
Ridge Regression and
Random Neural
Networks
under
High-Dimensional
Conditions
Derivative-Based Calibration
for Stable Learning

Yehor Ruban

Ridge Regression
and Random Neural

Networks
under

High-Dimensional
Conditions

Derivative-Based Calibration
for Stable Learning

by

Yehor Ruban

Instructor: N. Parolya
Faculty: Electrical Engineering, Mathematics

and Computer Science

Summary

This thesis investigates the problem of selecting an optimal regularization parameter in high-dimensional
ridge regression models with random features. The work is situated at the intersection of machine learn-
ing, statistical signal processing, and randommatrix theory, and aims to improve the understanding and
stability of regression-based learning in high-dimensional settings.

When the number of model parameters becomes comparable to the number of training samples,
conventional statistical assumptions no longer hold, and model performance can exhibit sharp transi-
tions or instability. In such regimes, ridge regularization plays a critical role in balancing model bias
and variance. However, determining the optimal regularization parameter γ is non-trivial: existing
techniques such as cross-validation are computationally costly, while analytical approaches based on
deterministic equivalents—such as the method proposed by Couillet and Liao [6]—rely on asymptotic
knowledge of population statistics that may be inaccessible in practice.

To address this challenge, this thesis introduces a new derivative-based calibration rule for ridge
regression in random-feature neural networks. The proposed method identifies the optimal value of γ
directly from data by analyzing the empirical derivative of the training loss with respect to γ. This
criterion provides a fully data-driven, computationally efficient alternative to deterministic-equivalent or
cross-validation-based calibration.

Theoretical development and analysis are supported by controlled numerical experiments. Syn-
thetic data simulations confirm that the derivative-based calibration achieves predictive performance
comparable to Couillet’s deterministic-equivalent rule across a wide range of dimensional ratios. Fur-
thermore, perturbation analysis demonstrates that the proposed method yields a more stable feature-
weight vector β under small input variations, indicating improved robustness and reproducibility of the
learned model.

Validation on real data is performed using the Fashion–MNIST dataset in a binary classification
setup. Results show that both calibration rules produce similar test accuracies (above 99%), while
the derivative-based approach consistently exhibits lower coefficient variance and better recall. This
stability of β suggests that the model learns a more reliable internal representation, which can be
advantageous in practical applications where interpretability, consistency, and downstream reuse of
learned features are important.

Finally, the discussion situates these findings in the context of broader research on high-dimensional
learning stability, linking them to studies in bioinformatics, neuroimaging, and industrial fault detection
where reproducibility of learned representations is critical. The thesis concludes that derivative-based
calibration provides a simple, effective, and theoretically grounded alternative to existing methods for
ridge parameter selection, combining strong empirical performance with enhanced stability and inter-
pretability.

i

Contents

Summary i

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Objectives . 1
1.3 Thesis Structure . 2

2 Literature Review 3
2.1 Introduction to Neural Networks . 3

2.1.1 Historical Perspective . 4
2.1.2 From Simple to Deep . 4

2.2 Random Neural Networks . 5
2.2.1 Random Weights and Efficient Feature Extractors 5
2.2.2 Random Neural Networks in Practice . 6

2.3 Regression in a Neural Networks Context . 7
2.3.1 Regression–Neural Network Problem Equivalence 7
2.3.2 Ridge Regression (Penalization) . 7

2.4 High-Dimensional Statistics and Random Matrix Theory 8
2.4.1 High-Dimensional Regime . 8
2.4.2 Random Matrix Theory Essentials . 9

2.5 Synthesis and Relevance to Our Work . 10

3 Methodology 11
3.1 Model Setting . 11

3.1.1 Ridge Regression With Random Neural Network 11
3.1.2 Error Approximation in High-Dimensional Setting: a Conventional Approach . . . 13
3.1.3 Variability and Extensions of the Model . 16

3.2 Experimental Setup . 18
3.3 Algorithm Optimization . 19

3.3.1 Naive baseline: what is expensive . 19
3.3.2 Optimized pipeline: what we change . 19
3.3.3 Complexity at a glance . 20
3.3.4 Practical notes . 20

3.4 Problem Arising . 21
3.4.1 Potential cause of the problem . 21

4 Results 22
4.1 Research on the original Experiment . 22

4.1.1 Mean Squared Error against the regularization parameter γ 22
4.1.2 Optimal γ value and error behaviour with increasing amount of data 24
4.1.3 Optimal γ Values study for Different Loss Functions 25
4.1.4 Diagnosing the Causal Gap . 25

4.2 Loss–Landscape Analysis . 28
4.3 Robustness study . 30
4.4 Convergence Study . 33
4.5 Real-Data Validation: Fashion–MNIST . 34

4.5.1 Robustness analysis - fashion MNIST . 34
4.5.2 Perturbation analysis: Fashion–MNIST . 37

ii

Contents iii

5 Discussion 46
5.1 Summary of Findings . 46

5.1.1 Recap . 46
5.1.2 Interpretations of the Results . 47

5.2 Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule 48
5.2.1 Conceptual Advantages - Theory . 48
5.2.2 Applied Advantages - Practice . 48

6 Conclusion 52
6.1 Summary and Final Remarks . 52
6.2 Future Work . 53

References 54

A Source Code 57
A.1 Mean Squared Error against the regularization parameter γ 57
A.2 Optimal γ value and error behaviour with increasing amount of data 63
A.3 Normalized ridge error against regularization parameter γ 68
A.4 Error Metrics and γ value over number of data points . 70
A.5 Derivative-based loss functions against γ parameter (different noise levels) 74
A.6 Direct loss with γ derived fromminimizing different loss functions (including the derivative-

based) . 79
A.7 Convergence Study . 84
A.8 Fashion-MNIST validation . 92

1
Introduction

1.1. Background and Motivation
In modern machine learning, models with a large number of parameters often outperform smaller ones,
even in cases where the number of features approaches or exceeds the number of training samples.
This high-dimensional regime challenges traditional statistical assumptions and motivates the need for
new analytical tools to understand model behavior, stability, and generalization.

Neural networks, especially those with random or fixed hidden weights, provide a simple yet power-
ful framework for studying these questions. When the hidden-layer weights are drawn at random, the
network acts as a nonlinear feature extractor, and the final linear layer reduces to a regression problem
in the resulting random feature space. This connection allows techniques from classical statistics and
random matrix theory to be used for analysis.

Among the most important components in such models is the choice of the regularization param-
eter in ridge regression. It controls the balance between fitting the data and maintaining stability of
the learned coefficients. Traditional tuning methods, such as cross-validation or asymptotic formulas,
can be computationally costly or rely on strong model assumptions. This motivates the search for
alternative, data-driven calibration approaches that can perform reliably in high-dimensional settings.

1.2. Research Objectives
The main objective of this thesis is to develop and analyze a new method for selecting the ridge regu-
larization parameter in random-feature regression models. The proposed derivative-based calibration
rule determines the optimal regularization strength by analyzing the empirical derivative of the training
loss with respect to the regularization parameter. The approach is entirely data-driven and avoids the
need for repeated training or asymptotic parameter estimation.

This work builds upon the theoretical framework introduced by Romain Couillet and co-authors in
their book Random Matrix Methods for Machine Learning [6] and related article [29], which provide
deterministic-equivalent analyses of high-dimensional ridge regression and random-feature neural net-
works. Their framework offers a rigorous, asymptotic approach to understanding how regularization
behaves when both the number of features and the number of samples grow large. Within this con-
text, Couillet and colleagues proposed a deterministic-equivalent calibration method for choosing the
optimal regularization parameter based on random matrix theory.

The present thesis extends this line of work by introducing an alternative, fully data-driven calibration
scheme that does not rely on asymptotic knowledge of model parameters. Specifically, the goals are

1

1.3. Thesis Structure 2

to:

• Formulate the derivative-based regularization rule within the framework of random-feature ridge
regression;

• Compare its performance to Couillet’s deterministic-equivalent calibration method, both theoreti-
cally and empirically;

• Evaluate the method’s stability under data perturbations and assess how it affects the learned
coefficients β;

• Validate the findings through controlled simulations and real-data experiments using the Fashion–
MNIST dataset.

Through these objectives, the work seeks to contribute both a practical calibration tool and a deeper
understanding of how regularization influences model stability in high-dimensional random networks.

1.3. Thesis Structure
The remainder of this thesis is organized as follows. Chapter 2 reviews the theoretical background,
including neural networks, random features, ridge regression, and random matrix theory. Chapter 3
develops the mathematical framework and introduces the proposed derivative-based calibration rule.
Chapter 4 presents numerical experiments on both synthetic and real data, comparing the proposed
method with existing approaches. Chapter 5 discusses the implications of the results, highlighting the
theoretical and practical significance of coefficient stability. Finally, Chapter 6 concludes the thesis and
outlines directions for future research.

Overall, the thesis combines theoretical analysis, numerical validation, and conceptual interpreta-
tion to provide a comprehensive view of regularization and stability in high-dimensional random-feature
models.

2
Literature Review

Chapter 2 provides an overview of the main concepts and historical advances that underpin this thesis.
We begin in Section 1 with a general and broad introduction to the concept of neural networks, high-
lighting both their historical origins and their progression into deep, multi-layer architectures. This sets
the stage for why neural networks have become a dominant tool for complex learning problems and
tasks, but also why it can be potentially challenging to analyze them in a theoretical way.

From there, Section 2 narrows the focus to random neural networks, emphasizing how random
weights can be viewed as an efficient means of feature extraction, particularly in contexts with limited
data or strict computational budgets. We also discuss the use of randomization in modern practice—
ranging from dropout to “learning without backpropagation”—as these techniques share conceptual
parallels with the simpler random networks studied in this thesis.

In Section 3, we demonstrate that regression can be seen as a natural counterpart to single-layer
neural networks, especially through the lens of ridge regression on random features. Here, we con-
nect the dots between “pure” linear regression on one hand and single-hidden-layer “extreme learning
machines” on the other, underscoring how penalization (in the form of ridge regression) addresses
overfitting and stabilizes parameter estimates in neural nets.

Following that, Section 4 addresses the high-dimensional regime and the corresponding role of
random matrix theory (RMT). Modern applications often operate in scenarios where the number of
parameters and/or features is comparable to (or larger than) the number of data points. We show that
RMT, with its body of results on large random matrices and kernels, offers valuable insights into the
behavior of large-scale regressions and random neural networks alike.

Finally, Section 5 synthesizes these threads—bridging random neural networks, ridge regression,
and high-dimensional analysis—to foreshadow the technical work and contributions of this thesis. By
understanding the interplay among these ingredients, we can pinpoint how random fixed-weight models
can yield theoretical insights and practical benefits in high-dimensional settings.

2.1. Introduction to Neural Networks
Neural networks are one of the most important paradigms in machine learning, roughly inspired by the
structure of actual biological neurons. The core idea involves organizing computational units (called
’neurons’) into interconnected layers that in turn learn to approximate functions straight from the data.
Over the past decades, this arrangement design has evolved from basic, single-layer perceptrons into
deep, multi-layer architectures that can perform well in tasks such as image recognition, natural lan-
guage processing, even content generation. All of the aforementioned has cemented neural networks

3

2.1. Introduction to Neural Networks 4

as the primary tool in modern understanding of artificial intelligence.

In this section, we first examine the historical perspective on neural networks, shedding light on how
the early perceptrons established foundational ideas that still resonate today. Subsequently, we explore
the journey from simple to deep networks, highlighting key developments and the shift toward highly
expressive, large-scale models. This progression not only frames why advanced neural networks can
be so powerful, but it also underscores the growing need to better understand simpler random-weight
approaches both for computational practicality and for theoretical clarity.

2.1.1. Historical Perspective

The origins of artificial neural networks (ANNs) trace back to the mid-twentieth century, when re-
searchers first began exploring simplified mathematical models of biological neurons. One of the ear-
liest milestones was the perceptron model introduced by Rosenblatt in 1958 [41], which formalized a
neuron as a linear threshold unit capable of learning simple decision boundaries. The perceptron em-
bodied the promise of machine learning before the term was even widely used: a system that could
adapt its parameters based on examples rather than explicit programming.

The optimism surrounding early neural networks was tempered by their theoretical and computa-
tional limitations. In 1969, Minsky and Papert [34] rigorously demonstrated that a single-layer per-
ceptron could not represent non-linearly separable functions such as the XOR problem. This result,
combined with limited computational resources, led to a decline in neural network research, often re-
ferred to as the first ”AI winter.” Nevertheless, the perceptron era established the mathematical and
conceptual foundations for later advances in supervised learning.

Interest was reignited in the 1980s with the rediscovery and popularization of the backpropagation al-
gorithm [42], which enabled efficient gradient-based training of multi-layer networks. Backpropagation,
initially studied in control theory and later formalized in the context of neural computation, allowed the
training of deep feedforward networks through layerwise error propagation. Around the same period,
Hopfield [17] introduced recurrent neural networks as energy-based systems, and Kohonen [23] pro-
posed self-organizing maps for unsupervised learning - broadening the scope of connectionist models
beyond simple classification.

By the early 1990s, networks such as the multilayer perceptron (MLP) and convolutional neural
network (CNN) [26] were already demonstrating strong performance on specific pattern-recognition
tasks. However, the combination of limited computational power and small datasets again constrained
progress. It was not until the 2000s, when large annotated datasets, increased computational resources
(notably GPUs), and improved regularization methods such as dropout [45] became available - that
neural networks began their modern resurgence. This period marked the advent of ”deep learning” [25],
characterized by very deep architectures andmillions of parameters capable of learning highly complex,
hierarchical feature representations.

In summary, the historical trajectory of neural networks can be viewed as an evolution from sim-
ple, interpretable linear classifiers to powerful but opaque high-dimensional systems. This progression
contextualizes the present thesis: while modern deep networks achieve remarkable empirical success,
understanding their behavior remains challenging. Studying simplified models, such as random-feature
neural networks analyzed through the lens of ridge regression and random matrix theory - offers a prin-
cipled way to recover theoretical tractability without abandoning the essential nonlinear mechanisms
that make neural networks effective.

2.1.2. From Simple to Deep

While early neural networks such as the perceptron demonstrated the feasibility of data-driven learning,
their representational power was limited to linearly separable problems. The introduction of hidden
layers provided a crucial breakthrough: multi-layer networks could approximate arbitrary continuous

2.2. Random Neural Networks 5

functions under mild assumptions, as formalized in the universal approximation theorem [8, 18]. This
theoretical result established that even relatively shallow networks, when equipped with non-linear
activation functions, possess the capacity to represent complex mappings between inputs and outputs.

In practical terms, however, training such networks remained difficult throughout the 1980s and
1990s. Deep architectures suffered from vanishing gradients, poor initialization, and overfitting in the
absence of large datasets. Research therefore concentrated on specific network designs that exploited
structure in the data. Notable among these were the convolutional neural networks (CNNs) of LeCun
et al. [27], which leveraged spatial weight sharing for image data, and recurrent neural networks (RNNs)
designed for sequential or temporal patterns [11]. These architectures anticipated modern deep learn-
ing by embedding strong inductive biases into network topology.

The modern ”deep learning revolution” emerged in the mid-2000s, driven by three converging fac-
tors: increased computational power (notably GPU acceleration), large-scale datasets such as Ima-
geNet [9], and methodological innovations in optimization and regularization. Layer-wise unsupervised
pretraining using deep belief networks [15] and autoencoders [48] mitigated initialization problems,
while activation functions such as the rectified linear unit (ReLU) [35] and regularization techniques
like dropout [45] enabled stable gradient propagation and improved generalization. Collectively, these
developments unlocked the practical potential of deep architectures containing tens or even hundreds
of layers.

Subsequent milestones rapidly followed. Architectures such as AlexNet [24], VGG [44], ResNet [14],
and Transformers [47] demonstrated that depth, residual connections, and attention mechanisms could
be scaled to unprecedented levels, achieving state-of-the-art performance across vision, language, and
multimodal tasks. Yet, as networks grew deeper and more parameter-rich, their theoretical understand-
ing became more opaque. The same complexity that made deep networks powerful also made them
difficult to analyze or interpret rigorously.

This realization has inspired a complementary line of research that seeks tractable, theoretically
grounded models capturing the essential mechanisms of neural computation without the full complexity
of deep learning. Among these are random-feature networks, kernel approximations, and mean-field
analyses derived from randommatrix theory. The present thesis situates itself within this latter tradition:
by examining simplified random-weight neural networks through the lens of ridge regression, we aim
to bridge the gap between deep learning practice and high-dimensional statistical theory.

2.2. Random Neural Networks
The study of random neural networks (RNNs)—also known as random-feature models or extreme learn-
ing machines (ELMs)—represents a significant simplification of traditional neural networks. In these
architectures, the weights of certain layers (often the hidden or feature-extraction layers) are not trained,
but instead initialized randomly and kept fixed throughout learning. Only the final layer, typically a linear
readout, is optimized. This randomization transforms the learning problem from a non-convex optimiza-
tion task into a tractable linear regression, enabling both analytical treatment and rapid computation.

2.2.1. Random Weights and Efficient Feature Extractors

The conceptual foundation of random-weight networks can be traced to early work on fixed-feature rep-
resentations and kernel methods. Neal [36] first demonstrated that infinitely wide neural networks with
random weights converge to Gaussian processes, establishing a deep connection between random
networks and Bayesian kernel machines. Later, Rahimi and Recht [39] proposed the random kitchen
sinks approach, showing that a wide class of shift-invariant kernels can be efficiently approximated by

2.2. Random Neural Networks 6

random feature maps of the form

ϕ(x) =

√
2

N


cos(w⊤

1 x+ b1)
cos(w⊤

2 x+ b2)
...

cos(w⊤
Nx+ bN)

 , (2.1)

where eachwi is sampled independently from a distribution proportional to the Fourier transform of the
kernel, and bi is a random phase. This approach effectively replaces expensive kernel computations
with low-dimensional random projections followed by a linear model, enabling scalable kernel learning
in high dimensions.

A closely related stream of research explored randomization directly within neural architectures. In
the Extreme Learning Machine framework [19], the hidden-layer weights W are drawn at random and
fixed, while the output weights β are obtained in closed form through ridge regression:

β = (Σ⊤Σ+ γIN)−1Σ⊤Y, (2.2)

where Σ = σ(WX) denotes the matrix of hidden-layer activations and σ(·) is a nonlinearity such as
ReLU or sigmoid. This simple construction can approximate complex mappings while avoiding the
heavy computational cost of backpropagation. Huang and colleagues showed that even with com-
pletely random hidden weights, the ELM achieves strong generalization and extremely fast training
times, laying the foundation for the modern random-feature viewpoint.

From a theoretical standpoint, random-weight networks can be understood as finite-dimensional
approximations of kernel machines. The random mapping ϕ(x) = σ(Wx) induces an implicit kernel

k(x,x′) = Ew[σ(w⊤x)σ(w⊤x′)], (2.3)

which for specific choices of activation functions yields well-known kernels such as the arc-cosine ker-
nel [4]. The random network thus serves as a Monte Carlo estimator of this kernel, bridging the gap
between neural and kernel-based learning.

Randomization also provides a form of implicit regularization. Fixed random features prevent the
model from overfitting by constraining its expressiveness and decoupling feature learning from weight
optimization. Furthermore, randomization simplifies theoretical analysis, allowing tools from random
matrix theory and statistical physics to be applied directly to study generalization, eigenvalue spectra,
and limiting distributions [38, 7]. These analyses have shown that even simple random networks exhibit
complex phase transitions between under- and over-parameterized regimes—insights that are difficult
to obtain in fully trained deep networks.

2.2.2. Random Neural Networks in Practice

Despite their simplicity, random-feature models have found wide use in practice. Rahimi and Recht’s
work [40] demonstrated that random Fourier features can scale kernel learning to millions of data points
without loss in accuracy. The same principle underlies several modern architectures: reservoir com-
puting [21, 30], echo-state networks, and certain forms of dropout regularization can all be interpreted
as imposing structured randomness within neural dynamics.

In computer vision and signal processing, random convolutional features have been used as lightweight
alternatives to deep learned filters when computational efficiency or interpretability is required [43]. In
reinforcement learning and continual learning, random projections help stabilize representation drift by
maintaining a fixed feature subspace [37]. Moreover, recent theoretical works [20, 32] have demon-
strated that the behavior of gradient-trained wide networks can often be approximated by their random-
feature counterparts in the so-called neural tangent kernel (NTK) regime.

The appeal of random neural networks lies in this balance between expressiveness and tractability.
They are expressive enough to model nonlinear relationships, yet simple enough to admit precise

2.3. Regression in a Neural Networks Context 7

theoretical characterizations. In the context of this thesis, this property is essential: by freezing the
random features and focusing on the analytical form of the ridge regression solution (2.2), we can study
high-dimensional learning dynamics directly, derive deterministic equivalents, and explore new data-
driven regularization strategies such as the derivative-based calibration proposed in later chapters.

2.3. Regression in a Neural Networks Context
The connection between regression and neural networks is more than superficial: at its core, a feedfor-
ward neural network implements a composition of affine transformations and nonlinearities, followed
by a linear readout. When the nonlinear mapping is fixed or random, the learning task in the final layer
reduces to a regression problem on transformed features. This observation underpins both theoreti-
cal analyses of neural networks and practical algorithms such as the extreme learning machine and
random feature regression used throughout this thesis.

2.3.1. Regression–Neural Network Problem Equivalence

Consider a single-hidden-layer neural network with input x ∈ Rp, hidden weightsW ∈ RN×p, activation
function σ(·), and output weights β ∈ RN . The network output for a given input is

f(x) = β⊤σ(Wx). (2.4)

Given a dataset {(xi, yi)}ni=1, stacking all activations into a matrix

Σ =


σ(Wx1)

⊤

σ(Wx2)
⊤

...
σ(Wxn)

⊤

 ∈ Rn×N , (2.5)

the empirical training objective under a squared-loss criterion becomes

min
β

1

n
‖Σβ −Y‖22, (2.6)

where Y = [y1, y2, . . . , yn]
⊤. If W and σ are fixed, the optimization in (2.6) is identical to a linear

regression on the nonlinear feature vectors ϕ(xi) = σ(Wxi). In this sense, the neural network acts as
a nonlinear feature generator, while the training process in the final layer corresponds to ordinary least
squares (OLS) estimation:

β̂OLS = (Σ⊤Σ)−1Σ⊤Y. (2.7)

This equivalence highlights the dual view of single-layer networks as regressors operating in a
random feature space. From a functional perspective, f(x) approximates an underlying mapping f∗(x)
via linear combination of basis functions {σ(w⊤

i x)}Ni=1, analogously to classical regression models
that approximate functions through polynomial or spline bases. When N is large, the random basis
becomes highly expressive, and the regression solution (2.7) provides an efficient projection of the
target function onto the subspace spanned by the random features.

2.3.2. Ridge Regression (Penalization)

In high-dimensional settings, where N (the number of features) is comparable to or larger than n (the
number of samples), the matrix Σ⊤Σ in (2.7) is often ill-conditioned or singular. This makes the OLS
solution unstable and highly sensitive to small perturbations in the data. Tomitigate this, a regularization
term is introduced, leading to the ridge regression or Tikhonov regularization estimator:

β̂ridge = (Σ⊤Σ+ γIN)−1Σ⊤Y, (2.8)

2.4. High-Dimensional Statistics and Random Matrix Theory 8

where γ > 0 is the regularization parameter controlling the trade-off between data fidelity and weight
magnitude.

Ridge regression can be interpreted from several complementary perspectives:

• Statistical: it shrinks coefficient estimates toward zero, reducing variance at the cost of a small
bias [16]. This stabilizes predictions in the presence of multicollinearity or limited data.

• Bayesian: it corresponds to a maximum a posteriori (MAP) estimator under a Gaussian prior
β ∼ N (0, 1

γ IN), linking regularization to prior belief on model complexity [46].

• Numerical: it improves the conditioning of Σ⊤Σ, ensuring invertibility and controlling the amplifi-
cation of noise.

In the neural-network setting, ridge regularization plays a role analogous to weight decay or ℓ2-
regularization in deep learning. The effect of γ on the spectrum of (Σ⊤Σ) determines both the smooth-
ness of the fitted function and the stability of the learned weights [12]. As γ → 0, the estimator ap-
proaches the minimum-norm interpolator; as γ →∞, it collapses toward zero.

Formally, ridge regression defines a kernel machine with implicit kernel

k(x,x′) =
1

N
σ(Wx)⊤(σ(Wx′)), (2.9)

so that the predictor may be expressed equivalently as

f(x) = k(x)⊤(K+ γIn)
−1Y, (2.10)

whereK = ΣΣ⊤/N is the empirical kernel matrix. This dual formulation makes the connection between
ridge regression, kernel methods, and random-feature neural networks explicit, establishing a unified
mathematical framework that later sections of this thesis leverage for high-dimensional analysis and
regularization calibration.

2.4. High-Dimensional Statistics and Random Matrix Theory
The practical and theoretical challenges of modern machine learning often arise in the so-called high-
dimensional regime, where the number of model parameters or features is comparable to, or even
exceeds, the number of available samples. Classical statistical theory, which assumes a fixed feature
dimension p and an increasing sample size n → ∞, no longer provides reliable approximations in
this regime. Instead, understanding the behavior of estimators and algorithms requires asymptotic
frameworks that allow both p and n to grow together at a comparable rate.

2.4.1. High-Dimensional Regime

In high-dimensional statistics, quantities that were once negligible—such as correlations among fea-
tures or small eigenvalues of sample covariance matrices—become dominant. A central parameter
characterizing this setting is the aspect ratio

c =
p

n
, (2.11)

which measures the dimensionality of the problem relative to the number of observations. When c� 1,
the system is overdetermined, and classical intuition holds: estimators are consistent, and sample co-
variance matrices approximate their population counterparts. However, when c approaches or exceeds
unity (c ≥ 1), the sample covariance matrix becomes singular, and naive estimators such as ordinary
least squares (2.7) become ill-posed. This is precisely the regime where regularization methods like
ridge regression become essential.

2.4. High-Dimensional Statistics and Random Matrix Theory 9

The study of this high-dimensional behavior has revealed a series of nonintuitive phenomena. For
example, ridge regression and related estimators exhibit a double descent risk curve [3], where in-
creasing model complexity initially worsens generalization (the classical bias–variance trade-off) but
later improves it again once p > n. These effects stem from spectral properties of random design ma-
trices and have motivated the development of asymptotic tools to characterize estimator performance
when both p and n are large.

Modern theoretical analyses therefore treat the design matrixX ∈ Rp×n as random, often assuming
entries that are independent and identically distributed (i.i.d.) with zero mean and variance scaled as
1/n. This scaling ensures nontrivial limiting spectra as n, p → ∞. The statistics of the eigenvalues of
sample covariance matrices S = 1

nXX⊤ form the cornerstone of this analysis and are governed by
results from random matrix theory (RMT).

2.4.2. Random Matrix Theory Essentials

Randommatrix theory provides a framework for studying the spectral behavior of large randommatrices—
such as covariancematrices, kernel matrices, or weight matrices in neural networks—when their dimen-
sions grow without bound. Originating in nuclear physics with Wigner’s work on energy spectra [50],
RMT has since become a central tool in high-dimensional statistics [2] and modern machine learning [7].

One of the most fundamental results in this field is theMarchenko–Pastur law [31], which describes
the limiting empirical distribution of eigenvalues of the sample covariance matrix S = 1

nXX⊤. If the
entries of X are i.i.d. with mean zero and variance 1/n, then as p, n → ∞ with p/n → c, the spectral
density of S converges almost surely to

ρ(λ) = (1− 1
c)+ δ(λ) +

√
(λ+ − λ)(λ− λ−)

2πcλ
, λ ∈ [λ−, λ+], (2.12)

where λ± = (1±
√
c)2 define the spectral support and (x)+ = max(0, x). This result implies that, even in

the absence of structure, the eigenvalues of high-dimensional covariance matrices exhibit systematic,
nontrivial distributions that deviate from their population counterparts.

RMT also provides tools such as the Stieltjes transform, defined as

m(z) =

∫
1

λ− z
dρ(λ), (2.13)

which serves as a key analytical function for characterizing the spectral properties of random matrices
and for deriving deterministic equivalents in high-dimensional limits. These equivalents approximate
random quantities—such as the generalization error or the trace of resolvents—with deterministic limits
as n, p→∞ [5].

In the context of ridge regression and random-feature networks, random matrix theory enables
closed-form asymptotic expressions for training and test errors [10, 28, 13]. These results make it pos-
sible to predict model behavior and regularization effects without Monte Carlo simulations, by solving
fixed-point equations involving the spectral density (2.12) or its transform (2.13). Crucially, they reveal
how phenomena such as double descent, bias–variance trade-offs, and stability depend on spectral
properties of the random design matrix.

Overall, RMT provides themathematical backbone for analyzing high-dimensional learning systems,
including random-feature neural networks. It supplies the deterministic equivalents and asymptotic
limits upon which the theoretical developments and calibration strategies of this thesis are built.

In this thesis, randommatrix theory underpins not only the analysis of the ridge estimator but also the
construction of the random-feature model itself. Specifically, the hidden-layer weight matrixW is drawn
with i.i.d. Gaussian entries, a choice justified by RMT results showing that Gaussian ensembles yield
well-defined and analytically tractable spectral distributions in the large-dimensional limit. This property

2.5. Synthesis and Relevance to Our Work 10

ensures that the empirical covariance of the random features Σ = σ(WX) concentrates around its de-
terministic equivalent, enabling precise asymptotic analysis. Consequently, the theoretical framework
of RMT directly supports both the modeling assumptions and the derivation of the derivative-based
calibration rule proposed in this thesis, as it allows one to characterize how the choice of γ and the
feature dimensionality jointly affect stability and generalization in high-dimensional regimes. That is to
be discussed in details later in Chapter 3.

2.5. Synthesis and Relevance to Our Work
The preceding sections have outlined the key developments that converge to form the conceptual foun-
dation of this thesis. Neural networks have evolved from simple perceptrons to deep, highly expressive
architectures capable of learning complex representations. Alongside this empirical success, simplified
variants such as random-feature networks and extreme learning machines have emerged as tractable
models that retain much of the representational richness of deep networks while admitting analytical
treatment.

The random-weight paradigm provides a crucial simplification: by fixing the hidden-layer parame-
ters and focusing learning on a single linear output layer, the training problem reduces to a convex
regression task. This structure allows the use of closed-form estimators such as ridge regression,
linking neural computation directly to classical statistical theory. The equivalence between neural net-
works and regression models, made explicit in (2.8), reveals that many stability and generalization
properties of networks are ultimately governed by the spectral characteristics of the random feature
matrix Σ = σ(WX).

High-dimensional statistics and random matrix theory extend this connection further by providing
the analytical machinery to characterize such spectral properties. Results such as the Marchenko–
Pastur law and its deterministic equivalents describe how the eigenvalue distributions of large ran-
dom matrices govern estimator variance, bias, and stability. Through this lens, neural networks—and
random-feature models in particular—can be studied as high-dimensional statistical systems whose
performance depends not only on their architecture or activation function, but also on the asymptotic
interactions between sample size, feature dimensionality, and regularization strength.

This theoretical synthesis motivates the central focus of the present thesis. Traditional calibration
methods for ridge-type estimators, such as cross-validation or Couillet’s deterministic-equivalent ap-
proach [6], provide systematic ways to tune the regularization parameter γ. However, these methods
rely either on computationally intensive resampling or on asymptotic approximations that require full
knowledge of model parameters. By contrast, the derivative-based calibration rule developed in this
work offers a fully data-driven alternative: it determines the optimal γ by analyzing the empirical deriva-
tive of the training loss with respect to the regularization parameter itself.

Viewed in this broader context, the proposed approach embodies the same philosophy that under-
lies much of modern high-dimensional learning: to design estimators that remain theoretically inter-
pretable, computationally efficient, and empirically robust even when operating in regimes far beyond
the reach of classical statistical assumptions. The subsequent chapters build upon this synthesis, de-
veloping both the analytical framework and the empirical validation that demonstrate how derivative-
based calibration can serve as a practical and theoretically grounded regularization principle for random-
feature neural networks.

3
Methodology

In the methodology section, the setting of the study will first be described, detailing the high-dimensional
setting and the corresponding parameters arrangement involved, as well as the mathematical formula-
tion of the single-layer perceptron model with random Gaussian weights. Following this, the problem
inherent in the conventional approach to ridge regression will be articulated, with a particular focus
on the discrepancies observed in the optimal regularization parameter γ found through minimizing tra-
ditional for this setting error metrics as opposed to different, direct error measures. Finally, potential
solutions to address these discrepancies will be proposed and explored, with the aim of refining the
ridge regression method to achieve more reliable and consistent results in high-dimensional contexts.

In recent decades, random neural networks have gained prominence as an effective solution to
various challenges in machine learning. These networks are particularly advantageous in scenarios
with limited training data, as they help mitigate the constraints of computational and memory resources.
Furthermore, random neural networks serve as efficient random feature extractors, enhancing their
utility across a range of applications. In this context, the application of ridge regression within these
networks, is explored, aiming to leverage their strengths while addressing the unique challenges they
present.

3.1. Model Setting
As was stated before, focus of this study lies within researching behaviour of ridge regression methods
in application with relatively simple neural network setting in high dimensions, and the issues of the
conventional approach caused by such an arrangement. In this section, model setting as well as the
toolbox of the original, traditional approach to high-dimensional ridge regression is being discussed.

3.1.1. Ridge Regression With Random Neural Network

A structure of the single-hidden-layer neural network that is being used for the studies is depicted on
the figure 3.1. 2

Hence, the setting is the following:

Given the input data matrix X = [x1, . . . ,xn] ∈ Rp×n, where each column xi ∈ Rp represents
an input vector, the neural network processes this input through a randomly initialized weight matrix
W ∈ RN×p. The entries of W are independent and identically distributed (i.i.d.), following a standard
Gaussian distribution.

11

3.1. Model Setting 12

Figure 3.1: A diagram illustrating the structure of the single-layer random neural network.

The output of the first layer is denoted byΣ = σ(WX) ∈ RN×n, where σ : R→ R is some activation
function applied entry-wise to the product WX. This results in a feature matrix Σ, where each column
σ(Wxi) represents the transformed feature vector for the input xi. These columns can be interpreted
as random features (nonlinear random features in case function σ is nonlinear itself) of the input data.

The second layer of the neural network involves a weight matrix β ∈ RN×d, which is learned to
map the feature matrix Σ to the target output Y = [y1, . . . ,yn] ∈ Rd×n, where each column yi ∈ Rd

represents the target vector associated with the input xi. The learning of β is performed by minimizing
a regularized loss function.

Therefore, the overall architecture of the neural network involves transforming the input data through
a random weight matrix, applying some activation function to obtain random nonlinear features, and
then learning a weight matrix to map these features to the desired output. This setup leverages the
randomness in the weights to extract useful features from the input data, while the learning process
focuses on minimizing the prediction error through a regularized optimization problem.

The output weight matrix β is learned to minimize the regularized mean squared error:

L(β) =
1

n

n∑
i=1

∥∥yi − β⊤σ(Wxi)
∥∥2 + γ ‖β‖2F

The aim is to find the β̂ that minimizes this loss. The loss function can be rewritten using matrix
notation. The loss function can be written as:

L(β) =
1

n
Tr((Y − β⊤Σ)(Y − β⊤Σ)⊤) + γTr(β⊤β).

We then differentiate L(β) with respect to β:

∂L(β)

∂β
=

∂

∂β

(
1

n
Tr((Y − β⊤Σ)(Y − β⊤Σ)⊤) + γTr(β⊤β)

)
.

Using matrix calculus, we have:

∂

∂β

(
1

n
Tr((Y − β⊤Σ)(Y − β⊤Σ)⊤)

)
=

2

n
Σ(Y − β⊤Σ)⊤,

and
∂

∂β

(
γTr(β⊤β)

)
= 2γβ.

3.1. Model Setting 13

Combining these results, we get:

∂L(β)

∂β
=

2

n
Σ(Y − β⊤Σ)⊤ + 2γβ =

2

n
Σ(Σ⊤β −Y⊤) + 2γβ.

Setting the gradient to zero for minimization, we have:

0 =
2

n
Σ(Σ⊤β̂ −Y⊤) + 2γβ̂.

From there, rearranging the terms:

0 =
2

n
ΣΣ⊤β̂ +

2

n
ΣY⊤ + 2γβ̂

0 =

(
1

n
ΣΣ⊤ + γIN

)
β̂ +

1

n
ΣY ⊤

(
1

n
ΣΣ⊤ + γIN

)
β̂ =

1

n
ΣY⊤

Thus we obtain the closed-form expression for the ridge-regressor :

β̂ =
1

n
Σ

(
1

n
ΣΣ⊤ + γIn

)−1

Y⊤. (3.1)

3.1.2. Error Approximation in High-Dimensional Setting: a Conventional Approach

In the realm of high-dimensional settings, traditional approaches to error estimation have been well-
documented and provide foundational insights into the behavior of models. This conventional approach
is detailed extensively in the book [6].

Indeed, it is not difficult to observe that the error terms can be computed directly from the data. The
training mean squared error (MSE) on the given training set (X,Y) is given by:

Etrain =
1

n

∥∥Y⊤ −Σ⊤β
∥∥2
F
=

γ2

n
trYQ2(γ)Y⊤, (3.2)

Please note, that here β is as in the formula (3.1), whilst Q(γ) is the resolvent of 1
nΣ

⊤Σ, defined as:

Q(γ) ≡
(
1

n
Σ⊤Σ+ γIn

)−1

. (3.3)

Similarly, the test MSE on a test set (X̂, Ŷ) ∈ Rp×n̂ × Rd×n̂ of test sample size n̂ is given by:

Etest =
1

n̂

∥∥∥Ŷ⊤ − Σ̂⊤β
∥∥∥2
F
=

1

n̂
trŶŶ⊤ − 2

nn̂
trYQΣ⊤Σ̂Ŷ⊤ +

1

n2n̂
trYQΣ⊤Σ̂Σ̂⊤ΣQY⊤ (3.4)

where Σ̂ = σ(WX̂).

The traditional approach, as mentioned before, opts for effectively estimating these error 3.2 &
3.4 rather than using the original expressions. The question arises: why estimate errors when direct
computation of Etrain and Etest is possible? The challenge lies in the high-dimensional regime, where
parameters p, n, and N (dimensionality of the data, size of the dataset and number of neurons in the
hidden layer, respectively) grow large simultaneously. Under these conditions, computing Etrain, for
example, becomes computationally intensive due to the inversion and the inherent randomness of Σ
through W .

3.1. Model Setting 14

The randomness, while not a direct computational hurdle, complicates the assessment of the asymp-
totic behavior of Etrain. Small changes in input can lead to significant variations in output, complicating
the understanding of error behavior. To address this, the resolvent Q̂ is employed to approximate the
asymptotic behavior of Etrain. This method leverages the resolvent to simplify the complexity associ-
ated with the randomness of W. This logic is applicable to Etest as well, providing a comprehensive
framework for error approximation in high-dimensional settings.

The approximations Êtrain and Êtest are based on the assumption that the matrixW is sub-Gaussian
and that the function σ is Lipschitz continuous [29]. These assumptions are necessary to apply con-
centration inequalities and derive deterministic equivalents for the resolvent and the error terms.

Assumptions and Lemmas To rigorously justify the use of Êtrain and Êtest, we rely on several key
results from random matrix theory.

Assumption 1. (Sub-Gaussian W): The matrix W is defined as W = ϕ(W̃), where W̃ has i.i.d.
N (0, 1) entries and ϕ(·) is λϕ-Lipschitz. For a = ϕ(b) ∈ R, ϕ maps b ∼ N (0, Ip) to a ∼ Nϕ(0, Ip).

Assumption 2. (Function σ): The function σ is Lipschitz continuous with parameter λσ. This
assumption holds for many activation functions used in neural networks, such as the rectified linear
unit (ReLU).

Assumption 3. (Growth Rate): As n→∞,

0 < lim inf
n→∞

min

{
p

n
,
N

n

}
≤ lim sup

n→∞
max

{
p

n
,
N

n

}
<∞

while γ, λσ, λϕ > 0 and d are kept constant. Additionally,

lim sup
n→∞

‖X‖ <∞, lim sup
n→∞

max
ij
|Yij | <∞.

Under these assumptions, we can state the following key results:

Lemma 1. (Concentration of Quadratic Forms): Let Assumptions 1 and 2 hold. For X ∈ Rp×n

and w ∼ Nϕ(0, Ip), define the random vector σ ≡ σ(w⊤X). For A ∈ Rn×n with ‖A‖ ≤ 1,

P

(∣∣∣∣ 1N σ⊤Aσ − 1

N
tr(ΦA)

∣∣∣∣ > t

)
≤ Ce

−cN min

(
t2

t20
,t

)

for some constants C, c > 0, where Φ = E[σ(w⊤X)σ(w⊤X)⊤][29] .

This lemma ensures that the quadratic forms involving σ(w⊤X) concentrate around their expecta-
tions, allowing us to replace random terms with deterministic equivalents.

Theorem 3.1.2.1. (Asymptotic Equivalent for E[Q]): Let Assumptions 1-3 hold and define Q̄ as

Q̄ =

(
N

n

Φ

1 + δ
+ γIn

)−1

, (3.5)

where δ is the unique positive solution to δ = 1
N tr(ΦQ̄). Then, for all ϵ > 0, there exists c > 0 such that

‖E[Q]− Q̄‖ ≤ cn−1/2+ϵ

[29].

This theorem provides an asymptotic equivalent for the expectation of the resolvent Q, allowing us
to approximate E[Q] with Q̄ in high-dimensional settings.

Using these results, we can derive the asymptotic approximations for the training and test mean
squared errors:

3.1. Model Setting 15

Theorem 3.1.2.2. (Asymptotic Training Mean-Square Error): Let Assumptions 1-3 hold. Then, for
all ϵ > 0,

n1/2−ϵ(Etrain − Êtrain)→ 0 almost surely,
where

Etrain =
1

N

∥∥∥Y⊤ −Σ⊤β̂
∥∥∥2
F
=

γ2

N
trYQ2(γ)Y⊤,

Êtrain =
γ2

N
tr
(
Y⊤YQ̄

(
1

n
tr(ΦQ̄2)(IN −

1

n
tr(Φ2Q̄2))−1

)
Q̄

)
(3.6)

[29].

Similarly, for the test mean squared error:

Conjecture 3.1.2.1. Deterministic Equivalent for Etest: Let Assumptions 1-2 hold. Then, for all ϵ > 0,

n1/2−ϵ(Etest − Êtest)→ 0 almost surely,

where
Etest =

1

n̂

∥∥∥Ŷ⊤ − Σ̂⊤β̂
∥∥∥2
F
,

Êtest =
1

n̂

∥∥∥Ŷ⊤ − Φ̂⊤Q̄Y⊤
∥∥∥2
F
+

1

n
tr(Y⊤YQ̄ΦQ̄)

(
1− 1

n
tr(ΦQ̄)

)−1

(3.7)

[29].

Kernel-Based Reformulation of Asymptotic Errors Based on our previous considerations, we can
express the results in terms of the limiting kernel K, which provides a deterministic framework for un-
derstanding the behavior of the model. The kernelK effectively captures the feature mapping induced
by the activation function σ and is pivotal in characterizing the asymptotic properties of the model’s
performance. This approach leverages Theorem 3.1.2.1 and Conjecture 3.1.2.1, which demonstrate
how the effective kernel K̄ influences the training and test errors.

To compute the effective kernel K̄, we employ the fixed-point equation derived from Theorem
3.1.2.1, which is iteratively solved to obtain:

K̄ =
N

n

K

1 + δ
, (3.8)

where δ is defined as:
δ =

1

N
tr(KQ̄).

Derivation of Asymptotic Errors withK The asymptotic training mean squared error Etrain is given
by:

Etrain =
1

N

∥∥Y⊤ −Σ⊤β
∥∥2
F
=

γ2

N
tr(YQ2Y⊤), (3.9)

which can be rewritten using the kernel as:

Ētrain =
γ2

n
tr
(
YQ̄

(1
N tr(Q̄K̄Q̄)

1− 1
N tr(K̄Q̄K̄Q̄)

K̄+ In

)
Q̄Y⊤

)
(3.10)

where:

Q̄ =

(
N

n

K̄

1 + δ
+ γIn

)−1

.

3.1. Model Setting 16

Similarly, the test mean squared error Etest is expressed as:

Etest =
1

n̂

∥∥∥Ŷ⊤ − Σ̂⊤β
∥∥∥2
F
, (3.11)

and can be reformulated in terms of the kernel:

Ētest =
1

n̂

∥∥∥Ŷ⊤ − K̄⊤
XX̂

Q̄Y⊤
∥∥∥2
F
+

1
N tr

(
YQ̄K̄Q̄Y⊤)

1− 1
N trK̄Q̄K̄Q̄

(
1

n̂
trK̄X̂X̂ −

1

n̂
tr(In + γQ̄)(K̄⊤

XX̂
K̄XX̂Q̄)

)
(3.12)

where the effective kernels are defined as:

KXX = E[σ(X⊤w)σ(w⊤X)],

KXX̂ = E[σ(X⊤w)σ(w⊤X̂)],

KX̂X̂ = E[σ(X̂⊤w)σ(w⊤X̂)],

and their normalized counterparts:

K̄ =
N

n

K

1 + δ
,

K̄XX̂ =
N

n

KXX̂

1 + δ
,

K̄X̂X̂ =
N

n

KX̂X̂

1 + δ
.

The kernel K replaces the need for direct computation of the matrix Σ by leveraging determinis-
tic equivalents, which simplify the complexity of high-dimensional analysis. This methodology aligns
with the results derived in [6], where the effective kernel K̄ is shown to have a significant impact on
regression performance, providing a reliable approximation of the model’s behavior in the asymptotic
regime. By applying these insights, we can gain a deeper understanding of the model’s performance
and address potential issues such as overfitting by examining the interaction between p/n, N/n, and
the choice of activation functions.

In summary, these results provide a rigorous foundation for approximating the training and test mean
squared errors in high-dimensional settings. By using the deterministic equivalents Êtrain and Êtest, we
can effectively handle the complexity introduced by the randomness of Σ and gain insights into the
asymptotic behavior of the error terms [29].

3.1.3. Variability and Extensions of the Model

In this subsection different parameters and model arrangement are going to be considered in order to
explore the possible variability of the model. Exploring various aspects of the neural network model

3.1. Model Setting 17

is crucial for understanding its performance and behavior. Modifying different parameters and func-
tions, such as activation functions, kernel choices, and ratios like p

n and N
n , can significantly impact the

model’s ability to generalize and avoid overfitting. Moreover, it will be later shown in the results section
that our analysis leads to different results, which vary substantially with changes in the parameters.

Different Activation Functions and Kernels Activation functions play a pivotal role in defining the
nonlinear transformations within the neural network. Commonly used activation functions include ReLU,
sigmoid, tanh, and others, each impacting the network’s behavior differently. These functions lead to
different kernel functions, influencing how data is mapped and processed. For instance, the ReLU
activation function corresponds to a specific kernel, while other functions like sigmoid and tanh result
in distinct kernels.

Different activation functions lead to different kernels, impacting the behavior and performance of
the neural network. For a given dataset X, it is possible to compute the ”limiting” kernel K for the
listed activation functions σ(·) using theoretical results. By iterating the fixed-point equation presented
in Theorem 3.1.2.1, one can derive the effective kernel K̄ ≡ N

n
K
1+δ in practical settings where n, p,N

are large. This effective kernel provides insights into the regression performance and is advantageous
as it applies to deterministic input data X rather than relying on randomly modeled data. Table 3.1
from [6] lists the limiting kernels for various activation functions, highlighting the diverse impact these
functions have on the model:

σ(t) κ(x,y)

t x⊤y

|t| 2
π‖x‖ · ‖y‖

(
L · arcsin(L) +

√
1− L2

)
ReLU(t) ≡ max(t, 0) 1

2π‖x‖ · ‖y‖
(
L · arccos(−L) +

√
1− L2

)
a+ max(t, 0) + a− max(−t, 0) 1

2 (a
2
+ + a2−)x

⊤y + 1
2π‖x‖ · ‖y‖

(
(a+ + a−)

2
(
−L · arccos(L) +

√
1− L2

))
a2t

2 + a1t+ a0 a22
(
2(x⊤y)2 + ‖x‖2‖y‖2

)
+ a21x

⊤y + a2a0
(
‖x‖2 + ‖y‖2

)
+ a20

erf(t) 2
π arcsin

(
2x⊤y√

(1+2∥x∥2)(1+2∥y∥2)

)
1t>0

1
2 −

1
2π arccos(L)

sign(t) 2
π arcsin(L)

cos(t) exp
(
− 1

2 (‖x‖
2 + ‖y‖2)

)
cosh(x⊤y)

sin(t) exp
(
− 1

2 (‖x‖
2 + ‖y‖2)

)
sinh(x⊤y)

exp(−t2/2) 1√
(1+∥x∥2)(1+∥y∥2)−(x⊤y)2

Table 3.1: Limiting kernel κ(x,y) = E[σ(w⊤x)σ(w⊤y)] for standard Gaussian w, with L ≡ x⊤y
∥x∥·∥y∥ .

Variability with Increasing Layers and Loss Functions Beyond activation functions and kernel se-
lections, the variability of the model’s architecture itself, such as the number of layers, plays a crucial
role in determining performance. Adding more layers can introduce additional complexity and depth,
allowing the network to capture intricate patterns and interactions within the data. However, this com-
plexity must be balanced with the risk of overfitting, particularly in high-dimensional settings where the
ratio p/n and N/n can exacerbate model instability.

In the upcoming results section, we will present experiments that demonstrate the impact of differ-
ent architectural configurations on the model’s performance. This will include analyses of varying the
number of layers and other hyperparameters to provide insight into how such modifications can be
optimally tuned for specific tasks.

3.2. Experimental Setup 18

3.2. Experimental Setup
For the initial testing, we consider a one-hidden-layer neural network with Gaussian weights and a
linear activation function for simplicity. The goal is to study the behavior of this network in relation to
the training and test errors, particularly when regularizing the model using the ridge regression penalty.

In our setup, the input matrix X (both for training and test sets) is generated as a Gaussian ran-
dom matrix with independent standard normal entries. We use the following specific steps for data
generation:

• The weight matrix W is Gaussian, meaning each entry of W ∈ RN×p is drawn from N (0, 1),
where N represents the number of neurons in the hidden layer and p is the input dimensionality.

• The target vector b is generated randomly with binary entries, where each entry takes a value of
0 or 1 according to a certain density parameter. For instance, a density of 90% means approxi-
mately 90% of the entries of b are set to 1 and the rest to 0.

• The output vectorY is generated according to the relationshipY = Σ⊤b+ ϵ, whereΣ = σ(WX)
is the activation matrix, X represents the input matrix, and ϵ is a Gaussian noise term with a
certain noise level.

For the ridge regression model, we aim to find the optimal regularization parameter γ that minimizes
both the training and test errors. To estimate the training error Etrain, we calculate it as the squared
difference between the observed training outputs Ytrain and the predictions of the model. Similarly, the
test error Etest is computed on the unseen test data. Additionally, deterministic equivalents of these
errors, Êtrain and Êtest, are obtained using approximations from random matrix theory, which simplify
the analysis of the model’s behavior.

For this setup, we use the following values for the key parameters:

• p/n ratio (a parameter under investigation), denoted as c1, where p is the input dimension and n
is the number of training data points.

• N/n ratio (another parameter under investigation), denoted as c2, where N is the number of
neurons in the hidden layer.

• A range of values for n (number of data points) - for the initial experiment taken as values from
100 to 3000, increasing in increments of 200.

• A binary target vector b generated with a certain density value (parameter under investigation).

• A range of regularization parameters γ explored, from 10−7 to 102.

We explore these settings using both a Monte Carlo method (random-based computations of Etrain
and Etest) and deterministic equivalents based on approximations for the kernel matrix K.

The choice of the regularization parameter γ was made by examining the range in which the most
interesting behavior occurs. As shown in the next section (Figure X.X), the test and training errors
exhibit significant changes in behavior when γ is between 10−7 and 102. This range captures the transi-
tion where the errors are minimized and gives us insights into the model’s performance. Consequently,
we focus on this interval to explore the optimal value of γ.

Regarding the choice of data point values n, we selected the range of 100 to 3000 to fit within the
computational resources available on the Delft hypercomputer cluster. Larger values of n were not
feasible due to resource limitations, and this range was found to be sufficient to observe the desired
trends in the model’s behavior.

3.3. Algorithm Optimization 19

3.3. Algorithm Optimization
This section describes how we transform a straightforward (”naive”) implementation of the pipeline into
an optimized one that is both faster and numerically more stable. We assume the reader is familiar with
the experimental setup and notation from the preceding sections: given standardized data (Xtr, Xte),
labels ytr, yte ∈ {−1,+1}, a random-features matrixW ∈ RN×p, and an activation σ(·), we evaluate two
one–dimensional calibration rules for the ridge penalty γ-Coulliet’s deterministic-equivalent test proxy
Etest(γ) (to be discussed in later chapters, cf. Eq. (3.12)) and our direct-loss rule based on ∂γL(RSS)

direct (γ)

(cf. Eq. (4.3b))—and then form β̂(γ) via the closed-form ridge expression (Eq. (3.1)).

3.3.1. Naive baseline: what is expensive

In a direct implementation, for each grid value γ one typically:

1. Recomputes kernel blocks Ktr = K(Xtr, Xtr), KxX = K(Xtr, Xte), KXX = K(Xte, Xte);

2. Solves the fixed point for δ = δ(γ) by repeatedly forming and inverting

Q(γ, δ) =
N

n

Ktr

1 + δ
+ γIn;

3. Evaluates Etest(γ) and/or ∂γL(RSS)
direct (γ) using dense n× n linear algebra;

4. Forms the ridge solution β̂(γ) = Σ
n

(
1
nΣ

⊤Σ+ γI
)−1

y, where Σ = σ(WXtr).

Steps (2)-(4) perform an n×n factorization/inversion per γ. In perturbation studies, repeating the same
work per scenario quickly dominates runtime and accumulates numerical error.

3.3.2. Optimized pipeline: what we change

We refactor the computation so that all operations that do not depend on γ (and, where possible, that
do not depend on the scenario) are computed once and then reused. The concrete changes are:

(O1) Precompute kernels once and reuse. Compute the Gram blocks

Ktr, KxX , KXX

once per dataset (or once per scenario when the training inputs are perturbed). The arc–cosine kernel
implementation is numerically stabilized via norm products clamped away from 0 and cosine arguments
clipped to (−1, 1).

(O2) Eigendecompose Ktr once; diagonalize the fixed–point map. Write Ktr = V ΛV ⊤ with Λ =
diag(λi). The fixed–point iteration

δ 7→ 1

n

n∑
i=1

λi

a(δ)λi + γ
, a(δ) =

N/n

1 + δ
,

no longer requires formingQ−1; it becomes a cheap diagonal update using only {λi}. AllEtest(γ) terms
that involve traces with Q(γ, δ)−1 reduce to sums over di(γ, δ) = a(δ)λi + γ.

(O3) SVD trick for random features; avoid matrix inverses. Let A = Σ/
√
n with thin SVD A =

USV ⊤, S = diag(si) (i = 1, . . . , r). Then(
1
nΣ

⊤Σ+ γI
)−1

= V diag
(

1
s2i+γ

)
V ⊤ +

1

γ
Pnull,

3.3. Algorithm Optimization 20

so that both β̂(γ) and the direct derivative

∂γL(RSS)
direct (γ) = γ

(
r∑

i=1

(v⊤i y)
2

(s2i + γ)3
+
‖y − Pspany‖22

γ3

)
− σ̂2

RSS(γ)

(
r∑

i=1

1

(s2i + γ)2
+

n− r

γ2

)

are computed by elementwise operations on {s2i }. The RSS variance is computed consistently from
the same SVD:

σ̂2
RSS(γ) =

1

n

∥∥∥∥ γ

S2 + γ
V ⊤y

∥∥∥∥2
2

+
1

n
‖y − Pspany‖22.

(O4) Factor once, solve many. Cholesky/triangular solves replace explicit inverses everywhere
(when we operate in the n × n domain). In the RKHS route, all per-γ work lives on the diagonal {di};
in the random features route, all per-γ work lives on {s2i }.

(O5) Grid evaluation by broadcasting. We evaluate Etest(γ) and ∂γL(RSS)
direct (γ) on the full log–grid

using vectorized broadcasts over di(γ, δ) or s2i + γ, thereby avoiding Python loops.

(O6) Caching across scenarios. We keep W fixed and reuse all W–dependent quantities (e.g.
shapes, normalization). For Coulliet’s route, only (Ktr,KxX ,KXX) and their eigenpairs change when
training inputs are perturbed.

3.3.3. Complexity at a glance

Let n be the train size, |G| the grid length, and r = rank(A) ≤ min{N,n}.

• Naive: O(|G|n3) for repeated inversions in the δ loop and in β(γ) per grid point, plus kernel
recomputation per γ.

• Optimized:

– One eigendecomposition of Ktr: O(n3).

– One SVD of A: O(nr2) or O(Nr2) (economy SVD).

– Per γ: O(n) for Coulliet (diagonal arithmetic on {di}), O(r) for Direct (on {s2i }).

– Per scenario: recompute kernels and one eigendecomposition of Ktr; reuse all grid–wise
vectorization and SVD formulas.

In practice this reduces wall-clock time by one to two orders of magnitude for the grids and scenario
counts considered, while improving numerical stability by avoiding explicit inverses.

3.3.4. Practical notes

• Storage. We store baseline and per–scenario betas/gammas in compressed NPZs. ReusingW
ensures fair, paired comparisons across scenarios.

• Determinism. A single seed controls scenario design and W ; results reported in the main text
do not depend on the particular seed choice in any qualitative way.

Takeaway. The optimized pipeline moves all γ-dependence to diagonal arithmetic on spectral quanti-
ties, eliminates explicit inverses, and restricts per scenario searches to local grids. This yields substan-
tial speedups and improves numerical behavior, especially critical in the perturbation analysis, where
many closely related problems must be solved repeatedly.

3.4. Problem Arising 21

3.4. Problem Arising
To briefly recap: in the preceeding sections we have explicitly derived the expressions for Etrain (3.2)
and Etest (3.4), which represent training and test mean squared errors (MSE) respectively, in the high-
dimensional regime. By using results from random matrix theory we formulated deterministic equiva-
lents Êtrain (3.10) and Êtest (3.12) for Etrain and Etest. These equivalents allow for the approximation of
these error metrics in scenarios where the number of data points n, the number of features p, and the
number of neurons N are large. Approximations themselves depend on the resolvent Q̂ (3.5), which
captures the effects of randomness inherent in the data through the Gram matrix and the kernel matrix.
From there we have found an optimal value of hyperparameter γ that allows to optimize expressions
for both Êtrain (3.10) and Êtest (3.12).

However, a critical issue arises when comparing the optimal γ values obtained through this approach
with those obtained through direct minimization of the ridge loss function, which in our case we dxefined
as:

Lridge =
‖β̂ − b‖2F
‖b‖2F

, (3.13)

where b is the target vector, and β̂ is the solution obtained from ridge regression: (3.1):

β̂ =
1

n
Σ

(
1

n
ΣΣ⊤ + γIn

)−1

Y⊤,

This metric evaluates how well the predicted coefficients match the true target vector, with the goal
of minimizing the relative Frobenius norm error.

The core of the problem lies in the discrepancy between the optimal γ values obtained by minimizing
Êtrain and Êtest (derived from random matrix theory approximations) and the optimal γ obtained by mini-
mizing the ridge loss function directly. Ideally, one would expect that these values converge or align to
some degree, as both approaches aim to minimize the model error. However, the experimental results
suggest otherwise, showing significant differences in the γ values that yield the best performance for
each case. We are going to see the details of this discrepancy in the results sections further.

3.4.1. Potential cause of the problem

One potential cause of this discrepancy could be rooted in the assumptions and approximations used in
deriving Êtrain and Êtest. The use of randommatrix theory allows us to simplify the problem by averaging
over the randomness in the data, which can smooth out some variability that is captured more directly
in the ridge loss function. As a result, the deterministic equivalents may not fully capture all aspects of
the data structure or noise present in real-world data.

Another contributing factor could be the simplified setup used for the target vector b, which is binary
(0s and 1s) with a fixed density. While this setup is useful for initial theoretical testing, it may not
reflect the complexity of more general real-world data, where target vectors can exhibit more variability
and noise. The binary nature of b could limit the flexibility of the model, potentially influencing the
optimization of γ in different ways when using the ridge loss function versus the random matrix theory
approximations.

Finally, the inherent differences between the MSE-based training and test errors and the ridge loss
function itself may also play a role. The ridge loss function focuses onminimizing the difference between
the predicted coefficients β̂ and the true target vector b, while the MSE errors focus on minimizing
the prediction errors for the outputs. This distinction may lead to divergent results in terms of what
constitutes the ”optimal” value for γ.

4
Results

In the following chapter we will present the results of our experiments and findings regarding the rela-
tionship between the regularization parameter γ, Mean Squared Error , ridge loss function and various
model parameters.

4.1. Research on the original Experiment
In this section we interrogate the simplest controllable setting in which our theory can be tested: data
generated exactly according to the “synthetic law’’ Y = Σ⊤b+ ε with a known ground-truth coefficient
vector b. The benchmark serves three purposes. First, it allows us to reproduce the Gaussian-W base-
line of Couillet & Liao [6] and recover the random-matrix-theory optimal regularisation γ∗

RMT. Second,
by comparing this predictive optimum with the direct alignment loss Lridge, we expose the causal gap—
the systematic misalignment between γ∗

RMT and the value that best recovers b (Section 4.1.4). Finally,
sweeping three aspect ratios p/n ∈ {0.7, 1.0, 2.0} and three sparsity levels of b (10%, 50%, 90%),
we chart the regimes where this gap widens or narrows, providing a roadmap for the more complex
real-data experiments that follow.

4.1.1. Mean Squared Error against the regularization parameter γ

We will begin with replicating the initial experiment from the book [6], investigating the Mean Squared
Error values for both Etrain (3.9) , Etest (3.11) as well as Êtrain (3.10) , Êtest (3.12) against a ridge regu-
larization parameter γ. The goal is to observe the trends in the MSE for both the training and test sets
as γ changes, and to identify the optimal γ that minimizes the test error and whether it is possible in
general.

In order to illustrate the impact of different activation functions (linear, ReLU, and signum) and
varying levels of the target vector density (15% versus 90%), we present in Figure 4.1 six separate
plots. Each sub-figure shows the training and test MSE as a function of the ridge parameter γ. As
expected, the linear, ReLU, and signum activations exhibit similar qualitative “U-shapes” in the test-
error curves, though at different scales depending on density and nonlinearities. The graph presented
here shows a characteristic behavior: the training error increases as γ increases, while the test error
initially decreases, reaches a minimum, and then begins to increase again as γ becomes too large.
This result aligns with the conclusion from the book that the hyperparameter γ can be fine-tuned to
optimize test performance, given that n, p, and N are not too small and comparable in magnitude.

22

4.1. Research on the original Experiment 23

(a) Linear, 90% density (b) Linear, 15% density

(c) Signum, 90% density (d) Signum, 15% density

(e) ReLU, 90% density (f) ReLU, 15% density

Figure 4.1: Training and test MSE versus the regularization parameter γ for three activation functions (linear, signum, ReLU)
under two different densities of the target vector (90% and 15%). Each subfigure exhibits the typical U-shape in test error,

alongside a rising training error as γ increases.

4.1. Research on the original Experiment 24

4.1.2. Optimal γ value and error behaviour with increasing amount of data

In this subsection, we investigate the behavior of the mean squared errors (Etest and Êtest) and their
corresponding optimal γ values as the number of data points n increases, while keeping the ratios p/n
and N/n fixed. The parameters have been chosen such that p, N and n are sufficiently large and
comparable in magnitude. This choice is motivated by the fact that in the high-dimensional regime,
where the number of features p is approximately of the same order as the number of samples n, the
theoretical results from random matrix theory hold.

The experiment is designed by keeping p/n and N/n fixed, while increasing n from 100 to 3500 in
increments. For each value of n, 80% of the data is used for training and 20% for testing. At each step,
we search for the optimal regularization parameter γ from a grid ranging from 10−7 to 101 (in increments
of 0.1), which minimizes Etest and Êtest. These optimal γ values are then plotted against n, along with
the corresponding values for the errors.

The following figures present the results of this experiment:

Figure 4.2: Error metrics (Etest and Êtest) over increasing n with p/n = 0.7, N/n = 0.8, and density = 50%.

Figure 4.3: Convergence of optimal γ for Etest and Êtest over increasing n with p/n = 0.7, N/n = 0.8, and density = 50%.

From the results in Figures 4.2 and 4.3, we observe that the errors themselves remain mostly stable
as the number of data points increases, with slight fluctuations that can be attributed to the random
nature of the data generation. However, the optimal values for γ show more variability. While there is

4.1. Research on the original Experiment 25

some fluctuation, there is also a noticeable trend suggesting that the optimal γ values for Etest and Êtest
show converging behaviour as n increases.

This empirical result aligns with the theoretical conjecture 3.1.2.1 shown earlier, which asserts that
the difference between Etest and Êtest should diminish as n increases.

4.1.3. Optimal γ Values study for Different Loss Functions

In this subsection, we address a critical issue that arises in our investigation: the discrepancy between
the optimal γ values needed to minimize different error metrics. The setting for this analysis remains
consistent with the previous sections, where we explore the behavior of error metrics and optimal
regularization parameters (γ) while increasing the number of data points (n), and keeping the ratios p/n
and N/n fixed. As mentioned earlier, the experiment generates data according to the law Y = Σ⊤b+ ϵ,
where b is a sparse vector, and Σ represents the network’s internal operations. For each increment in
n, we determine the optimal γ that minimizes both Etest and Êtest.

However, when we compare the optimal γ values required for minimizing the ridge loss function we
defined earlier with those minimizing the test errors (Etest and Êtest), we observe a noticeable difference.
As shown in the graphs below, the optimal γ for the ridge loss function does not always align with the
optimal values for Etest and Êtest.

In this experiment, we also consider the ”direct” loss function, given by Equation (3.13), which
measures the Frobenius norm difference between the predicted coefficients β̂ and the target vector
b. As seen in the results, the optimal γ values obtained for minimizing this direct loss function differ
from those obtained when optimizing the test errors, Etest and Êtest. The graphs clearly illustrate this
difference, with the values for γ needed to minimize the direct loss function consistently diverging from
the values required for minimizing the test errors. These results highlight the distinct behavior of the
ridge loss function compared to the test errors derived from random matrix theory.

Effect of Regularization Strength on Ridge Regression Error (Different Densities). Figure 4.4
compares three plots of the normalized ridge error ‖β̂ − b‖2F /‖b‖2F (3.13) versus γ under different den-
sities for b. In themiddle panel (approximately 50% density), we see a pronounced “U-shaped” curve
with a clear global minimum. By contrast, the left and right panels (very high or very low density) show
flatter or less sharply defined minima, suggesting that in those regimes, the ridge-regularized solution
does not exhibit as strong a trade-off between underfitting and overfitting.

(a) Density ≈ 95% (b) Density ≈ 50% (c) Density ≈ 15%

Figure 4.4: Normalized ridge error ∥β̂ − b∥2/∥b∥2 as a function of the regularization strength γ (log scale) for three different
densities. The center plot (50% density) exhibits a clear “U-shape,” whereas the other two densities do not show a single,

pronounced minimum.

4.1.4. Diagnosing the Causal Gap

Having reproduced the MSE-based optimum γ∗
RMT, we now turn to the question of causal alignment:

does the predictive optimum also recover the ground-truth mechanism b?1 Concretely, we contrast
three objective curves as a function of γ:

1Causal faithfulness here is operationalised by the direct alignment loss Lridge introduced in (3.13).

4.1. Research on the original Experiment 26

• the direct causal loss Lridge(γ) (3.13) (red dotted),

• the RMT proxy Êtest(γ) (blue dotted), and

• the empirical test MSE Etest(γ) (purple dotted).

The graphs below show the difference between the value of each objective curve once minimized
by γ against the increasing number of points n. Different plots demonstrate different effects according
to various values of p/n ratio as well as the density of an underlying true vector β.

Note that the grid of γ values from 10−7 to 105 through 0.1 increment was used for the optimization
in this experiment. For each objective curve, the value of the corresponding loss function has been
calculated for all values of γ, then the minimum has been chosen.

(a) p/n = 0.7, dens. 10% (b) p/n = 1.0, dens. 10% (c) p/n = 2.0, dens. 10%

(d) p/n = 0.7, dens. 50% (e) p/n = 1.0, dens. 50% (f) p/n = 2.0, dens. 50%

(g) p/n = 0.7, dens. 90% (h) p/n = 1.0, dens. 90% (i) p/n = 2.0, dens. 90%

Figure 4.5: Direct causal loss Lridge (3.13) (black), RMT-predicted Êtest (blue dashed) and empirical Etest (red dotted) versus γ
across nine synthetic regimes. Stars mark the minimisers of each curve.

We sweep nine synthetic regimes (Figure 4.5): three aspect ratios p/n ∈ {0.7, 1.0, 2.0} (left–to–right
columns) and three sparsity levels of b (10%, 50%, 90%; top–to–bottom rows). Each panel marks with
a star the γ that minimises the corresponding curve.

It also does seem prudent to look at the actual optimal γ values found through loss minimization.
Below is the graph of all such γ values.

4.1. Research on the original Experiment 27

(a) p/n = 0.7, dens. 10% (b) p/n = 1.0, dens. 10% (c) p/n = 2.0, dens. 10%

(d) p/n = 0.7, dens. 50% (e) p/n = 1.0, dens. 50% (f) p/n = 2.0, dens. 50%

(g) p/n = 0.7, dens. 90% (h) p/n = 1.0, dens. 90% (i) p/n = 2.0, dens. 90%

Figure 4.6: Optimal regularisation strength γ∗ as a function of sample size n for nine synthetic regimes. Each panel reports:
γEtest (blue), γEtest̂ (magenta), and the causal γRidge (red) that minimises Lridge. Log–log axes highlight stability or drift across

two orders of magnitude in n.

Sample–size sweep: predictive error vs. causal alignment. Figure 4.5 (error curves) and Figure
4.6 (corresponding γ∗’s) convey a consistent message across all nine regimes. First, the predictive
quantities Etest and Êtest track each other almost perfectly once n≳200, confirming the accuracy of the
RMT surrogate. Second – and crucial for our causality narrative – the causal loss Lridge (red curve)
behaves very differently: it remains one to three orders of magnitude lower than the predictive errors
for p/n < 1 and sparse b, and, even in the over-parameterised cases (p/n=1, 2), it grows far more
slowly.

The optimal regularisation strengths in Figure 4.6 expose why. The γ that minimises Lridge (red
×) sits consistently around 10−1 – 100 and varies little with n, whereas the predictive optima (blue
and magenta dots) collapse toward ∼ 10−5 as n grows. Put plainly, the model needs a substantially
stronger penalty to recover the ground-truth coefficients than it does to minimise prediction error. This
divergence widens with higher sparsity and larger aspect ratio, exactly the regimes where Figure 4.5
showed the largest causal gap. Hence, tuning γ onEtest (or its RMT proxy) is not merely sub-optimal for
causal recovery—it systematically pushes the solution toward a coefficient vector that mis-aligns with
the data-generating mechanism. Bridging this gap is therefore essential, motivating the gradient-based
correction developed in the next section.

4.2. Loss–Landscape Analysis 28

4.2. Loss–Landscape Analysis
The causal gap identified in Section 4.1.4 raises a natural question: how should the regularisation
strength γ be adjusted to minimise the alignment loss Lridge itself? In this section, we take a differential
view, deriving closed-form (or nearly closed-form) expressions for the gradient ∂Lridge/∂γ under the
synthetic law. We first inspect the oracle gradient – available when the true variance components
are known. And then introduce an empirical variance estimator that yields a practical, data-driven
surrogate.

Let us start first with deriving a closed-form expression for L(γ) as in 3.13

Note first that synthetic data generation law has two representations: Y = Σ⊤b + ϵ⊤ version, or
Y = b⊤Σ + ϵ). β regressor from 3.1 has then two equivalent representations according to a data-
generation law:

β̂ =
1

n
(
1

n
ΣΣ⊤ + γIN)−1ΣY⊤, and

β̂ =
1

n
Σ

(
1

n
Σ⊤Σ+ γIn

)−1

Y⊤.

We are going to proceed with the latter variant in our calculations. For the sake of simplicity, we are
also going to omit the normalizing factor ||b|| and assume L(γ) = ||β̂ − b||2F .

Then the derivation goes as follows:

L(γ) = ||β̂ − b||2F = (β̂ − b)⊤(β̂ − b) = β̂⊤β̂ − 2β̂⊤b+ b⊤b.

Uncovering the first term of that, we get:

β̂⊤β̂ =
1

n2
Y(

1

n
Σ⊤Σ+ γIn)

−1Σ⊤Σ(
1

n
Σ⊤Σ+ γIn)

−1Y⊤

Then, let us rearrange the terms a little and then add and subtract γIn from/to the central side. We thus
obtain:

β̂⊤β̂ =
1

n
Y(

1

n
Σ⊤Σ+ γIn)

−1((
1

n
Σ⊤Σ+ γIn)− γIn)(

1

n
Σ⊤Σ+ γIn)

−1Y⊤

=
1

n
Y(

1

n
Σ⊤Σ+ γIn)

−1(Y⊤ − γ(
1

n
Σ⊤Σ+ γIn)

−1Y⊤)

=
1

n
(Y(

1

n
Σ⊤Σ+ γIn)

−1Y⊤ − γY(
1

n
Σ⊤Σ+ γIn)

−2Y⊤))

=
1

n
Y(

1

n
Σ⊤Σ+ γIn)

−1Y⊤ − γ

n
Y(

1

n
Σ⊤Σ+ γIn)

−2Y⊤.

Therefore we can write down a full expression for L(γ) as such:

L(γ) = 1

n
Y(

1

n
Σ⊤Σ+ γIn)

−1Y⊤ − γ

n
Y(

1

n
Σ⊤Σ+ γIn)

−2Y⊤ − 2
1

n
Y(

1

n
Σ⊤Σ+ γIn)

−1Σ⊤b+ b⊤b.

4.2. Loss–Landscape Analysis 29

Next up, let us take the derivative of the expression above with respect to γ:

∂L(γ)
∂γ

= − 1

n
Y
(
1
nΣ

⊤Σ+ γIn
)−2

Y⊤ −
(

1
nY
(
1
nΣ

⊤Σ+ γIn
)−2

Y⊤ − 2γ 1
nY
(
1
nΣ

⊤Σ+ γIn
)−3

Y⊤
)

+ 2 1
nY
(
1
nΣ

⊤Σ+ γIn
)−2

Σ⊤b

= −2 1
nY
(
1
nΣ

⊤Σ+ γIn
)−2

Y⊤ + 2γ 1
nY
(
1
nΣ

⊤Σ+ γIn
)−3

Y⊤ + 2 1
nY
(
1
nΣ

⊤Σ+ γIn
)−2

Σ⊤b.

Setting the derivative to zero and multiplying by n/2 yields:

γ̂Y
(
1
nΣ

⊤Σ+ γ̂In
)−3

Y⊤ − Y
(
1
nΣ

⊤Σ+ γ̂In
)−2

Y⊤ + Y
(
1
nΣ

⊤Σ+ γ̂In
)−2

Σ⊤b = 0.

Among these terms the only unknown quantity is Σ⊤b, which under the synthetic law Y = Σ⊤b+ ε can
be rewritten as Y − ε.

In order to simplify further derivations, we will introduce some notation changes at this point. Note
that in the experimental setting used in the central part of this thesis, target output Y is of the size
1 × n, and therefore is a vector. We will refer to a vector-shaped target output variable as y onward.
Furthermore, let us introduce the following resolvent notation:

Q ≡ (
1

n
Σ⊤Σ+ γIn)

Considering the above notation, the expression for the loss function derivative takes the following
form:

∂L(γ)
∂γ̂

= γ̂yQ−3y⊤ − yQ−2y⊤ + yQ−2Σ⊤b

= γ̂yQ−3y⊤ − yQ−2y⊤ + yQ−2(y⊤ − ϵ⊤)

= γ̂yQ−3y⊤ − yQ−2y⊤ + yQ−2y⊤ − yQ−2ϵ⊤

= γ̂yQ−3y⊤ − yQ−2ϵ⊤ = 0.

Note that the only out-of-sample part of the expression above is yQ−2ϵ⊤, due to the unknown noise
parameter ϵ. To find the optimal parameter γ̂ we are to estimate that part. In order to do that, let us
take the expectation of that expression with respect to ϵ, taking into account that by definition, ϵ is a
mean-zero noise factor with some variance σ2:

E[
∂L(γ)
∂γ̂

|ϵ]

= γ̂yQ−3y⊤ − E[yQ−2ϵ⊤|ϵ]

= γ̂yQ−3y⊤ − E[(b⊤Σ+ ϵ)Q−2ϵ⊤|ϵ]

= γ̂yQ−3y⊤ − E[b⊤ΣQ−2ϵ⊤ + ϵQ−2ϵ⊤|ϵ]

= γ̂yQ−3y⊤ − E[ϵQ−2ϵ⊤|ϵ]

= γ̂yQ−3y⊤ − σ2tr(Q−2) = 0.

4.3. Robustness study 30

We thus obtain the ”oracle” expression for direct loss derivative. But in order to extract the optimal
parameter from the formula - we would need to know the real variance value. Therefore, the question
now is – how do we approximate the real out-of-sample noise variance σ2. The most straightforward
approach would be to consider the Residual Sum of Squares estimator:

σ̂2
RSS =

(y − ŷ)⊤(y − ŷ)

n
,

Where ŷ = β̂⊤Σ.

Hence, Loss-Landscape Analysis yields three expression forms for the loss function derivative:

1.
∂L(γ)
∂γ̂

= γ̂yQ−3y⊤ − yQ−2ϵ⊤ ←− real

2.
∂L(γ)
∂γ̂

∣∣∣∣
E[·|ϵ]

= γ̂yQ−3y⊤ − σ2tr(Q−2) ←− under expectation (the ”oracle”)

3.
∂L(γ)
∂γ̂

∣∣∣∣
σ̂

= γ̂yQ−3y⊤ − σ̂2
RSS tr(Q−2) ←− with estimated variance

In the following sections we are going to investigate the behavior of parameter γ found through the
oracle and the expression with the estimated variance, and compare that γ with the one found through
optimizing Êtrain and Êtest.

4.3. Robustness study
In this subsection we are going to conduct a series of experiments aimed at studying values of regu-
larization parameter γ related to optimizing each of the above-derived expressions and the behavior of
the direct loss computed using those values.

We begin the robustness analysis by asking a simple question: do the derivative–based losses
admit a (practical) minimum when measurement noise is present? Concretely, we plot the derivative
of the causal loss ∂L/∂γ as a function of γ for several noise levels and examine whether we can drive
it arbitrarily close to zero on a sufficiently fine logarithmic grid.

Derivative formulas. We consider two expressions (derived in the previous section) that differ only
in the variance term. We write them for γ > 0 and Q(γ) ≡

(
A⊤A+ γI

)
in the following way:

∂L(γ)
∂γ

∣∣∣∣
real variance

= γ y⊤Q(γ)−3y − σ2 tr
(
Q(γ)−2

)
. (4.1)

∂L(γ)
∂γ

∣∣∣∣
estimated variance

= γ y⊤Q(γ)−3y − σ̂2
RSS tr

(
Q(γ)−2

)
, (4.2)

where σ̂2
RSS denotes a data-dependent variance plug-in (estimated variance).

Notice that with slight abuse of notation we put a σ subscript in 4.1 instead of E[·|ϵ] for the sake of
simplicity. That meant to denote that the oracle derivative uses the true value of variance σ of the noise
term ε ∼ N (0, σ2I), The estimated variant replaces σ2 with the residual estimate σ̂2

RSS.

4.3. Robustness study 31

Experimental setup. We fix n = 200, p/n = 1.0, N/n = 0.8 and a 50%-dense b. For each standard
deviation level σ ∈ {1, 2, 3, 4, 5} we:

1. generate synthetic data Y = b⊤Σ+ ε with ε ∼ N (0, σ2I);

2. sweep γ on logarithmic grids 10−5 ≤ γ ≤ 103 (estimated) and 10−3 ≤ γ ≤ 102 (oracle);

3. evaluate (4.1) and (4.2) at each γ.

Operationally, we call a loss minimisable on the grid if there exists a grid point γ for which the (non-
negative) derivative is closest to zero, i.e. it minimizes

∣∣∂L/∂γ∣∣ (or equivalently attains the smallest
positive value).

Figure 4.7: Derivative of the causal loss under five noise levels. Left: RSS�based estimate on γ ∈ [10−5, 103]. Right: oracle
derivative on γ ∈ [10−3, 102] (both axes log–log).

Observation. Across all tested noise levels, the curves of ∂L/∂γ (both oracle and estimated) de-
crease with γ and admit a unique zero crossing within the displayed range. Consequently, with a
sufficiently fine logarithmic grid, we can always find a γ whose derivative value lies arbitrarily close to
zero, i.e. both losses are minimisable in the above grid sense. This justifies using the derivative root
(or its closest grid proxy) as a robust, noise-aware choice of the regulariser, which we will compare
directly against Êtrain and Êtest-based selections in the next subsection.

Fixed vs. nonfixed RSS in the derivative

We now specify two practical RSS–based plug-ins for (4.2). Let σ̂2
RSS(·) be the residual–variance esti-

mator as a function of the argument indicated in parentheses. Then:

fixed–RSS: ∂L
∂γ

∣∣∣∣
RSS, fixed

(γ; γrss) = γ y⊤Q(γ)−3y − σ̂2
RSS(γrss) tr

(
Q(γ)−2

)
, (4.3a)

nonfixed–RSS: ∂L
∂γ

∣∣∣∣
RSS, nonfixed

(γ) = γ y⊤Q(γ)−3y − σ̂2
RSS(γ) tr

(
Q(γ)−2

)
. (4.3b)

Both (4.3a)-(4.3b) are concrete instances of the estimated-variance derivative (4.2), differing only in
whether the RSS variance is evaluated at a fixed reference γrss (“fixed–RSS”) or at the current γ
(“nonfixed–RSS”).

where Q(γ) = 1
nΣ

⊤Σ + γIn. In the fixed variant, the variance is computed once at a reference
value γrss (here we take γrss = argminγ Êtest(γ)), and then held fixed while we scan γ in the derivative.
In the nonfixed variant, the same γ used in the derivative also enters the RSS computation, effectively
defining a self-consistent, γ-dependent variance plug-in.

4.3. Robustness study 32

Experimental setting. We use: n = 100, p/n = 1.0, N/n = 0.8, a 50%–dense b, noise levels
σ ∈ {1, 2, . . . , 14}, and a logarithmic grid γ ∈ [10−6, 103] with step ∆log10 γ = 0.01. For robustness, all
curves are averaged over six independent runs. At each noise level we select four candidates: γÊtrain

,
γÊtest

, γoracle (root of the oracle derivative), and γRSS (root of the corresponding RSS derivative). We
then evaluate Lridge at each selected γ.

(a) Lridge at the selected γ vs. noise (fixed-RSS). (b) Selected γ vs. noise (fixed-RSS).

Figure 4.8: Fixed-RSS variant: variance σ̂2
RSS(γrss) computed at γrss = argminγ Êtest(γ), then held constant while scanning

γ in the derivative. Points are averages over six runs.

Fixed-RSS observations (Figure 4.8). Across noise levels, the causal selections (γoracle, γRSS) yield
Lridge that remains near O(1) and changes smoothly with noise, while the prediction–driven selections
(γÊtrain

, γÊtest
) produce larger and more volatile Lridge. The corresponding γ values show that causal

tuning prefers substantially stronger regularisation.

(a) Lridge at the selected γ vs. noise (nonfixed-RSS). (b) Selected γ vs. noise (nonfixed-RSS).

Figure 4.9: Nonfixed-RSS variant: variance σ̂2
RSS(γ) recomputed at each grid point and fed back into the derivative. Points are

averages over six runs.

Nonfixed-RSS observations (Figure 4.9). Allowing the variance estimate to follow the scanned γ
produces a self-consistent root and, in several noise regimes, an even lower Lridge than fixed-RSS while
retaining the same qualitative behaviour (stable loss and stronger γ). Both variants confirm the central
robustness claim of this section: a causally aligned regulariser can be obtained for a wide range of
noise levels, and it consistently outperforms predictive selections in direct parameter recovery.

4.4. Convergence Study 33

4.4. Convergence Study
The robustness results above showed that a causally aligned regulariser can be recovered across
a wide range of noise levels. We now ask a complementary question: how do the corresponding
choices of γ and their achieved alignment error behave as the sample size n grows? In other words,
do the derivative-based prescriptions stabilise (and agree) as we move toward the high–dimensional
asymptotic?

Experimental set-up. We fix the aspect ratios and ground-truth sparsity and sweep n, such that:

p/n = 1.0, N/n = 0.8, density(b) = 50%, σ = 8.

As usual, for each n ∈ {100, 200, 300, 400, 500} we generate synthetic data Y = b⊤Σ + ε and compute
four candidates on the same logarithmic grid γ ∈ [10−6, 103] with step ∆log10 γ = 0.01: (i) γÊtrain

min-
imising Êtrain, (ii) γÊtest

minimising Êtest, (iii) γoracle as the root of the oracle derivative ∂L/∂γ in (4.1), and
(iv) γestVar as the root of the empirical variance version (4.2). To smooth finite-sample fluctuations we
average every curve over ten independent repeats.2 For convergence of the alignment itself we report
Lridge(γ) evaluated at each selected γ.

Figure 4.10: Behaviour of the regularization parameter and direct loss expression with growing sample size n (averaged over
10 runs; p/n = 1.0, N/n = 0.8, σ = 8, 50% density of b). Left panel: the four γ selections γ

Êtrain
, γ

Êtest
, γoracle, and γestVar.

Right panel: direct alignment loss Lridge at γoracle and γestVar.

Findings

• Derivative-based gap shrinks with n. As n increases from 100 to 500, the two causal selections
move closer: γoracle remains in the high hundreds (about 7×102-9×102), while γestVar rises from
roughly 2×102 toward 5×102-6×102, narrowing the gap. In contrast, the predictive optima γÊtrain
and γÊtest

stay near zero (orders of magnitude smaller). Reading the log axis: the tick labels show
the actual γ values (spacing is logarithmic only). Thus a point around “600” means γ ≈ 6 × 102;
“850” means γ ≈ 8.5× 102 (not 10600, etc.).

• Alignment gap shrinkswith n. The right panel of Figure 4.10 showsLridge(γoracle) andLridge(γestVar)
both decreasing as n grows, and their difference narrows–clear finite-sample convergence be-
haviour.

• Empirical edge persists. Across the inspected n, the estVar choice attains Lridge that is consis-
tently comparable to, and often lower than, the oracle – echoing the advantage observed in the
robustness study.

2Runs were executed in batches on the cluster, which is why the displayed grid of n stops at 500.

4.5. Real-Data Validation: Fashion–MNIST 34

Takeaway (revised). Due to runtime limits on the TU Delft cloud cluster and averaging over repeated
runs, we report n ∈ {100, 200, 300, 400, 500}. This range is too short to prove asymptotic convergence,
but Figure 4.10 already exhibits stabilisation of the derivative-based γ in the 102-103 decade and a
steady reduction of the alignment error with n. We fixed the noise level to σ = 8 (no special theoretical
status); this choice was guided empirically by earlier experiments showing that for σ ≳ 6-7, the estVar
rule tracks or slightly improves upon the oracle. Within these constraints, the evidence supports the
practical conclusion: the data-driven derivative selection γestVar is stable in n, operates on the same
scale as the oracle, and delivers improving Lridge as sample size grows, while predictive selections
remain far smaller and misaligned with the causal objective.

4.5. Real-Data Validation: Fashion–MNIST
We validate the proposed estimator on real images using a two-class subset of Fashion-MNIST (labels
1 vs. 2) under the same ReLU random-features ridge classification pipeline and preprocessing used
throughout the paper, therefore, mimicking the author’s experiment. The study proceeds in two steps.
First, we assess predictive robustness in a head-to-head comparison with the Coulliet Etest calibra-
tion: over 50 Monte–Carlo runs (new random feature matrices W each run), we train both methods on
identical train/test splits and aggregate accuracies and confusion matrices to verify that our approach
does not underperform Coulliet’s method on average. Second, holding the baseline split fixed, we
conduct a controlled perturbation analysis: we introduce localized edits to the training inputs (single
pixel and square patch brightness shifts of varying sizes), refit both models on the perturbed data using
their respective γ selection rules, and compare the resulting coefficient vectors β against their baseline
counterparts learned on the original data. This design lets us quantify not only changes in test perfor-
mance but also how each method’s inferred importance patternmoves under perturbations (stability vs.
reactivity and concentration), providing empirical evidence about the interpretability and robustness of
the learned representations.

4.5.1. Robustness analysis - fashion MNIST

We begin by conducting a robustness study to verify that our proposed method performs at least as well
as the Coulliet’s Etest calibration in terms of predictive accuracy. Specifically, we run 50 Monte-Carlo
trials on the two-class Fashion MNIST split under identical preprocessing and ReLU random-features
ridge settings, aggregate accuracies and confusion matrices, and compare the two methods head-to-
head.

Setting and data. We evaluate the proposed estimator on a two-class subset of Fashion MNIST
(labels 1 vs. 2), cast as a binary classification problem with labels y ∈ {−1,+1}. Images are 28 × 28;
we vectorize each image to x ∈ Rp with p = 784. We adopt the same random-features ridge pipeline
used throughout the paper, with a ReLU nonlinearity:

σ(t) = max{t, 0} ,

and the correspondingReLU (first-order arc-cosine) kernelK(·, ·) used to build the deterministic-equivalent
criterion.

Data Preprocessing. Before training, the Fashion-MNIST data are transformed to match the theo-
retical assumptions of the random-features ridge model and ensure consistent global scaling across
Monte-Carlo runs. The procedure proceeds as follows.

In terms of class selection and vectorization, we retain only two classes (labels 1 and 2), correspond-
ing to a binary classification task with y ∈ {−1,+1}. Each 28 × 28 grayscale image is vectorized into
x ∈ Rp, p = 784. Let X = [x1, . . . , xM] ∈ Rp×M denote the full dataset of all selected samples.

Then, we perform global normalization. All pixel intensities are first scaled to the unit interval by

4.5. Real-Data Validation: Fashion–MNIST 35

dividing by the global maximum
X ← X

max(X)
.

This ensures all entries of X lie in [0, 1].

We then perform a global centering and rescaling step so that the average squared norm of the
centered vectors equals p. Let

µg =
1

M

M∑
i=1

xi, Xc = X − µg1
⊤
M ,

and define the global scaling factor

sg =

√
p√

1
M

∑M
i=1 ‖xi − µg‖22

.

The globally standardized data are then
Xstd = sgXc.

After global standardization, we perform a second normalization across the pooled subset of the
two chosen classes to ensure comparability of within-class magnitudes. Let

X(1), X(2) ∈ Rp×Mj

denote the subsets for classes 1 and 2, respectively. We form their pooled matrix

Xpool = [X(1) X(2)] ,

and compute

µp =
1

M1 +M2

∑
i

x(pool)i , sp =

√
p√

1
M1+M2

∑
i ‖x

(pool)
i − µp‖22

.

Each class subset is then re-centered and rescaled via

X(j) ← sp (X
(j) − µp) , j ∈ {1, 2} .

Next step is the train–test partitioning. With a prescribed aspect ratio c1 = p/n and training fraction
ρtr, the number of training and test samples per class are

n =

⌊
p

c1

⌋
, nte =

⌊
n
1− ρtr
ρtr

⌋
.

For each class j, a random permutation πj (with fixed seed) selects disjoint subsets for training and
test:

X
(j)
tr = X

(j)
[:, πj(1:nj)]

, X
(j)
te = X

(j)
[:, πj(nj+1:nj+nte,j)]

.

The final training and test matrices are concatenations

Xtr = [X
(1)
tr X

(2)
tr], Xte = [X

(1)
te X

(2)
te] ,

with corresponding binary label vectors

ytr =

[
−1n1

+1n2

]
, yte =

[
−1nte,1

+1nte,2

]
.

In summary, this preprocessing pipeline enforces deterministic centering and scaling of all images,
guarantees E‖xi‖22 ≈ p, and produces balanced train–test splits under fixed seeds. The resulting
(Xtr, Xte, ytr, yte) pairs form the standardized inputs to the ReLU random-features ridge classifier used
throughout the validation experiments.

4.5. Real-Data Validation: Fashion–MNIST 36

Model and hyperparameters. Similarly to the Coulliet’s experiment We consider a random-features
ridge classifier with hidden width (inner neuron layer) N = bc2ne and i.i.d. Gaussian features W ∈
RN×p, Wij ∼ N (0, 1). Given inputs X ∈ Rp×n and labels y ∈ {−1,+1}n, let

Σ = σ(WX)

with σ(t) = max{t, 0} (ReLU). For any ridge parameter γ > 0, the coefficient vector is obtained in
closed form from the standard ridge expression (see (3.1)):

β̂(γ) as in (3.1).

Prediction uses the score f(x) = Σ(x)⊤β̂(γ) and the decision rule sign(f(x)). The choice of γ is
determined by the calibration rules described next; β̂ is then formed by plugging that γ into (3.1).

Coulliet calibration and our direct calibration. We compare two one–parameter selection rules for
γ evaluated on the same logarithmic grid γ ∈ {10t : t ∈ [−6, 4], ∆t = 0.005}:

• Coulliet (Etest) calibration. We select

γC = argmin
γ

Etest(γ),

where Etest(γ) is the deterministic–equivalent test proxy from the theory (cf. Eq. (3.12), which
depends on the fixed–point δ(γ)).

• Direct calibration (nonfixed RSS; ours). We select

γD = argmin
γ

∣∣∂γL(RSS)
direct (γ)

∣∣,
whereL(RSS)

direct (γ) is the nonfixedRSS–based direct loss from our loss–landscape analysis (Eq. (4.3b)).
In other words, we pick the grid point whose derivative magnitude is minimal.

In both cases, once γ is chosen (either γC or γD), we compute β̂ via the closed–form ridge expres-
sion (3.1) and classify by sign(f).

Monte–Carlo protocol. We run 50 Monte–Carlo trials to assess predictive robustness. The train-
ing/test splits (Xtrain, Xtest) and labels are held fixed across trials. The Coulliet selection γC is computed
once from (Xtrain, Xtest) via Etest(γ) and is common to all trials. For each trial r = 1, . . . , 50, we draw an
independent W (r), recompute the direct selection γ

(r)
D on the grid (the direct criterion depends on W),

form
β̂C = β̂(γC), β̂

(r)
D = β̂(γ

(r)
D),

and evaluate train/test predictions by thresholding at zero. We record per–run accuracies and confusion
vectors (TP,TN,FP,FN), and we report run–wise average accuracies together with confusion totals
summed over the 50 runs (normalized by 50 when per–run rates are required).

Concrete hyperparameters (this experiment).

activation = ReLU, (L−, L+) = (1, 2), c1 =
p

n
= 1.0, c2 =

N

n
= 1.0, train fraction τ = 0.8,

γ grid: γ ∈ {10t : t ∈ [−6, 4], ∆t = 0.005}.
Here c1 sets n ≈ p to retain high-dimensional setting, and c2 fixes N ≈ n. The test proxy Etest(γ) uses
the ReLU (first–order arc–cosine) kernel as in the theory section, through Eq. (3.12); our direct rule
uses Eq. (4.3b). In all cases, the final coefficients are obtained from the ridge closed form (3.1).

Outputs. For transparency and downstream analysis, we store (i) the per–run accuracy arrays for
both methods on train and test, (ii) the summed confusion counts across runs, and (iii) the per–run direct
selections {γ(r)

D }50r=1 together with the common Coulliet γC, enabling paired head–to–head statistical
comparisons and dispersion summaries across the 50 trials.

4.5. Real-Data Validation: Fashion–MNIST 37

Predictive results on Fashion–MNIST. Under the ReLU random–features ridge model with p = n =
N = 784 and 50Monte–Carlo trials, both calibration rules achieve near–perfect prediction. The Coulliet
selection (via Etest) yields γC =70.79, whereas our direct rule (nonfixed RSS derivative) concentrates
at a larger scale (median γD ≈ 295.12). Averaged across runs, test accuracy is 0.9956 for the direct
rule versus 0.9930 for Coulliet; train accuracy is 0.9943 (direct) versus 1.0000 (Coulliet). The test–set
confusion totals (summed over runs) are reported below.

Coulliet (γC) Direct (γD)

Positive Negative Positive Negative

True 4833 4898 4861 4896
False 2 67 4 39

Accuracy 0.9930 0.9956

Table 4.1: Test confusion matrices (totals over 50 Monte–Carlo trials) for the two calibration methods. Entries correspond to
counts of true and false predictions across all runs.

Discussion of findings. (i) Both methods are highly accurate; the direct calibration attains a small but
consistent improvement on test (+0.27 percentage points). (ii) The gain is driven primarily by fewer
false negatives (FN: 67→ 39), with a negligible increase in false positives (FP: 2→ 4). This translates
into higher recall for the positive class under our rule. (iii) The larger γ selected by the direct method
implies stronger regularization; correspondingly, its train accuracy is slightly below perfect (0.9943 vs.
1.0000 for Coulliet), yet generalizes marginally better on test-consistent with reduced overfitting. (iv)
Overall, the direct rule matches or improves predictive performance while selecting a regularization
scale aligned with the loss–landscape analysis, reinforcing its practical viability alongside Coulliet’s
Etest calibration.

4.5.2. Perturbation analysis: Fashion--MNIST

Having established that our direct-loss calibration for the regularization parameter γ attains accuracy
comparable to Coulliet’s method, we now examine the behaviour and structure of the learned coeffi-
cient vector β. We probe the stability vs. reactivity of the two calibration rules under localized input edits.
Starting from a fixed train/test split on the Fashion–MNIST 1 vs. 2 task and a fixed random-features ma-
trix W , we apply controlled brightness shifts to selected pixels (singletons and square patches) in the
training inputs only, refit each method with its own γ-selection rule, and compare the learned coefficient
vectors to their baseline counterparts. This design isolates how each rule’s inferred importance pattern
moves under small, spatially localized changes. The test data remain unchanged throughout the anal-
ysis, ensuring that any observed differences stem solely from modifications in the training set. This
allows us to attribute changes in the learned coefficients to the learning dynamics of each calibration
rule, rather than to shifts in the evaluation distribution.

Baseline. With activation σ(t) = max{t, 0} (ReLU), aspect ratios c1 = p/n = 1.0 and c2 = N/n = 1.0
(p = n = N = 784), and train fraction τ = 0.8, we construct

Σ = σ(WXtr), Σ(x) = σ(Wx),

just like before, and then select γ by two one–dimensional rules evaluated on the common logarithmic
grid

γ ∈
{
10t : t ∈ [−6, 3.5], ∆t = 0.005

}
.

Coulliet’s calibration picks

γC = argmin
γ

Etest(γ) (deterministic equivalent; cf. Eq. (3.12)),

while our direct rule picks

γD = argmin
γ

∣∣∂γL(RSS)
direct (γ)

∣∣ (nonfixed RSS; cf. Eq. (4.3b)).

4.5. Real-Data Validation: Fashion–MNIST 38

Given either γ, the coefficients are formed by the closed–form ridge expression (Eq. (3.1)), yielding
baseline vectors

βbase
C = β̂(γC), βbase

D = β̂(γD).

Perturbations (training-only, localized). LetXtr ∈ Rp×n andXte ∈ Rp×nte denote the standardized
training and test matrices, respectively, constructed as described in Section 4.5.1. Recall that in our
controlled high-dimensional setting, we fix p = n = 784 and nte ≈ 196, corresponding to 784 synthetic
training and 196 test images (each of size 28×28) drawn from the two selected Fashion-MNIST classes.
For a chosen subset of feature indices S ⊂ {1, . . . , p}, a perturbation magnitude ∆ > 0, and a sign
s ∈ {−1,+1}, we define a training-only perturbation

X ′
tr = Xtr + s∆1S 1⊤

n , X ′
te = Xte,

where 1S ∈ Rp is an indicator vector equal to 1 on S and 0 elsewhere. The test matrix Xte remains
unaltered, ensuring that performance differences can be attributed solely to modifications of the training
set and not to shifts in the evaluation distribution.

We take ∆ = 0.5 in the standardized feature space, which corresponds to a moderate brightness
adjustment in the original image domain. The perturbation therefore increases or decreases the bright-
ness of selected pixels across all training images (one entire pixel column of Xtr) while leaving the test
images intact. The following localized perturbation scenarios are considered:

• Single pixel: |S| = 1 (six random pixel locations; random sign).

• 5× 5 patch: |S| = 25 (six random top-left locations; random sign).

• 10× 10 patch: |S| = 100 (six random locations; random sign).

• 20 × 20 patch: |S| = 400 (six random locations; random sign; only if the 28 × 28 image size
permits).

Each perturbation thus modifies the brightness of either a single pixel or a contiguous block of pixels
across all n = 784 training images, allowing us to evaluate how small, spatially localized changes in
the training data affect the learned coefficients.

For each perturbed training matrix X ′
tr we recompute the two γ’s on the same grid:

γ
(scen)
C = argmin

γ
E

(scen)

test (γ), γ
(scen)
D = argmin

γ

∣∣∂γL(RSS)
direct (γ;X

′
tr)
∣∣,

where E
(scen)

test uses kernels built from (X ′
tr, Xte) and the direct derivative is evaluated with the same

fixed W but the edited X ′
tr. We then form

β
(scen)
C = β̂

(
γ
(scen)
C

)
, β

(scen)
D = β̂

(
γ
(scen)
D

)
,

and evaluate train/test predictions on (X ′
tr, Xte) by thresholding at zero.

For each scenario we store (γ
(scen)
C , γ

(scen)
D), the perturbed coefficients (β(scen)

C , β
(scen)
D), and the cor-

responding train/test metrics. In the analysis, we will compare each perturbed vector to its baseline
counterpart to quantify how concentrated or diffuse the response is under localized edits, and whether
the direct rule’s stronger regularization yields more stable importance patterns than the Coulliet selec-
tion.

Coefficient sensitivity under localized training edits. For each perturbation scenario s, we com-
pare the perturbed coefficients β(s) to the baseline coefficients βbase via the relative squared ℓ2–deviation

∆ℓ2(s) = 100×
∥∥β(s) − βbase

∥∥2
2∥∥βbase

∥∥2
2

[%].

4.5. Real-Data Validation: Fashion–MNIST 39

Figure 4.11: Relative ℓ2 change of the learned coefficients under training-only, localized brightness edits. Left: Coulliet beta.
Right: Direct beta. Scenarios are sorted by ∆ℓ2 ; colors indicate perturbation type.

We report ∆ℓ2(s) for all scenarios and for both calibration rules (Coulliet and Direct), sorting scenarios
along the horizontal axis by increasing∆ℓ2 . Markers are color–coded by perturbation type (single pixel,
5× 5, 10× 10, 20× 20). For readability, extreme outliers (top 1% of ∆ℓ2 across all panels) are omitted
from the plot; these correspond to boundary selections of γ and are discussed in the text.

Main takeaway Figure 4.11 summarizes the relative change of the learned coefficients under local-
ized perturbations of the training data. Each marker corresponds to a single perturbation scenario,
with the vertical axis showing the relative ℓ2–distance between the perturbed and baseline coefficients.
Overall, Coulliet’s calibration exhibits substantially larger coefficient shifts than the direct-loss rule, par-
ticularly for larger (10 × 10 and 20 × 20) patch edits. Quantitatively, the top Coulliet scenarios reach
relative changes between 25% and 50%, with one extreme case exceeding 2.9 × 106% due to an in-
stability in γ-selection near the boundary of the grid. In contrast, the corresponding top-five direct-loss
scenarios remain in the range of roughly 7-10%. These results confirm that the direct-loss method pro-
duces significantly more stable coefficient vectors under identical data perturbations, suggesting that
its calibration rule imposes a smoother and more robust regularization response. The extreme outlier
in the Coulliet set (the 20×20 patch with a negative brightness shift) will be examined separately below
to illustrate the mechanism behind such a large deviation.

Overlay of baseline and perturbed coefficients by perturbation type. To better understand how
each calibration rule reacts to localized changes in the training data, we visualize the learned coefficient
vectors β before and after perturbation. For each perturbation type (single pixel, 5 × 5, 10 × 10, and
20× 20 patch), Figure 4.12 compares the baseline coefficients β(base) with their perturbed counterparts
β(s). Each subplot shows the coefficients sorted by their baseline order (ascending β(base) values),
allowing us to observe how localized brightness edits in the training set shift the learned importance
pattern across the feature dimension. The left column corresponds to Coulliet’s γ-selection rule, and
the right column to our direct-loss calibration.

The blue line represents the baseline β(base), while the orange line shows the coefficients obtained
after the perturbation. Higher transparency of the orange curve allows the blue baseline to remain
visible beneath it, highlighting where the perturbed β departs most from its reference. Together, these
overlays provide an intuitive measure of model stability under input perturbations.

While Figure 4.12 allows direct inspection of how the learned coefficients shift along the feature
index, the magnitude of those changes can sometimes be obscured when small and large coefficients
coexist on the same scale. To make these deviations more apparent, we sort the coefficients by their
absolute baseline magnitude in Figure 4.13, which emphasizes where the most influential features in
the baseline model experience the strongest or weakest reweighting after perturbation.

4.5. Real-Data Validation: Fashion–MNIST 40

Coulliet Direct

Single-pixel perturbation

5× 5 patch perturbation

10× 10 patch perturbation

20× 20 patch perturbation

Figure 4.12: Overlay of baseline and perturbed coefficient vectors β for four representative perturbation types. Each row shows
a two-panel image with Coulliet (left) and Direct (right). Blue: baseline coefficients β(base); orange: perturbed coefficients β(s).

4.5. Real-Data Validation: Fashion–MNIST 41

Coulliet Direct

Single-pixel perturbation

5× 5 patch perturbation

10× 10 patch perturbation

20× 20 patch perturbation

Figure 4.13: Same as Figure 4.12, but with coefficients sorted by their absolute baseline magnitude |β(base)|. Sorting by
absolute value highlights how perturbations affect the largest-magnitude coefficients most strongly.

4.5. Real-Data Validation: Fashion–MNIST 42

Extreme 20× 20 patch: baseline vs. perturbed β (features sorted by baseline order).

Figure 4.14: Stress case where Coulliet’s calibration collapses to the grid floor (γ(scen)
C ≈ 10−6), while the direct-loss rule

stays in a moderate range. Note: the two panels use different vertical scales (we zoom the Direct panel to reveal its small
variation). The blue baseline curves are essentially identical across panels; the visual discrepancy is solely due to the differing

y-axis ranges.

Focused overlays on the most influential coefficients. Complementing the full–vector overlays,
we zoom in on the extreme tails of the baseline coefficient distribution. For each perturbation type
(single pixel, 5 × 5, 10 × 10, 20 × 20), we select the 100 coefficients from a chosen tail of the baseline
vector and overlay the corresponding segments of β(base) and β(s):

Itail =

{
indices of the 100 smallest entries of β(base), if tail = bottom,

indices of the 100 largest entries of β(base) (ordered by |β(base)|), if tail = top.

Plotting
{
β
(base)
i , β

(s)
i

}
i∈Itail

against the rank within the selected tail emphasizes how the most neg-
ative/most positive baseline coefficients are reweighted by training perturbations. As before, the left
column corresponds to Coulliet’s calibration and the right to our direct-loss rule.

You can see the tail baseline-vs-scenario plots in figures 4.15 and 4.16 for top and bottom tail
respectively.

Interpretation of tail-slice overlays. Examining the coefficient tails in Figures 4.15 and 4.16 reveals
a clear structural difference between the two calibration rules. For Coulliet’s method, the perturbations
tend to amplify the absolute magnitude of the coefficients: in the bottom tail, the perturbed β’s are
on average less negative (shifted upward), while in the top tail they are systematically lower than the
baseline curve. This pattern indicates that Coulliet’s calibration adjusts γ in a way that consistently
rebalances the relative strength of extreme coefficients under localized training edits.

By contrast, the proposed direct-loss rule producesmarkedlymore stable coefficient profiles. Across
all perturbation types and both tails, the perturbed β(s) curves remain close to their baseline β(base) coun-
terparts, with substantially reduced variance and no systematic bias in either direction. This suggests
that the direct-loss calibration maintains a more consistent scaling of the learned weights and exhibits
stronger robustness to localized input modifications.

A stress case where Coulliet’s calibration collapses to vanishing regularization. To illustrate
the behaviour behind the largest relative change omitted in the scatter 4.11 (for plotting purposes),
we examine a 20 × 20 patch scenario that produces an extreme deviation for Coulliet’s rule (top entry
in the “Top-5 Coulliet changes”). In this instance the Coulliet grid search selects a near-zero penalty,
γ
(scen)
C ≈ 10−6 (i.e., ∆log10 γ � 0 relative to the baseline), effectively turning off regularization. The
direct-loss rule, by contrast, remains in a moderate range. We display two overlays of the coefficient
vectors-unsorted (by the baseline order) and sorted by |β(base)| to make the pattern visible under both
views.

4.5. Real-Data Validation: Fashion–MNIST 43

What happens and why? Two effects jointly explain the blow-up in the relative-change metric for
Coulliet. (i) Tiny denominator: in this scenario the baseline Coulliet vector has a very small norm,

100 · ‖β
(scen) − β(base)‖22
‖β(base)‖22

is therefore magnified even for moderate absolute differences. (ii) Near-zero regularization with rank
deficiency: when γ → 0, the ridge solution becomes highly sensitive to small singular directions of
A = Σ/

√
n; with rank(A) = r < n, the closed form adds a large null-space component (scaling like 1/γ).

Although this component is annihilated by Σ (so many coordinates stay near zero in the overlay), the
span component can inflate along ill-conditioned directions, yielding a large relative change. In contrast,
the direct-loss rule keeps γ away from the boundary, producing a smoother, better-conditioned update
with much smaller variance and no catastrophic swing.

For reference, below are the top 5 scenario feature vector changes for both Coulliet and Direct
method:

Largest relative changes.

Coulliet: top-5 100·∥β(s) − βbase∥22/∥βbase∥22 Direct: top-5 100·∥β(s) − βbase∥22/∥βbase∥22
tag type change [%] tag type change [%]

patch20_04_r7c3_d+0.50sgn-1 patch20 2,977,344.967 patch20_03_r0c0_d+0.50sgn1 patch20 10.275
patch20_05_r0c5_d+0.50sgn1 patch20 48.425 patch20_06_r0c8_d+0.50sgn1 patch20 8.966
patch20_06_r0c8_d+0.50sgn1 patch20 40.770 patch20_02_r1c2_d+0.50sgn1 patch20 8.384
patch20_02_r1c2_d+0.50sgn1 patch20 33.395 patch20_04_r7c3_d+0.50sgn-1 patch20 7.703
patch20_03_r0c0_d+0.50sgn1 patch20 25.682 patch20_05_r0c5_d+0.50sgn1 patch20 7.404

The Coulliet side shows markedly larger relative deviations; the first row is the outlier we analyze in the section above.

4.5. Real-Data Validation: Fashion–MNIST 44

Coulliet Direct

Single-pixel perturbation (top-K slice)

5× 5 patch (top-K slice)

10× 10 patch (top-K slice)

20× 20 patch (top-K slice)

Figure 4.15: Top-tail-slice overlays of baseline vs. perturbed coefficients (top 100 beta values). Each row is a two-panel image
with Coulliet (left) and Direct (right); the horizontal axis is the rank within the selected tail.

4.5. Real-Data Validation: Fashion–MNIST 45

Coulliet Direct

Single-pixel perturbation (top-K slice)

5× 5 patch (top-K slice)

10× 10 patch (top-K slice)

20× 20 patch (top-K slice)

Figure 4.16: Bottom-tail-slice overlays of baseline vs. perturbed coefficients (bottom 100 beta values). Each row is a
two-panel image with Coulliet (left) and Direct (right); the horizontal axis is the rank within the selected tail.

5
Discussion

The preceding chapters have established both the theoretical formulation and empirical validation of
the proposed derivative-based regularization parameter selection rule for ridge regression in random-
feature neural networks. Having presented the numerical and real-data results in Chapter 4, we now
turn to a broader discussion of their implications.

This chapter aims to synthesize the key findings, interpret their meaning in light of the high - ridge
regression framework. We further consider why the observed stability of the learned feature vectors β
constitutes a practical advantage, in which contexts such stability may be desirable, and how it relates
to interpretability and downstream reusability of the model. The discussion concludes with reflections
on limitations, potential application domains, and directions for future research.

5.1. Summary of Findings
Let us start off by providing a short recap of the main experiments and their key findings once more.

5.1.1. Recap

The empirical evaluation conducted in Section 4.5 (Real Data Validation: Fashion-MNIST) provides a
strong indication that the proposed derivative-based regularization parameter selection rule performs
on par with, and in several aspects slightly better than, the deterministic-equivalent calibration method
of Couillet [6].

On the binary Fashion-MNIST experiment, both calibration rules achieved nearly identical predic-
tive performance, with test accuracies exceeding 99%. The derivative-based rule, however, yielded
a marginally higher median test accuracy (99.56% vs. 99.30% for Couillet’s rule) while exhibiting a re-
duced number of false negatives. This points to a slightly stronger recall and suggests that the proposed
method does not sacrifice predictive power despite introducing an alternative criterion for γ selection.

More importantly, the perturbation analysis revealed a qualitative difference between the two ap-
proaches. Under small, controlled perturbations of the input data, models trained using the derivative-
based calibration exhibited a notably more stable feature vector β. In other words, the learned re-
gression coefficients demonstrated lower sensitivity to localized variations in the training data, while
remaining responsive to semantically meaningful structure within the input images. This stability im-
plies a form of regularization that constrains model variance without suppressing relevant discriminative
information.

46

5.1. Summary of Findings 47

Together, these findings highlight two key outcomes. First, the proposed method maintains compet-
itive accuracy in a realistic, high-dimensional setting. Second, and perhaps more significantly, it yields
solutions that are less sensitive to data perturbations, producing feature representations that are both
robust and interpretable. This combination - predictive equivalence and enhanced stability - forms the
basis for the broader discussion of the method’s advantages, potential applications, and implications
that follows in the subsequent sections.

5.1.2. Interpretations of the Results

The comparative analysis between the two calibration rules - Couillet’s deterministic-equivalent criterion
and the proposed derivative-based rule - reveals an interesting distinction not in terms of predictive
performance, but in the qualitative behavior of the learned model parameters. Specifically, while both
methods converge to similar predictive accuracies, the derivative-based direct loss calibration produces
a more stable and consistent feature vector β under data perturbations.

This stability can be interpreted as a reduction in the variance component of the estimator. In
high-dimensional ridge regression, the regularization parameter γ serves to balance the bias-variance
trade-off: smaller values of γ allow themodel to fit the data more closely but increase sensitivity to noise,
whereas larger values enforce smoother, more regularized solutions. The proposed derivative-based
rule tends to select slightly larger γ values compared to Couillet’s approach (e.g., γD ≈ 295 versus
γC ≈ 71 in the conducted Fashion-MNIST experiment), leading to a coefficient vector that varies less
sharply with changes in the input data. Consequently, the resulting model exhibits reduced parameter
variance, thereby enhancing robustness to perturbations and numerical instabilities without compro-
mising generalization.

The perturbation experiments conducted in subsection 4.5.2 support this interpretation. When small
localized changes were introduced to the training samples, the model calibrated using the derivative-
based rule showed less adjustments in β, whereas Couillet’s calibration produced noticeably more
fluctuation in the same coefficients. Yet, this increased stability did not translate into underfitting: the
model remained sensitive to meaningful regions of the input space (for instance, the discriminative
edges in the Fashion-MNIST digits) and maintained comparable test performance. This suggests that
the proposed rule enforces a selective form of regularization - one that suppresses sensitivity to noise
and irrelevant variations while preserving responsiveness to the underlying signal. Nevertheless, it
is important to take into account a rather minimalistic limited-complexity setting of the experiment -
performing a ReLU-activated binary classification using ridge regression on fashion-MNIST dataset.

In summary, the results suggest that the main distinction between the two calibration strategies
lies not in predictive accuracy but in their regularization dynamics. The derivative-based rule biases
the estimator toward smoother, more reproducible solutions-a property that may become particularly
advantageous in high-dimensional problems where interpretability, reproducibility, or robustness to
measurement noise are of primary concern.

5.2. Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule 48

5.2. Advantages of the Proposed Derivative-Based Calibration over
Couillet’s Rule

In this subsection wewill discuss the benefits that amore stable learned feature vector gives us, settings
in which these benefits might be crucial and any potential real-world applications of the developed
method.

5.2.1. Conceptual Advantages - Theory

Interpretability. In the context of random-feature ridge regression, ”interpretability” should not be un-
derstood in the classical sense of direct feature attribution, since the randommapping σ(WX) obscures
the original input-space coordinates. Instead, interpretability arises in a relative sense: a model whose
coefficients remain consistent under repeated experiments or mild perturbations can be more reliably
analyzed, visualized, and reasoned about.

A stable β implies that the model’s internal representation - the effective filter applied to the random
features - is not an artifact of random initialization or particular noise realizations. This consistency
makes the model’s decision mechanism more transparent and trustworthy: one can meaningfully in-
spect the average structure of β across runs, or study which directions in the feature space are sys-
tematically emphasized. By contrast, if β changes substantially with each retraining, any attempt to
interpret or visualize the learned representation becomes unreliable. Thus, stability becomes a prereq-
uisite for interpretability in this high-dimensional random-feature setting.

Reusability of the Learned Coefficients. A related advantage concerns the potential for down-
stream reuse of the learned coefficients β. In many applications, the ridge-regression layer serves
as an intermediate component within a larger processing pipeline - for instance, as a feature extractor
whose output is later used for clustering, transfer learning, or anomaly detection. When β is stable,
it can be reused across slightly different datasets or experimental conditions without the need for re-
tuning the regularization parameter or retraining from scratch. This property enables more reproducible
and modular system design: the same model component can be integrated into different downstream
tasks with predictable behavior.

In contrast, coefficients obtained through the Couillet calibration tend to varymore across retrainings,
which limits their reuse beyond the specific dataset or random feature realization. The derivative-based
rule, by reducing variance in β, implicitly supports the notion of a reusable “filter” that captures the core
discriminative structure of the data rather than overfitting to local peculiarities.

5.2.2. Applied Advantages - Practice

Having established the conceptual benefits of stability in the preceding subsection, it is instructive to
examine how this property manifests in practical, high-dimensional learning problems. In various real-
world domains, researchers have identified coefficient or feature stability as a crucial component of
model reliability, reproducibility, and interpretability. Stability ensures that the insights drawn from a
model are not artifacts of random sampling or noise, but rather reflect persistent structure within the
data itself. In this subsection, several representative studies are discussed to illustrate how the stability
of learned representations, filters, or feature selections directly impacts the quality and trustworthiness
of machine learning systems in applied contexts.

Feature Stability in High-Dimensional Learning. The empirical perspective on stability is thor-
oughly examined by Kalousis et al. [22], who conducted one of the earliest systematic analyses of
feature selection stability across high-dimensional biological datasets. Their experiments covered sev-
eral proteomics and microarray classification tasks, all characterized by a small number of samples
(n < 100) and a very large number of features (p ranging from thousands to tens of thousands) - a

5.2. Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule 49

regime directly analogous to the high-dimensional random-feature setting studied in this thesis.

The authors evaluated a range of popular feature selection methods, including information gain, χ2,
symmetrical uncertainty, RELIEF, and support-vector-based ranking techniques (SVM and SVM-RFE).
To quantify the sensitivity of each method to sampling variations, they introduced three complementary
similarity measures for feature preferences: (i) SW for correlation of feature weights, (ii) SR for rank
consistency via Spearman’s ρ, and (iii) SS for overlap between top-k selected feature subsets. These
measures collectively define a “stability profile” for each algorithm, summarizing howmuch the selected
features change when the model is retrained on different resampled subsets of the same data.

The results were striking. Even among algorithms that achieved nearly identical classification ac-
curacy, stability varied dramatically. For instance, on the colon cancer dataset (p = 2000, n = 62),
SVM-RFE exhibited overlap values SS below 0.25 for top-k = 30 features, while simpler univariate
methods such as information gain reached SS > 0.9 under the same setup. Similar patterns appeared
across all five datasets: in the ovarian and leukemia studies, univariate filters consistently achieved
overlap above 0.85, while multivariate SVM-based selectors fluctuated heavily with small data pertur-
bations, dropping to as low as SS = 0.1. These results demonstrated that identical predictive scores
can conceal highly unstable internal mechanisms.

From the perspective of this thesis, the analogy is clear. In the random-feature ridge regression
studied here, two regularization calibration rules (Couillet’s and the derivative-based one) may yield
comparable prediction errors, yet differ sharply in the variance of their learned coefficients β. The
derivative-based calibration thus plays a role analogous to preferring the more stable feature selector in
Kalousis et al.: it favors solutions whose internal structure, the effective “filter” or feature weighting vec-
tor remains consistent under mild resampling or noise perturbations. Just as Kalousis and colleagues
argued that stability is a prerequisite for reproducible and interpretable conclusions in biomedical set-
tings, a stable β ensures reproducibility and trust in the learned representations in high-dimensional
regression.

In short, the empirical message of Kalousis et al. reinforces the same principle that underlies this
work: when dimensionality is high and data are scarce, predictive accuracy alone is not a sufficient mea-
sure of reliability. The internal stability of the learned coefficients becomes a distinguishing marker of
models that capture genuine, reproducible structure rather than transient artifacts of random variation.

Stability and Redundancy in Neuroimaging Analysis. A second, domain-specific example of the
importance of model stability is offered by Wang et al. [49], who addressed the problem of stable
feature selection in extremely high-dimensional functional MRI (fMRI) data. This example is particularly
interesting for our case as it also works with images. In such neuroimaging tasks, the number of voxels
or network connections (p ∼ 103–104) far exceeds the number of available subjects (n ≲ 100), and the
features are often highly correlated or redundant. The study proposed an algorithm combining stability
selection with the elastic net, aiming not only to maintain high predictive accuracy but also to obtain
reproducible and interpretable “biomarker” features that remain consistent across perturbations, label
noise, and acquisition sites.

Wang et al. demonstrated that purely sparse methods such as ℓ1-regularized logistic regression or
SVM yield unstable and overly sparse solutions: when applied to fMRI voxels, they select scattered and
inconsistent sets of discriminative features, sensitive to evenminor variations in the data. By integrating
stability selection (which aggregates results over subsamples of both samples and features) with elastic-
net regularization (which enforces group-wise feature retention), their model achieved markedly higher
robustness and interpretability. For example, in the synthetic dataset with injected label noise (up to ten
wrong labels), their method maintained a nearly constant voxel-selection accuracy, while alternatives
such as the ℓ1-logistic model degraded sharply. Quantitatively, even with 10% label corruption, their
approach preserved the correct identification of discriminative subregions, whereas univariate t-tests
and standard SVMs produced false-positive activations or lost key regions entirely.

The advantages extended to real neuroimaging data. In a face-recognition fMRI experiment involv-
ing 26 subjects, Wang et al. successfully recovered five core regions implicated in visual and motor

5.2. Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule 50

aspects of facial processing - the occipital face area (OFA), fusiform face area (FFA), posterior superior
temporal gyrus (pSTG), supplementary motor area (SMA), and sensorimotor cortex (SMC)- while com-
peting methods either missed some of these regions or produced fragmented, spatially inconsistent
activations. Furthermore, in a multi-center ADHD dataset where training and test data were collected
at separate institutions (Peking University and New York University), the proposed method achieved a
cross-center classification accuracy of 79.0% (AUC = 0.77), outperforming standard elastic net (72.6%)
and randomized ℓ1-logistic models (67.7%). The ability to generalize across centers highlights the ro-
bustness of the learned feature weighting vector under substantial data variation.

The parallels to the present thesis are clear. In both cases, stability of the learned coefficients -
whether interpreted as voxel importances in fMRI or as the regression filter β in random-feature ridge
regression serves as a safeguard against spurious structure and noise-driven variability. Just as Wang
et al. showed that stable, redundant feature selection improves both interpretability and cross-domain
robustness, the derivative-based calibration proposed in this work yields a β that remains consistent
across perturbations, enabling more reproducible downstream analyses. In settings where the data
are high-dimensional, correlated, and noisy, such stability directly translates into both scientific trust-
worthiness and operational reliability.

Stable Representation Learning in Industrial Fault Detection. The work of Michau and Fink [33]
provides a particularly relevant example of how stability of internal representations translates into both
interpretability and operational reliability in large-scale systems. Their study focuses on condition mon-
itoring of industrial assets, where hundreds of heterogeneous sensors continuously record operating
parameters under varying conditions. The challenge addressed is that only healthy-state data are
typically available for training, while fault patterns are scarce or entirely absent. To handle this, the
authors proposed an unsupervised feature learning and one-class classification architecture based on
Hierarchical Extreme Learning Machines (HELM), integrating a stacked autoencoder for representation
learning with a one-class classifier trained on the latent features.

The HELM framework can be seen as a random-feature architecture with analytical ridge-type
weight estimation, conceptually close to the models investigated in this thesis. It learns a mapping
from raw sensor space to a latent “health indicator,” defined as the distance of the observation to the
manifold of healthy data. Importantly, the system is trained with random input weights A, and its out-
put coefficients β are determined in closed form through regularized least-squares (ridge or LASSO).
This allows an explicit analysis of how the stability of β affects the consistency of the learned health
indicators and, consequently, the reliability of fault detection decisions.

In their extensive experiments, Michau and Fink compared HELM with six alternative approaches—
standalone one-class ELM and SVM classifiers, the same classifiers preceded by PCA, and a Deep
Belief Network (DBN). On a simulated dataset with D = 200 sensors and five injected fault types,
HELM achieved the highest average accuracy (95% for n = 5 intrinsic variables, Afault ≈ 0.95) and
strong magnification coefficients (Mag ≈ 88–105), far exceeding the next-best competitors (SVM: A ≈
0.94, Mag ≈ 1.3; DBN: A ≈ 0.72, Mag ≈ 1.2). These results quantitatively demonstrate that the
feature-learning stage produces representations whose responses to perturbations—both random and
structured—are highly consistent, yielding fault indicators that remain stable under varying operating
conditions.

The findings are reinforced by the real-case application to a nine-month dataset from a hydrogen-
cooled power plant generator with D = 310 sensors. HELM reached an accuracy of 95% with zero
false positives and a magnification coefficient of 20, while the closest competitor (SVM) achieved 87%
accuracy and Mag = 1.04. Importantly, HELM was able to detect early-stage degradation (day 169)
months before the full short-circuit failure (day 247), providing a temporal margin that can translate
directly into cost savings in maintenance and downtime prevention.

Conceptually, the relevance to this thesis lies in how HELM’s stability emerges from a regularized
random-feature mechanism. Like the derivative-based calibration introduced here, the HELM formula-
tion stabilizes the learned β against small perturbations in the data, ensuring that the “health indicator”
or model output evolves smoothly across retrainings. This stability, while mathematically grounded in

5.2. Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule 51

ridge and LASSO regularization, is functionally identical to the desired low-variance behavior of β in
random-feature regression. In both contexts, the goal is not merely to predict correctly, but to ensure
that the internal model structure—the coefficients themselves—remains reproducible and interpretable
across runs, enabling engineers to trust the system’s diagnosis or response over time and under chang-
ing conditions.

6
Conclusion

6.1. Summary and Final Remarks
This thesis introduced and analyzed a novel derivative-based, direct-loss calibration rule for select-
ing the regularization parameter in high-dimensional random-feature ridge regression. The method
was developed as an alternative to the deterministic-equivalent canonical approach proposed by Couil-
let [6], offering a data-driven and theoretically grounded criterion derived directly from the loss-function
dynamics.

The work began by revisiting the theoretical framework of ridge regression under random feature
mappings, establishing the connection between the regularization parameter γ and the statistical bias–
variance trade-off in high-dimensional settings. Building upon this foundation, a new calibration rule
was formulated by enforcing the vanishing of the empirical loss derivative with respect to γ, yielding a
direct, sample-based condition for optimal regularization.

The proposedmethod was validated through both synthetic and real-data experiments. In controlled
simulations, the derivative-based rule achieved nearly identical predictive performance to Couillet’s
method calibration, confirming its theoretical consistency. Real-data evaluation on the Fashion-MNIST
dataset further demonstrated that the proposed method matches or slightly surpasses Couillet’s ap-
proach in terms of test accuracy, while producing a more stable coefficient vector β under perturba-
tions of the training data. The perturbation analysis showed that this stability translates into smoother,
more reproducible model behavior, which is an important property in high-dimensional problems where
interpretability and robustness are as valuable as predictive accuracy.

A broader discussion connected these findings to practical contexts where model stability is a cru-
cial requirement. By drawing parallels to studies on feature-selection stability in bioinformatics [22],
neuroimaging [49], and industrial condition monitoring [33], the thesis highlighted that the benefits of
coefficient stability extend far beyond synthetic benchmarks. In all such settings, the ability to learn con-
sistent and reproducible representations enables more interpretable, trustworthy, and reusable models.

In summary, this research contributes both a new ridge regression hyperparameter calibration
methodology and an expanded understanding of the role of stability in high-dimensional learning. The
derivative-based rule provides a simple yet effective alternative to deterministic-equivalent approaches,
combining strong empirical performancewith enhanced reproducibility and interpretability of the learned
coefficients.

52

6.2. Future Work 53

6.2. Future Work
The experimental and computational framework adopted in this thesis was deliberately kept minimal in
order to isolate and examine the behavior of the proposed calibration rule under controlled conditions.
While this design allowed for a clear theoretical and empirical comparison with Couillet’s deterministic-
equivalent method, it also leaves several directions open for future exploration.

First, the dimensional ratios employed in the simulations denoted as c1 = p/n and c2 = N/n were
limited to values not exceeding approximately 1.5, primarily due to computational constraints on the
DelftBlue supercomputer [1]. As a result, the synthetic experiments operated on moderate data sizes,
sufficient for statistical validity but not for fully exploring the asymptotic regime where random matrix
predictions become most distinctive. Extending these experiments to higher dimensional ratios and
larger sample sizes would help verify whether the observed stability and generalization properties of
the derivative-based rule persist under more extreme high-dimensional conditions.

Second, the real-data validation was restricted to a single dataset (Fashion-MNIST) and to a binary
classification task involving two visually distinct classes. Future work could expand the empirical val-
idation along several complementary axes. Additional real-world datasets. For instance, those from
text, sensor, or biomedical domains - would allow assessing the robustness of the proposed rule across
modalities. Similarly, multi-class classification scenarios could reveal how the calibration behaves when
the decision boundaries interact in more complex ways.

Another natural extension concerns the activation function used in the random feature mapping.
All experiments in this work employed the ReLU nonlinearity, chosen for its analytical simplicity and
widespread use. Investigating alternative activations, such as leaky ReLU, tanh, or even randomized
polynomial kernels, could uncover how the choice of nonlinearity influences the derivative-based cali-
bration and its resulting stability properties.

Finally, while the present study focused on classification, future research could revisit the same
framework in a genuine regression context. Testing the proposed calibration rule on real-valued tar-
get problems would help establish whether its stabilizing effect on the learned coefficients β extends
beyond classification tasks and remains beneficial in continuous-output ridge regression. Identifying
suitable high-dimensional regression datasets would therefore be an important next step toward a more
complete empirical characterization of the method.

In summary, future work should aim to broaden both the scale and scope of experimentation -
ncreasing sample and feature counts, diversifying nonlinear mappings, and extending to regression
settings to consolidate the findings of this thesis and to fully explore the potential of the derivative-
based regularization rule in modern high-dimensional learning.

References

[1] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[2] Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices.
2nd. Springer, 2010. DOI: https://doi.org/10.1007/978-1-4419-0661-8.

[3] Mikhail Belkin et al. “Reconciling Modern Machine Learning Practice and the Classical Bias–
Variance Trade-off”. In:Proceedings of the National Academy of Sciences 116.32 (2019), pp. 15849–
15854. DOI: https://doi.org/10.1073/pnas.1903070116.

[4] Youngmin Cho and Lawrence K. Saul. “Kernel Methods for Deep Learning”. In: Advances in
Neural Information Processing Systems (NeurIPS). Vol. 22. 2009, pp. 342–350. URL: https:
//proceedings.neurips.cc/paper_files/paper/2009/hash/013a006f03dbc5392effeb8f18f
da755-Abstract.html.

[5] Romain Couillet and Mérouane Debbah. Random Matrix Methods for Wireless Communications.
Cambridge University Press, 2011. DOI: https://doi.org/10.1017/CBO9780511994746.

[6] Romain Couillet and Zhenyu Liao. “Random Matrix Methods for Machine Learning”. In: Cam-
bridge University Press, 2022, pp. 299–306. DOI: https://doi.org/10.1017/9781009128490.

[7] Romain Couillet and Zhenyu Liao. Random Matrix Methods for Machine Learning. Cambridge
University Press, 2022. DOI: https://doi.org/10.1017/9781009128490.

[8] George Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In: Mathematics
of Control, Signals, and Systems 2.4 (1989), pp. 303–314. DOI: https://doi.org/10.1007/
BF02551274.

[9] Jia Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.
DOI: https://doi.org/10.1109/CVPR.2009.5206848.

[10] Edgar Dobriban and Weijie Su. “High-Dimensional Asymptotics of Prediction: Ridge Regression
and Classification”. In: The Annals of Statistics 46.1 (2018), pp. 247–279. DOI: https://doi.
org/10.1214/17-AOS1549.

[11] Jeffrey L. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2 (1990), pp. 179–211.
DOI: https://doi.org/10.1207/s15516709cog1402_1.

[12] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman and Hall/CRC, 2019. DOI: https://doi.org/10.1201/
9780429447273.

[13] Trevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpolation”. In:
The Annals of Statistics 50.2 (2022), pp. 949–986. DOI: https : / / doi . org / 10 . 1214 / 21 -
AOS2133.

[14] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778. DOI: htt
ps://doi.org/10.1109/CVPR.2016.90.

[15] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm for Deep
Belief Nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554. DOI: https://doi.org/10.
1162/neco.2006.18.7.1527.

[16] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased Estimation for Nonorthogonal
Problems”. In: Technometrics 12.1 (1970), pp. 55–67. DOI: https://doi.org/10.1080/004017
06.1970.10488634.

54

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/https://doi.org/10.1007/978-1-4419-0661-8
https://doi.org/https://doi.org/10.1073/pnas.1903070116
https://proceedings.neurips.cc/paper_files/paper/2009/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2009/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2009/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://doi.org/https://doi.org/10.1017/CBO9780511994746
https://doi.org/https://doi.org/10.1017/9781009128490
https://doi.org/https://doi.org/10.1017/9781009128490
https://doi.org/https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/https://doi.org/10.1214/17-AOS1549
https://doi.org/https://doi.org/10.1214/17-AOS1549
https://doi.org/https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/https://doi.org/10.1201/9780429447273
https://doi.org/https://doi.org/10.1201/9780429447273
https://doi.org/https://doi.org/10.1214/21-AOS2133
https://doi.org/https://doi.org/10.1214/21-AOS2133
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1109/CVPR.2016.90
https://doi.org/https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/https://doi.org/10.1080/00401706.1970.10488634

References 55

[17] John J. Hopfield. “Neural Networks and Physical Systems with Emergent Collective Computa-
tional Abilities”. In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–
2558. DOI: https://doi.org/10.1073/pnas.79.8.2554.

[18] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”. In: Neural Net-
works 4.2 (1991), pp. 251–257. DOI: https://doi.org/10.1016/0893-6080(91)90009-T.

[19] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme Learning Machine: Theory
and Applications”. In: Neurocomputing 70.1–3 (2006), pp. 489–501. DOI: https://doi.org/10.
1016/j.neucom.2005.12.126.

[20] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and
Generalization in Neural Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS) 31 (2018). URL: https://arxiv.org/abs/1806.07572.

[21] Herbert Jaeger. “The “Echo State” Approach to Analysing and Training Recurrent Neural Net-
works”. In: GMD Report 148 (2001). URL: https://www.researchgate.net/publication/
215385037.

[22] Alexandros Kalousis, Julien Prados, and Melanie Hilario. “Stability of Feature Selection Algo-
rithms: A Study on High-Dimensional Spaces”. In: Knowledge and Information Systems 12.1
(2007), pp. 95–116. DOI: https://doi.org/10.1007/s10115- 006- 0040- 8. URL: https:
//link.springer.com/article/10.1007/s10115-006-0040-8.

[23] Teuvo Kohonen. “Self-Organized Formation of Topologically Correct FeatureMaps”. In: Biological
Cybernetics 43.1 (1982), pp. 59–69. DOI: https://doi.org/10.1007/BF00337288.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural Information Processing Systems (NeurIPS).
Vol. 25. 2012, pp. 1097–1105. URL: https://proceedings.neurips.cc/paper_files/paper/
2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521.7553 (2015),
pp. 436–444. DOI: https://doi.org/10.1038/nature14539.

[26] Yann LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural
Computation 1.4 (1989), pp. 541–551. DOI: https://doi.org/10.1162/neco.1989.1.4.541.

[27] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In: Proceedings
of the IEEE 86.11 (1998), pp. 2278–2324. DOI: https://doi.org/10.1109/5.726791.

[28] Cosme Louart, Zhenyu Liao, and Romain Couillet. “A Random Matrix Approach to Neural Net-
works”. In: The Annals of Applied Probability 28.2 (2018), pp. 1190–1248. DOI: https://doi.
org/10.1214/17-AAP1328.

[29] Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural net-
works”. In: The Annals of Applied Probability (2018). DOI: https://doi.org/10.1214/17-
AAP1328.

[30] Wolfgang Maass, Thomas Natschläger, and Henry Markram. “Real-Time Computing Without Sta-
ble States: A New Framework for Neural Computation Based on Perturbations”. In: Neural Com-
putation 14.11 (2002), pp. 2531–2560. DOI: https://doi.org/10.1162/089976602760407955.

[31] Vladimir A. Marchenko and Leonid A. Pastur. “Distribution of Eigenvalues for Some Sets of Ran-
dom Matrices”. In: Mathematics of the USSR-Sbornik 1.4 (1967), pp. 457–483. DOI: https://
doi.org/10.1070/SM1967v001n04ABEH001994.

[32] Song Mei and Andrea Montanari. “The Generalization Error of Random Features Regression:
Precise Asymptotics and Double Descent Curve”. In:Communications on Pure and Applied Math-
ematics 75.4 (2022), pp. 667–766. DOI: https://doi.org/10.1002/cpa.21937.

[33] Gabriel Michau andOlga Fink. “Feature Learning for Fault Detection in High-Dimensional Condition-
Monitoring Signals”. In: arXiv preprint arXiv:1810.05550 (2019). URL: https://arxiv.org/abs/
1810.05550.

[34] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry.
Cambridge, MA: MIT Press, 1969.

https://doi.org/https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/https://doi.org/10.1016/j.neucom.2005.12.126
https://arxiv.org/abs/1806.07572
https://www.researchgate.net/publication/215385037
https://www.researchgate.net/publication/215385037
https://doi.org/https://doi.org/10.1007/s10115-006-0040-8
https://link.springer.com/article/10.1007/s10115-006-0040-8
https://link.springer.com/article/10.1007/s10115-006-0040-8
https://doi.org/https://doi.org/10.1007/BF00337288
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/https://doi.org/10.1109/5.726791
https://doi.org/https://doi.org/10.1214/17-AAP1328
https://doi.org/https://doi.org/10.1214/17-AAP1328
https://doi.org/https://doi.org/10.1214/17-AAP1328
https://doi.org/https://doi.org/10.1214/17-AAP1328
https://doi.org/https://doi.org/10.1162/089976602760407955
https://doi.org/https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/https://doi.org/10.1002/cpa.21937
https://arxiv.org/abs/1810.05550
https://arxiv.org/abs/1810.05550

References 56

[35] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann Ma-
chines”. In: Proceedings of the 27th International Conference on Machine Learning (ICML). 2010,
pp. 807–814. URL: https://icml.cc/Conferences/2010/papers/432.pdf.

[36] Radford M. Neal. Bayesian Learning for Neural Networks. Vol. 118. Lecture Notes in Statistics.
Springer, 1996. DOI: https://doi.org/10.1007/978-1-4612-0745-0.

[37] Ian Osband et al. “Deep Exploration via Bootstrapped DQN”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 29. 2016, pp. 4026–4034. URL: https://proceedings.n
eurips.cc/paper_files/paper/2016/hash/8d8818c8ce75b17d62e3e0fbde7d0b5c-Abstract.
html.

[38] Jeffrey Pennington and Pratik Worah. “Nonlinear Random Matrix Theory for Deep Learning”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 30. 2017, pp. 2637–2646.
URL: https://proceedings.neurips.cc/paper_files/paper/2017/hash/6070ef0e056174b4
a3d8d005a36cf3c9-Abstract.html.

[39] Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). Vol. 20. 2008, pp. 1177–1184. URL:
https://proceedings.neurips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effe
b8f18fda755-Abstract.html.

[40] Ali Rahimi and Benjamin Recht. “Weighted Sums of Random Kitchen Sinks: Replacing Minimiza-
tion with Randomization in Learning”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 21. 2008, pp. 1313–1320. URL: https://proceedings.neurips.cc/paper_
files/paper/2008/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html.

[41] Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain”. In: Psychological Review 65.6 (1958), pp. 386–408. DOI: https://doi.org/
10.1037/h0042519.

[42] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning Representations by
Back-Propagating Errors”. In: Nature 323.6088 (1986), pp. 533–536. DOI: https://doi.org/10.
1038/323533a0.

[43] Andrew Saxe et al. “On Random Weights and Unsupervised Feature Learning”. In: Proceedings
of the 28th International Conference on Machine Learning (ICML). 2011, pp. 1089–1096. URL:
https://icml.cc/Conferences/2011/papers/438_icmlpaper.pdf.

[44] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: International Conference on Learning Representations (ICLR) (2015).
URL: https://arxiv.org/abs/1409.1556.

[45] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. URL: https://jmlr.org/
papers/v15/srivastava14a.html.

[46] Andrey N. Tikhonov and Vasiliy Y. Arsenin. Solution of Ill-Posed Problems. Originally published
in Russian, 1963. Winston and Sons, 1977.

[47] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in Neural Information Processing
Systems (NeurIPS). Vol. 30. 2017. URL: https://arxiv.org/abs/1706.03762.

[48] Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion”. In: Journal of Machine Learning Research 11
(2010), pp. 3371–3408. URL: https://www.jmlr.org/papers/v11/vincent10a.html.

[49] Yilun Wang et al. “A Novel Approach for Stable Selection of Informative Redundant Features
from High Dimensional fMRI Data”. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 24.11 (2015), pp. 1236–1248. DOI: https://doi.org/10.1109/TNSRE.2015.
2474015. URL: https://arxiv.org/abs/1506.08301.

[50] Eugene P. Wigner. “Characteristic Vectors of Bordered Matrices with Infinite Dimensions”. In:
Annals of Mathematics 62.3 (1955), pp. 548–564. DOI: https://doi.org/10.2307/1970079.

https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/https://doi.org/10.1007/978-1-4612-0745-0
https://proceedings.neurips.cc/paper_files/paper/2016/hash/8d8818c8ce75b17d62e3e0fbde7d0b5c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/8d8818c8ce75b17d62e3e0fbde7d0b5c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/8d8818c8ce75b17d62e3e0fbde7d0b5c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/6070ef0e056174b4a3d8d005a36cf3c9-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/6070ef0e056174b4a3d8d005a36cf3c9-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2008/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2008/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://doi.org/https://doi.org/10.1037/h0042519
https://doi.org/https://doi.org/10.1037/h0042519
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1038/323533a0
https://icml.cc/Conferences/2011/papers/438_icmlpaper.pdf
https://arxiv.org/abs/1409.1556
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1706.03762
https://www.jmlr.org/papers/v11/vincent10a.html
https://doi.org/https://doi.org/10.1109/TNSRE.2015.2474015
https://doi.org/https://doi.org/10.1109/TNSRE.2015.2474015
https://arxiv.org/abs/1506.08301
https://doi.org/https://doi.org/10.2307/1970079

A
Source Code

A.1. Mean Squared Error against the regularization parameter γ
1 import numpy as np
2 import random
3 from scipy import linalg
4 from mpi4py import MPI
5

6 comm = MPI.COMM_WORLD
7 nprocs = comm.Get_size()
8 myrank = comm.Get_rank()
9

10

11 def sigma(t):
12 """
13 Small sigma function of choice
14 :param t: input
15 :return: output
16 """
17 if activation_function == 'linear':
18 return t
19

20 if activation_function == 'ReLu':
21 return np.maximum(t, 0)
22

23 if activation_function == 'sign':
24 return np.sign(t)
25

26

27

28 def K(x, y):
29 """
30 Kernel function. Depends on the choice of a small sigma function
31 :param x: first 'point' set
32 :param y: second 'point' set
33 :return: matrix of measures of 'distances' between points
34 """
35 if activation_function == 'linear':
36 return x.T@y
37

38 if activation_function == 'ReLu':
39 norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)
40 norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)
41

42 xTy = x.T @ y # Shape (n_x, n_y)
43

44 norm_prod = norm_x[:, np.newaxis] * norm_y[np.newaxis, :] # Shape (n_x, n_y)
45 norm_prod = np.maximum(norm_prod, 1e-10) # Avoid division by zero

57

A.1. Mean Squared Error against the regularization parameter γ 58

46

47 cos_theta = xTy / norm_prod
48 cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1e-10,

1-1e-10]
49

50 theta = np.arccos(-cos_theta) # Shape (n_x, n_y)
51 sin_theta = np.sqrt(1 - cos_theta ** 2)
52

53 return (norm_prod) / (2 * np.pi) * (cos_theta * theta + sin_theta)
54

55 if activation_function == 'sign':
56 norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)
57 norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)
58

59 xTy = x.T @ y # Shape (n_x, n_y)
60

61 norm_prod = np.outer(norm_x, norm_y) # Shape (n_x, n_y)
62 norm_prod = np.maximum(norm_prod, 1e-10) # Avoid division by zero
63

64 cos_theta = xTy / norm_prod
65 cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1e-10,

1-1e-10]
66

67 return (2 / np.pi) * np.arcsin(cos_theta)
68

69

70 def K_(x, y, delta, N, n_train):
71 """
72 Function to compute kernel approximation
73 :param x: first 'point' set
74 :param y: second 'point' set
75 :param delta: delta parameter
76 :return: approximation for the kernel matrix
77 """
78 k_ = (N/n_train)*((K(x, y))/(1+delta))
79 return k_
80

81

82 def Etrain(gamma, data, npN, monte_carlo_loops=30):
83 """
84 Actual training error compute (random-based)
85 :param gamma: ridge penalty value
86 :param data: train/test data
87 :param npN: dimensionality of the data and num of neurons
88 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
89 :return: Training error
90 """
91 # Unpacking variables
92 X_train, X_test, Y_train, Y_test = data
93 n_train, n_test, p, N = npN
94

95 E_train_arr = []
96 p = X_train.shape[0]
97

98 for i in range(monte_carlo_loops):
99

100 # W = np.random.randn(N, p)
101 # Sigm = sigma(W@X_train)
102 # Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))
103 #
104 # E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power(Q_y, 2)@Y_train.T
105 # E_train_arr.append(E_train)
106

107 W = np.random.randn(N, p)
108 Sigm = sigma(W @ X_train)
109 Sigm_ = sigma(W @ X_test)
110

111 inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)
112 beta = Sigm / n_train @ inv_tQ_r
113

A.1. Mean Squared Error against the regularization parameter γ 59

114 E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
115 E_train_arr.append(E_train)
116

117 return np.mean(np.array(E_train_arr))
118

119

120 def Etest(gamma, data, npN, monte_carlo_loops=30):
121 """
122 Actual test error compute (random-based)
123 :param gamma: ridge penalty value
124 :param data: train/test data
125 :param npN: dimensionality of the data and number of neurons
126 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
127 :return: Test error
128 """
129 # Unpacking variables
130 X_train, X_test, Y_train, Y_test = data
131 n_train, n_test, p, N = npN
132

133 E_test_arr = []
134 p = X_train.shape[0]
135

136 for i in range(monte_carlo_loops):
137

138 W = np.random.randn(N, p)
139 Sigm = sigma(W@X_train)
140 Sigm_ = sigma(W@X_test)
141

142 inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)
143 beta = Sigm/n_train @ inv_tQ_r
144

145 # Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))
146

147 # term1 = (1/n_test)*(Y_test@Y_test.T)
148 # term2 = (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Y_test.T)
149 # term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Sigm_.T@Sigm@Q_y@Y_train.

T)
150

151

152 E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test
153 E_test_arr.append(E_test)
154

155 ans = np.mean(np.array(E_test_arr))
156

157 return ans
158

159

160 def find_delta(gamma, X_train, N, accuracy) -> float:
161 """
162 Helper-function that finds delta parameter for the resolvent Q iteratively
163 :param gamma: ridge penalty value
164 :param X_train: training set
165 :param N: number of neurons in the hidden layer
166 :param accuracy: accuracy for numerical delta finding
167 :return: optimal value for delta parameter for the resolvent Q
168 """
169 n_train = X_train.shape[1]
170 delta_prev = 1
171 delta_next = 0
172 while abs(delta_prev-delta_next) > accuracy:
173 delta_prev = delta_next
174 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta_next)) + gamma*np.eye(

n_train))
175 delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
176 return delta_next
177

178

179

180 def Etrain_(gamma, data, npN):
181 """

A.1. Mean Squared Error against the regularization parameter γ 60

182 Estimated train error compute (expectation based, deterministic)
183 :param gamma: ridge penalty value
184 :param data: train/test data
185 :param npN: dimensionality of the data and number of Neurons
186 :return: estimated training error
187 """
188 # Unpacking variables:
189 X_train, X_test, Y_train, Y_test = data
190 n_train, n_test, p, N = npN
191

192 delta = find_delta(gamma, X_train, N, delta_accuracy)
193 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
194 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
195

196 #E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N)*np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

197 E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

198

199 return E_train_
200

201

202 def Etest_(gamma, data, npN):
203 """
204 Estimated test error compute (expectation based, deterministic)
205 :param gamma: ridge penalty value
206 :param data: train/test
207 :param npN: dimensionality of the data and number of Neurons
208 :return: estimated test error
209 """
210 # Unpacking variables:
211 X_train, X_test, Y_train, Y_test = data
212 n_train, n_test, p, N = npN
213

214 delta = 0.0
215 delta = find_delta(gamma, X_train, N, delta_accuracy)
216 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
217 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
218 K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))
219 K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))
220

221 #E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.matrix.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

222 E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

223

224 return E_test_
225

226

227 def generate_synthetic_data(n, c1, c2, density=0.35, noise_level=0.1):
228 p = int(c1 * n)
229 N = int(c2 * n)
230 n_train = int(n * 0.8)
231 n_test = n - n_train
232

233 # Generate random weights and sparse beta
234 W = np.random.randn(N, p)
235 b = np.random.choice([0, 1], size=(N, 1), p=[1 - density, density])
236

237 # Generate data
238 X_train = np.random.randn(p, n_train)
239 Y_train = (sigma(W @ X_train).T @ b).flatten() + np.random.normal(0, noise_level, n_train

)
240 X_test = np.random.randn(p, n_test)
241 Y_test = (sigma(W @ X_test).T @ b).flatten() + np.random.normal(0, noise_level, n_test)
242

243 return X_train, X_test, Y_train, Y_test, W, b
244

A.1. Mean Squared Error against the regularization parameter γ 61

245

246 def save_results_to_file(gammas, E_test_arr, E_train_arr, E_test_bar_arr, E_train_bar_arr,
log_filename, result_filename):

247 """
248 A function designed for HPC to save the results in proper readable and plotable form.
249 :param gammas:
250 :param E_test_arr:
251 :param E_train_arr:
252 :param E_test_bar_arr:
253 :param E_train_bar_arr:
254 :param log_filename:
255 :param result_filename:
256 :return: none
257 """
258 with open(log_filename, 'w') as log_file:
259 for gamma, E_test, E_train, E_test_, E_train_ in zip(gammas, E_test_arr, E_train_arr,

E_test_bar_arr,
260 E_train_bar_arr):
261 log_file.write(
262 f"for␣gamma␣=␣{gamma:.6e},␣E_train␣=␣{E_train:.6e},␣E_test␣=␣{E_test:.6e},␣

E_train_␣=␣{E_train_:.6e},␣E_test_␣=␣{E_test_:.6e}\n")
263

264 results = {
265 "gammas": gammas,
266 "E_test_arr": E_test_arr,
267 "E_train_arr": E_train_arr,
268 "E_test_bar_arr": E_test_bar_arr,
269 "E_train_bar_arr": E_train_bar_arr
270 }
271 np.savez(result_filename, **results)
272

273

274 activation_function = 'ReLu'
275

276 delta_accuracy = 1e-4
277 b_vector_density = 0.15 #%
278

279 n = 5000
280 c1 = 1.0 # p/n
281 c2 = 0.8 # N/n
282

283 p = int(c1 * n)
284 N = int(c2 * n)
285 n_train = int(n * 0.8)
286 n_test = n - n_train
287

288 npN = n_train, n_test, p, N
289 X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data(n=n, c1=c1, c2=c2, density=

b_vector_density)
290 data = X_train, X_test, Y_train, Y_test
291 # data = get_data_MNIST_binary(npN)
292 gammas = [10**y for y in np.arange(-6, 6, 0.1)]
293

294 gamma_chunks = np.array_split(gammas, nprocs)
295 my_gammas = gamma_chunks[myrank]
296

297 E_test_arr = []
298 E_train_arr = []
299 E_test_bar_arr = []
300 E_train_bar_arr = []
301 log_entries = []
302

303 for g in my_gammas:
304 E_test = Etest(g, data, npN)
305 E_test_arr.append(E_test)
306

307 E_test_ = Etest_(g, data, npN)
308 E_test_bar_arr.append(E_test_)
309

310 E_train = Etrain(g, data, npN)
311 E_train_arr.append(E_train)

A.1. Mean Squared Error against the regularization parameter γ 62

312

313 E_train_ = Etrain_(g, data, npN)
314 E_train_bar_arr.append(E_train_)
315

316 log_entries.append(
317 f"for␣gamma␣=␣{g}␣the␣error␣values␣are:␣E_train={E_train},␣E_test={E_test},␣E_train_

={E_train_},␣E_test_={E_test_}\n")
318

319 E_test_arr = comm.gather(E_test_arr, root=0)
320 E_train_arr = comm.gather(E_train_arr, root=0)
321 E_test_bar_arr = comm.gather(E_test_bar_arr, root=0)
322 E_train_bar_arr = comm.gather(E_train_bar_arr, root=0)
323 log_entries = comm.gather(log_entries, root=0)
324

325 if myrank == 0:
326 E_test_arr = [item for sublist in E_test_arr for item in sublist]
327 E_train_arr = [item for sublist in E_train_arr for item in sublist]
328 E_test_bar_arr = [item for sublist in E_test_bar_arr for item in sublist]
329 E_train_bar_arr = [item for sublist in E_train_bar_arr for item in sublist]
330 log_entries = [item for sublist in log_entries for item in sublist]
331

332 np.savez("results.npz",
333 gammas=gammas,
334 E_test_arr=E_test_arr,
335 E_train_arr=E_train_arr,
336 E_test_bar_arr=E_test_bar_arr,
337 E_train_bar_arr=E_train_bar_arr,
338 activation_function=activation_function ,
339 density=b_vector_density,
340 n_train=n_train,
341 n_test=n_test,
342 N=N,
343 p=p)
344

345 with open("log.txt", "w") as f:
346 f.writelines(log_entries)

A.2. Optimal γ value and error behaviour with increasing amount of data 63

A.2. Optimal γ value and error behaviour with increasing amount
of data

1 import numpy as np
2 import random
3 from scipy import linalg
4 from mpi4py import MPI
5 import os
6 os.environ["OMP_NUM_THREADS"] = "16"
7

8 comm = MPI.COMM_WORLD
9 nprocs = comm.Get_size()
10 myrank = comm.Get_rank()
11

12

13 def sigma(t):
14 """
15 Small sigma function of choice
16 :param t: input
17 :return: output
18 """
19 return t
20

21

22 def K(x, y):
23 """
24 Kernel function. Depends on the choice of a small sigma function
25 :param x: first 'point' set
26 :param y: second 'point' set
27 :return: matrix of measures of 'distances' between points
28 """
29 return x.T@y
30

31

32 def K_(x, y, delta, N, n_train):
33 """
34 Function to compute kernel approximation
35 :param x: first 'point' set
36 :param y: second 'point' set
37 :param delta: delta parameter
38 :return: approximation for the kernel matrix
39 """
40 k_ = (N/n_train)*((K(x, y))/(1+delta))
41 return k_
42

43

44 def Etrain(gamma, data, npN, monte_carlo_loops=30):
45 """
46 Actual training error compute (random-based)
47 :param gamma: ridge penalty value
48 :param data: train/test data
49 :param npN: dimensionality of the data and num of neurons
50 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
51 :return: Training error
52 """
53 # Unpacking variables
54 X_train, X_test, Y_train, Y_test = data
55 n_train, n_test, p, N = npN
56

57 E_train_arr = []
58 p = X_train.shape[0]
59

60 for i in range(monte_carlo_loops):
61

62 # W = np.random.randn(N, p)
63 # Sigm = sigma(W@X_train)
64 # Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))
65 #
66 # E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power(Q_y, 2)@Y_train.T

A.2. Optimal γ value and error behaviour with increasing amount of data 64

67 # E_train_arr.append(E_train)
68

69 W = np.random.randn(N, p)
70 Sigm = sigma(W @ X_train)
71 Sigm_ = sigma(W @ X_test)
72

73 inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)
74 beta = Sigm / n_train @ inv_tQ_r
75

76 E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
77 E_train_arr.append(E_train)
78

79 return np.mean(np.array(E_train_arr))
80

81

82 def Etest(gamma, data, npN, monte_carlo_loops=30):
83 """
84 Actual test error compute (random-based)
85 :param gamma: ridge penalty value
86 :param data: train/test data
87 :param npN: dimensionality of the data and number of neurons
88 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
89 :return: Test error
90 """
91 # Unpacking variables
92 X_train, X_test, Y_train, Y_test = data
93 n_train, n_test, p, N = npN
94

95 E_test_arr = []
96 p = X_train.shape[0]
97

98 for i in range(monte_carlo_loops):
99

100 W = np.random.randn(N, p)
101 Sigm = sigma(W@X_train)
102 Sigm_ = sigma(W@X_test)
103

104 inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)
105 beta = Sigm/n_train @ inv_tQ_r
106

107 # Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))
108

109 # term1 = (1/n_test)*(Y_test@Y_test.T)
110 # term2 = (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Y_test.T)
111 # term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Sigm_.T@Sigm@Q_y@Y_train.

T)
112

113

114 E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test
115 E_test_arr.append(E_test)
116

117 ans = np.mean(np.array(E_test_arr))
118

119 return ans
120

121

122 def find_delta(gamma, X_train, N, accuracy) -> float:
123 """
124 Helper-function that finds delta parameter for the resolvent Q iteratively
125 :param gamma: ridge penalty value
126 :param X_train: training set
127 :param N: number of neurons in the hidden layer
128 :param accuracy: accuracy for numerical delta finding
129 :return: optimal value for delta parameter for the resolvent Q
130 """
131 n_train = X_train.shape[1]
132 delta_prev = 1
133 delta_next = 0
134 while abs(delta_prev-delta_next) > accuracy:
135 delta_prev = delta_next

A.2. Optimal γ value and error behaviour with increasing amount of data 65

136 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta_next)) + gamma*np.eye(
n_train))

137 delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
138 return delta_next
139

140

141

142 def Etrain_(gamma, data, npN):
143 """
144 Estimated train error compute (expectation based, deterministic)
145 :param gamma: ridge penalty value
146 :param data: train/test data
147 :param npN: dimensionality of the data and number of Neurons
148 :return: estimated training error
149 """
150 # Unpacking variables:
151 X_train, X_test, Y_train, Y_test = data
152 n_train, n_test, p, N = npN
153

154 delta = find_delta(gamma, X_train, N, delta_accuracy)
155 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
156 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
157

158 #E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N)*np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

159 E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

160

161 return E_train_
162

163

164 def Etest_(gamma, data, npN):
165 """
166 Estimated test error compute (expectation based, deterministic)
167 :param gamma: ridge penalty value
168 :param data: train/test
169 :param npN: dimensionality of the data and number of Neurons
170 :return: estimated test error
171 """
172 # Unpacking variables:
173 X_train, X_test, Y_train, Y_test = data
174 n_train, n_test, p, N = npN
175

176 delta = 0.0
177 delta = find_delta(gamma, X_train, N, delta_accuracy)
178 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
179 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
180 K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))
181 K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))
182

183 #E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.matrix.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

184 E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

185

186 return E_test_
187

188

189 def find_optimal_gamma(gammas, E_func, data, npN):
190 errors = [E_func(g, data, npN) for g in gammas]
191 return gammas[np.argmin(errors)], errors[np.argmin(errors)]
192

193

194 def generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
195 """
196 Generating X randomly; Y according to the law Y = Σ^T * b + eps
197 :param npN: dimensionality of the data and number of neurons
198 :param d: dimensionality of the output vector

A.2. Optimal γ value and error behaviour with increasing amount of data 66

199 :param noise_level: level of noisiness in Y
200 :return: training and test data for both X and Y
201 """
202

203 # Unpacking values:
204 n_train, n_test, p, N = npN
205

206 X_train = np.random.randn(p, n_train)
207 X_test = np.random.randn(p, n_test)
208

209 # Generating Y according to the law: Y = Σ^T * b + eps
210 dens = density
211 b = np.array([np.random.choice([0, 1], size=d, p=[1-dens/100, dens/100]) for _ in range(N

)])
212 W = np.random.randn(N, p)
213 Y_generator = lambda X: (sigma(W@X).T@b + np.random.normal(0, noise_level, (X.shape[1], d

))).flatten()
214

215 Y_train = Y_generator(X_train)
216 Y_test = Y_generator(X_test)
217

218 # Shuffling the dataset
219 shuffle_train = np.random.permutation(n_train)
220 shuffle_test = np.random.permutation(n_test)
221

222 X_train = X_train[:, shuffle_train]
223 Y_train = Y_train[shuffle_train]
224 X_test = X_test[:, shuffle_test]
225 Y_test = Y_test[shuffle_test]
226

227 return X_train, X_test, Y_train, Y_test, W, b
228

229

230 # def log_results(log_file, n, p, N, optimal_gamma_Etest , optimal_gamma_Etest_bar , E_test,
E_test_):

231 # with open(log_file, 'a') as f:
232 # f.write(f"n = {n}, p = {p}, N = {N}\n")
233 # f.write(f"Optimal gamma for Etest: {optimal_gamma_Etest}\n")
234 # f.write(f"Optimal gamma for Etest_bar: {optimal_gamma_Etest_bar}\n")
235 # f.write(f"Etest: {E_test}\n")
236 # f.write(f"Etest_bar: {E_test_}\n\n")
237

238

239 comm = MPI.COMM_WORLD
240 size = comm.Get_size()
241 rank = comm.Get_rank()
242

243 delta_accuracy = 1e-3
244 b_vector_density = 50 #%
245

246 c1 = 1.0 # p/n
247 c2 = 0.8 # N/n
248

249 gammas = [10**y for y in np.arange(-7, 1, 0.1)]
250 n_values = np.arange(100, 3000, 100)
251

252 # Split the n_values among available ranks
253 n_split = np.array_split(n_values, size)
254 local_n_values = n_split[rank]
255

256 optimal_gammas_Etest = []
257 optimal_gammas_Etest_bar = []
258

259 Etest_values = []
260 Etest_bar_values = []
261

262

263 for i, n in enumerate(local_n_values):
264 p = int(c1 * n) # Calculate p based on the constant ratio c1
265 N = int(c2 * n) # Calculate N based on the constant ratio c2
266 npN = (int(n * 0.8), int(n * 0.2), p, N) # Recalculate n_train and n_test

A.2. Optimal γ value and error behaviour with increasing amount of data 67

267

268 print(f'Rank␣{rank}␣-␣Iteration␣{i+1}/{len(local_n_values)}')
269 print(f'Rank␣{rank}␣-␣Trying␣for␣n␣=␣{n},␣p␣=␣{p},␣N␣=␣{N}␣...')
270

271 # Generate synthetic data
272 X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data_regression(npN,

b_vector_density)
273 data = X_train, X_test, Y_train, Y_test
274

275 # Find the optimal gammas that minimize Etest and Etest_bar
276 optimal_gamma_Etest , E_test = find_optimal_gamma(gammas, Etest, data, npN)
277 optimal_gamma_Etest_bar , E_test_ = find_optimal_gamma(gammas, Etest_, data, npN)
278

279 print(f'Rank␣{rank}␣-␣Gamma␣that␣minimizes␣Etest:␣{optimal_gamma_Etest}')
280 print(f'Rank␣{rank}␣-␣Gamma␣that␣minimizes␣Etest_bar:␣{optimal_gamma_Etest_bar}')
281 #
282 print(f'Rank␣{rank}␣-␣Etest:␣{E_test}')
283 print(f'Rank␣{rank}␣-␣Etest_bar:␣{E_test_}')
284

285 optimal_gammas_Etest.append(optimal_gamma_Etest)
286 optimal_gammas_Etest_bar.append(optimal_gamma_Etest_bar)
287

288 Etest_values.append(E_test)
289 Etest_bar_values.append(E_test_)
290

291 # log_results(log_file, n, p, N, optimal_gamma_Etest , optimal_gamma_Etest_bar , E_test,
E_test_)

292

293 # Gather results from all ranks
294 optimal_gammas_Etest = comm.gather(optimal_gammas_Etest , root=0)
295 optimal_gammas_Etest_bar = comm.gather(optimal_gammas_Etest_bar , root=0)
296 Etest_values = comm.gather(Etest_values, root=0)
297 Etest_bar_values = comm.gather(Etest_bar_values, root=0)
298

299 if rank == 0:
300 optimal_gammas_Etest = np.concatenate(optimal_gammas_Etest)
301 optimal_gammas_Etest_bar = np.concatenate(optimal_gammas_Etest_bar)
302 Etest_values = np.concatenate(Etest_values)
303 Etest_bar_values = np.concatenate(Etest_bar_values)
304

305 np.savez('results_parallel.npz',
306 n_values=n_values,
307 optimal_gammas_Etest=optimal_gammas_Etest ,
308 optimal_gammas_Etest_bar=optimal_gammas_Etest_bar ,
309 Etest_values=Etest_values,
310 Etest_bar_values=Etest_bar_values,
311 c1=c1,
312 c2=c2,
313 b_vector_density=b_vector_density)

A.3. Normalized ridge error against regularization parameter γ 68

A.3. Normalized ridge error against regularization parameter γ
1 import numpy as np
2 from scipy import linalg
3 import matplotlib.pyplot as plt
4

5

6 def sigma(t):
7 return t # Linear activation function
8

9

10 def generate_synthetic_data(n, c1, c2, density=0.9, noise_level=0.1):
11 p = int(c1 * n)
12 N = int(c2 * n)
13 n_train = int(n * 0.8)
14 n_test = n - n_train
15

16 # Generate random weights and sparse beta
17 W = np.random.randn(N, p)
18 b = np.random.choice([0, 1], size=(N, 1), p=[1 - density, density])
19

20 # Generate data
21 X_train = np.random.randn(p, n_train)
22 Y_train = (sigma(W @ X_train).T @ b).flatten() + np.random.normal(0, noise_level, n_train

)
23 X_test = np.random.randn(p, n_test)
24 Y_test = (sigma(W @ X_test).T @ b).flatten() + np.random.normal(0, noise_level, n_test)
25

26 return X_train, X_test, Y_train, Y_test, W, b
27

28

29 def compute_ridge_errors(gammas, X_train, Y_train, W, b):
30 n_train = X_train.shape[1]
31 Sigm = sigma(W @ X_train)
32 SigmT_Sigm = Sigm.T @ Sigm
33 ridge_errors = []
34

35 for gamma in gammas:
36 try:
37 # Compute ridge solution
38 beta_ridge = (Sigm / n_train) @ linalg.solve(
39 SigmT_Sigm / n_train + gamma * np.eye(n_train),
40 Y_train
41)
42

43 # Compute normalized error
44 error = np.linalg.norm(beta_ridge - b, 'fro') ** 2 / np.linalg.norm(b, 'fro') **

2
45 ridge_errors.append(error)
46

47 except np.linalg.LinAlgError:
48 ridge_errors.append(np.nan)
49

50 return np.array(ridge_errors)
51

52

53 # Parameters (adjust these for faster testing)
54 n = 512 # Reduced for local testing
55 c1 = 1.0 # p/n
56 c2 = 0.7 # N/n
57 b_density = 0.95
58 gammas = [10**y for y in np.arange(-7, 7, 0.1)]
59

60 # Generate synthetic data
61 X_train, X_test, Y_train, Y_test, W, b = generate_synthetic_data(
62 n=n, c1=c1, c2=c2, density=b_density
63)
64

65 # Compute ridge errors
66 ridge_errors = compute_ridge_errors(gammas, X_train, Y_train, W, b)
67

A.3. Normalized ridge error against regularization parameter γ 69

68 # Plot results
69 plt.figure(figsize=(10, 6))
70 plt.semilogx(gammas, ridge_errors, 'b-', marker='o', markersize=5)
71 plt.xlabel('Regularization␣Strength␣�()', fontsize=12)
72 plt.ylabel('Normalized␣Ridge␣Error', fontsize=12)
73 plt.title(f'Ridge␣Error␣vs␣Regularization␣Strength␣(n={n},␣p={int(c1␣*␣n)},␣N={int(c2␣*␣n)})'

)
74 plt.grid(True, which='both', linestyle='--', alpha=0.7)
75 plt.tight_layout()
76 plt.show()

A.4. Error Metrics and γ value over number of data points 70

A.4. Error Metrics and γ value over number of data points
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import linalg
4

5

6 #############################
7 # 1) Basic definitions
8 #############################
9

10 def sigma(t):
11 # For this example, just use linear activation
12 return t
13

14

15 def K(x, y):
16 # Kernel function for the linear activation
17 return x.T @ y
18

19

20 def find_delta(gamma, X_train, N, accuracy=1e-3):
21 """
22 Numerically solves for the delta parameter used in the deterministic equivalents.
23 """
24 n_train = X_train.shape[1]
25 delta_prev = 1.0
26 delta_next = 0.0
27 while abs(delta_prev - delta_next) > accuracy:
28 delta_prev = delta_next
29 Q_ = np.linalg.inv((N / n_train) * K(X_train, X_train) / (1 + delta_next) + gamma *

np.eye(n_train))
30 delta_next = (1 / n_train) * np.trace(Q_ @ K(X_train, X_train))
31 return delta_next
32

33

34 #############################
35 # 2) Error metrics
36 #############################
37

38 def Etest(gamma, X_train, Y_train, X_test, Y_test, N_loops=10):
39 """
40 Monte Carlo (random) test MSE:
41 - Randomly draw W, compute Sigm = sigma(W X_train)
42 - Solve ridge, apply to test set, average over N_loops
43 """
44 n_train = X_train.shape[1]
45 n_test = X_test.shape[1]
46 p = X_train.shape[0]
47

48 E_test_vals = []
49 for _ in range(N_loops):
50 W = np.random.randn(N, p)
51 Sigm = sigma(W @ X_train) # shape (N, n_train)
52 Sigm_test = sigma(W @ X_test) # shape (N, n_test)
53

54 # Solve for ridge coefficients: (1/n_train)*Sigm * inv(Sigm^T Sigm/n_train + gamma I
) * Y_train

55 A = Sigm.T @ Sigm / n_train + gamma * np.eye(n_train)
56 invA_Y = linalg.solve(A, Y_train, assume_a='pos') # shape (n_train,)
57 beta = (Sigm / n_train) @ invA_Y
58

59 # Evaluate test error
60 pred_test = Sigm_test.T @ beta # shape (n_test,)
61 err = np.mean((Y_test - pred_test) ** 2)
62 E_test_vals.append(err)
63

64 return np.mean(E_test_vals)
65

66

67 def Etest_det(gamma, X_train, Y_train, X_test, Y_test):

A.4. Error Metrics and γ value over number of data points 71

68 """
69 Deterministic equivalent test MSE (approximation).
70 """
71 n_train = X_train.shape[1]
72 n_test = X_test.shape[1]
73 N = int(c2 * (n_train + n_test)) # or pass as a parameter
74 delta = find_delta(gamma, X_train, N)
75

76 Q_ = np.linalg.inv((N / n_train) * K(X_train, X_train) / (1 + delta) + gamma * np.eye(
n_train))

77 K_ = (N / n_train) * K(X_train, X_train) / (1 + delta)
78 K_xX = (N / n_train) * K(X_train, X_test) / (1 + delta)
79 K_XX = (N / n_train) * K(X_test, X_test) / (1 + delta)
80

81 # first "direct" MSE part: (1/n_test)* ||Y_test - K_xX^T Q_ Y_train||^2
82 residual = Y_test - (K_xX.T @ (Q_ @ Y_train))
83 partA = np.mean(residual ** 2)
84

85 # second "correction" part from random matrix theory
86 num = (1 / N) * (Y_train.T @ Q_ @ K_ @ Q_ @ Y_train)
87 den = (1 - (1 / N) * np.trace(K_ @ Q_ @ K_ @ Q_))
88

89 partB = num / den * ((1 / n_test) * np.trace(K_XX)
90 - (1 / n_test) * np.trace((np.eye(n_train) + gamma * Q_) @ (K_xX @

K_xX.T @ Q_)))
91

92 return partA + partB
93

94

95 def Lridge(gamma, X_train, Y_train, b):
96 """
97 Ridge 'coefficient error': || beta_hat - b ||^2 / ||b||^2
98 with beta_hat found by ridge. We *don't* average over W here,
99 since 'b' depends on a *specific* W used to generate data.
100 """
101 n_train = X_train.shape[1]
102 Sigm = sigma(W_gen @ X_train) # use the same W that generated 'b'
103

104 A = Sigm.T @ Sigm / n_train + gamma * np.eye(n_train)
105 invA_Y = linalg.solve(A, Y_train, assume_a='pos')
106 beta = (Sigm / n_train) @ invA_Y
107

108 return np.linalg.norm(beta - b, 'fro') ** 2 / np.linalg.norm(b, 'fro') ** 2
109

110

111 #############################
112 # 3) Local runner
113 #############################
114

115 # Smaller test parameters
116 c1 = 1.0 # p/n
117 c2 = 0.7 # N/n
118 gammas = [10 ** x for x in np.arange(-7, 5, 0.5)] # e.g. gamma from 1e-3 to 1e3
119

120 n_values = [500, 600, 700] # smaller range
121 results_gamma_etest = []
122 results_gamma_etest_ = []
123 results_gamma_lridge = []
124

125 results_etest_vals = []
126 results_etest_vals_ = []
127 results_lridge_vals = []
128

129 for n in n_values:
130 # Dimensions
131 n_train = int(n * 0.8)
132 n_test = n - n_train
133 p = int(c1 * n)
134 N = int(c2 * n)
135

136 # Generate synthetic data for this n

A.4. Error Metrics and γ value over number of data points 72

137 # NOTE: store W_gen, b so we can use the same underlying W in Lridge
138 density = 50 # e.g. 50%
139 noise_level = 0.1
140

141 # Create a random W_gen for generating the data
142 W_gen = np.random.randn(N, p)
143

144

145 def Y_generator(X):
146 # We create a random 'b' with certain density:
147 b_local = np.random.choice([0, 1], size=(N, 1),
148 p=[1 - density / 100, density / 100])
149 # We'll keep track of b_local so we can measure Lridge
150 # but for clarity, let's store it outside in a closure
151 return sigma(W_gen @ X).T @ b_local, b_local
152

153

154 # Make X and Y
155 X_tr = np.random.randn(p, n_train)
156 Y_tr_gen, b_local = Y_generator(X_tr)
157 # Add noise
158 Y_tr = Y_tr_gen.ravel() + noise_level * np.random.randn(n_train)
159

160 X_te = np.random.randn(p, n_test)
161 Y_te_gen, _ = Y_generator(X_te)
162 Y_te = Y_te_gen.ravel() + noise_level * np.random.randn(n_test)
163

164 # Shuffle
165 perm_tr = np.random.permutation(n_train)
166 X_tr = X_tr[:, perm_tr]
167 Y_tr = Y_tr[perm_tr]
168

169 perm_te = np.random.permutation(n_test)
170 X_te = X_te[:, perm_te]
171 Y_te = Y_te[perm_te]
172

173

174 # We define a small function that can compute each metric for a given gamma
175 def measure_all_metrics(g):
176 # test error (random-based)
177 e_test = Etest(g, X_tr, Y_tr, X_te, Y_te, N_loops=5)
178 # test error (det-based)
179 e_test_approx = Etest_det(g, X_tr, Y_tr, X_te, Y_te)
180 # ridge error in param space
181 # but we need W_gen and b_local from above
182 # put them in global scope or closure
183 return e_test, e_test_approx
184

185

186 # Now search for optimal gamma for each metric
187 best_e_test = np.inf
188 best_e_test_g = None
189

190 best_e_test_approx = np.inf
191 best_e_test_approx_g = None
192

193 best_lridge = np.inf
194 best_lridge_g = None
195

196 for g in gammas:
197 # Etest
198 val_test = Etest(g, X_tr, Y_tr, X_te, Y_te, N_loops=5)
199 if val_test < best_e_test:
200 best_e_test = val_test
201 best_e_test_g = g
202

203 # Etest_det
204 val_test_det = Etest_det(g, X_tr, Y_tr, X_te, Y_te)
205 if val_test_det < best_e_test_approx:
206 best_e_test_approx = val_test_det
207 best_e_test_approx_g = g

A.4. Error Metrics and γ value over number of data points 73

208

209 # Lridge
210 # We need references to W_gen, b_local in scope
211 # so let's define them as global, or do it inline:
212 Sigm_gen = sigma(W_gen @ X_tr)
213 A = Sigm_gen.T @ Sigm_gen / n_train + g * np.eye(n_train)
214 invA_Y = linalg.solve(A, Y_tr, assume_a='pos')
215 beta_est = (Sigm_gen / n_train) @ invA_Y
216 this_lridge = (np.linalg.norm(beta_est - b_local, 'fro') ** 2
217 / np.linalg.norm(b_local, 'fro') ** 2)
218 if this_lridge < best_lridge:
219 best_lridge = this_lridge
220 best_lridge_g = g
221

222 # store results
223 results_gamma_etest.append(best_e_test_g)
224 results_etest_vals.append(best_e_test)
225

226 results_gamma_etest_.append(best_e_test_approx_g)
227 results_etest_vals_.append(best_e_test_approx)
228

229 results_gamma_lridge.append(best_lridge_g)
230 results_lridge_vals.append(best_lridge)
231

232 #############################
233 # 4) Plot results
234 #############################
235

236 fig, axs = plt.subplots(1, 2, figsize=(12, 5))
237

238 # (a) Plot the optimal gamma for each metric vs n
239 axs[0].plot(n_values, results_gamma_etest , 'bo-', label='Gamma␣for␣Etest')
240 axs[0].plot(n_values, results_gamma_etest_ , 'mo-', label='Gamma␣for␣Etest_␣approx')
241 axs[0].plot(n_values, results_gamma_lridge , 'ro-', label='Gamma␣for␣Lridge')
242 axs[0].set_xscale('log')
243 axs[0].set_yscale('log')
244 axs[0].set_xlabel('n')
245 axs[0].set_ylabel('Optimal␣gamma␣(log␣scale)')
246 axs[0].legend()
247 axs[0].set_title('Optimal␣gamma␣vs.␣n')
248

249 # (b) Plot the *minimum* error achieved vs n (for each metric)
250 axs[1].plot(n_values, results_etest_vals, 'b*-', label='Min␣Etest')
251 axs[1].plot(n_values, results_etest_vals_ , 'm*-', label='Min␣Etest_␣approx')
252 axs[1].plot(n_values, results_lridge_vals , 'r*-', label='Min␣Lridge')
253 axs[1].set_xscale('log')
254 axs[1].set_yscale('log')
255 axs[1].set_xlabel('n')
256 axs[1].set_ylabel('Error␣(log␣scale)')
257 axs[1].legend()
258 axs[1].set_title('Minimum␣achieved␣error␣vs.␣n')
259

260 plt.tight_layout()
261 plt.show()

A.5. Derivative-based loss functions against γ parameter (different noise levels) 74

A.5. Derivative-based loss functions against γ parameter (differ-
ent noise levels)

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def sigma(t):
5 """
6 Small sigma function of choice
7 :param t: input
8 :return: output
9 """
10 return t
11

12

13 def K(x, y):
14 """
15 Kernel function. Depends on the choice of a small sigma function
16 :param x: first 'point' set
17 :param y: second 'point' set
18 :return: matrix of measures of 'distances' between points
19 """
20 return x.T@y
21

22

23 def K_(x, y, delta, N, n_train):
24 """
25 Function to compute kernel approximation
26 :param x: first 'point' set
27 :param y: second 'point' set
28 :param delta: delta parameter
29 :return: approximation for the kernel matrix
30 """
31 k_ = (N/n_train)*((K(x, y))/(1+delta))
32 return k_
33

34

35 def find_delta(gamma, X_train, N, accuracy) -> float:
36 """
37 Helper-function that finds delta parameter for the resolvent Q iteratively
38 :param gamma: ridge penalty value
39 :param X_train: training set
40 :param N: number of neurons in the hidden layer
41 :param accuracy: accuracy for numerical delta finding
42 :return: optimal value for delta parameter for the resolvent Q
43 """
44 n_train = X_train.shape[1]
45 delta_prev = 1
46 delta_next = 0
47 while abs(delta_prev-delta_next) > accuracy:
48 delta_prev = delta_next
49 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta_next)) + gamma*np.eye(

n_train))
50 delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
51 return delta_next
52

53

54 def Etrain_(gamma, data, npN):
55 """
56 Estimated train error compute (expectation based, deterministic)
57 :param gamma: ridge penalty value
58 :param data: train/test data
59 :param npN: dimensionality of the data and number of Neurons
60 :return: estimated training error
61 """
62 # Unpacking variables:
63 X_train, X_test, Y_train, Y_test = data
64 n_train, n_test, p, N = npN
65

66 delta = find_delta(gamma, X_train, N, delta_accuracy)

A.5. Derivative-based loss functions against γ parameter (different noise levels) 75

67 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
68 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
69

70 #E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N)*np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

71 E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

72

73 return E_train_
74

75

76 def Etest_(gamma, data, npN):
77 """
78 Estimated test error compute (expectation based, deterministic)
79 :param gamma: ridge penalty value
80 :param data: train/test
81 :param npN: dimensionality of the data and number of Neurons
82 :return: estimated test error
83 """
84 # Unpacking variables:
85 X_train, X_test, Y_train, Y_test = data
86 n_train, n_test, p, N = npN
87

88 delta = 0.0
89 delta = find_delta(gamma, X_train, N, delta_accuracy)
90 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
91 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
92 K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))
93 K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))
94

95 #E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.matrix.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

96 E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

97

98 return E_test_
99

100

101 def estimate_variance_RSS(Y, Sigm, n, gamma):
102 QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)
103 beta_hat = Sigm / n @ QyT
104

105 y_est = beta_hat.T @ Sigm
106

107 # variance already squared
108 variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm^2
109 return variance
110

111

112 def dL_dy_expected(gamma, X, Y, W, variance):
113 """
114 "Oracle". Conditional expectation w.r.t. epsilon, taken
115 from an unfolded derivative of Loss function ||beta-b||**2
116 by gamma (set equal to 0). Some 'oracle' prediction for loss.
117 :param gamma: gamma parameter (1x1)
118 :param X: input data (pxn)
119 :param Y: output data (dxn)
120 :param W: weights matrix (Nxp)
121 :param eps: noise vector (dxn)
122 :return: calculated value of the derivative
123 """
124 Sigm = sigma(W @ X) # Size Nxn
125 n = X.shape[1]
126

127 Q = (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
128 Q_inv = np.linalg.inv(Q)
129 Q_inv2 = Q_inv @ Q_inv
130 Q_inv3 = Q_inv2 @ Q_inv

A.5. Derivative-based loss functions against γ parameter (different noise levels) 76

131

132 dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
133 return dL_dy_exp
134

135

136 def dL_dy_estimated(gamma, X, Y, W, variance=1):
137 """
138 Calculation of the unfolded derivative of Loss function ||beta-b||**2
139 under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle' one.
140 :param gamma: gamma parameter (1x1)
141 :param X: input data (pxn)
142 :param Y: output data (dxn)
143 :param W: weights matrix (Nxp)
144 :param eps: noise vector (dxn)
145 :return: calculated value of the derivative
146 """
147 Sigm = sigma(W @ X) # Size Nxn
148 n = X.shape[1]
149

150 Q = (1 / n * (Sigm.T @ Sigm) + gamma * np.eye(n))
151 Q_inv = np.linalg.inv(Q)
152 Q_inv2 = Q_inv @ Q_inv
153 Q_inv3 = Q_inv2 @ Q_inv
154

155 estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)
156

157 dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
158 return dL_dy_exp
159

160

161 def generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
162 """
163 Generates data for the model:
164 Y = b^T * Sigma + eps
165 with Sigma = W @ X and b has 'density'% of 1's.
166

167 Shapes:
168 X_train: (p, n_train)
169 X_test: (p, n_test)
170 W: (N, p)
171 b: (N, d) -- if d=1 => shape (N,1)
172 Y_train, e_train: (d, n_train)
173 Y_test, e_test: (d, n_test)
174

175 :param npN: (n_train, n_test, p, N)
176 :param density: percentage for b's 1's
177 :param d: dimension of output (1 => scalar outputs)
178 :param noise_level: std-dev of Gaussian noise
179 :return: (X_train, X_test, Y_train, Y_test, W, b, e_train, e_test)
180 """
181 n_train, n_test, p, N = npN
182

183 # 1) Generate X
184 X_train = np.random.randn(p, n_train) # (p, n_train)
185 X_test = np.random.randn(p, n_test) # (p, n_test)
186

187 # 2) Generate b (N x d), if d=1 => (N,1)
188 b = np.random.choice([0, 1],
189 size=(N, d),
190 p=[1 - density / 100, density / 100])
191

192 # 3) Generate W (N x p)
193 W = np.random.randn(N, p)
194

195 def make_data(X):
196 """
197 Given X with shape (p, n), returns:
198 Y: (d, n)
199 e: (d, n)
200 Sigm: (N, n) [might be useful if needed]
201 """

A.5. Derivative-based loss functions against γ parameter (different noise levels) 77

202 # Sigma = W @ X => (N, n)
203 Sigm = sigma(W @ X)
204

205 # Noise eps => (d, n)
206 e = np.random.normal(loc=0, scale=noise_level, size=(d, X.shape[1]))
207

208 # b^T shape => (d, N), so b^T @ Sigm => (d, n)
209 Y = (b.T @ Sigm) + e
210

211 return Y, e, Sigm
212

213 # 4) Make training data (Y_train_full, e_train_full)
214 Y_train_full, e_train_full, Sigm_train = make_data(X_train)
215

216 # 5) Make test data (Y_test_full, e_test_full)
217 Y_test_full, e_test_full, Sigm_test = make_data(X_test)
218

219 # 6) Shuffle columns (the "sample" axis) in X, Y, e
220 # X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
221 idx_train = np.random.permutation(n_train)
222 idx_test = np.random.permutation(n_test)
223

224 X_train = X_train[:, idx_train]
225 Y_train_full = Y_train_full[:, idx_train]
226 e_train_full = e_train_full[:, idx_train]
227

228 X_test = X_test[:, idx_test]
229 Y_test_full = Y_test_full[:, idx_test]
230 e_test_full = e_test_full[:, idx_test]
231

232 # 7) Return them all in consistent shapes
233 # No flattening is required; Y and e remain (d,n).
234 return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full, e_test_full
235

236

237 def L_ridge(gamma, X, Y, W, b):
238 n = X.shape[1]
239 Sigm = sigma(W @ X)
240

241 QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
242 beta = Sigm/n @ QyT
243

244 numerator = np.linalg.norm(beta - b,'fro')**2
245 denominator = np.linalg.norm(b, 'fro')**2
246

247 return numerator/denominator
248

249

250 def plot_estimated_vs_oracle_different_xranges():
251 """
252 Left subplot:
253 dL/dgamma (estimated RSS) over gamma in [1e-5, 1e3] (step 0.005 in log10).
254 Right subplot:
255 dL/dgamma (oracle) over gamma in [1e-3, 1e2] (step 0.005 in log10).
256 We loop over noise_levels=[1,2,3,4,5].
257 """
258

259 # Basic scenario
260 noise_levels = [1,2,3,4,5]
261

262 # c1, c2 => p/n=1.0, N/n=0.8
263 n = 200
264 c1 = 1.0
265 c2 = 0.8
266

267 p = int(c1*n)
268 N = int(c2*n)
269 n_train = int(0.8*n)
270 n_test = n - n_train
271 npN = (n_train, n_test, p, N)
272

A.5. Derivative-based loss functions against γ parameter (different noise levels) 78

273 # Different gamma ranges
274 gammas_est = [10**y for y in np.arange(-4, 3, 0.005)] # ~1e-5 to ~1e3
275 gammas_oracle = [10**y for y in np.arange(-4, 2, 0.005)]# ~1e-3 to ~1e2
276

277 fig, (ax_est, ax_oracle) = plt.subplots(1, 2, figsize=(12,5))
278

279 # Loop over noise
280 for nl in noise_levels:
281 # Generate data for each noise
282 X_train, X_test, Y_train, Y_test, W, b, e_train, e_test = \
283 generate_synthetic_data_regression(npN, density=50, d=1, noise_level=nl)
284

285 # Evaluate dL/dgamma (est) over gammas_est
286 dL_est_vals = []
287 for g in gammas_est:
288 val_est = dL_dy_estimated(g, X_train, Y_train, W, variance=1.0)
289 dL_est_vals.append(val_est.item() if hasattr(val_est, 'item') else float(val_est)

)
290

291 # Evaluate dL/dgamma (oracle) over gammas_oracle
292 dL_oracle_vals = []
293 # We pass in the real variance = nl^2
294 for g in gammas_oracle:
295 val_oracle = dL_dy_expected(g, X_train, Y_train, W, variance=nl**2)
296 dL_oracle_vals.append(val_oracle.item() if hasattr(val_oracle, 'item') else float

(val_oracle))
297

298 # Plot them
299 ax_est.loglog(gammas_est, dL_est_vals, label=f"noise={nl}")
300 ax_oracle.loglog(gammas_oracle, dL_oracle_vals, label=f"noise={nl}")
301

302 # Label/Legend subplots
303 ax_est.set_title("Estimated␣Derivative␣(RSS)␣-␣Gamma␣in␣[1e-5,1e3]")
304 ax_est.set_xlabel("Gamma␣(log␣scale)")
305 ax_est.set_ylabel("dL/dGamma␣(EstVar)")
306 ax_est.grid(True, which='both', ls='--', alpha=0.7)
307 ax_est.legend()
308

309 ax_oracle.set_title("Oracle␣Derivative␣-␣Gamma␣in␣[1e-3,1e2]")
310 ax_oracle.set_xlabel("Gamma␣(log␣scale)")
311 ax_oracle.set_ylabel("dL/dGamma␣(Oracle)")
312 ax_oracle.grid(True, which='both', ls='--', alpha=0.7)
313 ax_oracle.legend()
314

315 fig.tight_layout()
316 plt.show()
317

318

319 if __name__ == "__main__":
320 plot_estimated_vs_oracle_different_xranges()

A.6. Direct loss with γ derived from minimizing different loss functions (including the
derivative-based) 79

A.6. Direct loss with γ derived from minimizing different loss func-
tions (including the derivative-based)

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def sigma(t):
5 """
6 Small sigma function of choice
7 :param t: input
8 :return: output
9 """
10 return t
11

12

13 def K(x, y):
14 """
15 Kernel function. Depends on the choice of a small sigma function
16 :param x: first 'point' set
17 :param y: second 'point' set
18 :return: matrix of measures of 'distances' between points
19 """
20 return x.T@y
21

22

23 def K_(x, y, delta, N, n_train):
24 """
25 Function to compute kernel approximation
26 :param x: first 'point' set
27 :param y: second 'point' set
28 :param delta: delta parameter
29 :return: approximation for the kernel matrix
30 """
31 k_ = (N/n_train)*((K(x, y))/(1+delta))
32 return k_
33

34

35 def find_delta(gamma, X_train, N, accuracy) -> float:
36 """
37 Helper-function that finds delta parameter for the resolvent Q iteratively
38 :param gamma: ridge penalty value
39 :param X_train: training set
40 :param N: number of neurons in the hidden layer
41 :param accuracy: accuracy for numerical delta finding
42 :return: optimal value for delta parameter for the resolvent Q
43 """
44 n_train = X_train.shape[1]
45 delta_prev = 1
46 delta_next = 0
47 while abs(delta_prev-delta_next) > accuracy:
48 delta_prev = delta_next
49 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta_next)) + gamma*np.eye(

n_train))
50 delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
51 return delta_next
52

53

54 def Etrain_(gamma, data, npN):
55 """
56 Estimated train error compute (expectation based, deterministic)
57 :param gamma: ridge penalty value
58 :param data: train/test data
59 :param npN: dimensionality of the data and number of Neurons
60 :return: estimated training error
61 """
62 # Unpacking variables:
63 X_train, X_test, Y_train, Y_test = data
64 n_train, n_test, p, N = npN
65

66 delta = find_delta(gamma, X_train, N, delta_accuracy)

A.6. Direct loss with γ derived from minimizing different loss functions (including the
derivative-based) 80

67 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
68 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
69

70 #E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N)*np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

71 E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

72

73 return E_train_
74

75

76 def Etest_(gamma, data, npN):
77 """
78 Estimated test error compute (expectation based, deterministic)
79 :param gamma: ridge penalty value
80 :param data: train/test
81 :param npN: dimensionality of the data and number of Neurons
82 :return: estimated test error
83 """
84 # Unpacking variables:
85 X_train, X_test, Y_train, Y_test = data
86 n_train, n_test, p, N = npN
87

88 delta = 0.0
89 delta = find_delta(gamma, X_train, N, delta_accuracy)
90 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
91 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
92 K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))
93 K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))
94

95 #E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.matrix.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

96 E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

97

98 return E_test_
99

100

101 def estimate_variance_RSS(Y, Sigm, n, gamma):
102 QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)
103 beta_hat = Sigm / n @ QyT
104

105 y_est = beta_hat.T @ Sigm
106

107 # variance already squared
108 variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm^2
109 return variance
110

111

112 def dL_dy_expected(gamma, X, Y, W, variance):
113 """
114 "Oracle". Conditional expectation w.r.t. epsilon, taken
115 from an unfolded derivative of Loss function ||beta-b||**2
116 by gamma (set equal to 0). Some 'oracle' prediction for loss.
117 :param gamma: gamma parameter (1x1)
118 :param X: input data (pxn)
119 :param Y: output data (dxn)
120 :param W: weights matrix (Nxp)
121 :param eps: noise vector (dxn)
122 :return: calculated value of the derivative
123 """
124 Sigm = sigma(W @ X) # Size Nxn
125 n = X.shape[1]
126

127 Q = (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
128 Q_inv = np.linalg.inv(Q)
129 Q_inv2 = Q_inv @ Q_inv
130 Q_inv3 = Q_inv2 @ Q_inv

A.6. Direct loss with γ derived from minimizing different loss functions (including the
derivative-based) 81

131

132 dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
133 return dL_dy_exp
134

135

136 def dL_dy_estimated(gamma, X, Y, W, variance=1):
137 """
138 Calculation of the unfolded derivative of Loss function ||beta-b||**2
139 under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle' one.
140 :param gamma: gamma parameter (1x1)
141 :param X: input data (pxn)
142 :param Y: output data (dxn)
143 :param W: weights matrix (Nxp)
144 :param eps: noise vector (dxn)
145 :return: calculated value of the derivative
146 """
147 Sigm = sigma(W @ X) # Size Nxn
148 n = X.shape[1]
149

150 Q = (1 / n * (Sigm.T @ Sigm) + gamma * np.eye(n))
151 Q_inv = np.linalg.inv(Q)
152 Q_inv2 = Q_inv @ Q_inv
153 Q_inv3 = Q_inv2 @ Q_inv
154

155 estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)
156

157 dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
158 return dL_dy_exp
159

160

161 def generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
162 """
163 Generates data for the model:
164 Y = b^T * Sigma + eps
165 with Sigma = W @ X and b has 'density'% of 1's.
166

167 Shapes:
168 X_train: (p, n_train)
169 X_test: (p, n_test)
170 W: (N, p)
171 b: (N, d) -- if d=1 => shape (N,1)
172 Y_train, e_train: (d, n_train)
173 Y_test, e_test: (d, n_test)
174

175 :param npN: (n_train, n_test, p, N)
176 :param density: percentage for b's 1's
177 :param d: dimension of output (1 => scalar outputs)
178 :param noise_level: std-dev of Gaussian noise
179 :return: (X_train, X_test, Y_train, Y_test, W, b, e_train, e_test)
180 """
181 n_train, n_test, p, N = npN
182

183 # 1) Generate X
184 X_train = np.random.randn(p, n_train) # (p, n_train)
185 X_test = np.random.randn(p, n_test) # (p, n_test)
186

187 # 2) Generate b (N x d), if d=1 => (N,1)
188 b = np.random.choice([0, 1],
189 size=(N, d),
190 p=[1 - density / 100, density / 100])
191

192 # 3) Generate W (N x p)
193 W = np.random.randn(N, p)
194

195 def make_data(X):
196 """
197 Given X with shape (p, n), returns:
198 Y: (d, n)
199 e: (d, n)
200 Sigm: (N, n) [might be useful if needed]
201 """

A.6. Direct loss with γ derived from minimizing different loss functions (including the
derivative-based) 82

202 # Sigma = W @ X => (N, n)
203 Sigm = sigma(W @ X)
204

205 # Noise eps => (d, n)
206 e = np.random.normal(loc=0, scale=noise_level, size=(d, X.shape[1]))
207

208 # b^T shape => (d, N), so b^T @ Sigm => (d, n)
209 Y = (b.T @ Sigm) + e
210

211 return Y, e, Sigm
212

213 # 4) Make training data (Y_train_full, e_train_full)
214 Y_train_full, e_train_full, Sigm_train = make_data(X_train)
215

216 # 5) Make test data (Y_test_full, e_test_full)
217 Y_test_full, e_test_full, Sigm_test = make_data(X_test)
218

219 # 6) Shuffle columns (the "sample" axis) in X, Y, e
220 # X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
221 idx_train = np.random.permutation(n_train)
222 idx_test = np.random.permutation(n_test)
223

224 X_train = X_train[:, idx_train]
225 Y_train_full = Y_train_full[:, idx_train]
226 e_train_full = e_train_full[:, idx_train]
227

228 X_test = X_test[:, idx_test]
229 Y_test_full = Y_test_full[:, idx_test]
230 e_test_full = e_test_full[:, idx_test]
231

232 # 7) Return them all in consistent shapes
233 # No flattening is required; Y and e remain (d,n).
234 return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full, e_test_full
235

236

237 def L_ridge(gamma, X, Y, W, b):
238 n = X.shape[1]
239 Sigm = sigma(W @ X)
240

241 QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
242 beta = Sigm/n @ QyT
243

244 numerator = np.linalg.norm(beta - b,'fro')**2
245 denominator = np.linalg.norm(b, 'fro')**2
246

247 return numerator/denominator
248

249

250 def plot_estimated_vs_oracle_different_xranges():
251 """
252 Left subplot:
253 dL/dgamma (estimated RSS) over gamma in [1e-5, 1e3] (step 0.005 in log10).
254 Right subplot:
255 dL/dgamma (oracle) over gamma in [1e-3, 1e2] (step 0.005 in log10).
256 We loop over noise_levels=[1,2,3,4,5].
257 """
258

259 # Basic scenario
260 noise_levels = [1,2,3,4,5]
261

262 # c1, c2 => p/n=1.0, N/n=0.8
263 n = 200
264 c1 = 1.0
265 c2 = 0.8
266

267 p = int(c1*n)
268 N = int(c2*n)
269 n_train = int(0.8*n)
270 n_test = n - n_train
271 npN = (n_train, n_test, p, N)
272

A.6. Direct loss with γ derived from minimizing different loss functions (including the
derivative-based) 83

273 # Different gamma ranges
274 gammas_est = [10**y for y in np.arange(-4, 3, 0.005)] # ~1e-5 to ~1e3
275 gammas_oracle = [10**y for y in np.arange(-4, 2, 0.005)]# ~1e-3 to ~1e2
276

277 fig, (ax_est, ax_oracle) = plt.subplots(1, 2, figsize=(12,5))
278

279 # Loop over noise
280 for nl in noise_levels:
281 # Generate data for each noise
282 X_train, X_test, Y_train, Y_test, W, b, e_train, e_test = \
283 generate_synthetic_data_regression(npN, density=50, d=1, noise_level=nl)
284

285 # Evaluate dL/dgamma (est) over gammas_est
286 dL_est_vals = []
287 for g in gammas_est:
288 val_est = dL_dy_estimated(g, X_train, Y_train, W, variance=1.0)
289 dL_est_vals.append(val_est.item() if hasattr(val_est, 'item') else float(val_est)

)
290

291 # Evaluate dL/dgamma (oracle) over gammas_oracle
292 dL_oracle_vals = []
293 # We pass in the real variance = nl^2
294 for g in gammas_oracle:
295 val_oracle = dL_dy_expected(g, X_train, Y_train, W, variance=nl**2)
296 dL_oracle_vals.append(val_oracle.item() if hasattr(val_oracle, 'item') else float

(val_oracle))
297

298 # Plot them
299 ax_est.loglog(gammas_est, dL_est_vals, label=f"noise={nl}")
300 ax_oracle.loglog(gammas_oracle, dL_oracle_vals, label=f"noise={nl}")
301

302 # Label/Legend subplots
303 ax_est.set_title("Estimated␣Derivative␣(RSS)␣-␣Gamma␣in␣[1e-5,1e3]")
304 ax_est.set_xlabel("Gamma␣(log␣scale)")
305 ax_est.set_ylabel("dL/dGamma␣(EstVar)")
306 ax_est.grid(True, which='both', ls='--', alpha=0.7)
307 ax_est.legend()
308

309 ax_oracle.set_title("Oracle␣Derivative␣-␣Gamma␣in␣[1e-3,1e2]")
310 ax_oracle.set_xlabel("Gamma␣(log␣scale)")
311 ax_oracle.set_ylabel("dL/dGamma␣(Oracle)")
312 ax_oracle.grid(True, which='both', ls='--', alpha=0.7)
313 ax_oracle.legend()
314

315 fig.tight_layout()
316 plt.show()
317

318

319 if __name__ == "__main__":
320 plot_estimated_vs_oracle_different_xranges()

A.7. Convergence Study 84

A.7. Convergence Study
1 import numpy as np
2 from scipy import linalg
3

4 def sigma(t):
5 """
6 Small sigma function of choice
7 :param t: input
8 :return: output
9 """
10 return t
11

12

13 def K(x, y):
14 """
15 Kernel function. Depends on the choice of a small sigma function
16 :param x: first 'point' set
17 :param y: second 'point' set
18 :return: matrix of measures of 'distances' between points
19 """
20 return x.T@y
21

22

23 def K_(x, y, delta, N, n_train):
24 """
25 Function to compute kernel approximation
26 :param x: first 'point' set
27 :param y: second 'point' set
28 :param delta: delta parameter
29 :return: approximation for the kernel matrix
30 """
31 k_ = (N/n_train)*((K(x, y))/(1+delta))
32 return k_
33

34

35 def Etrain(gamma, data, npN, monte_carlo_loops=30):
36 """
37 Actual training error compute (random-based)
38 :param gamma: ridge penalty value
39 :param data: train/test data
40 :param npN: dimensionality of the data and num of neurons
41 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
42 :return: Training error
43 """
44 # Unpacking variables
45 X_train, X_test, Y_train, Y_test = data
46 n_train, n_test, p, N = npN
47

48 E_train_arr = []
49 p = X_train.shape[0]
50

51 for i in range(monte_carlo_loops):
52

53 # W = np.random.randn(N, p)
54 # Sigm = sigma(W@X_train)
55 # Q_y = np.linalg.inv((1/n_train)*Sigm.T@Sigm + gamma*np.eye(n_train))
56 #
57 # E_train = (gamma*gamma/n_train)*Y_train@np.linalg.matrix_power(Q_y, 2)@Y_train.T
58 # E_train_arr.append(E_train)
59

60 W = np.random.randn(N, p)
61 Sigm = sigma(W @ X_train)
62 Sigm_ = sigma(W @ X_test)
63

64 inv_tQ_r = linalg.solve(Sigm.T @ Sigm / n_train + gamma * np.eye(n_train), Y_train)
65 beta = Sigm / n_train @ inv_tQ_r
66

67 E_train = np.linalg.norm(Y_train-Sigm.T@beta)**2/n_train
68 E_train_arr.append(E_train)

A.7. Convergence Study 85

69

70 return np.mean(np.array(E_train_arr))
71

72

73 def Etest(gamma, data, npN, monte_carlo_loops=20):
74 """
75 Actual test error compute (random-based)
76 :param gamma: ridge penalty value
77 :param data: train/test data
78 :param npN: dimensionality of the data and number of neurons
79 :param monte_carlo_loops: number of iterations for E value averaging for different

generated W
80 :return: Test error
81 """
82 # Unpacking variables
83 X_train, X_test, Y_train, Y_test = data
84 n_train, n_test, p, N = npN
85

86 E_test_arr = []
87 p = X_train.shape[0]
88

89 for i in range(monte_carlo_loops):
90

91 W = np.random.randn(N, p)
92 Sigm = sigma(W@X_train)
93 Sigm_ = sigma(W@X_test)
94

95 inv_tQ_r = linalg.solve(Sigm.T@Sigm/n_train + gamma * np.eye(n_train), Y_train)
96 beta = Sigm/n_train @ inv_tQ_r
97

98 # Q_y = np.linalg.inv((1 / n_train) * Sigm.T @ Sigm + gamma * np.eye(n_train))
99

100 # term1 = (1/n_test)*(Y_test@Y_test.T)
101 # term2 = (2/(n_train*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Y_test.T)
102 # term3 = (1/(n_train**2*n_test))*(Y_train@Q_y@Sigm.T@Sigm_@Sigm_.T@Sigm@Q_y@Y_train.

T)
103

104

105 E_test = np.linalg.norm(Y_test-Sigm_.T@beta)**2/n_test
106 E_test_arr.append(E_test)
107

108 ans = np.mean(np.array(E_test_arr))
109

110 return ans
111

112

113 def find_delta(gamma, X_train, N, accuracy) -> float:
114 """
115 Helper-function that finds delta parameter for the resolvent Q iteratively
116 :param gamma: ridge penalty value
117 :param X_train: training set
118 :param N: number of neurons in the hidden layer
119 :param accuracy: accuracy for numerical delta finding
120 :return: optimal value for delta parameter for the resolvent Q
121 """
122 n_train = X_train.shape[1]
123 delta_prev = 1
124 delta_next = 0
125 while abs(delta_prev-delta_next) > accuracy:
126 delta_prev = delta_next
127 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta_next)) + gamma*np.eye(

n_train))
128 delta_next = (1/n_train)*(np.trace(Q_@K(X_train, X_train)))
129 return delta_next
130

131

132

133 def Etrain_(gamma, data, npN):
134 """
135 Estimated train error compute (expectation based, deterministic)
136 :param gamma: ridge penalty value

A.7. Convergence Study 86

137 :param data: train/test data
138 :param npN: dimensionality of the data and number of Neurons
139 :return: estimated training error
140 """
141 # Unpacking variables:
142 X_train, X_test, Y_train, Y_test = data
143 n_train, n_test, p, N = npN
144

145 delta = find_delta(gamma, X_train, N, delta_accuracy)
146 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
147 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
148

149 #E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.matrix.trace(Q_@K_@Q_))/((1 - 1/
N)*np.matrix.trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

150 E_train_ = ((gamma**2)/n_train)*(Y_train@Q_@((((1/N)*np.trace(Q_@K_@Q_))/((1 - 1/N)*np.
trace(K_@Q_@K_@Q_)))*K_ + np.eye(n_train))@Q_@Y_train.T)

151

152 return E_train_
153

154

155 def Etest_(gamma, data, npN):
156 """
157 Estimated test error compute (expectation based, deterministic)
158 :param gamma: ridge penalty value
159 :param data: train/test
160 :param npN: dimensionality of the data and number of Neurons
161 :return: estimated test error
162 """
163 # Unpacking variables:
164 X_train, X_test, Y_train, Y_test = data
165 n_train, n_test, p, N = npN
166

167 delta = 0.0
168 delta = find_delta(gamma, X_train, N, delta_accuracy)
169 Q_ = np.linalg.inv((N/n_train)*(K(X_train, X_train)/(1+delta)) + gamma*np.eye(n_train))
170 K_ = (N/n_train)*(K(X_train, X_train)/(1+delta))
171 K_xX = (N/n_train)*(K(X_train, X_test)/(1+delta))
172 K_XX = (N/n_train)*(K(X_test, X_test)/(1+delta))
173

174 #E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.matrix.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.
matrix.trace(K_XX) - (1/n_test)*np.matrix.trace((np.eye(n_train) + gamma*Q_)@(
K_xX@K_xX.T@Q_)))

175 E_test_ = (1/n_test)*np.sum((Y_test.T - K_xX.T@Q_@Y_train.T)**2) + (((1/N)*(
Y_train@Q_@K_@Q_@Y_train.T))/((1-1/N)*np.trace(K_@Q_@K_@Q_)))*((1/n_test)*np.trace(
K_XX) - (1/n_test)*np.trace((np.eye(n_train) + gamma*Q_)@(K_xX@K_xX.T@Q_)))

176

177 return E_test_
178

179

180 def estimate_variance_RSS(Y, Sigm, n, gamma):
181 QyT = np.linalg.solve(Sigm.T @ Sigm / n + gamma * np.eye(n), Y.T)
182 beta_hat = Sigm / n @ QyT
183

184 y_est = beta_hat.T @ Sigm
185

186 # variance already squared
187 variance = ((Y - y_est) @ (Y - y_est).T)/n # sigm^2
188 return variance
189

190

191 def dL_dy_real(gamma, X, Y, W, eps):
192 """
193 Real unfolded derivative of Loss function ||beta-b||**2 by gamma (set equal to 0)
194 :param gamma: gamma parameter (1x1)
195 :param X: input data (pxn)
196 :param Y: output data (dxn)
197 :param W: weights matrix (Nxp)
198 :param eps: noise vector (dxn)
199 :return: calculated value of the derivative
200 """

A.7. Convergence Study 87

201 Sigm = sigma(W @ X) # Size Nxn
202 n = X.shape[1]
203

204 Q = (1/n) * (Sigm.T @ Sigm) + gamma * np.eye(n)
205 Q_inv = np.linalg.inv(Q)
206 Q_inv2 = Q_inv @ Q_inv
207 Q_inv3 = Q_inv2 @ Q_inv
208

209 dL_dy = gamma*(Y @ Q_inv3 @ Y.T) - (Y @ Q_inv2 @ eps.T)
210 return dL_dy
211

212

213 def dL_dy_expected(gamma, X, Y, W, variance):
214 """
215 "Oracle". Conditional expectation w.r.t. epsilon, taken
216 from an unfolded derivative of Loss function ||beta-b||**2
217 by gamma (set equal to 0). Some 'oracle' prediction for loss.
218 :param gamma: gamma parameter (1x1)
219 :param X: input data (pxn)
220 :param Y: output data (dxn)
221 :param W: weights matrix (Nxp)
222 :param eps: noise vector (dxn)
223 :return: calculated value of the derivative
224 """
225 Sigm = sigma(W @ X) # Size Nxn
226 n = X.shape[1]
227

228 Q = (1/n * (Sigm.T @ Sigm) + gamma * np.eye(n))
229 Q_inv = np.linalg.inv(Q)
230 Q_inv2 = Q_inv @ Q_inv
231 Q_inv3 = Q_inv2 @ Q_inv
232

233 dL_dy_exp = gamma*(Y @ Q_inv3 @ Y.T) - variance * np.trace(Q_inv2)
234 return dL_dy_exp
235

236

237 def dL_dy_estimated(gamma, X, Y, W, variance=1):
238 """
239 Calculation of the unfolded derivative of Loss function ||beta-b||**2
240 under expectation w.r.t. epsilon, with estimated variance instead of real 'oracle' one.
241 :param gamma: gamma parameter (1x1)
242 :param X: input data (pxn)
243 :param Y: output data (dxn)
244 :param W: weights matrix (Nxp)
245 :param eps: noise vector (dxn)
246 :return: calculated value of the derivative
247 """
248 Sigm = sigma(W @ X) # Size Nxn
249 n = X.shape[1]
250

251 Q = (1 / n * (Sigm.T @ Sigm) + gamma * np.eye(n))
252 Q_inv = np.linalg.inv(Q)
253 Q_inv2 = Q_inv @ Q_inv
254 Q_inv3 = Q_inv2 @ Q_inv
255

256 estimated_var = estimate_variance_RSS(Y, Sigm, n, gamma)
257

258 dL_dy_exp = gamma * (Y @ Q_inv3 @ Y.T) - estimated_var * np.trace(Q_inv2)
259 return dL_dy_exp
260

261

262 def dL_dy_estimated_fixed_rss(gamma, X, Y, W, variance, gamma_rss):
263 """
264 "Estimated" derivative: dL/dgamma, but the RSS-based variance is computed
265 at 'gamma_rss'. Then the derivative uses the current 'gamma' for the Q
266 in the standard formula:
267 derivative = gamma*(Y Q_inv^3 Y^T) - est_var * trace(Q_inv^2)
268 where est_var is from 'estimate_variance_RSS(Y, Sigm, n, gamma_rss)'.
269 """
270 n = X.shape[1]
271 Sigm = W @ X # shape (N, n)

A.7. Convergence Study 88

272

273 # Build Q for *this gamma*:
274 Q = (1.0/n) * (Sigm.T @ Sigm) + gamma*np.eye(n)
275 Q_inv = np.linalg.inv(Q)
276 Q_inv2 = Q_inv @ Q_inv
277 Q_inv3 = Q_inv2 @ Q_inv
278

279 # We do the RSS-based variance at 'gamma_rss'
280 # Must call 'estimate_variance_RSS':
281 est_var = estimate_variance_RSS(Y, Sigm, n, gamma_rss)
282

283 # derivative:
284 term1 = gamma * (Y @ Q_inv3 @ Y.T) # shape (1,1)
285 term2 = est_var * np.trace(Q_inv2)
286 dL = term1 - term2
287

288 # Convert to float
289 if hasattr(dL, "item"):
290 return float(dL.item())
291 return float(dL)
292

293

294 def generate_synthetic_data_regression(npN, density, d=1, noise_level=0.1):
295 """
296 Generates data for the model:
297 Y = b^T * Sigma + eps
298 with Sigma = W @ X and b has 'density'% of 1's.
299

300 Shapes:
301 X_train: (p, n_train)
302 X_test: (p, n_test)
303 W: (N, p)
304 b: (N, d) -- if d=1 => shape (N,1)
305 Y_train, e_train: (d, n_train)
306 Y_test, e_test: (d, n_test)
307

308 :param npN: (n_train, n_test, p, N)
309 :param density: percentage for b's 1's
310 :param d: dimension of output (1 => scalar outputs)
311 :param noise_level: std-dev of Gaussian noise
312 :return: (X_train, X_test, Y_train, Y_test, W, b, e_train, e_test)
313 """
314 n_train, n_test, p, N = npN
315

316 # 1) Generate X
317 X_train = np.random.randn(p, n_train) # (p, n_train)
318 X_test = np.random.randn(p, n_test) # (p, n_test)
319

320 # 2) Generate b (N x d), if d=1 => (N,1)
321 b = np.random.choice([0, 1],
322 size=(N, d),
323 p=[1 - density / 100, density / 100])
324

325 # 3) Generate W (N x p)
326 W = np.random.randn(N, p)
327

328 def make_data(X):
329 """
330 Given X with shape (p, n), returns:
331 Y: (d, n)
332 e: (d, n)
333 Sigm: (N, n) [might be useful if needed]
334 """
335 # Sigma = W @ X => (N, n)
336 Sigm = sigma(W @ X)
337

338 # Noise eps => (d, n)
339 e = np.random.normal(loc=0, scale=noise_level, size=(d, X.shape[1]))
340

341 # b^T shape => (d, N), so b^T @ Sigm => (d, n)
342 Y = (b.T @ Sigm) + e

A.7. Convergence Study 89

343

344 return Y, e, Sigm
345

346 # 4) Make training data (Y_train_full, e_train_full)
347 Y_train_full, e_train_full, Sigm_train = make_data(X_train)
348

349 # 5) Make test data (Y_test_full, e_test_full)
350 Y_test_full, e_test_full, Sigm_test = make_data(X_test)
351

352 # 6) Shuffle columns (the "sample" axis) in X, Y, e
353 # X is (p, n), Y,e are (d, n). We shuffle axis=1 for each.
354 idx_train = np.random.permutation(n_train)
355 idx_test = np.random.permutation(n_test)
356

357 X_train = X_train[:, idx_train]
358 Y_train_full = Y_train_full[:, idx_train]
359 e_train_full = e_train_full[:, idx_train]
360

361 X_test = X_test[:, idx_test]
362 Y_test_full = Y_test_full[:, idx_test]
363 e_test_full = e_test_full[:, idx_test]
364

365 # 7) Return them all in consistent shapes
366 # No flattening is required; Y and e remain (d,n).
367 return X_train, X_test, Y_train_full, Y_test_full, W, b, e_train_full, e_test_full
368

369

370 def find_optimal_gamma_grid(gammas, f, data, npN):
371 """
372 Minimizes f(gamma, data, npN) by scanning over 'gammas'.
373 Returns (best_gamma, best_value).
374 """
375 vals = [f(g, data, npN) for g in gammas]
376 i_min = np.argmin(vals)
377 return float(gammas[i_min]), float(vals[i_min])
378

379

380 def find_zero_derivative_grid(gammas, deriv_func):
381 """
382 Finds gamma that yields derivative closest to zero in absolute value,
383 scanning 'gammas'. Returns (best_gamma, best_deriv_value).
384 The caller is expected to provide a function deriv_func(g).
385 """
386 vals = [deriv_func(g) for g in gammas]
387 abs_vals = np.abs(vals)
388 i_min = np.argmin(abs_vals)
389 return float(gammas[i_min]), float(vals[i_min])
390

391

392 def L_ridge(gamma, X, Y, W, b):
393 n = X.shape[1]
394 Sigm = sigma(W @ X)
395

396 QyT = np.linalg.solve(Sigm.T@Sigm/n + gamma*np.eye(n), Y.T)
397 beta = Sigm/n @ QyT
398

399 numerator = np.linalg.norm(beta - b,'fro')**2
400 denominator = np.linalg.norm(b, 'fro')**2
401

402 return numerator/denominator
403

404 def find_optimal_gamma_grid(gammas, f, data, npN):
405 """
406 Minimizes f(gamma, data, npN) by scanning over 'gammas'.
407 Returns (best_gamma, best_value).
408 best_gamma is a float, best_value is float.
409 """
410 vals = [f(g, data, npN) for g in gammas]
411 i_min = np.argmin(vals)
412 return float(gammas[i_min]), float(vals[i_min])
413

A.7. Convergence Study 90

414

415 if __name__ == "__main__":
416

417 # ---------- fixed experiment parameters ----------
418 delta_accuracy = 1e-3
419 b_vector_density = 50 # (% of ones in true b)
420 noise_level = 8 # � of additive noise
421 real_variance = noise_level**2
422 c1, c2 = 1.0, 0.8 # p/n and N/n
423 n_values = [100, 200, 300]
424 num_repeats = 10 # averages per n
425 gammas_grid = [10**x for x in np.arange(-6, 3, 0.01)]
426 # ---
427

428 # containers
429 n_arr = []
430 gEtrain_arr, gEtest_arr = [], []
431 gOracle_arr, gEstVar_arr = [], []
432

433 lrEtrain_arr, lrEtest_arr = [], []
434 lrOracle_arr, lrEstVar_arr = [], []
435

436 # ---------------- main loop on sample size ----------------
437 for n in n_values:
438

439 # running sums to form averages across repeats
440 sum_gEtrain = sum_gEtest = sum_gOracle = sum_gEstVar = 0.0
441 sum_lrEtrain = sum_lrEtest = sum_lrOracle = sum_lrEstVar = 0.0
442

443 for _ in range(num_repeats):
444

445 # dimensions for this n
446 p = int(c1 * n)
447 N = int(c2 * n)
448 n_train = int(0.8 * n)
449 n_test = n - n_train
450 npN = (n_train, n_test, p, N)
451

452 # synthetic data
453 X_tr, X_te, Y_tr, Y_te, W, b, _, _ = generate_synthetic_data_regression(
454 npN, density=b_vector_density, d=1, noise_level=noise_level
455)
456 data = (X_tr, X_te, Y_tr, Y_te)
457

458 # ------- four �’s (grid search on the same grid) -------
459 # 1) � from Ê_train
460 g_Etrain, _ = find_optimal_gamma_grid(gammas_grid, Etrain_, data, npN)
461

462 # 2) � from Ê_test
463 g_Etest, _ = find_optimal_gamma_grid(gammas_grid, Etest_, data, npN)
464

465 # 3) � from oracle derivative dL/�d_expected = 0
466 def d_oracle(g): return dL_dy_expected(g, X_tr, Y_tr, W, real_variance)
467 g_Oracle, _ = find_zero_derivative_grid(gammas_grid, d_oracle)
468

469 # 4) � from –datadriven derivative dL/�d_estimated = 0
470 def d_est(g): return dL_dy_estimated(g, X_tr, Y_tr, W)
471 g_EstVar, _ = find_zero_derivative_grid(gammas_grid, d_est)
472 # --
473

474 # ridge errors
475 lr_Etrain = L_ridge(g_Etrain, X_tr, Y_tr, W, b)
476 lr_Etest = L_ridge(g_Etest, X_tr, Y_tr, W, b)
477 lr_Oracle = L_ridge(g_Oracle, X_tr, Y_tr, W, b)
478 lr_EstVar = L_ridge(g_EstVar, X_tr, Y_tr, W, b)
479

480 # accumulate
481 sum_gEtrain += g_Etrain; sum_lrEtrain += lr_Etrain
482 sum_gEtest += g_Etest; sum_lrEtest += lr_Etest
483 sum_gOracle += g_Oracle; sum_lrOracle += lr_Oracle
484 sum_gEstVar += g_EstVar; sum_lrEstVar += lr_EstVar

A.7. Convergence Study 91

485

486 # averages over repeats
487 n_arr.append(n)
488 gEtrain_arr.append(sum_gEtrain / num_repeats)
489 gEtest_arr.append(sum_gEtest / num_repeats)
490 gOracle_arr.append(sum_gOracle / num_repeats)
491 gEstVar_arr.append(sum_gEstVar / num_repeats)
492

493 lrEtrain_arr.append(sum_lrEtrain / num_repeats)
494 lrEtest_arr.append(sum_lrEtest / num_repeats)
495 lrOracle_arr.append(sum_lrOracle / num_repeats)
496 lrEstVar_arr.append(sum_lrEstVar / num_repeats)
497

498 print(f"n={n:4d}␣␣done.")
499

500 # --------------- save for later plotting ------------------
501 np.savez("conv_analysis_n100_200_300.npz",
502 n_values = np.array(n_arr),
503

504 gamma_Etrain = np.array(gEtrain_arr),
505 gamma_Etest = np.array(gEtest_arr),
506 gamma_Oracle = np.array(gOracle_arr),
507 gamma_EstVar = np.array(gEstVar_arr),
508

509 lr_Etrain = np.array(lrEtrain_arr),
510 lr_Etest = np.array(lrEtest_arr),
511 lr_Oracle = np.array(lrOracle_arr),
512 lr_EstVar = np.array(lrEstVar_arr),
513

514 noise_level = noise_level,
515 repeats = num_repeats,
516 b_vector_density = b_vector_density,
517 c1 = c1, c2 = c2
518)

A.8. Fashion-MNIST validation 92

A.8. Fashion-MNIST validation
1 import numpy as np
2 from scipy import linalg
3 from tensorflow.keras.datasets import mnist,fashion_mnist
4 import random
5 import time
6

7 SEED = 42 # <-- one knob for reproducibility
8 np.random.seed(SEED)
9 random.seed(SEED)
10

11 def sigma(t):
12 """
13 Small sigma function of choice
14 :param t: input
15 :return: output
16 """
17 if activation_function == 'linear':
18 return t
19

20 if activation_function == 'ReLu':
21 return np.maximum(t, 0)
22

23 if activation_function == 'sign':
24 return np.sign(t)
25

26

27 def K(x, y):
28 """
29 Kernel function. Depends on the choice of a small sigma function
30 :param x: first 'point' set
31 :param y: second 'point' set
32 :return: matrix of measures of 'distances' between points
33 """
34 if activation_function == 'linear':
35 return x.T@y
36

37 if activation_function == 'ReLu':
38 norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)
39 norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)
40

41 xTy = x.T @ y # Shape (n_x, n_y)
42

43 norm_prod = norm_x[:, np.newaxis] * norm_y[np.newaxis, :] # Shape (n_x, n_y)
44 norm_prod = np.maximum(norm_prod, 1e-9) # Avoid division by zero
45

46 cos_theta = xTy / norm_prod
47 cos_theta = np.clip(cos_theta, -1 + 1e-9, 1 - 1e-9) # Clamp values to [-1+1e-10, 1-1

e-10]
48

49 theta = np.arccos(-cos_theta) # Shape (n_x, n_y)
50 sin_theta = np.sqrt(1 - cos_theta ** 2)
51

52 return (norm_prod) / (2 * np.pi) * (cos_theta * theta + sin_theta)
53

54 if activation_function == 'sign':
55 norm_x = np.linalg.norm(x, axis=0) # Shape (n_x,)
56 norm_y = np.linalg.norm(y, axis=0) # Shape (n_y,)
57

58 xTy = x.T @ y # Shape (n_x, n_y)
59

60 norm_prod = np.outer(norm_x, norm_y) # Shape (n_x, n_y)
61 norm_prod = np.maximum(norm_prod, 1e-10) # Avoid division by zero
62

63 cos_theta = xTy / norm_prod
64 cos_theta = np.clip(cos_theta, -1 + 1e-10, 1 - 1e-10) # Clamp values to [-1+1e-10,

1-1e-10]
65

66 return (2 / np.pi) * np.arcsin(cos_theta)
67

A.8. Fashion-MNIST validation 93

68

69 def K_(x, y, delta, N, n_train):
70 """
71 Function to compute kernel approximation
72 :param x: first 'point' set
73 :param y: second 'point' set
74 :param delta: delta parameter
75 :return: approximation for the kernel matrix
76 """
77 k_ = (N/n_train)*((K(x, y))/(1+delta))
78 return k_
79

80

81 def find_delta(gamma, K_train, N, n_train, accuracy) -> float:
82 """
83 Fixed-point solver for delta without forming any matrix inverse.
84 M(delta) = (N/n)*(K_train/(1+delta)) + gamma*I
85 delta_next = (1/n) * trace(M(delta)^{-1} @ K_train)
86 """
87 delta_prev = 1.0
88 delta_next = 0.0
89 I = np.eye(n_train)
90

91 while abs(delta_prev - delta_next) > accuracy:
92 delta_prev = delta_next
93 a = (N / n_train) / (1.0 + delta_prev) # scaling factor
94 M = a * K_train + gamma * I # (n x n), SPD
95 cf = linalg.cho_factor(M, lower=True, check_finite=False)
96 # U = M^{-1} K_train (solve for all columns at once)
97 U = linalg.cho_solve(cf, K_train, check_finite=False)
98 delta_next = (1.0 / n_train) * np.trace(U)
99

100 return float(delta_next)
101

102

103 def find_delta_from_eigs(gamma, eigvals, N, n_train, accuracy) -> float:
104 """
105 Fixed-point iteration for delta using only eigenvalues of K_train.
106 a = (N/n) / (1+delta)
107 delta_next = (1/n) * sum_i [lambda_i / (a*lambda_i + gamma)]
108 """
109 delta_prev = 1.0
110 delta_next = 0.0
111 while abs(delta_prev - delta_next) > accuracy:
112 delta_prev = delta_next
113 a = (N / n_train) / (1.0 + delta_prev)
114 delta_next = (1.0 / n_train) * float(np.sum(eigvals / (a * eigvals + gamma)))
115 return float(delta_next)
116

117

118 def Etest_(gamma, data, npN):
119 """
120 Eigen/SVD-based E_test (no explicit inverses).
121 Expects 'data' to be a dict:
122 {
123 "K_train": (n,n),
124 "K_xX": (n,n_test),
125 "K_XX": (n_test,n_test),
126 "Y_train": (n,),
127 "Y_test": (n,),
128 "N": int
129 }
130 npN = (n_train, n_test, p, N) # N here is ignored; we take N from 'data'
131 """
132 n_train, n_test, p, _ = npN
133

134 K_train = data["K_train"]
135 K_xX = data["K_xX"]
136 K_XX = data["K_XX"]
137 y_tr = data["Y_train"]
138 y_te = data["Y_test"]

A.8. Fashion-MNIST validation 94

139 N = int(data["N"])
140

141 # 1) Eigendecomposition of K_train (SPD → eigh is ideal)
142 lam, V = np.linalg.eigh(K_train) # lam: (n,), V: (n,n)
143

144 # 2) Solve for delta using only eigenvalues
145 delta = find_delta_from_eigs(gamma, lam, N, n_train, delta_accuracy)
146

147 # Common scaling
148 a = (N / n_train) / (1.0 + delta) # scalar
149 d = a * lam + gamma # (n,)
150

151 # 3) Prediction term
152 y_til = V.T @ y_tr # (n,)
153 u = V @ (y_til / d) # (n,)
154 K_xX_scaled = a * K_xX # (n, n_test)
155 resid = y_te - K_xX_scaled.T @ u # (n_test,)
156 term_pred = (1.0 / n_test) * float(resid @ resid)
157

158 # 4) Ratio term: num / denom
159 # num = (1/N) * sum_i (a*lam_i / d_i^2) * (y_til_i)^2
160 num = (1.0 / N) * float(np.sum((a * lam / (d * d)) * (y_til * y_til)))
161 # denom = (1 - 1/N) * sum_i (a^2 * lam_i^2 / d_i^2)
162 denom = (1.0 - 1.0 / N) * float(np.sum((a * a) * (lam * lam) / (d * d)))
163

164 # 5) Bracket term
165 # First piece: tr(a*K_XX)
166 tr_aKXX = a * float(np.trace(K_XX))
167 # Second piece: tr(Q S) + gamma tr(Q^2 S), with S = (a K_xX)(a K_xX)^T
168 # If Z = V^T (a K_xX), then diag(V^T S V) = rowwise sum of Z^2
169 Z = V.T @ K_xX_scaled # (n, n_test)
170 diag_Sprime = np.sum(Z * Z, axis=1) # (n,)
171 tr_QS = float(np.sum(diag_Sprime / d))
172 tr_Q2S = float(np.sum(diag_Sprime / (d * d)))
173 bracket = (tr_aKXX - (tr_QS + gamma * tr_Q2S)) / n_test
174

175 # 6) Combine
176 E_test_ = term_pred + (num / denom) * bracket
177 return float(E_test_)
178

179

180 def estimate_variance_RSS(Y, Sigm, n, gamma):
181 """
182 RSS-based noise variance estimate using SVD of A = Sigm / sqrt(n).
183 Equivalent to solving (Sigm^T Sigm / n + gamma I) z = Y, but faster and
184 numerically stable.
185

186 Returns a Python float.
187 """
188 A = Sigm / np.sqrt(n) # (N, n)
189 U, S, Vt = np.linalg.svd(A, full_matrices=False) # S: (r,), Vt: (r, n), r = rank
190 y = np.asarray(Y).reshape(-1) # (n,)
191 y_v = Vt @ y # coords in span(A)
192 r = S.shape[0]
193 denom = S**2 + gamma # (r,)
194

195 # Residual in span(A): y_v - (S^2/(S^2+gamma)) y_v = (gamma/(S^2+gamma)) y_v
196 rss_span = np.sum((gamma * y_v / denom)**2)
197

198 # Residual in null(A): unchanged (no fit there)
199 if r < y.size:
200 y_perp = y - Vt.T @ y_v
201 rss_null = float(y_perp @ y_perp)
202 else:
203 rss_null = 0.0
204

205 variance = (rss_span + rss_null) / n
206 return float(variance)
207

208

209 def dL_dy_estimated(gamma, X, Y, W, variance=1):

A.8. Fashion-MNIST validation 95

210 """
211 Optimized derivative:
212 dL/dgamma = gamma * (Y Q^{-3} Y^T) - est_var * tr(Q^{-2}),
213 with Q = (Sigm^T Sigm)/n + gamma I, Sigm = sigma(W @ X).
214

215 Uses SVD of A = Sigm / sqrt(n) to avoid explicit inverses.
216 """
217 # Design in hidden layer
218 Sigm = sigma(W @ X) # (N, n)
219 n = X.shape[1]
220

221 # SVD of A = Sigm / sqrt(n) -> Q = V diag(S^2 + gamma) V^T
222 A = Sigm / np.sqrt(n)
223 U, S, Vt = np.linalg.svd(A, full_matrices=False) # U:(N,r), S:(r,), Vt:(r,n)
224 r = S.shape[0]
225 denom = S**2 + gamma
226

227 # Coordinates of y in the V basis
228 y = np.asarray(Y).reshape(-1) # (n,)
229 y_v = Vt @ y # (r,)
230 if r < n:
231 y_perp = y - Vt.T @ y_v
232 y_perp_norm2 = float(y_perp @ y_perp)
233 else:
234 y_perp_norm2 = 0.0
235

236 # First term: gamma * y^T Q^{-3} y
237 term1 = gamma * (np.sum((y_v**2) / (denom**3)) + (y_perp_norm2 / (gamma**3)))
238

239 # Noise variance estimate (same as before but SVD-based and exact)
240 est_var = estimate_variance_RSS(y, Sigm, n, gamma) # returns float
241

242 # Second term: est_var * tr(Q^{-2})
243 tr_Qinv2 = np.sum(1.0 / (denom**2)) + (n - r) * (1.0 / (gamma**2))
244 term2 = est_var * tr_Qinv2
245

246 return float(term1 - term2)
247

248

249 def dL_dy_estimated_fixed_rss(gamma, X, Y, W, variance, gamma_rss):
250 """
251 "Estimated" derivative: dL/dgamma, but the RSS-based variance is computed
252 at 'gamma_rss'. Then the derivative uses the current 'gamma' for the Q
253 in the standard formula:
254 derivative = gamma*(Y Q_inv^3 Y^T) - est_var * trace(Q_inv^2)
255 where est_var is from 'estimate_variance_RSS(Y, Sigm, n, gamma_rss)'.
256 """
257 n = X.shape[1]
258 Sigm = sigma(W @ X) # shape (N, n)
259

260 # Build Q for *this gamma*:
261 Q = (1.0/n) * (Sigm.T @ Sigm) + gamma*np.eye(n)
262 Q_inv = np.linalg.inv(Q)
263 Q_inv2 = Q_inv @ Q_inv
264 Q_inv3 = Q_inv2 @ Q_inv
265

266 # We do the RSS-based variance at 'gamma_rss'
267 # Must call 'estimate_variance_RSS':
268 est_var = estimate_variance_RSS(Y, Sigm, n, gamma_rss)
269

270 # derivative:
271 term1 = gamma * (Y @ Q_inv3 @ Y.T) # shape (1,1)
272 term2 = est_var * np.trace(Q_inv2)
273 dL = term1 - term2
274

275 # Convert to float
276 if hasattr(dL, "item"):
277 return float(dL.item())
278 return float(dL)
279

280

A.8. Fashion-MNIST validation 96

281 def make_two_class_ridge_from_arrays(
282 init_data: np.ndarray, # e.g. (60000, 28, 28) uint8
283 init_labels: np.ndarray, # e.g. (60000,) int
284 selected_labels: list[int], # exactly two labels, e.g. [1, 2]
285 c1: float, # target p/n ratio (features-to-sample-size); n � round

(p / c1)
286 train_fraction: float = 0.8, # desired train share of (train + test)
287 cs: tuple[float, float] = (0.5, 0.5), # per-class proportions (sum � 1.0)
288 seed: int | None = None # RNG seed (None -> non-deterministic like authors)
289):
290 """
291 Rebuild (X, y, X_test, y_test) for a 2-class MNIST/Fashion setup, mirroring the authors:
292 1) Sort by label.
293 2) Flatten to (p, init_n), rescale to [0,1].
294 3) Global mean-center and scale so average ||x||^2 = p.
295 4) Select the two classes, pool them, mean-center & scale AGAIN within the pooled

subset so
296 pooled average ||x||^2 = p.
297 5) For each class: shuffle WITHIN class; TRAIN = first int(cs[i]*n);
298 TEST = columns [n : n + int(cs[i]*n_test)] (i.e., test slice starts at absolute

index n).
299 6) Labels: class 0 -> -1, class 1 -> +1; class blocks contiguous.
300

301 Differences from the raw authors' script:
302 - You control n via c1 (p/n), and we derive n_test from `train_fraction `:
303 n_test = round(n * (1 - train_fraction) / train_fraction)
304 This preserves their splitting scheme while giving you a clean 80/20 (or any) split.
305 """
306 # -----------------------------
307 # A) Sort by label (authors do this)
308 # -----------------------------
309 idx_sorted = np.argsort(np.array(init_labels))
310 labels_sorted = np.array(init_labels)[idx_sorted]
311 imgs_sorted = np.array(init_data)[idx_sorted] # (init_n, H, W)
312

313 # -----------------------------
314 # B) Flatten to (p, init_n), cast to float
315 # -----------------------------
316 H, W = imgs_sorted.shape[1], imgs_sorted.shape[2]
317 p = H * W
318 init_n = imgs_sorted.shape[0]
319 data = imgs_sorted.reshape(init_n, p).T.astype(np.float64) # (p, init_n); columns =

samples
320

321 # -----------------------------
322 # C) Global rescale to [0, 1] (authors: data = data / data.max())
323 # -----------------------------
324 max_val = data.max()
325 if max_val > 0:
326 data /= max_val
327

328 # -----------------------------
329 # D) Global mean-center & renormalize so avg ||x||^2 = p
330 # -----------------------------
331 mean_data = np.mean(data, axis=1, keepdims=True) # (p,1)
332 centered_global = data - mean_data # (p, init_n)
333 norm2_data = np.mean(np.sum(centered_global**2, axis=0)) # scalar
334 scale_global = np.sqrt(p) / np.sqrt(norm2_data) if norm2_data > 0 else 1.0
335 data_std = centered_global * scale_global # (p, init_n)
336

337 # -----------------------------
338 # E) Extract the two classes and pool them
339 # -----------------------------
340 if len(selected_labels) != 2 or len(cs) != 2:
341 raise ValueError("Provide␣exactly␣two␣labels␣and␣two␣class␣proportions␣cs=(c0,␣c1).")
342

343 selected_data = []
344 for lab in selected_labels:
345 cols = (labels_sorted == lab)
346 selected_data.append(data_std[:, cols]) # each: (p, n_class)
347

A.8. Fashion-MNIST validation 97

348 # Pool both classes (fix authors' missing assignment in np.concatenate)
349 cascade_selected = np.concatenate(selected_data, axis=1) # (p, n_pool)
350

351 # -----------------------------
352 # F) Recenter & renormalize AGAIN within the pooled two-class subset
353 # -----------------------------
354 mean_pool = np.mean(cascade_selected, axis=1, keepdims=True) # (p,1)
355 centered_pool = cascade_selected - mean_pool
356 norm2_pool = np.mean(np.sum(centered_pool**2, axis=0))
357 scale_pool = np.sqrt(p) / np.sqrt(norm2_pool) if norm2_pool > 0 else 1.0
358

359 for j in range(2):
360 selected_data[j] = (selected_data[j] - mean_pool) * scale_pool
361

362 # -----------------------------
363 # G) Choose n from c1 = p/n -> n � round(p / c1)
364 # Then compute n_test from the desired train fraction:
365 # n / (n + n_test) = train_fraction => n_test = n * (1 - tf) / tf
366 # -----------------------------
367 if c1 <= 0:
368 raise ValueError("c1␣must␣be␣positive␣(c1␣=␣p/n).")
369 if not (0 < train_fraction < 1):
370 raise ValueError("train_fraction␣must␣be␣in␣(0,␣1).")
371

372 n = int(np.round(p / c1))
373 n = max(1, n)
374 n_test = int(np.round(n * (1.0 - train_fraction) / train_fraction))
375 n_test = max(1, n_test) # ensure at least one test column overall
376 c1_actual = p / n
377 train_share_actual = n / (n + n_test)
378

379 # -----------------------------
380 # H) Allocate X, X_test and compute per-class block sizes as authors do
381 # -----------------------------
382 rng = np.random.default_rng(seed)
383 X = np.zeros((p, n), dtype=np.float64)
384 X_test = np.zeros((p, n_test), dtype=np.float64)
385

386 cs_arr = np.array(cs, dtype=float)
387 train_bounds = (np.cumsum(np.concatenate([[0.0], cs_arr])) * n).astype(int)
388 test_bounds = (np.cumsum(np.concatenate([[0.0], cs_arr])) * n_test).astype(int)
389

390 train_counts = np.diff(train_bounds) # [int(cs[0]*n), int(cs[1]*n)]
391 test_counts = np.diff(test_bounds) # [int(cs[0]*n_test), int(cs[1]*n_test)]
392

393 # Each class must have >= n + test_counts[i] samples for the authors' indexing
394 for i in range(2):
395 need = n + test_counts[i] # because test slice is data_i[:, n : n

+ test_counts[i]]
396 have = selected_data[i].shape[1]
397 if have < need:
398 raise ValueError(
399 f"Class␣{i}␣(label␣{selected_labels[i]})␣has␣{have}␣samples;␣need␣at␣least␣{

need}␣"
400 f"to␣reproduce␣the␣authors'␣exact␣slicing␣(test␣starts␣at␣index␣n)."
401)
402

403 # -----------------------------
404 # I) Fill X and X_test: shuffle WITHIN each class, then slice as authors do
405 # -----------------------------
406 for i in range(2):
407 perm = rng.permutation(selected_data[i].shape[1])
408 data_i = selected_data[i][:, perm]
409

410 # Train block for class i
411 X[:, train_bounds[i]:train_bounds[i+1]] = data_i[:, :train_counts[i]]
412

413 # Test block for class i (note: slice starts at absolute index n)
414 X_test[:, test_bounds[i]:test_bounds[i+1]] = data_i[:, n : n + test_counts[i]]
415

416 # -----------------------------

A.8. Fashion-MNIST validation 98

417 # J) Labels: class 0 -> -1, class 1 -> +1; contiguous class blocks
418 # -----------------------------
419 y = np.concatenate([
420 -np.ones(train_counts[0], dtype=np.int8),
421 +np.ones(train_counts[1], dtype=np.int8),
422])
423 y_test = np.concatenate([
424 -np.ones(test_counts[0], dtype=np.int8),
425 +np.ones(test_counts[1], dtype=np.int8),
426])
427

428 info = dict(
429 p=p, n=n, n_test=n_test,
430 selected_labels=tuple(selected_labels),
431 class_sizes=tuple(d.shape[1] for d in selected_data),
432 train_counts=tuple(train_counts.tolist()),
433 test_counts=tuple(test_counts.tolist()),
434 c1_target=c1,
435 c1_actual=c1_actual,
436 train_fraction_target=train_fraction,
437 train_fraction_actual=round(train_share_actual, 6),
438 global_scale=scale_global,
439 pooled_scale=scale_pool,
440 note="Exact␣authors'␣preprocessing;␣test␣slice␣starts␣at␣index␣n␣within␣each␣class."
441)
442 return X, y, X_test, y_test, info
443

444

445 def find_optimal_gamma_grid(gammas, f, data, npN):
446 """
447 Minimizes f(gamma, data, npN) by scanning over 'gammas'.
448 Returns (best_gamma, best_value).
449 """
450 vals = [f(g, data, npN) for g in gammas]
451 i_min = np.argmin(vals)
452 return float(gammas[i_min]), float(vals[i_min])
453

454

455 def find_zero_derivative_grid(gammas, deriv_func):
456 """
457 Finds gamma that yields derivative closest to zero in absolute value,
458 scanning 'gammas'. Returns (best_gamma, best_deriv_value).
459 The caller is expected to provide a function deriv_func(g).
460 """
461 vals = [deriv_func(g) for g in gammas]
462 abs_vals = np.abs(vals)
463 i_min = np.argmin(abs_vals)
464 return float(gammas[i_min]), float(vals[i_min])
465

466

467 def get_beta(W, X_train, Y_train, gamma):
468 """
469 SVD version (optional):
470 Solve z = (Sigm^T Sigm / n + gamma I)^{-1} Y via SVD of A = Sigm / sqrt(n).
471 Then beta = (Sigm / n) @ z.
472 """
473 Sigm = sigma(W @ X_train) # (N, n)
474 n = X_train.shape[1]
475 A = Sigm / np.sqrt(n) # (N, n)
476

477 # economy SVD
478 U, S, Vt = np.linalg.svd(A, full_matrices=False) # U:(N,r), S:(r,), Vt:(r,n), r=min(N,n)
479

480 y_v = Vt @ Y_train # (r,)
481 z_span = (Vt.T * (1.0 / (S**2 + gamma))) @ y_v # V diag(1/(S�^2+)) V^T Y in span(A)
482

483 if Vt.shape[0] < n: # nullspace component (if n > r)
484 y_perp = Y_train - Vt.T @ y_v
485 z = z_span + (1.0 / gamma) * y_perp
486 else:
487 z = z_span

A.8. Fashion-MNIST validation 99

488

489 beta = (Sigm / n) @ z # (N,)
490 return beta
491

492

493

494 def build_kernels(X_train, X_test):
495 """
496 Compute unscaled kernels once. Scaling by 'a' happens inside Etest_.
497 """
498 K_train = K(X_train, X_train)
499 K_xX = K(X_train, X_test)
500 K_XX = K(X_test, X_test)
501 return K_train, K_xX, K_XX
502

503

504

505 if __name__ == "__main__":
506 import os
507

508 t0 = time.perf_counter()
509

510 # ---------------- Experiment knobs ----------------
511 activation_function = 'linear' # 'linear' | 'ReLu' | 'sign'
512 delta_accuracy = 1e-3
513 c1 = 1.0
514 c2 = 1.0
515 gammas_grid_full = [10**x for x in np.arange(-6, 4, 0.01)]
516 testcase = 'fashion' # 'fashion' | 'MNIST'
517 train_fraction = 0.8
518

519 RNG_SCENARIO_SEED = SEED + 123
520 N_PIX_SCEN = 10 # how many single-pixel scenarios
521 N_PATCH_SCEN = 5 # how many 5x5 patch scenarios
522 PATCH_SIZE = 5
523 DELTA_STD = 0.5 # additive perturbation in standardized space
524 LOCAL_LOG_WIDTH = 1.0 # +- decades around baseline
525 LOCAL_LOG_STEP = 0.05 # grid resolution in log10
526 RESULTS_DIR = "results"
527 os.makedirs(RESULTS_DIR, exist_ok=True)
528 # ---
529

530 # --- Load data (two classes) ---
531 if testcase == 'MNIST':
532 selected_labels = [7, 9]
533 (init_data, init_labels), _ = mnist.load_data()
534 else:
535 selected_labels = [1, 2]
536 (init_data, init_labels), _ = fashion_mnist.load_data()
537

538 # --- Authors' preprocessing / split (deterministic with SEED) ---
539 X_train, y_train, X_test, y_test, info = make_two_class_ridge_from_arrays(
540 init_data=init_data,
541 init_labels=init_labels,
542 selected_labels=selected_labels,
543 c1=c1,
544 train_fraction=train_fraction,
545 seed=SEED
546)
547

548 # --- Sizes & model shapes ---
549 p = info['p']
550 n_train = info['n']
551 n_test = info['n_test']
552 N = int(round(c2 * n_train))
553 W = np.random.randn(N, p) # fixed W for all scenarios
554

555 # Sanity
556 assert X_train.shape == (p, n_train)
557 assert X_test.shape == (p, n_test)
558 assert y_train.shape == (n_train,)

A.8. Fashion-MNIST validation 100

559 assert y_test.shape == (n_test,)
560

561 # --- Precompute baseline kernels once ---
562 K_train_base, K_xX_base, K_XX_base = build_kernels(X_train, X_test)
563

564 # --- Baseline: gammas (full grid once), betas, and caches ---
565 data_base = {
566 "K_train": K_train_base,
567 "K_xX": K_xX_base,
568 "K_XX": K_XX_base,
569 "Y_train": y_train,
570 "Y_test": y_test,
571 "N": N
572 }
573 npN = (n_train, n_test, p, N)
574

575 gamma_Etest_base, _ = find_optimal_gamma_grid(gammas_grid_full, Etest_, data_base, npN)
576 def d_est(g): return dL_dy_estimated(g, X_train, y_train, W)
577 gamma_direct_base, _ = find_zero_derivative_grid(gammas_grid_full, d_est)
578

579 beta_Etest_base = get_beta(W, X_train, y_train, gamma_Etest_base)
580 beta_direct_base = get_beta(W, X_train, y_train, gamma_direct_base)
581

582 # Helpers: local gamma grids around baseline (± LOCAL_LOG_WIDTH decades)
583 def local_grid(g0, width=LOCAL_LOG_WIDTH, step=LOCAL_LOG_STEP):
584 g0 = float(g0)
585 g0_log = np.log10(g0)
586 return 10.0**np.arange(g0_log - width, g0_log + width + 1e-12, step)
587

588 # Random generator for scenario design
589 rng = np.random.default_rng(RNG_SCENARIO_SEED)
590

591 # --- Utility: run a single scenario given a perturbed X_train ---
592 def run_scenario(X_train_pert, scenario_meta, tag):
593 # Kernels for this scenario
594 K_tr, K_xX, K_XX = build_kernels(X_train_pert, X_test)
595 data_s = {
596 "K_train": K_tr,
597 "K_xX": K_xX,
598 "K_XX": K_XX,
599 "Y_train": y_train,
600 "Y_test": y_test,
601 "N": N
602 }
603

604 # Local gamma search around baseline gammas (fast, robust)
605 gE_grid = local_grid(gamma_Etest_base)
606 gD_grid = local_grid(gamma_direct_base)
607

608 gE, _ = find_optimal_gamma_grid(gE_grid, Etest_, data_s, npN)
609 def d_est_local(g): return dL_dy_estimated(g, X_train_pert, y_train, W)
610 gD, _ = find_zero_derivative_grid(gD_grid, d_est_local)
611

612 # Betas
613 beta_E = get_beta(W, X_train_pert, y_train, gE)
614 beta_D = get_beta(W, X_train_pert, y_train, gD)
615

616 # Save all artifacts
617 out = {
618 "testcase": testcase,
619 "activation_function": activation_function ,
620 "selected_labels": np.array(selected_labels, dtype=int),
621 "SEED": SEED,
622 "rng_scenario_seed": RNG_SCENARIO_SEED,
623 "p": p, "n_train": n_train, "n_test": n_test, "N": N,
624 "c1": c1, "c2": c2, "train_fraction": train_fraction,
625

626 "gamma_Etest_base": float(gamma_Etest_base),
627 "gamma_direct_base": float(gamma_direct_base),
628 "gamma_Etest_scen": float(gE),
629 "gamma_direct_scen": float(gD),

A.8. Fashion-MNIST validation 101

630

631 "beta_Etest_base": beta_Etest_base,
632 "beta_direct_base": beta_direct_base,
633 "beta_Etest_scen": beta_E,
634 "beta_direct_scen": beta_D,
635

636 "scenario_meta": scenario_meta
637 }
638 fname = os.path.join(RESULTS_DIR, f"{tag}.npz")
639 np.savez(fname, **out)
640 print(f"[saved]␣{fname}")
641

642 # --- 10 single-pixel scenarios (std-space) ---
643 # choose unique pixels
644 pix_ids = rng.choice(p, size=N_PIX_SCEN, replace=False)
645 # random signs per scenario (+1 or -1)
646 pix_signs = rng.choice([-1.0, 1.0], size=N_PIX_SCEN)
647

648 for idx, (pix, sgn) in enumerate(zip(pix_ids, pix_signs), start=1):
649 Xp = X_train.copy()
650 Xp[pix, :] += sgn * DELTA_STD
651 meta = {
652 "type": "pixel",
653 "feature_indices": np.array([int(pix)], dtype=int),
654 "delta_std": float(DELTA_STD),
655 "sign": float(sgn),
656 "applied_space": "standardized_training_only"
657 }
658 tag = f"pert_pix_{idx:02d}_{testcase}_af-{activation_function}_pix{int(pix)}_d{

DELTA_STD:+.2f}sgn{int(sgn)}_seed{SEED}"
659 run_scenario(Xp, meta, tag)
660

661 # --- 5 patch (5x5) scenarios (std-space) ---
662 # infer H, W (MNIST/Fashion are 28x28; derive from p if possible)
663 H_px = W_px = int(round(np.sqrt(p)))
664 if H_px * W_px != p:
665 H_px = W_px = 28
666

667 max_r = H_px - PATCH_SIZE
668 max_c = W_px - PATCH_SIZE
669 rc_pairs = set()
670 while len(rc_pairs) < N_PATCH_SCEN:
671 rc_pairs.add((int(rng.integers(0, max_r + 1)), int(rng.integers(0, max_c + 1))))
672 rc_pairs = list(rc_pairs)
673 patch_signs = rng.choice([-1.0, 1.0], size=N_PATCH_SCEN)
674

675 for idx, ((r0, c0), sgn) in enumerate(zip(rc_pairs, patch_signs), start=1):
676 # build flat indices of the patch
677 feats = []
678 for dr in range(PATCH_SIZE):
679 rr = r0 + dr
680 cc0 = c0
681 row_start = rr * W_px
682 feats.extend(range(row_start + cc0, row_start + cc0 + PATCH_SIZE))
683 feats = np.array(feats, dtype=int)
684

685 Xp = X_train.copy()
686 Xp[feats, :] += sgn * DELTA_STD
687 meta = {
688 "type": "patch",
689 "patch_size": int(PATCH_SIZE),
690 "top_left_rc": (int(r0), int(c0)),
691 "feature_indices": feats,
692 "delta_std": float(DELTA_STD),
693 "sign": float(sgn),
694 "applied_space": "standardized_training_only"
695 }
696 tag = (f"pert_patch_{idx:02d}_{testcase}_af-{activation_function}_r{r0}c{c0}"
697 f"_sz{PATCH_SIZE}_d{DELTA_STD:+.2f}sgn{int(sgn)}_seed{SEED}")
698 run_scenario(Xp, meta, tag)
699

A.8. Fashion-MNIST validation 102

700 total_sec = time.perf_counter() - t0
701 print(f"[TOTAL]␣{total_sec:.3f}␣s")
702 print(f"Baseline␣gammas:␣Etest={gamma_Etest_base:.4g},␣direct={gamma_direct_base:.4g}")

	Summary
	Introduction
	Background and Motivation
	Research Objectives
	Thesis Structure

	Literature Review
	Introduction to Neural Networks
	Historical Perspective
	From Simple to Deep

	Random Neural Networks
	Random Weights and Efficient Feature Extractors
	Random Neural Networks in Practice

	Regression in a Neural Networks Context
	Regression–Neural Network Problem Equivalence
	Ridge Regression (Penalization)

	High-Dimensional Statistics and Random Matrix Theory
	High-Dimensional Regime
	Random Matrix Theory Essentials

	Synthesis and Relevance to Our Work

	Methodology
	Model Setting
	Ridge Regression With Random Neural Network
	Error Approximation in High-Dimensional Setting: a Conventional Approach
	Variability and Extensions of the Model

	Experimental Setup
	Algorithm Optimization
	Naive baseline: what is expensive
	Optimized pipeline: what we change
	Complexity at a glance
	Practical notes

	Problem Arising
	Potential cause of the problem

	Results
	Research on the original Experiment
	Mean Squared Error against the regularization parameter
	Optimal value and error behaviour with increasing amount of data
	Optimal Values study for Different Loss Functions
	Diagnosing the Causal Gap

	Loss–Landscape Analysis
	Robustness study
	Convergence Study
	Real-Data Validation: Fashion–MNIST
	Robustness analysis - fashion MNIST
	Perturbation analysis: Fashion–MNIST

	Discussion
	Summary of Findings
	Recap
	Interpretations of the Results

	Advantages of the Proposed Derivative-Based Calibration over Couillet’s Rule
	Conceptual Advantages - Theory
	Applied Advantages - Practice

	Conclusion
	Summary and Final Remarks
	Future Work

	References
	Source Code
	Mean Squared Error against the regularization parameter
	Optimal value and error behaviour with increasing amount of data
	Normalized ridge error against regularization parameter
	Error Metrics and value over number of data points
	Derivative-based loss functions against parameter (different noise levels)
	Direct loss with derived from minimizing different loss functions (including the derivative-based)
	Convergence Study
	Fashion-MNIST validation

