mC 6540 7156 7063

s1 1.42 1.93 1.95
s2 0.26 0.0666 0.010
s3 1.43 1.493 1.544
s4 0.14 0.2015 0.139
s5 1.46 1.521 1.546
s6 0.12 10−5 2 · 10−5

sigma o -3.22 -3.16 -3.16
sigma obs -23.69 -29.28 -29.85

par. ToGsplit 4Spline To 4Spline To Tf
Tf0 66.3
To0 76.75 76.75 76.75
Fta 0.98 1.0

FU0 3.62 4.52 6.24 6.8
Kd 0.71
mC 7558 8642 13294 21408

s1 0.99 1.00
s2 0.48 0.63
s3 1.47 1.30
s4 8.8 · 10−5 0.31

sigma o -3.14 -3.12 -2.97 -2.6
sigma obs -29.76 -13.34 -13.17 -21.9

Table 12.12: Parameter estimates of all selected models.

Correlation between parameters

The correlation table improved significantly from the initial to the final model. The correlation
between the performance parameters b0, F ′U0, F ′U1, Kd, and (mC)e remains below an absolute
value of 0.41, except for the correlation between the heat loss coefficients. The latter is expected to
occur, as the terms together need to balance to model the heat loss best.

The occurrence of extremely high correlations of, say, higher than 0.8 can be an indication of too
little variation in the data set, so that the effect of different parameters can hardly be distinguished.
The current model parameter correlations take acceptable values, indicating that the fitting data
set was appropriate for this model.
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To0 b0 FU0 FU1 Kd mC σo σobs
To0 1.00 0.24 0.03 -0.14 -0.08 -0.10 0.08 -0.12

b0 0.24 1.00 0.14 -0.38 0.07 -0.40 0.19 -0.72
FU0 0.03 0.14 1.00 -0.75 0.41 -0.08 -0.02 -0.10
FU1 -0.14 -0.38 -0.75 1.00 0.14 0.21 -0.10 0.02

Kd -0.08 0.07 0.41 0.14 1.00 -0.19 -0.08 -0.34
mC -0.10 -0.40 -0.08 0.21 -0.19 1.00 -0.14 0.15
σo 0.08 0.19 -0.02 -0.10 -0.08 -0.14 1.00 -0.14

σobs -0.12 -0.72 -0.10 0.02 -0.34 0.15 -0.14 1.00

Table 12.13: Model ToIAM Gsplit 6splined FU1 sdnk, correlation table. Removed the efficiency
parameters s1 to s6.

Efficiency of radiation absorption

The radiation absorption was first modelled as a constant, then extended to a function of Time of
Day using splines. Finally, the constant was both a function of Time of Day and of the incidence
angle θ. This lead to changing efficiency curves over the modelling sequence, as plotted in Figures
12.9, 12.11b, and 12.12b.

Simulation and prediction

The simulation capabilities of the models steadily improved, although the size of the improvement
decreased over the sequence. For the clear sunny day Ds and intermittent day Di, the simulations
are plotted in Figure 12.21a and 12.21b. This plot mainly intends to show that all models were
reasonable for simulation purposes, given perfect predictions of inputs.

The 1-step ahead prediction residuals have evolved as displayed in Figures 12.22 and 12.23. On sunny
days, the main improvement is seen in the early morning and late afternoon. On the cloudy day, the
small improvements in 1-ahead prediction residuals can hardly be seen through all fluctuations.The
improvement in predictive performance of the models becomes more apparent when plotting further-
ahead prediction (Figure 12.24 and 12.25).
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(a) Ds

(b) on Di

Figure 12.21: Simulated outlet temperature for the models in the sequence
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Figure 12.22: Prediction (1-ahead) residuals on Ds for the models selected in the sequence
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Figure 12.23: Prediction (1-ahead) residuals on Di for the models selected in the sequence
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Figure 12.24: Prediction (10-ahead) residuals on Ds for the models selected in the sequence
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Figure 12.25: Prediction (10-ahead) residuals on Di for the models selected in the sequence
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Prediction residuals ACF

Figure 12.26 shows the ACF plot of 1-ahead prediction residuals based on the full data set D. It can
be seen that the white noise properties have improved over the model sequence, as the correlation
bars are reduced in size and less frequently exceed the confidence band. The largest improvements
are seen in the first two model extensions. Little change is observed from model 4 to 6, although
the size of lag-1 correlation is reduced. The lag-1 autocorrelation is however significant for all model
versions.
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Figure 12.26: Overview of normalized residuals’ ACF over the model sequence, for lag 1 up to lag
180 minutes. The numbers on the right hand side denote the number of the model in the sequence,
where 1 corresponds to model To and 6 to final fine-tuned model ToIAM Gsplit 6splined FU1 sdnk.
Note that lag 0 is not displayed, as this value is 1 by definition.
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Prediction residuals CCF

The residual time series and past values of input variables should be independent. This is checked
using a CCF plot between the residuals and a particular input variable.

As we were interested in reducing the inlet temperature dependence of the model, the CCF for
the residuals with this variable is plotted in Figure 12.27. The main improvements are seen in the
extension from model To to To splined, and after fine-tuning (model 6). The final model still has
significant correlation at lag 0.

We have further investigated the prediction residuals’ dependence on radiation, where the effects of
both diffuse and total radiation were of interest.
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Figure 12.27: The CCF between normalized residuals and inlet temperature over the model se-
quence, for lag 1 up to lag 180 minutes. The numbers on the right hand side denote the number
of the model in the sequence, where 1 corresponds to model To and 6 to final fine-tuned model
ToIAM Gsplit 6splined FU1 sdnk. Note that lag 0 is now displayed.
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Figure 12.28: The CCF between normalized residuals and diffuse radiation over the model se-
quence, for lag 1 up to lag 180 minutes. The numbers on the right hand side denote the number
of the model in the sequence, where 1 corresponds to model To and 6 to final fine-tuned model
ToIAM Gsplit 6splined FU1 sdnk. Note that lag 0 is now displayed.
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Figure 12.29: The CCF between normalized residuals and total radiation over the model sequence,
for lag 1 up to lag 180 minutes. The numbers on the right hand side denote the number of
the model in the sequence, where 1 corresponds to model To and 6 to final fine-tuned model
ToIAM Gsplit 6splined FU1 sdnk. Note that lag 0 is now displayed.
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Chapter 13

Final model performance

This chapter intends to give insight in the performance of the final model, regarding both prediction
and simulation. This will include a discussion of model performance on data from other months
than the fitting data.

In the first section, the predictive performance of the final model on the fitting data D is analyzed in
more detail, and prediction errors are quantified. Next, in Section 13.2, the simulation performance
of the final model will be compared to the MLR2 model and the model currently used for control in
Solrød . Finally, Section 13.3 shows the results of a cross-validation on data sets from other times
of year.

13.1 Final model predictive performance on fitting data

This section will provide a short overview of final model performance in prediction. We will quantify
the prediction error, and show how it evolves when the prediction horizon is increased. The reader
is reminded that in n-ahead prediction, we assume perfect knowledge or prediction of future inputs,
but no knowledge of the state estimate within the n-step prediction period.

The tables below show the mean, maximum, and minimum of the absolute prediction error, for
several values of the prediction horizon n (where ‘sim’ means full day prediction). A distinction is
made between the sunny and cloudy day, as they have quite different sizes of the error. Comparing
Table 13.1 and 13.2, we see that the average error is doubled on Di compared to Ds for all prediction
horizons n. However, the maximum error on Ds blows up for larger prediction horizons. Plots showed
that this blow up occurs in the last 35 minutes of the sunny day, where we have in the model sequence
seen structural overestimation of the outlet temperature.

n ahead 1 5 10 60 300 sim
mean 0.24 0.59 0.76 1.05 1.06 1.06
max 1.68 2.56 2.67 2.85 2.85 2.85
min 1.82e-04 1.82e-04 1.82e-04 1.82e-04 1.82e-04 1.82e-04

Table 13.1: Absolute error (mean, max, min) of final model on intermittent day Di, various step
ahead prediction
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n ahead 1 5 10 60 300 sim
mean 0.07 0.29 0.45 0.67 0.66 0.66
max 0.59 2.37 3.95 7.77 7.76 7.76
min 4.70e-05 5.27e-04 5.19e-03 3.25e-05 1.79e-04 1.79e-04

Table 13.2: Absolute error (mean, max, min) of final model on sunny day Ds, various step ahead
prediction

For better overview of the rest of the sunny day’s performance, Table 13.3 shows the error measures
for that day with removal of the last 35 minutes. It shows that on the rest of Ds, the error remains
below 2℃ even for the full simulation.

n ahead 1 5 10 60 300 sim
mean 0.06 0.20 0.30 0.38 0.38 0.38
max 0.59 1.50 1.47 2.00 1.98 1.98
min 4.70e-05 5.27e-04 5.19e-03 3.25e-05 1.79e-04 1.79e-04

Table 13.3: Absolute error (mean, max, min) of final model on sunny day Ds with last 35 minutes
removed, various step ahead prediction

The evolution of the maximum absolute error for the different days is plotted in Figure 13.1. The
maximum error does not increase further when n is raised above 60 minutes. The sunny afternoon
reaches a maximum absolute error of as large as 8℃, whereas the rest of the day it remains ap-
proximately below 2℃. On the cloudy day the absolute error remains below 3℃ for all prediction
horizons.
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(a) Di (b) Ds

(c) Ds without last 35 minutes

Figure 13.1: Evolution of maximum absolute error when increasing prediction horizon

13.2 Comparison to MLR2 and current Solrød scheme

In order to evaluate the performance of the newly developed model, we compare its simulation to
the simulated values from model MLR2 and those simulated using the equation as currently used
in Solrød. These simulations are plotted in Figure 13.2a and 13.2b for Di and Ds.

The plots show that the developed model follows the measured outlet temperature better than the
current scheme simulation as well as the MLR fit. The latter two curves show large fluctuations when
Ti changes. The direct presence of Ti in the computation of To for these models is a contributor to
this effect, as well as the fact that these models do not consider any influence of To(tk) on To(tk+1).
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(a) On cloudy day Di

(b) On sunny day Ds

Figure 13.2: Simulated and true outlet temperature using 3 different models
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13.3 Cross-validation on other data sets

In order to ensure that the developed model is suitable for all normal circumstances of the plant,
the model is cross-validated on data sets from other times of year. This is done in two ways. First,
the model fit from May data is used for prediction in other months. Second, the model parameters
are re-estimated on the data from other months.

13.3.1 Without re-estimation of the parameters

For days in June it is checked whether the parameters that were found for the week in May are still
valid 3-4 weeks later. The comparison of model performance on different data sets is not trivial, as
the prediction error is dependent on the weather type. The residuals are proportional to the size of
fluctuations in solar radiation intensity which occur in partially cloudy conditions. In order to make
a fair comparison, it is therefore decided to only compare plots of (non-standardized) residuals on
days with comparable radiation fluctuations.

Such a plot is shown in Figure 13.3. The middle panel shows that both data sets contain radiation
drops as large as 600-700 W/m

2
. The residuals are of similar size, staying in the interval (−4, 4) at

all times. This result shows that the model is still valid with the same estimated parameters almost
a month after the parameters were estimated.

(a) May 24 2017 (b) June 19 2017

Figure 13.3: Prediction (1 ahead) residuals using final model with parameter estimates obtained in
May

The model with parameters as fitted in May is used for 1-ahead prediction on all other data sets.
The quality of the prediction is assessed using the NMBE, RMSE and RRSE on the residuals, which
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are defined in the following.

NMBE =

∑n
k=1 xk − x̂k∑n

k=1 xk

RMSE =

√√√√ 1

n

n∑
k=1

(xk − x̂k)2

RRSE =

√∑n
k=1(xk − x̂k)2∑n
k=1(xk − x)2

(13.1)

where xk is the measurement at time tk, x̂k the prediction at that time, and x is the average of all
measured values in the sample of size n. The latter measure weights the variance of the residuals
with the variance in the measurements.

These measures are computed for each day separately and then combined into an average for each
data set. For fairness of the comparison of residual sizes, the two completely clear sunny days from
the May data set are excluded from the comparison, as the other data sets do not contain such clear
days which come with small residuals. Table 13.4 summarizes the different statistics. The values
remain fairly constant from May to June (are even slightly reduced). The RMSE and NMBE for
September are considerably higher, especially the measure of bias which shows a 10-fold increase.
This indicates that the model should probably be re-estimated for September. All three statistics
show a clear increase between October and November.

05/2017 06/2017 09/2017 10/2017 11/2017
NMBE -2.735e-04 2.370e-04 -2.484e-03 -2.620e-03 -8.973e-03
RMSE 0.483 0.436 0.655 0.645 0.851
RRSE 0.056 0.046 0.056 0.051 0.091

Table 13.4: Different measures of residual size using the May-fit model on several data sets

13.3.2 Re-estimation of parameters

This section contains an investigation of the extent to which the parameter estimates change when
the model is fit using data from other times of year. In addition, we will compare the prediction
residuals of the May-parameter fit to those of fits in other months. Each data set was prepared for
parameter estimation in the way described in Section 8.3.

It can be expected that the model with the parameter fit from May does not predict well in months
further than June. The reason for this is mainly the spline method, which makes the shading fraction
a function of Time of Day. As the path of the sun through the sky changes over the year, so does
the relation between Time of Day and the fraction of shaded panels. Therefore, the parameters will
have to be re-estimated about once every 1-2 months in order to have optimal model performance.

Firstly, Table 13.5 shows the parameter estimates for all data sets considered: May (which was
used for model development), June, August, September, October, and November. The parameter
estimates are mostly in their expected ranges, with the exception of b0 for the August fit and Kd

for the September and October fit. In addition, the observation error variance varies significantly
between the models.

For the fit in September, only one day in the week of data obtained was suitable for inclusion in the
estimation. The parameters were thus exclusively determined to match this day, which means that
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May June Aug Sept Oct Nov
To0 76.75 71.06 78.90 70.19 80.34 78.49

b0 0.27 0.21 0.0015 0.20 0.27 0.22
FU0 2.24 1.87 2.22 3.15 1.57 2.49
FU1 0.01 0.02 0.0118 0.03 0.0348 0.01

Kd 0.58 0.60 0.61 0.94 0.66 0.38
mC 6533 7288 6721 8065 7193 7466

sigma o -3.22 -3.00 -2.70 -2.61 -2.62 -2.73
sigma obs -28.89 -10.53 -11.24 -6.59 -24.90 -8.63

Table 13.5: Parameter fits for the final model on different data sets

the resulting fit is optimal for this day for the given model. We compare the September-fit with the
performance of the May-fit on this September day in Figure 13.4. The upper panel shows that for
1 step ahead prediction, the different parameter sets lead to quite similar residuals: the size of the
May fit residuals is never more than 1°C larger. For 10-ahead prediction residuals on this same day,
as shown in Figure 13.4b, the difference enlarges to around 2°C. Still, the May parameter fit does
quite well on this intermittent day, with absolute residual size for 10-ahead prediction not exceeding
4°C.

Figure 13.5 shows the same plots for November, where the residual measures showed a large increase
in bias and variance. Both the 1-ahead residuals show a structural underestimation of the outlet
temperature when using the May parameters. This bias is enlarged in the 10-ahead prediction,
where residual sizes are mostly in the interval (−8,−4). This image does however show that the
model structure is still suitable for the situation in November, as the prediction using newly fitted
parameters (red curve in figure 13.5) has 1-ahead residuals mostly in the interval (−1, 1) and 10-
ahead in the interval (−2, 2).
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(a) 1 ahead prediction

(b) 10 ahead prediction

Figure 13.4: Residuals using May parameters (black) versus September parameters (red), for Septem-
ber 5th
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(a) 1 ahead prediction

(b) 10 ahead prediction

Figure 13.5: Residuals using May parameters (black) versus November parameters (red), for Novem-
ber 11th
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Chapter 14

Conclusion, Discussion, &
Recommendations

This Chapter will discuss the results and insights from the previous chapters, as well as weaknesses
and possible improvements of the developed models and the research method. Finally, Section 14.3.2
provides directions for the practical application of the developed model and makes suggestions for
future research.

14.1 Conclusion

This thesis aimed to develop continuous-discrete stochastic state space models of solar heat plant
dynamics, that can be applied for very short or short term prediction (or both) needed for control
and heat output prediction of a SDHP. This model type is of a grey-box nature, combining physical
knowledge of a system with information that can be extracted from data using statistical methods.
Retaining a physically meaningful model formulation was beneficial for model development, as anal-
ysis of residuals and outputs provided information on suitable model extensions. The used data set
contains measurements from a solar district heating plant in the municipality of Solrød, dating from
May 2017. A subset of the data was selected based on operation mode, solar incidence angle, and
flow rate.

The research in this thesis has resulted in one such model suitable for both purposes. The model was
developed using a forward selection method, starting out with a simple model that was recursively
extended. The employed extensions were inspired by the prediction performance of the base model,
which showed elements of the model that could be improved on. The Likelihood Ratio Test was
applied to identify the most significant model extension in each step, as an objective model selection
criterion. The performance of the selected model was successively judged from simulation and
predictive properties. In several cases this lead to the selection of a different extension than the best
LRT extension. The extension was continued until no significant extensions could be found. The
then obtained model was modified in the way it deals with inlet temperature measurements, and
the way the splines (for the modelling of shading) were constructed.
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The final model

The final model has the following system and observation equation

dTo =
1

(mC)e

(
F ′U0(Ta − Tf) + F ′U1(Tf − Ta)2 + cfQf(Ti − To)

+ F ′(τα)en

(
Kb(θ)Gb +KdGd

))
dt+ σodωo

yTo,tk = To(tk) + εobs,tk (14.1)

where V[εobs] = σobs. The model distinguishes between To, the ‘true’ outlet temperature, and yTo,
the measured outlet temperature. This allows for separate modelling of process noise and measure-
ment noise. The parameter F ′(τα)en is set to 1 for structural identifiability, which is necessary due
to the 6-splined direct radiation term

Gb,eff(t) =

6∑
i=1

si ·Gb,i(t) (14.2)

which introduces six additional parameters to the model, which are directly multiplied by F ′(τα)en.
The spline functions are cubic base splines based on time of day, with boundary knots at cos θ = 0.2
and inner knots equally spaced in time between the boundary knots. The inlet temperature is delayed
in the introduced adaptive manner, so that the temperature of out-flowing water is approximately
related to the temperature of the same water ‘drops’ when flowing in.

Due to the combination of physical knowledge and information from data, the model parameters
still have a physical interpretation and therefore provide information about the system. A low
parameter estimate for the efficiency may for example indicate that the panels are dusty, whereas
an exceptionally high efficiency may indicate dusty sensors.

The model includes several aspects that have not been found in solar heat plant models from the
scientific literature, the most notable being the non-parametric modelling of shading and the split
of total radiation into diffuse and direct components. This new way of parameterizing the direct
radiation term lead to a different understanding of the efficiency parameter: it can now be plotted
as a function of time, and this function can be asymmetric (in contrast to the Kb(θ) function that
is used in many other models). These plots give insight into efficiency changes over the day, as seen
in for example Figure 12.15.

We have studied the model performance for n-ahead prediction assuming perfect input prediction.
On both Ds and Di, the average absolute residual size is below 0.3℃ for 1-ahead prediction, and
the maximum absolute residual does not exceed 0.6℃ and 1.7℃ for the sunny and cloudy day
respectively. When using the model for flow control, predictions up to 1 hour may be used. For this
time span, the error does not exceed 2℃ on the largest part of sunny day Ds, whereas the maximum
absolute error on Di equals 2.85℃. However, on the last 30 minutes of Ds the residuals blow up in
many-ahead prediction, leading to errors as large as 7.8℃ in 60 minute-ahead prediction. Outside
this time period, it is concluded that the developed model is suitable for the intended purposes.

The model was crossvalidated on data sets from other months, both with and without re-estimation
of the parameters. The model can still predict well almost a month after the parameters were
estimated, as tested on a week in June. Re-estimation was successful for all months the model
was fit on, and the resulting fitted models performed well in prediction and simulation for the
corresponding data sets.

A comparison of the developed model to the ISO-standard MLR model and the model currently
used in Solrød reveals clear improvements of simulated outlet temperature. Particularly when the
system is not in steady state, the new model outperformed the others by far.
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Lessons from the model sequence

The iterative model extension procedure provided us not only with a working model, but also with
several insights worth remembering for future modelling of solar heat plants. First of all, it was
shown that the direct inclusion of input variables in the observation equation is not a good idea.
In model Tf, this lead to unreasonably strong dependence of the particular input variable on the
output variable predictions.

Interestingly, the first most significant extension was the non-parametric model of shading effects,
using the splined radiation. This new approach thus has the potential to improve existing models
considerably. In the next step, the split of direct and diffuse radiation improved the model most.
This is an important result, because many solar heat plants do not invest in the costly diffuse
radiation measurement. From this study we conclude that it may not be necessary to do so, as
the applied post-processing of the total radiation into its diffuse and direct components lead to
satisfactory results.

The Solrød plant currently includes neither of these effects in the equation used for control. Even
without adopting the grey-box model developed here, the plant could improve its control considerably
by including the shading and split radiation in their model. Further, the benefits of including the
current outlet temperature in the prediction of the outlet temperature of the following time step
have become clear, as even the simplest model applied here was much more accurate than the current
Solrød model and the MLR based model while using the same input variables.

We further found that certain extensions were unable to improve model performance for the intended
purposes of simulation and control. This was the case for the additional compartments in the flow
direction of the system, and the added metal component. Both extensions add a hidden state to
the model. In all extensions steps, the loglikelihood of the multi-compartment model was by far
the highest. By plotting the filtered states and hidden states however, it was shown that these high
loglikelihoods were a result of overfitting effects: the hidden states showed unreasonable fluctuations
that matched the data well, leading to good 1-ahead predictions. Especially in periods with high
inlet temperature fluctuations, this reduced the residuals significantly. In ≥ 2-ahead prediction and
simulations however, the multi-compartment models (in the flow direction) performed worse than
even the simplest model.

The metal component model extensions showed the same overfitting behaviour earlier in the model
sequence, but resulted in good simulation and prediction when introduced into more complex models
later on in the sequence. It was however deemed inferior to other extensions due to its complexity: the
metal component adds a state and several parameters to the model. This made the fitting procedure
slower and sometimes lead to failed parameter estimation, while the model did not perform visibly
better than another extension (the addition of first order heat loss).

14.2 Discussion

This Section will discuss aspects of the research that could be improved, and difficulties that were
encountered.
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Discussion of final model

The final model residuals still show some patterns. In some periods, the residuals are structurally
negative/positive. The clearest example of this is the late afternoon on clear sunny days. The
residual pattern here is likely to be a result of the splines, which require fitting a single efficiency
parameter to each time interval. The parameter s6 for the splines radiation covering the last period
of the day is too low for the start of the interval, and too high for the end of the interval. This could
perhaps be fixed by placing the knots for the splines differently, so that the splined radiation in the
late afternoon covers shorter time periods.

Another way to improve the non-parametric modelling of shading could be to make the splines based
on the solar azimuth or zenith angle, or even both. These angles together determine the amount of
shading on the panels. A further advantage of doing so, is that the splines may be more generally
applied for the whole year. For the current method, the time at which cos(θ) = 0.2 needed to be
found for each new data set, and afterwards the boundary knots for the splines needed to be changed
manually.

Large residuals when predicting with the final model are also caused by fluctuations in the inlet
temperature. The delay method for the inlet temperature as introduced in the last step of model
development decreased this effect, but it is still present.

It is further expected that the modelling of incidence angle effects can be improved. In most selected
models, a very high value of b0 fit the data best. This is problematic in the IAM function used, as
large values of b0 lead to negative IAM values for small incidence angles. It was chosen to deal with
this by discarding data with cos(θ) < 0.2. The plant however also operates outside these ranges of
the incidence angle, and needs to be modelled for those period too. It would therefore be beneficial
to be able to relax the incidence angle selection criterion.

The ACF and CCF plots of 1-ahead prediction residuals have improved largely over the model
sequence. However, the lag-1 autocorrelation is still significant in the final model. Furthermore,
the CCF plots of residuals versus both total radiation and inlet temperature reveal significant lag-
0 correlations. This means that the way the model deals with these input variables may still be
improved.

Data quality and selection

The obtained data sets used for this research describe the behaviour of the plant under the current
control scheme. This means that the variables relate to one another in specific ways, not only as
determined by the laws of physics. The existing control puts constraints on the variability of the
data. Especially the flow and total radiation are extremely correlated over all days, with a correlation
of 0.97 for the 1-minute resolution of the data. After splitting into direct and diffuse components,
the correlation between Gd and Qf remains at the high value of 0.95. In the case of the flow and the
radiation however, the model equations only include the variable Qf multiplied by the temperature
difference between inlet and outlet temperature. The correlation of this entire term to the direct
radiation is also high, at −0.97.

The question is whether the parameters related to the highly correlated variables (in our case (mC)e,
the spline factors s1 to s6, and b0) remain practically identifiable. However, the parameter related
to Qf(Ti − To) is (mC)e, which also multiplies all other parameters. This may be the reason that
the high correlation in the data seems not to affect parameter estimates much, as judged by the
correlation Table 12.13. However, the model should be tested on data where no control scheme is
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yet implemented. The effect of the implemented control on the parameter estimates can then be
determined.

The first obtained data set from May was used for model development. This set was selected by the
commissioner for a reason: it covers a week with unusually good weather during which the plant
was operating for many hours. Two out of ten were completely clear sunny days. It could therefore
be questioned whether the data set was representative for normal plant dynamics. If not, the
question is whether this has influenced the choices in model development. From the crossvalidation
on measurements from other months, the model however seems to work as good as on the initial
data set.

As said, data points with cos(θ) < 0.2 were filtered out before fitting the parameters. Due to the
non-parametric shade modelling, the fitted model can only be used on times of day that are actually
present in the data set used for fitting. To extend the model to lower incidence angles, an assumption
on the effect of direct radiation needs to be made.

Another disadvantage of the applied data selection method, is that it is too selective for months
outside of summer, where larger portions of the data need to be removed due to the incidence angle
criterion. Some other months (with more periods of low radiation intensity) additionally show more
periods in pre-heating phase, so that an even smaller data set remains to be used for fitting.

Model fitting / Parameter estimation

The developed model is intended for prediction on time scales from seconds to hours. The parameters
are selected to maximize the loglikelihoods obtained from 1 minute-ahead prediction. It could
therefore be questioned whether the resulting parameters are optimal for the purposes of the model.
To improve parameter fits for days-ahead prediction, it may be useful to develop the model based
on data of a lower sampling rate.

In relation to that, a lower sampling rate may also lead to better working multi-compartment models.
These were now prone to overfitting, but when the outlet temperature shows larger deviations
from one data point to the next, the parameter estimation using these models may lead to better
prediction.

The CTSM-R software could in almost all cases successfully estimate the parameters. However, in the
multi-state models, the parameter estimation using more than 4 splines failed or lead to fits with bad
properties (high values dF/dPar and dPen/dPar). In some other models, the parameter estimation
failed using certain initial settings in CTSM, which resulted in an error related to unsolvable ODEs.
Resetting the initial guess for parameter (mC)e to larger value helped in such cases. This undesirable
property of sensitivity to initial conditions was only seen in multi-compartment models.

14.3 Recommendations

We will conclude the thesis with recommendations for the future. Section 14.3.1 describes several
steps that need to be taken before the developed model is ready for use. Next steps for the imple-
mentation of the developed model are described; thereafter, possible improvements and extensions
of the model are suggested.
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14.3.1 Next steps for model implementation

First of all, designed model identification control sequences in the form of pseudorandom binary
sequences (PRBS) should be run at the plant. In such sequences, the flow and inlet temperature
should be controlled independently of all other inputs. The model should be verified on such se-
quences, because the resulting measurements will show a wider range of dynamics than the data of
the system under the implemented control.

Next, the performance of the model using (imperfect) input predictions from weather forecasts
should be tested. In order to use numerical weather predictions (NWPs) as an input for the model,
the predictions need to be transformed to match measurements at the plant. For example, the NWP
of solar radiation intensity should be adapted to account for shadowing and tilt effects. This has for
example been done by Bacher et al. in [57] using a local quantile regression model based on a third
order polynomial.

If the model performance well on the PRBS data and using NWP, a nonlinear control scheme can
be designed. The scheme should build on previous work, including the model predictive control
proposed by Andrade et al. [7].

For application of the model in practice, requirements for the data set used for parameter fitting
should be determined, both concerning its size as well as the different weather types it contains. It
would be useful to know how many days (or hours) of data are required to obtain reliable parameter
estimates, which make the model suitable for all different operation conditions.

In the current research, it was chosen to exclude the pre-heating phase from the data set for fitting.
Strict requirements were set for the incidence angle of the data points for fitting as well. It should
be investigated if these restrictions can be relaxed, so that a larger data set is left for fitting. This is
especially relevant for months in which the number of operating hours is restricted, and the incidence
angle is larger than 80° during a longer period.

It is further important to know how frequently the model parameters should be re-estimated over the
year. As far as seen in this thesis, the model can perform well for at least a month. It would be good
to develop an automatic detection method, that will notify the operator once the model parameters
need to be re-estimated. The possibility of using a prior when re-estimating the parameters can be
explored too.

14.3.2 Suggestions for future research

The developed model could be improved and extended in different ways. This section will outline
some interesting directions for for future research.

Ways to improve the non-parametric efficiency modelling should be investigated. Most visibly on
clear sunny days, the current method leads to a large prediction error in the afternoon. The residual
here was structurally negative, which means that the model over-estimates the outlet temperature.
The current splines are not flexible enough to fit the steep drop in efficiency that is apparently
required for the afternoon. The flexibility of the splines could be increased by adding the position of
the last inner knot as a model parameter. It should then automatically be positioned in a position
that allows for closer modelling of the efficiency drop. Alternatively, the final inner knot could
manually be positioned closer to the time of sunset.

As mentioned in the Discussion, the splines could be made in a general way to fit the whole year,
using two-dimensional splines on the solar azimuth and zenith angle.
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As the dynamics of the plant as well as the residual sizes differ considerably between clear and cloudy
conditions, a model with different regimes for each of these cases could improve performance. Such
regimes would be relevant for control schemes as well, because of the difference in residual sizes. The
regimes could be versions of the same model equation with different parameter fits, or even different
models. A fish-eye camera could be used for determining the regime the model should be in. These
cameras are cheap relative to for example diffuse radiation sensors.

Such fish-eye cameras have also been used for sub-hourly local solar irradiance forecasting, for
example using transfer functions [58] and artificial neural networks [59]. Such forecasts are also
interesting to combine with the model developed here, in order to predict sudden radiation drops
and corresponding outlet temperature drops, and in this way smoothen the control of the plant.

In this thesis, we have not devoted much attention to modelling the preheating phase of the plant.
It may be useful to develop a separate regime for the preheating phase as well.

In addition, it could be investigated whether multi-state models in flow directions could improve
the predictions. Instead of using hidden states (as done in this thesis), an additional temperature
measurement in the middle of a collector row could help to make these multi-state models work.

The model could further be made more detailed in space using more of the individual temperature
measurements that are available from the plant. The four rows for which inlet and outlet temper-
ature are measured could be modelled separately, leading to the prediction of four different output
temperatures. This may be important for the prevention of boiling in the collectors, as some rows
are shaded less than the average in the plant, and therefore may be at higher temperatures than
described by the current model.
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Appendix A

Derivation of the incidence angle

This section describes the computation of the incidence angle θ of the solar rays on the panels. It
is determined from the incidence angle of the sun (θs) and the orientation of the flat plates have
to be known. The latter is fixed, whereas the former depends on time, date, and the latitude. In
the computation we shall use the concepts of the azimuth and zenith angle. The azimuth is the
angle between a vector’s projection in the horizontal plane plane, and the vector pointing South.
The zenith is the angle in between the vector and the normal vector of the horizontal plane. The
orientation of the solar collector is given by the azimuth (γ) and zenith angle (β) of its normal
vector.

The computation of the solar incidence angle will be derived here, using the quantities d, h, and l
as depicted in Figure A.1. We can relate d, and h to the day of year n and the Local Clock Time
(LCT); l is the latitude.

The declination angle d captures how many degrees above the equator the sun’s rays hit the Earth
perpendicular to its surface. It is approximately a sine function, given by

d = 23.45 sin

(
284 + n

365

)
(A.1)

Figure A.1: Defining d, h, and l

The hour angle h expresses the angle that the earth has rotated since solar noon, the time of day
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that the sun was at its highest point. For the computation of this angle, it is important to take
into account the difference between a solar day and a calendar day. Whereas the latter always lasts
24 hours, a solar day is defined as the time that it takes for a stationary observer on Earth to go
through one solar cycle. the length of a solar day varies slightly with the obliquity and eccentricity
of the Earth’s orbit around the sun, and some other factors [60].

Each hour, the angle increases by 15°. However, clock time (also Local Civil Time, LCT) and the
so-called Local Solar Time do not match completely. Whereas a day on the clock is always 24 hours,
The Equation of Time, E, is used to correct for these differences between LST and LCT.

h = 15
π

180
(LST − 12)

LST = LCT +
Lstd − Lloc

15
+ E −DT

E = 0.165 sin(2B)− 0.126 cos(B)− 0.025 sin(B)

B =
360

364
(n− 81) (A.2)

In these equations Lloc is the longitude of actual location, Lstd is the standard meridian for the local
time zone (degrees west), n is the day of the year.

The computation of the sun’s direct beam zenith (θH) and azimuth (φ) angle are then as follows:

cos(θH) = cos(l) cos(h) cos(d) + sin(l) sin(d)

cos(φ) =
1

0.5π − cos(θH)

(
cos(d) sin(l) cos(h)− sin(d) cos(l)

)
(A.3)

Combining these with zenith and azimuth angle of the panels, the incidence angle of solar rays on
the panel can be computed.
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