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summary

This thesis investigates the problem of selecting an optimal reqularization parameter in high-dimensional
ridge regression models with random features. The work is situated at the intersection of machine learn-
ing, statistical signal processing, and random matrix theory, and aims to improve the understanding and
stability of regression-based learning in high-dimensional settings.

When the number of model parameters becomes comparable to the number of training samples,
conventional statistical assumptions no longer hold, and model performance can exhibit sharp transi-
tions or instability. In such regimes, ridge regularization plays a critical role in balancing model bias
and variance. However, determining the optimal regularization parameter ~ is non-trivial: existing
techniques such as cross-validation are computationally costly, while analytical approaches based on
deterministic equivalents—such as the method proposed by Couillet and Liao [6]—rely on asymptotic
knowledge of population statistics that may be inaccessible in practice.

To address this challenge, this thesis introduces a new derivative-based calibration rule for ridge
regression in random-feature neural networks. The proposed method identifies the optimal value of
directly from data by analyzing the empirical derivative of the training loss with respect to +. This
criterion provides a fully data-driven, computationally efficient alternative to deterministic-equivalent or
cross-validation-based calibration.

Theoretical development and analysis are supported by controlled numerical experiments. Syn-
thetic data simulations confirm that the derivative-based calibration achieves predictive performance
comparable to Couillet’s deterministic-equivalent rule across a wide range of dimensional ratios. Fur-
thermore, perturbation analysis demonstrates that the proposed method yields a more stable feature-
weight vector 8 under small input variations, indicating improved robustness and reproducibility of the
learned model.

Validation on real data is performed using the Fashion—MNIST dataset in a binary classification
setup. Results show that both calibration rules produce similar test accuracies (above 99%), while
the derivative-based approach consistently exhibits lower coefficient variance and better recall. This
stability of 3 suggests that the model learns a more reliable internal representation, which can be
advantageous in practical applications where interpretability, consistency, and downstream reuse of
learned features are important.

Finally, the discussion situates these findings in the context of broader research on high-dimensional
learning stability, linking them to studies in bioinformatics, neuroimaging, and industrial fault detection
where reproducibility of learned representations is critical. The thesis concludes that derivative-based
calibration provides a simple, effective, and theoretically grounded alternative to existing methods for
ridge parameter selection, combining strong empirical performance with enhanced stability and inter-
pretability.
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Introduction

1.1. Background and Motivation

In modern machine learning, models with a large number of parameters often outperform smaller ones,
even in cases where the number of features approaches or exceeds the number of training samples.
This high-dimensional regime challenges traditional statistical assumptions and motivates the need for
new analytical tools to understand model behavior, stability, and generalization.

Neural networks, especially those with random or fixed hidden weights, provide a simple yet power-
ful framework for studying these questions. When the hidden-layer weights are drawn at random, the
network acts as a nonlinear feature extractor, and the final linear layer reduces to a regression problem
in the resulting random feature space. This connection allows techniques from classical statistics and
random matrix theory to be used for analysis.

Among the most important components in such models is the choice of the regularization param-
eter in ridge regression. It controls the balance between fitting the data and maintaining stability of
the learned coefficients. Traditional tuning methods, such as cross-validation or asymptotic formulas,
can be computationally costly or rely on strong model assumptions. This motivates the search for
alternative, data-driven calibration approaches that can perform reliably in high-dimensional settings.

1.2. Research Objectives

The main objective of this thesis is to develop and analyze a new method for selecting the ridge regu-
larization parameter in random-feature regression models. The proposed derivative-based calibration
rule determines the optimal regularization strength by analyzing the empirical derivative of the training
loss with respect to the regularization parameter. The approach is entirely data-driven and avoids the
need for repeated training or asymptotic parameter estimation.

This work builds upon the theoretical framework introduced by Romain Couillet and co-authors in
their book Random Matrix Methods for Machine Learning [6] and related article [29], which provide
deterministic-equivalent analyses of high-dimensional ridge regression and random-feature neural net-
works. Their framework offers a rigorous, asymptotic approach to understanding how regularization
behaves when both the number of features and the number of samples grow large. Within this con-
text, Couillet and colleagues proposed a deterministic-equivalent calibration method for choosing the
optimal regularization parameter based on random matrix theory.

The present thesis extends this line of work by introducing an alternative, fully data-driven calibration
scheme that does not rely on asymptotic knowledge of model parameters. Specifically, the goals are

1



1.3. Thesis Structure 2

to:

» Formulate the derivative-based regularization rule within the framework of random-feature ridge
regression;

» Compare its performance to Couillet’s deterministic-equivalent calibration method, both theoreti-
cally and empirically;

» Evaluate the method’s stability under data perturbations and assess how it affects the learned
coefficients 3;

+ Validate the findings through controlled simulations and real-data experiments using the Fashion—
MNIST dataset.

Through these objectives, the work seeks to contribute both a practical calibration tool and a deeper
understanding of how regularization influences model stability in high-dimensional random networks.

1.3. Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 reviews the theoretical background,
including neural networks, random features, ridge regression, and random matrix theory. Chapter 3
develops the mathematical framework and introduces the proposed derivative-based calibration rule.
Chapter 4 presents numerical experiments on both synthetic and real data, comparing the proposed
method with existing approaches. Chapter 5 discusses the implications of the results, highlighting the
theoretical and practical significance of coefficient stability. Finally, Chapter 6 concludes the thesis and
outlines directions for future research.

Overall, the thesis combines theoretical analysis, numerical validation, and conceptual interpreta-
tion to provide a comprehensive view of regularization and stability in high-dimensional random-feature
models.



[iterature Review

Chapter 2 provides an overview of the main concepts and historical advances that underpin this thesis.
We begin in Section 1 with a general and broad introduction to the concept of neural networks, high-
lighting both their historical origins and their progression into deep, multi-layer architectures. This sets
the stage for why neural networks have become a dominant tool for complex learning problems and
tasks, but also why it can be potentially challenging to analyze them in a theoretical way.

From there, Section 2 narrows the focus to random neural networks, emphasizing how random
weights can be viewed as an efficient means of feature extraction, particularly in contexts with limited
data or strict computational budgets. We also discuss the use of randomization in modern practice—
ranging from dropout to “learning without backpropagation’—as these techniques share conceptual
parallels with the simpler random networks studied in this thesis.

In Section 3, we demonstrate that regression can be seen as a natural counterpart to single-layer
neural networks, especially through the lens of ridge regression on random features. Here, we con-
nect the dots between “pure” linear regression on one hand and single-hidden-layer “extreme learning
machines” on the other, underscoring how penalization (in the form of ridge regression) addresses
overfitting and stabilizes parameter estimates in neural nets.

Following that, Section 4 addresses the high-dimensional regime and the corresponding role of
random matrix theory (RMT). Modern applications often operate in scenarios where the number of
parameters and/or features is comparable to (or larger than) the number of data points. We show that
RMT, with its body of results on large random matrices and kernels, offers valuable insights into the
behavior of large-scale regressions and random neural networks alike.

Finally, Section 5 synthesizes these threads—bridging random neural networks, ridge regression,
and high-dimensional analysis—to foreshadow the technical work and contributions of this thesis. By
understanding the interplay among these ingredients, we can pinpoint how random fixed-weight models
can yield theoretical insights and practical benefits in high-dimensional settings.

2.1. Introduction to Neural Networks

Neural networks are one of the most important paradigms in machine learning, roughly inspired by the
structure of actual biological neurons. The core idea involves organizing computational units (called
‘'neurons’) into interconnected layers that in turn learn to approximate functions straight from the data.
Over the past decades, this arrangement design has evolved from basic, single-layer perceptrons into
deep, multi-layer architectures that can perform well in tasks such as image recognition, natural lan-
guage processing, even content generation. All of the aforementioned has cemented neural networks



2.1. Introduction to Neural Networks 4

as the primary tool in modern understanding of artificial intelligence.

In this section, we first examine the historical perspective on neural networks, shedding light on how
the early perceptrons established foundational ideas that still resonate today. Subsequently, we explore
the journey from simple to deep networks, highlighting key developments and the shift toward highly
expressive, large-scale models. This progression not only frames why advanced neural networks can
be so powerful, but it also underscores the growing need to better understand simpler random-weight
approaches both for computational practicality and for theoretical clarity.

2.1.1. Historical Perspective

The origins of artificial neural networks (ANNs) trace back to the mid-twentieth century, when re-
searchers first began exploring simplified mathematical models of biological neurons. One of the ear-
liest milestones was the perceptron model introduced by Rosenblatt in 1958 [41], which formalized a
neuron as a linear threshold unit capable of learning simple decision boundaries. The perceptron em-
bodied the promise of machine learning before the term was even widely used: a system that could
adapt its parameters based on examples rather than explicit programming.

The optimism surrounding early neural networks was tempered by their theoretical and computa-
tional limitations. In 1969, Minsky and Papert [34] rigorously demonstrated that a single-layer per-
ceptron could not represent non-linearly separable functions such as the XOR problem. This result,
combined with limited computational resources, led to a decline in neural network research, often re-
ferred to as the first "Al winter.” Nevertheless, the perceptron era established the mathematical and
conceptual foundations for later advances in supervised learning.

Interest was reignited in the 1980s with the rediscovery and popularization of the backpropagation al-
gorithm [42], which enabled efficient gradient-based training of multi-layer networks. Backpropagation,
initially studied in control theory and later formalized in the context of neural computation, allowed the
training of deep feedforward networks through layerwise error propagation. Around the same period,
Hopfield [17] introduced recurrent neural networks as energy-based systems, and Kohonen [23] pro-
posed self-organizing maps for unsupervised learning - broadening the scope of connectionist models
beyond simple classification.

By the early 1990s, networks such as the multilayer perceptron (MLP) and convolutional neural
network (CNN) [26] were already demonstrating strong performance on specific pattern-recognition
tasks. However, the combination of limited computational power and small datasets again constrained
progress. Itwas not until the 2000s, when large annotated datasets, increased computational resources
(notably GPUs), and improved regularization methods such as dropout [45] became available - that
neural networks began their modern resurgence. This period marked the advent of "deep learning” [25],
characterized by very deep architectures and millions of parameters capable of learning highly complex,
hierarchical feature representations.

In summary, the historical trajectory of neural networks can be viewed as an evolution from sim-
ple, interpretable linear classifiers to powerful but opaque high-dimensional systems. This progression
contextualizes the present thesis: while modern deep networks achieve remarkable empirical success,
understanding their behavior remains challenging. Studying simplified models, such as random-feature
neural networks analyzed through the lens of ridge regression and random matrix theory - offers a prin-
cipled way to recover theoretical tractability without abandoning the essential nonlinear mechanisms
that make neural networks effective.

2.1.2. From Simple to Deep

While early neural networks such as the perceptron demonstrated the feasibility of data-driven learning,
their representational power was limited to linearly separable problems. The introduction of hidden
layers provided a crucial breakthrough: multi-layer networks could approximate arbitrary continuous
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functions under mild assumptions, as formalized in the universal approximation theorem [8, 18]. This
theoretical result established that even relatively shallow networks, when equipped with non-linear
activation functions, possess the capacity to represent complex mappings between inputs and outputs.

In practical terms, however, training such networks remained difficult throughout the 1980s and
1990s. Deep architectures suffered from vanishing gradients, poor initialization, and overfitting in the
absence of large datasets. Research therefore concentrated on specific network designs that exploited
structure in the data. Notable among these were the convolutional neural networks (CNNs) of LeCun
et al. [27], which leveraged spatial weight sharing for image data, and recurrent neural networks (RNNs)
designed for sequential or temporal patterns [11]. These architectures anticipated modern deep learn-
ing by embedding strong inductive biases into network topology.

The modern "deep learning revolution” emerged in the mid-2000s, driven by three converging fac-
tors: increased computational power (notably GPU acceleration), large-scale datasets such as Ima-
geNet [9], and methodological innovations in optimization and regularization. Layer-wise unsupervised
pretraining using deep belief networks [15] and autoencoders [48] mitigated initialization problems,
while activation functions such as the rectified linear unit (ReLU) [35] and regularization techniques
like dropout [45] enabled stable gradient propagation and improved generalization. Collectively, these
developments unlocked the practical potential of deep architectures containing tens or even hundreds
of layers.

Subsequent milestones rapidly followed. Architectures such as AlexNet [24], VGG [44], ResNet [14],
and Transformers [47] demonstrated that depth, residual connections, and attention mechanisms could
be scaled to unprecedented levels, achieving state-of-the-art performance across vision, language, and
multimodal tasks. Yet, as networks grew deeper and more parameter-rich, their theoretical understand-
ing became more opaque. The same complexity that made deep networks powerful also made them
difficult to analyze or interpret rigorously.

This realization has inspired a complementary line of research that seeks tractable, theoretically
grounded models capturing the essential mechanisms of neural computation without the full complexity
of deep learning. Among these are random-feature networks, kernel approximations, and mean-field
analyses derived from random matrix theory. The present thesis situates itself within this latter tradition:
by examining simplified random-weight neural networks through the lens of ridge regression, we aim
to bridge the gap between deep learning practice and high-dimensional statistical theory.

2.2. Random Neural Networks

The study of random neural networks (RNNs)—also known as random-feature models or extreme learn-
ing machines (ELMs)—represents a significant simplification of traditional neural networks. In these
architectures, the weights of certain layers (often the hidden or feature-extraction layers) are not trained,
but instead initialized randomly and kept fixed throughout learning. Only the final layer, typically a linear
readout, is optimized. This randomization transforms the learning problem from a non-convex optimiza-
tion task into a tractable linear regression, enabling both analytical treatment and rapid computation.

2.2.1. Random Weights and Efficient Feature Extractors

The conceptual foundation of random-weight networks can be traced to early work on fixed-feature rep-
resentations and kernel methods. Neal [36] first demonstrated that infinitely wide neural networks with
random weights converge to Gaussian processes, establishing a deep connection between random
networks and Bayesian kernel machines. Later, Rahimi and Recht [39] proposed the random kitchen
sinks approach, showing that a wide class of shift-invariant kernels can be efficiently approximated by
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random feature maps of the form

cos(w{ X + by)
5 | cos(wq X + by)

¢(X) = N : ) (21)

cos(Wax + by)

where each w; is sampled independently from a distribution proportional to the Fourier transform of the
kernel, and b; is a random phase. This approach effectively replaces expensive kernel computations
with low-dimensional random projections followed by a linear model, enabling scalable kernel learning
in high dimensions.

A closely related stream of research explored randomization directly within neural architectures. In
the Extreme Learning Machine framework [19], the hidden-layer weights W are drawn at random and
fixed, while the output weights 3 are obtained in closed form through ridge regression:

B=(E"S+yIy)'ETY, (2.2)

where ¥ = ¢(WX) denotes the matrix of hidden-layer activations and o(-) is a nonlinearity such as
ReLU or sigmoid. This simple construction can approximate complex mappings while avoiding the
heavy computational cost of backpropagation. Huang and colleagues showed that even with com-
pletely random hidden weights, the ELM achieves strong generalization and extremely fast training
times, laying the foundation for the modern random-feature viewpoint.

From a theoretical standpoint, random-weight networks can be understood as finite-dimensional
approximations of kernel machines. The random mapping ¢(x) = o(Wx) induces an implicit kernel

k(x,x) = Eg[o(w %) o(w'x')], (2.3)

which for specific choices of activation functions yields well-known kernels such as the arc-cosine ker-
nel [4]. The random network thus serves as a Monte Carlo estimator of this kernel, bridging the gap
between neural and kernel-based learning.

Randomization also provides a form of implicit regularization. Fixed random features prevent the
model from overfitting by constraining its expressiveness and decoupling feature learning from weight
optimization. Furthermore, randomization simplifies theoretical analysis, allowing tools from random
matrix theory and statistical physics to be applied directly to study generalization, eigenvalue spectra,
and limiting distributions [38, 7]. These analyses have shown that even simple random networks exhibit
complex phase transitions between under- and over-parameterized regimes—insights that are difficult
to obtain in fully trained deep networks.

2.2.2. Random Neural Networks in Practice

Despite their simplicity, random-feature models have found wide use in practice. Rahimi and Recht’s
work [40] demonstrated that random Fourier features can scale kernel learning to millions of data points
without loss in accuracy. The same principle underlies several modern architectures: reservoir com-
puting [21, 30], echo-state networks, and certain forms of dropout regularization can all be interpreted
as imposing structured randomness within neural dynamics.

In computer vision and signal processing, random convolutional features have been used as lightweight
alternatives to deep learned filters when computational efficiency or interpretability is required [43]. In
reinforcement learning and continual learning, random projections help stabilize representation drift by
maintaining a fixed feature subspace [37]. Moreover, recent theoretical works [20, 32] have demon-
strated that the behavior of gradient-trained wide networks can often be approximated by their random-
feature counterparts in the so-called neural tangent kernel (NTK) regime.

The appeal of random neural networks lies in this balance between expressiveness and tractability.
They are expressive enough to model nonlinear relationships, yet simple enough to admit precise
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theoretical characterizations. In the context of this thesis, this property is essential: by freezing the
random features and focusing on the analytical form of the ridge regression solution (2.2), we can study
high-dimensional learning dynamics directly, derive deterministic equivalents, and explore new data-
driven regularization strategies such as the derivative-based calibration proposed in later chapters.

2.3. Regression in a Neural Networks Context

The connection between regression and neural networks is more than superficial: at its core, a feedfor-
ward neural network implements a composition of affine transformations and nonlinearities, followed
by a linear readout. When the nonlinear mapping is fixed or random, the learning task in the final layer
reduces to a regression problem on transformed features. This observation underpins both theoreti-
cal analyses of neural networks and practical algorithms such as the extreme learning machine and
random feature regression used throughout this thesis.

2.3.1. Regression—Neural Network Problem Equivalence

Consider a single-hidden-layer neural network with input x € R?, hidden weights W € R" %P, activation
function o(-), and output weights 3 € RY. The network output for a given input is

f(x) =B"o(Wx). (2.4)
Given a dataset {(x;, ;) }};, stacking all activations into a matrix

O'(WXl)T
U(WXQ)T
Y= _ e RN, (2.5)

(W) T

the empirical training objective under a squared-loss criterion becomes
min ¥B8-Y 26
B n »

where Y = [y1,2,...,y]". If W and o are fixed, the optimization in (2.6) is identical to a linear
regression on the nonlinear feature vectors ¢(x;) = o(Wx;). In this sense, the neural network acts as
a nonlinear feature generator, while the training process in the final layer corresponds to ordinary least
squares (OLS) estimation:

Bos=(='%)'8TY. 2.7)

This equivalence highlights the dual view of single-layer networks as regressors operating in a
random feature space. From a functional perspective, f(x) approximates an underlying mapping f*(x)
via linear combination of basis functions {o(w, %)} ,, analogously to classical regression models
that approximate functions through polynomial or spline bases. When N is large, the random basis
becomes highly expressive, and the regression solution (2.7) provides an efficient projection of the

target function onto the subspace spanned by the random features.

2.3.2. Ridge Regression (Penalization)

In high-dimensional settings, where N (the number of features) is comparable to or larger than n (the
number of samples), the matrix X7 ¥ in (2.7) is often ill-conditioned or singular. This makes the OLS
solution unstable and highly sensitive to small perturbations in the data. To mitigate this, a regularization
term is introduced, leading to the ridge regression or Tikhonov regularization estimator:

Bridge = (BT +In)7'2TY, (2.8)
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where v > 0 is the regularization parameter controlling the trade-off between data fidelity and weight
magnitude.

Ridge regression can be interpreted from several complementary perspectives:

« Statistical: it shrinks coefficient estimates toward zero, reducing variance at the cost of a small
bias [16]. This stabilizes predictions in the presence of multicollinearity or limited data.

» Bayesian: it corresponds to a maximum a posteriori (MAP) estimator under a Gaussian prior
8 ~ N(0, %IN), linking regularization to prior belief on model complexity [46].

+ Numerical: it improves the conditioning of X" X, ensuring invertibility and controlling the amplifi-
cation of noise.

In the neural-network setting, ridge regularization plays a role analogous to weight decay or /-
regularization in deep learning. The effect of v on the spectrum of (X7 ¥) determines both the smooth-
ness of the fitted function and the stability of the learned weights [12]. As v — 0, the estimator ap-
proaches the minimum-norm interpolator; as v — oo, it collapses toward zero.

Formally, ridge regression defines a kernel machine with implicit kernel
k(x,x') = %O’(WX)T(O’(WX,)), (2.9)
so that the predictor may be expressed equivalently as
f(x) =kx)"(K+7L,)""Y, (2.10)

where K = ©X T /N is the empirical kernel matrix. This dual formulation makes the connection between
ridge regression, kernel methods, and random-feature neural networks explicit, establishing a unified
mathematical framework that later sections of this thesis leverage for high-dimensional analysis and
regularization calibration.

2.4. High-Dimensional Statistics and Random Matrix Theory

The practical and theoretical challenges of modern machine learning often arise in the so-called high-
dimensional regime, where the number of model parameters or features is comparable to, or even
exceeds, the number of available samples. Classical statistical theory, which assumes a fixed feature
dimension p and an increasing sample size n — oo, no longer provides reliable approximations in
this regime. Instead, understanding the behavior of estimators and algorithms requires asymptotic
frameworks that allow both p and n to grow together at a comparable rate.

2.4.1. High-Dimensional Regime

In high-dimensional statistics, quantities that were once negligible—such as correlations among fea-
tures or small eigenvalues of sample covariance matrices—become dominant. A central parameter
characterizing this setting is the aspect ratio

c=2 2.11)
n

which measures the dimensionality of the problem relative to the number of observations. When ¢ « 1,
the system is overdetermined, and classical intuition holds: estimators are consistent, and sample co-
variance matrices approximate their population counterparts. However, when c approaches or exceeds
unity (¢ > 1), the sample covariance matrix becomes singular, and naive estimators such as ordinary
least squares (2.7) become ill-posed. This is precisely the regime where regularization methods like
ridge regression become essential.



2.4. High-Dimensional Statistics and Random Matrix Theory 9

The study of this high-dimensional behavior has revealed a series of nonintuitive phenomena. For
example, ridge regression and related estimators exhibit a double descent risk curve [3], where in-
creasing model complexity initially worsens generalization (the classical bias—variance trade-off) but
later improves it again once p > n. These effects stem from spectral properties of random design ma-
trices and have motivated the development of asymptotic tools to characterize estimator performance
when both p and n are large.

Modern theoretical analyses therefore treat the design matrix X € RP*™ as random, often assuming
entries that are independent and identically distributed (i.i.d.) with zero mean and variance scaled as
1/n. This scaling ensures nontrivial limiting spectra as n,p — oo. The statistics of the eigenvalues of
sample covariance matrices S = }LXXT form the cornerstone of this analysis and are governed by
results from random matrix theory (RMT).

2.4.2. Random Matrix Theory Essentials

Random matrix theory provides a framework for studying the spectral behavior of large random matrices—
such as covariance matrices, kernel matrices, or weight matrices in neural networks—when their dimen-
sions grow without bound. Originating in nuclear physics with Wigner’s work on energy spectra [50],
RMT has since become a central tool in high-dimensional statistics [2] and modern machine learning [7].

One of the most fundamental results in this field is the Marchenko—Pastur law [31], which describes
the limiting empirical distribution of eigenvalues of the sample covariance matrix S = %XXT. If the
entries of X are i.i.d. with mean zero and variance 1/n, then as p,n — oo with p/n — ¢, the spectral
density of S converges almost surely to

VO =N =)
2me ’

PN = (1 - 1), 5(0) + e oA, (2.12)

where A\ = (1+./c)? define the spectral support and (z) . = max(0, z). This result implies that, even in
the absence of structure, the eigenvalues of high-dimensional covariance matrices exhibit systematic,
nontrivial distributions that deviate from their population counterparts.

RMT also provides tools such as the Stieltjes transform, defined as

m(e) = [ 17 dov), (2.13)

which serves as a key analytical function for characterizing the spectral properties of random matrices
and for deriving deterministic equivalents in high-dimensional limits. These equivalents approximate
random quantities—such as the generalization error or the trace of resolvents—with deterministic limits
as n,p — oo [5].

In the context of ridge regression and random-feature networks, random matrix theory enables
closed-form asymptotic expressions for training and test errors [10, 28, 13]. These results make it pos-
sible to predict model behavior and regularization effects without Monte Carlo simulations, by solving
fixed-point equations involving the spectral density (2.12) or its transform (2.13). Crucially, they reveal
how phenomena such as double descent, bias—variance trade-offs, and stability depend on spectral
properties of the random design matrix.

Overall, RMT provides the mathematical backbone for analyzing high-dimensional learning systems,
including random-feature neural networks. It supplies the deterministic equivalents and asymptotic
limits upon which the theoretical developments and calibration strategies of this thesis are built.

In this thesis, random matrix theory underpins not only the analysis of the ridge estimator but also the
construction of the random-feature model itself. Specifically, the hidden-layer weight matrix W is drawn
with i.i.d. Gaussian entries, a choice justified by RMT results showing that Gaussian ensembles yield
well-defined and analytically tractable spectral distributions in the large-dimensional limit. This property
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ensures that the empirical covariance of the random features ¥~ = ¢(WX) concentrates around its de-
terministic equivalent, enabling precise asymptotic analysis. Consequently, the theoretical framework
of RMT directly supports both the modeling assumptions and the derivation of the derivative-based
calibration rule proposed in this thesis, as it allows one to characterize how the choice of v and the
feature dimensionality jointly affect stability and generalization in high-dimensional regimes. That is to
be discussed in details later in Chapter 3.

2.5. Synthesis and Relevance to Our Work

The preceding sections have outlined the key developments that converge to form the conceptual foun-
dation of this thesis. Neural networks have evolved from simple perceptrons to deep, highly expressive
architectures capable of learning complex representations. Alongside this empirical success, simplified
variants such as random-feature networks and extreme learning machines have emerged as tractable
models that retain much of the representational richness of deep networks while admitting analytical
treatment.

The random-weight paradigm provides a crucial simplification: by fixing the hidden-layer parame-
ters and focusing learning on a single linear output layer, the training problem reduces to a convex
regression task. This structure allows the use of closed-form estimators such as ridge regression,
linking neural computation directly to classical statistical theory. The equivalence between neural net-
works and regression models, made explicit in (2.8), reveals that many stability and generalization
properties of networks are ultimately governed by the spectral characteristics of the random feature
matrix ¥ = c(WX).

High-dimensional statistics and random matrix theory extend this connection further by providing
the analytical machinery to characterize such spectral properties. Results such as the Marchenko—
Pastur law and its deterministic equivalents describe how the eigenvalue distributions of large ran-
dom matrices govern estimator variance, bias, and stability. Through this lens, neural networks—and
random-feature models in particular—can be studied as high-dimensional statistical systems whose
performance depends not only on their architecture or activation function, but also on the asymptotic
interactions between sample size, feature dimensionality, and regularization strength.

This theoretical synthesis motivates the central focus of the present thesis. Traditional calibration
methods for ridge-type estimators, such as cross-validation or Couillet's deterministic-equivalent ap-
proach [6], provide systematic ways to tune the regularization parameter . However, these methods
rely either on computationally intensive resampling or on asymptotic approximations that require full
knowledge of model parameters. By contrast, the derivative-based calibration rule developed in this
work offers a fully data-driven alternative: it determines the optimal v by analyzing the empirical deriva-
tive of the training loss with respect to the regularization parameter itself.

Viewed in this broader context, the proposed approach embodies the same philosophy that under-
lies much of modern high-dimensional learning: to design estimators that remain theoretically inter-
pretable, computationally efficient, and empirically robust even when operating in regimes far beyond
the reach of classical statistical assumptions. The subsequent chapters build upon this synthesis, de-
veloping both the analytical framework and the empirical validation that demonstrate how derivative-
based calibration can serve as a practical and theoretically grounded regularization principle for random-
feature neural networks.



Methodology

In the methodology section, the setting of the study will first be described, detailing the high-dimensional
setting and the corresponding parameters arrangement involved, as well as the mathematical formula-
tion of the single-layer perceptron model with random Gaussian weights. Following this, the problem
inherent in the conventional approach to ridge regression will be articulated, with a particular focus
on the discrepancies observed in the optimal regularization parameter v found through minimizing tra-
ditional for this setting error metrics as opposed to different, direct error measures. Finally, potential
solutions to address these discrepancies will be proposed and explored, with the aim of refining the
ridge regression method to achieve more reliable and consistent results in high-dimensional contexts.

In recent decades, random neural networks have gained prominence as an effective solution to
various challenges in machine learning. These networks are particularly advantageous in scenarios
with limited training data, as they help mitigate the constraints of computational and memory resources.
Furthermore, random neural networks serve as efficient random feature extractors, enhancing their
utility across a range of applications. In this context, the application of ridge regression within these
networks, is explored, aiming to leverage their strengths while addressing the unique challenges they
present.

3.1. Model Setting

As was stated before, focus of this study lies within researching behaviour of ridge regression methods
in application with relatively simple neural network setting in high dimensions, and the issues of the
conventional approach caused by such an arrangement. In this section, model setting as well as the
toolbox of the original, traditional approach to high-dimensional ridge regression is being discussed.

3.1.1. Ridge Regression With Random Neural Network

A structure of the single-hidden-layer neural network that is being used for the studies is depicted on
the figure 3.1. 2

Hence, the setting is the following:

Given the input data matrix X = [xi,...,x,] € RP*", where each column x; € RP? represents
an input vector, the neural network processes this input through a randomly initialized weight matrix
W < R¥*P_ The entries of W are independent and identically distributed (i.i.d.), following a standard
Gaussian distribution.

11
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Input layer Hidden layer Output layer

Y =o(WX) e RN

X € RP"——

W e RN*p f e RN

Figure 3.1: A diagram illustrating the structure of the single-layer random neural network.

The output of the first layer is denoted by 3 = o(WX) € RV*" where o : R — R is some activation
function applied entry-wise to the product WX. This results in a feature matrix X, where each column
o(Wx;) represents the transformed feature vector for the input x;. These columns can be interpreted
as random features (nonlinear random features in case function ¢ is nonlinear itself) of the input data.

The second layer of the neural network involves a weight matrix 3 € RV >4, which is learned to
map the feature matrix X to the target output Y = [y1,...,y,] € R**", where each column y; € R?
represents the target vector associated with the input x;. The learning of 3 is performed by minimizing
a regularized loss function.

Therefore, the overall architecture of the neural network involves transforming the input data through
a random weight matrix, applying some activation function to obtain random nonlinear features, and
then learning a weight matrix to map these features to the desired output. This setup leverages the
randomness in the weights to extract useful features from the input data, while the learning process
focuses on minimizing the prediction error through a regularized optimization problem.

The output weight matrix 5 is learned to minimize the regularized mean squared error:

L) = =3 llvi — BTo(Wx)[|* + 7 1813

=1

The aim is to find the 3 that minimizes this loss. The loss function can be rewritten using matrix
notation. The loss function can be written as:

L(B) = TR (Y — 5 )Y ~ 5TS) ") +4Te (57 B).

We then differentiate L(3) with respect to g:

oL(B) 0 (1 T Ty T T
95 = 53 (nTr((Y —BTENY -BTE)") +4Tr(B 6)) :
Using matrix calculus, we have:
0 1 T Ty Ty ) 2 _ARTsyT
9 (nTr((YB (Y -4'Y) )> =-3(Y-5'%),

and

% (yTr(BTB)) = 298.
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Combining these results, we get:

8L(6)_g _ 3T T _E To_v7T
W—HZ(Y BE) +:yp=_%E f-Y )+ 6.

Setting the gradient to zero for minimization, we have:

0= %E(ETB —Y") +295.

From there, rearranging the terms:

2 A2 -
0="2T8+-3ZY" +29p
n n
S N
0=(=-¥% +1Iy )8+ XY
n n
1ot ol
¥ 47Iy | f=—-2Y
n n
Thus we obtain the closed-form expression for the ridge-regressor:

—1
B = %2 (izzﬁ +71n> Y'. (3.1)

3.1.2. Error Approximation in High-Dimensional Setting: a Conventional Approach

In the realm of high-dimensional settings, traditional approaches to error estimation have been well-
documented and provide foundational insights into the behavior of models. This conventional approach
is detailed extensively in the book [6].

Indeed, it is not difficult to observe that the error terms can be computed directly from the data. The
training mean squared error (MSE) on the given training set (X,Y) is given by:

1 2
Eyain =~ YT = 278||% = ZtrYyQ*(1) Y, (3.2)
n n

Please note, that here j is as in the formula (3.1), whilst Q(v) is the resolvent of 173, defined as:

-1
Q(y) = <iETE+wIn> ) (3.3)

Similarly, the test MSE on a test set (X, Y) € RP*™ x R4*7 of test sample size 7 is given by:
1 Yal T 2 1 Ya YAl 2 Tsw~T 1 T T T
Blest = ~ HY > 5H — VYT - —YQETEYT + ——trYQETERTEQY (3.4)
n F n nn n<n

where 3 = ¢(WX).

The traditional approach, as mentioned before, opts for effectively estimating these error 3.2 &
3.4 rather than using the original expressions. The question arises: why estimate errors when direct
computation of Fi.in, and Fiest is possible? The challenge lies in the high-dimensional regime, where
parameters p, n, and N (dimensionality of the data, size of the dataset and number of neurons in the
hidden layer, respectively) grow large simultaneously. Under these conditions, computing FEjin, for
example, becomes computationally intensive due to the inversion and the inherent randomness of 3
through .
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The randomness, while not a direct computational hurdle, complicates the assessment of the asymp-
totic behavior of Ey,in. Small changes in input can lead to significant variations in output, complicating
the understanding of error behavior. To address this, the resolvent Qis employed to approximate the
asymptotic behavior of Ei,i,. This method leverages the resolvent to simplify the complexity associ-
ated with the randomness of W. This logic is applicable to Eist as well, providing a comprehensive
framework for error approximation in high-dimensional settings.

The approximations Fyrain @and Etest are based on the assumption that the matrix W is sub-Gaussian
and that the function o is Lipschitz continuous [29]. These assumptions are necessary to apply con-
centration inequalities and derive deterministic equivalents for the resolvent and the error terms.

Assumptions and Lemmas To rigorously justify the use of Etrain and Flest, We rely on several key
results from random matrix theory.

Assumption 1. (Sub-Gaussian W): The matrix W is defined as W = <;S(VV), where W has i.i.d.
N(0,1) entries and ¢(-) is A4-Lipschitz. For a = ¢(b) € R, ¢ maps b ~ N(0, I,) to a ~ Ny (0, I,).

Assumption 2. (Function ¢): The function o is Lipschitz continuous with parameter \,. This
assumption holds for many activation functions used in neural networks, such as the rectified linear
unit (ReLU).

Assumption 3. (Growth Rate): As n — oo,

N N
0< liminfmin{p,} < limsupmax{p’} < 00
n n’' n

n—o0 n n—00

while v, A5, Ay > 0 and d are kept constant. Additionally,

limsup || X|| < co, limsupmax [Y;;| < oco.
n— oo n—oo %

Under these assumptions, we can state the following key results:

Lemma 1. (Concentration of Quadratic Forms): Let Assumptions 1 and 2 hold. For X € RP*"
and w ~ Ny(0, I,,), define the random vector o = o(w ' X). For A € R™ ™ with ||A]| < 1,

1 1 —cN min ﬁ,t
P (‘NUTAO— - Ntr(i’A)‘ > t) < Ce ( )

for some constants C, ¢ > 0, where & = E[o(w ' X)o(w ' X)][29] .

This lemma ensures that the quadratic forms involving o(w " X) concentrate around their expecta-
tions, allowing us to replace random terms with deterministic equivalents.

Theorem 3.1.2.1. (Asymptotic Equivalent for E[Q]): Let Assumptions 1-3 hold and define Q as
Q= (Ni’ + 7In) - , (3.5)
n
where § is the unique positive solution to § = +:tr(®Q). Then, for all e > 0, there exists ¢ > 0 such that
IE[Q] — Q| < en'/2*e
[29].

This theorem provides an asymptotic equivalent for the expectation of the resolvent Q, allowing us
to approximate E[Q] with Q in high-dimensional settings.

Using these results, we can derive the asymptotic approximations for the training and test mean
squared errors:
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Theorem 3.1.2.2. (Asymptotic Training Mean-Square Error): Let Assumptions 1-3 hold. Then, for

Ale=o n*/*=¢(Eyain — Eyain) — 0 almost surely,
where ) s )
Buan =+ [YT = =73 = TArY@2()Y ",
Eleain = %Qtr (YTYQ (itr(@QQ)(IN - itr(qﬂQ?))—l) Q) (3.6)
[29].

Similarly, for the test mean squared error:

Conjecture 3.1.2.1. Deterministic Equivalent for Es:: Let Assumptions 1-2 hold. Then, forall e > 0,
nY?"¢(Etest — Erest) — 0 almost surely,

where 1 )
Fa— ¥ -5
Frost = % HYT f éTQYTHi + %tr(YTYQ@Q) (1 _ itr(@Q))l (3.7)
129].

Kernel-Based Reformulation of Asymptotic Errors Based on our previous considerations, we can
express the results in terms of the limiting kernel K, which provides a deterministic framework for un-
derstanding the behavior of the model. The kernel K effectively captures the feature mapping induced
by the activation function o and is pivotal in characterizing the asymptotic properties of the model's
performance. This approach leverages Theorem 3.1.2.1 and Conjecture 3.1.2.1, which demonstrate
how the effective kernel K influences the training and test errors.

To compute the effective kernel K, we employ the fixed-point equation derived from Theorem
3.1.2.1, which is iteratively solved to obtain:

_ N K
K=——"- 3.8
L (3.8)
where § is defined as: )

Derivation of Asymptotic Errors with K The asymptotic training mean squared error E,i, is given
by:

FErain = i HYT - ETﬂH2 = ﬁtr(YQgYT) (3.9)
N N ’

which can be rewritten using the kernel as:

Fran = Lt (va( vUQKQ) g L)ax) (3.10)

where:



3.1. Model Setting 16

Similarly, the test mean squared error Ei.g is expressed as:

1
Etest ==
n

‘el fﬁ:TﬂHQF, (3.11)

and can be reformulated in terms of the kernel:

1tr (YQRQY)
~ T4KQKQ

_ 1|1« _ - 2 1, o 1 = _ ~
Erest = ﬁ HYT - K;l;xQYTHF'F <ﬁtrKXX - atr(In + WQ)(K;XKXX )) (3-12)

where the effective kernels are defined as:

Kxx =E[o(X w)o(w'X)],

Ky s = Elo(X w)o(w X)),

and their normalized counterparts:

_ N K
K="
nl+d’
> N Kxx
XX p 1446’
NKgx

The kernel K replaces the need for direct computation of the matrix ¥ by leveraging determinis-
tic equivalents, which simplify the complexity of high-dimensional analysis. This methodology aligns
with the results derived in [6], where the effective kernel K is shown to have a significant impact on
regression performance, providing a reliable approximation of the model’s behavior in the asymptotic
regime. By applying these insights, we can gain a deeper understanding of the model’s performance
and address potential issues such as overfitting by examining the interaction between p/n, N/n, and
the choice of activation functions.

In summary, these results provide a rigorous foundation for approximating the training and test mean
squared errors in high-dimensional settings. By using the deterministic equivalents Etram and Eliest, We
can effectively handle the complexity introduced by the randomness of ¥ and gain insights into the
asymptotic behavior of the error terms [29].

3.1.3. Variability and Extensions of the Model

In this subsection different parameters and model arrangement are going to be considered in order to
explore the possible variability of the model. Exploring various aspects of the neural network model
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is crucial for understanding its performance and behavior. Modifying different parameters and func-
tions, such as activation functions, kernel choices, and ratios like 2 and ¥ .» can significantly impact the
model’s ability to generalize and avoid overfitting. Moreover, it will be later shown in the results section
that our analysis leads to different results, which vary substantially with changes in the parameters.

Different Activation Functions and Kernels Activation functions play a pivotal role in defining the
nonlinear transformations within the neural network. Commonly used activation functions include ReLU,
sigmoid, tanh, and others, each impacting the network’s behavior differently. These functions lead to
different kernel functions, influencing how data is mapped and processed. For instance, the ReLU
activation function corresponds to a specific kernel, while other functions like sigmoid and tanh result
in distinct kernels.

Different activation functions lead to different kernels, impacting the behavior and performance of
the neural network. For a given dataset X, it is possible to compute the "limiting” kernel K for the
listed activation functions o(-) using theoretical results. By iterating the fixed-point equation presented
in Theorem 3.1.2.1, one can derive the effective kernel K = & K 5 in practical settings where n,p, N
are large. This effectlve kernel provides insights into the regressmn performance and is advantageous
as it applies to deterministic input data X rather than relying on randomly modeled data. Table 3.1
from [6] lists the limiting kernels for various activation functions, highlighting the diverse impact these
functions have on the model:

o(t) K(x,y)
t x'y
2| Zllx|l - Iyl (£ - aresin(£) + V1 = £2)
ReLU(t) = max(t,0) o Ix[| - [ly]l (£ - arccos(—L) + V1 — £2)
at max(t,0) + a_ max(—t,0) | $(a? +a®)x"y + &/ - |yl ((ay +a—)? (=L - arccos(L) + V1 — L?))
ast® + ait + ag a3 (2(xTy)? + [x[PllylI?) + a?x "y + azao (||x]1* + [[yl]*) + a5
erf(t) 7 aresin <\/(1+2f|x2><yl+2|y|2>>
150 1 — 5 arccos(L)
sign(t) 2 arcsin(L)
cos(t) exp (=3 ([[x* + [ly[|*)) cosh(x "y
sin(?) exp (=3 ([ + ly[*)) sinh(x "y
exp(—t?/2) -

VO] O+y[12) = (xTy)?

Table 3.1: Limiting kernel k(x,y) = E[oc(w " x)o(w " y)] for standard Gaussian w, with £ = T H Hyy\l'

Variability with Increasing Layers and Loss Functions Beyond activation functions and kernel se-
lections, the variability of the model’s architecture itself, such as the number of layers, plays a crucial
role in determining performance. Adding more layers can introduce additional complexity and depth,
allowing the network to capture intricate patterns and interactions within the data. However, this com-
plexity must be balanced with the risk of overfitting, particularly in high-dimensional settings where the
ratio p/n and N/n can exacerbate model instability.

In the upcoming results section, we will present experiments that demonstrate the impact of differ-
ent architectural configurations on the model’s performance. This will include analyses of varying the
number of layers and other hyperparameters to provide insight into how such modifications can be
optimally tuned for specific tasks.
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3.2. Experimental Setup

For the initial testing, we consider a one-hidden-layer neural network with Gaussian weights and a
linear activation function for simplicity. The goal is to study the behavior of this network in relation to
the training and test errors, particularly when regularizing the model using the ridge regression penalty.

In our setup, the input matrix X (both for training and test sets) is generated as a Gaussian ran-
dom matrix with independent standard normal entries. We use the following specific steps for data
generation:

+ The weight matrix W is Gaussian, meaning each entry of W ¢ RV*? is drawn from N(0, 1),
where N represents the number of neurons in the hidden layer and p is the input dimensionality.

» The target vector b is generated randomly with binary entries, where each entry takes a value of
0 or 1 according to a certain density parameter. For instance, a density of 90% means approxi-
mately 90% of the entries of b are set to 1 and the rest to 0.

« The output vector Y is generated according to the relationship Y = £ Tb + ¢, where & = ¢(WX)
is the activation matrix, X represents the input matrix, and ¢ is a Gaussian noise term with a
certain noise level.

For the ridge regression model, we aim to find the optimal regularization parameter ~ that minimizes
both the training and test errors. To estimate the training error FEi.,in, we calculate it as the squared
difference between the observed training outputs Yy,in and the predictions of the model. Similarly, the
test error Ejest is computed on the unseen test data. Additionally, deterministic equivalents of these
errors, Etra.n and Fiest, are obtained using approximations from random matrix theory, which simplify
the analysis of the model’s behavior.

For this setup, we use the following values for the key parameters:

* p/n ratio (a parameter under investigation), denoted as c¢;, where p is the input dimension and n
is the number of training data points.

* N/n ratio (another parameter under investigation), denoted as ¢, where N is the number of
neurons in the hidden layer.

» A range of values for n (number of data points) - for the initial experiment taken as values from
100 to 3000, increasing in increments of 200.

+ A binary target vector b generated with a certain density value (parameter under investigation).

« A range of regularization parameters ~ explored, from 10~7 to 10°.

We explore these settings using both a Monte Carlo method (random-based computations of Eiin
and Fiest) and deterministic equivalents based on approximations for the kernel matrix K.

The choice of the regularization parameter v was made by examining the range in which the most
interesting behavior occurs. As shown in the next section (Figure X.X), the test and training errors
exhibit significant changes in behavior when + is between 10~7 and 102. This range captures the transi-
tion where the errors are minimized and gives us insights into the model’s performance. Consequently,
we focus on this interval to explore the optimal value of ~.

Regarding the choice of data point values n, we selected the range of 100 to 3000 to fit within the
computational resources available on the Delft hypercomputer cluster. Larger values of n were not
feasible due to resource limitations, and this range was found to be sufficient to observe the desired
trends in the model’s behavior.
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3.3. Algorithm Optimization

This section describes how we transform a straightforward ("naive”) implementation of the pipeline into
an optimized one that is both faster and numerically more stable. We assume the reader is familiar with
the experimental setup and notation from the preceding sections: given standardized data (Xt,, Xt.),
labels v, g1 € {—1,+1}, arandom-features matrix W € RY*? and an activation o(-), we evaluate two
one—dimensional calibration rules for the ridge penalty v-Coulliet’s deterministic-equivalent test proxy

Eest(7) (to be discussed in later chapters, cf. Eq. (3.12)) and our direct-loss rule based on (%Eg{rift) ()
(cf. Eq. (4.3b))—and then form 5(7) via the closed-form ridge expression (Eq. (3.1)).

3.3.1. Naive baseline: what is expensive

In a direct implementation, for each grid value ~ one typically:
1. Recomputes kernel blocks K, = K (X, Xtr), Kox = K(Xtr, Xte), Kxx = K(Xte, Xto);
2. Solves the fixed point for § = é(~y) by repeatedly forming and inverting

ﬁ Ktr

Q(v,9) = w140

+ s

(RSS)
direct

3. Evaluates E. () and/or oL (7) using dense n x n linear algebra;
4. Forms the ridge solution 3(7) = Z(1xTx + 7[)_13/, where ¥ = (W X4,).

Steps (2)-(4) perform an n x n factorization/inversion per ~. In perturbation studies, repeating the same
work per scenario quickly dominates runtime and accumulates numerical error.

3.3.2. Optimized pipeline: what we change

We refactor the computation so that all operations that do not depend on ~ (and, where possible, that
do not depend on the scenario) are computed once and then reused. The concrete changes are:

(O1) Precompute kernels once and reuse. Compute the Gram blocks
K, K.x, Kxx

once per dataset (or once per scenario when the training inputs are perturbed). The arc—cosine kernel
implementation is numerically stabilized via norm products clamped away from 0 and cosine arguments
clipped to (—1,1).

(02) Eigendecompose K., once; diagonalize the fixed—point map. Write K;, = VAV " with A =
diag(A;). The fixed—point iteration

1< Ai _ N/n
0= E;a(a)xiﬂ’ a(9) = 1446’

no longer requires forming Q—*; it becomes a cheap diagonal update using only {\;}. All E;.s () terms
that involve traces with Q(v, §) ! reduce to sums over d;(~,d) = a(5)\; + 7.

(O3) SVD trick for random features; avoid matrix inverses. Let A = X/ /n with thin SVD A =
USV'T, S =diag(s;) (i=1,...,7). Then

(%2T2+71)71 - Vdiag(

1
1 T
S?T’Y)V + ;Pnulla
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so that both 3(7) and the direct derivative

r Ty)2 - P IE; . 1 n—r
) E(RSS) _ (’Ul y) + Hy spany||2 . 52 +
Y~ direct (7) Y ; (522 + 7)3 RSS(’Y) Z (522 + 7)2 2

7’ i=1 v

are computed by elementwise operations on {s?}. The RSS variance is computed consistently from

the same SVD: ,
R 1
U%{SS(’Y) = n

g T
174
S% + v

1
y|| + n ly — PSPaIlyH%'

2

(O4) Factor once, solve many. Cholesky/triangular solves replace explicit inverses everywhere
(when we operate in the n x n domain). In the RKHS route, all per-y work lives on the diagonal {d;};
in the random features route, all per-y work lives on {s?}.

(O5) Grid evaluation by broadcasting. We evaluate E.(v) and &Yﬁ(diift) (7) on the full log—grid

using vectorized broadcasts over d; (v, §) or s? + v, thereby avoiding Python loops.

(06) Caching across scenarios. We keep W fixed and reuse all W—dependent quantities (e.g.
shapes, normalization). For Coulliet’s route, only (K, K, x, Kxx) and their eigenpairs change when
training inputs are perturbed.

3.3.3. Complexity at a glance
Let n be the train size, |G| the grid length, and » = rank(A4) < min{N, n}.

« Naive: O(|G|n?) for repeated inversions in the ¢ loop and in 3(v) per grid point, plus kernel
recomputation per ~.

* Optimized:

One eigendecomposition of Ki.: O(n?).

One SVD of A: O(nr?) or O(Nr?) (economy SVD).

Per v: O(n) for Coulliet (diagonal arithmetic on {d;}), O(r) for Direct (on {s?}).

Per scenario: recompute kernels and one eigendecomposition of Ki,; reuse all grid—wise
vectorization and SVD formulas.

In practice this reduces wall-clock time by one to two orders of magnitude for the grids and scenario
counts considered, while improving numerical stability by avoiding explicit inverses.

3.3.4. Practical notes

» Storage. We store baseline and per—scenario betas/gammas in compressed NPZs. Reusing W
ensures fair, paired comparisons across scenarios.

» Determinism. A single seed controls scenario design and W; results reported in the main text
do not depend on the particular seed choice in any qualitative way.

Takeaway. The optimized pipeline moves all v-dependence to diagonal arithmetic on spectral quanti-
ties, eliminates explicit inverses, and restricts per scenario searches to local grids. This yields substan-
tial speedups and improves numerical behavior, especially critical in the perturbation analysis, where
many closely related problems must be solved repeatedly.
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3.4. Problem Arising

To briefly recap: in the preceeding sections we have explicitly derived the expressions for Eiin (3.2)
and Eiest (3.4), which represent training and test mean squared errors (MSE) respectively, in the high-
dimensional regime. By using results from random matrix theory we formulated deterministic equiva-
lents Fiain (3.10) and Flest (3.12) for Ey.in and Eiest. These equivalents allow for the approximation of
these error metrics in scenarios where the number of data points n, the number of features p, and the
number of neurons N are large. Approximations themselves depend on the resolvent Q (3.5), which
captures the effects of randomness inherent in the data through the Gram matrix and the kernel matrix.
From there we have found an optimal value of hyperparameter ~ that allows to optimize expressions
for both Eiain (3.10) and Elest (3.12).

However, a critical issue arises when comparing the optimal v values obtained through this approach
with those obtained through direct minimization of the ridge loss function, which in our case we dxefined
as:

2 112
Lrigge = 18—Vl (3.13)
B

where b is the target vector, and 3 is the solution obtained from ridge regression: (3.1):

s 1 1 T - T
B=-3(-22T +41,] Y,
n n

This metric evaluates how well the predicted coefficients match the true target vector, with the goal
of minimizing the relative Frobenius norm error.

The core of the problem lies in the discrepancy between the optimal v values obtained by minimizing
Fain and Fies; (derived from random matrix theory approximations) and the optimal ~ obtained by mini-
mizing the ridge loss function directly. Ideally, one would expect that these values converge or align to
some degree, as both approaches aim to minimize the model error. However, the experimental results
suggest otherwise, showing significant differences in the ~ values that yield the best performance for
each case. We are going to see the details of this discrepancy in the results sections further.

3.4.1. Potential cause of the problem

One potential cause of this discrepancy could be rooted in the assumptions and approximations used in
deriving Etram and Etest The use of random matrix theory allows us to simplify the problem by averaging
over the randomness in the data, which can smooth out some variability that is captured more directly
in the ridge loss function. As a result, the deterministic equivalents may not fully capture all aspects of
the data structure or noise present in real-world data.

Another contributing factor could be the simplified setup used for the target vector b, which is binary
(0Os and 1s) with a fixed density. While this setup is useful for initial theoretical testing, it may not
reflect the complexity of more general real-world data, where target vectors can exhibit more variability
and noise. The binary nature of b could limit the flexibility of the model, potentially influencing the
optimization of v in different ways when using the ridge loss function versus the random matrix theory
approximations.

Finally, the inherent differences between the MSE-based training and test errors and the ridge loss
function itself may also play a role. The ridge loss function focuses on minimizing the difference between
the predicted coefficients 3 and the true target vector b, while the MSE errors focus on minimizing
the prediction errors for the outputs. This distinction may lead to divergent results in terms of what
constitutes the "optimal” value for ~.



Results

In the following chapter we will present the results of our experiments and findings regarding the rela-
tionship between the regularization parameter ~, Mean Squared Error , ridge loss function and various
model parameters.

4.1. Research on the original Experiment

In this section we interrogate the simplest controllable setting in which our theory can be tested: data
generated exactly according to the “synthetic law” Y = X "b + ¢ with a known ground-truth coefficient
vector b. The benchmark serves three purposes. First, it allows us to reproduce the Gaussian-W base-
line of Couillet & Liao [6] and recover the random-matrix-theory optimal regularisation ~z,,r. Second,
by comparing this predictive optimum with the direct alignment loss Lqge, We expose the causal gap—
the systematic misalignment between ~%,,r and the value that best recovers b (Section 4.1.4). Finally,
sweeping three aspect ratios p/n € {0.7,1.0,2.0} and three sparsity levels of b (10 %, 50 %, 90 %),
we chart the regimes where this gap widens or narrows, providing a roadmap for the more complex
real-data experiments that follow.

4.1.1. Mean Squared Error against the regularization parameter v

We will begin with replicating the initial experiment from the book [6], investigating the Mean Squared
Error values for both Eiain (3.9) , Eiest (3.11) as well as Firain (3.10), Flest (3.12) against a ridge regu-
larization parameter . The goal is to observe the trends in the MSE for both the training and test sets
as v changes, and to identify the optimal v that minimizes the test error and whether it is possible in
general.

In order to illustrate the impact of different activation functions (linear, ReLU, and signum) and
varying levels of the target vector density (15% versus 90%), we present in Figure 4.1 six separate
plots. Each sub-figure shows the training and test MSE as a function of the ridge parameter v. As
expected, the linear, ReLU, and signum activations exhibit similar qualitative “U-shapes” in the test-
error curves, though at different scales depending on density and nonlinearities. The graph presented
here shows a characteristic behavior: the training error increases as - increases, while the test error
initially decreases, reaches a minimum, and then begins to increase again as v becomes too large.
This result aligns with the conclusion from the book that the hyperparameter v can be fine-tuned to
optimize test performance, given that n, p, and N are not too small and comparable in magnitude.

22



41. Research on the original Experiment 23

density=15%, n_train=1024, n_test=512, N=512, p=850

density=90, n_train=1024, n_test=512, N=512, p=850 Activation function: linear
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Figure 4.1: Training and test MSE versus the regularization parameter ~ for three activation functions (linear, signum, ReLU)
under two different densities of the target vector (90% and 15%). Each subfigure exhibits the typical U-shape in test error,
alongside a rising training error as ~ increases.
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4.1.2. Optimal v value and error behaviour with increasing amount of data

In this subsection, we investigate the behavior of the mean squared errors (Fist and Etest) and their
corresponding optimal - values as the number of data points n increases, while keeping the ratios p/n
and N/n fixed. The parameters have been chosen such that p, N and n are sufficiently large and
comparable in magnitude. This choice is motivated by the fact that in the high-dimensional regime,
where the number of features p is approximately of the same order as the number of samples n, the
theoretical results from random matrix theory hold.

The experiment is designed by keeping p/n and N/n fixed, while increasing n from 100 to 3500 in
increments. For each value of n, 80% of the data is used for training and 20% for testing. At each step,
we search for the optimal regularization parameter ~ from a grid ranging from 10~7 to 10" (in increments
of 0.1), which minimizes Eiest and Etest. These optimal v values are then plotted against n, along with
the corresponding values for the errors.

The following figures present the results of this experiment:

Error Metrics over Increasing n with p/n = 0.7, N/n = 0.8, Density = 50%
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Figure 4.2: Error metrics (Eiest and Eiest) OVer increasing n with p/mn = 0.7, N/n = 0.8, and density = 50%.

Convergence of Optimal Gamma with p/n = 0.7, N/n = 0.8, Density = 50%
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Figure 4.3: Convergence of optimal ~y for Ejgt and FEiest OVer increasing n with p/n = 0.7, N/n = 0.8, and density = 50%.
From the results in Figures 4.2 and 4.3, we observe that the errors themselves remain mostly stable

as the number of data points increases, with slight fluctuations that can be attributed to the random
nature of the data generation. However, the optimal values for v show more variability. While there is
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some fluctuation, there is also a noticeable trend suggesting that the optimal ~ values for Ei.st and Flest
show converging behaviour as n increases.

This empirical result aligns with the theoretical conjecture 3.1.2.1 shown earlier, which asserts that
the difference between FEiest and FEiest should diminish as n increases.

4.1.3. Optimal v Values study for Different Loss Functions

In this subsection, we address a critical issue that arises in our investigation: the discrepancy between
the optimal ~ values needed to minimize different error metrics. The setting for this analysis remains
consistent with the previous sections, where we explore the behavior of error metrics and optimal
regularization parameters () while increasing the number of data points (n), and keeping the ratios p/n
and N/n fixed. As mentioned earlier, the experiment generates data according to the law Y = X Tb +¢,
where b is a sparse vector, and X represents the network’s internal operations. For each increment in
n, we determine the optimal ~ that minimizes both Ei.¢ and Fest.

However, when we compare the optimal v values required for minimizing the ridge loss function we
defined earlier with those minimizing the test errors ( Eist and Etest), we observe a noticeable difference.
As shown in the graphs below, the optimal ~ for the ridge loss function does not always align with the
optimal values for Eiest and Flest.

In this experiment, we also consider the "direct” loss function, given by Equation (3.13), which
measures the Frobenius norm difference between the predicted coefficients 3 and the target vector
b. As seen in the results, the optimal v values obtained for minimizing this direct loss function differ
from those obtained when optimizing the test errors, FEi.st and Etest. The graphs clearly illustrate this
difference, with the values for vy needed to minimize the direct loss function consistently diverging from
the values required for minimizing the test errors. These results highlight the distinct behavior of the
ridge loss function compared to the test errors derived from random matrix theory.

Effect of Regularization Strength on Ridge Regression Error (Different Densities). Figure 4.4
compares three plots of the normalized ridge error |3 — b|3/||b||%. (3.13) versus -y under different den-
sities for b. In the middle panel (approximately 50% density), we see a pronounced “U-shaped” curve
with a clear global minimum. By contrast, the left and right panels (very high or very low density) show
flatter or less sharply defined minima, suggesting that in those regimes, the ridge-regularized solution
does not exhibit as strong a trade-off between underfitting and overfitting.

Regularization Strenth (y) Regularization Strength iy)

larization Strength (n=512, p=512, N=358)

(a) Density =~ 95% (b) Density ~ 50% (c) Density =~ 15%

Figure 4.4: Normalized ridge error ||3 — b]|2/||b||2 as a function of the regularization strength ~ (log scale) for three different
densities. The center plot (50% density) exhibits a clear “U-shape,” whereas the other two densities do not show a single,
pronounced minimum.

4.1.4. Diagnosing the Causal Gap

Having reproduced the MSE-based optimum ~%,,, we now turn to the question of causal alignment:
does the predictive optimum also recover the ground-truth mechanism b?' Concretely, we contrast
three objective curves as a function of ~:

"Causal faithfulness here is operationalised by the direct alignment loss Liigge introduced in (3.13).
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o the direct causal loss Liigge(7) (3.13) (red dotted),
o the RMT proxy Eies(7) (blue dotted), and
e the empirical test MSE Fi.(7) (purple dotted).

The graphs below show the difference between the value of each objective curve once minimized
by v against the increasing number of points n. Different plots demonstrate different effects according
to various values of p/n ratio as well as the density of an underlying true vector 3.

Note that the grid of v values from 107 to 10° through 0.1 increment was used for the optimization
in this experiment. For each objective curve, the value of the corresponding loss function has been
calculated for all values of v, then the minimum has been chosen.

a n = 0.7, dens. 10%
(@) p/ ,

(d) p/n = 0.7, dens. 50%

(g) p/n = 0.7, dens. 90% (h) p/n = 1.0, dens. 90% (i) p/n = 2.0, dens. 90%

Figure 4.5: Direct causal loss Lyigge (3.13) (black), RMT-predicted Fest (blue dashed) and empirical Eieg; (red dotted) versus ~
across nine synthetic regimes. Stars mark the minimisers of each curve.

We sweep nine synthetic regimes (Figure 4.5): three aspectratios p/n € {0.7, 1.0, 2.0} (left—to—right
columns) and three sparsity levels of b (10 %, 50 %, 90 %; top—to—bottom rows). Each panel marks with
a star the ~ that minimises the corresponding curve.

It also does seem prudent to look at the actual optimal ~ values found through loss minimization.
Below is the graph of all such ~ values.
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Convergence of Optimal Gamma with pin = 0.7, Nin = 0.8, density of b: 10 ‘Convergence of Optimal Gamma with pin = 1.0 Nin = 0.7, density of b: 10

(b) p/n = 1.0, dens. 10% (c) p/n = 2.0, dens. 10%

(d) p/n = 0.7, dens. 50% (e) p/n = 1.0, dens. 50% (f) p/n = 2.0, dens. 50%

(9) p/n = 0.7, dens. 90% (h) p/n = 1.0, dens. 90% (i) p/n = 2.0, dens. 90%

Figure 4.6: Optimal regularisation strength v* as a function of sample size n for nine synthetic regimes. Each panel reports:
“etest (blue), Yetest- (Magenta), and the causal YRriqge (red) that minimises Lyqge. Log—log axes highlight stability or drift across
two orders of magnitude in n.

Sample-size sweep: predictive error vs. causal alignment. Figure 4.5 (error curves) and Figure
4.6 (corresponding v*’s) convey a consistent message across all nine regimes. First, the predictive
quantities Eiest and Etest track each other almost perfectly once »n 2 200, confirming the accuracy of the
RMT surrogate. Second — and crucial for our causality narrative — the causal loss Lygge (red curve)
behaves very differently: it remains one to three orders of magnitude lower than the predictive errors
for p/n < 1 and sparse b, and, even in the over-parameterised cases (p/n=1,2), it grows far more
slowly.

The optimal regularisation strengths in Figure 4.6 expose why. The v that minimises Lygge (red
x) sits consistently around 10~ — 10° and varies little with n, whereas the predictive optima (blue
and magenta dots) collapse toward ~ 10~° as n grows. Put plainly, the model needs a substantially
stronger penalty to recover the ground-truth coefficients than it does to minimise prediction error. This
divergence widens with higher sparsity and larger aspect ratio, exactly the regimes where Figure 4.5
showed the largest causal gap. Hence, tuning v on Eiegt (0Or its RMT proxy) is not merely sub-optimal for
causal recovery—it systematically pushes the solution toward a coefficient vector that mis-aligns with
the data-generating mechanism. Bridging this gap is therefore essential, motivating the gradient-based
correction developed in the next section.
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4.2. Loss—Landscape Analysis

The causal gap identified in Section 4.1.4 raises a natural question: how should the regularisation
strength ~ be adjusted to minimise the alignment loss L e itself? In this section, we take a differential
view, deriving closed-form (or nearly closed-form) expressions for the gradient 0L;igge/0vy under the
synthetic law. We first inspect the oracle gradient — available when the true variance components
are known. And then introduce an empirical variance estimator that yields a practical, data-driven
surrogate.

Let us start first with deriving a closed-form expression for £(~) as in 3.13

Note first that synthetic data generation law has two representations: Y = X7b + ¢ version, or
Y = b'X +¢). B regressor from 3.1 has then two equivalent representations according to a data-
generation law:

o101
f=—(=Z2" +4Iy)"'2Y", and

nn
5o 1 L - T
f=-2(=2Ts+41,] Y.
n n

We are going to proceed with the latter variant in our calculations. For the sake of simplicity, we are
also going to omit the normalizing factor ||b|| and assume L(v) = ||3 — b||%.

Then the derivation goes as follows:
L =lB-bllF=B-0)T(E-b)=5"5-28Tb+bT0.
Uncovering the first term of that, we get:
8BTS = %Y(lsz + wn)—lsz(lsz + )Y T
n n n

Then, let us rearrange the terms a little and then add and subtract ~1,, from/to the central side. We thus
obtain:

aca 1 1 41 1 _
BTA=—"Y( =SS +91) (-2 S +9L) = L) (- BT +91,) 'Y T

1 .1 1
= 7Y(72T2 + 7171,)71(YT - 7(*2T2 + "YIn)ilYT)
n o on n
1 1 1
= (Y22 HAL) YT —AY(=ZTE +11,)72Y "))
n n n
_ 1 - “ivT Vvl —2~yT
= —Y(-X'3+9I,)Y —=-Y(-X ' X+1IL,)7°Y".
n o n n o n

Therefore we can write down a full expression for £(~y) as such:

1.1 1 1.1
LO) = Y-SR 4L) YT - %Y(EETE L) YT =2 Y (RIS 4 AL) ' Th 4 bTh.
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Next up, let us take the derivative of the expression above with respect to ~:

ag(y = —% Y(AETS+9L) YT - (Y(EETE 49L) YT -2y Y (AETE +91,) YT

+ 2iy(isTsE441,) 7S
= 2lY(STS L) YT 4 2 Y (AETE 4 4L,) YT 422 Y (TR 44L,) ST,
Setting the derivative to zero and multiplying by n/2 yields:

AYASTS +41,)7°YT — YAETS441,)7°YT + YEETE +41,) °STh = 0.

Among these terms the only unknown quantity is = " b, which under the syntheticlaw Y = X 7b+ ¢ can
be rewrittenas Y — <.

In order to simplify further derivations, we will introduce some notation changes at this point. Note
that in the experimental setting used in the central part of this thesis, target output Y is of the size
1 x n, and therefore is a vector. We will refer to a vector-shaped target output variable as y onward.
Furthermore, let us introduce the following resolvent notation:

1
Q= (-2 +91,)

Considering the above notation, the expression for the loss function derivative takes the following
form:

oL . _ _ _
a(;) =4yQ %y —yQ %y +yQ2ZTb

= wQ 7y —yQ 7y +yQ i (y  —€')
= Q7% —yQ %y +yQ ly —yQ i’
= Q7% —yQ%" =o0.
Note that the only out-of-sample part of the expression above is yQ~2¢", due to the unknown noise
parameter ¢. To find the optimal parameter 4 we are to estimate that part. In order to do that, let us

take the expectation of that expression with respect to ¢, taking into account that by definition, ¢ is a
mean-zero noise factor with some variance o2:

AyQ %y —ElyQ %' |¢]

= Qly" —E[b'Z+Q |

= wQ7y  —Eb'IQ %’ +eQ 7% |d]
= yQ 7%y —E[Q %[

= 4yQ7% ' —otr(Q7%) =0.
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We thus obtain the "oracle” expression for direct loss derivative. But in order to extract the optimal
parameter from the formula - we would need to know the real variance value. Therefore, the question
now is — how do we approximate the real out-of-sample noise variance 2. The most straightforward
approach would be to consider the Residual Sum of Squares estimator:

Where y = T3,

Hence, Loss-Landscape Analysis yields three expression forms for the loss function derivative:

1. 8/3(7) =4yQ %y —yQ %" «— real
9y
2. ""g@ =4yQ %y —*tr(Q™%) <— under expectation (the "oracle”)
7 IEL
3. 82(7) =4yQ 3y — 6%45tr(Q%)  <— with estimated variance
7l

In the following sections we are going to investigate the behavior of parameter ~ found through the
oracle and the expression with the estimated variance, and compare that v with the one found through
optimizing Eyq; and Eyeg.

4.3. Robustness study

In this subsection we are going to conduct a series of experiments aimed at studying values of regu-
larization parameter + related to optimizing each of the above-derived expressions and the behavior of
the direct loss computed using those values.

We begin the robustness analysis by asking a simple question: do the derivative—based losses
admit a (practical) minimum when measurement noise is present? Concretely, we plot the derivative
of the causal loss 9L£/0~ as a function of + for several noise levels and examine whether we can drive
it arbitrarily close to zero on a sufficiently fine logarithmic grid.

Derivative formulas. We consider two expressions (derived in the previous section) that differ only
in the variance term. We write them for v > 0 and Q(v) = (ATA + 71) in the following way:

= vy Q) Py — o t(Q(7) 7). (4.1)

real variance

= 7y Q") y — Ghes t1(Q(Y)73), (4.2)

estimated variance

oy
where 5% denotes a data-dependent variance plug-in (estimated variance).

Notice that with slight abuse of notation we put a o subscript in 4.1 instead of E[-|¢] for the sake of
simplicity. That meant to denote that the oracle derivative uses the true value of variance o of the noise
term £ ~ N(0,0%I), The estimated variant replaces o2 with the residual estimate 635.
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Experimental setup. We fix n = 200, p/n = 1.0, N/n = 0.8 and a 50 %-dense b. For each standard
deviation level o € {1,2,3,4,5} we:

1. generate synthetic data Y = b" % + & with e ~ N(0, 021);
2. sweep v on logarithmic grids 10~® < v < 102 (estimated) and 10—3 < v < 102 (oracle);
3. evaluate (4.1) and (4.2) at each ~.

Operationally, we call a loss minimisable on the grid if there exists a grid point ~ for which the (non-
negative) derivative is closest to zero, i.e. it minimizes ]6£/8ﬂ (or equivalently attains the smallest
positive value).

Estimated Derivative (RSS-based) Oracle Derivative (using true variance)
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Figure 4.7: Derivative of the causal loss under five noise levels. Left: RSS[Ibased estimate on v € [10~?, 103]. Right: oracle
derivative on v € [10~3,102] (both axes log—log).

Observation. Across all tested noise levels, the curves of 9£/0y (both oracle and estimated) de-
crease with v and admit a unique zero crossing within the displayed range. Consequently, with a
sufficiently fine logarithmic grid, we can always find a v whose derivative value lies arbitrarily close to
zero, i.e. both losses are minimisable in the above grid sense. This justifies using the derivative root
(or its closest grid proxy) as a robust, noise-aware choice of the regulariser, which we will compare
directly against Etrain and Eisi-based selections in the next subsection.

Fixed vs. nonfixed RSS in the derivative

We now specify two practical RSS—based plug-ins for (4.2). Let 63<(+) be the residual-variance esti-
mator as a function of the argument indicated in parentheses. Then:

. oL _ . _
fixed—RSS: EM (75 Yrss) ZWYTQ(V) by — U%{SS(%SS) tT(Q(’Y) 2)’ (4.3a)
7 IrsS, fixed
. oL _ R _
nonfixed-RSS:  —= () =7y Q) %y — bhss(7) 2(Q(Y) 7). (4.3b)
" IRsS, nonfixed

Both (4.3a)-(4.3b) are concrete instances of the estimated-variance derivative (4.2), differing only in
whether the RSS variance is evaluated at a fixed reference ~,s (“fixed—RSS”) or at the current v
(“nonfixed—RSS”).

where Q(v) = %ETE + ~I,,. In the fixed variant, the variance is computed once at a reference
value .55 (here we take v, = arg min, Etest(y)), and then held fixed while we scan ~ in the derivative.
In the nonfixed variant, the same ~ used in the derivative also enters the RSS computation, effectively
defining a self-consistent, y-dependent variance plug-in.
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Experimental setting. We use: n = 100, p/n = 1.0, N/n = 0.8, a 50%—dense b, noise levels
o € {1,2,...,14}, and a logarithmic grid v € [107%, 10%] with step A log,,~ = 0.01. For robustness, all
curves are averaged over six independent runs. At each noise level we select four candidates: Y B
Vfou? Yoracle (root of the oracle derivative), and yrss (root of the corresponding RSS derivative). We
then evaluate L;iqq4e at each selected .

L_ridge vs Noise (Grid) Gamma vs Noise (Grid)
(b_dens=50%, n=100, p/n=1.0, N/n=0.8) (b_dens=50%, n=100, p/n=1.0, N/n=0.8)
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Figure 4.8: Fixed-RSS variant: variance &Eass(%ss) computed at ;55 = arg min E\est(’}/)| then held constant while scanning
~ in the derivative. Points are averages over six runs.

Fixed-RSS observations (Figure 4.8). Across noise levels, the causal selections (Yoracle, TRss) Yield
Liigge that remains near O(1) and changes smoothly with noise, while the prediction—driven selections
(Vf,..» Vi) Produce larger and more volatile Lrgge. The corresponding v values show that causal
tuning prefers substantially stronger regularisation.
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Figure 4.9: Nonfixed-RSS variant: variance 6545 () recomputed at each grid point and fed back into the derivative. Points are
averages over six runs.

Nonfixed-RSS observations (Figure 4.9). Allowing the variance estimate to follow the scanned ~
produces a self-consistent root and, in several noise regimes, an even lower L;jqge than fixed-RSS while
retaining the same qualitative behaviour (stable loss and stronger ~). Both variants confirm the central
robustness claim of this section: a causally aligned regulariser can be obtained for a wide range of
noise levels, and it consistently outperforms predictive selections in direct parameter recovery.
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4.4. Convergence Study

The robustness results above showed that a causally aligned regulariser can be recovered across
a wide range of noise levels. We now ask a complementary question: how do the corresponding
choices of v and their achieved alignment error behave as the sample size n grows? In other words,
do the derivative-based prescriptions stabilise (and agree) as we move toward the high—dimensional
asymptotic?

Experimental set-up. We fix the aspect ratios and ground-truth sparsity and sweep n, such that:
p/n = 1.0, N/n=0.38, density(b) = 50%, o =S8.

As usual, for each n € {100,200, 300, 400, 500} we generate synthetic data Y = b % + ¢ and compute
four candidates on the same logarithmic grid v € [10~%,10°] with step Alog,y = 0.01: (i) v, min-

imising Etrain, (ii) VB minimising Etest, (iiii) Yoracle a@s the root of the oracle derivative 9£/9~ in (4.1), and
(iv) vestvar @s the root of the empirical variance version (4.2). To smooth finite-sample fluctuations we
average every curve over ten independent repeats.? For convergence of the alignment itself we report
Liigge (7) evaluated at each selected .
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Figure 4.10: Behaviour of the regularization parameter and direct loss expression with growing sample size n (averaged over
10 runs; p/n = 1.0, N/n = 0.8, o = 8, 50% density of b). Left panel: the four ~ selections Vyain® VEroq® Yoracle: and Yestvar-
rain es]

Right panel: direct alignment loss Lyigge at Yoracle @Nd Yestvar-

Findings

» Derivative-based gap shrinks with n. As n increases from 100 to 500, the two causal selections
move closer: voracle femains in the high hundreds (about 7 x 102-9 x 102), while vestvar rises from
roughly 2 x 102 toward 5 x 102-6 x 102, narrowing the gap. In contrast, the predictive optima VB
and VB, Stay near zero (orders of magnitude smaller). Reading the log axis: the tick labels show
the actual ~ values (spacing is logarithmic only). Thus a point around “600” means ~ ~ 6 x 10?;
“850” means v ~ 8.5 x 102 (not 10%%°, etc.).

Alignment gap shrinks with n. The right panel of Figure 4.10 shows Ligge (Yoracle) @nd Lridge (Vestvar)
both decreasing as n grows, and their difference narrows—clear finite-sample convergence be-
haviour.

Empirical edge persists. Across the inspected n, the estVar choice attains Lqge that is consis-
tently comparable to, and often lower than, the oracle — echoing the advantage observed in the
robustness study.

2Runs were executed in batches on the cluster, which is why the displayed grid of n stops at 500.
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Takeaway (revised). Due to runtime limits on the TU Delft cloud cluster and averaging over repeated
runs, we report n. € {100, 200, 300, 400, 500}. This range is too short to prove asymptotic convergence,
but Figure 4.10 already exhibits stabilisation of the derivative-based ~ in the 102-10® decade and a
steady reduction of the alignment error with n. We fixed the noise level to o = 8 (no special theoretical
status); this choice was guided empirically by earlier experiments showing that for o > 6-7, the estVar
rule tracks or slightly improves upon the oracle. Within these constraints, the evidence supports the
practical conclusion: the data-driven derivative selection ~estvar is stable in n, operates on the same
scale as the oracle, and delivers improving L;iqge @s sample size grows, while predictive selections
remain far smaller and misaligned with the causal objective.

4.5. Real-Data Validation: Fashion—MNIST

We validate the proposed estimator on real images using a two-class subset of Fashion-MNIST (labels
1 vs. 2) under the same ReLU random-features ridge classification pipeline and preprocessing used
throughout the paper, therefore, mimicking the author’s experiment. The study proceeds in two steps.
First, we assess predictive robustness in a head-to-head comparison with the Coulliet Fi calibra-
tion: over 50 Monte—Carlo runs (new random feature matrices W each run), we train both methods on
identical train/test splits and aggregate accuracies and confusion matrices to verify that our approach
does not underperform Coulliet's method on average. Second, holding the baseline split fixed, we
conduct a controlled perturbation analysis: we introduce localized edits to the training inputs (single
pixel and square patch brightness shifts of varying sizes), refit both models on the perturbed data using
their respective v selection rules, and compare the resulting coefficient vectors 3 against their baseline
counterparts learned on the original data. This design lets us quantify not only changes in test perfor-
mance but also how each method’s inferred importance pattern moves under perturbations (stability vs.
reactivity and concentration), providing empirical evidence about the interpretability and robustness of
the learned representations.

4.5.1. Robustness analysis - fashion MNIST

We begin by conducting a robustness study to verify that our proposed method performs at least as well
as the Coulliet’s Fiq calibration in terms of predictive accuracy. Specifically, we run 50 Monte-Carlo
trials on the two-class Fashion MNIST split under identical preprocessing and ReLU random-features
ridge settings, aggregate accuracies and confusion matrices, and compare the two methods head-to-
head.

Setting and data. We evaluate the proposed estimator on a two-class subset of Fashion MNIST
(labels 1 vs. 2), cast as a binary classification problem with labels y € {—1,+1}. Images are 28 x 28;
we vectorize each image to x € R? with p = 784. We adopt the same random-features ridge pipeline
used throughout the paper, with a ReLU nonlinearity:

o(t) = max{t,0}

and the corresponding ReLU (first-order arc-cosine) kernel K (-, -) used to build the deterministic-equivalent
criterion.

Data Preprocessing. Before training, the Fashion-MNIST data are transformed to match the theo-
retical assumptions of the random-features ridge model and ensure consistent global scaling across
Monte-Carlo runs. The procedure proceeds as follows.

In terms of class selection and vectorization, we retain only two classes (labels 1 and 2), correspond-
ing to a binary classification task with y € {—1,+1}. Each 28 x 28 grayscale image is vectorized into
r€RP, p="784.Let X = [z1,...,757] € RP*M denote the full dataset of all selected samples.

Then, we perform global normalization. All pixel intensities are first scaled to the unit interval by
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dividing by the global maximum
X

X max(X)’

This ensures all entries of X lie in [0, 1].

We then perform a global centering and rescaling step so that the average squared norm of the
centered vectors equals p. Let

1 M
/’ngﬂzx’h XC:X_MQ]-;[v
=1

and define the global scaling factor
Sg = \/ﬁ .
VS s —

The globally standardized data are then

Xstd = 8¢ Xe.
After global standardization, we perform a second normalization across the pooled subset of the
two chosen classes to ensure comparability of within-class magnitudes. Let
X(l),X(Q) c RPXM;
denote the subsets for classes 1 and 2, respectively. We form their pooled matrix
Xpool = [X(l) X(2)]

and compute

1 S alpod) VP

Po = 2+ 0, &

1 Y

Sp =
|
; Vs S 12 — 3

Each class subset is then re-centered and rescaled via

X0 s, (X9 — ) je{1,2}

Next step is the train—test partitioning. With a prescribed aspect ratio ¢; = p/n and training fraction
ptr, the number of training and test samples per class are

o O
n=|—|, e = |n———| .
(&1 Ptr

For each class j, a random permutation 7; (with fixed seed) selects disjoint subsets for training and
test:

(1) _ ) (1) _ )
X = Xpmamp Xe' = X (g 41y )
The final training and test matrices are concatenations
1 2 1 2
th:[Xt(r)Xt(r)]’ Xte:[Xt(e)Xt(e)] )

with corresponding binary label vectors
_ _1n1 _ _1nte,1
Ytr = 1, ) Yte = e, .

In summary, this preprocessing pipeline enforces deterministic centering and scaling of all images,
guarantees E|z;||3 ~ p, and produces balanced train—test splits under fixed seeds. The resulting
(Xir, Xte, Ytr» Yte) Pairs form the standardized inputs to the ReLU random-features ridge classifier used
throughout the validation experiments.
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Model and hyperparameters. Similarly to the Coulliet’'s experiment We consider a random-features
ridge classifier with hidden width (inner neuron layer) N = |con] and i.i.d. Gaussian features W €
RN>P W, ~ N(0,1). Given inputs X € RP*™ and labels y € {—1,+1}", let

Y = o(WX)

with o(t) = max{t,0} (ReLU). For any ridge parameter v > 0, the coefficient vector is obtained in
closed form from the standard ridge expression (see (3.1)):

3(7) asin (3.1).

Prediction uses the score f(z) = X(z)T53(v) and the decision rule sign(f(z)). The choice of v is
determined by the calibration rules described next; S is then formed by plugging that ~ into (3.1).

Coulliet calibration and our direct calibration. We compare two one—parameter selection rules for
~ evaluated on the same logarithmic grid v € {10 : t € [-6, 4], At = 0.005}:

* Coulliet (Est) calibration. We select

Yo = argmvin Etest('y)a

where Eiest() is the deterministic—equivalent test proxy from the theory (cf. Eq. (3.12), which
depends on the fixed—point 4(7)).

+ Direct calibration (nonfixed RSS; ours). We select

Yo = argmin 10, L5550 ()],

direct

where £(%5%) (7) is the nonfixed RSS-based direct loss from our loss—landscape analysis (Eq. (4.3b)).

direct

In other words, we pick the grid point whose derivative magnitude is minimal.

In both cases, once ~ is chosen (either v¢ or yp), we compute B via the closed—form ridge expres-
sion (3.1) and classify by sign(f).

Monte—Carlo protocol. We run 50 Monte—Carlo trials to assess predictive robustness. The train-
ing/test splits (Xirain, Xtest) and labels are held fixed across trials. The Coulliet selection ~y¢ is computed
once from (Xyain, Xtest) Via Eest(7) and is common to all trials. For each trial » = 1, ..., 50, we draw an
independent W ("), recompute the direct selection yg) on the grid (the direct criterion depends on ),
form

Bo = Ble), By = BOp),
and evaluate train/test predictions by thresholding at zero. We record per—run accuracies and confusion
vectors (TP, TN, FP,FN), and we report run—wise average accuracies together with confusion totals
summed over the 50 runs (normalized by 50 when per—run rates are required).

Concrete hyperparameters (this experiment).

I N . .
activation = ReLU, (L_,Ly)=(1,2), ¢ = P _ 1.0, ¢y = — =1.0, trainfraction 7 = 0.8,
n n

v grid: v € {10": t € [-6,4], At = 0.005}.

Here ¢, sets n ~ p to retain high-dimensional setting, and ¢, fixes N ~ n. The test proxy Eiest(7) uses
the ReLU (first—order arc—cosine) kernel as in the theory section, through Eq. (3.12); our direct rule
uses Eq. (4.3b). In all cases, the final coefficients are obtained from the ridge closed form (3.1).

Outputs. For transparency and downstream analysis, we store (i) the per—run accuracy arrays for
both methods on train and test, (ii) the summed confusion counts across runs, and (iii) the per—run direct
selections {7}3” 50 | together with the common Coulliet ¢, enabling paired head—to—head statistical
comparisons and dispersion summaries across the 50 trials.
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Predictive results on Fashion—-MNIST. Under the ReLU random—features ridge model with p = n =
N = 784 and 50 Monte—Carlo trials, both calibration rules achieve near—perfect prediction. The Coulliet
selection (via Flest) yields vc = 70.79, whereas our direct rule (nonfixed RSS derivative) concentrates
at a larger scale (median yp = 295.12). Averaged across runs, test accuracy is 0.9956 for the direct
rule versus 0.9930 for Coulliet; train accuracy is 0.9943 (direct) versus 1.0000 (Coulliet). The test—set
confusion totals (summed over runs) are reported below.

Coulliet (v¢) ‘ Direct (vp)
Positive Negative ‘ Positive Negative
True 4833 4898 4861 4896
False 2 67 4 39
Accuracy 0.9930 | 0.9956

Table 4.1: Test confusion matrices (totals over 50 Monte—Carlo trials) for the two calibration methods. Entries correspond to
counts of true and false predictions across all runs.

Discussion of findings. (i) Both methods are highly accurate; the direct calibration attains a small but
consistent improvement on test (40.27 percentage points). (ii) The gain is driven primarily by fewer
false negatives (FN: 67 — 39), with a negligible increase in false positives (FP: 2 — 4). This translates
into higher recall for the positive class under our rule. (iii) The larger v selected by the direct method
implies stronger regularization; correspondingly, its train accuracy is slightly below perfect (0.9943 vs.
1.0000 for Coulliet), yet generalizes marginally better on test-consistent with reduced overfitting. (iv)
Overall, the direct rule matches or improves predictive performance while selecting a regularization
scale aligned with the loss—landscape analysis, reinforcing its practical viability alongside Coulliet’s
Eest calibration.

4.5.2. Perturbation analysis: Fashion--MNIST

Having established that our direct-loss calibration for the regularization parameter ~ attains accuracy
comparable to Coulliet's method, we now examine the behaviour and structure of the learned coeffi-
cient vector 5. We probe the stability vs. reactivity of the two calibration rules under localized input edits.
Starting from a fixed train/test split on the Fashion—MNIST 1 vs. 2 task and a fixed random-features ma-
trix W, we apply controlled brightness shifts to selected pixels (singletons and square patches) in the
training inputs only, refit each method with its own ~-selection rule, and compare the learned coefficient
vectors to their baseline counterparts. This design isolates how each rule’s inferred importance pattern
moves under small, spatially localized changes. The test data remain unchanged throughout the anal-
ysis, ensuring that any observed differences stem solely from modifications in the training set. This
allows us to attribute changes in the learned coefficients to the learning dynamics of each calibration
rule, rather than to shifts in the evaluation distribution.

Baseline. With activation o(t) = max{¢t,0} (ReLU), aspect ratios ¢; = p/n =1.0and c; = N/n = 1.0
(p =n = N = 784), and train fraction = = 0.8, we construct
Y =0c(WXu), Y(x) = oc(Wa),

just like before, and then select v by two one—dimensional rules evaluated on the common logarithmic
grid

v € {10": t € [-6, 3.5], At =0.005}.
Coulliet’s calibration picks

v = argmin Eye(y) (deterministic equivalent; cf. Eq. (3.12)),
v
while our direct rule picks

v = argmin |8, L0 (7)|  (nonfixed RSS; cf. Eq. (4.3b)).
vy

direct
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Given either ~, the coefficients are formed by the closed—form ridge expression (Eq. (3.1)), yielding
baseline vectors

gE=e = B(ya), BB = B(yp).

Perturbations (training-only, localized). Let X, € RP*" and X, € RP*"t denote the standardized
training and test matrices, respectively, constructed as described in Section 4.5.1. Recall that in our
controlled high-dimensional setting, we fix p = n = 784 and n. =~ 196, corresponding to 784 synthetic
training and 196 test images (each of size 28 x 28) drawn from the two selected Fashion-MNIST classes.
For a chosen subset of feature indices S C {1,...,p}, a perturbation magnitude A > 0, and a sign
s € {—1,+1}, we define a training-only perturbation

X! = Xp+sA1g1], X!, = Xe,

where 15 € RP? is an indicator vector equal to 1 on S and 0 elsewhere. The test matrix X, remains
unaltered, ensuring that performance differences can be attributed solely to modifications of the training
set and not to shifts in the evaluation distribution.

We take A = 0.5 in the standardized feature space, which corresponds to a moderate brightness
adjustment in the original image domain. The perturbation therefore increases or decreases the bright-
ness of selected pixels across all training images (one entire pixel column of X;,) while leaving the test
images intact. The following localized perturbation scenarios are considered:

+ Single pixel: |S| = 1 (six random pixel locations; random sign).
* 5 x 5 patch: |S| = 25 (six random top-left locations; random sign).
* 10 x 10 patch: |S| = 100 (six random locations; random sign).

* 20 x 20 patch: |S| = 400 (six random locations; random sign; only if the 28 x 28 image size
permits).

Each perturbation thus modifies the brightness of either a single pixel or a contiguous block of pixels
across all n = 784 training images, allowing us to evaluate how small, spatially localized changes in
the training data affect the learned coefficients.

For each perturbed training matrix X{, we recompute the two +’s on the same grid:

scen .. =(scen) scen . RSS
s >=argm;n B’ (), W )=argngn|37£§irecg(7;Xt’r)

)

—=(scen)

where E.... ' uses kernels built from (X{,, X;.) and the direct derivative is evaluated with the same
fixed W but the edited X{,. We then form

ﬁ((jscen) _ B\(,y((jscen)) ’ ](Dscen) _ B\(ryl()scen)) ,

and evaluate train/test predictions on (X{,, X:.) by thresholding at zero.

For each scenario we store (75, 7 5°™)), the perturbed coefficients (35°™, 35°™), and the cor-
responding train/test metrics. In the analysis, we will compare each perturbed vector to its baseline
counterpart to quantify how concentrated or diffuse the response is under localized edits, and whether
the direct rule’s stronger regularization yields more stable importance patterns than the Coulliet selec-
tion.

Coefficient sensitivity under localized training edits. For each perturbation scenario s, we com-
pare the perturbed coefficients 3(*) to the baseline coefficients 52 via the relative squared ¢,—deviation

Hﬂ(s) _ ﬁbasc”i

Ag,(s) = 100 x
(e[

[%).
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Figure 4.11: Relative ¢ change of the learned coefficients under training-only, localized brightness edits. Left: Coulliet beta.
Right: Direct beta. Scenarios are sorted by A, ; colors indicate perturbation type.

We report Ay, (s) for all scenarios and for both calibration rules (Coulliet and Direct), sorting scenarios
along the horizontal axis by increasing A,,. Markers are color—coded by perturbation type (single pixel,
5 x 5, 10 x 10, 20 x 20). For readability, extreme outliers (top 1% of A,, across all panels) are omitted
from the plot; these correspond to boundary selections of v and are discussed in the text.

Main takeaway Figure 4.11 summarizes the relative change of the learned coefficients under local-
ized perturbations of the training data. Each marker corresponds to a single perturbation scenario,
with the vertical axis showing the relative ¢/s—distance between the perturbed and baseline coefficients.
Overall, Coulliet’s calibration exhibits substantially larger coefficient shifts than the direct-loss rule, par-
ticularly for larger (10 x 10 and 20 x 20) patch edits. Quantitatively, the top Coulliet scenarios reach
relative changes between 25% and 50%, with one extreme case exceeding 2.9 x 10°% due to an in-
stability in y-selection near the boundary of the grid. In contrast, the corresponding top-five direct-loss
scenarios remain in the range of roughly 7-10%. These results confirm that the direct-loss method pro-
duces significantly more stable coefficient vectors under identical data perturbations, suggesting that
its calibration rule imposes a smoother and more robust regularization response. The extreme outlier
in the Coulliet set (the 20 x 20 patch with a negative brightness shift) will be examined separately below
to illustrate the mechanism behind such a large deviation.

Overlay of baseline and perturbed coefficients by perturbation type. To better understand how
each calibration rule reacts to localized changes in the training data, we visualize the learned coefficient
vectors 3 before and after perturbation. For each perturbation type (single pixel, 5 x 5, 10 x 10, and
20 x 20 patch), Figure 4.12 compares the baseline coefficients 5(P25) with their perturbed counterparts
£). Each subplot shows the coefficients sorted by their baseline order (ascending 5("2%¢) values),
allowing us to observe how localized brightness edits in the training set shift the learned importance
pattern across the feature dimension. The left column corresponds to Coulliet’s +-selection rule, and
the right column to our direct-loss calibration.

The blue line represents the baseline 3(*25¢)| while the orange line shows the coefficients obtained
after the perturbation. Higher transparency of the orange curve allows the blue baseline to remain
visible beneath it, highlighting where the perturbed 5 departs most from its reference. Together, these
overlays provide an intuitive measure of model stability under input perturbations.

While Figure 4.12 allows direct inspection of how the learned coefficients shift along the feature
index, the magnitude of those changes can sometimes be obscured when small and large coefficients
coexist on the same scale. To make these deviations more apparent, we sort the coefficients by their
absolute baseline magnitude in Figure 4.13, which emphasizes where the most influential features in
the baseline model experience the strongest or weakest reweighting after perturbation.
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Figure 4.12: Overlay of baseline and perturbed coefficient vectors 3 for four representative perturbation types. Each row shows
a two-panel image with Coulliet (left) and Direct (right). Blue: baseline coefficients 3(P2se): orange: perturbed coefficients 3(s).
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Figure 4.13: Same as Figure 4.12, but with coefficients sorted by their absolute baseline magnitude |B(base) |. Sorting by

absolute value highlights how perturbations affect the largest-magnitude coefficients most strongly.
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Figure 4.14: Stress case where Coulliet’s calibration collapses to the grid floor (fygce“) ~ 10~9), while the direct-loss rule
stays in a moderate range. Note: the two panels use different vertical scales (we zoom the Direct panel to reveal its small
variation). The blue baseline curves are essentially identical across panels; the visual discrepancy is solely due to the differing
y-axis ranges.

Focused overlays on the most influential coefficients. Complementing the full-vector overlays,
we zoom in on the extreme tails of the baseline coefficient distribution. For each perturbation type
(single pixel, 5 x 5, 10 x 10, 20 x 20), we select the 100 coefficients from a chosen tail of the baseline
vector and overlay the corresponding segments of 3(P5¢) and 3(%):

. indices of the 100 smallest entries of 3(Pase) if tail = bottom,
ail =
' indices of the 100 largest entries of 5(*2°) (ordered by |3(P25¢)|), if tail = top.

Plotting {B§ba5°)7 ﬁi(s)}ielt _ against the rank within the selected tail emphasizes how the most neg-
ative/most positive baseline coefficients are reweighted by training perturbations. As before, the left
column corresponds to Coulliet’s calibration and the right to our direct-loss rule.

You can see the tail baseline-vs-scenario plots in figures 4.15 and 4.16 for top and bottom tail
respectively.

Interpretation of tail-slice overlays. Examining the coefficient tails in Figures 4.15 and 4.16 reveals
a clear structural difference between the two calibration rules. For Coulliet's method, the perturbations
tend to amplify the absolute magnitude of the coefficients: in the bottom tail, the perturbed g’s are
on average less negative (shifted upward), while in the top tail they are systematically lower than the
baseline curve. This pattern indicates that Coulliet’s calibration adjusts ~ in a way that consistently
rebalances the relative strength of extreme coefficients under localized training edits.

By contrast, the proposed direct-loss rule produces markedly more stable coefficient profiles. Across
all perturbation types and both tails, the perturbed 3(*) curves remain close to their baseline 5(*25¢) coun-
terparts, with substantially reduced variance and no systematic bias in either direction. This suggests
that the direct-loss calibration maintains a more consistent scaling of the learned weights and exhibits
stronger robustness to localized input modifications.

A stress case where Coulliet’s calibration collapses to vanishing regularization. To illustrate
the behaviour behind the largest relative change omitted in the scatter 4.11 (for plotting purposes),
we examine a 20 x 20 patch scenario that produces an extreme deviation for Coulliet’s rule (top entry
in the “Top-5 Coulliet changes”). In this instance the Coulliet grid search selects a near-zero penalty,
y(csce“) ~ 1076 (i.e., Alog,,v < 0 relative to the baseline), effectively turning off regularization. The
direct-loss rule, by contrast, remains in a moderate range. We display two overlays of the coefficient
vectors-unsorted (by the baseline order) and sorted by |3(">*¢)| to make the pattern visible under both
views.

800
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What happens and why? Two effects jointly explain the blow-up in the relative-change metric for
Coulliet. (i) Tiny denominator: in this scenario the baseline Coulliet vector has a very small norm,

Hﬁ(scen) _ 6(l)ase) ||%
1823

100 -

is therefore magnified even for moderate absolute differences. (ii) Near-zero regularization with rank
deficiency: when ~v — 0, the ridge solution becomes highly sensitive to small singular directions of
A =3 /y/n; withrank(A) = r < n, the closed form adds a large null-space component (scaling like 1/7).
Although this component is annihilated by ¥ (so many coordinates stay near zero in the overlay), the
span component can inflate along ill-conditioned directions, yielding a large relative change. In contrast,
the direct-loss rule keeps v away from the boundary, producing a smoother, better-conditioned update
with much smaller variance and no catastrophic swing.

For reference, below are the top 5 scenario feature vector changes for both Coulliet and Direct
method:

Largest relative changes.

Coulliet: top-5 100-[|3(=) — gbase |2 /|| gbase |2 Direct: top-5 100-|3(+) — gbase|[2 /|| gbase|2
tag type change [%] tag type change [%]
patch20_04_r7c3_d+0.50sgn-1 patch20 2,977,344.967 patch20_03_r0c0_d+0.50sgnl patch20 10.275
patch20_05_r0c5_d+0.50sgnl patch20 48.425 patch20_06_r0c8_d+0.50sgnl patch20 8.966
patch20_06_r0c8_d+0.50sgnl patch20 40.770 patch20_02_r1c2_d+0.50sgnl patch20 8.384
patch20_02_ric2_d+0.50sgnl patch20 33.395 patch20_04_r7c3_d+0.50sgn-1  patch20 7.703
patch20_03_r0c0_d+0.50sgnl patch20 25.682 patch20_05_r0c5_d+0.50sgnl patch20 7.404

The Coulliet side shows markedly larger relative deviations; the first row is the outlier we analyze in the section above.
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Figure 4.15: Top-tail-slice overlays of baseline vs. perturbed coefficients (top 100 beta values). Each row is a two-panel image
with Coulliet (left) and Direct (right); the horizontal axis is the rank within the selected tail.
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Figure 4.16: Bottom-tail-slice overlays of baseline vs. perturbed coefficients (bottom 100 beta values). Each row is a
two-panel image with Coulliet (left) and Direct (right); the horizontal axis is the rank within the selected tail.



Discussion

The preceding chapters have established both the theoretical formulation and empirical validation of
the proposed derivative-based regularization parameter selection rule for ridge regression in random-
feature neural networks. Having presented the numerical and real-data results in Chapter 4, we now
turn to a broader discussion of their implications.

This chapter aims to synthesize the key findings, interpret their meaning in light of the high - ridge
regression framework. We further consider why the observed stability of the learned feature vectors 3
constitutes a practical advantage, in which contexts such stability may be desirable, and how it relates
to interpretability and downstream reusability of the model. The discussion concludes with reflections
on limitations, potential application domains, and directions for future research.

5.1. Summary of Findings

Let us start off by providing a short recap of the main experiments and their key findings once more.

5.1.1. Recap

The empirical evaluation conducted in Section 4.5 (Real Data Validation: Fashion-MNIST) provides a
strong indication that the proposed derivative-based regularization parameter selection rule performs
on par with, and in several aspects slightly better than, the deterministic-equivalent calibration method
of Couillet [6].

On the binary Fashion-MNIST experiment, both calibration rules achieved nearly identical predic-
tive performance, with test accuracies exceeding 99%. The derivative-based rule, however, yielded
a marginally higher median test accuracy (99.56% vs. 99.30% for Couillet’s rule) while exhibiting a re-
duced number of false negatives. This points to a slightly stronger recall and suggests that the proposed
method does not sacrifice predictive power despite introducing an alternative criterion for ~ selection.

More importantly, the perturbation analysis revealed a qualitative difference between the two ap-
proaches. Under small, controlled perturbations of the input data, models trained using the derivative-
based calibration exhibited a notably more stable feature vector 3. In other words, the learned re-
gression coefficients demonstrated lower sensitivity to localized variations in the training data, while
remaining responsive to semantically meaningful structure within the input images. This stability im-
plies a form of regularization that constrains model variance without suppressing relevant discriminative
information.
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Together, these findings highlight two key outcomes. First, the proposed method maintains compet-
itive accuracy in a realistic, high-dimensional setting. Second, and perhaps more significantly, it yields
solutions that are less sensitive to data perturbations, producing feature representations that are both
robust and interpretable. This combination - predictive equivalence and enhanced stability - forms the
basis for the broader discussion of the method’s advantages, potential applications, and implications
that follows in the subsequent sections.

5.1.2. Interpretations of the Results

The comparative analysis between the two calibration rules - Couillet’s deterministic-equivalent criterion
and the proposed derivative-based rule - reveals an interesting distinction not in terms of predictive
performance, but in the qualitative behavior of the learned model parameters. Specifically, while both
methods converge to similar predictive accuracies, the derivative-based direct loss calibration produces
a more stable and consistent feature vector 3 under data perturbations.

This stability can be interpreted as a reduction in the variance component of the estimator. In
high-dimensional ridge regression, the regularization parameter ~ serves to balance the bias-variance
trade-off: smaller values of ~ allow the model to fit the data more closely but increase sensitivity to noise,
whereas larger values enforce smoother, more regularized solutions. The proposed derivative-based
rule tends to select slightly larger v values compared to Couillet's approach (e.g., 7o =~ 295 versus
~vc ~ 71 in the conducted Fashion-MNIST experiment), leading to a coefficient vector that varies less
sharply with changes in the input data. Consequently, the resulting model exhibits reduced parameter
variance, thereby enhancing robustness to perturbations and numerical instabilities without compro-
mising generalization.

The perturbation experiments conducted in subsection 4.5.2 support this interpretation. When small
localized changes were introduced to the training samples, the model calibrated using the derivative-
based rule showed less adjustments in 3, whereas Couillet’s calibration produced noticeably more
fluctuation in the same coefficients. Yet, this increased stability did not translate into underfitting: the
model remained sensitive to meaningful regions of the input space (for instance, the discriminative
edges in the Fashion-MNIST digits) and maintained comparable test performance. This suggests that
the proposed rule enforces a selective form of regularization - one that suppresses sensitivity to noise
and irrelevant variations while preserving responsiveness to the underlying signal. Nevertheless, it
is important to take into account a rather minimalistic limited-complexity setting of the experiment -
performing a ReLU-activated binary classification using ridge regression on fashion-MNIST dataset.

In summary, the results suggest that the main distinction between the two calibration strategies
lies not in predictive accuracy but in their regularization dynamics. The derivative-based rule biases
the estimator toward smoother, more reproducible solutions-a property that may become particularly
advantageous in high-dimensional problems where interpretability, reproducibility, or robustness to
measurement noise are of primary concern.



5.2. Advantages of the Proposed Derivative-Based Calibration over Couillet's Rule 48

5.2. Advantages of the Proposed Derivative-Based Calibration over
Couillet’s Rule

In this subsection we will discuss the benefits that a more stable learned feature vector gives us, settings
in which these benefits might be crucial and any potential real-world applications of the developed
method.

5.2.1. Conceptual Advantages - Theory

Interpretability. In the context of random-feature ridge regression, "interpretability” should not be un-
derstood in the classical sense of direct feature attribution, since the random mapping o(W X ') obscures
the original input-space coordinates. Instead, interpretability arises in a relative sense: a model whose
coefficients remain consistent under repeated experiments or mild perturbations can be more reliably
analyzed, visualized, and reasoned about.

A stable 3 implies that the model’s internal representation - the effective filter applied to the random
features - is not an artifact of random initialization or particular noise realizations. This consistency
makes the model’s decision mechanism more transparent and trustworthy: one can meaningfully in-
spect the average structure of 3 across runs, or study which directions in the feature space are sys-
tematically emphasized. By contrast, if 3 changes substantially with each retraining, any attempt to
interpret or visualize the learned representation becomes unreliable. Thus, stability becomes a prereg-
uisite for interpretability in this high-dimensional random-feature setting.

Reusability of the Learned Coefficients. A related advantage concerns the potential for down-
stream reuse of the learned coefficients 3. In many applications, the ridge-regression layer serves
as an intermediate component within a larger processing pipeline - for instance, as a feature extractor
whose output is later used for clustering, transfer learning, or anomaly detection. When 3 is stable,
it can be reused across slightly different datasets or experimental conditions without the need for re-
tuning the regularization parameter or retraining from scratch. This property enables more reproducible
and modular system design: the same model component can be integrated into different downstream
tasks with predictable behavior.

In contrast, coefficients obtained through the Couillet calibration tend to vary more across retrainings,
which limits their reuse beyond the specific dataset or random feature realization. The derivative-based
rule, by reducing variance in 3, implicitly supports the notion of a reusable “filter” that captures the core
discriminative structure of the data rather than overfitting to local peculiarities.

5.2.2. Applied Advantages - Practice

Having established the conceptual benefits of stability in the preceding subsection, it is instructive to
examine how this property manifests in practical, high-dimensional learning problems. In various real-
world domains, researchers have identified coefficient or feature stability as a crucial component of
model reliability, reproducibility, and interpretability. Stability ensures that the insights drawn from a
model are not artifacts of random sampling or noise, but rather reflect persistent structure within the
data itself. In this subsection, several representative studies are discussed to illustrate how the stability
of learned representations, filters, or feature selections directly impacts the quality and trustworthiness
of machine learning systems in applied contexts.

Feature Stability in High-Dimensional Learning. The empirical perspective on stability is thor-
oughly examined by Kalousis et al. [22], who conducted one of the earliest systematic analyses of
feature selection stability across high-dimensional biological datasets. Their experiments covered sev-
eral proteomics and microarray classification tasks, all characterized by a small number of samples
(n < 100) and a very large number of features (p ranging from thousands to tens of thousands) - a
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regime directly analogous to the high-dimensional random-feature setting studied in this thesis.

The authors evaluated a range of popular feature selection methods, including information gain, 2,
symmetrical uncertainty, RELIEF, and support-vector-based ranking techniques (SVM and SVM-RFE).
To quantify the sensitivity of each method to sampling variations, they introduced three complementary
similarity measures for feature preferences: (i) Sy, for correlation of feature weights, (ii) Sgr for rank
consistency via Spearman’s p, and (iii) Ss for overlap between top-k selected feature subsets. These
measures collectively define a “stability profile” for each algorithm, summarizing how much the selected
features change when the model is retrained on different resampled subsets of the same data.

The results were striking. Even among algorithms that achieved nearly identical classification ac-
curacy, stability varied dramatically. For instance, on the colon cancer dataset (p = 2000, n = 62),
SVM-RFE exhibited overlap values Ss below 0.25 for top-k = 30 features, while simpler univariate
methods such as information gain reached Ss > 0.9 under the same setup. Similar patterns appeared
across all five datasets: in the ovarian and leukemia studies, univariate filters consistently achieved
overlap above 0.85, while multivariate SVM-based selectors fluctuated heavily with small data pertur-
bations, dropping to as low as Ss = 0.1. These results demonstrated that identical predictive scores
can conceal highly unstable internal mechanisms.

From the perspective of this thesis, the analogy is clear. In the random-feature ridge regression
studied here, two regularization calibration rules (Couillet’'s and the derivative-based one) may yield
comparable prediction errors, yet differ sharply in the variance of their learned coefficients 3. The
derivative-based calibration thus plays a role analogous to preferring the more stable feature selector in
Kalousis et al.: it favors solutions whose internal structure, the effective “filter” or feature weighting vec-
tor remains consistent under mild resampling or noise perturbations. Just as Kalousis and colleagues
argued that stability is a prerequisite for reproducible and interpretable conclusions in biomedical set-
tings, a stable 3 ensures reproducibility and trust in the learned representations in high-dimensional
regression.

In short, the empirical message of Kalousis et al. reinforces the same principle that underlies this
work: when dimensionality is high and data are scarce, predictive accuracy alone is not a sufficient mea-
sure of reliability. The internal stability of the learned coefficients becomes a distinguishing marker of
models that capture genuine, reproducible structure rather than transient artifacts of random variation.

Stability and Redundancy in Neuroimaging Analysis. A second, domain-specific example of the
importance of model stability is offered by Wang et al. [49], who addressed the problem of stable
feature selection in extremely high-dimensional functional MRI (fMRI) data. This example is particularly
interesting for our case as it also works with images. In such neuroimaging tasks, the number of voxels
or network connections (p ~ 103-10*) far exceeds the number of available subjects (n < 100), and the
features are often highly correlated or redundant. The study proposed an algorithm combining stability
selection with the elastic net, aiming not only to maintain high predictive accuracy but also to obtain
reproducible and interpretable “biomarker” features that remain consistent across perturbations, label
noise, and acquisition sites.

Wang et al. demonstrated that purely sparse methods such as ¢;-regularized logistic regression or
SVM yield unstable and overly sparse solutions: when applied to fMRI voxels, they select scattered and
inconsistent sets of discriminative features, sensitive to even minor variations in the data. By integrating
stability selection (which aggregates results over subsamples of both samples and features) with elastic-
net regularization (which enforces group-wise feature retention), their model achieved markedly higher
robustness and interpretability. For example, in the synthetic dataset with injected label noise (up to ten
wrong labels), their method maintained a nearly constant voxel-selection accuracy, while alternatives
such as the /;-logistic model degraded sharply. Quantitatively, even with 10% label corruption, their
approach preserved the correct identification of discriminative subregions, whereas univariate t-tests
and standard SVMs produced false-positive activations or lost key regions entirely.

The advantages extended to real neuroimaging data. In a face-recognition fMRI experiment involv-
ing 26 subjects, Wang et al. successfully recovered five core regions implicated in visual and motor
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aspects of facial processing - the occipital face area (OFA), fusiform face area (FFA), posterior superior
temporal gyrus (pSTG), supplementary motor area (SMA), and sensorimotor cortex (SMC)- while com-
peting methods either missed some of these regions or produced fragmented, spatially inconsistent
activations. Furthermore, in a multi-center ADHD dataset where training and test data were collected
at separate institutions (Peking University and New York University), the proposed method achieved a
cross-center classification accuracy of 79.0% (AUC = 0.77), outperforming standard elastic net (72.6%)
and randomized /;-logistic models (67.7%). The ability to generalize across centers highlights the ro-
bustness of the learned feature weighting vector under substantial data variation.

The parallels to the present thesis are clear. In both cases, stability of the learned coefficients -
whether interpreted as voxel importances in fMRI or as the regression filter 3 in random-feature ridge
regression serves as a safeguard against spurious structure and noise-driven variability. Just as Wang
et al. showed that stable, redundant feature selection improves both interpretability and cross-domain
robustness, the derivative-based calibration proposed in this work yields a 3 that remains consistent
across perturbations, enabling more reproducible downstream analyses. In settings where the data
are high-dimensional, correlated, and noisy, such stability directly translates into both scientific trust-
worthiness and operational reliability.

Stable Representation Learning in Industrial Fault Detection. The work of Michau and Fink [33]
provides a particularly relevant example of how stability of internal representations translates into both
interpretability and operational reliability in large-scale systems. Their study focuses on condition mon-
itoring of industrial assets, where hundreds of heterogeneous sensors continuously record operating
parameters under varying conditions. The challenge addressed is that only healthy-state data are
typically available for training, while fault patterns are scarce or entirely absent. To handle this, the
authors proposed an unsupervised feature learning and one-class classification architecture based on
Hierarchical Extreme Learning Machines (HELM), integrating a stacked autoencoder for representation
learning with a one-class classifier trained on the latent features.

The HELM framework can be seen as a random-feature architecture with analytical ridge-type
weight estimation, conceptually close to the models investigated in this thesis. It learns a mapping
from raw sensor space to a latent “health indicator,” defined as the distance of the observation to the
manifold of healthy data. Importantly, the system is trained with random input weights A, and its out-
put coefficients 3 are determined in closed form through regularized least-squares (ridge or LASSO).
This allows an explicit analysis of how the stability of 3 affects the consistency of the learned health
indicators and, consequently, the reliability of fault detection decisions.

In their extensive experiments, Michau and Fink compared HELM with six alternative approaches—
standalone one-class ELM and SVM classifiers, the same classifiers preceded by PCA, and a Deep
Belief Network (DBN). On a simulated dataset with D = 200 sensors and five injected fault types,
HELM achieved the highest average accuracy (95% for n = 5 intrinsic variables, Ayt ~ 0.95) and
strong magnification coefficients (Mag =~ 88-105), far exceeding the next-best competitors (SVM: A ~
0.94, Mag =~ 1.3; DBN: A ~ 0.72, Mag =~ 1.2). These results quantitatively demonstrate that the
feature-learning stage produces representations whose responses to perturbations—both random and
structured—are highly consistent, yielding fault indicators that remain stable under varying operating
conditions.

The findings are reinforced by the real-case application to a nine-month dataset from a hydrogen-
cooled power plant generator with D = 310 sensors. HELM reached an accuracy of 95% with zero
false positives and a magnification coefficient of 20, while the closest competitor (SVM) achieved 87%
accuracy and Mag = 1.04. Importantly, HELM was able to detect early-stage degradation (day 169)
months before the full short-circuit failure (day 247), providing a temporal margin that can translate
directly into cost savings in maintenance and downtime prevention.

Conceptually, the relevance to this thesis lies in how HELM’s stability emerges from a regularized
random-feature mechanism. Like the derivative-based calibration introduced here, the HELM formula-
tion stabilizes the learned 3 against small perturbations in the data, ensuring that the “health indicator”
or model output evolves smoothly across retrainings. This stability, while mathematically grounded in
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ridge and LASSO regularization, is functionally identical to the desired low-variance behavior of 3 in
random-feature regression. In both contexts, the goal is not merely to predict correctly, but to ensure
that the internal model structure—the coefficients themselves—remains reproducible and interpretable
across runs, enabling engineers to trust the system’s diagnosis or response over time and under chang-
ing conditions.



Conclusion

6.1. Summary and Final Remarks

This thesis introduced and analyzed a novel derivative-based, direct-loss calibration rule for select-
ing the regularization parameter in high-dimensional random-feature ridge regression. The method
was developed as an alternative to the deterministic-equivalent canonical approach proposed by Couil-
let [6], offering a data-driven and theoretically grounded criterion derived directly from the loss-function
dynamics.

The work began by revisiting the theoretical framework of ridge regression under random feature
mappings, establishing the connection between the regularization parameter ~ and the statistical bias—
variance trade-off in high-dimensional settings. Building upon this foundation, a new calibration rule
was formulated by enforcing the vanishing of the empirical loss derivative with respect to ~, yielding a
direct, sample-based condition for optimal regularization.

The proposed method was validated through both synthetic and real-data experiments. In controlled
simulations, the derivative-based rule achieved nearly identical predictive performance to Couillet’'s
method calibration, confirming its theoretical consistency. Real-data evaluation on the Fashion-MNIST
dataset further demonstrated that the proposed method matches or slightly surpasses Couillet’'s ap-
proach in terms of test accuracy, while producing a more stable coefficient vector 3 under perturba-
tions of the training data. The perturbation analysis showed that this stability translates into smoother,
more reproducible model behavior, which is an important property in high-dimensional problems where
interpretability and robustness are as valuable as predictive accuracy.

A broader discussion connected these findings to practical contexts where model stability is a cru-
cial requirement. By drawing parallels to studies on feature-selection stability in bioinformatics [22],
neuroimaging [49], and industrial condition monitoring [33], the thesis highlighted that the benefits of
coefficient stability extend far beyond synthetic benchmarks. In all such settings, the ability to learn con-
sistent and reproducible representations enables more interpretable, trustworthy, and reusable models.

In summary, this research contributes both a new ridge regression hyperparameter calibration
methodology and an expanded understanding of the role of stability in high-dimensional learning. The
derivative-based rule provides a simple yet effective alternative to deterministic-equivalent approaches,
combining strong empirical performance with enhanced reproducibility and interpretability of the learned
coefficients.
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6.2. Future Work

The experimental and computational framework adopted in this thesis was deliberately kept minimal in
order to isolate and examine the behavior of the proposed calibration rule under controlled conditions.
While this design allowed for a clear theoretical and empirical comparison with Couillet’s deterministic-
equivalent method, it also leaves several directions open for future exploration.

First, the dimensional ratios employed in the simulations denoted as ¢; = p/n and ¢z = N/n were
limited to values not exceeding approximately 1.5, primarily due to computational constraints on the
DelftBlue supercomputer [1]. As a result, the synthetic experiments operated on moderate data sizes,
sufficient for statistical validity but not for fully exploring the asymptotic regime where random matrix
predictions become most distinctive. Extending these experiments to higher dimensional ratios and
larger sample sizes would help verify whether the observed stability and generalization properties of
the derivative-based rule persist under more extreme high-dimensional conditions.

Second, the real-data validation was restricted to a single dataset (Fashion-MNIST) and to a binary
classification task involving two visually distinct classes. Future work could expand the empirical val-
idation along several complementary axes. Additional real-world datasets. For instance, those from
text, sensor, or biomedical domains - would allow assessing the robustness of the proposed rule across
modalities. Similarly, multi-class classification scenarios could reveal how the calibration behaves when
the decision boundaries interact in more complex ways.

Another natural extension concerns the activation function used in the random feature mapping.
All experiments in this work employed the ReLU nonlinearity, chosen for its analytical simplicity and
widespread use. Investigating alternative activations, such as leaky ReLU, tanh, or even randomized
polynomial kernels, could uncover how the choice of nonlinearity influences the derivative-based cali-
bration and its resulting stability properties.

Finally, while the present study focused on classification, future research could revisit the same
framework in a genuine regression context. Testing the proposed calibration rule on real-valued tar-
get problems would help establish whether its stabilizing effect on the learned coefficients 3 extends
beyond classification tasks and remains beneficial in continuous-output ridge regression. Identifying
suitable high-dimensional regression datasets would therefore be an important next step toward a more
complete empirical characterization of the method.

In summary, future work should aim to broaden both the scale and scope of experimentation -
ncreasing sample and feature counts, diversifying nonlinear mappings, and extending to regression
settings to consolidate the findings of this thesis and to fully explore the potential of the derivative-
based regularization rule in modern high-dimensional learning.
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Source Code

A.l. Mean Squared Error against the reqularization parameter v

import numpy as np
import random

from scipy import linalg
from mpi4py import MPI

comm = MPI.COMM_WORLD
nprocs = comm.Get_size ()
myrank = comm.Get_rank()

def sigma(t):
o
Small sigma function of choice
:param t: input
:return: output
nnn
if activation_function == 'linear':
return t

if activation_function == 'ReLu':
return np.maximum(t, 0)

if activation_function == 'sign':
return np.sign(t)

def K(x, y):

nnn

Kernel function. Depends on the choice of a small sigma function

:param x: first 'point' set
:param y: second 'point' set

:return: matrix of measures of 'distances'

nnn

if activation_function == 'linear':
return x.TQy

if activation_function == 'ReLu':
norm_x = np.linalg.norm(x, axis=0)
norm_y = np.linalg.norm(y, axis=0)

xTy = x.T @ y # Shape (n_x, n_y)

norm_prod = norm_x[:, np.newaxis] * norm_y[np.newaxis,

norm_prod = np.maximum(norm_prod,

# Shape (n_x,)
# Shape (n_y,)

between points

:] # Shape (n_x, n_y)

1e-10) # Avoid division by =zero
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46

47 cos_theta = xTy / norm_prod

48 cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1le-10,
1-1e-10]

49

50 theta = np.arccos(-cos_theta) # Shape (n_x, n_y)

51 sin_theta = np.sqrt(l - cos_theta **x 2)

52

53 return (norm_prod) / (2 * np.pi) * (cos_theta * theta + sin_theta)

54

55 if activation_function == 'sign':

56 norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)

57 norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)

58

59 xTy = x.T @ y # Shape (n_x, n_y)

60

61 norm_prod = np.outer (norm_x, norm_y) # Shape (n_x, n_y)

62 norm_prod = np.maximum(norm_prod, 1le-10) # Avoid division by zero

63

64 cos_theta = xTy / norm_prod

65 cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1le-10,
1-1e-10]

66

67 return (2 / np.pi) * np.arcsin(cos_theta)

68
69

70 def K_(x, y, delta, N, n_train):
71 nnn

72 Function to compute kernel approximation

73 :param x: first 'point' set

74 :param y: second 'point' set

75 :param delta: delta parameter

76 :return: approximation for the kernel matrix
77 nnn

78 k_ = (N/n_train)*((K(x, y))/(1+delta))

79 return k_

80
81

82 def Etrain(gamma, data, npN, monte_carlo_loops=30):
83 nnn

84 Actual training error compute (random-based)

85 :param gamma: ridge penalty value

86 :param data: train/test data

87 :param npN: dimensionality of the data and num of neurons

88 :param monte_carlo_loops: number of iterations for E value averaging for different
generated W

89 :return: Training error

90 nnn

91 # Unpacking variables

92 X_train, X_test, Y_train, Y_test = data

93 n_train, n_test, p, N = npN

%

95 E_train_arr = []

96 p = X_train.shape [0]

97

98 for i in range(monte_carlo_loops):

99

100 # W = np.random.randn(N, p)

101 # Sigm = sigma(W@X_train)

102 # Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))

103 #

104 # E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power (Q_y, 2)@Y_train.T

105 # E_train_arr.append(E_train)

106

107 W = np.random.randn(N, p)

108 Sigm = sigma(W @ X_train)

109 Sigm_ = sigma(W @ X_test)

110

Tt inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)

112 beta = Sigm / n_train @ inv_tQ_r
13
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E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
E_train_arr.append(E_train)

return np.mean(np.array(E_train_arr))

120 def Etest(gamma, data, npN, monte_carlo_loops=30):

121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155

157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181

def

def

nnn

Actual test error compute (random-based)

:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of neurons

:param monte_carlo_loops: number of iterations for E value averaging for different
generated W

:return: Test error

nnn

# Unpacking variables

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

E_test_arr = []
p = X_train.shape [0]

for i in range(monte_carlo_loops):

W = np.random.randn(N, p)
Sigm = sigma(W@X_train)

Sigm_ = sigma(W@X_test)
inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)
beta = Sigm/n_train @ inv_tQ_r

# Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))

# terml = (1/n_test)*(Y_test@Y_test.T)

# term2 = (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Y_test.T)

# term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Sigm_.T@Sigm@Q_y@Y_train.
T)

E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test
E_test_arr.append(E_test)

ans = np.mean(np.array(E_test_arr))

return ans

find_delta(gamma, X_train, N, accuracy) -> float:
nnn
Helper-function that finds delta parameter for the resolvent Q iteratively
:param gamma: ridge penalty value
:param X_train: training set
:param N: number of neurons in the hidden layer
:param accuracy: accuracy for numerical delta finding
:return: optimal value for delta parameter for the resolvent Q
nnn
n_train = X_train.shape[1]
delta_prev = 1
delta_next = 0
while abs(delta_prev-delta_next) > accuracy:
delta_prev = delta_next
Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta_next)) + gamma*np.eye (
n_train))
delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
return delta_next

Etrain_(gamma, data, npN):
nnn
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Estimated train error compute (expectation based, deterministic)

:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of Neurons

:return: estimated training error

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

#E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N) *np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)=*np.
trace(K_Q@Q_Q@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

return E_train_

def Etest_(gamma, data, npN):

nnn

Estimated test error compute (expectation based, deterministic)

:param gamma: ridge penalty value

:param data: train/test

:param npN: dimensionality of the data and number of Neurons

:return: estimated test error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = 0.0

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))

K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))

#E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.matrix.trace(K_Q@Q_0@K_0@Q_)))*((1/n_test)*np.
matrix.trace (K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_Q@Y_train.T)**2) + (((1/N)x*(
Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gammax*Q_)@(K_xX@K_xX.T@Q_)))

return E_test_

def generate_synthetic_data(n, cl, c2, density=0.35, noise_level=0.1):

p = int(cl * n)

N = int(c2 * n)
n_train = int(n * 0.8)
n_test = n - n_train

# Generate random weights and sparse beta
W = np.random.randn(N, p)
b = np.random.choice([0, 1], size=(N, 1), p=[1 - demsity, densityl)

# Generate data
X_train = np.random.randn(p, n_train)

Y_train = (sigma(W @ X_train).T @ b).flatten() + np.random.normal(0, noise_level, n_train
)
X_test = np.random.randn(p, n_test)

Y_test = (sigma(W @ X_test).T @ b).flatten() + np.random.normal (0, noise_level, n_test)

return X_train, X_test, Y_train, Y_test, W, b
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def

save_results_to_file(gammas, E_test_arr, E_train_arr, E_test_bar_arr, E_train_bar_arr,
log_filename, result_filename):
nnn
A function designed for HPC to save the results in proper readable and plotable form.
:param gammas:
:param E_test_arr:
:param E_train_arr:
:param E_test_bar_arr:
:param E_train_bar_arr:
:param log_filename:
:param result_filename:
:return: none
nnn
with open(log_filename, 'w') as log_file:
for gamma, E_test, E_train, E_test_, E_train_ in zip(gammas, E_test_arr, E_train_arr,
E_test_bar_arr,
E_train_bar_arr):
log_file.write(
f"for,gamma = {gamma:.6e}, E_train, = {E_train:.6e}, E_test = {E_test:.6el},
E_train_,=_{E_train_:.6e}, E_test_, = {E_test_:.6e}\n")

results = {
"gammas": gammas,
"E_test_arr": E_test_arr,
"E_train_arr": E_train_arr,
"E_test_bar_arr": E_test_bar_arr,
"E_train_bar_arr": E_train_bar_arr
}

np.savez(result_filename, **results)

activation_function = 'ReLu'

delta_accuracy = le-4

b_vector_density = 0.15 #%

n = 5000

cl 1.0 # p/n

c2 = 0.8 # N/n

p = int(cl * n)

N = int(c2 * n)

n_train = int(n * 0.8)

n_test = n - n_train

npN = n_train, n_test, p, N

X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data(n=n, cl=cl, c2=c2, density=
b_vector_density)

data = X_train, X_test, Y_train, Y_test

# data = get_data_MNIST_binary(npN)

gammas = [10**y for y in np.arange(-6, 6, 0.1)]

gamma_chunks = np.array_split(gammas, nprocs)

my_gammas =

gamma_chunks [myrank]

E_test_arr = []
E_train_arr = []
E_test_bar_arr = []
E_train_bar_arr = []
log_entries = []

for g in my_gammas:
E_test = Etest(g, data, npN)
E_test_arr.append(E_test)

E_test_ = Etest_(g, data, npN)
E_test_bar_arr.append(E_test_)

E_train = Etrain(g, data, npN)
E_train_arr.append(E_train)
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E_train_ = Etrain_(g, data, npN)
E_train_bar_arr.append(E_train_)

log_entries.append(

f"for,gamma =, {g} the error ,values are: E_train={E_train}, E_test={E_test}, E_train_
={E_train_}, E_test_={E_test_}\n")

E_test_arr = comm.gather(E_test_arr, root=0)

E_train_arr = comm.gather (E_train_arr, root=0)

E_test_bar_arr = comm.gather (E_test_bar_arr, root=0)

E_train_bar_arr = comm.gather(E_train_bar_arr, root=0)

log_entries = comm.gather(log_entries, root=0)

if myrank == O0:
E_test_arr = [item for sublist in E_test_arr for item in sublist]
E_train_arr = [item for sublist in E_train_arr for item in sublist]
E_test_bar_arr = [item for sublist in E_test_bar_arr for item in sublist]
E_train_bar_arr = [item for sublist in E_train_bar_arr for item in sublist]
log_entries = [item for sublist in log_entries for item in sublist]

np.savez("results.npz",
gammas=gammas ,
E_test_arr=E_test_arr,
E_train_arr=E_train_arr,
E_test_bar_arr=E_test_bar_arr,
E_train_bar_arr=E_train_bar_arr,
activation_function=activation_function,
density=b_vector_density,
n_train=n_train,
n_test=n_test,
N=N,
p=p)

with open("log.txt", "w") as f:
f.writelines (log_entries)
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A.2. Optimal v value and error behaviour with increasing amount
of data

import numpy as np

import random

from scipy import linalg

from mpi4dpy import MPI

import os
os.environ["OMP_NUM_THREADS"] = "16"

comm = MPI.COMM_WORLD

nprocs = comm.Get_size ()
myrank = comm.Get_rank()

def sigma(t):
nnn
Small sigma function of choice
:param t: input
:return: output

nnn

return t

def K(x, y):
nnn
Kernel function.
:param Xx:
:param y:
:return:

nonn

return x.

Depends on the choice of a small sigma function

matrix of measures of 'distances' between points

def K_(x, y, delta, N, n_train):
nnn
Function to compute kernel approximation
:param x: first 'point' set
:param y: second 'point' set
:param delta: delta parameter

:return: approximation for the kernel matrix
nnn

= (N/n_train)*((K(x, y))/(1+delta))
return k_

def Etrain(gamma, data, npN, monte_carlo_loops=30):
wun
Actual training error compute (random-based)
:param gamma: ridge penalty value
:param data: train/test data
:param npN: dimensionality of the data and num of neurons
:param monte_carlo_loops: number of iterations for E value averaging for different
generated W
:return: Training error
nnn
# Unpacking variables
X_train, X_test, Y_train, Y_test = data

55
56
57
58
59
60

n_train,

E_train_arr
= X_train.shape[0]

for i in range(monte_carlo_loops):

W = np.random.randn(N, p)
Sigm = sigma(W@X_train)
Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))

#
#
#
#
#

E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power(Q_y, 2)@Y_train.T
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67 # E_train_arr.append(E_train)

68

69 W = np.random.randn(N, p)

70 Sigm = sigma(W @ X_train)

71 Sigm_ = sigma(W @ X_test)

72

73 inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)
74 beta = Sigm / n_train @ inv_tQ_r

75

76 E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
77 E_train_arr.append(E_train)

78

79 return np.mean(np.array(E_train_arr))

80
81

g2 def Etest(gamma, data, npN, monte_carlo_loops=30):
83 nnn

84 Actual test error compute (random-based)

85 :param gamma: ridge penalty value

86 :param data: train/test data

87 :param npN: dimensionality of the data and number of neurons

88 :param monte_carlo_loops: number of iterations for E value averaging for different
generated W

89 :return: Test error

90 nnn

91 # Unpacking variables

92 X_train, X_test, Y_train, Y_test = data

93 n_train, n_test, p, N = npN

94

95 E_test_arr = []

9% p = X_train.shape [0]

97

98 for i in range(monte_carlo_loops):

99

100 W = np.random.randn(N, p)

101 Sigm = sigma(W@X_train)

102 Sigm_ = sigma(W@X_test)

103

104 inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)

105 beta = Sigm/n_train @ inv_tQ_r

106

107 # Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))

108

109 # terml = (1/n_test)*(Y_test@Y_test.T)

110 # term2 = (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Y_test.T)

111 # term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Sigm_.T@Sigm@Q_y@Y_train.
T)

12

13

14 E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test

115 E_test_arr.append(E_test)

116

17 ans = np.mean(np.array(E_test_arr))

118

19 return ans

120
121

122 def find_delta(gamma, X_train, N, accuracy) -> float:
123 nnn

124 Helper-function that finds delta parameter for the resolvent Q iteratively
125 :param gamma: ridge penalty value

126 :param X_train: training set

127 :param N: number of neurons in the hidden layer

128 :param accuracy: accuracy for numerical delta finding

129 :return: optimal value for delta parameter for the resolvent Q
130 nnn

131 n_train = X_train.shape[1]

132 delta_prev = 1

133 delta_next = 0

134 while abs(delta_prev-delta_next) > accuracy:

135 delta_prev = delta_next



136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184

185

187
188
189
190
191
192
193
194
195
196
197
198

A.2. Optimal v value and error behaviour with increasing amount of data 65

def

def

def

def

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta_next)) + gamma*np.eye (
n_train))
delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
return delta_next

Etrain_(gamma, data, npN):

nnn

Estimated train error compute (expectation based, deterministic)
:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of Neurons
:return: estimated training error

i

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

#E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_0@K_@Q_))/((1 - 1/
N) *np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)=*np.

trace (K_Q@Q_0@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

return E_train_

Etest_(gamma, data, npN):

nnn

Estimated test error compute (expectation based, deterministic)
:param gamma: ridge penalty value

:param data: train/test

:param npN: dimensionality of the data and number of Neurons
:return: estimated test error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = 0.0

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))

K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))

#E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_Q@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.matrix.trace(K_QQ_@K_0@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gammax*Q_)@(
K_xX@K_xX.TeQ_)))

E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)*x*2) + (((1/N)x*(

Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.trace(K_@Q_0K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)#*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

return E_test_

find_optimal_gamma (gammas, E_func, data, npN):
errors = [E_func(g, data, npN) for g in gammas]
return gammas [np.argmin(errors)], errors[np.argmin(errors)]

generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
Generating X randomly; Y according to the law Y = X°T * b + eps

:param npN: dimensionality of the data and number of neurons

:param d: dimensionality of the output vector



199
200
201
202
203
204
205
206
207
208
209
210
21

212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

A.2. Optimal v value and error behaviour with increasing amount of data

66

:param

:return
nnn

# Unpac
n_train

X_train
X_test

# Gener
dens =
b = np.

)1
W = np.
Y_gener

)))

Y_train
Y_test

# Shuff
shuffle
shuffle

X_train
Y_train
X_test
Y_test

return

noise_level: level of noisiness in Y
: training and test data for both X and Y

king values:
, n_test, p, N = npN

= np.random.randn(p, n_train)
= np.random.randn(p, n_test)

ating Y according to the law: Y = T * b + eps
density

array ([np.random.choice ([0, 1], size=d, p=[1-dens/100, dens/100]) for

random.randn(N, p)
ator = lambda X: (sigma(W@X).T@b + np.random.normal (0, noise_level,
.flatten()

= Y_generator (X_train)
= Y_generator (X_test)

ling the dataset
_train = np.random.permutation(n_train)
_test = np.random.permutation(n_test)

= X_train[:, shuffle_train]

= Y_train[shuffle_train]
X_test[:, shuffle_test]

= Y_test[shuffle_test]

X_train, X_test, Y_train, Y_test, W, b

in range (N

(X.shape[1], d

# def log_results(log_file, n, p, N, optimal_gamma_Etest, optimal_gamma_Etest_bar, E_test,

E_test_
# with
# £
# f
# £
# f
# b
comm = MPI.
size = comm
rank = comm

delta_accur

b_vector_density

cl = 1.0 #
c2 = 0.

gammas = [1
n_values =

# Split the

)
open(log_file, 'a') as f:

.write(f"n = {n}, p = {p}, N = {N}\n")
.write(f"Optimal gamma for Etest: {optimal_gamma_Etest}\n")
.write(f"Optimal gamma for Etest_bar: {optimal_gamma_Etest_bar}\n")
.write(f"Etest: {E_test}\n")
.write(f"Etest_bar: {E_test_}\n\n")
COMM_WORLD
.Get_size ()
.Get_rank ()
acy = le-3
= 50 #)
p/n
N/n

O**y for y in np.arange(-7, 1, 0.1)]
np.arange (100, 3000, 100)

n_values among available ranks

n_split = np.array_split(n_values, size)
local_n_values = n_split[rank]

optimal_gammas_Etest = []
optimal_gammas_Etest_bar = []

Etest_value
Etest_bar_v

for i, n in
P int
N = int
npN = (

s = []

alues = []

enumerate (local_n_values):
(cl1 * n) # Calculate p based on the constant ratio ci
(c2 * n) # Calculate N based on the constant ratio c2

int(n * 0.8), int(n * 0.2), p, N) # Recalculate n_train and n_test
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print (f 'Rank,{rank} - Iteration {i+1}/{len(local_n_values)}')
print (£ 'Ranky{rank} - Trying for n,=y{n}, pu=u{p},uNu=u{N}y...")

# Generate synthetic data

X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data_regression(npN,
b_vector_density)

data = X_train, X_test, Y_train, Y_test

# Find the optimal gammas that minimize Etest and Etest_bar
optimal_gamma_Etest, E_test = find_optimal_gamma(gammas, Etest, data, npN)
optimal_gamma_Etest_bar, E_test_ = find_optimal_gamma(gammas, Etest_, data, npN)

print (f'Rank_{rank}, - ,Gamma,that minimizes Etest: {optimal_gamma_Etest}')

print (f 'Rank,{rank} - ,Gamma that minimizes_ Etest_bar: {optimal_gamma_Etest_barl}')
#

print (f'Rank {rank} - ,Etest: ,{E_test}')

print (f 'Rank,{rank} - Etest_bar: ,{E_test_}')

optimal_gammas_Etest.append(optimal_gamma_Etest)
optimal_gammas_Etest_bar.append(optimal_gamma_Etest_bar)

Etest_values.append(E_test)
Etest_bar_values.append(E_test_)

# log_results(log_file, n, p, N, optimal_gamma_Etest, optimal_gamma_Etest_bar, E_test,
E_test_)

# Gather results from all ranks

optimal_gammas_Etest = comm.gather (optimal_gammas_Etest, root=0)
optimal_gammas_Etest_bar = comm.gather (optimal_gammas_Etest_bar, root=0)
Etest_values = comm.gather (Etest_values, root=0)

Etest_bar_values = comm.gather (Etest_bar_values, root=0)

if rank == 0:
optimal_gammas_Etest = np.concatenate(optimal_gammas_Etest)
optimal_gammas_Etest_bar = np.concatenate(optimal_gammas_Etest_bar)
Etest_values = np.concatenate(Etest_values)
Etest_bar_values = np.concatenate(Etest_bar_values)

np.savez('results_parallel.npz',
n_values=n_values,
optimal_gammas_Etest=optimal_gammas_Etest,
optimal_gammas_Etest_bar=optimal_gammas_Etest_bar,
Etest_values=Etest_values,
Etest_bar_values=Etest_bar_values,
cl=cl,
c2=c2,
b_vector_density=b_vector_density)
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A.3. Normalized ridge error against regularization parameter

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt

def sigma(t):
return t # Linear activation function

def generate_synthetic_data(n, cl, c2, density=0.9, noise_level=0.1):
p = int(cl * n)
N = int(c2 * n)
n_train = int(n * 0.8)
n_test = n - n_train

# Generate random weights and sparse beta
W = np.random.randn(N, p)
b = np.random.choice ([0, 1], size=(N, 1), p=[1 - density, densityl])

# Generate data

X_train = np.random.randn(p, n_train)

Y_train = (sigma(W @ X_train).T @ b).flatten() + np.random.normal (0, noise_level, n_train
)

X_test = np.random.randn(p, n_test)

Y_test = (sigma(W @ X_test).T @ b).flatten() + np.random.normal (0, noise_level,

return X_train, X_test, Y_train, Y_test, W, b

def compute_ridge_errors(gammas, X_train, Y_train, W, b):
n_train = X_train.shape[1]
Sigm = sigma(W @ X_train)
SigmT_Sigm = Sigm.T @ Sigm
ridge_errors = []

for gamma in gammas:
try:
# Compute ridge solution
beta_ridge = (Sigm / n_train) @ linalg.solve(
SigmT_Sigm / n_train + gamma * np.eye(n_train),
Y_train

# Compute normalized error

error = np.linalg.norm(beta_ridge - b, 'fro') *x 2 / np.linalg.norm(b,
2

ridge_errors.append(error)

except np.linalg.LinAlgError:
ridge_errors.append(np.nan)

return np.array(ridge_errors)

# Parameters (adjust these for faster testing)
n = 512 # Reduced for local testing

cl =1.0 # p/n

c2 = 0.7 # N/n

b_density = 0.95

gammas = [10*%*y for y in np.arange(-7, 7, 0.1)]

# Generate synthetic data
X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data(
n=n, cl=cl, c2=c2, density=b_density

)

# Compute ridge errors
ridge_errors = compute_ridge_errors(gammas, X_train, Y_train, W, b)

n_test)

"fro') *kx
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# Plot results

plt.
plt.
plt.
plt.
.title(f'Ridge Error vs Regularization Strength, (n={n}, p={int(ci * n)}, N={int (c2,* n)})"

plt

plt

figure(figsize=(10, 6))

semilogx (gammas, ridge_errors, 'b-', marker='o', markersize=5)
xlabel ('Regularization Strength, () ', fontsize=12)

ylabel ('Normalized Ridge Error', fontsize=12)

)

.grid(True, which='both', linestyle='--', alpha=0.7)
plt.
plt.

tight_layout ()
show ()
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A.4. Error Metrics and ~ value over number of data points

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

HHHHHHHHHHHHHHHBHBHFHBHBHHHHH
# 1) Basic definitions
HHSHHHHSHH ARG HH AR H RS HHH SR HH

def sigma(t):
# For this example, just use linear activation
return t

def K(x, y):
# Kernel function for the linear activation
return x.T @ y

def find_delta(gamma, X_train, N, accuracy=le-3):
nnn

Numerically solves for the delta parameter used in the deterministic equivalents.

nnn

n_train = X_train.shape[1]

delta_prev = 1.0

delta_next = 0.0

while abs(delta_prev - delta_next) > accuracy:
delta_prev = delta_next

Q_ = np.linalg.inv((N / n_train) * K(X_train, X_train) / (1 + delta_next) + gamma *

np.eye(n_train))
delta_next = (1 / n_train) * np.trace(Q_ @ K(X_train, X_train))
return delta_next

HUHHHH AR HBH AR HH AR H RS H B RS
# 2) Error metrics
HUHHHB AR H BB AR HH AR HHR AR B HHH

def Etest(gamma, X_train, Y_train, X_test, Y_test, N_loops=10):
Monte Carlo (random) test MSE:
- Randomly draw W, compute Sigm = sigma(W X_train)
- Solve ridge, apply to test set, average over N_loops
nnn
n_train = X_train.shape[1]
n_test = X_test.shapel[1]
p = X_train.shape[0]

E_test_vals = []
for _ in range(N_loops):
W = np.random.randn(N, p)
Sigm = sigma(W @ X_train) # shape (N, n_train)

Sigm_test = sigma(W @ X_test) # shape (N, n_test)

# Solve for ridge coefficients: (1/n_train)*Sigm * inv( Sigm"T Sigm/n_train + gamma I

) * Y_train
A = Sigm.T @ Sigm / n_train + gamma * np.eye(n_train)
invA Y = linalg.solve(A, Y_train, assume_a='pos') # shape (n_train, )
beta = (Sigm / n_train) @ invA_Y
# Evaluate test error
pred_test = Sigm_test.T @ beta # shape (n_test,)
err = np.mean((Y_test - pred_test) **x 2)

E_test_vals.append(err)

return np.mean(E_test_vals)

def Etest_det(gamma, X_train, Y_train, X_test, Y_test):
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nwnn

Deterministic equivalent test MSE (approximation).

nnn

n_train =

X_train.shape[1]

n_test = X_test.shapel[1]
* (n_train + n_test)) # or pass as a parameter
delta = find_delta(gamma, X_train, N)

N = int(c2

Q_ = np.linalg.inv((N / n_train) * K(X_train, X_train) / (1 + delta) + gamma * np.eye(

n_train))

K_ = (N / n_train) * K(X_train,

K_xX = (N
K_XX = (N

X_train) / (1 + delta)

/ n_train) * K(X_train, X_test) / (1 + delta)
/ n_train) * K(X_test, X_test) / (1 + delta)

# first "direct" MSE part: (1/n_test)x
Y_test - (K_xX.T @ (Q_ @ Y_train))

residual =
partA = np

.mean (residual ** 2)

|1Y_test - K_xX"T Q_ Y_trainl|~2

# second "correction" part from random matrix theory
num = (1 / N) * (Y_train.T @ Q_ @ K_ @ Q_ @ Y_train)
den = (1 - (1 / N) * np.trace(K_ @ Q_ @ K_ @ Q_))

partB = num / den * ((1 / n_test) * np.trace(K_XX)

- (1 / n_test) * np.trace((np.eye(n_train) + gamma * Q_) @ (K_xX @

K_xX.T @ Q_)))

return partA + partB

def Lridge(gamma, X_train, Y_train, b):

nwnon

Ridge 'coe

with beta_hat found by ridge.

fficient error': || beta_hat

- b Il72 / Ilvl|~2

We *don't* average over W here,

since 'b' depends on a *specific* W used to generate data.

nnn

n_train =

Sigm = sigma(W_gen @ X_train)

X_train.shape[1]

# use the same W that generated 'b'

A = Sigm.T @ Sigm / n_train + gamma * np.eye(n_train)
invA Y = linalg.solve(A, Y_train, assume_a='pos')
beta = (Sigm / n_train) @ invA_Y

return np.

linalg.norm(beta - b, 'fro') *x 2 / np.linalg.norm(b, 'fro') *x* 2

HHHHHHHHHHHHHHHBHBHHHBHBHHHHH
# 3) Local runner
HHHHHHHHJHBHHHHHBHHHHHBHHHHHH

# Smaller test

parameters

cl =1.0 # p/n
c2 = 0.7 # N/n
gammas = [10 ** x for x in np.arange(-7, 5, 0.5)] # e.g. gamma from 1le-3 to 1le3

n_values = [500, 600, 700] # smaller range

results_gamma_etest = []
results_gamma_etest_ = []
results_gamma_lridge = []
results_etest_vals = []

results_etest_vals_ = []

results_lridge

_vals

1]
—
—

for n in n_values:
# Dimensions

n_train =
n_test = n
p = int(cl
N = int(c2

# Generate

int(n * 0.8)
- n_train
*n)

* n)

synthetic data for this n
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# NOTE: store W_gen,
density = 50 # e.g.
noise_level = 0.1

# Create a random W_gen for generating the data
W_gen = np.random.randn(N, p)

def Y_generator (X):

# We create a random
b_local = np.random.choice ([0,

p=[1 - demsity / 100,
# We'll keep track of b_local so we can measure Lridge
let's store it outside in a closure
return sigma(W_gen @ X).T @ b_local, b_local

# but for clarity,

# Make X and Y

X_tr = np.random.randn(p, n_train)
Y_generator (X_tr)

Y_tr_gen, b_local =
# Add noise

Y_tr = Y_tr_gen.ravel() + noise_level * np.random.randn(n_train)

X_te = np.random.randn(p, n_test)
= Y_generator (X_te)
Y te = Y_te_gen.ravel() + noise_level * np.random.randn(n_test)

Y_te_gen,

# Shuffle

perm_tr = np.random.permutation(n_train)
X_tr = X_tr[:, perm_tr]

Y_tr = Y_tr[perm_tr]

perm_te = np.random.permutation(n_test)
X_te = X_tel:, perm_tel

Y_te = Y_tel[perm_te]

# We define a small function that can compute each metric for a given gamma
def measure_all_metrics(g):
# test error (random-based)
e_test = Etest(g, X_tr, Y_tr, X_te, Y_te, N_loops=b)
# test error (det-based)
Etest_det(g, X_tr, Y_tr, X_te, Y_te)
# ridge error in param space
# but we need W_gen and b_local from above
# put them in global scope or closure
return e_test, e_test_approx

e_test_approx =

# Now search for optimal gamma for each metric

best_e_test = np.inf
best_e_test_g = None

best_e_test_approx =
best_e_test_approx_g

best_lridge = np.inf
best_lridge_g = None

for g in gammas:
# Etest

val_test = Etest(g, X_tr, Y_tr, X_te, Y_te, N_loops=5)
if val_test < best_e_test:

best_e_test
best_e_test_g

# Etest_det

val_test_det = Etest_det(g, X_tr, Y_tr, X_te, Y_te)

if val_test_det < best_e_test_approx:
best_e_test_approx
best_e_test_approx_g

b so we can use the same underlying W in Lridge

with certain demnsity:

density / 100])

val_test_det
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# Lridge
# We need references to W_gen, b_local in scope
# so let's define them as global, or do it inline:
Sigm_gen = sigma(W_gen @ X_tr)
A = Sigm_gen.T @ Sigm_gen / n_train + g * np.eye(n_train)
invA_Y = linalg.solve(A, Y_tr, assume_a='pos')
beta_est = (Sigm_gen / n_train) @ invA_Y
this_lridge = (np.linalg.norm(beta_est - b_local, 'fro') ** 2
/ np.linalg.norm(b_local, 'fro') *x* 2)
if this_lridge < best_lridge:
best_lridge = this_lridge
best_lridge_g = g

# store results
results_gamma_etest.append(best_e_test_g)
results_etest_vals.append(best_e_test)

results_gamma_etest_.append(best_e_test_approx_g)
results_etest_vals_.append(best_e_test_approx)

results_gamma_lridge.append(best_lridge_g)
results_lridge_vals.append(best_lridge)

HHHHHHHHHHHHHHHHHHHHHBHBHHHHH
# 4) Plot results
HHSHHH AR HH ARG HH AR H B RS HHH RS HH

fig, axs = plt.subplots(l, 2, figsize=(12, 5))

# (a) Plot the optimal gamma for each metric vs n

axs [0]
axs [0]
axs [0]
axs [0]
axs [0]
axs [0]
axs [0]
axs [0]
axs [0]

.plot(n_values, results_gamma_etest, 'bo-', label='Gamma,for Etest')
.plot(n_values, results_gamma_etest_, 'mo-', label='Gamma,for Etest_,approx')
.plot(n_values, results_gamma_lridge, 'ro-', label='Gamma,for Lridge')
.set_xscale('log')

.set_yscale('log')

.set_xlabel('n"')

.set_ylabel('Optimal gamma,(logyscale) ')

.legend ()

.set_title('Optimal gamma,vs. n')

# (b) Plot the *minimum* error achieved vs n (for each metric)

axs [1]
axs [1]
axs[1]
axs [1]
axs [1]
axs[1]
axs [1]
axs[1]
axs[1]

.plot(n_values, results_etest_vals, 'bx-', label='Min Etest')
.plot(n_values, results_etest_vals_, 'm*-', label='Min Etest_,approx')
.plot(n_values, results_lridge_vals, 'rx-', label='Min Lridge')
.set_xscale('log')

.set_yscale('log')

.set_xlabel('n')

.set_ylabel ('Error(log,scale)')

.legend )

.set_title('Minimum achieved error,vs., n')

plt.tight_layout ()
plt.show ()
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A5. Derivative-based loss functions against v parameter (differ-

ent noise levels)

import numpy as np
2 import matplotlib.pyplot as plt

4 def sigma(t):

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def

def

def

def

nnn

Small sigma function of choice
:param t: input
:return: output

nnn

return t

K(x, y):

nnn

Kernel function. Depends on the choice of a small sigma function
:param x: first 'point' set

:param y: second 'point' set

:return: matrix of measures of 'distances' between points

nnn

return x.TQy

K_(x, y, delta, N, n_train):

o

Function to compute kernel approximation
:param x: first 'point' set

:param y: second 'point' set

:param delta: delta parameter

:return: approximation for the kernel matrix

nnn

k_ = (N/n_train)*((K(x, y))/(1+delta))

return k_

find_delta(gamma, X_train, N, accuracy) -> float:
nnn
Helper-function that finds delta parameter for the resolvent Q iteratively
:param gamma: ridge penalty value
:param X_train: training set
:param N: number of neurons in the hidden layer
:param accuracy: accuracy for numerical delta finding
:return: optimal value for delta parameter for the resolvent Q
nnn
n_train = X_train.shape[1]
delta_prev = 1
delta_next = 0
while abs(delta_prev-delta_next) > accuracy:
delta_prev = delta_next
Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta_next)) + gamma*np.eye (
n_train))
delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
return delta_next

Etrain_(gamma, data, npN):

nnn

Estimated train error compute (expectation based, deterministic)
:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of Neurons
:return: estimated training error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = find_delta(gamma, X_train, N, delta_accuracy)
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def

def

def

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))
K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
#E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/

N) *np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)
E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace (K_Q@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

return E_train_

Etest_(gamma, data, npN):

wun

Estimated test error compute (expectation based, deterministic)
:param gamma: ridge penalty value

:param data: train/test

:param npN: dimensionality of the data and number of Neurons
:return: estimated test error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta 0.0

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))
K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

K_xX = (N/n_train)*(K(X_train, X_test)/(l+delta))

K_XX = (N/n_train)*(K(X_test, X_test)/(l+delta))

#E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_QY_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_Q@Y_train.T))/((1-1/N)*np.matrix.trace(K_Q@Q_0@K_0Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@Q(
K_xX@K_xX.TeQ_)))

E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_Q@Y_train.T)*x*2) + (((1/N)x*(

Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xXO@K_xX.TeQ_)))

return E_test_

estimate_variance_RSS(Y, Sigm, n, gamma):
QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)
beta_hat = Sigm / n @ QyT

y_est = beta_hat.T @ Sigm

# variance already squared
variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm~2
return variance

dL_dy_expected(gamma, X, Y, W, variance):

"Oracle". Conditional expectation w.r.t. epsilon, taken
from an unfolded derivative of Loss function ||beta-b]||**2
by gamma (set equal to 0). Some 'oracle' prediction for loss.
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

Q = (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv
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def

def

dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
return dL_dy_exp

dL_dy_estimated(gamma, X, Y, W, variance=1):

nnn

Calculation of the unfolded derivative of Loss function ||beta-b]||**2
under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle'
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

Q = (1 / nx* (Sign.T @ Sigm) + gamma * np.eye(n))
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv
Q_inv3 = Q_inv2 @ Q_inv
estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)

dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
return dL_dy_exp

generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
nnn
Generates data for the model:
Y = b"T * Sigma + eps
with Sigma = W @ X and b has 'density'% of 1's.

Shapes:
X_train: (p, n_train)
X_test: (p, n_test)
W: (N, p)
b: (N, d) -- if d=1 => shape (N,1)
Y_train, e_train: (d, n_train)
Y_test, e_test: (d, n_test)

:param npN: (n_train, n_test, p, N)

:param density: percentage for b's 1's

:param d: dimension of output (1 => scalar outputs)

:param noise_level: std-dev of Gaussian noise

:return: (X_train, X_test, Y_train, Y_test, W, b, e_train, e_test)

nnn

n_train, n_test, p, N = npN

# 1) Generate X
X_train = np.random.randn(p, n_train) # (p, n_train)
X_test = np.random.randn(p, n_test) # (p, n_test)

# 2) Generate b (N x d), if d=1 => (N,1)
b = np.random.choice ([0, 1],
size=(N, d),
p=[1 - density / 100, density / 100])

# 3) Generate W (N x p)
W = np.random.randn(N, p)

def make_data(X):
nmnn
Given X with shape (p, n), returns:
Y: (d, n)
e: (d, n)
Sigm: (N, n) [might be useful if needed]

nnn

one .
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202 # Sigma = W @ X => (N, n)

203 Sigm = sigma(W @ X)

204

205 # Noise eps => (d, n)

206 e = np.random.normal (loc=0, scale=noise_level, size=(d, X.shape[1]))
207

208 # b°T shape => (d, N), so b°T @ Sigm => (d, n)

209 Y = (b.T @ Sigm) + e

210

211 return Y, e, Sigm

212

213 # 4) Make training data (Y_train_full, e_train_full)

214 Y_train_full, e_train_full, Sigm_train = make_data(X_train)
215

216 # 5) Make test data (Y_test_full, e_test_full)

217 Y_test_full, e_test_full, Sigm_test = make_data(X_test)

218

219 # 6) Shuffle columns (the "sample" axis) in X, Y, e

220 # X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
221 idx_train = np.random.permutation(n_train)

222 idx_test = np.random.permutation(n_test)

223

224 X_train = X_train[:, idx_train]

225 Y_train_full = Y_train_fulll[:, idx_train]

226 e_train_full = e_train_full[:, idx_train]

227

228 X_test = X_test[:, idx_test]

229 Y_test_full = Y_test_full[:, idx_test]

230 e_test_full = e_test_full[:, idx_test]

231

232 # 7) Return them all in consistent shapes

233 # No flattening is required; Y and e remain (d,n).

234 return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full, e_test_full

235
236
237 def L_ridge(gamma, X, Y, W, b):

238 n = X.shape[1]

239 Sigm = sigma(W @ X)

240

241 QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
242 beta = Sigm/n @ QyT

243

244 numerator = np.linalg.norm(beta - b, 'fro')**2

245 denominator = np.linalg.norm(b, 'fro')**2

246

247 return numerator/denominator

248
249

250 def plot_estimated_vs_oracle_different_xranges():
251 nnn

252 Left subplot:

253 dL/dgamma (estimated RSS) over gamma in [le-5, 1e3] (step 0.005 in logil0).
254 Right subplot:

255 dL/dgamma (oracle) over gamma in [le-3, 1e2] (step 0.005 in logl0).
256 We loop over noise_levels=[1,2,3,4,5].

257 nnn

258

259 # Basic scenario

260 noise_levels = [1,2,3,4,5]

261

262 # c1, c2 => p/n=1.0, N/n=0.8

263 n = 200

264 cl =1.0

265 c2 = 0.8

266

267 P int (c1*n)

268 N = int(c2%*n)

269 n_train = int (0.8%n)

270 n_test = n - n_train

271 npN = (n_train, n_test, p, N)
272
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273 # Different gamma ranges

274 gammas_est = [10**y for y in np.arange(-4, 3, 0.005)] # ~le-5 to ~1e3

275 gammas_oracle = [10**y for y in np.arange(-4, 2, 0.005)]# ~1e-3 to ~le2

276

277 fig, (ax_est, ax_oracle) = plt.subplots(l, 2, figsize=(12,5))

278

279 # Loop over noise

280 for nl in noise_levels:

281 # Generate data for each noise

282 X_train, X_test, Y_train, Y_test, W, b, e_train, e_test = \

283 generate_synthetic_data_regression(npN, density=50, d=1, noise_level=nl)

284

285 # Evaluate dL/dgamma (est) over gammas_est

286 dL_est_vals = []

287 for g in gammas_est:

288 val_est = dL_dy_estimated(g, X_train, Y_train, W, variance=1.0)

289 dL_est_vals.append(val_est.item() if hasattr(val_est, 'item') else float(val_est)
)

290

291 # Evaluate dL/dgamma (oracle) over gammas_oracle

292 dL_oracle_vals = []

293 # We pass in the real variance = nl~2

294 for g in gammas_oracle:

295 val_oracle = dL_dy_expected(g, X_train, Y_train, W, variance=nlx**2)

296 dL_oracle_vals.append(val_oracle.item() if hasattr(val_oracle, 'item') else float

(val_oracle))
207

298 # Plot them

299 ax_est.loglog(gammas_est, dL_est_vals, label=f"noise={nll}")
300 ax_oracle.loglog(gammas_oracle, dL_oracle_vals, label=f"noise={nl}")
301

302 # Label/Legend subplots

303 ax_est.set_title("Estimated Derivative (RSS)_ -, Gamma in [le-5,1e3]")
304 ax_est.set_xlabel ("Gamma, (log,scale)")

305 ax_est.set_ylabel("dL/dGamma, (EstVar)")

306 ax_est.grid(True, which='both', 1ls='--', alpha=0.7)

307 ax_est.legend ()

308

309 ax_oracle.set_title("Oracle Derivative, -, Gamma in  [le-3,1e2]")
310 ax_oracle.set_xlabel ("Gamma, (log,scale)")

31 ax_oracle.set_ylabel ("dL/dGamma,(Oracle)")

312 ax_oracle.grid(True, which='both', 1ls='--', alpha=0.7)

313 ax_oracle.legend ()

314

315 fig.tight_layout ()

316 plt.show ()

317

318

319 if __name__ == "__main__":

320 plot_estimated_vs_oracle_different_xranges ()
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A.6. Directloss with v derived from minimizing different loss func-

tions (including the derivative-based)

import numpy as np
2 import matplotlib.pyplot as plt

4 def sigma(t):

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def

def

def

def

nnn

Small sigma function of choice
:param t: input
:return: output

nnn

return t

K(x, y):

nnn

Kernel function. Depends on the choice of a small sigma function
:param x: first 'point' set

:param y: second 'point' set

:return: matrix of measures of 'distances' between points

nnn

return x.TQy

K_(x, y, delta, N, n_train):

o

Function to compute kernel approximation
:param x: first 'point' set

:param y: second 'point' set

:param delta: delta parameter

:return: approximation for the kernel matrix

nnn

k_ = (N/n_train)*((K(x, y))/(1+delta))

return k_

find_delta(gamma, X_train, N, accuracy) -> float:
nnn
Helper-function that finds delta parameter for the resolvent Q iteratively
:param gamma: ridge penalty value
:param X_train: training set
:param N: number of neurons in the hidden layer
:param accuracy: accuracy for numerical delta finding
:return: optimal value for delta parameter for the resolvent Q
nnn
n_train = X_train.shape[1]
delta_prev = 1
delta_next = 0
while abs(delta_prev-delta_next) > accuracy:
delta_prev = delta_next
Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta_next)) + gamma*np.eye (
n_train))
delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
return delta_next

Etrain_(gamma, data, npN):

nnn

Estimated train error compute (expectation based, deterministic)
:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of Neurons
:return: estimated training error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = find_delta(gamma, X_train, N, delta_accuracy)
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Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))
K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

#E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N) *np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace (K_Q@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

return E_train_

def Etest_(gamma, data, npN):

W

Estimated test error compute (expectation based, deterministic)

:param gamma: ridge penalty value

:param data: train/test

:param npN: dimensionality of the data and number of Neurons

:return: estimated test error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = 0.0

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

K_xX = (N/n_train)*(K(X_train, X_test)/(l+delta))

K_XX = (N/n_train)*(K(X_test, X_test)/(1l+delta))

#E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_QY_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_Q@Y_train.T))/((1-1/N)*np.matrix.trace(K_Q@Q_0@K_0Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@Q(
K_xX@K_xX.TeQ_)))

E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_Q@Y_train.T)*x*2) + (((1/N)x*(
Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xXO@K_xX.TeQ_)))

return E_test_

def estimate_variance_RSS(Y, Sigm, n, gamma):

QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)

beta_hat = Sigm / n @ QyT

y_est = beta_hat.T @ Sigm

# variance already squared

variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm~2

return variance

def dL_dy_expected(gamma, X, Y, W, variance):

nnn

"Oracle". Conditional expectation w.r.t. epsilon, taken
from an unfolded derivative of Loss function ||beta-b]||**2
by gamma (set equal to 0). Some 'oracle' prediction for loss.
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

Q = (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv
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8l

def

def

dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
return dL_dy_exp

dL_dy_estimated(gamma, X, Y, W, variance=1):

nnn

Calculation of the unfolded derivative of Loss function ||beta-b]||**2
under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle'
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

Q = (1 / nx* (Sign.T @ Sigm) + gamma * np.eye(n))
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv
Q_inv3 = Q_inv2 @ Q_inv
estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)

dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
return dL_dy_exp

generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
nnn
Generates data for the model:
Y = b"T * Sigma + eps
with Sigma = W @ X and b has 'density'% of 1's.

Shapes:
X_train: (p, n_train)
X_test: (p, n_test)
W: (N, p)
b: (N, d) -- if d=1 => shape (N,1)
Y_train, e_train: (d, n_train)
Y_test, e_test: (d, n_test)

:param npN: (n_train, n_test, p, N)

:param density: percentage for b's 1's

:param d: dimension of output (1 => scalar outputs)

:param noise_level: std-dev of Gaussian noise

:return: (X_train, X_test, Y_train, Y_test, W, b, e_train, e_test)

nnn

n_train, n_test, p, N = npN

# 1) Generate X
X_train = np.random.randn(p, n_train) # (p, n_train)
X_test = np.random.randn(p, n_test) # (p, n_test)

# 2) Generate b (N x d), if d=1 => (N,1)
b = np.random.choice ([0, 1],
size=(N, d),
p=[1 - density / 100, density / 100])

# 3) Generate W (N x p)
W = np.random.randn(N, p)

def make_data(X):
nmnn
Given X with shape (p, n), returns:
Y: (d, n)
e: (d, n)
Sigm: (N, n) [might be useful if needed]

nnn

one .
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202 # Sigma = W @ X => (N, n)

203 Sigm = sigma(W @ X)

204

205 # Noise eps => (d, n)

206 e = np.random.normal (loc=0, scale=noise_level, size=(d, X.shape[1]))
207

208 # b°T shape => (d, N), so b°T @ Sigm => (d, n)

209 Y = (b.T @ Sigm) + e

210

211 return Y, e, Sigm

212

213 # 4) Make training data (Y_train_full, e_train_full)

214 Y_train_full, e_train_full, Sigm_train = make_data(X_train)
215

216 # 5) Make test data (Y_test_full, e_test_full)

217 Y_test_full, e_test_full, Sigm_test = make_data(X_test)

218

219 # 6) Shuffle columns (the "sample" axis) in X, Y, e

220 # X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
221 idx_train = np.random.permutation(n_train)

222 idx_test = np.random.permutation(n_test)

223

224 X_train = X_train[:, idx_train]

225 Y_train_full = Y_train_fulll[:, idx_train]

226 e_train_full = e_train_full[:, idx_train]

227

228 X_test = X_test[:, idx_test]

229 Y_test_full = Y_test_full[:, idx_test]

230 e_test_full = e_test_full[:, idx_test]

231

232 # 7) Return them all in consistent shapes

233 # No flattening is required; Y and e remain (d,n).

234 return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full, e_test_full

235
236
237 def L_ridge(gamma, X, Y, W, b):

238 n = X.shape[1]

239 Sigm = sigma(W @ X)

240

241 QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
242 beta = Sigm/n @ QyT

243

244 numerator = np.linalg.norm(beta - b, 'fro')**2

245 denominator = np.linalg.norm(b, 'fro')**2

246

247 return numerator/denominator

248
249

250 def plot_estimated_vs_oracle_different_xranges():
251 nnn

252 Left subplot:

253 dL/dgamma (estimated RSS) over gamma in [le-5, 1e3] (step 0.005 in logil0).
254 Right subplot:

255 dL/dgamma (oracle) over gamma in [le-3, 1e2] (step 0.005 in logl0).
256 We loop over noise_levels=[1,2,3,4,5].

257 nnn

258

259 # Basic scenario

260 noise_levels = [1,2,3,4,5]

261

262 # c1, c2 => p/n=1.0, N/n=0.8

263 n = 200

264 cl =1.0

265 c2 = 0.8

266

267 P int (c1*n)

268 N = int(c2%*n)

269 n_train = int (0.8%n)

270 n_test = n - n_train

271 npN = (n_train, n_test, p, N)
272
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273 # Different gamma ranges
274 gammas_est = [10**y for y in np.arange(-4, 3, 0.005)] # ~le-5 to ~1e3
275 gammas_oracle = [10**y for y in np.arange(-4, 2, 0.005)]# ~1e-3 to ~le2
276
277 fig, (ax_est, ax_oracle) = plt.subplots(l, 2, figsize=(12,5))
278
279 # Loop over noise
280 for nl in noise_levels:
281 # Generate data for each noise
282 X_train, X_test, Y_train, Y_test, W, b, e_train, e_test = \
283 generate_synthetic_data_regression(npN, density=50, d=1, noise_level=nl)
284
285 # Evaluate dL/dgamma (est) over gammas_est
286 dL_est_vals = []
287 for g in gammas_est:
288 val_est = dL_dy_estimated(g, X_train, Y_train, W, variance=1.0)
289 dL_est_vals.append(val_est.item() if hasattr(val_est, 'item') else float(val_est)
)
290
291 # Evaluate dL/dgamma (oracle) over gammas_oracle
292 dL_oracle_vals = []
293 # We pass in the real variance = nl~2
294 for g in gammas_oracle:
295 val_oracle = dL_dy_expected(g, X_train, Y_train, W, variance=nlx**2)
296 dL_oracle_vals.append(val_oracle.item() if hasattr(val_oracle, 'item') else float

(val_oracle))
207

298 # Plot them

299 ax_est.loglog(gammas_est, dL_est_vals, label=f"noise={nll}")
300 ax_oracle.loglog(gammas_oracle, dL_oracle_vals, label=f"noise={nl}")
301

302 # Label/Legend subplots

303 ax_est.set_title("Estimated Derivative (RSS)_ -, Gamma in [le-5,1e3]")
304 ax_est.set_xlabel ("Gamma, (log,scale)")

305 ax_est.set_ylabel("dL/dGamma, (EstVar)")

306 ax_est.grid(True, which='both', 1ls='--', alpha=0.7)

307 ax_est.legend ()

308

309 ax_oracle.set_title("Oracle Derivative, -, Gamma in  [le-3,1e2]")
310 ax_oracle.set_xlabel ("Gamma, (log,scale)")

31 ax_oracle.set_ylabel ("dL/dGamma,(Oracle)")

312 ax_oracle.grid(True, which='both', 1ls='--', alpha=0.7)

313 ax_oracle.legend ()

314

315 fig.tight_layout ()

316 plt.show ()

317

318

319 if __name__ == "__main__":

320 plot_estimated_vs_oracle_different_xranges ()
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A.7. Convergence Study

import numpy as np
2 from scipy import linalg

4 def sigma(t):

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

nnn

Smal
:par
et

nnn

retu

1 sigma function of choice
am t: input
urn: output

rn t

def K(x, y):

nnn

Kern
:par
:par
:ret

nwnn

retu

el function. Depends on the choice of a small sigma function
am x: first 'point' set

am y: second 'point' set

urn: matrix of measures of 'distances' between points

rn x.TQy

def K_(x, y, delta, N, n_train):

def

nnn

Func
:par
:par
:par
:ret

nonn

k =

retu

Etra
nnn

Actu
:par
:par
:par
:par

:ret
nnn

tion to compute kernel approximation

am x: first 'point' set

am y: second 'point' set

am delta: delta parameter

urn: approximation for the kernel matrix

(N/n_train) *((K(x, y))/(1+delta))
rn k_

in(gamma, data, npN, monte_carlo_loops=30):

al training error compute (random-based)

am gamma: ridge penalty value

am data: train/test data

am npN: dimensionality of the data and num of neurons

am monte_carlo_loops: number of iterations for E value averaging for different
generated W

urn: Training error

# Unpacking variables

X_tr
n_tr

E_tr
p =

for

ain, X_test, Y_train, Y_test = data
ain, n_test, p, N = npN

ain_arr = []

X_train.shape [0]

i in range(monte_carlo_loops):

W = np.random.randn(N, p)
Sigm = sigma(W@X_train)
Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))

E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power(Q_y, 2)@Y_train.T
E_train_arr.append(E_train)

H OH H K HH

W = np.random.randn(N, p)
Sigm = sigma(W @ X_train)

Sigm_ = sigma(W @ X_test)
inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)
beta = Sigm / n_train @ inv_tQ_r

E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
E_train_arr.append(E_train)



69
70
4l
72

74
75
76
7
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
12
13
14
15
116
17
18
19
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136

A7. Convergence Study 85

def

def

def

return np.mean(np.array(E_train_arr))

Etest (gamma, data, npN, monte_carlo_loops=20):

o

Actual test error compute (random-based)

:param gamma: ridge penalty value

:param data: train/test data

:param npN: dimensionality of the data and number of neurons

:param monte_carlo_loops: number of iterations for E value averaging for different
generated W

:return: Test error

nnn

# Unpacking variables

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

E_test_arr = []
p = X_train.shape[0]

for i in range(monte_carlo_loops):

W = np.random.randn(N, p)
Sigm = sigma(W@X_train)

Sigm_ = sigma(W@X_test)
inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)
beta = Sigm/n_train @ inv_tQ_r

# Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))

# terml (1/n_test)*(Y_test@Y_test.T)

# term2 (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_QY_test.T)

# term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_0Sigm_.T@Sigm@Q_yQ@Y_train.
T)

E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test
E_test_arr.append(E_test)

ans = np.mean(np.array(E_test_arr))

return ans

find_delta(gamma, X_train, N, accuracy) -> float:
nnn
Helper-function that finds delta parameter for the resolvent Q iteratively
:param gamma: ridge penalty value
:param X_train: training set
:param N: number of neurons in the hidden layer
:param accuracy: accuracy for numerical delta finding
:return: optimal value for delta parameter for the resolvent Q
nnn
n_train = X_train.shape[1]
delta_prev = 1
delta_next = 0
while abs(delta_prev-delta_next) > accuracy:
delta_prev = delta_next
Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta_next)) + gamma*np.eye (
n_train))
delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
return delta_next

Etrain_(gamma, data, npN):

nnn

Estimated train error compute (expectation based, deterministic)
:param gamma: ridge penalty value
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:param data: train/test data

:param npN: dimensionality of the data and number of Neurons

:return: estimated training error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

#E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_0@K_@Q_))/((1 - 1/
N) *np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)x*np.
trace(K_@Q_@K_0@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

return E_train_

def Etest_(gamma, data, npN):

Estimated test error compute (expectation based, deterministic)

:param gamma: ridge penalty value

:param data: train/test

:param npN: dimensionality of the data and number of Neurons

:return: estimated test error

nnn

# Unpacking variables:

X_train, X_test, Y_train, Y_test = data

n_train, n_test, p, N = npN

delta = 0.0

delta = find_delta(gamma, X_train, N, delta_accuracy)

Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(l+delta)) + gamma*np.eye(n_train))

K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))

K_xX = (N/n_train)*(K(X_train, X_test)/(l+delta))

K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))

#E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_QY_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_Q@Y_train.T))/((1-1/N)*np.matrix.trace(K_Q@Q_0@K_0Q_)))*((1/n_test)*np.
matrix.trace (K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@Q(
K_xX@K_xX.TeQ_)))

E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_QY_train.T)*x*2) + (((1/N)x*(
Y_train@Q_@K_@Q_QY_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xXO@K_xX.TeQ_)))

return E_test_

def estimate_variance_RSS(Y, Sigm, n, gamma):

QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)

beta_hat = Sigm / n @ QyT

y_est = beta_hat.T @ Sigm

# variance already squared

variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm~2

return variance

def dL_dy_real(gamma, X, Y, W, eps):

nwnn

Real unfolded derivative of Loss function ||beta-b||[**2 by gamma (set equal to 0)
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative
nnn
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def

def

def

Sigm = sigma(W @ X) # Size Nxn
n = X.shape[1]

Q = (1/n) * (Sigm.T @ Sigm) + gamma * np.eye(n)
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv

dL_dy = gammax(Y @ Q_inv3 @ Y.T) - (Y @ Q_inv2 @ eps.T)
return dL_dy

dL_dy_expected(gamma, X, Y, W, variance):

nnn

"Oracle". Conditional expectation w.r.t. epsilon, taken
from an unfolded derivative of Loss function ||beta-b|[**2
by gamma (set equal to 0). Some 'oracle' prediction for loss.
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

= (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
inv = np.linalg.inv(Q)

inv2 Q_inv @ Q_inv

inv3 = Q_inv2 @ Q_inv

Q

Q_
Q_
Q_

dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
return dL_dy_exp

dL_dy_estimated (gamma, X, Y, W, variance=1):

Calculation of the unfolded derivative of Loss function ||beta-bl|**2
under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle'
:param gamma: gamma parameter (1x1)

:param X: input data (pxn)

:param Y: output data (dxn)

:param W: weights matrix (Nxp)

:param eps: noise vector (dxn)

:return: calculated value of the derivative

nnn

Sigm = sigma(W @ X) # Size Nxn

n = X.shape[1]

Q =( / nx* (Sign.T @ Sigm) + gamma * np.eye(n))

Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv

estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)

dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
return dL_dy_exp

dL_dy_estimated_fixed_rss(gamma, X, Y, W, variance, gamma_rss):

nwnn

"Estimated" derivative: dL/dgamma, but the RSS-based variance is computed

at 'gamma_rss'. Then the derivative uses the current 'gamma' for the Q
in the standard formula:
derivative = gamma*(Y Q_inv~3 Y T) - est_var * trace(Q_inv~2)

where est_var is from 'estimate_variance_RSS(Y, Sigm, n, gamma_rss)'.
nnn

n = X.shape[1]

Sigm = W @ X # shape (N, n)

one.
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# Build Q for *this gammax:

Q = (1.0/n) * (Sigm.T @ Sigm) + gamma*np.eye(n)
Q_inv = np.linalg.inv(Q)

Q_inv2 Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv

# We do the RSS-based variance at 'gamma_rss'
# Must call 'estimate_variance_RSS':

est_var = estimate_variance_RSS(Y, Sigm, n, gamma_rss)

# derivative:

terml = gamma * (Y @ Q_inv3 @ Y.T) # shape (1,1)
term2 = est_var * np.trace(Q_inv2)

dL = terml - term2

# Convert to float

if hasattr(dL, "item"):
return float(dL.item())

return float (dL)

def generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):

nwnn

Generates data for the model:
Y = b°T * Sigma + eps
with Sigma = W @ X and b has 'density'% of 1's.

Shapes:
X_train: (p, n_train)
X_test: (p, n_test)
W: (N, p)
b: N, d) -- if d=1 => shape (N,1)
Y_train, e_train: (d, n_train)
Y_test, e_test: (d, n_test)

:param npN: (n_train, n_test, p, N)

:param density: percentage for b's 1's

:param d: dimension of output (1 => scalar outputs)
:param noise_level: std-dev of Gaussian noise

:return: (X_train, X_test, Y_train, Y_test, W, b, e_train,

nnn

n_train, n_test, p, N = npN

# 1) Generate X

X_train = np.random.randn(p, n_train) # (p, n_train)

X_test = np.random.randn(p, n_test) # (p, n_test)

# 2) Generate b (N x d), if d=1 => (N,1)
b = np.random.choice([0, 1],
size=(N, d),

p=[1 - demsity / 100, demnsity / 100])

# 3) Generate W (N x p)
W = np.random.randn(N, p)

def make_data(X):
nnn
Given X with shape (p, n), returns:
g (d, n)
e: (d, n)
Sigm: (N, n) [might be useful if needed]
nnn
# Sigma = W @ X => (N, n)
Sigm = sigma(W @ X)

# Noise eps => (d, n)

e = np.random.normal (loc=0, scale=noise_level, size=(d, X.shape[1]))

# b"T shape => (d, N), so b"T @ Sigm => (d, n)
Y = (b.T @ Sigm) + e
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def

def

def

def

return Y, e, Sigm

# 4) Make training data (Y_train_full, e_train_full)
Y_train_full, e_train_full, Sigm_train = make_data(X_train)

# 5) Make test data (Y_test_full, e_test_full)
Y_test_full, e_test_full, Sigm_test = make_data(X_test)

# 6) Shuffle columns (the "sample" axis) in X, Y, e

# X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
idx_train = np.random.permutation(n_train)

idx_test = np.random.permutation(n_test)

X_train = X_train[:, idx_train]
Y_train_full = Y_train_full[:, idx_train]
e_train_full = e_train_full[:, idx_train]

X_test = X_test[:, idx_test]
Y_test_full = Y_test_full[:, idx_test]
e_test_full = e_test_full[:, idx_test]

# 7) Return them all in consistent shapes
# No flattening is required; Y and e remain (d,n).
return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full,

find_optimal_gamma_grid (gammas, f, data, npN):

Minimizes f(gamma, data, npN) by scanning over 'gammas'.
Returns (best_gamma, best_value).

nnn

vals = [f(g, data, npN) for g in gammas]

i_min = np.argmin(vals)

return float(gammas[i_min]), float(vals[i_min])

find_zero_derivative_grid(gammas, deriv_func):

nnn

Finds gamma that yields derivative closest to zero in absolute value,
scanning 'gammas'. Returns (best_gamma, best_deriv_value).

The caller is expected to provide a function deriv_func(g).

nnn

vals = [deriv_func(g) for g in gammas]

abs_vals = np.abs(vals)

i_min = np.argmin(abs_vals)

return float(gammas[i_min]), float(vals[i_min])

L_ridge(gamma, X, Y, W, b):
n = X.shape[1]
Sigm = sigma(W @ X)

QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
beta = Sigm/n @ QyT

numerator = np.linalg.norm(beta - b, 'fro')**2
denominator = np.linalg.norm(b, 'fro')*x*2

return numerator/denominator

find_optimal_gamma_grid(gammas, f, data, npN):

nnn

Minimizes f(gamma, data, npN) by scanning over 'gammas'.
Returns (best_gamma, best_value).

best_gamma is a float, best_value is float.

nnn

vals = [f(g, data, npN) for g in gammas]

i_min = np.argmin(vals)

return float(gammas[i_min]), float(vals([i_min])

e_test_full
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_name__ == "__main__":

# ------——- fixed experiment parameters ----------
delta_accuracy = 1e-3

b_vector_density = 50 # (% of omnes in true b)
noise_level = 8 # of additive noise
real_variance = noise_level**2

cl, c2 = 1.0, 0.8 # p/n and N/n

n_values = [100, 200, 300]

num_repeats = 10 # averages per n
gammas_grid = [10**x for x in np.arange(-6, 3, 0.01)]
# _________________________________________________

# containers

n_arr = [1

gEtrain_arr, gEtest_arr = [], []

gOracle_arr, gEstVar_arr = []1, []

lrEtrain_arr, 1lrEtest_arr = [], []

lrOracle_arr, 1lrEstVar_arr = [], []

# - main loop on sample size ----------------

for n in n_values:

# running sums to form averages across repeats

sum_gEtrain = sum_gEtest = sum_gOracle = sum_gEstVar = 0.0
sum_lrEtrain = sum_lrEtest = sum_lrOracle = sum_lrEstVar = 0.0
for _ in range(num_repeats):

# dimensions for this n
P = int(cl * n)

N = int(c2 * n)
n_train = int (0.8 * n)
n_test = n - n_train
npN = (n_train, n_test, p, N)

# synthetic data
X_tr, X_te, Y_tr, Y_te, W, b, _, _

= generate_synthetic_data_regression(
npN, density=b_vector_density, d=1,

noise_level=noise_level

)

data = (X_tr, X_te, Y_tr, Y_te)

(3 cooooos four ’s (grid search on the same grid) -------

# 1) from E_train

g_Etrain, _ = find_optimal_gamma_grid(gammas_grid, Etrain_, data, npN)

# 2) from E_test
g_Etest, = find_optimal_gamma_grid(gammas_grid, Etest_, data, npN)

# 3) from oracle derivative dL/ d_expected = 0

def d_oracle(g): return dL_dy_expected(g, X_tr, Y_tr, W, real_variance)
g_Oracle, = find_zero_derivative_grid(gammas_grid, d_oracle)

# 4) from -datadriven derivative dL/ d_estimated = O

def d_est(g): return dL_dy_estimated(g, X_tr, Y_tr, W)
g_EstVar, _ = find_zero_derivative_grid(gammas_grid, d_est)
# ________________________________________________________

# ridge errors
lr_Etrain = L_ridge(g_Etrain, X_tr, Y_tr, W, b)
1r_Etest L_ridge(g_Etest, X_tr, Y_tr, W, b)
)
W

lr_Oracle = L_ridge(g_Oracle, X_tr, Y_tr, W, b)
lr_EstVar = L_ridge(g_EstVar, X_tr, Y_tr, W, b)

# accumulate

sum_gEtrain += g_Etrain; sum_lrEtrain += 1lr_Etrain
sum_gEtest += g_Etest; sum_lrEtest += lr_Etest
sum_gOracle += g_0Oracle; sum_lrQOracle += 1lr_Oracle

sum_gEstVar += g_EstVar; sum_lrEstVar += lr_EstVar
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# averages over repeats

n_arr.append(n)
gEtrain_arr.append(sum_gEtrain / num_repeats)
gEtest_arr.append( sum_gEtest / num_repeats)
gOracle_arr.append(sum_gOracle / num_repeats)
gEstVar_arr.append(sum_gEstVar / num_repeats)

gamma_Etrain
gamma_Etest

gamma_0Oracle
gamma_EstVar

noise_level

lrEtrain_arr.append(sum_lrEtrain /
lrEtest_arr.append( sum_lrEtest /
lrOracle_arr.append(sum_lrOracle / num_repeats)
lrEstVar_arr.append(sum_lrEstVar /

print (f"n={n:4d},,done.")

save for later plotting
np.savez("conv_analysis_nl

num_repeats)
num_repeats)

num_repeats)

_200_300.npz",

np

= np.
np.
= np.
= np.

np.
np.
np.
np.

array(n_arr),

array (gEtrain_arr),
array(gEtest_arr),
array (gOracle_arr),
array (gEstVar_arr),

array (lrEtrain_arr),
array (lrEtest_arr),
array(lrOracle_arr),
array (lrEstVar_arr),

= noise_level,

repeats num_repeats,
b_vector_density = b_vector_density,
cl = cl, c2 = c2
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A.8. Fashion-MNIST validation
import numpy as np
from scipy import linalg
from tensorflow.keras.datasets import mnist,fashion_mnist
import random
import time
SEED = 42 # <-- one knob for reproducibility
np.random.seed (SEED)
random.seed (SEED)
def sigma(t):
nnn
Small sigma function of choice
:param t: input
:return: output
nnn
if activation_function == 'linear':
return t
if activation_function == 'ReLu':
return np.maximum(t, 0)
if activation_function == 'sign':
return np.sign(t)
def K(x, y):
nnn
Kernel function. Depends on the choice of a small sigma function
:param x: first 'point' set
:param y: second 'point' set
:return: matrix of measures of 'distances' between points
if activation_function == 'linear':
return x.TQy
if activation_function == 'ReLu':
norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)
norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)
xTy = x.T @ y # Shape (n_x, n_y)
norm_prod = norm_x[:, np.newaxis] * norm_y[np.newaxis, :] # Shape (n_x, n_y)
norm_prod = np.maximum(norm_prod, le-9) # Avoid division by zero
cos_theta = xTy / norm_prod
cos_theta = np.clip(cos_theta, -1 + 1e-9, 1 - 1e-9) # Clamp values to [-1+1le-10, 1-1

e-10]

theta = np.arccos(-cos_theta) # Shape (n_x, n_y)
sin_theta = np.sqrt(l - cos_theta ** 2)

return (norm_prod) / (2 * np.pi) * (cos_theta * theta + sin_theta)
if activation_function == 'sign':

norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)

norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)

xTy = x.T @ y # Shape (n_x, n_y)

norm_prod = np.outer (norm_x, norm_y) # Shape (n_x, n_y)
norm_prod = np.maximum(norm_prod, 1e-10) # Avoid division by zero

cos_theta = xTy / norm_prod

cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1e-10,

1-1e-10]

return (2 / np.pi) * np.arcsin(cos_theta)
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def

def

def

def

K_(x,

nnn

y, delta, N, n_train)

Function to compute kernel approximation
:param x: first 'point' set
:param y: second 'point' se

:param delta:
:return:

nnn

t

delta parameter
approximation for the kernel matrix

k_ = (N/n_train)*((K(x, y))/(1+delta))

return k_

find_delta(gamma, K_train, N, n_train, accuracy)

nnn

-> float:

Fixed-point solver for delta without forming any matrix inverse.
M(delta) = (N/n)*(K_train/(1l+delta)) + gammax*I
delta_next = (1/n) * trace( M(delta) {-1} @ K_train )

nnn

delta_prev = 1.0
delta_next = 0.0
I = np.eye(n_train)

while abs(delta_prev - delta_next) > accuracy:
delta_prev = delta_next
a = (N / n_train) / (1.0 + delta_prev)

M
cf

U

a * K_train + gamma * I

# scaling factor

# (n x n),

= linalg.cho_factor (M, lower=True, check_finite=False)
# U = M"{-1} K_train (solve for all columns at once)

linalg.cho_solve(cf, K_train,

delta_next = (1.0 / n_train) * np.trace(U)

return float(delta_next)

check_finite=False)

SPD

find_delta_from_eigs(gamma, eigvals, N, n_train, accuracy) -> float:

nnn

Fixed-point iteration for delta using only eigenvalues of K_train.
a = (N/n) / (1+delta)
delta_next = (1/n) * sum_i

nnn

delta_prev = 1.0
delta_next = 0.0
while abs(delta_prev - delta_next) > accuracy:

delta_prev = delta_next

a

return float(delta_next)

Etest_

nnn

(gamma, data, npN):

[ lambda_i / (a*lambda_i + gamma) ]

(N / n_train) / (1.0 + delta_prev)
delta_next = (1.0 / n_train) * float(np.sum(eigvals / (a * eigvals + gamma)))

Eigen/SVD-based E_test (no explicit inverses).
Expects 'data' to be a dict

{
"K_train": (a,n),
"K_xX": (n,n_test),
"K_XX": (n_test,n_test),
"Y_train": (n,),
"Y _test": (n,),
"N": int
¥
npN = (n_train, n_test, p, N) # N here is ignored;
nnn
n_train, n_test, p, _ = npN
K_train = data["K_train"]
K_xX = data["K_xX"]
K_XX = data["K_XX"]
y_tr = data["Y_train"]

y_te

= data["Y_test"]

we take N from

'data’
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139 N = int(data["N"])

140

141 # 1) Eigendecomposition of K_train (SPD -+ eigh is ideal)

142 lam, V = np.linalg.eigh(K_train) # lam: (n,), V: (n,n)

143

144 # 2) Solve for delta using only eigenvalues

145 delta = find_delta_from_eigs(gamma, lam, N, n_train, delta_accuracy)
146

147 # Common scaling

148 a = (N / n_train) / (1.0 + delta) # scalar

149 d = a * lam + gamma # (n,)

150

151 # 3) Prediction term

152 y_til = V.T @ y_tr # (n,)

153 u=Vae (y_til / d) # (n,)

154 K_xX_scaled = a * K_xX # (n, n_test)

155 resid = y_te - K_xX_scaled.T @ u # (n_test,)

156 term_pred = (1.0 / n_test) * float(resid @ resid)

157

158 # 4) Ratio term: num / denom

159 # num = (1/N) * sum_i (a*lam_i / d_i"2) * (y_til_i)~"2

160 num = (1.0 / N) * float(mnp.sum((a * lam / (d * d)) * (y_til * y_til)))
161 # denom = (1 - 1/N) * sum_i (a”2 * lam_i"2 / d_i~2)

162 denom = (1.0 - 1.0 / N) * float(np.sum((a * a) * (lam * lam) / (d * d)))
163

164 # 5) Bracket term

165 # First piece: tr(axK_XX)

166 tr_aKXX = a * float(np.trace(K_XX))

167 # Second piece: tr(Q S) + gamma tr(Q~2 S), with S = (a K_xX)(a K_xX)°T
168 # If Z = V°T (a K_xX), then diag(V"T S V) = rowwise sum of Z~2

169 Z =V.T @ K_xX_scaled # (n, n_test)

170 diag_Sprime = np.sum(Z * Z, axis=1) # (n,)

171 tr_QS = float(np.sum(diag_Sprime / d))

172 tr_Q2S = float(np.sum(diag_Sprime / (d * d)))

173 bracket = (tr_aKXX - (tr_QS + gamma * tr_Q2S)) / n_test

174

175 # 6) Combine

176 E_test_ = term_pred + (num / denom) * bracket

177 return float(E_test_)

178
179

180 def estimate_variance_RSS(Y, Sigm, n, gamma):
181 nnn

182 RSS-based noise variance estimate using SVD of A = Sigm / sqrt(n).

183 Equivalent to solving (Sigm™T Sigm / n + gamma I) z = Y, but faster and
184 numerically stable.

185

186 Returns a Python float.

187 nnn

188 A = Sigm / np.sqrt(n) # (N, n)

189 U, S, Vt = np.linalg.svd(A, full_matrices=False) # S: (r,), Vt: (r, n), r = rank
190 y = np.asarray(Y).reshape(-1) # (n,)

191 y_v =Vt @y # coords in span(A)

192 r = S.shape[0]

193 denom = S**2 + gamma # (r,)

194

195 # Residual in span(A): y_v - (S°2/(S"2+gamma)) y_v = (gamma/(S"2+gamma)) y_v
196 rss_span = np.sum((gamma * y_v / denom) **2)

197

198 # Residual in null(A): unchanged (no fit there)

199 if r < y.size:

200 y_perp =y - Vt.T @ y_v

201 rss_null = float(y_perp @ y_perp)

202 else:

203 rss_null = 0.0

204

205 variance = (rss_span + rss_null) / n

206 return float(variance)

207
208
200 def dL_dy_estimated(gamma, X, Y, W, variance=1):
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def

nwnn

Optimized derivative:
dL/dgamma = gamma * (Y Q°{-3} Y°T) - est_var * tr(Q~{-21}),
with Q = (Sigm"T Sigm)/n + gamma I, Sigm = sigma(W @ X).

Uses SVD of A = Sigm / sqrt(n) to avoid explicit inverses.
nnn

# Design in hidden layer

Sigm = sigma(W @ X) # (N, n)

n = X.shape[1]

# SVD of A = Sigm / sqrt(n) -> Q = V diag(S~"2 + gamma) VT

A = Sigm / np.sqrt(n)

U, S, Vt = np.linalg.svd(A, full_matrices=False) # U:(N,r), S:(r,), Vt:(r,n)
r = S.shape[0]

denom = S**2 + gamma

# Coordinates of y in the V basis
y = np.asarray(Y).reshape(-1) # (n,)
yv=Vtey # (r,)
if r < n:

y_perp =y - Vt.T @ y_v

y_perp_norm2 = float(y_perp @ y_perp)
else:

y_perp_norm2 = 0.0

# First term: gamma * y T Q°{-3} y
terml = gamma * ( np.sum((y_v**2) / (denom#*%*3)) + (y_perp_norm2 / (gamma**3)) )

# Noise variance estimate (same as before but SVD-based and exact)
est_var = estimate_variance_RSS(y, Sigm, n, gamma) # returns float

# Second term: est_var * tr(Q~{-2})
tr_Qinv2 = np.sum(1.0 / (denom*#*2)) + (n - r) * (1.0 / (gamma**2))
term2 = est_var * tr_Qinv2

return float(terml - term2)

dL_dy_estimated_fixed_rss(gamma, X, Y, W, variance, gamma_rss):
nnn

"Estimated" derivative: dL/dgamma, but the RSS-based variance is computed

at 'gamma_rss'. Then the derivative uses the current 'gamma' for the Q
in the standard formula:
derivative = gamma*(Y Q_inv~3 Y"T) - est_var * trace(Q_inv~2)

where est_var is from 'estimate_variance_RSS(Y, Sigm, n, gamma_rss)'.
nnn

n = X.shape[1]

Sigm = sigma(W @ X) # shape (N, n)

# Build Q for *this gamma*:

Q = (1.0/n) * (Sigm.T @ Sigm) + gamma*np.eye(n)
Q_inv = np.linalg.inv(Q)

Q_inv2 = Q_inv @ Q_inv

Q_inv3 = Q_inv2 @ Q_inv

# We do the RSS-based variance at 'gamma_rss'
# Must call 'estimate_variance_RSS':
est_var = estimate_variance_RSS(Y, Sigm, n, gamma_rss)

# derivative:

terml = gamma * (Y @ Q_inv3 @ Y.T) # shape (1,1)
term2 = est_var * np.trace(Q_inv2)

dL = terml - term2

# Convert to float

if hasattr(dL, "item"):
return float(dL.item())

return float (dL)
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281 def make_two_class_ridge_from_arrays (

282
283
284
285

286
287
288
289
290
291
292
293
294
295

296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
3N
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

init_data: np.ndarray, # e.g. (60000, 28, 28) uint8

init_labels: np.ndarray, # e.g. (60000,) int

selected_labels: list[int], # exactly two labels, e.g. [1, 2]

cl: float, # target p/n ratio (features-to-sample-size); n round
(p / c1)

train_fraction: float = 0.8, # desired train share of (train + test)
cs: tuple[float, float] = (0.5, 0.5), # per-class proportions (sum 1.0)
seed: int | None = None # RNG seed (None -> non-deterministic like authors)

nnn

Rebuild (X, y, X_test, y_test) for a 2-class MNIST/Fashion setup, mirroring the authors:

1) Sort by label.

2) Flatten to (p, init_n), rescale to [0,1].

3) Global mean-center and scale so average ||x||"2 = p.

4) Select the two classes, pool them, mean-center & scale AGAIN within the pooled
subset so

pooled average ||x||"2 = p.
5) For each class: shuffle WITHIN class; TRAIN = first int(cs[i]*n);
TEST = columns [n : n + int(cs[il*n_test)] (i.e., test slice starts at absolute
index n).

6) Labels: class 0 -> -1, class 1 -> +1; class blocks contiguous.

Differences from the raw authors' script:
- You control n via cl (p/n), and we derive n_test from “train_fraction:
n_test = round( n * (1 - train_fraction) / train_fraction )

This preserves their splitting scheme while giving you a clean 80/20 (or any) split.

nnn

idx_sorted = np.argsort(np.array(init_labels))
labels_sorted = np.array(init_labels) [idx_sorted]
imgs_sorted = np.array(init_data) [idx_sorted] # (init_n, H, W)

# _____________________________

# B) Flatten to (p, init_n), cast to float

# _____________________________

H, W = imgs_sorted.shape[1], imgs_sorted.shape[2]

p=H=*W

init_n = imgs_sorted.shape [0]

data = imgs_sorted.reshape(init_n, p).T.astype(np.float64) # (p, init_n); columns =
samples

# _____________________________

# C) Global rescale to [0, 1] (authors: data = data / data.max())

max_val = data.max()
if max_val > O:
data /= max_val

# _____________________________

# D) Global mean-center & renormalize so avg ||x||"2 = p

# _____________________________

mean_data = np.mean(data, axis=1, keepdims=True) # (p,1)
centered_global = data - mean_data # (p, init_n)

norm2_data = np.mean(np.sum(centered_global**2, axis=0)) # scalar
scale_global = np.sqrt(p) / np.sqrt(norm2_data) if norm2_data > 0 else 1.0
data_std = centered_global * scale_global # (p, init_n)

if len(selected_labels) != 2 or len(cs) !'= 2:
raise ValueError ("Provide exactly,two,labels and two,class proportions cs=(c0, cl)

selected_data = []
for lab in selected_labels:
cols = (labels_sorted == lab)
selected_data.append(data_std[:, cols]) # each: (p, n_class)

.n)
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348 # Pool both classes (fix authors' missing assignment in np.concatenate)

349 cascade_selected = np.concatenate(selected_data, axis=1) # (p, n_pool)

350

351 (} ooooooooooosoonosooooosooooos

352 # F) Recenter & renormalize AGAIN within the pooled two-class subset

353 (} oooooosooooosooooooooooooooos

354 mean_pool = np.mean(cascade_selected, axis=1, keepdims=True) # (p,1)

355 centered_pool = cascade_selected - mean_pool

356 norm2_pool = np.mean(np.sum(centered_pool**2, axis=0))

357 scale_pool = np.sqrt(p) / np.sqrt(norm2_pool) if norm2_pool > O else 1.0

358

359 for j in range(2):

360 selected_datal[j]l = (selected_datalj]l - mean_pool) * scale_pool

361

362 [} coooooooooocooooocooononooooo

363 # G) Choose n from ¢l = p/n -> n round(p / cl)

364 # Then compute n_test from the desired train fraction:

365 # n/ (n + n_test) = train_fraction => n_test = n * (1 - tf) / tf

366 ([} oo rooccocoooooCCCCooEEaae

367 if c1 <= 0:

368 raise ValueError("cl must be positive,(cl =, p/n).")

369 if not (0 < traimn_fraction < 1):

370 raise ValueError("train_fraction must_ be_in (0, 1).")

371

372 n = int(np.round(p / c1))

373 n = max(1, n)

374 n_test = int(np.round(n * (1.0 - train_fraction) / train_fraction))

375 n_test = max(1l, n_test) # ensure at least one test column overall

376 cl_actual = p / n

377 train_share_actual = n / (n + n_test)

378

379 (3 cooooooooooooooosocooosoooooo

380 # H) Allocate X, X_test and compute per-class block sizes as authors do

381 (3} ooooosooooosoonosocooosooooos

382 rng = np.random.default_rng(seed)

383 X = np.zeros((p, n), dtype=np.float64)

384 X_test = np.zeros((p, n_test), dtype=np.float64)

385

386 cs_arr = np.array(cs, dtype=float)

387 train_bounds = (np.cumsum(np.concatenate([[0.0], cs_arr])) * n).astype(int)

388 test_bounds = (np.cumsum(np.concatenate([[0.0], cs_arr])) * n_test).astype(int)

389

390 train_counts = np.diff (train_bounds) # [int(cs[0]*n), int(cs[1]1%*n)]

391 test_counts = np.diff(test_bounds) # [int(cs[0]l*n_test), int(cs[1]*n_test)]

392

393 # Each class must have >= n + test_counts[i] samples for the authors' indexing

394 for i in range(2):

395 need = n + test_counts[i] # because test slice is data_il[:, n : n
+ test_counts[i]]

396 have = selected_datal[i].shape[1]

397 if have < need:

398 raise ValueError (

399 f"Class,{i},(label {selected_labels[i]}) has {have} ;samples; need at least {

need} "

400 f"to,reproduce the authors' exact,slicing,,(teststarts at index n)."

401 )

402

403 e

404 # I) Fill X and X_test: shuffle WITHIN each class, then slice as authors do

405 # -

406 for i in range(2):

407 perm = rng.permutation(selected_datal[i].shapel[1])

408 data_i = selected_datal[i][:, perml]

409

410 # Train block for class i

411 X[:, train_bounds([i]:train_bounds[i+1]] = data_i[:, :train_counts[i]]

412

413 # Test block for class i (note: slice starts at absolute index n)

414 X_test[:, test_bounds[i]:test_bounds[i+1]] = data_i[:, n : n + test_counts[i]]

415
416 (} cooooooooooooooosocooosooooso
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def

def

def

# J) Labels: class 0 -> -1,

y = np.concatenate ([

contiguous class blocks

-np.ones(train_counts[0], dtype=np.int8),
+np.ones(train_counts[1], dtype=np.int8),

-np.ones(test_counts[0], dtype=np.int8),

ID)

y_test = np.concatenate ([
+np.ones (test_counts[1],

ID)

info = dict(

pP=p, n=n, n_test=n_test,

dtype=np.int8),

selected_labels=tuple(selected_labels),
class_sizes=tuple(d.shape[1] for d in selected_data),
train_counts=tuple(train_counts.tolist()),
test_counts=tuple(test_counts.tolist()),

cl_target=cl,
cl_actual=cl_actual,

train_fraction_target=train_fraction,

train_fraction_actual=round(train_share_actual, 6),

global_scale=scale_global,
pooled_scale=scale_pool,
note="Exact  authors' preprocessing;_ test sliceystarts at index n withing each class.

)

return X, y, X_test, y_test,

find_optimal_gamma_grid (gammas, f, data, npN):

nnn

Minimizes f(gamma, data, npN) by scanning over
Returns (best_gamma, best_value).

nwnn

vals = [f(g, data, npN) for g in gammas]

i_min = np.argmin(vals)

return float(gammas[i_min]), float(vals[i_min])

find_zero_derivative_grid(gammas, deriv_func):

nwnon

Finds gamma that yields derivative closest to zero in absolute value,

'gammas '.

scanning 'gammas'. Returns (best_gamma, best_deriv_value).
The caller is expected to provide a function deriv_func(g).

nnn

vals = [deriv_func(g) for g in gammas]
abs_vals = np.abs(vals)
i_min = np.argmin(abs_vals)

return float(gammas[i_min]), float(vals[i_min])

get_beta(W, X_train, Y_train, gamma):

nnn

SVD version (optional):

Solve z = (Sigm”T Sigm / n + gamma I)~{-1} Y via SVD of A

Then beta = (Sigm / n) @ z.

nwnn

Sigm = sigma(W @ X_train)
n = X_train.shape[1]
A = Sigm / np.sqrt(n)

# economy SVD

# (N, n)

# (N, n)

U, S, Vt = np.linalg.svd(A, full_matrices=False)

y_v = Vt @ Y_train

z_span = (Vt.T * (1.0 / (S**2 + gamma))) @ y_v

if Vt.shape[0] < n:

y_perp = Y_train - Vt.T @ y_v
z = z_span + (1.0 / gamma) * y_perp

else:
Z = z_span

# (r,)

# U:(N,r),

Sigm / sqrt(m).

S:(r,),

Vt:(r,n),

# nullspace component (if n > r)

r=min(N,n)

# V diag(1/(S~2+)) V°T Y in span(A)
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489 beta = (Sigm / n) Q@ z # (N,)
490 return beta

491

492

493

494 def build_kernels(X_train, X_test):
495 nnn

496 Compute unscaled kernels once. Scaling by 'a' happens inside Etest_.
497 nnn

498 K_train = K(X_train, X_train)

499 K_xX = K(X_train, X_test)

500 K_XX = K(X_test, X_test)

501 return K_train, K_xX, K_XX

502

503

504

506 if __name__ == "__main__":

506 import os

507

508 t0 = time.perf_counter ()

509

510 # - Experiment knobs ----------------

511 activation_function = 'linear' # 'linear' | 'ReLu' | 'sign'
512 delta_accuracy = 1le-3

513 cl =1.0

514 c2 =1.0

515 gammas_grid_full = [10**x for x in np.arange(-6, 4, 0.01)]
516 testcase = 'fashion' # 'fashion' | 'MNIST'

517 train_fraction = 0.8

518

519 RNG_SCENARIO_SEED = SEED + 123

520 N_PIX_SCEN = 10 # how many single-pixel scenarios
521 N_PATCH_SCEN =5 # how many 5x5 patch scenarios
522 PATCH_SIZE =5

523 DELTA_STD = 0.5 # additive perturbation in standardized space
524 LOCAL_LOG_WIDTH =1.0 # +- decades around baseline
525 LOCAL_LOG_STEP = 0.05 # grid resolution in loglO
526 RESULTS_DIR = "results"

527 os.makedirs (RESULTS_DIR, exist_ok=True)

528 (} cooooooooooooooooooooosooooEEoooosooooDECooooo o oooS

529

530 # --- Load data (two classes) ---—

531 if testcase == 'MNIST':

532 selected_labels = [7, 9]

533 (init_data, init_labels), _ = mnist.load_data()

534 else:

535 selected_labels = [1, 2]

536 (init_data, init_labels), _ = fashion_mnist.load_data()

537

538 # --- Authors' preprocessing / split (deterministic with SEED) ---
539 X_train, y_train, X_test, y_test, info = make_two_class_ridge_from_arrays(
540 init_data=init_data,

541 init_labels=init_labels,

542 selected_labels=selected_labels,

543 cl=ci1,

544 train_fraction=train_fraction,

545 seed=SEED

546 )

547

548 # --- Sizes & model shapes ---

549 h) = infol['p']

550 n_train = info['n']

551 n_test = info['n_test']

552 N = int(round(c2 * n_train))

553 W = np.random.randn(N, p) # fixed W for all scenarios
554

555 # Sanity

556 assert X_train.shape == (p, n_train)

557 assert X_test.shape == (p, n_test)

558 assert y_train.shape == (n_train,)
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def d_est(g): return dL_dy_estimated(g, X_train, y_train, W)
gamma_direct_base, = find_zero_derivative_grid(gammas_grid_full, d_est)

beta_Etest_base get_beta(W, X_train, y_train, gamma_Etest_base)
beta_direct_base = get_beta(W, X_train, y_train, gamma_direct_base)

# Helpers: local gamma grids around baseline (& LOCAL_LOG_WIDTH decades)
def local_grid(g0, width=LOCAL_LOG_WIDTH, step=LOCAL_LOG_STEP):

g0 = float(g0)

g0_log = np.logl0(g0)

return 10.0**np.arange(g0_log - width, gO_log + width + le-12, step)

# Random generator for scenario design
rng = np.random.default_rng(RNG_SCENARIO_SEED)

# --- Utility: run a single scenario given a perturbed X_train ---
def run_scenario(X_train_pert, scenario_meta, tag):

# Kernels for this scenario

K_tr, K_xX, K_XX = build_kernels(X_train_pert, X_test)

data_s = {
"K_train": K_tr,
"K_xX": K_xX,
"K_XX": K_XX,
"Y_train": y_train,
"Y_test": y_test,
"N": N

¥

# Local gamma search around baseline gammas (fast, robust)
gE_grid = local_grid(gamma_Etest_base)
gD_grid = local_grid(gamma_direct_base)

gE, _ = find_optimal_gamma_grid(gE_grid, Etest_, data_s, npN)

def d_est_local(g): return dL_dy_estimated(g, X_train_pert, y_train, W)
gD, _ = find_zero_derivative_grid(gD_grid, d_est_local)

# Betas

beta_E = get_beta(W, X_train_pert, y_train, gE)

beta_D = get_beta(W, X_train_pert, y_train, gD)

# Save all artifacts

out = {
"testcase": testcase,
"activation_function": activation_function,

"selected_labels": np.array(selected_labels, dtype=int),
"SEED": SEED,
"rng_scenario_seed": RNG_SCENARIO_SEED,

"p": p, "n_train": n_train, "n_test": n_test, "N": N,
"cl": cl, "c2": c2, "train_fraction": train_fraction,
"gamma_Etest_base": float(gamma_Etest_base),
"gamma_direct_base": float(gamma_direct_base),

"gamma_Etest_scen": float(gE),
"gamma_direct_scen": float(gD),
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assert y_test.shape == (n_test,)
# --- Precompute baseline kernels once ---
K_train_base, K_xX_base, K_XX_base = build_kernels(X_train, X_test)
# --- Baseline: gammas (full grid once), betas, and caches ---
data_base = {
"K_train": K_train_base,
"K_xX": K_xX_base,
"K_XX": K_XX_base,
"Y_train": y_train,
"Y_test": y_test,
. N
}
npN = (n_train, n_test, p, N)
gamma_Etest_base, _ = find_optimal_gamma_grid(gammas_grid_full, Etest_, data_base, npN)
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"beta_Etest_base":
"beta_direct_base":

beta_Etest_base,
beta_direct_base,

"beta_Etest_scen": beta_E,
"beta_direct_scen": beta_D,
"scenario_meta": scenario_meta

}

fname = os.path.join(RESULTS_DIR, f"{tagl}.npz")

np.savez (fname, **out)

print (£" [saved] {fname}")

# --- 10 single-pixel scenarios (std-space) ---

# choose unique pixels

pix_ids = rng.choice(p, size=N_PIX_SCEN, replace=False)
# random signs per scenario (+1 or -1)

pix_signs = rng.choice([-1.0, 1.0], size=N_PIX_SCEN)

for idx, (pix, sgn) in enumerate(zip(pix_ids, pix_signs), start=1):
Xp = X_train.copy()
Xp[pix, :] += sgn * DELTA_STD
meta = {
lltype“: ||pixe1",
"feature_indices": np.array([int(pix)], dtype=int),
"delta_std": float (DELTA_STD),
"sign": float(sgn),
"applied_space": "standardized_training_only"
}

tag = f"pert_pix_{idx:02d}_{testcase}_af-{activation_function}_pix{int(pix)}_d{
DELTA_STD:+.2f}sgn{int (sgn)}_seed{SEED}"

run_

# --- 5 patch (5x5) scenarios (std-space) ---
# infer H, W (MNIST/Fashion are 28x28; derive from p if possible)

Hopx = W
if H_px
H_px

max_r =
max_c =
rc_pairs

scenario(Xp, meta, tag)

_px = int(round(np.sqrt(p)))
* W_px != p:
= W_px = 28

H_px - PATCH_SIZE
W_px - PATCH_SIZE
= set()

while len(rc_pairs) < N_PATCH_SCEN:

rc_pairs.add((int (rng.integers (0, max_r + 1)), int(rng.integers(0, max_c + 1))))

rc_pairs
patch_si

for idx,
# bu

= list(rc_pairs)

gns = rng.choice([-1.0, 1.0], size=N_PATCH_SCEN)

((r0, c0), sgn) in enumerate(zip(rc_pairs, patch_signs), start=1):

ild flat indices of the patch

feats = []

for dr in range (PATCH_SIZE):
rr = r0 + dr
ccO = cO
row_start = rr * W_px

feats.extend(range (row_start + ccO, row_start + ccO + PATCH_SIZE))

s = np.array(feats, dtype=int)

"top_left_rc": (int(r0), int(c0)),

"applied_space": "standardized_training_only"

feat

Xp = X_train.copy()

Xp[feats, :] += sgn *x DELTA_STD

meta = {
lltype“ . Ilpatch" ,
"patch_size": int (PATCH_SIZE),
"feature_indices": feats,
"delta_std": float (DELTA_STD),
"sign": float(sgn),

¥

tag = (f"pert_patch_{idx:02d}_{testcase}_af-{activation_function}_r{r0}rc{cO}"
f"_sz{PATCH_SIZE} _d{DELTA_STD:+.2f}sgn{int(sgn)}_seed{SEED}")

run_

scenario(Xp, meta, tag)
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700 total_sec = time.perf_counter() - tO
701 print (£"[TOTAL] {total_sec:.3f},s")
702 print (f"Baseline gammas: Etest={gamma_Etest_base:.4g}, direct={gamma_direct_base:.4gl}")
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