
 
 

Delft University of Technology

Graph Partition and Multiple Choice-UCB Based Algorithms for Edge Server Placement in
MEC Environment

Zhao, Zheyu; Cheng, Hao; Xu, Xiaohua; Pan, Yi

DOI
10.1109/TMC.2023.3284994
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Mobile Computing

Citation (APA)
Zhao, Z., Cheng, H., Xu, X., & Pan, Y. (2023). Graph Partition and Multiple Choice-UCB Based Algorithms
for Edge Server Placement in MEC Environment. IEEE Transactions on Mobile Computing, 23(5), 4050-
4061. https://doi.org/10.1109/TMC.2023.3284994

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TMC.2023.3284994
https://doi.org/10.1109/TMC.2023.3284994


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



4050 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Graph Partition and Multiple Choice-UCB Based
Algorithms for Edge Server Placement in MEC

Environment
Zheyu Zhao , Graduate Student Member, IEEE, Hao Cheng , Xiaohua Xu , and Yi Pan , Senior Member, IEEE

Abstract— The deployment of edge servers make a significant
impact on the service quality of a Mobile Edge Computing (MEC)
system. This service quality relies on solving two key sub-problems:
1) interference management between servers 2) the placement of
MEC servers. To improve the Quality of Service (QoS), we propose
a method based on Graph Partition (GP) and Upper Confidence
Bound (UCB) for solving these two sub-problems. Regarding inter-
ference management, we use an undirected graph to represent the
interference between MEC servers so that the overall graph can
be divided into multiple subsets of non-interfering MEC servers.
Regarding server placement, we propose a Multiple Choice-Upper
Confidence Bound (MC-UCB) algorithm that place an collection
of interference aware edge servers in each selection. To evaluate
the performance, we define a user’s QoS function based on trans-
mission delay, throughput, and user density comprehensively and
compared with Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) from previous work. The simulation results show
that the performance of the proposed algorithms is improved by
more than 4% compared with the GA algorithm and 6% compared
with the PSO algorithm.

Index Terms—Mobile edge computing, multiple choice-upper
confidence bound, graph partition, edge server placement,
interference management.

I. INTRODUCTION

W ITH the exponential growth of smart devices and the
emergence of numerous new applications, network traf-

fic has undergone a significant surge. However, the traditional
centralized network structure struggles to meet the demands of
users due to heavy data backhaul and long delays [1], [2]. To

Manuscript received 3 March 2022; revised 31 May 2023; accepted 6 June
2023. Date of publication 21 June 2023; date of current version 4 April 2024. This
work was supported in part by the National Key Research and Development Pro-
gram of China under Grant 2021ZD0110403, in part by the National Natural Sci-
ence Foundation of China (NSFC) under Grants 62172383 and 62231015, and
in part by Anhui Provincial Key R&D Program under Grant S202103a05020098
Recommended for acceptance by D. T. Hoang. (Corresponding author: Xiaohua
Xu.)

Zheyu Zhao and Xiaohua Xu are with the School of Computer Science and
Technology, University of Science and Technology of China, Hefei, Anhui
230026, China (e-mail: neuq_zhaozheyu@163.com; xiaohuaxu@ustc.edu.cn).

Hao Cheng is with the Department of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2628, CD Delft, The
Netherlands (e-mail: calmch@hotmail.com).

Yi Pan is with the Faculty of Computer Science and Control Engineering,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Beijing 100045, China (e-mail: yi.pan@siat.ac.cn).

Digital Object Identifier 10.1109/TMC.2023.3284994

address these challenges, MEC has emerged as a distributed
network architecture that leverages mobile base stations to
extend cloud computing services to the network edge [3], [4].
MEC offers the advantage of breaking the physical limitations of
mobile devices while alleviating the burden on cloud computing
resources. Its strategic positioning in proximity to mobile users
enables MEC to provide real-time access to wireless networks,
high bandwidth, high throughput, and low latency, thus further
enhancing the service experience for end-users [5].

There are two fundamental challenges that concerning user
experience in MEC environment, one is interference manage-
ment and the other is MEC server placement. In this article,
interference management means the avoiding collisions of com-
munications when multiple MEC servers broadcast simultane-
ously. When multiple users are located within the overlapping
coverage areas of several MEC servers, the communication
links requesting resources from different MEC servers can lead
to interference, thereby reducing the overall channel quality.
Notably, the probability of channel interference is particularly
high between two neighboring MEC servers.

The strategy of the MEC server placement greatly affects
the success rate of interference management. Ideally, deploying
more edge computing servers can increase coverage and allevi-
ate server resource competition. However, this approach leads to
higher hardware deployment and operational costs. Therefore, it
is crucial to strategically place a limited number of MEC servers
to optimize costs in the MEC server placement problem. In this
article, we aim to improve the user experience in the optimal way
in terms of the servers quality. The first objective is to address
the issue of interference management to optimize the quality of
service for system users and the second objective is to manage
the placement of these limited MEC servers. However, the issues
of interference management and MEC server placement face
many challenges.

1) First, many factors have an impact on system perfor-
mance such as the number of MEC servers, hardware
configuration, geographic distribution, user distribution,
and channel status in the current scenario. The complexity
of the problem grows linearly when the number of users
and the number of MEC servers in the scenario increase.

2) Second, existing work mostly use heuristic algorithms to
solve the problem of MEC server placement. However, in
complex MEC scenarios, traditional heuristic algorithms
encounter challenges such as slow search speed, high time

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7688-8849
https://orcid.org/0009-0006-5805-2577
https://orcid.org/0000-0001-7770-803X
https://orcid.org/0000-0002-2766-3096
mailto:neuq_zhaozheyu@163.com
mailto:xiaohuaxu@ustc.edu.cn
mailto:calmch@hotmail.com
mailto:yi.pan@siat.ac.cn


ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4051

complexity, and the tendency to obtain only local optimal
solutions.

3) Last, in the existing researches on the placement of
MEC servers, the interference management factor is less
considered. However, addressing the issue of interference
becomes an urgent problem that needs to be solved, partic-
ularly when multiple users simultaneously request MEC
resources.

This article proposes an algorithm based on Graph Partition
and Multiple Choice-UCB to address these challenges. For
the interference management problem, finding the maximal
independent set of undirected graphs is a feasible solution.
Specifically, in a network graph consisting of nodes representing
servers, a maximal independent set defines a set of servers which
can operate in parallel without interference [6]. In this article, we
abstract the MEC servers in a graph as vertices, and the collisions
between MEC servers as connecting edges. By identifying the
maximal independent set in this graph, we can determine a subset
of MEC servers that do not interfere with each other in the given
scenario. We posit that MEC servers corresponding to isolated
vertices in the graph do not cause interference with other MEC
servers.

The Multi-Armed Bandits (MAB) paradigm is a promising
solution for MEC server placement. In each round, the objective
is to choose a feasible action to take certain arm and gets
the corresponding reward, from the chosen arm solely without
any additional reward information for un-chosen actions (other
arms). The goal is to maximize its cumulative (total) reward
over all rounds. To achieve this goal, algorithm must balance
exploration and exploitation; that is, algorithm must make choice
between the action with the current highest average reward and
the action with the potential highest average reward [7]. One
of the most widely used strategies for stochastic multi-armed
bandits is the Upper Confidence Bound algorithm, which is
based on the optimistic principle in the face of uncertainty [8],
[9]. In this article, we take the placement scheme of the MEC
servers as the arms. If we define required number of MEC servers
from current system as M , then the decision to placement plan
of M MEC servers equals to shaking M arms.

The main contributions of this article are summarized as
follows:
� Graph Partition-based interference management: We

model the interference management problem into an undi-
rected graph problem with each MEC server as vertices and
mutual interference between paired MEC servers as edges.
An edge exists if the euclidean distance between the MECs
is less than the sum of the coverage radii of each other. For
each component of the overall undirected graph, we obtain
subsets of MEC servers that do not interfere each other.

� Multiple Choice-UCB (MC-UCB) algorithm: A multiple
choice-UCB algorithm is proposed to solve the problem
that multiple arms need to be selected in one round. In this
article, we consider the servers placement in the paradigm
of stochastic MAB. Instead of shaking one arm in each
round, we shake M arms in each selection, i.e., deciding
the placement scheme of M edge computing servers. To
speed up the selection, we prune one arm with the lowest

current UCB value after a certain number of rounds. If the
arm is more likely to be smaller than the arm with the M th
highest UCB value, we prune the arm from the candidate
set early.

� QoS evaluation indicators and simulation results: Trans-
mission delay, throughput, and user density are compre-
hensively considered in the evaluation of system service
quality. For the problem of MEC server placement, we
comprehensively consider the location, bandwidth, trans-
mission rate, coverage radius of the MEC servers in the
scenario. Then we use the average transmission delay, total
throughput and average reward as indicators to compare
and evaluate the proposed algorithms with the baseline
algorithms. The simulation results demonstrate the superi-
ority of the proposed algorithms.

The rest of the article is organized as follows: Section II
summarizes the related work. Section III presents the system
model and further defining performance indicators of multi-user
and multi-MEC server. Section IV presents the flow of Graph
Partition algorithm and MC-UCB algorithms. Section V sim-
ulates the proposed algorithm and baseline algorithms under
different performance indicators. Section VI summarizes our
work and draw the conclusion.

II. RELATED WORK

In this section, we study previous related work on interference
management and MEC server placement, while we analyze the
limitations of existing work.

Related Work on Interference Management: For the problem
of interference management in MEC environment, Xiao et al.
used secure reinforcement learning to avoid choosing a risk
offloading strategy that could not meet the task computing
delay requirement [10]. Sha et al. modeled the entire network
as a graph. Based on graph theory, they proposed a minimum
beam collision algorithm and proved that the algorithm could
obtain the global minimum beam collision solution [11]. For
multi-cell multi-user channel allocation, Quan et al. obtained an
optimization problem with controllable complexity by grouping
weakly interfering units and assigning resources among these
possible interference patterns in the network [12]. Yan et al.
proposed an adaptive interference management method based
on three redesigned techniques, which can be applied to sparse
rural and dense urban networks, according to the location of the
terminal, interference type, QoS requirements, and processing
capability [13].

In addition, the interference management between MEC
servers can be abstract as solving the problem of maximal
independent sets in an undirected graph. The algorithms for
finding maximal independent sets can be classified into two main
categories: distributed algorithms and centralized algorithms.
Regarding distributed algorithms, Moscibroda et al. studied
the distributed complexity of computing maximum indepen-
dent sets (MIS) in wireless networks with completely unknown
topology, asynchronous wake-up, and no collision detection
mechanism [14]. In another study [15], the authors addressed
the resource allocation problem for device-to-device (D2D)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



4052 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

communication in cellular systems. However, in the aforemen-
tioned distributed algorithms, the authors only identified a single
maximal independent set.

As for centralized algorithms, Johnson et al. proposed an
algorithm that generates all the maximal independent sets of
graphs in lexicographic order, with only a polynomial delay
between the outputs of two consecutive independent sets [16].
Tsukiyama et al. introduced an effective algorithm for generating
all the maximal independent sets using a depth-first search in a
”dynamic” binary tree [17]. Leung et al. provided efficient algo-
rithms for generating all maximal independent sets in interval
graphs, circular-arc graphs, and chordal graphs. However, these
algorithms are not applicable for solving maximal independent
set problems in general graphs [18].

Related Work on Placement of MEC Servers: The placement
of edge computing servers had also attracted widespread at-
tention from researchers. Li et al. proposed an adaptive clus-
tering algorithm based on AP suitability evaluation to solve
the problem of edge server placement, which minimized the
task cost of computing tasks [19]. In another article [20], the
authors formulated the MEC server placement problem as a
multi-objective optimization problem and designed a particle
swarm optimization-based energy-aware edge server layout al-
gorithm. Kasi et al. formulated the low latency and workload
balancing requirements in edge server placement strategies as a
multi-objective constrained optimization problem, using genetic
programming and local optimization algorithms (hill climbing
and simulated annealing) to solve the optimal solution [21].
Zhang et al. proposed a comprehensive process that combines
edge server and service placement. They presented a two-step
method involving a clustering algorithm and nonlinear program-
ming to tackle this problem [22]. Cui et al. formally modeled
the robust edge server location problem and proposed an integer
programming-based optimization method to find the optimal
solution [23]. Also for the robust edge server location problem,
Qu et al. mathematically formulated the RSP problem as a robust
max-min optimization form, and proposed a polynomial-time
algorithm with a better approximation ratio [24]. In addition, the
combinatorial multi-armed bandit algorithm offers a promising
approach for addressing MEC server deployment decisions.
Chen et al. established a comprehensive framework for a spe-
cific category of large-scale Combinatorial Multi-Armed Bandit
(CMAB) problems, which involves grouping simple arms with
unknown distributions into super arms [25]. Meanwhile, Gai et
al. simultaneously monitor all selected random variables and
generate a reward by forming a linear weighted combination
of these variables [26]. However, these methods cannot be
directly applied to interference-avoidance-based MEC server
deployment problems.

Limitations of Previous Researches: While previous studies
have demonstrated the superiority of their proposed algorithms,
there are still limitations in the existing work: 1) Insufficient con-
sideration of interference management factors in the deployment
of MEC: Although there have been numerous research efforts
discussing the problem of interference management and MEC
server placement, the consideration of interference management
factors in the deployment of MEC is still inadequate. 2) Neglect

Fig. 1. System model.

of hardware configuration and other factors in MEC server
deployment: Previous research on MEC server deployment has
predominantly focused on the geographical distribution of MEC
servers, while overlooking the influence of MEC server hard-
ware configuration (such as bandwidth and transmit power) and
other pertinent factors on the MEC server deployment problem.
In this article, our objective is to improve the quality of service in
the MEC system by addressing both interference management
and edge server placement problems. We take into account the
hardware configuration, geographic distribution, and surround-
ing user density of each MEC server. Through simulation results,
we validate the feasibility of our proposed algorithm in scenarios
where these factors vary.

III. SYSTEM MODEL

In this section, we first analyze the system model of multi-
user multi-MEC server, and then we comprehensively consider
transmission delay, throughput, and user density to define the
quality of service of the system.

A. Multi-User Multi-MEC Server Model

As shown in Fig. 1, we define a multi-user multi-MEC server
communication system. The set of users in this scenario is
defined as I = {1, 2, . . . , I}. The set of MEC server candi-
dates is defined as N = {1, 2, . . . , N}. For each MEC server
n ∈ N in the candidate set, we denote the MEC server n by a
quadruple (Pn

ser, L
n
ser, B

n
ser, D

n
ser). Where, Pn

ser represents the
transmit power of MEC server n, Ln

ser represents the location
coordinates of MEC server n, Bn

ser represents the bandwidth
of MEC server n, and Dn

ser represents the maximum coverage
radius of MEC server n. In this scenario, the hardware con-
figuration and geographic coordinates of each MEC server in
the candidate set are different. We assume that users in the
scenario have similar service requirements, such as watching
sports videos. At the beginning of each time slot, the cloud server
sends multiple video resources to the MEC server, which then

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4053

Fig. 2. Model of interference from transmission link collision.

TABLE I
SYSTEM PARAMETERS

caches the received content. The cached content is subsequently
broadcasted to the surrounding users. As shown in Fig. 1, colored
entities are cached content. When multiple users request cache
resources from the same MEC server simultaneously, the MEC
server broadcasts its cached content to all users requesting
its services. As a result, there is no interference among users
requesting cache resources from the same MEC server. How-
ever, when two MEC servers with overlapping coverage areas
(distance(MECi,MECj) < (Di

ser +Dj
ser)) transmit video

resource simultaneously. Users in overlapping areas may ex-
perience transmission link collisions, thus causing interference.

As shown in Fig. 2, user 1 requests cache resources of MEC
server 1, and meanwhile user 2 requests cache resources of MEC
server 2. Due to their proximity, the communication link between
User 1 and User 2 becomes interfered, resulting in a degradation
of communication quality for both users. To maximize the
service quality for users in the system, at the beginning of each
time slot, we aim to select several MEC servers that do not
interfere with each other to cache video resources.

The system parameters are shown in Table I.

B. Assessment of Quality of Service

In this section, we evaluate the quality of service of the
system from three aspects of video resource transmission delay,
throughput, and user density. At the end of this section, the
definition formula of the quality of service of the system is given.

1) Transmission Delay: Let T k,tran
n,i,t denote the transmission

delay of the cache resource k from MEC n to user i at time
t. T k,tran

n,i,t = Datak

Rn,i
, where Datak is the data size of the video

resource, Rn,i is the sending rate of MEC server n sending tasks

to user i, which is defined as:

Rn,i = Bn
ser log2

(
1 +

h2Pn
serd

−θ
i,n

N0

)
(1)

In the above formula,Bn
ser is the bandwidth of the MEC servern,

h is the fading factor of the signal,Pn
ser is the transmission power

of the MEC server n, and di,n is the transmission distance of the
video resource transmitted by the MEC server n to the user i. θ
is a constant, N0 is Gaussian white noise, and N0 satisfies the

normal distribution. Let di,n =
√
(Ln

x − Li
x)

2 + (Ln
y − Li

y)
2,

indicating the transmission distance from MEC server n to user
i. Wherein, Ln

x and Ln
y represent the abscissa and ordinate of

MEC servern, andLi
x andLi

y represent the abscissa and ordinate
of user i. At the same time, we define a threshold τ for the upper
limit of the transmission delay of video resources. When the
user’s transmission delay is greater than the threshold τ , we
consider the video transmission to fail.

Assuming that at time t, Ntotal video task requests are gen-
erated in the coverage of MEC server n, we define the average
transmission delay of all video resources within the coverage of

MEC server n as Tn =
∑Ntotal

k=1 Tk,tran
n,i,t

Ntotal
.

2) Throughput: We define throughput as the number of video
tasks successfully transmitted by MEC server n per unit time,
namely: Thrn = Nsucc

t . Where, Nsucc (Nsucc ≤ Ntotal ) is the
number of successfully transmitted video tasks, and t is the size
of the unit time slot. The level of the throughput is closely related
to the calculation rate and service range of MEC server, and at
the same time, throughput reflects the workload and resource
utilization of the MEC server n.

3) User Density: Define user density as Densn =
Npeople

π(Dn
ser )

2

where Npeople is the number of users within the coverage of
MEC server n, and π(Dn

ser )
2 is the MEC server coverage of n.

When the density of users around the MEC server n is large,
it means that the MEC server n can provide services for more
users in the system, so the existence of the MEC server is of
great significance.

4) Quality of Service: Suppose that at time t, there are
Npeople users within the coverage of MEC server n who have
generated Ntotal tasks. Among them, Nsucc tasks are suc-
cessfully transferred. The calculation formula of the service
quality of users within the coverage of MEC server n is:
QoSn = αTn + βThrn + γDensn. Where, α, β, γ are weight
factors, which represent the proportion of transmission delay,
throughput, and user density in the service quality evaluation
of MEC server n, respectively. Among them, Tn is negatively
correlated with QoSn, the greater the transmission delay, the
worse the service quality of the MEC server n is. Also we
need to notice that the QoSn fluctuates in a small range due
to the uncertainty of the channel state. In other words, QoSn is
randomly generated within a reward distribution when testing
the service quality of MEC server n. In addition, we map QoSn

to between 0 ∼ 1 for better data normalization.
In this article, we define the reward of the system as R =∑N
n=1 QoSnIn, where In is the indicator vector, when the MEC

server is selected, In returns 1, otherwise it returns 0. Taking the

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



4054 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 3. Flow of GP-MCUCB algorithm.

service quality (reward) of the system as the goal, we formulate
the objective function as:

maxE

[
N∑

n=1

QoSnIn

]

s.t. C1 : In ∈ {0, 1}

C2 :

N∑
n=1

In = M

C3 : di,j <
(
Di

ser +Dj
ser

)
di,j = distance (MECi,MECj) IiIj (2)

The constraint condition C1 indicates the value of the indicator
vector, C2 indicates that only M MEC servers can be selected
from the candidate set N to deploy in the current scene, and C3

indicates that there is no interference between the selected MEC
servers.

The objective function is a nonlinear integer programming
problem. The main difficulties in solving this problem are: 1)
The channel quality in the MEC scenario changes dynamically,
and the return value of QoSn has volatility. Dynamic system
scenarios place higher demands on decision-making algorithms.
2) As the number of MECs deployed in the scenario increases,
the decision space increases linearly, and the computational
complexity of constraint C3 increases exponentially.

IV. GRAPH PARTITION AND MC-UCB ALGORITHM

In this article, our objective is to maximize the quality of
service (QoS) of the system by selecting an optimal subset of
non-interfering MEC servers to cache video resources at the
beginning of each time slot. However, the selection process
becomes challenging due to the varying hardware configurations
and locations of the MEC servers. To address this problem,
we propose the Graph Partition and MC-UCB (GP-MCUCB)
algorithm. The overall flow of the algorithm is depicted in
Fig. 3. First, we employ the Graph Partition algorithm to identify
all sets of non-interfering MEC servers in the current scenario.

Fig. 4. Undirected graph G.

This step ensures that the MEC servers deployed in the scenario
do not interfere with each other, providing a foundation for sub-
sequent decision-making. Next, these non-interfering subsets
of MEC servers are passed as input variables to the Multiple
Choice-UCB (MC-UCB) algorithm. The MC-UCB algorithm is
responsible for selecting the optimal deployment decision within
each non-interfering subset and generating the corresponding
output. Finally, the algorithm selects the deployment decision
with the highest reward value as the final deployment solution.

Next, we will introduce the Graph Partition and Multiple
Choice-UCB algorithms respectively.

A. Graph Partition-Based Interference Management
Algorithm

First, we solve the problem of interference avoidance between
MEC servers, which means we need to find all non-interfering
subsets among the N MEC servers in the scenario.

We traverse the MEC servers in the scenario and build an
N ×N adjacency matrix A. If there is an intersection between
the coverage areas of MEC server i and MEC server j, there
is interference, then the element of the matrix A at < i, j >
is 1, otherwise it is 0. We define that there is no interference
between the servers themselves, so the elements on the diagonal
are 0. Next, we use the MEC servers as vertices, and the conflict
relationships between the MEC servers as edges. Then we obtain
the interference model graph G according to the adjacency
matrix A. As shown in Fig. 4, MEC servers that do not interfere
with other MEC servers are isolated vertices. MEC servers with
the interference relationship form the connected component.
This graph representation helps us identify the groups of MEC
servers that cannot be placed together due to interference.

Then, we need to find all components in the undirected graph
G corresponding to the adjacency matrix A. Suppose that the
undirected graph G contains K components. We perform the
graph partition algorithm on them in turn.

The core idea of graph partition algorithm is to construct a
spanning tree based on the adjacency list of the complement
graph, and traverse all paths from the root node to the leaf nodes,
outputting all independent sets. From these independent sets, we
select all maximal independent sets as the final results. The over-
all process of the algorithm is a backtracking algorithm based
on pruning. Specifically, to minimize the search time, we made
improvements to the backtracking algorithm based on two key
intuitions: First, we can quickly prune nodes that are more likely
to cause interference with other nodes, reducing unnecessary
search efforts. Second, based on the content of the complement
graph’s adjacency list, we narrow down the range of successor
nodes for each node. Specifically, each node’s successor nodes

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4055

TABLE II
EDGE SETS AND COMPLEMENTARY EDGE SET OF COMPONENT 1

TABLE III
EDGE SETS AND COMPLEMENTARY EDGE SET OF COMPONENT 2

include the empty node and nodes that do not conflict with it.
This approach significantly speeds up the search process and
improves the success rate of finding maximal independent sets.
The adjacency list of complement graph and the details of the
algortithm are are defined as follows:

To obtain the adjacency list of the complement graph, we first
find all the edge (u, v) in the undirected graphG, which is called
Edge set. The set of edges that exist in the complement graph
but not in Edge set is called the complementary edge set (CES).
Based on CES, we can easily generate the adjacency list of the
complement graph in lexicographic order.

Next, we will construct a spanning tree based on the adjacency
list of the complement graph. We define the successor nodes of
the initial node as all the nodes in the graph. The successor nodes
of non-root nodes are empty nodes and other nodes that are not
interfering with them. Empty nodes have no successor nodes.
This step can be easily determined by querying the adjacency
list of the complement graph.

Once the spanning tree is constructed, we search for all paths
from the root node to the leaf nodes. If all nodes in a path do
not have interference, we consider it a valid path and store all
the nodes in that path into an independent set. For a maximal
independent set, adding any vertex that is not already included
would make it no longer an independent set. Therefore, we need
to remove any subsets that exist in the obtained independent sets
to obtain the maximal independent sets as output.

In order to explain the Graph Partition algorithm more clearly,
we introduce an example to describe the process of the algorithm.
Suppose that the undirected graph G is shown as Fig. 4. We can
see that there are 2 components.

We process each component in Fig. 4 in turn. For component
1 that contains three nodes numbered 0, 1, and 2. There is an
interference relationship between any two nodes, as shown in
Table II. Therefore, the CES table of component 1 is an empty
set, all nodes have only empty node as their successor node,
and they form a maximal independent set that contains only
themselves.

For component 2 that contains five nodes numbered 3, 4, 5,
6, and 7, the corresponding CES table is shown in Table III.
The successor nodes of the initial node S are [5, 4, 7, 3, 6]. The
successor nodes of node 3 are [4, 7, 6, ∅]. The successor nodes
of node 4 are [6, ∅]. The successor node of node 5 is [∅]. The

Fig. 5. Graph partition algorithm.

Fig. 6. Sets of non-interfering MEC servers.

successor nodes of node 6 are [7, ∅]. The successor node of node
7 is [∅]. The path from the root node to the leaf node will form
an independent set, so we get independent sets [5], [4, 6], [4],
[7], [3, 4, 6], [3, 4], [3, 6, 7], [3, 6], [3, 7], [3], [6, 7], [6]. Among
them, the maximal independent sets are [5], [3, 4, 6], [3, 6, 7].
The process of constructing the spanning tree is shown in Fig.
5.

Combine the maximal independent set obtained by compo-
nent 1 and component 2. Finally, as shown in Fig. 6, the maximal
independent set corresponding to the undirected graph G is
obtained [0,3,4,6], [0,3,6,7], [0,3,7], [1,3,4,6], [1,3,6,7], [1,3,7],
[2,3,4,6], [2,3,6,7], [2,3,7].

B. MC-UCB Based MEC Server Placement Algorithm

After obtaining the subsets of non-interfering MEC servers,
for each subset, we need to select M MEC servers that provide
the highest reward in terms of quality of service. If the number of
MEC servers that do not interfere with each other in the subset
is less than M , we will skip the subset. Finally, we select a
set of MEC servers with the highest reward from the results
of all subsets. We analyze this problem from the perspective
of MAB. Assuming that there is a global agent in the system
as a gambler, and N MEC servers in the subset that do not
interfere with each other are N arms, the gambler shakes M
arms in each round, and the gambler’s overall goal is to minimize
accumulated regret in a limited number of rounds. ”Regret” is
defined as the difference between the reward of continuously
selecting the optimal arm and the reward obtained in the actual

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



4056 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

algorithm [27], [28]. Formally, the regret of the previous round
can be obtained as:

R(T ) = u∗ · T −
T∑

t=1

u (at) (3)

Wherein, u(a) = E[Da] = E[ut(a)] represents the expected
reward of the arm under the reward distribution Da, u∗ =
maxa∈A u(a), represents the best average reward among the
average rewards generated by all arms.

We let A denote the set of all arms, A = {1, 2, . . . , N}, a ∈
A.Nt(a) represents the number of times arm a is selected by the
algorithm in rounds 1 ∼ t, ut(a) represents the average reward
of arm a estimated by the previous t rounds. The reward of arm
a is defined as: R(a) = QoSa = αTa + βThra + γDensa,
QoSa ∈ [0, 1], according to Hoeffding’s inequality [29]:

Pr
[
| ut(a)− u(a) |≤ rt(a)

]
≥ 1− 2

T 4

rt(a) =
√

2 log(T )
Nt(a)

(4)

whereT is a fixed parameter representing the entire time domain
in which the algorithm runs. Because 1− 2

T 4 is a large number,
it can be considered that | ut(a)− u(a) |≤ rt(a) is a high prob-
ability event, namely ut(a) has a greater probability of being
within the confidence interval [u(a)− rt(a), u(a) + rt(a)], and
similarly u(a) has a greater probability of being within the
confidence interval [ut(a)− rt(a), ut(a) + rt(a)].

The algorithm flow of MC-UCB is is shown in Algorithm 1.
In the initialization phase, the algorithm shakes each arm once,

and gets the random reward Ra fed back by the arm a. Then the
algorithm enters T round loop.

In each round, the MC-UCB algorithm selects the arm with
the highest M value of UCBt(a). Gambler execute these arms
in turn, get corresponding rewards and update these arms. When
the current round t is greater than the threshold Tmax, before the
end of round t, we judge whether the arm N with the lowest
current UCBt(N) value is smaller than the lower limit of the
confidence interval of the arm with the M -th highest value of
UCBt(M). If it is, there is a high possibility that the arm N is
not among the arms with the highest M in the UCBt(N) value,
and the arm will be deleted from the candidate set.

Next, we analyze the regret upper bound of the MC-UCB
algorithm: Suppose that the arms with the top M highest UCBt

form a setM. If the arm ai /∈ M, aM ∈ M and the current time
t gets UCBt(ai) > UCBt(aM ), then regret occurs. According
to the above analysis of the high probability situation, we can
infer: u(ai) + rt(ai) ≥ ut(ai), ut(aM ) + rt(aM ) ≥ u(aM ).
At the same time, since UCBt(ai) > UCBt(aM ), it can be
deduced that ut(ai) + rt(ai) > ut(aM ) + rt(aM ). Arranging
the above formula can get:

u (ai) + 2rt (ai)

≥ ut (ai) + rt (ai)

> ut (aM ) + rt (aM )

≥ u (aM ) (5)

Algorithm 1: MC-UCB Algorithm.
Input: Number of rounds T
Output: Accumulated rewards
1: for a = 1, 2, . . . N do
2: N0(a) = 1
3: u0(a) = Ra

4: end for
5: for t = 1, 2, . . . T do
6: for a = 1, 2, . . . N do
7: Compute upper-confidence bound of arm a

8: UCBt(a) = ut(a) +
√

2 log(t)
Nt(a)

9: end for
10: Sort N arms in descending order by UCBt(a) value
11: for i = 1, 2, . . .M do
12: Choose the action ai=the arm with the i-th largest

UCBt

13: Observe reward Ri,t ∼ v(ai)
14: Update statistics for action ai:
15: Nt(ai) = Nt−1(ai) + 1,
16: ut(ai) =

ut−1(ai)×Nt−1(ai)+Ri,t

Nt(ai)
17: end for
18: if t > Tmax and N > M then

19: if UCBt(N) < ut(M)−
√

2 log(t)
Nt(M) then

20: Abandon arm N , N = N − 1
21: if N == M then
22: break
23: end if
24: end if
25: end if
26: end for

From this we can deduce:

Δ(ai) = u (aM )− u (ai)

≤ 2rt (ai)

= 2

√
2 log(T )

Nt(a)
(6)

The cumulative regret obtained by taking action ai in the first
t rounds is the product of Δ(ai) and the number of times ai is
selected in the first t rounds, namely:

R (t; ai) = Nt (ai)×Δ(ai)

≤ Nt (ai) ·O
(√

2 log(T )

Nt (ai)

)

= O
(√

Nt (ai) · log(T )
)

(7)

The cumulative regret R(t) for the first t rounds is the cumu-
lative sum of regrets arising from taking all non-optimal actions,

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4057

Fig. 7. Cumulative regret comparison under different MEC servers.

namely:

R(t) =
∑

a∈A∧a/∈M
R(t; a)

≤
∑

a∈A∧a/∈M

√
Nt(a) ·O(

√
log(T )) (8)

By analyzing the above formula, it is known that the max-
imum number of regrets in each round is min{M,K −M},
and the maximum number of regrets in the previous t rounds is
t×min{M,K −M}. When we consider Nt(a) as a variable,√

Nt(a) is a convex function, which can be obtained according
to JenSen’s inequality:

1

k

∑
a∈K∧a/∈M

√
Nt(a) ≤

√
1

k

∑
a∈K∧a/∈M

Nt(a)

≤
√

t×min{M,K −M}
k

(9)

Bring it into Formula 8 to get: R(t) ≤ O(
√

log(T ))×√
t× k ×min{M,K −M} ≤ O(

√
t log(T )). Let “hp”

means the event of high probability, “lp” means the event of

TABLE IV
SIMULATION PARAMETERS

low probability. The expectation of R(t) is:

E[R(t)] = E[R(t) | hp]× pr × [hp]

+ E[R(t) | lp]× pr × [lp]

≤ O(
√
t log(T ))× 1 + 1×O

(
T−4

)
= O(

√
t log(T )) (10)

In summary, the logarithmicity of the upper bound of regret
for the MC-UCB algorithm has been proved.

V. SIMULATION RESULTS

In this section, we compare the proposed GP-MCUCB algo-
rithm with the baseline algorithms. We deployed 50 MEC servers
in the scenario, and each MEC server varies in bandwidth,
coverage radius, and geographic location. 1000 terminal users
are discretely distributed around the 50 MEC servers, and the
user density around each MEC server varies. We set the baseline
algorithms as Particle Swarm Optimization (PSO) [20] and Ge-
netic Algorithm (GA) [21]. In PSO algorithm, all particles have a
fitness value determined by a reward function and determine the
direction and distance of exploration through their speed. The
particles determine the global optimum by searching in parallel.
Genetic algorithm is a method of searching for the optimal
solution by simulating the natural evolution process. With the
help of the genetic operators of natural genetics, crossover and
mutation to generate a population representing a new solution
set. In order to adapt to the scenario of this article, we set
the search dimension of the PSO and GA algorithms to be 50,
and return a negative reward to suppress the occurrence of the
situation when the selected result does not satisfy the constraints
of (2). The simulation parameters are shown in Table IV.

A. Evaluation of Cumulative Regret

We first analyze the GP-MCUCB algorithm and the baseline
algorithms with cumulative regret as the evaluation indicator.
As mentioned in (3), cumulative regret is the difference be-
tween the reward value of continuously selecting the optimal
decision and the reward value actually obtained by the current
algorithm. The numerical size and upward trend of cumulative
regret reflect the performance of the algorithm. In Section IV-B,
we established the logarithmic upper bound for the regret of the
proposed GP-MCUCB algorithm. Now, we aim to validate this
bound through simulations. By conducting simulations, we can

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



4058 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE V
IDS OF THE DEPLOYED MEC SERVERS UNDER DIFFERENT MEC SERVERS

TABLE VI
DATA OF EXPERIMENT UNDER DIFFERENT USERS

observe the behavior of the algorithms in practice and verify
their performance.

It can be seen from Fig. 7 that the cumulative regret of the
GP-MCUCB algorithm rises more slowly than the baseline algo-
rithms. In most cases, the cumulative regret of the GA algorithm
rises the fastest, followed by the PSO algorithm. We can see that
the cumulative regret of the GA algorithm rises almost linearly.
This is because the GA algorithm tends to get stuck in a local
optimum, making the same decisions in subsequent iterations.
Thus, each cumulative regret increases at a near constant rate.

Moreover, it is evident that the cumulative regret values of
the GA and PSO algorithms increase noticeably as the number
of deployed MEC servers in the scenario grows. This phe-
nomenon can be attributed to the exponential growth in the
search dimension of the GA and PSO algorithms, which occurs
with the increasing number of MEC servers. Consequently, this
exacerbates the limitations of traditional heuristic algorithms
when dealing with larger-scale MEC server deployment scenar-
ios. In contrast, the GP-MCUCB algorithm exhibits superior
performance. Based on the simulation results mentioned above,
it is apparent that the upper bound of cumulative regret remains
below 15.

B. Performance Comparison With Different MEC Servers

In this section, we compare the performance of the GP-
MCUCB algorithm with the PSO and GA algorithms using the
average transmission delay, total throughput, and average reward
as indicators. The numerical results of the simulation are shown
in Tables V and VI.

We conducted an analysis comparing the GP-MCUCB algo-
rithm with baseline algorithms using the average transmission
delay as the metric. The results, depicted in Fig. 8, indicate

Fig. 8. Average transmission delay under different MEC servers.

that all three algorithms exhibit a decreasing trend as the num-
ber of deployed MEC servers in the scenario increases. The
reason behind this trend is that with a greater number of MEC
servers, users have more opportunities to request cache resources
from servers that are in closer proximity to them. This shorter
transmission distance between users and MEC servers leads
to reduced transmission delays for video resources. From the
Fig. 8, we can see that as the number of MEC servers increases,
the average processing delay decreases from fast to slow. Com-
pared with the baseline algorithm, the GP-MCUCB algorithm
has obvious advantages.

As depicted in Fig. 9, both the GP-MCUCB algorithm and the
baseline algorithm show a significant increase in throughput as
the number of deployed MEC servers in the scenario increases.
This phenomenon can be attributed to the fact that a larger
number of MEC servers in the scenario provides users with more
choices for selecting servers. Consequently, users have a higher
probability of requesting services from MEC servers that are

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4059

Fig. 9. Total throughput delay under different MEC servers.

Fig. 10. Average reward under different MEC servers.

in closer proximity to them, resulting in reduced transmission
time for video resources. This, in turn, enables more video tasks
to be completed within the minimum time threshold, thereby
improving system throughput.

The simulation results clearly demonstrate that the GP-
MCUCB algorithm outperforms both the PSO algorithm and
the GA algorithm.

As depicted in Fig. 10, there is a noticeable increase in
the average reward of tasks as the number of deployed MEC
servers in the scenario increases. This can be attributed to the
comprehensive consideration of various factors in our design of
the average reward metric, including the average transmission
delay of tasks, throughput of video tasks, and the user density
around MEC servers. User density serves as a crucial criterion
for evaluating the effectiveness of MEC server placement, but
its value is solely determined by the coordinates of the current
user and the coverage range of MEC servers. It does not undergo
significant changes with variations in the number of deployed
MEC servers in the scenario.

Based on the preceding analysis, we can conclude that as
the number of MEC servers increases, the average transmission
delay of tasks decreases, and the overall throughput improves,
leading to an increase in the average reward of tasks. Fig. 10
illustrates that the GP-MCUCB algorithm outperforms the PSO

Fig. 11. Average transmission delay under different data size.

Fig. 12. Total throughput under different data size.

algorithm by more than 6%, while the GA algorithm demon-
strates an improvement of over 4% in performance.

C. Performance Comparison With Different Data Size

Next, we analyze the difference between the performance of
the GP-MCUCB algorithm and the baseline algorithms under
different data sizes. The numerical results of the simulation are
shown in Table VII.

As shown in Fig. 11, as the amount of video resource data
in the scenario increases, the average transmission delay of
video resources increases. From the figure, it is evident that the
GP-MCUCB algorithm consistently outperforms both the PSO
algorithm and the GA algorithm. Notably, the advantage of the
GP-MCUCB algorithm becomes more pronounced as the data
volume of the video resources increases. These findings high-
light the superior performance of the GP-MCUCB algorithm in
effectively managing and allocating resources, particularly in
scenarios with larger data volumes.

As depicted in Fig. 12, both the GP-MCUCB algorithm
and the baseline algorithm exhibit a downward trend in total
throughput as the amount of video resource data in the scenario
increases. This is primarily attributed to the increase in average
transmission delay, which leads to a higher number of video

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



4060 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE VII
DATA OF EXPERIMENT UNDER DIFFERENT DATA SIZE

Fig. 13. Average reward under different data size.

tasks failing to meet the delay threshold, consequently reducing
the overall throughput. Moreover, the figure highlights that as the
amount of video resource data increases, the decline rate of total
throughput in the scenario becomes more prominent. Overall,
when compared to the baseline algorithms, the GP-MCUCB
algorithm demonstrates superior performance.

As shown in Fig. 13, as the amount of video resource data in
the scenario increases, under all algorithms, the average reward
shows a downward trend. This is because the user density around
the MEC server does not change much when the number of MEC
servers deployed in the scenario remains the same. However,
the average transmission delay tends to increase and the total
throughput tends to decrease as the volume of video resource
data grows. Consequently, the average reward experiences a
downward shift. In comparison to the GA and PSO algorithms,
the GP-MCUCB algorithm demonstrates clear advantages.

VI. CONCLUSION

In this article, we propose an algorithm that combines Graph
Partition and MC-UCB to address the challenge of managing
edge server interference and optimizing their placement in a
multi-user multi-MEC server scenario, aiming to enhance the
overall service quality of the system. The interference between
MEC servers is represented using an undirected graph in the
graph partition algorithm, which allows us to obtain several
candidate sets of MEC servers with no interference among them.
Subsequently, the MC-UCB algorithm is employed to make

optimal decisions regarding the placement of a fixed number
of MEC servers.

To evaluate the performance of our proposed algorithm, we
compare it with existing PSO and GA algorithms in terms of av-
erage reward, average transmission delay, and total throughput.
The simulation results clearly demonstrate that our GP-MCUCB
algorithm outperforms the other approaches in all evaluated
metrics. As part of our future work, we intend to further optimize
the algorithm’s performance by exploring the impact of the
number of MEC servers and other time-varying factors. This
will enable us to enhance the overall efficiency and effectiveness
of the algorithm in real-world scenarios.

REFERENCES

[1] M. Muniswamaiah, T. Agerwala, and C. C. Tappert, “A survey on
cloudlets, mobile edge, and fog computing,” in Proc. IEEE 8th Int. Conf.
Cyber Secur. Cloud Comput. 7th IEEE Int. Conf. Edge Comput. Scalable
Cloud, 2021, pp. 139–142.

[2] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. Veh. Technol, vol. 66, no. 8,
pp. 7432–7445, Aug. 2017.

[3] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[4] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[5] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge intelligence:
Multiaccess edge computing for 5G and Internet of Things,” IEEE Internet
Things J., vol. 7, no. 8, pp. 6722–6747, Aug. 2020.

[6] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast deter-
ministic distributed maximal independent set computation on growth-
bounded graphs,” in Proc. Int. Symp. Distrib. Comput., Springer, 2005,
pp. 273–287.

[7] R. Watanabe, J. Komiyama, A. Nakamura, and M. Kudo, “KL-UCB-based
policy for budgeted multi-armed bandits with stochastic action costs,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 100-A,
no. 11, pp. 2470–2486, 2017.

[8] H. W. J. Reeve, J. Mellor, and G. Brown, “The k-nearest neighbour UCB
algorithm for multi-armed bandits with covariates,” Proc. Mach. Learn.
Res., in Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors,
PMLR, 2018, pp. 725–752.

[9] S. Hashima, M. M. Fouda, Z. M. Fadlullah, E. M. Mohamed, and
K. Hatano, “Improved UCB-based energy-efficient channel selection in
hybrid-band wireless communication,” in Proc. IEEE Glob. Commun.
Conf., 2021, pp. 1–6.

[10] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, and Y. Zhang, “Reinforcement
learning-based mobile offloading for edge computing against jamming
and interference,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6114–6126,
Oct. 2020.

[11] Z. Sha, Z. Wang, S. Chen, and L. Hanzo, “Graph theory based beam
scheduling for inter-cell interference avoidance in mmWave cellular
networks,” IEEE Trans. Veh. Technol, vol. 69, no. 4, pp. 3929–3942,
Apr. 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: GRAPH PARTITION AND MULTIPLE CHOICE-UCB BASED ALGORITHMS FOR EDGE SERVER PLACEMENT 4061

[12] Q. Kuang and W. Utschick, “Energy management in heterogeneous net-
works with cell activation, user association, and interference coordina-
tion,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 3868–3879,
Jun. 2016.

[13] S. Yan, X. Cao, Z. Liu, and X. Liu, “Interference management in 6G space
and terrestrial integrated networks: Challenges and approaches,” Intell.
Converged Netw., vol. 1, no. 3, pp. 271–280, 2020.

[14] T. Moscibroda and R. Wattenhofer, “Maximal independent sets in radio
networks,” in Proc. 24th Annu. ACM Symp. Princ. Distrib. Comput., 2005,
pp. 148–157.

[15] A. Köse and B. Özbek, “Resource allocation for underlaying device-to-
device communications using maximal independent sets and knapsack
algorithm,” in Proc. IEEE 29th Annu. Int. Symp. Pers. Indoor Mobile Radio
Commun., 2018, pp. 1–5.

[16] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, “On generating all
maximal independent sets,” Inf. Process. Lett., vol. 27, no. 3, pp. 119–123,
1988.

[17] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new algorithm
for generating all the maximal independent sets,” SIAM J. Comput., vol. 6,
no. 3, pp. 505–517, 1977.

[18] J. Y.-T. Leung, “Fast algorithms for generating all maximal independent
sets of interval, circular-arc and chordal graphs,” J. Algorithms, vol. 5,
no. 1, pp. 22–35, 1984.

[19] B. Li, P. Hou, H. Wu, R. Qian, and H. Ding, “Placement of edge server
based on task overhead in mobile edge computing environment,” Trans.
Emerg. Telecommun. Technol., vol. 32, no. 9, 2021, Art. no. e4196.

[20] Y. Li and S. Wang, “An energy-aware edge server placement algorithm in
mobile edge computing,” in Proc. IEEE Int. Conf. Edge Comput., 2018,
pp. 66–73.

[21] S. K. Kasi et al., “Heuristic edge server placement in industrial Internet
of Things and cellular networks,” IEEE Internet Things J., vol. 8, no. 13,
pp. 10308–10317, Jul. 2021.

[22] X. Zhang, Z. Li, C. Lai, and J. Zhang, “Joint edge server placement and
service placement in mobile edge computing,” IEEE Internet Things J.,
vol. 9, no. 13, pp. 11261–11274, Jul. 2022.

[23] G. Cui, Q. He, X. Xia, F. Chen, H. Jin, and Y. Yang, “Robustness-oriented
k edge server placement,” in Proc. IEEE/ACM 20th Int. Symp. Cluster
Cloud Internet Comput., 2020, pp. 81–90.

[24] Y. Qu et al., “Server placement for edge computing: A robust submodular
maximization approach,” IEEE Trans. Mobile Comput., vol. 22, no. 6,
pp. 3634–3649, Jun. 2023.

[25] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2013, pp. 151–159.

[26] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network optimiza-
tion with unknown variables: Multi-armed bandits with linear rewards
and individual observations,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1466–1478, Oct. 2012.

[27] C.-W. Lee, H. Luo, C.-Y. Wei, and M. Zhang, “Bias no more: High-
probability data-dependent regret bounds for adversarial bandits and
MDPs,” in Proc. Adv. Neural Inf. Process. Syst. Annu. Conf. Neural Inf.
Process. Syst., 2020, pp. 15522–15533.

[28] S. Ito, S. Hirahara, T. Soma, and Y. Yoshida, “Tight first- and second-order
regret bounds for adversarial linear bandits,” in Proc. Adv. Neural Inf.
Process. Syst. Annu. Conf. Neural Inf. Process. Syst., 2020, pp. 2028–2038.

[29] V. Moulos, “A hoeffding inequality for finite state Markov chains and its
applications to Markovian bandits,” in Proc. IEEE Int. Symp. Inf. Theory,
2020, pp. 2777–2782.

Zheyu Zhao (Graduate Student Member, IEEE) is
currently working toward the master’s degree in com-
puter science and technology with the University of
Science and Technology of China. Her research inter-
ests include cloud/edge computing, algorithm design,
and intelligent IoT.

Hao Cheng is currently currently working toward the
PhD degree in EEMCS of Technische Universiteit
Delft. His research interest includes machine learning
algorithm and corresponding application, especially
in non stationary low SNR area.

Xiaohua Xu received the bachelor’s degree from the
Zhu Kezhen College of Zhejiang University and the
PhD degree from Illinois Institute of Technology,
USA. He is a professor with the School of Computer
Science and Technology, University of Science and
Technology of China. His research interests are edge
computing, algorithm design, and intelligent IoT.

Yi Pan (Senior Member, IEEE) is current the dean
and chair professor of Faculty of Computer Science
and Control Engineering with the Shenzhen Insti-
tute of Advanced Technology, Chinese Academy of
Sciences, China. He has been a regents’ professor
emeritus and served as the chair of Computer Science
Department with Georgia State University during
2005–2020. He has also served as an interim asso-
ciate dean and chair of Biology Department during
2013–2017. He joined Georgia State University in
2000, was promoted to full professor in 2004, named

a Distinguished University professor in 2013, and designated a regents’ professor
(the highest recognition given to a faculty member by the University System of
Georgia) in 2015. His work has been cited more than 16 000 times based on
Google Scholar and his current H-index is 82. He has published more than 450
papers, including more than 100 papers in IEEE/ACM transactions/journals and
edited/authored 43 books. His current research interests mainly include parallel
and cloud computing, wireless networks, and bioinformatics.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 18,2024 at 08:20:52 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


