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"We may have knowledge of the past but
cannot control it;
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ABSTRACT

The aerocapture maneuver has the potential of literally opening new worlds to space exploration.
Despite this, it has never been attempted before.

The guidance logic is a key element for the success of an aerocapture. It has to be able to guide
the vehicle in a variety of adverse and highly perturbed conditions. Moreover, it should possibly
do so in an optimal way. During this research, a lunar return aerocapture on Earth is used as a
reference mission. The guidance problem is strictly related to trajectory analysis, and thus this is
carried out first. It is shown that, for the case in object, the ideal trajectory that minimizes the ∆V
also minimizes all the constraints, as well as the total heat load. Because of this, the aerocapture
guidance for Earth can be reduced from a multi-objective constrained problem to a single objective
optimization. The objective is minimization of the ∆V for the worst case conditions.

The optimal aerocapture numerical predictor-corrector (NPC) developed by Lu et al. [2015] is a
good starting point for the analysis of the guidance. Its main drawbacks are the fact that it makes
use of a large number of trajectory integrations at each call, on average between 10 and 20, and
that it requires an extensive tuning effort. During this research, two major modifications have been
proposed: a different numerical method, and a different trajectory planning in the NPC. With the
first, the number of iterations is reduced to 2, without any significant loss in performance. With the
second, the required tuning becomes much less demanding. Specifically, this is possible because of
the inclusion of a simplified model of the rotational kinematics of the spacecraft. It is concluded that
this newly developed guidance can perform as well as the original one, but with less tuning and with
only two iterations per guidance call. Specifically, for initial flight-path angles between -5.6° -5.1°,
the guidance can ensure a safe orbit insertion with a maximum ∆V of 80 ms−1, a maximum load
factor of 5, and a maximum integrated heat load of 650 MJm−2. Such a result is valid also for highly
perturbed environments, including turbulent atmospheres. These results are used as benchmark to
compare the performance of the artificial intelligence guidance.

The kind of artificial intelligence that will be used is an artificial neural network (ANN). An ANN
is a computational approach that is capable of reproducing any function, and can do so with very
little computational requirements. One way of training a neural network consists of supervised
learning. A large amount of optimized trajectories is generated, and then the network is taught
how to follow them. With such a method, for the same conditions as before, the neural guidance
can meet the requirements with a worst case scenario ∆V of 210 ms−1. Despite less performing
than the optimal NPCs, this result is very interesting, since the ANN does so with a fraction of the
computational requirements. It is also believed that the training design can be improved, and thus
the performance as well.

With reinforcement learning (RL), it is possible to let the networks learn by themselves, directly
interacting with the simulation environment. The goal is that of minimizing the objective function
at the in a variety of perturbed situations. In this research, Super Symmetric Sampling (SyS) Policy
Gradient with Parameters Exploration (PGPE) is used. With such a method, the ANN guides the ve-
hicle along a trajectory; it then approximates a gradient of the objective with respect to the network’s
parameters by sampling, and it updates itself. At every iteration, a trajectory with different condi-
tions and perturbations is simulated. Sup SyS PGPE seemed a very promising design, but also very
challenging. Eventually, its performance was not very performing, because of a particular feature of
the design. For the networks so trained in this research, aerocapture can be ensured for a maximum
∆V of 600 ms−1.
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PREFACE

Suppose you have never written an MSc thesis, and want to learn how to write a proper one. One
way of doing that could be listening to your supervisor, who gives you guidance, tells you when you
are doing something wrong, and how to improve your work. This is a similar case to supervised
learning.

However, the adventurous learner may prefer not to listen to anyone, and write his thesis his
way. At the end, he would be graded. Therefore, the first time the student would most likely fail.
Nonetheless, being adventurous, the learner would not give up, and keep on trying. He would also
remember, and learn to recognize, what patterns lead to better results. After many attempts, years,
sweat and tears, the student would have gained enough experience to know how to write the best
possible thesis. Without diving into philosophical debates on whether such a student shall be called
adventurous or stubborn, this second approach is more similar to reinforcement learning.

These are two of the methods that will be used to solve the problem of the optimal aerocap-
ture guidance. At this point, a little of creativity is needed to imagine how those examples may be
compared to such a problem, but hopefully everything will be clear after having read this report.

I will not attempt to be the judge of whether I was the diligent learner, or the adventurous, stub-
born one. I guess only my supervisor Dr. Erwin Mooij can tell. At this point, I want to express
my gratitude to him, for the opportunity he gave me with this research, and the advices he shared
with me. I am particularly thankful for being patient during some of the interesting, but also never
ending, discussions we have had.

I am also grateful to Ir. Jacco Geul for having encouraged me to enter the world of reinforcement
learning, and to Dr. Erik-Jan van Kampen for having met with me a couple of times. To both of you,
and to Prof. Pieter N.A.M. Visser, I say thanks for agreeing to be part of my Thesis Committee.

Thanks also to all of my friends here, back home and around the world. I am sorry if I missed
the Bouwpub a couple of times, and I know that writing a thesis is not a good excuse. Another
considerable portion of my gratitude goes to my friend Mihir, who offered me more than once his
expertise in using LATEX, and to Bronius, who has been a great companion during the writing of this
thesis. I firmly believe that these months in which you have been in Leiden have improved our
friendship.

Eventually, I would now like to thank my parents, who always fully supported me in every way,
and my brother, who has been many times a great life advisor and a role model.

Enrico M. Zucchelli
Delft, November 2016
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1
INTRODUCTION

The aerocapture maneuver is a technology that allows orbital capture with only one pass inside the
atmosphere of a planet, almost null propellant use and in the time of around half of the desired final
orbital period. Alternative to the traditional propulsive capture and to aerobraking, its benefits in
terms of payload-mass increase are believed to highly reduce the cost of many missions, and even
enable otherwise impossible ones. The maneuver was first proposed by Cruz [1979], and in its orig-
inal description it consisted of three main phases: the exoatmospheric approach, the atmospheric
pass and the periapsis raise.

The exoatmospheric trajectory may rely on open-loop guidance, navigation and control (GNC),
and plays a fundamental role in the success of the maneuver, since it strongly affects the initial con-
ditions of the following phase. During the atmospheric pass, the vehicle enters the atmosphere and
the required ∆V to have a certain apoapsis altitude is given to the vehicle by atmospheric drag. The
latter phase requires autonomous and closed-loop GNC, because the plasma surrounding the ve-
hicle would make impossible any external communications, and because the large instability and
sensitivity of the trajectory make an unguided flight virtually impossible. The vehicle is then guided
in a way such that, after exiting the atmosphere, the spacecraft is injected into an orbit lying on the
same plane and having the same apoapsis altitude as the target one. During the atmospheric pass,
the usual way of controlling the trajectory consists, for a capsule-like vehicle, of bank-angle modu-
lation. When the apoapsis is reached, a thrust burn is applied to raise the periapsis to the desired
one. At this point, the final orbit is almost obtained, and hopefully only negligible corrections are
needed. A more detailed breakdown of the maneuver is shown in Fig. 1.1.

The difficulties in achieving aerocapture come from two main factors. First, the high speed of
the trajectory, which, together with the non-linearity of the dynamics, makes the system extremely
unstable. Secondly, after a certain point, the atmosphere becomes too rarefied, and the vehicle has
no more means of controlling and correcting the trajectory.

An aerocapture has never been attempted before, despite the many benefits it could give in
terms of mass reduction [Percy et al., 2005] and the fact that it has been studied for the past four
decades. It also has many similarities with skipping entry, a maneuver the Apollo guidance had
been designed for, and aerobraking, which has instead been successful1 a handful of time. IAe-
rocapture has been proposed for many missions, and it is an important part in almost all of the
architectures that were considered by National Aeronautics and Space Administration (NASA) for
their Entry, Descent, and Landing Systems Analysis (EDL-SA). The latter is a study commissioned in
2008 to identify the roadmap of entry, descent and landing (EDL) technology needed to successfully
land large payload, including manned vehicles, on Mars [Ciancolo et al., 2011].

1With a rather low success rate, though.

1
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A determining aspect of aerocapture consists of how the vehicle is guided during the atmo-
spheric flight: we enter now the domain of GNC. Guidance is defined by the Oxford Dictionaries
as "advice or information aimed at resolving a problem or difficulty, especially as given by someone
in authority". This, although helpful, is not very precise. Fortunately, the same Oxford Dictionaries
provide an engineering definition:

The directing of the motion or position of something, especially an aircraft, spacecraft, or
missile.

The goal of the guidance system is thus that of giving the right direction to the motion. In non
propelled EDL, this translates to give steering commands to the aerodynamic angles. To achieve its
goal, a guidance logic has to be complemented by a system telling it where it is, the navigation, and
another one actuating its directing, the control. All together, they make the GNC.

The commands given by the guidance shall be such that, if actuated by the controller, they would
lead the vehicle to the desired final orbit, while satisfying all the constraints, both at the end and
during the entirety of the trajectory. Moreover, this should preferably be done in an optimal way. All
these requirements imply that, in addition to knowing where it is, the guidance system should also
know what its environment is, and how its commands will affect the future states. It is important
that the guidance acts in prospect of not only the immediate future, but of the long term as well.

An additional complication comes from the fact that the commands should be provided at a
rather high frequency (usually not smaller than 1 Hz). This is required because of the fast and non-
linear dynamics governing the trajectory.

Two common methods to guide a spacecraft during aerocapture are analytic predictor-corrector
(APC) and NPC. As the name suggests, predictor-correctors, both analytical and numerical, rely on
a trajectory that is "predicted" at a certain moment; at each successive guidance call, the prediction
is then "corrected" based on the new state. One of the many alternatives to these methods con-
sist of having a stored trajectory, that is then tracked Wingrove [1963]. An example of aerocapture
guidance making use of this method is the terminal point controller (TPC). Eventually, another very
popular concept for aerocapture is the energy controller (EC), which makes analytical assumptions,
and aims to achieve a certain reference energy at the exit of the atmosphere.

In all traditional guidance methods, the knowledge about how the commands of the guidance
will affect the future states is explicit, in the sense that it comes from some modeling of the environ-
ment. However, it is possible to try and solve the problem in a few different ways, that require no
explicit modeling of the environment, at least within the guidance logic. Artificial intelligence is one
such solution. Two branches of this technology are applied in this research: supervised learning and
RL. The first consists of learning from labeled input-output pairs. This means that the commands
(outputs) first need to be found in a different way, and then taught to the learning element. The
second makes use of learning by trial and error. The learning element explores the environment,
receives rewards, and exploits what it learned. It does all this with the goal of obtaining the largest
amount of rewards. In this case, there is no need of labeled data: the model of the environment,
together with an appropriate reward function, is sufficient. Many keywords have been just been
mentioned, and they will become more clear further in the report. At this point of the discussion,
the reader does not need a technical definition of those keywords, and can rely on their traditional
meaning.

The use of the two just described methods may have many advantages over traditional guidance
solutions. In fact, artificial intelligence solutions have the capability to provide the optimal com-
mand in real-time, whereas both APCs and NPCs generally do not aim to achieve an optimal trajec-
tory. This is because predictor-correctors need to solve the command at a very high frequency, and
an optimization problem cannot usually be solved at such a frequency. Moreover, also a guidance
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Figure 1.1: Aerocapture phases [Zumwalt et al., 2010].

that tracks a stored trajectory, even if such trajectory were optimal, would not provide an optimal
command, due to the linearization occurring in tracking. Lu et al. [2015] exploit an analytical, sim-
plified solution of optimal control theory to have an NPC with a structure such that the commands
are closer to be optimal. The method requires very large margins to be sufficiently reliable, and
therefore the optimality is reduced.

The idea behind the use of supervised learning consists of the fact that in theory a learning
agent could be taught how to approximate the optimal solution at any point in space, and do so
very fast. Such an optimal trajectory is usually obtained in deterministic environments, and thus
the so obtained trajectory may not be optimal in a stochastic environment. RL can instead provide
a solution that is optimal even when considering all the possible future perturbations. In addition,
artificial intelligence methods could compute a command in a fraction of the time needed by the
NPC. This final reasoning is what motivated the use of artificial intelligence solutions to the problem
of aerocapture guidance.

In the remaining of this introductory chapter the research question of this thesis is formulated;
after that, the outline for the subsequent chapters is given.

1.1 RESEARCH QUESTION
The entire research is focused on the guidance logic for aerocapture, an atmospheric maneuver that,
although being highly convenient, and possibly a game-changing technology in space exploration,
has never been attempted before. The lack of a reliable and performing enough guidance system is
a reason why an attempt never occurred. From the previous elaboration, using artificial intelligence
seems a good candidate for the problem. Hence, a question arises, specifically:

Can an artificial intelligence guide a spacecraft to achieve aerocapture in an optimal and
robust way?

While the adjective robust is clear, and means "able to withstand or overcome adverse condi-
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tions"2, optimality is a more ambiguous concept, and very relative. A clear, and quantifiable way of
defining optimal and robust is given in Section 2.7.

A subquestion that would help answering the main question is:

What are the most useful parameters to evaluate optimality in aerocapture?

It has also been said that RL is a good solution for highly perturbed environments. Hence, for
the research to be consistent, one should also answer the following subquestion:

How does the state-of-the-art guidance solution perform in a highly perturbed atmo-
sphere?

While answering these questions, some modifications to the current state-of-the-art are also
proposed. The main question is very vast, and therefore this research will be limited to using only
two kinds of artificial intelligence solutions among the large variety of existing ones.

1.2 REPORT OUTLINE
The subquestions will be the topic of Chapter 4, whereas the main question will be answered in
Chapter 7.

Chapters 2 and 3 can be considered as introductory. The former deals with previous missions
in which aerocapture was planned, or that made use of maneuvers similar to it. It also includes
detailed motivations for studying aerocapture, as well as an overview of the maneuver, the mission
requirements, and the problem statement. The latter treats the dynamics of hypersonic entry, and
the corresponding environment, forces, and perturbations.

The goal of Chapter 4 is indeed that of answering the two subquestions. This will be done by
analyzing the requirements, constraints, and optimal trajectories of aerocapture. A few theoretical
implications that are, at the best of the author’s knowledge, novel, will also be derived, specifically in
the Subsections 4.3.2 and 4.3.3. Also, the guidance by Lu et al. [2015] will be reproduced, modified
in different ways, and tested in highly perturbed environments. The test setup will be described
in Chapter 6. Chapter 4 will then include some partial conclusions concerning aerocapture and
traditional NPC guidance methods.

Chapter 5 gives a synthesis of the foundations of artificial intelligence. The chapter involves ma-
chine learning, deep learning, and reinforcement learning. It is complemented with a few examples
of previous researches that made use of artificial intelligence for Solar System exploration. To make
the subsequent chapter lighter, verifications of training algorithms is included here.

Chapter 6 describes not only the experimental setup used for this research, but any form of
software tools that were developed during this research. It also reports in detail any verification or
validation that required more than a manual or visual check.

Chapter 7 describes the results of this research. The amount of data produced, saved, and stored
as "results" goes beyond 50,000 trajectories, guided by tens of different neural guidances through six
different environments. It goes without saying that not all of the results will be reported, and many
will not even be mentioned. However, this reduction is not very difficult to make, considering that
many sets of trajectories turned out being unfortunate at best.

Finally, Chapter 8 concludes this research, and includes recommendations to whoever consid-
ers diving into the world of aerocapture and artificial intelligence for Solar System exploration.

2As defined by the Oxford Dictionaries.
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To avoid any ambiguity in the remaining of the report, when referring to target or final orbit, it is
meant the orbit that would be obtained after periapsis raise and corrections. The exit orbit, or exit
orbital leg, would be the exoatmospheric part of the flight before periapsis raise. Descending and
ascending legs are definitions limited to the atmospheric part of the flight instead.





2
MISSION OVERVIEW

As stated in Chapter 1, an aerocapture maneuver has never been attempted before. However, many
missions making use of it were, and currently are, being studied. Also, similar missions, namely
skipping entry and aerobraking, have succeeded in the past. In this chapter, previous skipping and
aerobraking missions are reviewed. After that, missions for which aerocapture was planned are pre-
sented, to give an idea of which are the main possibilities for the use of an aerocapture. Before all
this, however, detailed motivations for why aerocapture may be beneficial to Solar System explo-
ration are given in the first section.

The goal of this chapter is that of putting the aerocapture maneuver into context. First, an in-
sight of what would be the most interesting reference mission to use, as well as the reference vehicle,
according to real cases in which aerocapture has been proposed. Reference vehicles and missions
are then set in Section 2.6. Then, some characteristics of the aerocapture trajectories are shown.

Eventually, the mission requirements are drawn, together with the optimal aerocapture guid-
ance problem statement. Any design choice concerning the guidance that will be made throughout
this report will be done with those requirements and that problem statement in mind.

2.1 AEROCAPTURE FOR SOLAR SYSTEM EXPLORATION
The aerocapture maneuver is among one of the main current goals of NASA. Many efforts are cur-
rently being done by both the Flaghsip Technology Demonstrations (FTD) Team and the In-Space
Propulsion Technologies (ISPT) in the U.S.A. In Europe, the Aerofast project recently put big efforts
in aerocapture research.

The reason for studying and focusing on aerocapture is twofold: first, it has the potential to
greatly reduce the mass, and hence the cost, of many missions to any of the Solar System bodies
that have an atmosphere; second, it might enable missions otherwise impossible with the current
state of technology, such as a mission to Neptune.

Aerocapture may be greatly beneficial simply because of Tsiolkovsky’s famous rocket equation,
which implies that the required propellant-mass fraction for an entirely propulsive capture increases
exponentially with the ∆V . Therefore, any propulsive maneuver exponentially increases the mass
at launch, which is an important factor of the mission cost. The mass fraction of the aeroshell when
attempting an aerocapture maneuver instead increases quasi-linearly with the ∆V , as displayed in
Figure 2.1 (despite the rule is empirical). Hall et al. [2005] point out the fact that the aeroshell mass
also depends on the entry velocity: as an example, an elliptical capture on Jupiter only requires a∆V
of 1.4 kms−1. In such case, because of the very high entry velocity, the mass fraction of the aeroshell
needed for an aerocapture would be very large.

Benefits of aerocapture and their impact in Solar System exploration have been studied by Hall
et al. [2005]. In their work, they showed how such a technology would, in most cases, improve con-

7
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Figure 2.1: Comparison of aerocapture to propulsive orbit insertion mass [Hall et al., 2005].

sistently the available payload mass of a scientific mission with respect to many other alternatives.
In addition, they showed that, given the current state of technology, the only viable options for some
missions (such as a circular orbit around Neptune) would be that of using aerocapture.

In their work, they also showed that aerocapture gives the best performance when one wants to
insert into a circular orbit rather than into an elliptical one. For this reason, aerocapture for elliptical
orbit insertion will never be considered in this research.

As an example, the payload for a mission to Mars would be increased by a factor of 1.15 with re-
spect to aerobraking and by a factor of 1.63 with respect to a 370 s specific impulse chemical propul-
sion capture. In this case, the benefit of aerocapture is not very relevant if compared to aerobraking.
However, it should be considered that, in situations where the duration of the maneuver is relevant,
as, for example, a manned mission, aerobraking becomes very disadvantageous, if not impractical.
Thus, for that kind of mission, the choice of an aerocapture would allow for great benefits also with
respect to aerobraking.

Other situations give much larger improvements: for a mission to Venus, the capability is in-
creased by 79 % with respect to the best alternative option; for a mission to Uranus, the capability is
increased by 218 %, and for a mission to Titan the increase is 280 %.

Of large interest is also the fact that aerocapture has been chosen by NASA as a reference ap-
proach for landing high mass (between 20 and 80 t) cargo on Mars, despite being considered im-
practical for the landing of manned spacecraft [Drake et al., 2010]. Moreover, when the EDL-SA
study was developed, the most efficient strategy for high-mass payload landing on Mars included
an initial aerocapture; such a strategy was architecture 2 [Ciancolo et al., 2011].

2.2 SIMILAR FLOWN MISSIONS: SKIPPING ENTRY AND AEROBRAKING
Skipping entry is similar to aerocapture in the sense that the first skip usually turns a hyperbolic
orbit into an elliptical one. Similarity with aerobraking consists instead only the fact that the atmo-
sphere is used to brake, while still remaining in orbit.
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Figure 2.2: Mars Global Surveyor (MGS) in aerobraking configuration [Spencer and Tolson, 2007].

Skipping entry was performed three times only, by the Russian Zond-6, Zond-7 and Zond-8, in,
respectively, 1968, 1969 and 1970. An earlier mission, Zond-5, also attempted a skip entry, while
carrying a biological payload, that included two survivor tortoises. The guidance of Apollo was
also capable of skip entry, but never performed it, because the risks were considered too high for
a manned mission. An error could have either led to a crash or to a too long skip, which would
have caused the death of the crew due to lack of oxygen. A large part of the heritage for aerocapture
is, nevertheless, considered to come from Apollo, including the first guidance system that was ever
developed Gamble et al. [1988], which is an adaptation of the Apollo skip entry guidance.

Aerobraking has been achieved for the first time in 1991 during the Japanese Hiten mission [Ue-
sugi, 1996]. The spacecraft was in a very elliptical orbit around the Earth, and during its first two
passes inside the atmosphere it braked of 1.7 ms−1 and 2.8 ms−1, reducing its apogee of a total of
22500 km, with respect to its initial value.

During the Magellan Mission to Venus, for the first time aerobraking was successful on an ex-
traterrestrial planet. The Magellan spacecraft reached the planet on August 10, 1990, and was propul-
sively captured in a highly eccentric orbit. Its goals included obtaining near-global radar images of
Venus’ surface, topographic map and gravity field data. On May 25, 1993, after a mission extension
was approved to obtain better gravity field data, the spacecraft started dipping into Venus’ upper
atmosphere to decrease the energy of the orbit; when aerobraking was complete (August 3, 1993),
around 70 days later and after 700 atmospheric passes [Tolson et al., 2013], the orbital period was re-
duced from the initial 3.26 hours to 1.5 hours, reducing the velocity of the orbit by 1200 ms−1 [Lyons,
2000]. The attempt was successful, in spite of the fact that the spacecraft was not designed for such a
maneuver. Magellan was then able to circularize its orbit with an almost propellant-free maneuver.
Although the vehicle was not designed with aerobraking in mind, the aerobraking software proved
to be very efficient for autonomous operations.
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The first aerobraking on Mars was achieved by the MGS, which was propulsively captured on
September 12, 1997. After that, it started an aerobraking maneuver to lower its apoapsis. During that
phase, the period of the orbit was reduced from the initial 45 hours after capture to 1.86 hours, and
the orbit was slowed down by about 1200 ms−1 [Lyons, 2000]. Figure 2.2 shows the configuration of
the spacecraft during aerobraking. The panels were used with as additional decelerating surface; a
sweep angle was planned to reduce the structural stress.

The maneuver should have lasted four months only, but because of a failure in the latch of one
of the solar panels it had to be rescheduled; the final orbit was achieved only on February 1999. Ad-
ditional problems faced during the MGS mission include the fact that Mars is often subject to dust
storms. Although those occur at lower altitudes (around 50 km), they can affect the atmospheric
density at even higher altitudes, where aerobraking occurs. According to Tolson et al. [2013], differ-
ences in density from orbit to orbit were up to 40 % of one standard deviation during the mission.
This meant that the operations team had to be ready to raise the periapsis of the orbit with very
short notice in case a dust storm occurred.

The first failure, and last attempt to date, of aerobraking, is that of the Mars Climate Orbiter. The
goal was investigating the Martian atmosphere and its interactions with the surface. The vehicle
reached Mars on September 23, 1999, when a propulsive capture was scheduled to insert the space-
craft into an elliptical orbit whose periapsis was meant to be inside the atmosphere. Aerobraking
would have circularized the orbit afterwards. The signal was lost when Mars occultation began, 49 s
earlier than predicted, and was then never reacquired. A ∆V was computed to have a periapsis alti-
tude of 110 km, higher than the minimum 80km altitude which were necessary for the spacecraft to
survive. After subsequent investigation, it was found that the vehicle was inserted into an orbit with
a periapsis altitude of 57 km, which caused the disintegration of the spacecraft. This error occurred
because of the use of non-SI units on the input data for the computation of the ∆V [NASA, 1999].

2.3 AEROCAPTURE IN PROPOSED MISSIONS
Aerocapture has been proposed for a few different missions. Those usually consisted of sample-
return missions. However, it is very likely that a first aerocapture maneuver will be a demonstration
on Earth, that would enable to increase the TRL of the maneuver significantly [Munk and Moon,
2008; Percy et al., 2005]. Within the reasons why aerocapture has never been attempted before is
the fact that a demonstration has not been accomplished yet, due to the high costs that it would
imply. Therefore, the risks of an aerocapture are still unacceptable, and the maneuver has been so
far preferably avoided. In addition to sample-return missions, aerocapture has also been considered
for possible missions to Neptune [Lockwood, 2004], because it is currently the only means by which
that planet could be orbited.

2.3.1 MARS SAMPLE RETURN MISSION

A Mars Sample Return (MSR) mission has been studied for many years. It is considered, among the
unmanned missions, to be the single mission with the highest scientific return. The possibility of
studying a sample of Mars on Earth would lead to much more scientific data than any mission be-
fore, because the analysis would not be constrained to the instruments carried on board of a lander.
Being Mars the most Earth-like planet in our Solar System, analysis of samples from there would
give a large amount of information about our planet. It might also clarify the question concerning
the existence of life, now or in the past, on the Red Planet. For these reasons, the MSR has been
continuously assigned a high priority by the U.S. National Research Council (NRC); it has, however,
never been planned yet. The main problems consist of the fact that it requires many new technolo-
gies and that, for the mission to have the most possible scientific return, the samples have to be
properly selected. The studies for this mission have always been carried out by international teams,
because of the high costs that it would have. One of those teams was formed by NASA and the Centre
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Figure 2.3: Mars Sample Return mission queue [Cazaux et al., 2004].

National d’Études Spatiales (CNES) in France. Cazaux et al. [2004] stated the main technological de-
velopments and challenges that such a mission would require; among those was also aerocapture.
A trade-off was done among many capture methods for orbiting Mars, and aerocapture turned out
to be the most efficient way, because of the large weight of the orbiter, which had to carry on-board
also the propellant to later leave Mars’ orbit.

The original planning included the launch of three vehicles (one lander, one rover, and one or-
biter) with two launchers, in 2003 and in 2005 [O’Neil and Cazaux, 2000]. The samples would have
returned to Earth in 2008. The various phases of the mission can be consulted in Figure 2.3. The
first launch would have been operated by NASA, and have sent to the Red Planet a Lander carry-
ing a Rover and the Mars Ascent Vehicle, which would have come to destination in December 2003.
In August 2005, an Ariane 5 launcher would have lift off with a similar payload to the first one, to-
gether with an Orbiter supplied by CNES and including a NASA-JPL rendezvous and capture payload
and NASA-Langley Research Center (LaRC) Earth entry vehicle. When arriving to Mars, the Orbiter
would have achieved to first aerocapture in history, crossing the Martian atmosphere to be captured
without the use of a propulsive system. After aerocapture, the spacecraft would have had an ellipti-
cal orbit with apoapsis altitude of 1500 km. There it would have used rockets to raise the periapsis to
200 km. The orbit would have then been circularized and the Orbiter would have started the search
for the mission sample containers, that would have been put on orbit by the respective Mars Ascent
Vehicles. After the recovery of both samples, the Orbiter would have then departed from the Red
Planet and entered an orbit that would have led it to Earth. It is interesting to notice that despite
the use of aerocapture saved the orbiter around 2 kms−1 of∆V , a total∆V of 3.5 kms−1 for periapsis
raise, circularization, maneuvering and departure would still be needed. Then, direct reentry would
occur on Earth, with an initial velocity of 11.5 kms−1.

A more recent planning [iMars Working Group, 2008] for an international Mars Architecture
Sample Return Mission (iMARS), to which both European Space Agency (ESA) and NASA took part,
concluded instead that an aerocapture would not be necessary, because the Mars Science Labora-
tory (MSL) heritage would be sufficient in that case. It would therefore be preferred to use a less fuel
efficient but safer option than aerocapture.

2.3.2 COMET-NUCLEUS SAMPLE RETURN MISSION ROSETTA

The original goal of the Rosetta mission, as it was planned back in the 1990s, was that of returning
about 10 kg of samples from the comet nucleus: the mission was indeed initially called Comet Nu-
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Figure 2.4: Artist’s impression of the Rosetta/CNSR mission [Schwehm, 1989].

cleus Sample Return (CNSR). In view of this sample return, aerocapture had been chosen as a pos-
sible option for the capture of the vehicle in Earth orbit. Such a mission would have provided large
scientific return because the possibility of analyzing comet samples would have been determining
for the knowledge of the Solar System primordial nebula [Serrano-Martinez and Hechler, 1989]. In
this case the samples would have rendezvoused with the International Space Station (ISS) after the
aerocapture, and later been brought to Earth’s surface for scientific analysis. The sample return was
however discarded, because of the difficulty in keeping the samples at the required temperature for
a long time in the ISS.

The mission phases are given in a schematic way in Figure 2.4. Those would have been the
following: launch with a Titan/Centaur, Earth gravity-assist, transfer to comet, rendezvous with the
comet at aphelion, at around 5 AU, descent and landing on comet, sampling, departure, and return
to Earth with approach with V∞ of around 10 kms−1. Afterwards, aerocapture would have begun on
the upper layers of Earth’s atmosphere. The aerocapture was planned to have an initial flight path
angle of −10.5° and initial velocity of about 15 kms−1. According to Serrano-Martinez and Hechler
[1989], a guidance and navigation system was developed that allowed the atmospheric phase to
have accelerations below 20 g with a capsule-like vehicle.

2.4 EXISTING GUIDANCE ALGORITHMS
The four most common kinds of aerocapture guidance algorithms that can be found in literature
are: APC, NPC, TPC and EC. In 2002, a joint CNES-NASA team ran a simulation campaign for a
comparison of those algorithms, the results of which were published in Rousseau et al. [2002]. The
goal was to chose the best candidate for the Mars Premier mission. The four algorithms were there-
fore tested using a simulator, and evaluated according to four main criteria: accuracy, robustness,
loads control and complexity. In all of those algorithms, the controlled variable is the bank angle.

The APC divides the aerocapture in two phases: the entry phase, during which the spacecraft
simply tries to lose as much energy as possible without violating any of the loads constraints, and
the exit phase, during which the vehicle is guided to obtain an orbit that is the closest possible
to the required one. This algorithm makes use of analytical predictions for the exit phase; specif-
ically, those predictions rely on the assumption of constant altitude rate [Cerimele and Gamble,
1985]. Modified and newer version of this framework include the work by Masciarelli et al. [2000]
and Hamel and Lafontaine [2006]. The differences are small, and often consist of better defining
the transition conditions, and making the algorithm more flexible. The NPC also divides the aero-
capture in two phases [Powell and Braun, 1993]. However, the prediction is done using numerical



2.5. AEROCAPTURE MANEUVER OVERVIEW 13

methods and simplified equations of motion, and during the exit phase, the constant bank angle
needed to have the right apoapsis altitude is computed at each guidance call. Different modifica-
tions of this algorithm exist, the main one being the use of a single phase at constant bank angle,
as one of the various modes in Lafleur [2011]. The EC uses analytical simplifications as the APC
does. In this case, the analytical assumption is used to compute the final energy state at exit. It then
uses the error between predicted and target energy state, together with its derivative, to compute
an energy gain and, consequently, the commanded angle [Rousseau, 2001]. At last, the TPC uses a
stored trajectory, and then analytically computes proper gains to track it. The gains are influence
coefficients obtained with calculus of variations, and are computed so that the vehicle shall reach
the predefined terminal state at the final time [Ro and Queen, 1998].

It turned out that all the algorithms had the capability of achieving a successful aerocapture;
among those, the TPC had the best general results, despite the bad performance in the scenario
including dust storm and the lack of a density scale height estimator.

A more recent guidance schemes is the hybrid predictor-corrector aerocapture scheme (HYPAS)
[Masciarelli and Queen, 2003], a semi-analytic predictor corrector that flies a constant altitude rate
exit phase, and its evolution as a drag-tracking scheme [Casoliva et al., 2008]. However, not too many
efforts have been done in the direction of improving performance. By improving performance, it is
usually meant trying to minimize the need of propellant for orbit circularization. In this sense, the
PredGuid+A [Lafleur, 2011] can be considered to be one of the first guidance algorithms focusing
on performance as well. Another algorithm that aims to optimality is the one developed by Lu et al.
[2015].

Strictly related to this research, is the work done by Gelly and Vernis [2009], who developed a
neural guidance for aerocapture using RL. Their guidance was compared to a feedback trajectory
control (FTC) guidance scheme, and gave better results in accuracy, loads constraints and bank
angle consumption. More insight into their work will be provided in Subsection 5.3.1. At the best of
the author’s knowledge, supervised learning has not been yet applied to aerocapture. Hence, in that
same subsection, the work by Sanchez-Sanchez et al. [2016] is shown, which consists of supervised
learning for optimal terminal landing.

2.5 AEROCAPTURE MANEUVER OVERVIEW
In this section, a qualitative overview of the aerocapture maneuver is given.

During aerocapture, orbital energy of a vehicle generally goes from positive to negative1. This
happens with a single atmospheric pass. Once the vehicle exits the atmosphere2, it enters an ellip-
tical orbit with periapsis inside the atmosphere. Hence, once the apoapsis of the orbit is reached,
a relatively small thrust burn is given. This way, the periapsis is raised above the edge of the atmo-
sphere, to the desired value. If necessary, a second burn is applied half an orbital period later, to
correct any possible errors in the apoapsis. Errors in inclination are also corrected, usually during
the first of the two burns. In general, the atmospheric part of the flight is divided in two phases: a
descending leg, during which the loads on the vehicle are largest, and an ascending leg, which usu-
ally lasts much longer. Two interesting cases of aerocapture occur when the bank-angle is saturated,
and are described in the next subsections.

2.5.1 SATURATED TRAJECTORIES

Figures 2.5 to 2.8 show some of the most interesting information about two aerocapture trajecto-
ries on Earth, both with initial relative velocity of 13 kms−1, both targeting an apoapsis altitude of

1This is not entirely true for a Lunar return case, which begins with slightly negative orbital energy instead. The word
aerocapture can still be used for this case though, since the vehicle is captured into the orbit of the Earth.

2The vehicle does not exit the atmosphere. For altitudes larger than a certain value, usually between 100 km and 120 km
on Earth, the effect of the atmosphere on the trajectory becomes negligible.
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200 km. One trajectory is flown with full lift-up, and the other one with full lift-down. The initial
flight-path angles were found using the software described in Section 6.5 and are, respectively, -
8.7156° and -5.7695°. Both trajectories are flown by the Apollo Command Module, whose data is
provided in Table 3.1 of Subsection 3.5.4.

Figure 2.5 describes the altitude - time profile. The full lift-down trajectories last six times longer
than the full lift-up trajectories. Both trajectories fly the ascending leg at an approximately constant
altitude rate. The assumption of constant altitude rate is an important assumption in the previously
mentioned APCs guidance concepts. In both cases, the ascending leg is the one that lasts most of
the time. The lift-down trajectory reaches a minimum altitude of 65 km, while the lift-up trajectory
goes deeper into the atmosphere, to altitudes of 48 km.

Combining this figure with the previously described one, it can be deduced that most of the en-
ergy for the lift-up trajectory is depleted in about 30 s. This has major implications for the simulation
of the attitude dynamics, since large attitude maneuvers have durations of that order of magnitude.

Figure 2.6 shows the altitude - velocity profile. In addition to what was said before, it is seen
that the minimum altitude in the lift-up trajectory is reached at a velocity already as low as 9.5 km,
whereas it is reached with a velocity of 11 km for a lift-down trajectory. This means that most of the
energy is depleted during the descending leg for a lift-up trajectory, and that the opposite occurs
in a lift-down trajectory. This plot is interesting also because it shows that the final velocity of the
lift-down trajectory is much larger (by about 800 ms−1) than the final velocity of the lift-up trajec-
tory, despite both aiming to the same apoapsis altitude. More about this will be said in Section 4.1.
Combining this

Figure 2.7 shows the trajectories in the energy - dynamic pressure plane. Such a plane is very
interesting because the dynamic pressure is strictly related to the load factor. In addition, it shows
the aerocapture corridor: any trajectory starting with the same initial velocity as that of the bound-
ary trajectories, and aiming to the same apoapsis altitude, cannot have a single point in this plane
outside of the area enclosed by the lift-down and the lift-up trajectories. In Section 4.3.3 it will be
shown how in such a plane there is, for every point, a range of allowed flight-path angles: this de-
scribes the volume of all possible states for which an aerocapture can occur, for fixed initial veloc-
ities and apoapsis altitude. The maximum dynamic pressure for a lift-down trajectory is 6.5 times
smaller than that for a lift-up trajectory. In addition, it is seen that the final energy of the lift-down
trajectory is 5.5 MJkg−1 than its lift-up counterparts.

Eventually, Figure 2.8 shows the two trajectories in the flight-path angle - velocity plane. In
particular, it shows how the flight-path angle of the full lift-down trajectory is almost zero during the
entire trajectory, and specifically at the end of it. The lift-up trajectory has instead an ever increasing
flight-path angle.

This preliminary discussion showed already two benefits of the lift-down trajectory, namely the
much smaller dynamic pressure peak and the larger final velocity. Intuitively, one may think that
a larger final velocity will lead to a smaller final ∆V needed to raise the periapsis. Such fact will be
proven in Section 4.1. In the next subsection some motivations will be given to why, in reality, it is
not advised to fly a full lift-down trajectory.

2.5.2 STABILITY AND SENSITIVITY OF AEROCAPTURE TRAJECTORIES

Before designing a guidance, it is important to realize how stable and sensitive to the initial condi-
tions the aerocapture trajectory is.

In a re-entry problem two of the most important parameters are the ballistic coefficient and the
lift-to-drag ratio. Gurley [1993] analyses how these two parameters affect an aerocapture maneuver
on Mars, with target apoapsis of 37400 km, and how they affect the altitude, velocity, and accelera-
tion history. In their work, when talking about the lift-to-drag ratio, the lift is meant as its compo-
nent in the vertical plane, L cosσ. In his analysis, the simplified equations of motion for spherical
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Figure 2.5: Full lift-up and full-lift down trajectories for
h?apo = 200 km in the V − t plane.
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Figure 2.6: Full lift-up and full-lift down trajectories for
h?apo = 200 km in the V −h plane.
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Figure 2.7: Full lift-up and full-lift down trajectories for
h?apo = 200 km in the E − q̄ plane.
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Figure 2.8: Full lift-up and full-lift down trajectories for
h?apo = 200 km in the γ−V plane.

non-rotating planet, with exponential isothermal atmosphere, and planar flight are used.
They show that despite a large negative lift-to-drag is very convenient for having a small load

factor peak (as well as for reducing the final required ∆V , as shown in Section 4.3), it also makes the
maneuver very unstable. In fact for a lift-to-drag ratio equal to -1.5, it is required to have an accuracy
of around 1 mm at the aimpoint (the point that is aimed before aerocapture) to have an error in the
apoapsis of not more than ±200 km. When having a positive lift-to-drag ratio of 0.5, an accuracy
of 36 m is instead sufficient for the same error in apoapsis. This is, of course, in case of absence of
deterministic conditions.

Hence, for same entry velocities, a full lift-down trajectory is much more sensitive to initial con-
ditions than a full lift-up one.

2.6 REFERENCE MISSION
So far, the main cases in which aerocapture has been proposed are:

1. Earth aerocapture at Mars return conditions (as in the MSR mission)
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2. Earth aerocapture at comet return conditions (as in the CNSR mission)

3. Mars aerocapture at Earth return conditions (as in the MSR mission)

However, the most likely first attempt of aerocapture would be a technology demonstrator. The
"easiest" way to do so would be having a lunar return trajectory. These are the same conditions used
in Lu et al. [2015]. Hence, the reference mission conditions will be taken from there, to facilitate any
comparison.

In their work, the Orion Multi-Purpose Crew Vehicle (MPCV) was used. Nonetheless, in this
research, the reference vehicle chosen is the Apollo Command Module. The aerodynamic data,
reference surface, as well as reference mass are found in NASA [1965]. The main difference between
the Orion MPCV and the Apollo Command Module is the nominal lift-to-drag ratio, about 15 %
larger for the latter.

More details about initial conditions, perturbations, and dispersions are given later, in Table 4.1
of Section 4.8. At the moment, it is sufficient to know that the simulated trajectory will be a lunar
return.

2.7 MISSION REQUIREMENTS AND PROBLEM STATEMENT
Now that a sufficient context has been given, the mission requirements and problem statement can
be given. On a high level, every space mission is designed to minimize the cost and maximize the
chances of success. Since, in most cases, it is impossible to have the certainty of success, a success
rate of 3 standard deviations will be considered acceptable. This means that, on a Monte Carlo run
of 1,000 trajectories, no more than three failures can occur.

The Monte Carlo runs will be simulated with a wide range of initial flight-path angles, spanning
about 1.5°. It is now assumed that a good approach planning can lead to an accuracy in entry flight-
path angle of 0.25°. Hence, it is possible to redefine robustness, and require to have a range of
possible angle entries3 of 0.5°, in which only one failure occurs during one Monte Carlo run4.

The guidance will be considered successful if it gives commands such that, given ideal control,
navigation and actuators, the trajectory meets all the requirements.

Hence, it is better to start with the requirements for the trajectory that will be actually flown.
which are given in the frame below. Most of the requirements can better be understood after having
read Chapter 3.

TRJ-1 The trajectory shall lead to an exit orbit such that the periapsis raise would be smaller
than ∆Vmax .

TRJ-2 The trajectory shall have a maximum heat rate peak smaller than q̇max , as well as a maxi-
mum load factor smaller than nmax .

TRJ-3 The trajectory shall have a total heat-load smaller than Qmax .

At this stage of the research, it is early to quantify ∆Vmax and Qmax , since these are design pa-
rameters, which may be dependent on the capability of the guidance itself. Hence, at the moment,
it will still be attempted to minimize these two parameters. ∆Vmax can be given an upper bound. A
propulsive capture from lunar return conditions would require a ∆V of approximately 3.000 ms−1.

3At lunar entry conditions, an accuracy of 0.5° in entry angle equals to an accuracy of about 100 ms−1 in vertical velocity.
4In one of the previously mentioned Monte Carlo runs, 333 trajectories occur within a range of 0.5°. Statistically speaking,

at this point, a sample of about 333 trajectories within such a range of entry angles may be a little small.
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Since an aerocapture would require a heat-shield, and is, at the moment, less reliable than a pro-
pelled capture, the upper bound for ∆V will be set at5 1.000 ms−1.

Concerning TRJ-2, upper bounds can also be given. An ablator such as the phenolic impreg-
nated carbon ablator (PICA) can withstand heat fluxes as large as 18 MWm−2 [Willcockson, 1999].
This value will be used as constraint on q̇max . Reasonable values for nmax range between 5 and 25,
depending on the mission. Aerocapture had been planned in the past for sample return missions.
For these cases, the load factor constraints would be the same as that of the spacecraft6. Aerocap-
ture has also been considered for manned missions though, in which the constraint on the load
factor may be required to be as small as 5 [Lyne, 1994]7. For this reason, the maximum load factor
will also be set as an objective function to be minimized. The smaller the maximum load factor, the
wider would be the applicability of aerocapture.

After having more in detail analyzed the mission, all the limit values will be set. At this point,
the mission is designed in such a way that all the trajectory requirements will have to be met during
flight. Hence, given the considerations of the beginning of this subsection, the requirement for the
guidance logic can be specified:

GD-1 The guidance shall lead to a trajectory that respects all requirements TRJ-1 to TRJ-3, for a
wide range of initial conditions and perturbations. Specifically, it shall do so for a range
of initial flight-path angles of at least 0.5°.

The guidance is a major component in a trajectory design: hence, the limit values for ∆Vmax

and Qmax will depend on the performance of the guidance. Specifically, they will be equal to8 the
maximum values encountered in such a range of entry conditions, using a certain guidance logic.
The range will be chosen such that the maxima are minimized. Thus, the problem of the guidance
can be reformulated in terms of a multi-objective, constrained, optimization in stochastic environ-
ments:

Optimal Aerocapture Guidance Problem Statement

The optimal aerocapture guidance logic aims to guide the vehicle along trajectories in a way
such that the maximum expected values of the quantities mentioned in the requirements TRJ-1
to TRJ-3 are minimized. This has to be be valid for a variety of perturbations and initial con-
ditions; specifically, for a reasonably large range of entry angles, and for at least 99.7 % of the
cases.

As previously mentioned, such a range of entry angles is required to be at least 0.5° wide.
The parameters will the be minimized: nonetheless, if a range in which one of the following

conditions cannot be ensured, the aerocapture will be declared unfeasible, or, at the very least, in-
convenient with respect to other solutions. These minimum conditions are, for the mission and
vehicle in object:

5This value is an inintial guess. Properly estimating a more accurate value of ∆V above which aerocapture is not conve-
nient may require a very demanding and multidisciplinary analysis.

6The payload would have been a rock, whose limits to load factors are probably much larger than that of the vehicle
7In that work, Lyne [1994] specifies that such a requirement is needed after long duration flights, such as a mission to

Mars. Otherwise, the load factor limit can as well be larger.
8In reality, safety factor shall be used, but these will not be considered here.
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1. ∆Vmax < 1000 ms−1;

2. q̇max < 18 MWm−2;

3. n < 25,

The problem statement puts into context and makes quantifiable the adjectives "optimal and
robust" used in the main research question of Chapter 1. Optimal is then defined as a minimization
of the trajectory parameters of requirements TRJ-1 to TRJ-3. For the guidance to be robust, the
parameters have to be minimized for the worst case scenario9.

To give an example, a hypothetical guidance that always leads to the same ∆V of 400 ms−1 will
be preferred to another hypothetical guidance that leads to an average∆V of 100 ms−1, but with a 1
% of situations for which the final ∆V is 500 ms−1.

The problem statement will have to be kept in mind both when solving the guidance problem,
both when using numerical solutions or artificial intelligence solutions.

An additional requirement of the guidance consists of being able to give the commands in real-
time. There is no attempt at quantifying such a requirement during this research. Nevertheless,
methods that give equal or similar performance, but are clearly less computationally demanding,
will be preferred.

As a last remark, the guidance logic is strictly entangled with the navigation system, from which
it obtains its inputs, and with the attitude controller, which actuates the commands given by the
guidance. To properly analyze the guidance, it will be necessary to have a test setup such these
three subsystems can be, as much as possible, disentangled. Such a discussion will be resumed in
Chapter 6.

2.8 SUMMARY
Aerocapture can be greatly beneficial in Solar System exploration, and has therefore been proposed
in a few missions. In most cases, these concerned sample returns. It has also been considered a rel-
evant option for many architectures of the NASA EDL-SA. Nonetheless, it has never been attempted.
Moreover, aerobraking, a less risky maneuver on paper, has a very low success rate, because of the
Mars Climate Orbiter crash.

Eventually, it is believed that the most likely first aerocapture will probably be flown as a tech-
nology demonstrator on Earth, at lunar return conditions, by a capsule-like vehicle. The reference
vehicle for this research will be the Apollo Command Module.

To answer the main research question stated in Chapter 1, this work will aim to solve the prob-
lem of the optimal aerocapture guidance. This will be done by using both numerical and artificial
intelligence solutions.

9Technically, on 333 trajectories, one failure is acceptable. Hence the minimization would be for the second worst case
scenario, among the scenarios simulated.
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FLIGHT DYNAMICS

As stated in the first chapter, an aerocapture deals with both atmospheric entry and orbital flight.
Both situations have to be modeled, for two reasons: first, a comprehensive and precise model is
necessary for the simulator to be accurate; second, a simpler model is needed for the NPC guidance
logic to be able to make the proper decisions in real time. Requirements are thus different for the
two objectives. The aim of this chapter will be that of describing the forces acting on the vehicle
during an aerocapture, and its consequent motion, in the most accurate way. Nonetheless, some
assumptions need to be made and justified for the simulator and the guidance logic. Also, different
state variables and reference frames may be used for the two goals.

The simulator that will be used treats the vehicle as a point mass, neglecting its rotational dy-
namics. The bank angle, which is the controlled angle, is treated as a parameter. However, such
parameter will be subject to physical constraints in its maximum velocity and acceleration. More
about this will be explained in Subsection 6.2.6, and is not relevant for the moment.

The first step to take is defining the various reference frames in which forces are defined, and the
relations between those very frames; this is done in Sections 3.1 and 3.2. In Section 3.3, it is decided
by what variables the motion would be described; for different problems, different variables may
be used. Section 3.4 discusses the fundamentals of dynamics; since the motion described is that
of a point mass, these are rather simple. In Section 3.5 the environment and corresponding forces
are described; the main forces acting on the vehicle are described, and models to obtain them are
discussed. A stress is given to the atmospheric model and density perturbations. In addition, related
to the environment, even though not with the dynamics, is aeroheating. In Section 3.7 the reasons
why some simplifications can be done in the environment model are given. Eventually, Sections
3.8 and 3.9 describe the motion of the vehicle in specific sets of coordinates and reference frames,
respectively for the orbital and atmospheric part of the flight. In both cases, the motion is derived
from the forces described in 3.5.

3.1 REFERENCE FRAMES

Position, velocity and acceleration are all vectors, and are therefore defined by their direction and
magnitude. The direction is strictly related to the reference frame the force is described in. For this
reason, a discussion concerning reference frames is necessary.

The reference frames of interest for this research are listed below. All frames are right-handed:
thus, only two axes need to be described for the frame to be uniquely defined. The description of
the reference frames is based on [Mooij, 1997].

19
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Inertial planetocentric frame. This reference frame is, as the name says, inertial1, and centered
at the center of mass (c.o.m.) of the central body. It is defined by the subscript I . The ZI-axis
points towards the North pole2, and the XI-axis points towards the point in which the intersection
between the reference meridian3 and the equator is at the reference time t = t0. The inertial frame
is defined in a slightly different way on Earth, but this is of no use for this research.

This reference frame is of fundamental importance because the target orbit is defined with re-
spect to it.

Rotating planetocentric frame. The rotating planetocentric reference frame (subscript R) rotates
together with the central body, and is fixed to its c.o.m.. The ZR-axis is the same as the ZI-axis,
whereas the XR-axis points towards the intersection between the zero longitude meridian and the
equator, and therefore coincides with the XI-axis once per revolution. This reference frame is of
interest because the atmosphere rotates together with the planet.

Vertical frame. The vertical reference frame (subscript V) defines, with its XV and YV-axes, the
local horizon, and it is centered in the vehicle. The ZV-axis points towards the c.o.m. of the central
body; the XV-axis is parallel to the meridian, perpendicular to the ZV-axis, which points north-
ward4. This frame serves as a link between the aerodynamic and the rotating frames.

Aerodynamic reference frame. The aerodynamic reference frame (subscript A) is centered in the
vehicle; the XA-axis points in the direction of the velocity of the vehicle relative to the air (and,
consequently, to the ground, because no wind is modeled in this research), and the ZA-axis points
in the direction opposite to the lift force. The importance of this reference frame consists of the
fact that the three axes are all in the opposite direction of the three components of the aerodynamic
force.

3.2 FRAME TRANSFORMATIONS
Many sets of variables, or attitude parameters, can be used to rotate from one frame to another.
Some of the sets most commonly used in aerospace applications are: direction cosine matrix (DCM),
Euler angles, quaternions, Gibbs (or Rodrigues) parameters, and modified Gibbs parameters. The
interested reader may refer to either Junkins and Turner [1986], Shuster [1993], or Wie [2008] for
more information about attitude parameters. Diebel [2006] also provides a very complete survey of
transformations between the different representations.

The goal of this section is to describe only the sets that would be used in this research, which are
Euler angles5. Euler angles are chosen because they are used in literature to express the orientation
between the frames used in this research6. For the same reason, they are used also in the equations
of motion expressed in spherical, relative coordinates (see Section 3.9). Transformations between
Euler angles make use of unit-axis rotations, which are special cases of DCMs: therefore, these are
also briefly discussed in the next subsection.

1The definition of the adjective "inertial" differs between mechanical and relativistic mechanics. Here, it will be used in its
classical meaning. Also, what will be called here inertial is pseudo-inertial instead; but for the purpose of this research,
there is no difference between the two.

2Because of the relatively short durations of the simulations, any misalignment between the North pole and the ZI -axis
that might be caused by precession and nutation is neglected.

3For the purpose of this research, it does not matter what the the reference meridian, nor the time t0, are, as long as the
choice is self-consistent throughout the report.

4This definition is valid for a spherical central body; if the shape is different, errors will be introduced.
5Here, for simplicity, Tait-Bryan angles are included when mentioning Euler angles. Also, rotations with Euler angles will

be intrinsic for the entirety of the report: this means that the rotations after the first one are about the axes of the rotating
coordinate systems, and not around the original, or initial, orientations.

6It might as well be possible to express the same relationships in terms of quaternions, or any other set of parameters.
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3.2.1 EULER ANGLES

Any frame orientation with respect to another can be described by at least three coordinates. If
those directions coincide to one of the axes of the rotated reference frames, the angles of each of the
three rotations are called Euler angles. When using such a minimal set, it is impossible to ensure
that in every possible orientation all coordinates are both unique and defined Junkins and Turner
[1986].

The problem of having an undefined angle can be solved by using a different convention when
needed. For those same orientations though, the kinematics become singular. This problem does
not need to be solved, since those orientations happen in conditions that are very far from nomi-
nal, and are of no interest to this research7. There are 12 different sets of Euler angles [Wie, 2008],
which differ from each other depending on the order of the axes around which the rotations occur.
Rotations usually follow the sequence X -Y -Z or Z -Y -X , but also, in some cases, the Z -X -Z .

It is possible to obtain a DCM CB,A using the Euler angles α1, al pha2 and al pha3 around,
respectively, the X -, Y -, and Z -axis [Wie, 2008]:

CB,A = C1(α1)C2(α2)C3(α3), (3.1)

where

C1(α1) =

 1 0 0
0 cosα1 sinα1

0 −sinα1 cosα1

 ,

C2(α2) =

 cosα2 0 −sinα2

0 1 0
sinα2 0 cosα2

 ,

C3(α3) =

 cosα1 sinα1 0
−sinα1 cosα1 0

0 0 1

 .

(3.2)

are unit-axis rotation matrices around, respectively, the X -axis, Y -axis and Z -axis.
It is now possible to transform the vector rA (expressed in terms of the coordinates of frame A)

into the vector rB, expressed in coordinates of frame B:

rB = CB,ArA (3.3)

Kinematic differential equations can be obtained for Euler angles as well, but will not be re-
ported; in case the sequence is Z −Y −X a singularity occurs for the second angle tending to ±90°.
These equations will not be directly applied in this thesis; nevertheless, the spherical equations of
motion, which are reported in Section 3.9, are a consequence of, among other things, these kine-
matic relations. As an example, this is a reason why a singularity occurs, in that set of equations,
when the flight-path angle goes to ±90°.

The rotations between the previously described frames are listed and their respective Euler an-
gles are described in the next subsection.

3.2.2 FRAME TRANSFORMATIONS

Below the frame transformations that will be used in this research are listed. These transformations
are specific examples that show how to obtain the corresponding DCM, provided that one knows

7This is not entirely true, since one such condition is flight exactly above one of the poles. Nevertheless, since it is almost
impossible for a point mass to be exactly on a specified axis, the vehicle will only be in proximity of the poles axis. This
occurrance may cause some numerical issues, but no singularities.
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the required Euler angles. The rotation between any of the frames mentioned in Section 3.1 can
be computed by use of the here reported transformations, or a combination of them. Unless oth-
erwise stated, the source of this subsection is Mooij [2014]. For every rotation, it will be pointed
out whether, and for which orientation, singularities in the kinematics equations occur. These are
important to understand when the use of the equations of motion in terms of spherical, relative
coordinates (described in Section 3.9) may lead to problems.

R to I By definition of the two reference frames involved in this transformation, the rotation is
done using the following matrix:

CI,R = C3(−ωcb t ), (3.4)

whereωcb is the angular speed of the given planet around its Z -axis. This rotation never causes any
singularity. It is often necessary to transform the velocity V from the rotating to the inertial frame.
In such case:

VI = drI
d t

= dCI,R
d t

rR+CI,R
drR
d t

=ωI
I,R× rR+CI,RVR, (3.5)

where r is the position vector, and ωI
I,R is the angular velocity vector of the rotating frame with

respect to the inertial one, expressed in the coordinates of the inertial frame.

V to R Given the planetocentric longitude τ and latitude δ, the transformation matrix is given as:

CR,V = C3(−τ)C2(π/2+δ). (3.6)

With the first rotation around the ZR-axis, the X -axis points in the direction of the meridian of
longitude τ; with the second rotation, around the YV-axis, the Z -axis becomes perpendicular to the
surface of the (spherical) central body at the coordinates τ, δ. The XV and YV-axis define the plane
tangent to the central body. This rotation causes singular kinematics for δ=±π/2. For those values
of δ, τ is undefined.

A to V This rotation is obtained by use of the following equation:

CV ,A = C3(−χ)C2(−γ)C1(σ), (3.7)

where γ is the flight-path angle, χ is the heading andσ is the bank angle. All the angles used here are
those that define the rotation between those two reference frames; therefore, the transformation is
straightforward. The heading angle8 is undefined when γ = ±π/2; also, as previously mentioned,
the kinematics equations become singular for those same conditions.

3.3 STATE VARIABLES FOR TRANSLATIONAL MOTION
As for the attitude parameters, in some cases the description of the motion can be more convenient
to be done in one or another set of state variables. Consequently also transformations between
different sets of state variables are needed.

In this section, the sets of state variables that will be used are listed, followed by an explanation
of what they are used for, why those were chosen, and how to transform from one set to another.
The full state vector usually includes (at least) twelve variables: six variables define position and
velocity, and six more define attitude and rotational velocity of the vehicle. In this research, only
the first six are used. However, two additional state variables are added, namely the bank angle and
bank angle rate. These are, technically, two components of the rotational state; however, they are
treated in a particular way, as will be shown in Subsection 6.2.6. Mass could also have been treated

8For such an orientation, a problem also occurs with the bank angle, which loses its capability of controlling the vertical
component of the lift. Because of this, it will also be considered as undefined for the remainder of the research.
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as a state variable. However, in this research, the change in mass is only due to heat-shield ablation
and reaction control system (RCS) consumption, and is assumed to be negligible.

The motion is supposedly the same, no matter what variables are used. Hence, before start-
ing the discussion, it is necessary to understand why different state variables are used. Below is a
schematic list that explains which, and why, different variables sets were used.

1. Cartesian state variables: used to simulate the trajectory, they are chosen because the equa-
tions of motion using these variables make the software very flexible.

2. Spherical state variables: used in the prediction of the NPC, they are chosen because they
allow the equations of motion to be very fast, with only six lines of code, and only six tran-
scendental functions. In most literature they are used for this same purpose. In addition, they
are used for analyzing the results, as they are intuitive to the engineers.

3. Orbital state variables: used to define the target orbit, and also as inputs for the artificial
intelligence guidance, as they are intuitive too.

Some of this sets also has some issues, which will be discussed.

3.3.1 CARTESIAN STATE VARIABLES

Cartesian state variables are the components of the position and velocity vectors with respect to the
three orthogonal axes of the reference frame in use. The state vector is made of the three position
components along the three axes of the reference frame, and the total derivatives of those with
respect to time:

x =
[

x y z ẋ ẏ ż
]

. (3.8)

Cartesian coordinates are the only singularity-free set of variables listed here.

3.3.2 SPHERICAL STATE VARIABLES

These state variables are the distance from c.o.m. of the central body r , longitude τ and latitude δ
for what concerns the position; for the velocity, V is the magnitude, γ is the flight-path angle and χ
is the heading. Figure 3.1 also defines those variables. It should be stated that all the angles used in
this set are Euler angles, and therefore, with their use, come all the drawbacks listed in Subsection
3.2.2.

An easy transformation between Cartesian and spherical variables follows:

r =
√

x2 + y2 + z2, (3.9)

τ= atan2(y, x), (3.10)

δ= atan2(z
√

x2 + y2). (3.11)

The Cartesian velocity components should then be rotated into the vertical frame using the rota-
tions shown in Subsection 3.2.2. At that point, the three remaining variables can be computed in
(almost) the same way as the first one. In fact:

V =
√

ẋ2
V + ẏ2

V + ż2
V , (3.12)

χ= atan2(ẏV , ẋV ), (3.13)

γ=−atan2(żV ,
√

ẋ2
V + ẏ2

V ). (3.14)

No singularities explicitly appear in these transformations, since the atan2 function is always de-
fined.
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Figure 3.1: Definition of the spherical state variables [Mooij, 1997].

The inverse transformation is:

x = r cosτsinδ, (3.15)

y = r sinτsinδ, (3.16)

z = r cosδ. (3.17)

The transformation for the velocity components is similar, using the opposite sign for the flight-path
angle and the frame rotation.

3.3.3 ORBITAL PARAMETERS

Five of these parameters are constant along an unperturbed orbit; this is indeed the reason why the
orbital parameters are used to define the target orbit. The sixth describes the position along that
orbit. The five constant elements can be used to describe shape, size and orientation of the orbit.
Those are (some of which are shown in Figure 3.2):

• semi-major axis a: its geometric definition differs between open and closed orbits; a univer-
sal definition is, instead, a =−µ/2E , where E is the specific orbital energy (see Section 3.8);

• eccentricity e: it defines the shape of the orbit: e = 0 is for circular orbits, 0 < e < 1 for elliptic
orbits, e = 1 for parabolic orbits and e > 1 for hyperbolic orbits;

• inclination i : it is the angle between the angular momentum of the orbit and the ZR-axis. It
is defined for 0◦ ≤ i ≤ 180◦, being i = 0◦ for an equatorial prograde orbit, i = 90◦ for a polar
orbit and i = 180◦ for an equatorial retrograde orbit.

• Right Ascension of the Ascending Node (RAAN) Ω: it is the angle between the line of nodes
and the XI-axis, and is defined for 0◦ ≤Ω< 360◦.

• argument of periapsis ω: it is the angle between the line of nodes and the eccentricity vector
(which is the vector that points from the focus of the ellipse in the direction of the periapsis of
the orbit) and is defined for 0◦ ≤ω< 360◦.
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The remaining time varying variable, which specifies the position of the body on the orbit de-
scribed by the afore-mentioned elements, can be described in many ways. The chosen one or this
report is the true anomaly, defined as:

• true anomaly θ: it is the angle between the eccentricity vector and the position vector;

Figure 3.2: Definition of i ,Ω, ω, and θ [Wakker, 2015].

Unfortunately these variables suffer from singularities as well. From its definition, it is clear
that a singularity for the semi-major axis occurs during aerocapture, since such a maneuver brings
the vehicle’s specific orbital energy from positive to negative. This is easily solved using the orbital
energy itself9. Additional problems occur when using these variables to propagate the motion, but
this is not the case in this research.

The transformation from Cartesian, inertial planetocentric state variables, to orbital parameters
(and its inverse one) is a rather simple, but relatively long, algorithm, which can be found on any
standard astrodynamics book (e.g.: Wakker [2015], Wertz [2009] or Vallado [2001]), and will not be
given here. Wakker [2015] also provides an algorithm to obtain orbital elements from spherical
coordinates.

3.4 FUNDAMENTALS OF DYNAMICS
Newtonian, or classical, mechanics are sufficient to describe the motion of the vehicle for this prob-
lem. Newton’s Laws were first enunciated in his Principia in 1687. Those are:

• A body, when viewed in an inertial reference frame, keeps its constant velocity (equal or dif-
ferent to zero) unless the sum of all the external forces acting on it is different from zero.

• A body acceleration is directly proportional to the force applied to it and inversely propor-
tional to its mass.

9Two other, less relevant, problems occur with this set. One occurs when e = 0, which causes the argument of the periapsis
to be undefined. This is not a problem for this research, because during a successful aerocapture e = 0 never holds, and
because the argument of periapsis is never used anyways. The other occurs when i = 0, which causes the RAAN to be
undefined, but is never used either.
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• To each action corresponds a reaction opposite in direction and equal in magnitude.

Newton’s laws refer to the translational motion of a rigid body. The vehicle whose motion is
described can be very well approximated as such. In an inertial frame, Newton’s laws for the trans-
lational motion of a rigid body can be synthesized by the following equation, in case i and j form
an isolated system:

Fi j ,I =−F j i ,I = m j
dV j ,I

d t
=−mi

dVi ,I
d t

, (3.18)

where Vi ,I and V j ,I are the inertial velocities of the c.o.m.s of the two considered bodies. In case
one does not have an isolated system, the velocity of the c.o.m. of body i varies as follows:

Fi ,I = mi
dVi ,I

d t
, (3.19)

where Fi ,I is the sum of all the external forces applied to i .
So-called pseudo-forces appear when describing the motion in a non-inertial frame. This is

the case when using the spherical relative equations of motion, reported in Section 3.9.2. Pseudo-
accelerations in this research are caused by the use of the R frame, whose origin moves inertially,
but whose orientation is not inertial, and changes at a constant rate. In such a case, the second of
Newton’s Laws is modified as follows:

mi
dVi ,R

d t
= Fi ,I −ωI

I,R×
(
ωI

I,R× ri ,R
)
−2ωI

I,R×Vi ,R, (3.20)

where (ωI
I,R is the vector expressing the rotation of R with respect to I , in I coordinates.

3.5 ENVIRONMENT AND FORCE MODELS
The main forces acting on the vehicle during re-entry are gravity and aerodynamics. It is therefore
necessary to understand the laws of both of them. In this section, the models to evaluate these
forces are discussed. However, in the case of aerodynamics, the force requires the modelling of
the atmosphere (which will be treated in a dedicated section 3.6), of different flow regimes, of the
vehicle, as well as the shape of the Earth (which will be discussed first). Moreover, strictly related to
aerodynamics, is also aeroheating, treated in Subsection 3.5.5.

Eventually, since nor a guidance logic nor a computer simulator can be exhaustive, due to both
limits of the models and computational power, Section 3.7 discusses also which forces will be ne-
glected, as well as which models should or not be used, and why.

3.5.1 PLANET SHAPE

In general, no planet is exactly spherical, and the difference between polar and equatorial radius
may be of even tens of kilometres. This difference is expressed by the flattening parameter f [Mooij,
1997]:

f = 1− Rp

Re
, (3.21)

where Rp is the polar radius of the celestial body, and Re is the equatorial radius. When a planet is
assumed oblate, one has the following approximation10 for the altitude [Mooij, 2014]:

h ≈ r −Rp

(
1−e sin2δ

)
. (3.22)

10The approximation comes from the first two terms of the Taylor expansion of an ellipse in spherical coordinates. In the
equation, δ should be the geographic latitude, which is different from the geodetic latitude. Defining such a difference
is not of interest for this research. It is sufficient to know that the error caused by using the geocentric latitude is also
small.
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All atmospheric models are defined with respect to the altitude above the reference ellispoid. For
Earth, using a spherical model instead of an ellipsoid on, can cause errors in altitude up to 20 km.
This can, in turn, cause a difference in density of up to 5 times. Also, one should remind that a strict
consequence of the previous equation is that, in non vertical flight, ṙ 6= ḣ.

It should be noted that the, during this research, the shape of the planet is not considered when
defining the apoapsis altitude. The latter will be defined to be the difference between the apoapsis
radius and the equatorial radius of the planet.

3.5.2 GRAVITY

Newton published the law of universal gravitation in his Principia, in 1687. With that equation, for
the first time, it was understood that the laws governing celestial mechanics were the same that act
on terrestrial environment:

Fi j =−G
mi m j

r 3
i j

ri j , (3.23)

where G is the gravitational constant. In astrodynamics, the gravitational parameter µ is preferably
used:

µ=G m j . (3.24)

Because gravity is conservative, it is possible to find the potential of the field generated by one of the
two bodies that are attracting each other:

U =−µ
r

, (3.25)

where r is the norm of ri j . These laws are only valid if the two bodies i and j are either point masses
or perfect spheres. For this reason, if higher accuracy is required, gravity is usually modeled using
Legendre polynomials [Wakker, 2015].

As it will be shown in Section 3.7, in aerocapture it is not necessary to include non-central gravity
components other than that due to the second degree zonal harmonic, J2. Its effect is given below,
in Cartesian components, with respect to the inertial reference frame [Wakker, 2015]:

gx =−3

2
µJ2

R2

r 5 x(1−5
z2

r 2 ),

g y =−3

2
µJ2

R2

r 5 y(1−5
z2

r 2 ),

gz =−3

2
µJ2

R2

r 5 z(1−5
z2

r 2 ).

(3.26)

and in the vertical reference frame, in spherical components (needed for the equations in spherical
relative coordinates, reported in Section 3.9):

gδ =−3

2
µJ2

R2
e

r 4 sin2δ,

gτ = 0,

gr =
3

2
µJ2

R2
e

r 4

(
3sin2δ−1

)
.

(3.27)

It is worth mentioning that since the J2 effect only depends on the latitude, and not on the longitude,
as seen in the last set of equations, the gravity field is still conservative. The potential energy has a
different form from that of a central gravity field [Wakker, 2015]:

U =−µ
r
+ 1

2
µJ2

R2
e

r 3

(
3sin2δ−1

)
. (3.28)

This property will be very important for the verification in Section 6.2.3.
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3.5.3 AERODYNAMICS

The aerodynamic force is caused by the interaction between a vehicle and a fluid in relative motion
with respect to one another. The total force and moment acting on the vehicle are the result of the
integral of friction and pressure on the totality of the surface of the vehicle. Friction and pressure
distributions depend on many variables, of which the most relevant are: shape, size and attitude
of the body, dynamic pressure, Mach number, Knudsen number and Reynolds number. The shape
and size of the body are assumed constant during flight. The Knudsen number describes how much
rarefied the gas is, and has a strong influence in the aerodynamic coefficients, even though that
occurs at very high altitudes, where the aerodynamic force is very small. In Section 3.7 it will be
explained why the dependency on the Knudsen number can be neglected. Reynolds number is
always very large during aerocapture, and due to its asymptotic influence on the coefficients, it can
be considered as a constant11. Therefore, during a flight, the aerodynamic coefficients are functions
of only attitude and Mach number. It will be seen in the following subsection that for a capsule-like
vehicle in trim conditions, the angle of attack is also function of the Mach number.

The Mach number is the ratio between the velocity of the vehicle and the local speed of sound,
which is a function of the chemical properties of the gas and its temperature; thus:

M = V

a
= V√

γR T
. (3.29)

In general, there is an linear relation between the force and the dynamic pressure; thus, the
aerodynamic acceleration is usually expressed as [Mooij, 1997]:

FA,A =

 −D
−S
−L

=−
q̄Sr e f

m
,

 CD

CS

CL

 , (3.30)

where q̄ is the dynamic pressure, Sr e f is a reference surface, constant for the body, m is the mass
of the vehicle, and CD , CL and CS are the aerodynamic coefficients, respectively for drag, lift and
sideslip. The latter coefficients are functions of all the variables mentioned above.

The aerodynamic force is always assumed to be acting on the c.o.m. of the vehicle; since this
is an incorrect assumption, an aerodynamic moment also needs to be added. However, due to the
assumptions that will be stated in Subsection 3.5.4, there is no need to include these moments in
this research.

Being linearly dependent on the dynamic pressure, the aerodynamic force is a linear function of
the density as well. Different ways to estimate the density, as well as to compute possible perturba-
tions, are reported in Section 3.6.

As a final remark, the entirety of aerocapture occurs in the hypersonic regime, which is defined
as flight at Mach numbers higher than 5. According to Anderson [2000], at very high Mach number
(higher than 15) there is almost no more relation between Mach number and aerodynamic coeffi-
cients: the latter have indeed an asymptotic behavior for the former going to infinity. This property
will be used in Section 3.7, when making assumptions about considerations on the atmospheric
temperature profile.

3.5.4 VEHICLE MODEL

For a capsule-like vehicle no control surfaces are available. Therefore, except for the bank angle,
the attitude of the vehicle is the result of the balance between aerodynamic moments with respect
to the c.o.m.. The equilibrium angle of sideslip is zero because of symmetry. Concerning the angle
of attack, the equilibrium is obtained with the angle for which the aerodynamic pitching moment

11This is not true in proximity of the stagnation point though.
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Table 3.1: Trim angle of attack and corresponding aerodynamic coefficients for the Apollo Command Module [Robinson
et al., 2009].

Mach no. Angle of attack [°] CL CD BC [kgm−1]

0.4 -12.86 0.24465 0.85300 537.39
0.7 -15.62 0.26325 0.98542 465.16
0.9 -18.3 0.32074 1.10652 414.26
1.1 -25.13 0.49373 1.16970 391.86
1.2 -24.87 0.47853 1.15600 396.50

1.35 -25.99 0.56282 1.27880 358.44
1.65 -26.78 0.55002 1.26570 362.14
2.0 -26.86 0.53247 1.27210 360.34
2.4 -26.38 0.50740 1.24120 369.32
3.0 –25.86 0.47883 1.21670 376.74
4.0 -23.88 0.44147 1.21480 377.32

10.0 -23.21 0.42856 1.22460 374.30
≤ 29.5 -19.94 0.38773 1.28910 355.61

coefficient is zero, and stable. Such coefficient is a function of Mach number as well: thus, the trim
angle of attack is a function of Mach number only.

Robinson et al. [2009] show the aerodynamic data of Apollo in trim conditions in their paper:
their values are used, which are reported in Table 3.1. Their values have been obtained by interpo-
lation of the data in NASA [1965].

Perturbations of ±10 % in the drag and lift coefficients will be included during the simulations.
These are mainly cause by offsets in the c.o.m., which, in turn. causes a different trim angle-of-
attack

Additional relevant data are the reference surface, set equal to 12.017 m, and the mean mass,
5000 kg. The latter is varied during the simulations by ±1.5 %.

3.5.5 AEROHEATING

At hypersonic regime, aeroheating becomes very important and causes a strong constraint for the
vehicle. Aeroheating constraints include heat-flux, total heat load, and derivative of the heat-flux.
Heat-flux determines the equilibrium temperature of the outer surface of the vehicle, which is usu-
ally subject to a limit; the total heat load is instead usually important when an ablative thermal
protection system (TPS) is being used. In theory, the derivative of the heat-flux is also important
because, the larger it is, the less the vehicle is in thermal equilibrium, and thus larger gradients and
thermal stresses occur. Nonetheless, this last element will not be considered here.

Anderson [2000] offers many methods to compute these parameters, most of which are very pre-
cise and complicated. Specific computational methods applied to re-entry can be found in Prakash
and Zhong [2009] or in Gnoffo [2003]. However, since these values consist of constraints only, one
can use simpler, and less precise, methods, and apply safety factors to those.

At supercircular velocities the main components of the heat-flux come from air through con-
vection and radiation; in this research, it is assumed that all the heat is then radiated outwards by
the surface of the heat shield. Any heat ablating the heat shield, or conducted inwards, will not be
considered.

Sutton and Graves [1971] give an easy relation to compute the heat-flux due to convective heat
for the stagnation point of an axisymmetrical blunt body in a hypersonic flow in chemical equilib-
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rium:

q̇conv = K

√
ρ

Rn
V 3

[
Wm−2

]
, (3.31)

where Rn is the nose radius of curvature, and K is a constant depending on the gas mixture. This
relation assumes laminar flow. The constant is found to be equal to 1.7623×10−4 on Earth [Samareh,
2009].

A more conservative approach would be that of using an empirical method, proposed by Detra
and Hidalgo [1961]. The methods were compared by Carandente et al. [2013], and it turned out that
the latter is more conservative than the former. The Detra-Hidalgo relation is:

q̇conv = 5.15×10−5
√

ρ

Rn
V 3.15,

[
Wm−2

]
(3.32)

This relation is set for values for Earth’s atmosphere, and will be used in the analysis of the results,
being more conservative. The Sutton-Graves relation will instead be used in the validation.

Both previously mentioned equations are valid when considering a cold wall. In re-entry prob-
lems, however, the wall heats up relatively fast, and thus the wall temperature should be included:

q̇conv,hw = q̇conv

(
1− Tw

Tw,ad

)
, (3.33)

where Tw is the wall temperature (the computation of which is discussed a few paragraphs below)
and Tw,ad is the adiabatic wall temperature:

Tw,ad ≈ Htot

cp
, (3.34)

Htot ≈
V 2

2
, (3.35)

where cp is the specific heat of the gas at constant pressure.
Whereas Equation (3.35) becomes more accurate for larger velocities, Equation (3.34) becomes

more and more inaccurate for larger enthalpies.
The problem here is that cp varies with temperature, and therefore this approximation gives

values that are highly off at hypersonic velocities: as an example, at 12 kms−1 one obtains an adi-
abatic wall temperature of about 72000 K, which is very far from reality, because of ionization and
many other reactions occurring. A correction for this is proposed, based on the interpolation of the
work by Menart and Henderson [2008], which provides the total enthalpy for ionized air at 1 kPa, in
chemical equilibrium. Figure 3.3 shows the plot from which such relation is interpolated.

The value of 1 kPa has been chosen because it is the closest to the maximum dynamic pressure
encountered by the validation trajectory simulated in Subsection 6.2.7 (which is about 3 kPa). By so
doing, one obtains, for that same validation case, a range of adiabatic wall temperatures between
10000 K and 6000 K. The hot wall correction has then an impact for about 25 % of the total convec-
tive heat rate, being the shield equilibrium temperature around 2500 K.

At superorbital velocities also radiative heating from the gas becomes relevant. Tauber and Sut-
ton [1991] proposed an easy analytical expression, which requires the interpolation of only one
small table, for the radiative heating at stagnation point of a blunt body, assuming thermochem-
ical equilibrium. Also in this case, heat strictly depends on the gas mixture, and thus, on the planet.
This kind of heat becomes almost zero for velocities lower than 9000 ms−1 on Earth. The expression
has the form (in Wcm−2):

q̇r ad =C Ra
n ρ

b f (V ), (3.36)
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Figure 3.3: Air temperature at chemical equilibrium as a function of nondimensional total enthalpy, at different
pressures. From Menart and Henderson [2008].

where C is a constant depending on the atmosphere gas mixture, and f (V ) is the interpolated func-
tion, and depends on the atmospheric gas mixture. Its tabulated values can be found on Tauber and
Sutton [1991] for both Mars and Earth. Values of a and b depend on the planet, but may as well be
a function of nose radius or velocity. For air, on Earth:

C = 4.736×104

a = 1.072×106 V −1.88ρ−0.325

if 1m ≤ Rn ≤ 2m, a ≤ 0.6 (3.37)

if 2m < Rn ≤ 3m, a ≤ 0.5

b = 1.22

Equation (3.36) gives an error between -17% and +15% for the situations in which it was compared
to more accurate numerical methods.

In case one assumes that the wall is in thermal equilibrium, which is reasonable in case of
reusable heat-shields, the wall temperature can be found by equating the sum of radiative and con-
vective heat to the radiative heat emitted by the wall itself:

q̇conv

(
1− Tw,eq

Tw,ad

)
+ q̇r ad = εσT 4

w,eq , (3.38)

where σ is the Stephan-Boltzmann12 constant and ε is the wall emissivity13. When the heat-shield
is ablative, a large portion of the heat is dissipated in the ablation process. Therefore, the wall tem-
perature would be smaller. However, this correction will not be considered in this research.

12The Stephan-Boltzmann constant is, at the best of the current knowledge, found to be equal to 5.670367×10-8 W/m2K-4

13The wall emissivity defines how closely the radiation of a body resembles that of a black body. The higher the value,
the more the body radiates the heat outwards. It cannot be larger than 1. The emissivity of a body is equal to its
absorptance, and in reality is a function of the wavelength. For wavelengths corresponding to the average temperature
of a Lunar entry, the Apollo Command Module has ε≈ 0.8 [Robinson et al., 2009]. In theory, also the incoming radiative
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In conclusion, by summing both convective and radiative heat, making use of, respectively, the
Detra-Hidalgo relation (Eq. 3.32) (corrected with hot wall correction, using interpolated data for
adiabatic wall temperature), and the Tauber-Sutton (Eq. 3.36) relations, each with an appropriate
safety factor, it would be possible to obtain a good and conservative estimate of the stagnation-point
heating.

As a last remark for this subsection, it should be kept in mind that for a capsule-like vehicle
flying at an angle of attack, as is usually the case, the point with maximum heat is usually not the
stagnation point, but the hot corner, which is the part of the edge of the heat-shield that is first
impinged by the flow. Also, the nose radius is often best substituted by the effective nose radius,
which is a function of the angle of attack, and differs between convective and radiative heat-flux.

3.6 ATMOSPHERE MODELS
The aerodynamic force is a linear function of the density, and density also determines the heat-
flux that a vehicle would encounter during entry. The speed of sound has instead an effect on the
aerodynamic coefficients. For this research, the most important data about an atmosphere are:

• average altitude-density profile;

• average altitude-sound speed profile;

• perturbations model.

Average wind will not be used in this research, for reasons that are explained in Section 3.7.
The perturbations model is instead fundamental to be able to properly evaluate the robustness of a
guidance logic.

Atmospheric models are divided into two categories: reference and standard. Standard models
give the parameters as function of altitude only, are relatively simple, and aim to give an estimate
that is reasonably accurate at any latitude, longitude and date of the year.

A reference model gives all the relevant parameters as a function of also latitude, longitude, date
of the year, and other variables. Moreover, reference models such as the Earth GRAM-99 include
some rather sophisticated perturbations models [Leslie and Justus, 2011].

The use of a perturbation model is particularly important for the training of the neural networks:
in fact, any pattern can be learned by the network; this includes an atmospheric profile, if it were
always the same (or just multiplied by a constant value as well).

The choices for the atmospheric modeling are listed below, together with the purpose and rea-
son why they were chosen.

1. US 76 profile: used in the model of the NPC. It is chosen because it is simple, and aims to be a
generic, average profile. Also, it is used in the guidance by Lu et al. [2015], which is reproduced
in this research.

2. GRAM-99 profile: used in the simulator. It is chosen because it is necessary to have a different
model from that of the predictor. Any other model would have worked just as well, as long as
it were different from the US76. Moreover, for the same reason, it is sufficient to have a single
profile, and not the entire model that varies with space and time. It is also stressed that it is
of no interest for this research aiming for the most accurate/recent model. At this stage of the
development, an accurate trade-off for the best atmospheric model is not needed.

heat estimated with Equation (3.36) should be multiplied by an emissivity/absorptance; nevertheless, this radiation
occurs at a variety of wavelengths. To be conservative, it is safer to let the corresponding emissivity/absorptance be
equal to 1.
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3. GRAM-99 perturbation model: used in the simulator. A perturbation model is needed to
evaluate the responsiveness of a guidance logic to highly perturbed environments. Moreover,
a neural network would be able to learn any pattern, such as a constant atmospheric profile.
This shall be avoided, since the atmosphere is not always the same also in reality. The GRAM-
99 model was specifically chosen because its perturbations vary in time and in all three di-
mensions of space. This leads to encountering an atmospheric profile in the descending leg
very different from the one of the ascending leg. Any other perturbation models that include
such a feature would have been equivalent for the scope of this research.

In some cases, density perturbations will also be modeled as multiplications by a constant only.
Such a constant is chosen to be random, and between 0.5 and 1.5. The speed of sound is instead
always modeled as the multiplication by a constant, which varies between 0.85 and 1.15. Justifica-
tion for these values of the constants can be found in the following subsection. Motivation why no
complex perturbations models for the speed of sound are used is given in Section 3.7.

In all cases, the altitude is considered with respect to the reference ellipsoid that has been de-
fined in Subsection 3.5.1.

3.6.1 US STANDARD ATMOSPHERE, 1976
As just mentioned, the US Standard Atmosphere, 1976 (US76) is used for the predictions of the NPC.
This atmosphere is defined up to 1000 km of altitude.

Without going into too many details, the US Standard 76 Atmosphere assumes the atmosphere
to be a dry, homogeneously mixed perfect gas, and to be always in hydrostatic equilibrium. All
the parameters are functions of altitude only [NASA, 1976]. Moreover, the temperature gradient
with respect to altitude is piecewise linear at low altitudes (below 91 km). The governing equations
corresponding to the previously mentioned characteristics are:

p = ρRT, (3.39)

where R is the gas constant14, function of its molecular mass. The hydrostatic equilibrium assump-
tion implies, instead:

d p =−ρg d z, (3.40)

where the gravity acceleration is approximated with a Taylor polynomial of the first order, centered
at sea level. The pressure can then be integrated along the altitude eliminating the density:

d log p = d p

p
=− g

RT
d z, (3.41)

where T is defined piecewise. To make the integration feasible, one transforms the altitude into
geopotential altitude, such that g can be constant, and the temperature into molecular temperature,
such that R can be constant. The definition of these two parameters is of no relevance for the scope
of this research.

The profile for the temperature has been derived fitting empirical measurements taken in two
different places in the United States, with about 20 measurements for each month of the year [NASA,
1976]. The two locations are at latitudes of 38°N and at 59°N: the fit is done by interpolating in a way
such that the profile fits the 45°N.

Being an average of many months, this model does not provide a one realistic atmospheric pro-
file, and therefore GRAM-99 will also have to be used in the simulator. Nevertheless, some of the
simulations will also be carried out using this model as an average. In that case, the value of the
speed of sound would also be needed.

14For air, at sea level, R = 286.99 Jkg−1 K−1.
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Figure 3.4: Range of systematic variability of density
around US76 [NASA, 1976].

Figure 3.5: Range of systematic variability of temperature
around US76 [NASA, 1976].

Figures 3.5 and 3.4 show how different months and latitudes affect the mean values of den-
sity and temperature at a certain altitude. The figure justifies the initial use of a basic perturba-
tion model consisting of the multiplication of the density and temperature profiles by a constant.
Since, as shown in Section 2.5, the largest amount of depletion of energy occurs between 50 km and
70 km, a basic uniform distribution of ±50% in density and of ±15% in temperature seem reason-
able. However, since these variations concern latitudinal and monthly variations (they are, indeed,
systematic), once a certain time and position for the initial conditions of aerocapture are defined,
the variations are likely to be much smaller. When treating the GRAM-99 perturbation model, it will
be shown how the standard deviations of perturbations would be much smaller.

An interesting feature that is worth being mentioned is the presence of discontinuities in den-
sity scale height Hρ . The density scale height is an approximation to (d logρ/d z)−1 [NASA, 1976],
and therefore defines the rate of change of the density with the (geopotential) altitude. It can be
computed as [NASA, 1976]:

Hρ =
Hp

1+Hp

(
d logT

d z − d log M
d z

) , (3.42)

where Hp is the pressure scale height, and is continuous. From this, it is evident that when the
altitude gradient is discontinuous, also the scale height is. This makes the atmospheric density’s
second derivative (with respect to altitude) discontinuous. More about the non-smoothness of the
atmospheric density, and its implications, is discussed in Section 6.3.1.

3.6.2 EARTH GRAM-99 PROFILE

The GRAM-99 model is a combination of 3 different previous models: the Global Upper Air Climate
Atlas (GUACA) for altitudes between 0 km and 27 km, the Middle Atmosphere Program (MAP) for
altitudes between 20 km and 120 km, and the Jacchia [1970] model for altitudes above 90 km.

It is not the scope of this report to describe these models. All that is needed to know is that the
model relies on measurements of pressure and temperature, for different months and for a grid of
altitudes, latitudes and longitudes. Those measurements are interpolated vertically assuming hy-
drostatic equilibrium, and linearly in the other directions. Density is then computed assuming per-
fect gas. Hence, the same discontinuities as in the US76 Standard occur, but even more frequently.

For the scope of this research, it is sufficient to have a realistic atmospheric profile that differs
from the US76.



3.6. ATMOSPHERE MODELS 35

The sample profile of speed of sound and density has been taken from Appendix E in Justus
and Johnson [1999]. Its values have been manually copied. The table also provides difference in
percentage between GRAM-99 and US76: these values were used to verify that the no errors were
made when manually importing the data. The difference between the US76 and the chosen profile
(for density only, in percentage) can be seen in Figure 3.6.
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Figure 3.6: Difference in percentage of US76 density between the mean atmospheric density from Appendix E of Justus
and Johnson [1999] and the US76 density profile.

The GRAM-99 has been used instead of the newer version, GRAM-2010, because the latter is
not publicly available. Despite a similar table would have been available for the newer version as
well, the data of the perturbations model is not (but it is for the GRAM-99). Therefore, for reasons
of consistency, also the average profile has been taken from the older version. The values taken
from Appendix E of Justus and Johnson [1999] are then interpolated in the altitude using a spline.
Since the data reported on the GRAM-99 end at an altitude of 140 km, for higher altitudes the US76
atmosphere is used.

One of the unique features of the GRAM-99 is its ability to reproduce spatial and temporal per-
turbations. This is one of the main reasons that lead to the choice of this model. Since the pertur-
bation model had to be entirely reproduced during this research, because of software compatibility
reasons, it is believed that its description deserves a separate subsection.

3.6.3 EARTH GRAM-99 PERTURBATIONS MODEL

The perturbation model is the same for pressure, density, and winds; the only difference between
the different parameters is the numeric values being used. For reasons explained in Section 3.7, only
density perturbations are reproduced using this model.

According to Justus et al. [1995], atmospheric perturbations can be divided in two different
kinds: the small-scale perturbations, due to turbulence, gravity waves, and other processes, and
the large-scale perturbations, caused by tides and baroclinic wave processes. Both kinds of pertur-
bations have their standard deviations normalized with respect to the mean, local, value, which are,
respectively, σρ,s and σρ,l ; these are also taken from the sample given in Justus and Johnson [1999],
and can be seen in Figure 3.7.

It was previously said that the ±50% variation in density, partly deduced from Figure 3.5, is con-
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servative. Figure 3.7 proves this claim: in fact, it can be seen that the two perturbations have their
standard deviation peak of about 10 % each at 100 km altitude. Between 50 km and 70 km the stan-
dard deviation is even lower.
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Figure 3.7: Density standard deviations in percentage of the mean value for both small and large scale perturbations,
obtained from Appendix E of Justus and Johnson [1999].

LARGE-SCALE PERTURBATIONS

Large-scale perturbations have a sinusoidal form; the normalized (with respect to the average den-
sity at the given position and time) large-scale density perturbation ρl is:

ρl =σρ,l

p
2AQ cos(nτ+mδ+2π

z

λz
+2π

t

T
+φQ ), (3.43)

where z is the altitude in km, AQ is an amplification factor, n and m are the number of horizontal
waves, λz is the vertical wavelength, and T is a temporal wave period, and φQ is uniformly dis-
tributed randomized phase. It is clear that the perturbations has the form of a 4-dimensional wave,
with a variable vertical wavelength λz . AQ is computed as:

AQ = 0.4808+0.96Q, (3.44)

where Q is uniformly distributed between 0 and 1. n and m are also randomized, such that the
number of waves is between 2 and 6:

m = n = round(4+0.833Qnm), (3.45)

where Qnm is a Gaussian variable, with 0 mean and standard deviation of 1. The vertical wavelength
is itself a function of the altitude (in km):

λz = av +0.045
√∥∥z3

∥∥, (3.46)

where av is a randomized parameter, that dominates the size of the wavelength at the lowest alti-
tudes. The report does not clarify how such random parameter is distributed; since it is not very
relevant for higher altitudes, it was decided to set it between 0 and 1. Eventually, the standard devi-
ation for the large-scale perturbation is also provided in Appendix E of [Justus and Johnson, 1999].
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SMALL-SCALE PERTURBATIONS

The second part of the perturbations model concerns the small-scale perturbations, and is taken
from [Justus and Johnson, 1999]. According to them, these perturbations can be modeled as an
auto-correlated variable:

µ
(
x′

)= rµ (x)+
√(

1− r 2
)
q, (3.47)

where µ is the perturbation of the density normalized with respect to the standard deviation, x is
the current position, x′ is the next position and r is the autocorrelation value, which, by definition,
implies:

r =<µ (x)µ (x)′ >, (3.48)

where the angle brackets are the mean operator. This property will be very useful when verifying
the perturbation model in Subsection 6.2.5. r is a function of δx = x′−x:

r (δx) = exp
(−δh/Lh

)
exp

(−δz/Lz
)

, (3.49)

where h and z are, respectively, the horizontal and the vertical displacements, and Lh and Lz are
their respective scale-sizes.

The scale-sizes only take either their maximum or their minimum values, which are a function
of the altitude, and are very different between Lz and Lh . To decide whether to use the minimum
or the maximum value, two artificial scale-sizes are introduced. The artificial scale-sizes also are a
autocorrelated variables, and therefore follow Equation (3.47), and have their own scale size (which
is the same for the Lz and Lh , and is a function of altitude only). In addition, however, they are
cross-correlated with each other, by a cross-correlation factor rc :

rc =<µ (x)ν (x) >= min(0.5+0.002z,0.9), (3.50)

where ν is the cross-correlated variable, and z is in km again.The artificial horizontal scale size
evolve like µ, and the vertical scale size evolve like ν. For all of these cases, ν evolves as follows:

ν
(
x′

)= rνν (x)+ rµµ
(
x′

)+ rq q, (3.51)

where r is the same as for µ, q is another Gaussian variable, and:

rν = r
(
1− r 2

c

)
/
[

1− (
r rc

)2
]

, (3.52)

rµ = rc

(
1− r 2

)
/
[

1− (
r rc

)2
]

, (3.53)

and
rq =

√
1− r 2

ν − r 2
µ−2rνrµrc r . (3.54)

The model provides the values of the average and minimum scale sizes (again, as a function of
the altitude), respectively Lav g and Lmi n , as well as their standard deviations σL . The probability of
severe turbulence Psev is defined as the probability of one fo the scale sizes to be smaller than the
minimum scale size. From basic statistics, this is:

Psev = 1p
2π

∫ ∞
Lav g −Lmi n

σL

exp

(
−u2

2

)
du, (3.55)

The model then also defines Lmax , but being it extremely similar to Lav g , the latter will be used
instead. The artificial scale size are then obtained by multiplying ν and mu by their standard devia-
tion σL , and adding them to their average value Lav g . If either of the artificial scale sizes goes below
Lmi n , then severe turbulence is triggered.
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When in severe turbulence, the effective scale sizes are equal to Lmi n ; when not, they are equal
to Lmax . Moreover, the normalized variance of the small-scale perturbation becomes fsevσ

2
ρ,s ; oth-

erwise, it is fnonσ
2
ρ,s . σρ,s is the small-scale normalized standard deviation, whereas fsev is function

of the altitude, and is constant and equal to 12 for altitudes above 16 km; fnon is instead equal to:

fnon =
(
1− fsev Psev /

(
1−Psev

))
. (3.56)

Eventually, once the scale sizes are defined, depending on the artificial scale sizes, the autocorrla-
tion r for the density can be computed, and the small-scale density perturbation ρs at x′ is com-
puted as:

ρs =
√

f σρ,sµ(x′), (3.57)

where f is either equal to fnon or fsev , depending on whether severe turbulence is occurring or not.

By so doing, this model simulates turbulence with horiontal and vertical scale sizes that are
function of the altitude. Moreover, with probability Psev , the turbulence becomes severe: in that
case, the scale sizes become much smaller, and therefore the variability becomes higher, and the
standard deviation increases abruptly. This causes a discontinuity in the density, but it is exactly
one of the goals of the developers of the model. Moreover, by using the artificial scale sizes, the
severe turbulence is ”patchy”: this means that it usually does not last only one step. As an example,
if there is a 1% chance that the turbulence is severe, that will happen in approximately 10 steps in
a trajectory that lasts 1000 steps; however, those will not be 10 isolated steps, but most likely will
come in ”patches” of more than one step.

Once computed both ρs and ρl , these can be multiplied by the mean value of the density, and
then added to it.

3.7 SIMPLIFYING ASSUMPTIONS
In this section, the assumptions made for the development of the simulator are justified. When
deciding whether to include or not a force, the first consideration to be done is to see whether it
affects the guided part of the entry, the unguided part, or both. Forces that affect the guided part
have to be much larger to be included, since the vehicle is subject to larger forces in that part. If
the forces affect the unguided phase, and specifically the exoatmospheric phase, then they can be
of much smaller magnitudes to be included. This is because the unguided phase lasts much longer,
up to half of an orbital revolution, than the atmospheric pass; moreover, no path corrections can be
done during it.

3.7.1 HIGH ORDER COMPONENTS GRAVITY FIELD

The effect of the acceleration due to J2 has been included in the simulator. This is because its effect,
according to Wakker [2015], causes oscillations in the semi-major axis up to about 20 km for a highly
inclined Low Earth Orbit. Also, it affects the exit leg, in which no control is possible. Hence, not
including such a perturbation in the may lead to errors in apoapsis altitude of tens of kilometers.
This is why Lu et al. [2015] even include it in their NPC15.

Other components of the gravity field such as J2,1, J2,2, J3, and so on do not have to be consid-
ered, simply because their magnitude is, on Earth, around one thousandth, or even less than, that
of J2 [Wakker, 2015].

15During this research, an NPC not including J2 was compared to an NPC that included it. For conditions where the latter
led to errors of maximum 200 m, the former caused errors up to 8 km. The number of simulations done was very small;
it is therefore possible that even larger errors may be caused if the J2 effect were not included in the prediction. This is
shown in Subsection 4.4.1.
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3.7.2 THIRD BODY PERTURBATION

Third body perturbations occur on Earth mainly because of the Sun and the Moon. Wakker [2015]
estimates the effect of those perturbations on the semi-major axis as:

∆a ∝ 3

2

µd

µ

r 4

r 3
d

, (3.58)

where the subscript d stands for the disturbing body. Wakker [2015] estimates that the perturbation
due to the Moon would cause an oscillation of the apoapsis of an Earth geosynchronous orbit of
1 km. A Low Earth Orbit would oscillate of 0.7 km instead. The perturbation due to the Sun has half
the magnitude, and thus causes smaller perturbations. An error of less than 1 km in apoapsis causes
an additional ∆V of about 1.5 ms−1. This sort of error should be kept in mind when analyzing the
final results, but it is not worth including these perturbations during testing.

3.7.3 ATTITUDE CONTROLLER

In this research ideal attitude control is assumed. This not only includes angle-of-attack and sideslip
angle control, which are always trimmed and zero respectively, but also bank-angle control.

Using a real controller for the bank angle would have the double drawback of requiring the de-
sign of an attitude controller, as well as that of affecting the performance of the guidance. Since
this research is focused on the latter, it is preferred to have the theoretically best attitude controller,
but that still respects the constraints of maximum angular acceleration and angular rate. This is be-
cause, as shown in Section 2.5, the depletion of energy during an aerocapture can be extremely fast.
Its duration may be comparable to the duration of a bank reversal. Since attitude dynamics are not
simulated, this effect is reproduced by a secondary guidance. Its design is described in Subsection
6.2.6.

Having a simulator with constrained angular velocity and accelerations can be very important
in aerocapture. This is because, as an example, a bank reversal may last up to 15 s, and the duration
of the atmospheric pass of an aerocapture can be as short as 150 s. It goes without saying that if the
reversal and the dynamic pressure peak are concurrent, having a realistic reversal becomes really
important.

3.7.4 ATMOSPHERE

An important simplification done in the atmospheric modeling consists of neglecting winds and
winds perturbations. Winds have two effects: one is that of temporarily changing the aerodynamic
angles; the other is that of changing the relative air-speed. The first one is automatically not consid-
ered due to the assumption of ideal attitude controller. Concerning the second one, a short discus-
sion can be carried out.

At altitudes up to 100 km the maximum average wind speed found in Appendix E of Justus and
Johnson [1999] is about 50 ms−1, with a standard deviation of 40 ms−1. This means that there is
about a 1% chance of having a 150 ms−1 wind gusts during the guided flight. Assuming a speed
at the end of the guided flight of 8000 ms−1, this perturbation causes a difference in drag and lift
of about 4%. It is of course not negligible, but much smaller than the effect of density. Since the
wind perturbations behave like the small-scale density perturbation, but are just much smaller, they
are negligible (in comparison, density perturbations cause, with a 1% probability, differences in
the aerodynamic force up to 30%). What is less negligible is the average wind, since it causes a
systematic error. Nevertheless, because of the very high speed of aerocapture, such error is of less
than 1% of the aerodynamic force. Always because of the quadratic relation between velocity and
aerodynamic force, wind components not parallel to the velocity are even less relevant.

The last relevant simplification done with respect to the GRAM-99 model concerns the speed of
sound: specifically, the non consideration of the temperature perturbation model. This is because
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Figure 3.8: Lift to drag ratio and lift and drag coefficients for the Apollo capsule at an angle of attack of −25° as a function
of Knudsen number (and with corresponding altitude, on Earth) [Moss et al., 2006].

of the speed of sound is almost unrelevant in aerocapture: according to NASA [1965], the lift-to-
drag ratio changes of less than 15% between Mach 10 and Mach 30, and is assumed to be constant
for higher Mach numbers. Even assuming a conservative value for the speed of sound of 400 ms−1

(which only occurs at altitudes higher than 120 km, where drag and lift are already almost zero), the
ascending leg (the slower) would be flown at Mach 20. A variation of even 20% in Mach number
due to temperature would cause changes in lift-to-drag ratio of only 3% (assuming a linear relation,
which is probably not the case). In addition, during most part of the flight, any variations in speed
of sound would not cause the Mach number to go below 30. Therefore, temperature perturbations
will only be considered in the form of constant speed of sound variations, but no detailed model
will be used.

3.7.5 RAREFIED FLOW

If one looks at Figure 3.8, it can be seen that a continuous flow solver has been used for Knud-
sen numbers smaller than 10-2 (which, on Earth, corresponds to about 95 km); direct Monte Carlo
Simulation (an accurate method for solving rarefied flow aerodynamics) has instead been used for
higher numbers. From that altitude to 120 km the lift-to-drag ratio drops almost linearly from 0.3
to 0.05, and then becomes almost to zero at an altitude of 200 km. There is no comparison between
the continuous and the rarefied flow solvers solutions, and therefore part of the diminution of the
lift-to-drag ratio could be due to changes in speed of sound. The change is rather substantial, but it
happens at altitudes at which the aerodynamic force is already vary small. At 100 km, where the dif-
ference is already 15% of the lift-to-drag, but the density is still much larger than at higher altitudes,
drag causes a deceleration of about 0.05 ms−1 (the ascending phase is considered, since in the de-
scending phase small errors can be later corrected by the guidance). Such deceleration would only
be revelant if it persisted for a considerable time; however, it is continuously decreasing instead,
and can therefore be neglected.

In addition, since the lift-to-drag ratio decreases at higher altitude, it can be concluded that
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attempting to guide the vehicle while at altitudes higher than 100 km is conceptually wrong: no lift
implies indeed no controllability. This is in addition to the reduction in dynamic pressure.

3.8 EQUATIONS OF MOTION: ORBITAL FLIGHT
Orbital flight is here not needed to comprehend the exit part of the flight (which will be computed,
both in the simulator and in the NPC, by using the equations for atmospheric flight), but to:

1. understand when/if apoapsis is reached;

2. compute the final ∆V ;

The discussion concerns Keplerian orbit.
Skipping any derivation, a parametric solution to the two-body problem is [Wakker, 2015]:

r =
a

(
1−e2

)
1+e cosθ

. (3.59)

Therefore, there is a relation between true anomaly θ and radius r . By setting θ = π, one can check
if this equation holds, given the radius and the semi-major axis. If it does hold, apoapsis is reached.
In the two-body problem the integrals of motion have the following expressions:

E = 1

2
V 2 − µ

r
=− µ

2 a
, (3.60)

H = V× r, (3.61)

where E is the specific energy and H is the specific angular momentum. A consequence of Equation
(3.60) is the fact that, for a given orbit, speed and radius are biuniquely related:

V =
√
µ

(
2

r
− 1

a

)
. (3.62)

Consequences of Equation (3.61) are the fact that the motion is planar, and that:

r 2 θ̇ = ‖H‖. (3.63)

The total energy E is negative for circular or elliptic orbits, it is zero for parabolic orbits and positive
for hyperbolic orbits. Circular velocity is found when r = a:

Vc =
√
µ

r
. (3.64)

3.8.1 ORBITAL TRANSFERS

The aerocapture maneuver ends with a two-burns orbital transfer. The transfer is ideally a periapsis
raise only, but due to unavoidable errors, it will include an out-of-plane correction, together with
an apoapsis correction half an orbital period later. For small angles, the out-of-plane correction
consists of a burn perpendicular to the velocity vector; the periapsis raise and apoapsis correction
consist instead of burns in the direction of the velocity. Because of the Pythagorean theorem, it is
most convenient to apply the perpendicular burn during the largest of the two parallel burns, which
is the periapsis raise. The amount of that ∆Vl at needed to correct the inclination is, for small angles
[Wakker, 2015]:

∆Vl at = 2V sin

(
∆i

2

)
, (3.65)

where ∆i is the inclination error, and V is the orbital velocity at burn. In theory, it is hard to define
what exact value of the velocity should be taken, since it varies during the periapsis burn. The initial
velocity is taken: since the difference in velocity is relatively small, and this ∆Vl at is also small, only
a second-order error is done.
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Figure 3.9: Geometry of an elliptical orbit [Wakker, 2015].

3.9 EQUATIONS OF MOTION: ATMOSPHERIC FLIGHT
The equations to propagate the motion in a planetary atmosphere are needed in Cartesian, iner-
tial coordinates, as well as in spherical, relative (in the R frame) coordinates, for the reasons stated
in Section 3.3. Spherical, relative coordinates are common in three different forms: dimensional,
dimensionless, and dimensionless using energy instead of time as an independent variable. The
last set of equations will be referred to as the "energy-independent" set of equations. A trade-off be-
tween the three sets of equations using spherical, rotating coordinates, will be carried out in Section
6.3.1. This is necessary to understand which set of equations is best suited for the propagator in the
NPC.

3.9.1 INERTIAL, CARTESIAN

The motion in inertial, Cartesian coordinates is the direct application of Equation (3.19). This, to-
gether with the kinematics in Cartesian coordinates, implies:

dVI
d t

= FI
m

,

dxI
d t

= VI . (3.66)

Both equations have three components, and are first order differential equations.
As previously stated, the only two forces acting on the vehicle are gravity and the aerodynamic

force. How those are computed has been explained throughout this chapter.
Gravity is computed directly using inertial, Cartesian coordinates, using Equations 3.23 and

3.26.
The aerodynamic force needs to be rotated instead: in fact, in its form as in Equation (3.30), it

is expressed in the aerodynamic reference frame. A force in the aerodynamic reference frame needs
first to be rotated into the vertical frame, then in the rotating plane and eventually in the inertial
plane. Using Equations 3.4 to 3.7:

FA,I = CI,R CR,V CV ,A FA,A. (3.67)

By so doing, one obtains FI , to be substitute in Equation (3.19):

FI = FA,I +mgI , (3.68)

where, in this case, g is the gravitational acceleration vector, including the J2 term.
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3.9.2 RELATIVE, SPHERICAL

The relation between rotating, spherical equations and inertial, Cartesian, is a two-step transforma-
tion of the inertial, Cartesian equations. This set is the consequence of a rotation of reference frame,
from inertial to rotating, and of a state representation transformation, from Cartesian to spherical.

It is reminded that, when doing a frame transformation between an inertial frame and a rotating
frame that are not coincident with the point where the forces are applied (as this case), apparent
forces appear.

The equations of motion are here reported, for unpropelled flight, and including the J2 term [Lu
et al., 2015]:

V̇ =−D

m
− gr sinγ− gδ cosγcosχ+ω2

cbr cosδ(sinγcosδ−cosγsinδcosχ),

V γ̇= L cosσ

m
− gr cosγ+ gδ sinγcosχ+2ωcbV cosδsinχ+ V 2

r
cosγ+

+ω2
cbr cosδ(cosγcosδ− sinγsinδcosχ),

V cosγχ̇= L sinσ

m
+ gδ sinχ+2ωcbV (cosγsinδ− sinγcosδcosχ)+

+V 2

r
cos2γ tanδsinχ+ω2

cbr cosδsinδsinχ,

ṙ =V sinγ,

τ̇= V sinχcosγ

r cosδ
,

δ̇= V cosγcosχ

r
, (3.69)

where gr and gδ are obtained with Equations 3.2716.
Because of the ever-increasing computational capabilities of current on-board computers there

is no need to simplify these equations more for an NPC guidance.

3.9.3 DIMENSIONLESS EQUATIONS

The same previous set of equations can be made dimensionless. This is usually done because di-
mensionless equations may have computational advantages when propagating.

Length is normalized by the equatorial radius of the planet, RE , velocity is normalized by

Vscale =
√
µ/RE , (3.70)

and time is normalized accordingly.
It is then simply sufficient to normalize all the equations, by opportunely dividing them accord-

ing to their dimensions. As an example, the derivative of the dimensionless velocity with respect to
dimensionless time is (the symbol ǟ stand for normalized variable):

dV̄

d t̄
=d(V /Vscale )

d(t/tscale )
=

=
[

tscale

Vscale

(
−D

m
− g sinγ

)
+ ω̄2

cb r̄ cosδ(sinγcosδ−cosγsinδcosχ)

]
.

(3.71)

16It shall be specified that it is still possible to use an ellipsoid model for the planet while using these equations. Simply
stated, the density is computed using the altitude above the reference ellipsoid, but the variables are still in spherical
coordinates. Hence, as an example, the flight-path angle would be with respect to the vertical frame for a sphere, instead
of the vertical frame of the ellipsoid. Again, this would imply V sinγ 6= ḣ.
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As previously mentioned, the last set of equations can be obtained by removing time. It is then
possible to reduce the system by one equation, using nondimensional negative energy Ē as an in-
dependent variable instead of t̄ :

Ē = 1

r̄
− 1

2
V̄ 2. (3.72)

This energy is evaluated in the rotating reference frame. Therefore, the velocity in that relation
is the one with respect to the rotating planet. At this point, the equation for the velocity can be
neglected, since, where needed, velocity can be computed using:

V̄ =
√

(2/r̄ − Ē). (3.73)

A small error is done when doing this. First, this energy does not include the effect of J2. Second, in
such a potential the centrifugal force is not included17. Nevertheless, the magnitude of both these
effects is rather small.

The derivative of the energy with respect to a certain reference frame can be computed as the
dot product between the sum of all the non-conservative forces and the velocity in that frame. Since
lift is perpendicular to the motion, only drag need to be considered:

dĒ

d τ̄
≈ D̄V̄ > 0. (3.74)

Energy is monotonic for an non propelled flight, since drag and velocity are both always positive
by definition. Hence, it is possible to use it as an independent variable; consequently, all the above
mentioned equations can be simply rewritten as:

dx

dĒ
= f(x,σ, Ē), (3.75)

by multiplying the right-hand side of the dimensionless equations by 1/D̄V̄ .
A trade-off will be carried out in Section 6.3.1 to evaluate the best set of rotating, relative coordi-

nates for the propagator of the NPC.

3.10 SUMMARY
The motion of a vehicle in an atmosphere is rather complex, and depends on a variety of models and
variables. For the research to be possible, it is necessary to make a few, reasonable assumptions.

The vehicle will be treated as a point mass, with atmospheric coefficients depending on Mach
number only. The bank angle is treated as a parameter subject to angular velocity and acceleration
constraints. The mean atmosphere is modeled according to either the US76 Atmosphere or a profile
extracted from the GRAM-99 model. Additionally, two atmospheric perturbations models have been
included from the latter. The planet has an ellipsoid shape. Gravity acceleration include only the
central term and the component due to J2.

17In rotating reference frames, centrifugal force should be included into the potential energy. This is done, as an example,
to solve the restricted three-body problem, and to find the surfaces of Hill [Wakker, 2015].
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In this chapter more insight into the atmospheric part of the aerocapture maneuver is given. How-
ever, before doing that, the orbital part is treated, since it is the one that sets the requirements at the
exit of the atmospheric flight.

Constraints and optimality of the trajectory are analyzed in Sections 4.2 and 4.3. Later on, the
optimal aerocapture guidance by Lu et al. [2015] is reproduced. A few modifications to their con-
cept are proposed, and a comparison of the results obtained during this research with those from
their paper is shown. The reader can have a look at Chapter 6, to see how the simulator has been
developed and verified. Some conclusions about the aerocapture trajectory and the modified NPC
are given at the end of the chapter.

4.1 OPTIMAL PERIAPSIS RAISE
In any astrodynamics problem, one usually wants either to minimize the initial mass, or maximize
the payload mass. These two statements are equivalent.

In aerocapture, two trajectory-dependent parameters affect the initial mass: one is the∆V needed
to raise the apoapsis; the other is heat load, which partly drives the mass of the heat shield. Unfor-
tunately, there is usually no equation that relates the mass of the heat shield to the heat load ex-
plicitly, except for some empirical and inaccurate relations. Hence, the EDL problem is usually a
(constrained) multi objective optimization.

To minimize the ∆V , it is necessary to properly understand the exoatmospheric phase, and the
periapsis raise. The goal of this section is to properly describe them.

In this research, only the case in which the final target orbit is circular is considered. In fact, as
explained in Chapter 2, the case for an elliptical orbit is less interesting.

4.1.1 SINGLE-BURN STRATEGY

The burns in aerocapture, as explained in Section 3.8.1, are two. In this phase of the analysis, the
perpendicular component of the first burn is not considered yet,since, ideally, the optimal aerocap-
ture ends in the target plane. In this specific subsection, only the single-burn strategy is considered.

If one sets the apoapsis of the transfer orbit as a constraint, and assumes it to be exact at the end,
then it is easy to understand that the fastest is the velocity at apoapsis, the smallest is the ∆V . The
velocity at apoapsis is a function of the orbital energy, which, in turn, for a given apoapsis, depends
on the periapsis altitude. Therefore, the transfer orbit should have the target periapsis and, at the
same time, the highest possible periapsis. Such periapsis, by definition, cannot be higher than the
exit altitude1, since, after that, the trajectory is quasi Keplerian.

1the definition of exit altitude is very subjective: in this case, it is meant the altitude after which no relevant control is
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Figure 4.1: Sketch of periapsis raise ∆V [Armellin and Lavagna, 2008].

All the feasible transfer trajectories cross the imaginary sphere of the altitude exit with a flight-
path angle that is either 0° or larger. Figure 4.1 is helpful in visualizing this. For a flight-path angle of
0° the corresponding periapsis altitude is maximum, and the ∆V is minimum. Given the following
relationships for eccentricity and semi-major axis [Wakker, 2015],

e =

√√√√1− r0V0

µ

(
2− r0V0

µ

)
cosγ2, (4.1)

a = r0

2− r0V0
µ

, (4.2)

it can be proven that the relation between flight-path angle at a specific altitude and energy is mono-
tonic: in fact, maximum energy implies maximum semi-major axis, which, in turn, because of the
constraints of the apoapsis (which implies a (1+e) = rapo), requires minimum eccentricity. With
2− r0V 2

0 /µ always positive for closed orbits, minimum eccentricity requires minimum flight-path
angle. Therefore, minimizing the∆V for a one-burn transfer can be translated into minimization of
exit flight-path angle, together with apoapsis targeting constraint.

4.1.2 TWO-BURN STATEGY

The situation becomes a little more complicated if a 2-burn strategy is used. At this point, a deriva-
tion begins, that aims to see what orbital parameters are most relevant to minimize the in-plane

possible anymore
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∆V . Simply applying the energy equation, the ∆V for a 2-burn transfer is:

∆V =
√

2µ

∥∥∥∥∥∥
√

1

ra,0
− 1

ra,0 + rp,0
−

√
1

ra,0
− 1

ra,0 + rapo

∥∥∥∥∥∥+
+

∥∥∥∥∥∥
√

1

rapo
− 1

ra,0 + rapo
−

√
1

rapo
− 1

2rapo

∥∥∥∥∥∥ ,

(4.3)

where rp,0 and ra,0 are, respectively, the periapsis and apoapsis of the exit orbit, and rapo is the target
orbit apoapsis (and radius, being the orbit circular).

The first term is minimized for large rp,0 (up to rapo , which cannot be reached anyway), and for
largest ra,0; however, the second term is minimized for ra,0 = rapo . The first derivative with respect
to ra,0 can be computed, keeping in mind the previous considerations to solve the absolute values:

∂∆V

∂ra,0
=

√
2µ


(

1
ra,0+rapo

)2

−
(

1
ra,0

)2

2
√

1
ra,0

− 1
ra,0+rapo

−

(
1

ra,0+rp,0

)2

−
(

1
ra,0

)2

2
√

1
ra,0

− 1
ra,0+rp,0

+

(
1

ra,0+rapo

)2

2
√

1
rapo

− 1
ra,0+rapo

 . (4.4)

Assuming that all the values in the square roots are relatively similar to each other, one obtains the
following simplification:

∂∆V

∂ra,0
=

√
2µ

(
1

ra,0+rp,0

)2

2
√

1
ra,0

− 1
ra,0+rp,0

. (4.5)

This derivative goes to 0 for ra,0 going to infinity; moreover, in that case, ∆V would be a maxi-
mum.When changing the sign of the second absolute value, a solution is obtained for ra,0 = 0, which
is also a maximum. This means that the minimum can only lie in the point where there is no deriva-
tive, when ra,0 = rapo . Therefore, for a given periapsis of the transfer orbit, the optimum case for
a 2-burn strategy is a single-burn transfer, with apoapsis targeting. This has also been evaluated
numerically. This proof does not include, however, out-of-plane burns nor transfer at non-zero
flight-path angle.

This derivative is also useful in determining the sensitivity of the ∆V with respect to errors in
targeting. For rp,0 = RE , the sensitivity is 0.3 ms−1 km−1 (for ra,0 > rapo ; opposite sign for the other
case).

The derivative with respect to rp,0 is of similar magnitude, but negative:

∂∆V

∂rp,0
=−

√
2µ

(
1

ra,0+rp,0

)2

2
√

1
ra,0

− 1
ra,0+rp,0

. (4.6)

For the same case as before, it is equal to -0.3 ms−1 km−1. Therefore, a a trajectory that has a 0 km
miss in the apoapsis might be less efficient than a trajectory that misses the apoapsis by 5 km, but
does so while having a periapsis of the transfer orbit that is 10 km higher than that of the aforemen-
tioned trajectory.

Therefore, it is proven that optimality is not coincident with accuracy: however, the two are
strictly related.
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4.2 IN-FLIGHT CONSTRAINTS
During the atmospheric flight, the spacecraft is subject to many constraints. All those constraints
are strictly related to the trajectory, since they are function of the flight conditions, mainly density
and velocity. In general, those are:

• heat flux;

• derivative of the heat flux;

• load factor (which, for approximately constant aerodynamic coefficients, is proportional to
the dynamic pressure);

• angular velocity (in a bank-modulated trajectory, this is just to σ̇), and angular acceleration
(σ̈).

The first two were already discussed in Section 3.5. The load factor is the total acceleration due
to non-gravitational forces. In general it includes both propulsive and aerodynamics forces, but in
the case of non propelled flight, it reduces to:

n =
p

L2 +D2

m g0
=

√
C 2

L +C 2
D

m g0
q̄Sr e f ≤ nmax (4.7)

Quite similar to the load factor is the dynamic pressure constraint. All the constraints named so far
are functions of the trajectory and the environment and, in the case of the load factor, also of the
instantaneous attitude of the spacecraft. The remaining two, instead, are constraints on the control
variables. A limit in angular velocity is also usually due to structural limits, whereas a constraint in
angular acceleration might be due to either structural limits or to limited propulsive system. Thus:

|σ̇| ≤ |σ̇|max (4.8)

|σ̈| ≤ |σ̈|max (4.9)

How these will be respected, while still having an optimally controlled attitude, is the topic of Sub-
section 6.2.6. The reason why the constraints concerning the attitude rate and acceleration were not
stated in the mission requirements of Section 2.7 is because they are not enforced by the guidance.

The presence for so many trajectory-related constraints requires the guidance system to be able
to predict whether these constraints will be violated at some point during the flight, and have a
consequent reaction well in advance.

4.3 OPTIMAL AEROCAPTURE
Optimality of a trajectory depends on what the objective function is. In the case of aerocapture, two
cost functions of interest are the∆V and the total heat load. Also of interest are in-flight constraints,
specifically those concerning maximum heat flux and maximum load factor.

In this section, the derivation done by Lu et al. [2015] of the optimal trajectory that minimies the
∆V is reported. This derivation makes use of optimal control theory and is valid for a simplified,
planar trajectory.

Later on, two proofs that are, at the best of the author’s knowledge, novel, are given. First the
proof done by Sigal and Guelman [2001] for the minimum convective heat load trajectory is gener-
alized to include any kind of heat load (hence, radiative heat load as well). Second, it is shown how
the minimum ∆V trajectory implies minimization of peak load factor and heat flux.
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4.3.1 MINIMUM ∆V TRAJECTORY

In this subsection, the proof by Lu et al. [2015] is reported. Any part of the derivation shown here is
motivated by the authors of the proof. After the derivation, some considerations are also given.

Lu et al. [2015] derive the minimum ∆V trajectory for a planar trajectory on a non-rotating ce-
lestial body with a central gravity field. Because of these assumptions, Equations 3.69 reduce to
(together with their respective initial conditions):

ṙ =V sinγ, r (t0) = 0,

V̇ =−D − µsinγ

r 2 , V (t0) =V0,

γ̇= 1

V

[
L cosσ+

(
V 2 − µ

r

)
cosγ

r

]
, γ(t0) = γ0. (4.10)

σ is the only control variable, subject to the constraint:

0 ≤σmin ≤σ≤σmax ≤π. (4.11)

The proof is valid for a re-entry problem in which constraints and performance index are only func-
tion of a subset of the state vector, which they call xlon = (

r V γ)
)
, and in case the only control vari-

able is the bank-angle. The angle-of-attack should be a prescribed function. The proof is carried
out for any function J = η(xlon(t f )) of the final state, and for any constraints on the final conditions
s(xl on(t f )) = 0, where s has dimension k ≤ 3. It is therefore clear that a normal entry problem, in
which also the horizontal distance is among the constraints, cannot be included.

The Hamiltonian can then be written:

H =λr V sinγ+λV

(
−D − µsinγ

r 2

)
+λγ

[
L

V
cosσ+

(
V 2 − µ

r

)
cosγ

r V

]
, (4.12)

where, according to the Pontryagin Maximum Principle:

λ̇r =−∂H

∂r
=λV

(
∂D

∂r
− 2µsinγ

r 3

)
−λγ

∂γ̇

∂r
, (4.13)

λ̇V =−∂H

∂V
=−λr sinγ+λV

∂D

∂V
−λγ

∂γ̇

∂V
, (4.14)

λ̇γ =−∂H

∂γ
=−λr V cosγ+λV

µcosγ

r 2 −λγ
∂γ̇

∂γ
. (4.15)

The optimal bank-angle σ∗ has to be such that, at any moment, the Hamiltonian H is maximized:

σ∗ = argmax
σ

λr V sinγ+λv

(
−D − µsinγ

r 2

)
+λγ

[
L

V
cosσ+

(
V 2 − µ

r

)
cosγ

r V

] . (4.16)

Since cosσ is monotonic in σ ∈ [
σmi n ,σmax

]
, and L/V > 0, the optimal bank-angle can be different

from its extrema only if λγ ≡ 0.
Lu et al. [2015] now prove that such case cannot happen for a finite interval of time by contra-

diction. For λγ to be constant and equal to zero for a finite time, it is required to have λγ = λ̇γ = 0.
This implies, substituting λγ = 0 in Equation (4.15):

λV
µ

r 2 −V λr = 0, (4.17)
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since cosγ 6= 0. In addition, being this a free-time problem, according to the Pontryagin Maximum
Principle again, the transversality condition H ≡ 0 holds along the entire trajectory. If λγ is set equal
to zero, the latter transversality condition requires:

λr V sinγ−λV D −λV
µsinγ

r 2 = 0. (4.18)

Because of Equation (4.17), Equation (4.18) requires that λV = 0, since D > 0. Now, λV = 0 implies
λr = 0. At this point, all the costate variables are equal to zero, and this is a contradiction to the
Maximum Principle, which states that the costate variables cannot all be zero. Therefore, Lu et al.
[2015] successfully prove that singular control cannot happen for any trajectory with free final time
and only final constraints and objectives.

The fact that the final conditions, nor the objective, do not include cross-range is what allows
this proof, and is a key difference between a normal entry problem and some aeroassisted problems.
As seen, this fact has large implications from an optimality point of view.

This proof is the base of the optimal aerocapture guidance by Lu et al. [2015]. Generalizing this
to a 3-dimensional motion in a rotating atmosphere is a little complicated, and is not done mathe-
matically. However, two considerations can help. The first consists of the fact that the accelerations
neglected when using planar motion are rather small. The largest one is the Coriolis which, despite
not negligible, is still much smaller than drag and lift2. The second consideration is of numerical
nature. Miele et al. [1990] optimized the aerocapture trajectory in a rotating planet, and found that
the trajectory minimizing the final ∆V is very close to a bang-bang trajectory. This is far from be-
ing a mathematical proof, but strengthens the concept that the proof obtained for planar motion
in a non rotating atmosphere is at least a good and valid indication to be kept into account when
optimizing the 3-dimensional trajectory in a rotating atmosphere.

Finally, a similar result is also numerically obtained by in Section 6.6, where a trajectory is opti-
mized to verify the algorithm for reinforcement learning.

4.3.2 MINIMUM TOTAL HEAT-LOAD AEROCAPTURE

This proof is, at the best of the author’s knowledge, novel. It is a generalization of the work by Sigal
and Guelman [2001], who proved that the minimum convective heat load aerocapture trajectory
is bang-bang. Here, their proof is extended to include any possible formulation for the heat flux
f
(
ρ,V

)
that is a smooth function of density and velocity only. It is indeed important to extend the

proof to heat fluxes other than the convective one because, for example, radiative heat flux becomes
very large at the high speeds of aerocapture.

The Hamiltonian is written:

H = f
(
ρ,V

)+λr V sinγ+λV

(
−D − µsinγ

r 2

)
+λγ

[
L

V
cosσ+

(
V 2 − µ

r

)
cosγ

r V

]
, (4.19)

where f
(
ρ,V

)
is any smooth, monotonically increasing function of the density and the velocity, and

might be (as it is of interest here) the sum of convective and radiative heat fluxes at cold wall. It is
noticed that a singularity occurs for γ≡ 0, and a singular arc for γ̇= γ= 0 is seeked. Equation (4.17)
holds, since f

(
ρ,V

)
is not a function of γ. Now, setting the Hamiltonian equal to zero because of

the transversality condition, one obtains, for the singular arc:

f
(
ρ,V

)−λV D = 0. (4.20)

2This is not true in the upper layers of the atmosphere. In such conditions, however, the trajectory is better approximated
by Keplerian motion. During Keplerian motion, the orbital parameters do not change, and therefore neither does the
objective function. The transition phase, in which the Coriolis force is comparable to drag and lift, but Keplerian motion
cannot be assumed yet, is instead relatively short.
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This, together with Equation (4.17), imply:

λV = f
(
ρ,V

)
D

(4.21)

λr =
µ f

(
ρ,V

)
r 2DV

(4.22)

The derivative with respect to time of Equation (4.21) is:

λ̇V = ∂ f
(
ρ,V

)
∂t

1

D
− f

(
ρ,V

) Ḋ

D2 = ∂ f
(
ρ,V

)
∂ρ

∂ρ

∂t

1

D
− f

(
ρ,V

) Ḋ

D2 . (4.23)

These equations can be further expanded considering the following:

∂ρ

∂t
=−ρβV sinγ, (4.24)

Ḋ = ρV Sr e f CD +1/2V 2Sr e f CD
∂ρ

∂t
= 2D

V
+ D

ρ

∂ρ

∂t
. (4.25)

Hence, Equation (4.23) becomes:

λ̇V =−∂ f
(
ρ,V

)
∂ρ

ρβV sinγ

D
+

+∂ f
(
ρ,V

)
∂V

(
−D −µ/r 2 sinγ

)
D

+ f
(
ρ,V

)
ρD

ρβV sinγ− 2 f
(
ρ,V

)
V D

(−D −µ/r 2 sinγ).

(4.26)

According to the costate equations, the derivative of λV must also satisfy (setting already λγ = 0):

λ̇V =−∂ f
(
ρ,V

)
∂V

−λr sinγ+λV
2D

V
. (4.27)

Setting Equation (4.27) equal to Equation (4.23), and using Equations 4.21 and 4.22:

− ∂ f
(
ρ,V

)
∂ρ

ρβV sinγ

D
+ ∂ f

(
ρ,V

)
∂V

(
−D −µ/r 2 sinγ

D
+1

)
+

+ f
(
ρ,V

)[+ρβV sinγ

ρD
− 2

V D

(
−D −µ/r 2 sinγ

)
+ µsinγ

r 2DV
− 2

V

]
= 0.

(4.28)

A possible solution is γ=±π/2, which is not acceptable3. Simplifying, and dividing the entire equa-
tion by sinγ 6= 0 and D > 0, one has a more clear picture of the situation:

− ∂ f
(
ρ,V

)
∂ρ

ρβV + ∂ f
(
ρ,V

)
∂V

(
− µ

r 2

)
+ f

(
ρ,V

)( 3µ

r 2V
+βV

)
= 0. (4.29)

At this point, two possibilities for the singular arc still exist. The first, is that a trajectory is flown, such
that, depending on the formulation of the heat flux, the former equation is satisfied. Nevertheless,
it adds a unique relation between altitude (through ρ and r ) and velocity, which is, in many cases,
impossible. As an example, if one sets f

(
ρ,V

) ∝ p
ρV 2, the relation is a constant velocity at any

altitude, which is obviously infeasible (this specific example implies also that, if one were interested
to minimize the integrated load-factor, a bang-bang trajectory would be optimal). Therefore, it can

3The main reason why such a situation is not acceptable is that γ=±π/2 cannot last for finite period of time for a lifting
body. In fact, the lift would cause the flight-path angle to have a finite derivative with respect to time.
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simply be checked whether the formulation of the heat flux allows a feasible altitude-velocity profile;
if it does not, then the optimal control trajectory is, again, bang-bang.

The second possibility for the singular arc to exist occurs if the heat flux has a formulation such
that Equation (4.29) is identically equal to zero for any value of the density and the velocity. Since,
by definition, f

(
ρ,V

)
cannot be a function of β, µ nor r , this only happens if:

∂ f
(
ρ,V

)
∂ρ

= f
(
ρ,V

)
ρ

, (4.30)

∂ f
(
ρ,V

)
∂V

= 3
f
(
ρ,V

)
V

. (4.31)

This means that singular arc cannot happen, since the only function satisfying Equations 4.30 and
4.31 is f

(
ρ,V

) ∝ ρV 3. No relations for the heat flux used in this thesis have such a formulation4.
Instead, if the function f

(
ρ,V

)
to be minimized were such that only one, (or none) between Equa-

tions 4.30 and 4.31 holds, singular control cannot happen. As an example, this is what happens for
the convective heat flux. In fact, if one substitutes f

(
ρ,V

)
with the Tauber-Sutton relation, the case

studied by Sigal and Guelman [2001] occurs.
In conclusion, it has been proved that, except for extremely unlikely conditions, any trajectory

minimizing the total heat load should be of the bang-bang kind. It depends on the heat flux function
itself, whether the lift control history should be up-down or down-up. In the case of convective heat
flux only, Sigal and Guelman [2001] proved that such a trajectory should be up-down. It will be
shown, in Subsection 4.8.5, that there are good empirical indications for it to be opposite when only
radiative heat flux is considered. Eventually, it is likely that when both are considered, the minimum
heat load trajectory is case dependent.

4.3.3 MINIMUM LOAD FACTOR AND CONVECTIVE HEAT-FLUX PEAKS TRAJECTORY

At the best of the author’s knowledge, a derivation of the aerocapture trajectory that minimizes both
load factor and convective heat rate peaks is novel.

It is generally not necessary to look for the trajectory that minimizes the constraints: neverthe-
less, minimizing the constraints implies that, when possible, the constraints will always be satisfied.
Impossibility depends on the initial conditions and on the final target.

In addition, it will be shown that such a trajectory is the same as the one described in Subsection
4.3.1. Therefore, there is no loss in performance when striving to minimize these constraints.

Because of Equation (4.7), the problem becomes that of finding the control history u(t ) such
that:

min
u(t )

[
max

t

(
q̄
)]

(4.32)

In addition, minimizing the convective heat flux, as approximated by the Detra-Hidalgo equation
for cold-wall, is equivalent to the following:

min
u(t )

[
max

t

(p
ρV 3.15

)]
(4.33)

In this case, the proof will be carried out with partial aid of numerical methods. Therefore, it
cannot be generalized. The proof will be shown for aerocapture with initial velocity of 13000 ms−1

on Earth. In this case, the equations of motion from Subsection 3.9.1 will be used. The atmosphere
will be the average unperturbed US76.

The derivation consists of four steps:

4This does not mean that such a formulation cannot exist. It is possible that empirical relations, that might include, as an
example, ablation, or coupling between ablation and convection, or so on, may still be f

(
ρ,V

)∝ ρV 3. It is very unlikely
though, since it is difficult for an empirical relation to have exactly integer exponents.
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Figure 4.2: Lift-up lift-down and lift-down lift-up
trajectories, in the E −γ plane.
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Figure 4.3: Lift-up lift-down and lift-down lift-up
trajectories, in the γ− q̄ plane.

1. Proving that, on what concerns the constraint peaks, the ascending leg can be neglected (con-
sidering an atmosphere whose density only varies in altitude).

2. Showing that the up-down bang-bang trajectory is the one that always has the least negative
flight-path angle (during the entire descending leg).

3. Proving that having the least negative flight-path angle leads to smaller future dynamic pres-
sure and convective heat flux.

4. Proving that the latter step implies minimizing the peaks for both dynamic pressure and con-
vective heat flux peaks during the entire trajectory.

Of these, the only step making use of numerical simulations is the second, and it is likely that, at
least for planar motion, it is also provable mathematically.

The first step is very easy to prove. During the ascending leg, velocity is decreasing, since, in
a non-rotating celestial body, V̇ = −D/m − g sinγ. In a rotating body, the Coriolis acceleration
due to the rotation of the body is perpendicular to the velocity, hence it cannot change its mag-
nitude; forces due to centrifugal acceleration are instead negligible on Earth. Also, the density is
also decreasing. Therefore, being both the dynamic pressure and the convective heat flux mono-
tonic functions of both density and velocity, their maximum can never be in the ascending leg. As a
consequence, the derivation can be limited to the descending leg of the trajectory.

The second step is probably the core of the derivation. It might be possible to prove this math-
ematically, but here it is done numerically. An aerocapture corridor is generated including all the
possible boundary trajectories that can lead to the target apoapsis. In this case, the corridor is seen
as a three-dimensional space whose dimensions are relative velocity, altitude and flight-path angle,
which are the three variables included when analyzing planar motion. However, one might sub-
stitute velocity and altitude with dynamic pressure and energy. Dynamic pressure could also be
substituted with the convective heat flux. The boundary surface consists of lift-up lift-down and
lift-down lift-up trajectories, starting with the range of allowed initial flight-path angles5. They con-
sist of the boundaries of the three-dimensional corridor because, before the switch, the command

5Allowed initial flight-path angles are those that are between the minimum and the maximum initial flight-path angle.
For aerocapture, these are always obtained by looking for, respectively, a full lift-up and a full lift-down trajectory that,
starting from the set initial conditions (all except for the flight-path angle) lead to the desired apoapsis altitude. This
reasoning implies that by allowed, the constraints are not taken into account.
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Figure 4.4: Lift-up lift-down and lift-down lift-up trajectories, in the E − q̄ plane.

is saturated, and, after the switch, the only way to achieve the desired apoapsis is to have the com-
mand saturated in the opposite direction. A hypothetical vehicle inside of such a three-dimensional
corridor could not get out of it before crossing the surface defined by the ensemble of the points in
which the bank is switched, and could not go back inside if it were outside of it after that surface is
crossed (this is true for planar motion on a non-rotating planet).

Figures 4.2 to 4.4 show such a corridor in all its three dimensions, two at a time. For any point
on the E − q̄ of Figure 4.4, if it is met by having flown an up-down trajectory instead of a down-
up trajectory, the corresponding flight-path angle is the shallowest. This fact can be intuited from
Figures 4.2 and 4.3, but can only be shown while displaying a three-dimensional, moving plot, which
is not possible on paper. The intuition goes as follows: following a constant q̄ or a constant E line
in one of those plots, one can find that most trajectories that are encountered first are down-up6:
this fact implies that those trajectories are always steeper. Again, this, as described here, is just
an intuition. Nevertheless, even though it is not possible to see it here, if Figure 4.4 were three-
dimensional, and the Z -axis were the flight-path angle (increasing in the direction of the reader),
all the down-up trajectories would not be visible, because, for equal E and q̄ , they cause a steeper
(smaller, in the sense more negative) flight-path angle.

This is very important, because, as shown by Lu [2014], a shallow flight-path angle implies
smaller derivatives of both dynamic pressure and convective heat flux. This proves that, in any
moment, the lift-up lift-down trajectory is the one that minimizes the future load peaks: hence,
since this is valid at any moment in time, the peaks are minimized for the entirety of the trajectory.
Moreover, the lift-up control is the control that maximizes the derivative of the flight-path angle.
This completes the proof. It was found that the same happens for convective heat flux.

6This is for the descending leg only, corresponding to the point in which the flight-path angle is negative. For previously
discussed reasons, there is no need to consider the situation in which the flight-path angle is positive.
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4.3.4 SUMMARY

So far, it has been shown, thanks to the proof by Lu et al. [2015], that the minimum ∆V is obtained
with a bang-bang, lift-up lift-down, trajectory. The proof is limited to flight in a non-rotating atmo-
sphere, but this is not very limiting, and numerical simulations have shown that in many case the
same is valid in a rotating atmosphere.

Also, it was mathematically proven, using the Pontryagin Maximum Principle, that a bang-bang
trajectory minimizes also the integral of any function of density and velocity (unless such a func-
tion is proportional to ρV 3, which is not an interesting case). In the case of a function such as the
convective heat rate (computed with the Sutton-Graves relation) the case reduces to the one in-
vestigated by Sigal and Guelman [2001], who showed that the integral is minimized by a lift-down
lift-up trajectory. This is opposite to the trajectory minimizing the ∆V . It will be shown, in Subsec-
tion 4.8.5, that there are good indications that the trajectory minimizing the radiative heat-flux is
lift-up lift-down, and that the trajectory minimizing the sum of convective and radiative heat-flux
is case dependent. Also this proof is limited to a non-rotating atmosphere, but also in this case, nu-
merical simulations reported in Subsection 4.8.5 show that, at least in this case, the assumption of
a non-rotating atmosphere is not a problem.

Eventually, it has been shown how the same trajectory minimizing the ∆V also minimizes the
peaks of both dynamic pressure and convective heat flux. This was done with aid of numerical
methods, and therefore one should be careful when generalizing this result.

4.4 OPTIMAL AEROCAPTURE GUIDANCE
Lu et al. [2015] developed an optimal guidance that minimizes the final ∆V by flying a bang-bang
trajectory as shown in Subsection 4.3.1. They developed four different modes for this guidance, but
only Mode 1 will be reported here, the others being less or equally performing, and quite equiva-
lent in concept. Some minor modifications are brought to this concept, which are reported in the
following subsection. The guidance with these minor modifications will be referred to as Lu.

In addition, some major modifications are also brought to the concept. These concern the nu-
merical methods, and are given in Subsection 4.4.2, and the propagation, and are given in Subsec-
tion 4.5.

4.4.1 ORIGINAL OPTIMAL AEROCAPTURE GUIDANCE

The main concept underlying the optimal aerocapture guidance consists of planning the trajectory
as divided into two phases. In the first phase, the capsule flies at a constant bank-angle σ0. Ideally,
such a value should be equal to 0°, but it is instead slightly larger to allow lateral maneuverability.
During the entirety of this research, σ0 will be set very close7 to 0°, and equal to 15°, as done in Lu
et al. [2015]

In the second phase, a constant, as large as possible, bank-angle σd is planned. In an ideal
world, σd =180° would be optimal. However, such a planning causes the bank-angle to have no
margins for correction. Hence,σd has to be chosen to be smaller than 180° for reasons of robustness.
Optimality for a deterministic, simplified system may be very far from optimality in a more complex,
stochastic environment. This is particularly true for aerocapture, in which the optimal trajectory in
a deterministic, simplified environment is bang-bang. Hence:

σd has to be chosen as a trade-off between optimality and robustness.

Lu et al. [2015] show how the choice ofσd affects both parameters. Figure 4.7 shows that the final in-
plane ∆V decreases for increasing σd . This leads to saturation of the control, as seen in 4.8, which

715° are not close to 0°, but the cosine of 15° is equal to 0.966, very close to 1. Hence, the difference in vertical component
of the lift between a bank-angle of 0° and one of 15° is less than 3.5 %. There is instead a large difference in lateral
component of the lift, since the sine of the bank-angle goes from 0 to 0.259.



56 4. OPTIMAL AEROCAPTURE NPC GUIDANCE

Figure 4.5: Bank-angle planning during Phase 1 in the
original guidance [Lu et al., 2015].

Figure 4.6: Bank-angle planning during Phase 1 in the
mod guidance.

Figure 4.7: Variation of apogee orbital insertion ∆V
versus σd for Orion MPCV for a 200 km apoapsis

altitude orbit [Lu et al., 2015]. Mission conditions as
described in Lu et al. [2015].

Figure 4.8: Closed-loop bank-angle profiles for different values
of σd [Lu et al., 2015]. Mission conditions as described in Lu

et al. [2015].

in turn causes decreases in robustness impossibility of lateral control. Hence, after some values of
σd , any benefits in terms of in-plane ∆V become negligible with respect to the disadvantages in
out-of-plane ∆V . For even larger values of σd , also the in-plane ∆V would start increasing.

Figures 4.9 and 4.10 show the same trajectories of Figure 4.8 in the h−t and h−V planes, respec-
tively. Keeping in mind Figures 2.5 and 2.6 from Section 2.5.1, it is evident how a large value for σd

makes the trajectories more similar to a full lift-down trajectory. As shown in that same subsection,
a full lift-down trajectory leads to a final flight-path angle that is very close to zero which, in turn,
leads to a lower ∆V , as explained in Section 4.1.

Eventually, they show how they had to manually tune it for different entry conditions. For this
reason, σd is a function of initial flight path angle and velocity8. The concept for Phase 1 is also
shown in Figure 4.5. In Figure 4.6 is instead shown the mod concept, which will be described in
Subsection 4.5.1; such a figure is reported here to facilitate the comparison between the concepts,
but will be discussed later.

The high-level algorithm of their method is reported in the frame below.

Original optimal aerocapture guidance by Lu et al. [2015].

8It is likely that the optimal trade-off for σd would be a function of many other parameters as well. Such a relation was
not investigated, nor here, nor by Lu et al. [2015]
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Figure 4.9: Variation of apogee orbital insertion ∆V
versus σd for Orion MPCV for a 200 km apoapsis

altitude orbit [Lu et al., 2015]. Mission conditions as
described in Lu et al. [2015].

Figure 4.10: Closed-loop bank-angle profiles for different values
of σd [Lu et al., 2015]. Mission conditions as described in Lu

et al. [2015].

At iteration k:

1. Phase 1:

(a) interpolate σd = f
(
γ0,V0

)
;

(b) plan trajectory as in Figure 4.5;

(c) solve9,10 rapo
(
ts

)= r?apo ;

(d) if t > ts , go to Phase 2;
else, set σcmd =σ0, and end iteration k.

2. Phase 2:

(a) plan trajectory with constant σ;

(b) solve rapo
(
σ?

)= r?apo , with predictive load-relief active;

(c) set11 σcmd =σ?, and end iteration k.

This algorithm can be complemented with the flow-chart in Figure 4.14, which is given in Sec-
tion 4.6, concerning the specific architecture of the guidance logic. Such a figure refers specifically
to the guidance modified in this research, but it is still helpful in understanding the work by Lu et al.
[2015].

During Phase 1 the guidance logic computes, at each call, the time ts at which the switch be-
tween Phase 1 and Phase 2 should occur, based on current conditions, to target the apoapsis. Dur-
ing Phase 1, the predictor integrates a trajectory in which the bank-angle is equal to σ0 up to ts and
is then equal to σd afterwards (refer again to Figure 4.5). It does so by using Brent’s method [Brent,
1973], which is a combination of bisection, and linear and quadratic interpolations. Eventually,
when the current time is larger than the computed ts , Phase 2 is triggered.

In this research, the Phase 1 is reproduced as an integration at constant bank-angle, equal to
σd ; if the predicted apoapsis is larger than the target, Phase 2 is triggered. Otherwise, nothing hap-
pens. This is equivalent to what Lu et al. [2015] do, except for causing a delay of maximum one
second (which is the frequency of the guidance call); however, one second of delay is not relevant if
compared to the average time needed to rotate the capsule attitude from σ0 to σd .

During Phase 2, the guidance logic iterates the propagation of motion to find the constant bank-
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angle that would lead to target the apoapsis. Again, Brent’s method is used, and the extrema of the
search space are always the entirety of the bank-angle domain (either 0 ≤σd ≤π or −π≤σd ≤ 0).

For reasons that will be explained in Section 6.3.1,the equations of motion used are dimension-
less spherical relative, in which time is used as independent variable12. In addition, to compute the
density, the altitude with respect to the reference ellipsoid is used also in the prediction. As a last
remark, the model of the numerical predictor corrector uses the US76 atmospheric model (for the
density only), but corrects the density as follows:

ρL = L/L?, ρD = D/D?, (4.34)

where L and D are the sensed accelerations, and L? and D? are the accelerations estimated us-
ing the US76 Standard Atmosphere model, and nominal mass and aerodynamic coefficients (and
sensed velocity). To reduce possible noise, due by either the sensors or some density perturbations,
both ρL and ρD are filtered:

ρ̃(k+1)
L = ρ̃(k)

L + (
1−β)(

ρL − ρ̃(k)
L

)
; (4.35)

(same happens for ρD ). After a small batch of reduced Monte Carlo runs, in which both small scale
and large scale perturbations were included, it was decided to set β = 0.95. The lift acceleration is
then computed by multiplying, the nominal lift acceleration by ρ̃(k+1)

L , along the entire predicted

trajectory, at the guidance call k +1; the drag acceleration is instead multiplied by ρ̃(k+1)
D .

This guidance is reproduced here, with some minor modifications, as a benchmark; also, a few
major modifications are proposed in the next subsections. The discussion about the numerical
method is carried out first. Then, a test and comparison of the results from Lu et al. [2015] is also
done.

A this point, a short discussion about the lateral logic is necessary. The lateral logic used by Lu
et al. [2015] is specific to the algorithm, but is never described in their paper. Thus, it is preferred
to not include it when reproducing the work by Lu et al. [2015], since using a different lateral logic
from the original one might affect the performance. Later on, another lateral guidance will be used
in the modified version of the NPC.Such a lateral guidance is described in Subsection 4.5.2.

Another difference consists of the following. As previously mentioned, Lu et al. [2015] set theσd

of each trajectory as a function of initial flight-path angle, as well as entry velocity. The function is
done by interpolation of manually tuned results. However, it is specific to the vehicle, which, in their
case, is Orion MPCV. Since in this work Apollo Command Module is used, their tuning would not
be appropriate. Moreover, such a tuning may be very demanding, and will therefore not be done in
this research.

The last modification consists of propagating the orbit in the NPC with the full equations of
motion, and especially including the effect of J2. In fact, it was seen during the initial phases of
testing that assuming Keplerian motion from atmospheric exit until apoapsis would lead to errors
up to 8 km. A small sensitivity analysis showed that such an error would be mainly caused by the
effect of J2.

Eventually, the minor modifications to the original work are summarized in the box below:

Lu concept: guidance with only minor modifications to the original guidance by Lu et al.
[2015]

1. The algorithm does not compute ts in Phase 1, but only checks if the propagation with
constantσ=σd leads to a low or a high apoapsis (or to a crash, or a hyperbolic trajectory).

12In the original work, the dimensionless equations of motion are used, which use energy ad independent variable in-
stead of time
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This is justified because the time to turn the bank-angle fromσ0 toσd is much larger than
1 second.

2. The solution in Phase 2 is not obtained by using Brent’s method, but by using the
bisection-secant method, described in Subsection 4.4.2. The two methods do not per-
form very differently, but the bisection-secant is much simpler to implement.

3. The predictive load-relief is not included13, nor in Phase 1 nor in Phase 2. This design
choice is a strict consequence of what was shown in Subsection 4.3.3.

4. The lateral guidance is not included. This is because the original paper does not describe
what lateral guidance is used. From a conceptual point of view, this is not a great issue.

5. The functionσd = f
(
γ0,V0

)
used here is obtained by interpolation of the work by Lu et al.

[2015]. In their work, the Orion MPCV is used, whereas here the Apollo Command Mod-
ule is used. Because of different ballistic coefficient and lift-to-drag ratio, it is believed
that the optimal function would be different for the Apollo Command Module. Such a
difference is minor from a conceptual point of view, but the consequent difference in
performance may not be small.

6. Dimensionless equations, with time as independent variable, instead of energy, are used.
This is a consequence of a trade-off done in Section 6.3.1.

7. Motion is not assumed to be Keplerian from atmospheric exit until apoapsis. This is not a
minor modification, since it leads to much higher accuracy. Nevertheless, it is a difference
that was implemented in all of the guidance systems.

From now on, when referring to the Lu guidance, it will be meant a guidance with these modifi-
cations with respect to the original one by Lu et al. [2015]. It is stressed that, among all the concepts
implemented during this research, the Lu is the concept that most resembles the original work by
Lu et al. [2015].

4.4.2 NUMERICAL METHODS

In the work here reproduced, numerical methods only concern Phase 2. This is a strict consequence
of the first minor modification listed in the box describing the Lu concept.

As previously mentioned, Lu et al. [2015] use Brent’s method [Brent, 1973]. The method is ex-
tremely reliable, in that it is certain to find the root for which the function changes sign. The solution
f (x) = 0 needs not even to exist, and a simple change of sign is sufficient.

In Lu et al. [2015], the guidance needs on average between 10 and 20 iterations to compute the
bank-angle with an accuracy of 10−6 radians14.

Brent’s method is a good solution, but it has a few drawbacks. The first is the fact that the
method, in certain cases, may need as many as three times the iterations needed by bisection to
converge [Brent, 1973]. When aiming for a reliable system, it is better to rely on a method that al-
ways takes the same, maybe large, number of iterations (as bisection does), rather than a method
that often needs only a small number of iterations, but sometimes needs a very large number of
iterations.

The remaining problems concerning the method can be understood by analyzing Figure 4.11,
and are all related to the fact that Brent’s method makes no use of the knowledge of the function.

14The information was obtained via personal communication with P. Lu, on March 2, 2016
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Figure 4.11: Final predicted apoapsis as function of the cosine of the bank-angle.

The figure shows the relation between cosσ and the altitude of the apoapsis. First, it is seen that the
function has a large portion of the domain in which the function is almost constant. That happens
because the guidance logic interrupts the prediction, since crashing conditions occur. Where the
function to be solved is constant, Brent’s method brings no advantages with respect to bisection.
Also, it can be seen that, on the left, an additional solution occurs. That happens because of the
stopping conditions again, which, among many, include the flight-path angle15. With cosσ = −1
the flight becomes very steep very soon, such that the prediction is interrupted when the orbital
energy is still large enough to obtain an apoapsis higher than target. This is, of course, a false pos-
itive. Similar to this, is the case in which the guidance predicts a hyperbolic exit trajectory: the
parabolic trajectory between the closed and open final orbits would be seen by Brent’s method as
an additional solution.

The problems are of two natures, and are summarized below:

1. Brent’s method may be, in some cases, much slower than bisection.

2. Additional checks are needed to verify if the solution obtained is not a false positive. False
positives may occur at both ends of the domain.

Technically, the second problem is solved by modifying the function, rather than the numerical
method.

Concerning the first problem, two novel16 methods are proposed:

1. The bisection-secant method: a simplified version of Brent’s method, but more reliable in
terms of numbers of maximum iterations;

15This may or may not happen in the guidance designed by Lu et al. [2015], since the details of their design are not given.
It happens in the guidance designed in this work though.

16It is debatable whether these methods are really novel. A few methods have been combined together in both cases,
together with smaller features that fit the problem of aerocapture.
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2. The modified damped Newton method: a theoretically less reliable method, which only needs
two iterations at a time, opposed to the tens needed by the previous method and Brent’s
method. Efforts of empirical nature were made to find the formulation that suits the prob-
lem the best.

BISECTION-SECANT METHOD

The first method consists of using bisection until both extrema are in the neighborhood of the target
apoapsis. After that, the secant method is used. The boundaries for the use of the secant method
are, on the lower side, the set exit altitude, and on the upper side, the target apoapsis altitude plus
ten times the difference between the exit altitude and the target apoapsis altitude. An upper limit is
needed because of the asymptotic behavior of the target apoapsis. Using the secant method to solve
a function that has an asymptote may lead lead to computation time much larger than bisection.

The algorithm is stopped when the predicted apoapsis has an error of 100 m or less, or after 40
iterations. The method also stops if a bank-angle of zero leads to a low apoapsis (or a crash), or if a
bank-angle of 180° leads to a high apoapsis (or a hyperbolic trajectory).

This method is justified by looking once again at Figure 4.11. Such relation is close to linear in
proximity of the solution. The part in which the solver uses a secant method is the one between the
two green lines. It is not large (in this case), but it is enough make the numerical method faster than
simple bisection.

MODIFIED DAMPED NEWTON METHOD

The second method consists of a damped version of Newton-Raphson. The derivative of the pre-
dicted apoapsis with respect to the bank-angle is approximated by finite difference. The initial guess
for the bank-angle is the bank-angle commanded at the previous iteration. Because of the discon-
tinuities of the target function, a small perturbation could cause the previously commanded bank-
angle to lead to a trajectory that brings to a crash in the following prediction.

A simpler solution to this could be that of commanding a larger bank-angle every time this hap-
pens. However, it is problematic to quantify how much larger the bank-angle should be. It hap-
pened in many attempts that a constant increase in the bank-angle was either too small, leading to
a final crash of the outer loop trajectory, or too large, leading to a largely oscillating situation. This,
eventually, does not lead to a crash, but to much larger than expected fuel consumption. Also, it is
a solution far from being optimal. Therefore, a damping term is included in the Newton-Raphson
equation, such that:

σ(k+1) =σ(k) −α1
dhapo/dσ

∆hapo
. (4.36)

α1 is a coefficient that changes dynamically. After some trial and error, it turned out that a good
function for α1 is:

α(k+1)
1 =α(k)

1

5o

∆σ
if ∆σ≤ 5o ,

α(k+1)
1 =α(k)

1 ×301/6 otherwise,

0.03 ≤αk+1
1 ≤ 1 always, (4.37)

where
∆σ=

∥∥∥σ(k+1) −σ(k)
∥∥∥ . (4.38)

This damping is used for when there is a large difference ∆σ ≥ 5° between the previously com-
manded bank-angle and the currently commanded one. The formulation is such that α1 goes back
to 1 in about maximum 6 seconds if the difference between the two commanded bank-angles is
small enough. In fact, α1 is bounded between 0.03 and 1.
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On the other hand, if the prediction leads to a crash, the cosine of the commanded bank-angle
is increased. To avoid possible overshoots, however, the increase happens very slowly. Again, a
formulation that turned out to be successful is the following:

σk+1 =σk −15oα1α2, (4.39)

where

α(k+1)
2 = min

(
α3eK ,1

)
(4.40)

where α3 = 1/1000, and K is the number of consecutive guidance calls in which the prediction has
crashed. By so doing, there is quite some damping in case of some navigation errors or large dy-
namic pressure perturbations, but after 5 seconds of continuous non convergence, there occurs a
commanded difference in bank-angle that is about 2.5°, which is the maximum bank-angle differ-
ence that can be actuated if the initial derivative of the bank-angle is close to zero (as it usually is),
since the maximum angular acceleration is set to be 5 °s−2. Of course, this damping is risky, since, in
case the error in the prediction is not due to any noise of any kind, the correction begins with a delay
of about 5 seconds. Nevertheless, its benefits are larger: in fact, it is highly unlikely that a trajectory
that is predicted to normally achieve the apoapsis, suddenly becomes a crashing trajectory, whereas
it often happens that because of noise a prediction may turn out to be wrong, and predict a crash.

As a last remark, an additional feature is necessary. To increase the stability of the method, the
propagation shall always begin from the current, sensed, bank-angle, and then linearly move to
σcmd . This is important during large shifts such as the switch between the two phases, or during the
reversal. If such a modification were not included, the initial guess at each iteration would always
be too far from the solution, causin instability. Such modification is implemented only during Phase
2, since in Phase 1 the current bank-angle is equal to σ0. This is also the reason why the modified
Newton method can only work with either the mod or the modlat concepts, described in the next
section.

4.5 CONCEPTUAL MODIFICATIONS TO THE OPTIMAL AEROCAPTURE NPC
Two main modifications are done to the optimal aerocapture NPC (in addition to the two numerical
methods). One is the lateral guidance, as mentioned in Section 4.4, which is described in Subsection
4.5.2, and another one is the bank-angle profile used in the prediction, described in the following
subsection.

4.5.1 FINITE BANK-ANGLE RATE (mod CONCEPT)
The main difference between this concept and the original one consists of the fact that, in this one
(from now on labeled mod) no discontinuities ever occur in the predicted bank-angle. To better
understand this, one may refer to Figure 4.6 (reported in Subsection 4.4.1 to facilitate the compar-
ison with the Lu concept). As an example, the bank-angle linearly shifts from the value of Phase 1
to the value of Phase 2 with a constant angular velocity17 σ̇av g = 10.5°. The angular acceleration is
instead infinite in the prediction. This concept is applied in Phase 1 by including a linearly changing
bank-angle between σ0 and σd . In Phase 2, this is only applied to the latter.

Such a modification, despite seemingly minor, gives major benefits. Specifically, as will be
shown in Section 4.7, it acts in such a way that no manual tuning of σd = f (γ0,V0) is needed, as
it is instead in the Lu concept. In that section it will be shown that, in same conditions, at the end of
the transition between Phase 1 and Phase 2, the bank-angle of the mmod guidance stabilizes with

17The value for such an angular rate has been estimated analytically, and is equal to approximately the total time needed
to rotate the spacecraft from σ0 = 15° to 120°, divided by the angular distance between the two. The total time is
computed assuming σ̈ = 5 °s−2 and σ̇ = 15°s−1. For vehicle with different characteristics, or for different missions, a
different value of σ̇av g shal be computed.
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a difference from σd that is about 18 times smaller than that of the Lu concept. Such a difference is
very important for two reasons:

1. It makes the concept more robust: the vehicle behaves much more closely to what is pre-
dicted. In other words, the prediction is more realistic.

2. It makes the guidance free of the demanding tuning needed to find σd = f (γ0,V0).

Such a difference in final bank-angle happens because an approximation of the rotation time is
included during the prediction. Being the aerocapture a short duration maneuver, the rotation time
plays an important role in the entirety of the trajectory. In addition, an important difference occurs if
the rotation happens when dynamic pressure is large or small. As previously mentioned, steep entry
aerocaptures have much larger dynamic pressures, because they reach lower altitudes. If the switch
happens when dynamic pressure is large, the difference between predicted and flown trajectory
becomes much larger, if attitude kinematics are not approximated in the prediction. This is the
reason why in the optimal aerocapture guidance by Lu et al. [2015] σd is smaller for steep entries
than for shallow entries: the large dynamic pressure causes in fact larger offsets between the desired
σd and the one actually obtained at the end of the transition between Phase 1 and Phase 2. In the
mod concept, an approximation of the rotational dynamics is included in the prediction, and thus
there is no need to find complex functions to estimate σd = f (γ0,V0). σd can be constant for all the
different possible scenarios in the same mission18. After some trial and error, it was found thatσd =
130° was the largest value for which good reliability was ensured in an unperturbed atmosphere,
for a small subset of initial flight-path angles. To have some margins, the mod guidance was tested
using σd = 120°, but also with σd = 110°, for comparison. The high-level algorithm of the mod
concept is given in the box below.

Modified (mod) optimal aerocapture guidance.

At iteration k:

1. Phase 1:

(a) propagate trajectory with bank-angle planned as in Figure 4.6. Here, σd is not inter-
polated, and is the same independently of the initial flight-path angle;

(b) if final energy is negative, go to Phase 2;
elseif rapo > r?apo , go to Phase 2;
else, set σcmd =σ0, and end iteration k.

2. Phase 2:

(a) plan trajectory with constant σ;

(b) solve19 rapo
(
σ?

)= r?apo ;

(c) set σcmd =σ?, and end iteration k.

4.5.2 LATERAL GUIDANCE (modlat CONCEPT)
The lateral guidance used in this modified version consists of planning a single bank reversal.

18This does not mean that σd cannot be a function of initial velocity or target apoapsis, but these are parameters that do
not change for a given mission. There is instead no dependency (or only marginal) only on the initial flight-path angle.



64 4. OPTIMAL AEROCAPTURE NPC GUIDANCE

Figure 4.12: Bank-angle planning in the prediction of the
modl at concept, during Phase 1. Figure 4.13: Logic of the reversal trigger.

This is done by integrating the motion in the prediction with a bank-angle history planned as
shown20 in Figure 4.12.

This way, during Phase 1, it is assumed that the bank-angle reversal occurs 3 s after the transition
between Phase 1 and Phase 2 has occurred. During Phase 2, before inversion, σd in the figure is
substituted by σcmd , and rapo

(
σcmd

)= r?apo is solved. After inversion, Phase 2 is the same as in the
mod and Lu concept. The reversal is always assumed to go in the same direction, which is upwards.
Also in this case, Figure 4.14 helps understanding the architecture of the guidance.

As shown in Figure 4.13, if the predicted final inclination error has different sign from the current
one, nothing happens; but once the sign becomes the same, then the bank reversal begins.

Thanks to this lateral guidance, two benefits occur. First, only one reversal is done. Second, the
prediction already keeps into account the future reversal, in which the Coriolis acceleration would
be acting differently from how it would if the prediction was done without inverting the bank-angle.

As a final remark, the sine of the bank-angle is initially chosen such that the trajectory diverges
from the target inclination. Although this might sound counterintuitive, and one might think that
it is a choice that may decrease the robustness of the trajectory, this is an important factor, since it
makes the reversal occur as soon as possible: consequently, the duration of the period before the
reversal is reduced.

Instead, during Phase 1, the sine of σ0 is chosen to minimize the initial offset. In addition, it
changes if a maximum inclination error occurs. This is needed because, for very steep entries, the
switching time to Phase 2 may be reached too late, once lateral control is not possible anymore.

A final, but very important feature, of this lateral guidance, is the fact that it is not triggered
when the commanded bank-angles are showing large instabilities between one iteration and the
next one. This is because, as an example, a predicted crashing trajectory gives final inclinations
that are very far from the current and target ones. This is quite likely to happen with the modified
Newton method, especially in highly perturbed environments.

4.6 NPC ARCHITECTURE
Figure 4.14 shows the block diagram for the NPC guidance. Without going too much into detail, the
guidance has (ideal21) navigation data as input, together with two counters: the Phase counter, and
the Inversion counter, which it receives from the previous iteration, and are initialized to 1 and 0,
respectively.

At each iteration, as long as the Phase counter is still equal to 1, the guidance integrates the tra-
jectory considering a bank-angle planned according to the respective guidance logic in used (Figure
4.15 shows the architecture for the modlat concept, but it can be generalized to the Lu and mod

20σ0 and σd might as well both be positive, or have opposite sign.
21Navigation is assumed ideal, in the sense that no estimation errors occur.
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Figure 4.14: Flow-chart for the modl at NPC guidance, with bisection-secant method as a solver.

concepts, as long as the Inversion counter is set to 1 since the beginning).

Once the integration is done, it is checked twice. First, it is checked whether the integration
went past the altitude he x. Afterwards, the altitude of the apoapsis is checked. If it is higher than
the target, Phase 2 is triggered; otherwise, guidance stays in Phase 1, and the commanded bank-
angle remains σ0.

These checks are strictly related to the fist issue stated in Subsection 4.4.2.

During Phase 2, while Inversion= 0, plans again the bank-angle history, which is now a function
of σcmd . The logic then solves the trajectory that leads to the target apoapsis for σcmd . The solver
can either be the combined bisection-secant method or the modified Newton-Raphson method,
both described in Subsection 4.4.2.

Once the solution is obtained, the guidance checks whether the conditions for reversal oc-
cur. If such conditions hold, the guidance begins commanding the reversal.Once Inversion= 1, the
planned bank-angle profile is solved as a constant profile.

As a last remark, the choice for the equations of motion and propagator used is the consequence
of a trade-off carried out in Section 6.3.1.
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4.7 VERIFICATION
It is not necessary to verify each block of Figure 4.14, since most of those either will be verified in
Chapter 6, or they can be easily verified by sanity checks. Therefore, the verification of the optimal
aerocapture guidance consists of two parts only. First is testing the logic on an environment that is
as much as possible the same as the one used by the predictor. This way, the trajectory should end
up being extremely similar to the planned one. This way, it is verified whether the predictor works
correctly. The second part consists instead of testing the original optimal aerocapture guidance in
a perturbed environment, possibly very similar to that used in their work. By doing so, it is possible
to verify whether the entire system works properly.

The next three figures (Figures 4.15, 4.16, and 4.17) all show the bank-angle for a flight in an en-
vironment in which the atmosphere is modeled according to the unperturbed22 US76 atmosphere.
All the trajectories begin with same initial conditions, and lead to a final apoapsis error of less than
100 m. During the entirety of Phase 2, the bank-angle does not change of more than 1°. This proves
that the guidance is properly designed, at least for what concerns Phase 2. Moreover, it also proves
what was said in Section 3.6, about how the changes in temperature, and therefore Mach number,
and aerodynamic coefficients, are irrelevant in aerocapture (on Earth, at least). Aerodynamic coef-
ficients are in fact modeled as constants in the guidance logic, and any displacement occurring in
the bank-angle is due to this mismatch. Being such displacement extremely small, it is concluded
that the coefficients do not change much. Additionally, these figures also prove that the use of an
atmosphere whose perturbation is just the multiplication by a constant factor is very limiting since,
because of the filtering, the perturbation is easily kept into account by the prediction. For what
concerns Phase 1 (and the lateral guidance as well), a more specific discussion follows.
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Figure 4.15: Verification of the Lu guidance. σd = 100°.
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Figure 4.16: Verification of the mod guidance. σd = 100°.

Figure 4.15 shows the commanded bank-angle and the bank-angle history for a flight in which
the planned σd is equal to 100°. The first commanded bank-angle is slightly larger, and equal to
101.1°. This is due to the fact that Phase 2 is triggered at the first call in which Phase 1 shows that
apoapsis is reached, instead of the exact moment in which the shift should be, as it is instead in
Lu et al. [2015]. However, the error due to such delay is much smaller than that due to the attitude
dynamics. In fact, the commanded bank-angle increases up to 115° during the time in which the
real bank-angle catches up.

Something different happens for the modified NPC, shown in Figure 4.16. In this case, the com-

22Precisely, the entire altitude-density profile has been multiplied by a constant. The guidance logic can account for such
a perturbation perfectly, thanks to the filter implemented as in Equations 4.35.
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manded bank-angle increases only for a short time after Phase 2 is triggered. That is due to the fact
that the guidance expects the bank-angle to immediately rotate at 10.5 °s−1, without considering
any acceleration. However, the peak of 103° is reached after 2 seconds, and the commanded bank-
angle slowly decreases while the bank-angle rate is saturated. Eventually, the actual bank-angle and
the commanded one stabilize at 100.8°. This happens with a very small overshoot (of about 0.2°) in
the actual angle, due to the fact that the commanded angle is still slightly decreasing while the ac-
tual bank-angle is already slowing down with maximum deceleration. In the end, the mod concept
leads to a prediction in bank-angle that is 18 times more accurate than that of the Lu concept.

The situation is even more different in Figure 4.17, which shows the modl at guidance. Initially,
the same behavior of the commanded angle as in the previous case happens. However, in this case,
the overshoot is much larger, of 5°; nevertheless, the bank-angle then decreases to 102°. At this
point, a slow but steady increase in the bank-angle occurs. This is due to the fact that at each call,
the guidance uses as a prediction a profile in which the reversal occurs immediately, with a constant
bank-angle rate of 10.5 °s−1. Therefore, it predicts a trajectory in which the Coriolis acceleration acts
in the opposite direction than in reality, and in which there is a reversal that does not occur. This
trend is relatively steep, and causes a change in bank-angle of about 15° in about 20 s. It stops once
the reversal actually occurs. Such reversal lasts about 10 seconds, and causes a change in bank-
angle of about 130°, which begins when the bank-angle is 115°. Once again, the bank-angle after the
reversal is displaced by 3° only, proving that including the reversal in the prediction adds robustness
to the guidance.

To see the effect of including the reversal in the prediction, Figure 4.18 shows another guidance
concepts, which was eventually not used. That concept (labeled modl at∞) can be defined as a
limit case of the modl at , in which σ̇av g =∞.

In such a concept the ever increasing trend before the reversal is much smaller than in the mod-
lat, and causes an increase of 1° only. This means that the main cause of the increase in Figure 4.17
is not the wrong direction of the Coriolis forces, but the inclusion of a reversal that does not happen.
The bank-angle after the reversal is displaced by another 10°; however, this time, the displacement
is in the opposite direction, and almost entirely counterbalances the initial displacement. The final
bank-angle is around 105°.

What can be concluded from this is that the inclusion of the reversalin the prediction (as in the
modlat) has the twofold consequence of, on one hand, causing an increasing bank-angle in the
first phase, and, on the other hand, having a good prediction once the reversal actually happens.
The first one is a negative effect, while the second one is beneficial. However, the modified lateral
guidance also has the advantage of planning a single reversal.
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Figure 4.17: Verification for the modlat concept.
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Figure 4.18: Verification for the modl at∞ concept.
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Table 4.1: Initial conditions and dispersions.

γ0 χ0 V0 h0 δ0 τ0 CD CL Mass Density (if c) Speed of sound

Initial conditions −5.725° −1.6789° 11.055 ms−1 121.9 km −46.66992° −242.75° - - 5.500 kg - -

Dispersions ±0.6475° ±5 ms−1 - - - ±0.25° ±10 % ±10 % ±82.5 kg ±50 % ±15 %

Table 4.2: Summary of scenarios and guidance logics tested.

GRAM99 ls GRAM99 l GRAM99 c US76 ls US76 l US76 c

modlat σd =110° X X X X X X

modlat σd =120° X X X X X X

mod σd =110° X X X X

mod σd =120° X X X X

Lu X X X X

simple X X

predload X X

4.8 RESULTS
Three NPC guidance logics have been tested on different sets of 1000 Monte Carlo runs which in-
cluded various kinds of perturbations. These are the original NPC without the lateral guidance (la-
beled Lu), the modified NPC without the lateral guidance (labeled mod), and the modified NPC with
the lateral guidance (labeled modlat). The first two use the bisection-secant solver; the latter uses
the modified Newton-Raphson solver. There is no particular reason for this choice, except for the
fact that there was no time to adapt the modified NPC with lateral guidance to the bisection-secant
solver. The initial conditions and dispersions can be seen in Table 4.1, at the end of the chapter. The
state variables are in the rotating reference frame. The dispersions are the same for all the Monte
Carlo runs (except for the density, which differs if large-scale or small-scale perturbations are trig-
gered).

The design of the entire simulation setup, together with its verification and validation, is de-
scribed in Chapter 6.

Six different scenarios have been simulated, three for each atmosphere model: the perturba-
tions consist of either constant atmospheric perturbations (labeled c), large-scale perturbations
(labeled l), and large-scale and small-scale perturbations at the same time(labeled ls). Lastly, for
reasons that were stated in Appendix A, the predictive load-relief was not used in the previously
mentioned NPCs.

As comparison, two additional guidance systems were tested: these are a guidance without
Phase 1 (labeled simple), and a guidance without Phase 1, but with dynamic pressure predictive
load relief active (labeled predload).

Table 4.2 shows all the different Monte Carlo scenarios and guidance combinations that have
been tested. The modlat has been tested in all possible scenarios, and in two different versions.
The mod and the Lu have been tested for all the GRAM-99 atmospheres, and the US76 c, which is
interesting from a concept point of view. Eventually, the simple and the predload have been tested
only in the GRAM-99 ls (which is, in theory, the most difficult one), and the US79 c. This totals to 28
Monte Carlo runs for the NPCs, which will be discussed in the upcoming sections. Due to the large
amount of data, only the most interesting results will be discussed.

All tables summarizing the results can be consulted at the end of this chapter, together with the
initial conditions and ranges of dispersions.

This section is divided into a few subsections. Subsection 4.8.1 is aimed to find and eliminate
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from the discussions those cases in which the environment conditions are too adverse. Afterwards,
in-plane performance and robustness is evaluated for the Lu and the mod guidance systems in Sub-
section 4.8.2. Out-of-plane performance is discussed in Subsection 4.8.3, for the modlat logic. Sub-
section 4.8.4 discussed instead how the mod guidance respects the constraints, compared to the
simple and the predload guidance. In Subsection 4.8.5, the total heat load along the trajectory is
treated. Along all the subsections, a special regard will be given to how the atmospheric model af-
fects the performance. Eventually, results are summarized in Subsection 4.8.7.

4.8.1 OUTLIERS

In very Monte Carlo run there have always been a few outliers, for which the initial conditions or
perturbations made it impossible for the guidance to reach the desired apoapsis. These cases should
be considered separately from the normal cases in which the guidance was not successful, simply
because the reason of the unachieved success is not due to the guidance logic.

In the cases considered, the outliers were always trajectories that were flown full-lift up for the
entirety of the flight, and still went lower than the target apoapsis. The opposite case, in which a
trajectory was flown full-lift down, and still went higher than the target, did not occur. From this
definition of outliers, it can be concluded that the guidance logic could not be the cause.

Outliers have been included only in the results for the modlat guidance, in Table 4.3, to be com-
pared with the statistics of Table 4.4, and see how they affect the data. In the rest of the results,
outliers will not be considered. There were 10 outliers in any Monte Carlo run with no large-scale
nor small-scale perturbations, and 9 in the others.

The pattern found among the outliers for the constantly perturbed atmosphere is the following:
they all had large negative initial flight-path angles (smaller 12 %), dense atmosphere (densest 50 %),
large drag coefficients (largest 50 %), and small lift coefficients (smallest 30 %). Multiplying all these
percentages together, one has about a 1 % chance of having all these situations occurring at the
same time, which is the frequency with which these outliers have occurred. The trends can be seen
in Figure 4.19. Each horizontal line refers to a single trajectory; 0.5 is the mean of the distribution of
each parameter. For the case of atmosphere with large-scale perturbations the percentages change
in some cases. The correlation with γ0 stays the same, the one with the drag coefficient increases
(largest 30 %), and the one with the lift coefficient decreases (smallest 20 %). Interestingly, of the
10 outliers occurred for the constantly perturbed atmospheres, 6 happen with the same exact con-
ditions (except for the atmosphere) as 6 of the 9 occurring with constantly perturbed atmospheres,
giving additional confirmation of the 50 % correlation with the density. Moreover, the cases that are
outliers for the large-scale perturbations, but are not for the constant perturbation, all have a very
thin atmosphere in the constant perturbations case. The outliers in the fully perturbed cases occur
for the exact same conditions of the cases perturbed with only large-scale perturbations.

4.8.2 LONGITUDINAL GUIDANCE

A 30 ms−1 ∆V causes approximately an initial mass about 1 % larger. For this reason the ∆V is
the main parameter according to which performance is evaluated. ∆V includes also out-of-plane
corrections, but these will be discussed in the next subsection. In this subsection, the Lu guidance is
compared to the mod guidance, both in terms of ∆V , accuracy, and robustness. Comparisons with
third guidance systems will be skipped, since that is already done extensively by Lu et al. [2015], and
the mod guidance is very similar to it.

In terms of∆V , one can see from Tables 4.5 and 4.6 that the mod guidance achieves, on average,
10 ms−1 less, and is thus more performing. However, as previously mentioned, the Lu guidance is
tuned for the Orion MPCV, and is thus not optimal for this case.

On what concerns the accuracy, this is less performing in the mod concept; also, the worst cases
worsen much between the mod with σd = 110° and σd = 120°. In fact, with the latter, some (even
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Figure 4.19: Initial conditions for the outliers in the US76 c simulation .

though very rare) large misses occur, up to some hundreds of kilometers. It is therefore not adviced
to attempt using even larger values for σd . Nevertheless, this is a case in which the accuracy is not a
good evaluator of the performance, since the less accurate mod achieves smaller∆V s than the more
accurate Lu. Again, these differences are probably due to tuning.

It can then be concluded that the new concept is very successful, in that it is about as performing
as the original one (a more thorough study and tuning would be required to give a definite result on
this, but it is likely that both methods, properly tuned, will give very similar performances), but it
has a more robust concept, as demonstrated in Section 4.7, and requires much less tuning.

Figures 4.20 and 4.21 show the performance of the Lu guidance, as in Lu et al. [2015]. However,
a couple of remarks are needed: first, it is unclear what perturbation model has been used by them
(it is known, however, that the atmosphere used is the GRAM-2010); second, it is also not clear at
what altitude the guidance is shut down. It is in fact very unlikely that such high accuracy can be
achieved, if at least large-scale perturbations are modeled, by shutting down the guidance before
the 120 km altitude. This is because atmospheric perturbations of that kind can cause, between
the 100 km and the 120 km lines, errors in the order of magnitude of 1 km. For reasons explained
in Section 3.7, all guidance logics in this chapter have been shut down at 100 km altitude. The last
unclear element is the fact that in the original work by Lu et al. [2015] the J2 effect is not included
in the propagation of the exit leg. As stated in Subsection 4.4.1, not including this leads to errors
up to 8 km in apoapsis altitude. It is therefore believed that in their work Keplerian motion after
atmospheric exit was assumed also for the outer loop. Alternatively, it might be possible that they
propagate the motion (both in the inner loop and in the outer loop) using a Keplerian orbit, but
using orbital energy computed as in Equation (3.28), which accounts for J2. Nevertheless, this would
still not account for the effect of J2 on the eccentricity.

Figures 4.22 and 4.23 show the same performance parameter as the previous two figures, but for
the simple and the mod guidance concepts that were simulated in this research. In this case, the
environment used is the GRAM-99 ls. It is seen that the the accuracy is much worse than the cases
by Lu (and many data points lie outside of the range in the figure); nonetheless, the ∆V curve of the
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Figure 4.20: Apoapsis altitude as a function of initial
flight-paht angle, from Lu et al. [2015]. The guidance
reproduced in this research corresponds to Mode 1.

Figure 4.21: In-plane ∆V as a function of initial
flight-paht angle, from Lu et al. [2015]. The guidance
reproduced in this research corresponds to Mode 1.
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Figure 4.22: Apoapsis altitude for two guidance concepts
in the GRAM-99 ls environment.
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Figure 4.23: ∆V for two guidance concepts in the
GRAM-99 ls environment.

simple is very similar to that of Lu’s Mode3, even though it has an averagely smaller ∆V , whereas
the curve of the mod is rather similar to that of Lu’s Mode 1, but is much flatter. Both differences
are probably caused by the fact that in the vehicle used in this research has a lift-to-drag ratio that
is larger than that used by Lu. Especially in the case of the mod guidance, one can find a light
correlation between larger lift-to-drag ratio and smaller ∆V .

Figure 4.24 shows the effect of different perturbation models on the apoapsis accuracy for the
Lu concept. Both the ls and the l environments cause many trajectories to have errors larger than
5 km, and up to 100 km. It is clear that, despite having smaller perturbations in magnitude, the ls
and l models cause more difficulties than the c perturbations. Their effect is asymmetric though,
and the errors when the apoapsis is low are much smaller. This happens because, as explained in
Section 2.5.2, lift-up trajectories are more stable than their lift-down counterpart. In this case, this
is a fortunate behavior, since these perturbations never cause any crashes.

In addition, small-scale and large-scale perturbation models do not cause any sensible differ-
ences in ∆V with respect to constant perturbations model.

In conclusion, recalling the problem statement of Section 2.7, there is a very wide range of en-
try angles for which the final ∆V is, in the worst case scenario. A guidance such as the mod, with
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σd = 120°, in an environment such as the GRAM99 ls, satisfies the ∆V requirement with a ∆Vmax

of 80 ms−1 for entry angles between -5.1° and -5.8°. The range of flight-path angles is even larger
than required, and in the tested set the success rate is 100 %. Hence, the mod guidance satisfies the
requirement concerning the ∆V , and the vehicle can be designed with propellant enough for a ∆V
of 80 ms−1. This is valid if no specific target inclination is desired.

The remaining subsections will define the limit values for the other requirements. But first, the
same requirement on ∆V is defined, for the case in which a certain target inclination is desired.
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Figure 4.24: Apoapsis altitude obtained with the Lu guidance for in different atmospheres..

4.8.3 OUT-OF-PLANE ∆V
This subsection only concerns the modlat concept. The accuracy of the lateral logic is usually
judged in terms of precision in the final inclination. However, a different approach will be taken
here. In fact, also in this case, one does not care how much difference there is in inclination when
the atmospheric part of aerocapture is completed, but rather how much propellant should be spent
to correct the inclination. This amount can be very different from case to case, even for same mag-
nitude of inclination error. The same error in inclination may cause an almost negligible increase
in propellant consumption if the first burn is large, whereas it might cause a much larger increase
instead (in absolute value, and even larger in relative terms), if the first burn is small. From Table 4.4
it can be seen that the average increase in ∆V due to the out-of plane component is approximately
6 ms−1 when also small-scale perturbations are simulated, and around 2 ms−1 otherwise.

Despite being quite small, it is much larger than other lateral guidance concepts. However, an
average lateral guidance is also more invasive, in the sense that it usually affects the in-plane perfor-
mance more than this one, because of the theoretically unlimited number of bank reversals allowed.
As an example, for the US76 c atmosphere, and withσd = 110°, the average in-plane∆V of the mod-
lat is only 0.5 ms−1 more than the average of the mod. It should be studied how much other lateral
guidance logics affect the in-plane performance. Thus, before refusing this concept because of the
averagely large component of out-of-plane ∆V it causes, it should be compared to other guidance
logics in terms of total ∆V . Once again, here comes the importance of considering the in and out-
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of-plane ∆V instead of simply the error in the final inclination. This comparison was not done in
this research.

An additional remark comes from the average difference between the guidance with σd =110°
and the one with σd =120°. The latter has usually a slightly better performance in the in-plane
component; however, such margin disappears when considering the full ∆V . In fact, a large σd

decreases the lateral controllability for two reasons: first, it increases the time in which σ = σ0;
second, the average bank-angle in Phase 2 has consequently, on average, a smaller sine. Figure 4.25
shows the relative component of out-of-plane ∆V for the modlat in atmosphere US76 c, and Figure
4.26 shows the same parameter fot the guidance tested in the atmosphere GRAM99 ls. In the first
case, a correlation between either extremely steep or extremely shallow flight-path angles is evident,
which further proves the previous reasons. The second case shows instead a clear problem and
limitation of the concept of this lateral guidance. That is relying too much in having an atmospheric
profile after the reversal that does not differ much from the one before the reversal. In the case with
σd = 110°, about 10 % of the cases have an out-of-plane ∆V component that is 25 % or larger than
the total. Also, correlations with the initial flight-path angle disappears.

Therefore, a correction in the lateral concept is advised. This consists of using the concept of
single reversal twice. This might sound like a contradiction, but it is not if the first reversal is antici-
pated. This modification would make the guidance logic more similar to the concept developed by
Shen and Lu [2004]. The amount of time by which the first reversal should be anticipated would be
a parameter to be tuned, or a function of either state or command to be tuned.

As a last reamark, it can be said that the use of the modified Newton-Raphson method (which
was used in the modlat only) does not cause any relevant drawbacks to the average in-plane perfor-
mances. in fact, the in-plane performances are very similar to those of the mod concept, in which
the bisection-secant method had been used.

It is unknown, though, whether the method causes any problems to the lateral guidance in-
stead. In any case, the modified Newton-Raphson method has been obtained with empirical trial
and errors, and its concept is much less robust than that of the bisection-secant method, or Brent’s
method. Therefore, a good amount of skepticism is always adviced before making use of it.

Concerning the requirements stated in Section 2.7, the answer depends on which environment
in use. The fully perturbed environment is probably more realistic. It is, however, only a model,
and other models for perturbations exist. At this point, there is no reason to believe that different
perturbation models may lead to better or worse performance. Hence, it is decided that such a
lateral guidance requires more investigation, in differently perturbed environment, before a ∆Vmax

that includes out-of-plane components can be properly set.

4.8.4 LOAD FACTOR AND HEAT-FLUX PEAKS

The goal of this subsection is that of proving that, no matter what, the concept of the optimal aero-
capture by Lu guidance minimizes any sort of trajectory peak. Using a predictive load relief in Phase
2 only, would be equivalent to raising the σd , and therefore, making the guidance less robust. Of
course, it might be desirable to have a large error in ∆V rather than large load factors for example.
However, such kind of decision is strictly dependent on the mission, and a trade-off should be done
at more advanced stages of the design. It will also be shown that simply using a predictive load-relief
model (the predload guidance) always causes larger peaks than the optimal aerocapture guidance.

To prove the first statement, it is sufficient to see when the trajectory peaks occur during with
a mod guidance. If the peaks all occur before the switch to Phase 2, there is no use in including
the predictive load relief in Phase 1. Also, if that is the case, they cannot minimized further, since
a full-lift up command was given until that moment. Figures 4.27 and 4.28 show, respectively, the
dynamic pressure and heat rate peaks, as a function of the difference between when those occur,
and when Phase 2 occurs. It is clear that, in both cases, for the trajectories with highest peaks,
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Figure 4.25: Lift-up lift-down bang-bang trajectories, in
the US76 c.
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Figure 4.26: Lift up-lift down bang-bang trajectories, in
the GRAM99 ls.

−50 0 50 100

10

20

30

40

∆ t [s]

D
yn

am
ic

P
re

ss
u

re
p

ea
k

[k
Pa

] GRAM-99 ls
US76 c

Cover image credit: ESA - D. Durcros (2002); Atmospheric Re-entry Demonstrator - artist’s impression

Figure 4.27: Dynamic pressure peaks with Lu guidance as
a function of ∆t = tmax q − ts .
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Figure 4.28: Total heat rate (radiative and convective)
peaks with Lu guidance as a function of ∆t = tmax q̇ − ts .

the peaks occur in Phase 1. This is valid for the Lu, the mod and the modlat, in all atmospheres.
However, of course, the trend is more neat when a c perturbations atmosphere is used. However, it
is necessary to specify that peaks due to sudden perturbations cannot be avoided by the predictive
load-relief anyway. Attempting to minimize the peaks that occur in Phase 2 would therefore be
equivalent to increasing the value of σd , which would make the whole system less robust. Also, it
would not be necessary, since both the dynamic pressure and the total heat rate are not large in
Phase 2.

In addition, when looking at the figures, one should also consider the fact that for about the first
2 to 3 seconds after the peak, the bank-angle has not changed much: thus, also the peaks occurring
after cannot really be minimized in any other way.

The predload guidance has been set to respect constraints on the load factor only. The settings
include k0 = 10, δ= 8 s, and amax =2.5 g. The very low k0 has been chosen together with a very low
constraint because, otherwise, the predictor would have had generated trajectories with exceed-
ingly large cosines of the bank-angle. This is because the adaptive step-size integrators used in this
research turned out to be incompatible with constraining the cosine of the bank-angle in the pre-
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dictive load-relief, as it is shown in Appendix A. This is a limitation to the current research only, and
not of the method itself. It is shown in Figure 4.29 that, no matter what, the optimal aerocapture
guidance always leads to lower dynamic pressure peaks than the predload. And this is without even
considering the very large inaccuracies that the predoad leads to (see Table 4.7). The predictive
load-relief does work properly, since it causes dynamic pressure peaks that are, in most cases, lower
than those of the simple guidance: however, it can be said that a finer tuning could lead to better
results.
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Figure 4.29: Dynamic pressure peaks as function of entry angle for different guidance concepts. Atmosphere used is the
US76 c.

Figures 4.30 and 4.31 show a comparison of the bank-angles and the trajectories with the three
different concepts. The choice of the trajectory is unfortunate, since it is one of the cases in which
the simple guidance outperforms the predload in terms of peak. However, the figures are useful in
understanding the concepts on which the guidance systems rely. In the predload case, for example,
it is possible to see the moment in which the guidance shifts to full lift-up. It is also evident that the
guidance takes that into account before hand, by setting an initial bank-angle larger than that of the
simple. This is what causes the predload to be outperformed by the simple. Setting a larger δ in the
predload would anticipate the shift to full-llift up. However, it might as well cause an overreaction
that might lead to a skipout. Eventually, Figure 4.31 clearly shows the reason why the Lu concept
is superior in terms of load relief: in fact, by setting the initial bank-angle to full lift-up since the
beginning, for the same velocity, the trajectory is always flown at a equal or higher altitude, until
Phase 2 is triggered. For this reason, even a perfectly tuned predload could not outperform the Lu.

In conclusion, one should refer again to the mission requirements of Section 2.7. It has been
shown that in no case q̇max = 18 MWm−2 is exceeded. It is reminded that there is no intent of
looking for the entry conditions in which such value is minimized, since such limit is given by the
PICA, which is the ablator material.
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Figure 4.30: Commanded bank-angle history for a single
trajectory for different guidance concepts. Atmosphere

used is the US76 c.
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Figure 4.31: Altitude-velocity profiles for a single
trajectory for different guidance concepts. Atmosphere

used is the US76 c.

The load factor can be estimated from the dynamic pressure. The relation is the following:

n = q̄
1+

(
L
D

)2

BC g0
. (4.41)

Being the nominal value of the ballistic coefficient at M ≥ 29.5 equal to 356 kgm−1, it is increased
to 466 kgm−1 to account for Mach numbers as low as 10 (which are never reached anyways), and
perturbations in drag coefficient of 10% and in mass of 3 %. With a conservative lift-to-drag ratio of
0.34:

n ≈ q̄

3.8kPa
. (4.42)

The maximum load factor occurred with the Lu concept is thus smaller than 10. The values are
similar with the mod and modlat concepts. In addition, there is a range of initial flight-path angles
in which the load factor is limited to less than 5. The range goes from-5.6° to -5.1°. Hence, with
such a concept, a requirement for manned aerocapture is met. This is not the case with the simple
concept instead.

This concludes the discussion about load factor and heat rate peaks. Hence, it has been shown
that these are inherently minimized by the Lu (and, by analogy, by the mod and modlat concepts as
well). The only way to reduce these peaks even further (provided that it is even needed) is to delay
the time at which Phase 2 is triggered, which would make the guidanc less robust. Whether this is
or not a good option should depend on the mission.

4.8.5 TOTAL HEAT-LOAD

In Subsection it was proved that the integral of any function of density and velocity23 is, for an ae-
rocapture, minimized by a bang-bang trajectory. The order of the commands would depend on the
function itself. In aerocapture, radiative heat is usually dominant; however, in this case, the initial
speed is relatively low, and thus radiative and convective heats are in the same order of magnitude.
In this subsection, it will be attempted to understand which trajectory minimizes the radiative heat,
and how that affects the total heat load. The study will be done for the mod with σd =120°: in fact,
it is important for this analysis that the bank-angle after the shift is always pretty much the same.

23Except if such function is f
(
ρ,V

)∝ ρV 3.
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Figure 4.32: Different heat loads for the mod concept with
σd = 120°. Atmosphere used is the US76 c.
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Figure 4.33: Different heat loads for the simple concept.
Atmosphere used is the US76 c.

The analysis is done for the atmosphere US76 c. It is then checked whether the conclusions of this
analysis still hold in a more realistic evironment, by comparing the results obtained with the more
realistic atmosphere GRAM99 ls.

From Figure 4.32 one can easily see that, as proved by Sigal and Guelman [2001], the shallower
the initial flight-path angle, the larger the convective heat load. However, the radiative heat load
follows an opposite trend. Hence, the trajectory minimizing the total radiative heat load is the same
minimizing the total ∆V . On what concerns the total heat, meaning the sum of convective and
radiative heat loads, the situation becomes more complex. In fact both previously mentioned trends
are nonlinear, and their nonlinearity differs from one another. For most of the possible initial flight-
path angle ranges the trend of the radiative heat load is dominating. However, at some point, the
opposite occurs. Thus, there is a small region in which the total heat load is minimized. Such a
region coincides to where the ∆V becomes almost insensitive to the initial flight-path angle.

When computing the heat load in the GRAM-99 ls atmosphere the results are very similar (there
is not even a noticeable change in variance), and therefore an equivalent plot is not reported. It
is however interesting to see how the simple guidance performs. Again there is a decreasing trend
for shallower initial flight-path angles. Also, for a same initial flight-path angle, the convective heat
load is lower for the simple (as predicted by Sigal and Guelman [2001]), whereas the radiative and
total heat loads are both larger (on average) for the simple concept. This is an additional indication
of the fact that the trajectory minimizing the radiative heat is also bang-bang.

Since radiative heat load dominates at very high speed entries, it is expected that the equiva-
lence between minimum heat load and minimum ∆V aerocapture becomes more clear for higher
entry velocities. This statement is partly supported by the results obtained by Robinson et al. [2009],
who show that, for higher entry velocities, the full lift-down trajectory causes lower total heat loads
than the full lift-up trajectory. However, there is no clear increasing trend in their results. Also, it
should be stated that the empirical formulas here used become less reliable at high speeds (those
for convective heat are quite unreliable at 12,000 ms−1, whereas the Tauber-Sutton relation for ra-
diative heat is quite reliable up until 16,000 ms−1), and therefore it is hard to tell what happens in
those cases.

In conclusion, considering again the requirements from Section 2.7, also in this case there is a
large range of entry angles that minimizes the total heat-load. Such a range is rather large, and goes
from -6° to -5.1°. For these conditions, a maximum total heat load of 650 MJm−2 is ensured to not
be exceeded.
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4.8.6 BANK-ANGLE HISTORY AND PERTURBATIONS

It has been seen that the large-scale and small-scale perturbations do not affect the average perfor-
mances. However, every single one of the tables at the end of the chapter shows how they increase
the standard deviation of the accuracy, as well as the average error in apoapsis. It has been repeated
many times how the accuracy is not a very good indicator of the performance. Nevertheless, the
accuracy is still an indicator of how robust the concept is.

The reason of this is the fact that every single concept in this chapter is designed with, as target,
a certain apoapsis altitude. Every solver, in Phase 2, aims to find the bank-angle that leads to a target
apoapsis. Hence, if the guidance leads to a well performing trajectory in terms of ∆V , but misses
the apoapsis largely, it cannot be considered reliable. It still performs well, but it does not perform
the way it should. Of course, as long as the misses are of only a few kilometers, this does not lead to
any problems, but issues begin when misses are of the order of magnitude of the apoapsis altitude.

It is clear that perturbations affect the robustness of the guidance negatively, even though they
might end up, in some cases, improving the performance (in many cases, the trajectory with min-
imum ∆V is simulated in a l or ls atmosphere). Hence, it is interesting to see why such a decrease
in robustness happens. The best way to do this is looking at the bank-angle profile: a very fast vary-
ing bank-angle implies that the perturbations affect the trajectory much. In addition, a bank-angle
brought to saturation is also an indicator of lack of robustness. Nevertheless, if that happens to-
wards the end of the trajectory, it is not really a problem. Figures 4.34 and 4.35 show 5 trajectories
flown with the exact same perturbations, in the US76 c and the GRAM-99 c atmospheres. In Figures
4.36 and 4.37 all perturbations are the same again, except for the atmospheres, which are, respec-
tively, the GRAM-99 l and the GRAM-99 ls. The two cases share the large-scale component of the
perturbation.

The trajectories in Figure 4.34 all behave like shown in the verification. They differ from each
other only (except for duration and Phase 2 trigger time) for the constant value of the bank-angle.
All the trajectories have a very small and smooth decrease in bank-angle during the middle of the
flight, du to change in aerodynamic coefficients. In addition, a sudden, small step occur right before
the end.In Figure 4.34, duration and trigger time of the guidance systems remain quite the same as
in the previous case. All trajectories deviate in the same way, because the atmospheric profile is
always the same. All the thousand simulated trajectories do share the same behavior, with an initial
small bump and then a rather fast decrease in bank-angle. Many even reach saturation, which is
what causes some trajectories to fly few hundreds of meters lower than the target apoapsis: this is
clear by the fact that any Monte Carlo flown with a GRAM-99 c atmosphere has an average apoapsis
lower than target. This trend in decreasing the bank-angle (and thus increasing cosine) is due to the
fact that the ratio between the currently used profile and the US76 atmosphere used by the NPC is
continuously increasing from an altitude of 70 km to 100 km, as shown by Figure 3.6.

In Figure 4.36 the trajectories really start to look different from one another. In some cases the
bank-angle deviates towards larger values, in other cases towards lower values, down to satura-
tion. Since the basic profile is the same as before, the latter case is more likely. Also, the number
of changes in derivative of the bank-angle is variable. At this point the trajectories are very differ-
ent from each other, despite the large-scale perturbations model allows for maximum deviations in
density of about 20 %, whereas the deviations in the previous two cases could reach up to 50 %.

The last case is the one including the small-scale perturbations. These trajectories look very
noisy, and they are. Also, it should be kept in mind that the density variations are filtered: if it
weren’t for that, the changes in bank-angle would be much larger (even though they would still be
limited by the attitude dynamics). In this case, the number of inversions of σ̇ cannot be counted. A
general trend (valid also for the GRAM-99 l atmosphere) is divergence: in fact, the longer the shorter
the remaining part in the atmosphere, the larger the correction in bank-angle must be to counteract
the perturbation. This often causes saturation, which only rarely causes important differences in in
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Figure 4.34: Bank-angle history for 5 trajectories flown
with the Lu guidance in the US76 c atmosphere.
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Figure 4.35: Bank-angle history for 5 trajectories flown
with the Lu guidance in the GRAM99 c atmosphere.

apoapsis altitude.
Hence, it has been shown in detail why trajectories simulated in an environment that includes

either large or small-scale perturbations have much larger inaccuracies, despite their smaller dis-
persions in density. These sort of perturbations do not cause any difference in average performance,
but are very important when evaluating the robustness of a concept. It is more significant to evalu-
ate the robustness of a guidance in an l or ls atmosphere than in a c atmosphere, even if in the latter
the dispersions were much larger.

Some bigger issues occur when using the modified damped Newton solver in the ls environ-
ments. In such a case, the large noise caused by the small-scale perturbations and the turbulence
makes it more likely that the guess from the previous iteration leads to either a crash or a hyperbolic
exit. In those environments, the average error in apoapsis altitude of the modl at using the modi-
fied damped Newton solver is about 4 times that of the other concepts. Of course this might be due
to the concept itself, instead of being caused by the solver, but there is no evident reason why that
should be the case. It is then believed that such a difference is caused only, or in most part, by the
solver. Moreover, since the main problem is that of using the previous iteration as initial guess, it
is possible that the same problem might occur when using an APC guidance, such as the concepts
by Cerimele and Gamble [1985], Masciarelli et al. [2000], or Hamel and Lafontaine [2006]. All such
concepts rely indeed on the previous command as an initial guess.

4.8.7 CONCLUSIONS

During this chapter it has been shown that aerocapture can be ensured with any of the Lu and mod
concepts, as well as with the simple concept. A reliable lateral logic is still needed though.

The Lu and mod concept can satisfy the requirement GD-1 of Section 2.7 ensuring the following
bounds.

1. ∆Vmax = 90 ms−1, in-plane.

2. Qmax = 650 MJm−2.

3. nmax = 5. These optimal concepts derived from Lu et al. [2015] are the only ones, among
those tested, that can meet the requirements on load factor for manned aerocapture.
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Figure 4.36: Bank-angle history for 5 trajectories flown
with the Lu guidance in the GRAM99 l atmosphere.

0 100 200 300 400 500 600
0

50

100

150

Time [s]

B
an

k
A

n
gl

e
[d

eg
]

Cover image credit: ESA - D. Durcros (2002); Atmospheric Re-entry Demonstrator - artist’s impression

Figure 4.37: Bank-angle history for 5 trajectories flown
with the Lu guidance in the GRAM99 ls atmosphere.

4. qmax = 15 MWm−2. There was no attempt to look for a range to minimize such a value.

This maximum values are all ensured for a range of flight-path angles spanning from a minimum
of −5.7° to −5.1°.

The aim of this chapter was, among many that of answering the two sub-questions:

What are the most useful parameters to evaluate optimality in aerocapture?

How does the state-of-the-art guidance solution perform in highly perturbed atmospheres?

The first one is easily answered. The total ∆V is the main parameter to be considered when op-
timizing aerocapture, at least from lunar return conditions, on Earth. It was shown mathematically
that the same trajectory minimizing the∆V would either minimize or maximize the heat load. Test-
ing showed that the first situation is true for the case in object. One limitation is the entry velociy,
since radiative heat load follows different equations at different entry velocities, and the relative im-
portance of radiative and convective heat fluxes also change. Another limitation is the atmospheric
composition, for the same reasons. Before generalizing this result one should therefore be careful.
An indication of the fact that this conclusion could be generalized is given by the work of Robinson
et al. [2009], who show that for some ballistic coefficients, the higher the entry velocities, the more
there is a difference in total heat load between a full lift-up and a full lift-down trajectory. Indeed,
ballistic coefficients also play a role. In any case, the trajectory minimizing the total heat load would
still be of the bang-bang kind, but maybe opposite.

It was also expected that the same optimal trajectory would minimize heat rate and load factor
constraints, and the simulations confirmed the expectations. This result is instead more general. As
the minimization of the∆V , the minimization of the constraints goes against robustness. A mission
dependent trade-off for these should also be done.
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Hence, by minimizing the ∆V , one obtains a trajectory that also minimizes any constraints,
as well as the total heat load. When including the ∆V due to change of plane, the constraint on
final inclination can also be removed. This means that a potentially multi-objective, constrained
optimization is reduced to a single objective unconstrained optimization problem. In view of using
RL, this is a very important and useful finding.

On what concerns the second subquestion, it has been shown that large-scale and small-scale
perturbations do indeed affect the performance and robustness of the optimal NPC by Lu. They
can cause apoapsis that are 100 km higher than the target. Nonetheless, their effect is fortunately
asymmetric, because, as explained in Section 2.5.2, lift-up trajectories are more stable than their
counterpart. Hence, these perturbations never cause any crashes. Moreover, they generally do not
affect the performance in terms of ∆V more than the constant perturbations do.

These conclusions, together with some minor ones, can be summarized in a few statements:

1. The optimal NPC guidance from Lu is also optimal in terms of minimizing load factor and heat
flux peaks, without any need of predictive load-relief, and total integrated heat load. The latter
is a consequence of including radiative heat into the equation, which becomes dominant at
very high speed entries. In addition, it can meet the requirements for manned aerocapture,
for the mission examined here.

2. Small-scale and large-scale perturbations affect the robustness of a guidance logic much more
than constant density perturbations. This is especially true for guidance logics whose solvers
use the previous iteration’s bank-angle as initial guess. This is the case of the modified Netwon-
Raphson, but it might cause problems also to some APC guidance concepts. This is prob-
lematic, since this category of guidance logics (those using the previous command as initial
guess) are also the fastest ones. This sort of perturbations are also important to quantify the
realiability of the lateral guidance proposed in the modlat. In fact, in such environments, the
robustness of the lateral guidance cannot be ensured.

3. The mod guidance is more robust in the sense that it requires much less tuning. It also has an
averagely better performance than the original one, but this is probably due to the fact that
the tuning of the original guidance was done for the Orion MPCV.

4. The lateral guidance proposed in this chapter is not a very robust concept. It performs partic-
ularly bad when large-scale and small-scale perturbations are active. An easy improvement
can be included, which would make it more similar concept by Shen and Lu [2004]. Nonethe-
less, because of the feature stated at the end of Subsection 4.5.2, the large errors in the ls
environment are likely caused by the coupling with the modified Newton-Raphson method.

5. The modified Newton-Raphson method seems to be an acceptable solution. This means that
the number of iterations can be reduced from 10-20 to 2 iterations per guidance call. It suffers
particularly turbulent and noisy environemnts, displaying an average error 4 times larger than
the bisection-secant method in the same environment. In addition, its success cannot be
ensured, proved or demonstrated in any way.

6. There is a large range of initial flight-path angles for which all the performance parameters
are rather constant, and very close to optimal. An optimal and robust aerocapture should aim
to have a nominal entry flight-path angle in the middle of such range. In such a range, aero-
capture can be ensured with a maximum final ∆V = 80 ms−1, a total heat load of 650 MJm−2,
a maximum heat rate well below 18 MWm−2, and a load factor that does not exceed 5.

7. Not including the effect of J2 in the propagation of the exoatmospheric leg causes errors in
apoapsis up to 8 km in altitude. This is a result expected from the theory of perturbations,
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since according to Wakker [2015], the effect of J2 causes oscillations in semi-major axis of up
to 20 km.

In addition, from these conclusions, two general guidelines can be drawn for the next chapters, in
which an artificial intelligence will be designed to guide the vehicle:

1. The design of the artificial intelligence can focus on the minimization of (in and out-of-plane)
∆V only: this will automatically lead to an aerocapture that also minimizes any sort of con-
straints peaks, as well as the total heat load. For this reason, in the artificial intelligence con-
cepts, there will be no analysis of any parameter other than the ∆V .

2. It is of valuable interest generating a guidance that is faster than the previously evaluated
ones. This is despite the success of the modified Newton-Raphson method, since its capability
cannot be generalized.
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Table 4.3: Summary of modlat guidance systems performances, outliers included.

In-plane ∆V [ms−1]
∥∥∆i

∥∥ [°] ∆i [°] ∆Vtot [ms−1]
∥∥∥∆rapo

∥∥∥ [km] rapo [km]

σd Atmosphere Mean Min Max Std Mean Mean Min Max Std Mean Min Max Std Mean Mean Min Max Std
110 GRAM99 ls 82.1 47.4 577.3 49.4 0.17 -0.08 -0.60 0.83 0.22 87.5 48.9 577.4 50.0 3.49 202.3 141.1 368.1 12.2
110 GRAM99 l 81.3 46.3 566.5 49.1 0.14 -0.05 -0.56 0.78 0.19 85.0 51.5 566.6 50.1 1.80 201.2 142.5 299.3 7.9
110 GRAM99 c 82.8 47.9 692.5 57.1 0.12 -0.02 -0.28 0.85 0.19 85.6 47.9 692.6 58.6 0.45 199.7 128.5 207.1 4.2
110 US76 ls 83.9 46.1 584.4 51.3 0.14 -0.03 -0.60 0.84 0.20 87.5 49.7 584.5 52.4 3.69 203.1 140.5 335.9 9.0
110 US76 l 82.6 49.3 573.4 51.2 0.12 -0.01 -0.44 0.82 0.19 85.4 51.2 573.5 52.7 1.54 201.0 141.9 228.1 4.2
110 US76 c 84.1 47.2 702.4 59.4 0.09 0.03 -0.09 0.93 0.19 86.3 48.4 702.5 61.6 0.38 199.6 127.9 200.0 4.3
120 GRAM99 ls 80.1 46.2 577.3 49.6 0.20 -0.06 -0.91 1.04 0.27 87.8 46.3 577.4 50.8 4.94 203.8 141.1 425.9 16.6
120 GRAM99 l 79.2 43.1 566.5 49.4 0.16 -0.02 -0.61 0.88 0.23 84.4 49.2 566.6 51.0 1.99 201.4 142.5 294.1 8.3
120 GRAM99 c 80.5 47.9 692.5 57.3 0.14 0.00 -0.28 0.97 0.22 84.5 47.9 692.6 59.3 0.46 199.8 128.5 206.2 4.2
120 US76 ls 81.6 45.9 584.4 51.5 0.17 -0.00 -0.68 0.99 0.25 87.2 47.6 584.5 53.6 4.79 204.2 140.5 333.2 10.9
120 US76 l 80.2 46.3 573.4 51.5 0.14 0.02 -0.48 0.90 0.23 84.4 46.6 573.5 53.8 1.96 201.5 141.9 240.0 4.7
120 US76 c 81.4 47.2 702.4 59.7 0.12 0.06 -0.08 1.14 0.23 85.3 48.4 702.5 62.9 0.38 199.6 127.9 200.0 4.3

Table 4.4: Summary of modlat guidance systems performances, outliers excluded.

In-plane ∆V [ms−1]
∥∥∆i

∥∥ [°] ∆i [°] ∆Vtot [ms−1]
∥∥∥∆rapo

∥∥∥ [km] rapo [km]

σd Atmosphere Mean Min Max Std Mean Mean Min Max Std Mean Min Max Std Mean Mean Min Max Std
110 GRAM99 ls 78.9 47.4 339.3 35.9 0.17 -0.08 -0.60 0.83 0.22 84.4 48.9 339.5 37.2 3.28 202.6 194.1 368.1 11.8
110 GRAM99 l 78.1 46.3 334.1 35.4 0.14 -0.06 -0.56 0.78 0.19 81.8 51.5 334.3 37.2 1.58 201.4 198.2 299.3 7.3
110 GRAM99 c 78.7 47.9 363.0 38.2 0.12 -0.02 -0.28 0.85 0.19 81.4 47.9 363.2 40.7 0.10 200.1 200.0 207.1 0.0
110 US76 ls 80.6 46.1 346.2 38.1 0.14 -0.03 -0.60 0.84 0.20 84.3 49.7 346.4 39.9 3.47 203.4 196.7 335.9 8.4
110 US76 l 79.4 49.3 340.4 37.9 0.12 -0.01 -0.44 0.82 0.19 82.2 51.2 340.6 40.2 1.30 201.3 199.8 228.1 2.8
110 US76 c 79.8 47.2 370.9 40.9 0.09 0.03 -0.09 0.93 0.19 82.1 48.4 371.1 44.2 0.01 200.0 200.0 200.0 0.0
120 GRAM99 ls 76.9 46.2 339.3 36.0 0.20 -0.06 -0.91 1.04 0.27 84.6 46.3 339.5 38.3 4.74 204.1 193.9 425.9 16.4
120 GRAM99 l 75.9 43.1 334.1 35.7 0.16 -0.02 -0.61 0.88 0.24 81.2 49.2 334.3 38.3 1.76 201.7 198.3 294.1 7.7
120 GRAM99 c 76.3 47.9 362.9 38.2 0.14 0.00 -0.28 0.97 0.22 80.3 47.9 363.0 41.6 0.11 200.1 200.0 206.2 0.2
120 US76 ls 78.3 45.9 346.2 38.3 0.17 -0.00 -0.68 0.99 0.25 84.0 47.6 346.4 41.5 4.59 204.5 196.5 333.2 10.4
120 US76 l 76.9 46.3 340.4 38.1 0.14 0.02 -0.48 0.90 0.23 81.1 46.6 340.6 41.5 1.72 201.7 199.9 240.0 3.5
120 US76 c 77.2 47.2 370.8 41.1 0.12 0.06 -0.08 1.14 0.23 81.1 48.4 371.0 46.0 0.01 200.0 200.0 200.0 0.0

Table 4.5: Summary of Lu guidance performances, outliers excluded.

In-plane ∆V [ms−1]
∥∥∥∆rapo

∥∥∥ [km] rapo [km]

Guidance Atmosphere Mean Min Max Std Mean Mean Min Max Std
Lu GRAM99 ls 88.1 62.0 324.6 30.7 1.17 200.5 193.3 256.2 4.2
Lu GRAM99 l 87.6 62.5 351.0 31.5 0.45 200.2 197.7 218.0 1.6
Lu GRAM99 c 87.3 48.0 346.2 32.0 0.06 200.1 200.0 200.1 0.0
Lu US76 c 89.5 47.9 353.9 33.8 0.01 200.0 200.0 200.0 0.0
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Table 4.6: Summary of mod guidance performances, outliers excluded.

In-plane ∆V [ms−1]
∥∥∥∆rapo

∥∥∥ [km] rapo [km]

σd Atmosphere Mean Min Max Std Mean Mean Min Max Std
σd = 120° US76 c 79.2 48.0 353.9 36.5 0.01 200.0 200.0 200.0 0.0
σd = 120° GRAM99 c 78.1 48.0 346.2 34.4 0.09 200.1 200.0 200.2 0.0
σd = 120° GRAM99 l 78.1 49.1 351.0 33.9 0.86 200.6 197.6 263.0 3.8
σd = 110° US76 c 87.1 48.0 353.9 35.8 0.01 200.0 200.0 200.0 0.0
σd = 110° GRAM99 c 85.2 48.0 346.3 33.8 0.38 200.1 200.0 200.1 3.1
σd = 110° GRAM99 l 79.1 50.9 330.5 32.3 1.12 200.9 197.5 264.2 4.9
σd = 110° GRAM99 ls 85.7 56.6 324.5 32.4 0.98 200.2 194.5 255.7 3.1

Table 4.7: Summary of simple and predload guidance performances, outliers excluded.

In-plane ∆V [ms−1]
∥∥∥∆rapo

∥∥∥ [km] rapo [km]

Guidance Atmosphere Mean Min Max Std Mean Mean Min Max Std
simple US76 c 194.2 47.9 385.0 86.3 0.01 200.0 200.0 200.0 0.0
simple GRAM99 ls 192.1 64.0 370.5 84.4 0.23 199.8 196.7 203.2 0.4

predload US76 c 137.1 44.0 1,090.0 85.1 7.70 207.6 168.0 3,867.6 139.6
predload GRAM99 ls 129.9 54.9 608.2 82.4 0.86 199.5 140.4 227.0 3.8



5
LEARNING

The main research question stated in Section 1.1 asks:

Can an artificial intelligence guide a spacecraft to achieve aerocapture in an optimal and
robust way?

Up to this point, artificial intelligence has been described only quantitatively. It is now of in-
terest to understand how artificial intelligence, and in general, artificial learning, works. Also, it is
desirable to understand how such a technology can be implemented to solve the problem in ques-
tion.

This chapter aims to provide the foundations of artificial intelligence required to develop a neu-
ral guidance. It will be shown how and why an ANN is a good candidate as a guidance logic, and how
and why both supervised learning and RL can be used to optimize the ANN. Before any description
of the concepts or of the mathematics involved in artificial intelligence, it is desired to describe why
such a technology should be of interest. This is done in the first section of this chapter.

Then, in Sections 5.2 and 5.3, it will be shown how such a technology can be used in light of
the optimal aerocapture guidance problem, stated in Section 2.7. In those sections the artificial
intelligence will be treated as a black-box. At that point, the only things one would need to know is
that a neural network is, ideally, capable to reproduce any desired nonlinear function. In the Section
5.2, it will be shown how a network will be set to be used as a guidance logic. In Section 5.3, a few
examples are given, of how such a technology has successfully been used for control in aerospace
problems, with a stress on guidance for Solar System Exploration.

Afterwards, the more theoretical part of this chapter begins with Section 5.4. At first, artificial
neurons and different neural networks are explained. Later on, different training methods are dis-
cussed. These include both supervised learning methods, in which the network is taught from exist-
ing data, as well as RL, in which the network learns from experience. Concerning the latter, a stress
will be given on the so-called policy gradient methods, and specifically the PGPE. Motivations for
the choice of certain methods instead of others will also be given. The chapter also includes the
verifications for all the algorithms implemented for this research.

5.1 MOTIVATION
The main reason why a neural network is of interest for the optimal aerocapture guidance problem
is the fact that it is an object that can give a closed-form approximation of any nonlinear function.
In addition, such an approximation is given almost instantaneously, since it is the result of a large
quantity of simple nonlinear function, which can be computed, in most part, in parallel.
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In Section 4.3 it was displayed how the guidance had to solve iteratively a nonlinear function at
each call. Such a solution required the propagation of the entire trajectory at least twice, but up to
20 times, depending on the solver in use. Also, the obtained solution was rather simple, in the sense
that it assumed a constant bank angle for almost all the entirety of the remaining trajectory (in the
mod the bank-angle was linearly varying in the initial seconds of the propagated trajectory).

Hence, in theoretical terms, the solution given by the optimal aerocapture NPC can still be im-
proved, in two ways:

1. Solve the problem faster.

2. Allow for more complex solutions.

There is not much to discuss about the first item: a neural network would sure be faster than an
NPC, unless networks with hundreds of layers were used1.

Concerning the second item, a natural idea would be that of teaching a network how to give
the output of an optimal trajectory at any state. Instead of needing an optimization process at each
guidance call, the network would be able to output the corresponding bank-angle almost instan-
taneously. Nevertheless, such a function should be unique at every state: this means that a global
optimum should be sought off-line for every possible state. Even off-line, aiming to obtain a global
optimum for a variety of trajectories and conditions can be extremely demanding. An alternative
would be modifying the function such that it would dispay a single global optimum. One way of
doing this is convexification [Acikmese and Blackmore, 2011]. Such a process is very demanding
though. An additional problem comes from the fact that, as shown in Section 4.3, the optimal aero-
capture trajectory is inherently not robust.

Hence, in this research, supervised learning will be used to simply imitate the simple concept,
which gives a constant bank-angle trajectory. The reasons why this would still be interesting are the
following:

1. It is believed that a neura network trained to give the same input as the simple concept could
easily be made imitate the Lu concept, by setting σ=σ0 as long as σout put <σd .

2. If such a guidance were able to properly imitate the Lu concept, it would be preferred to it,
since it would be able to do so faster than the former concept. This is in accordance with what
stated about real-time requirements at the end of Section 2.7.

3. A network trained with supervised learning could be used as an initial guess for a RL training,
which will be later explained.

Despite what stated as a third motivation, a network trained with supervised learning will not be
used as initial guess during this research, mainly because that would have required further effort.
The third reason could then relate to recommendations for future work.

Given the fact that the optimal trajectory is not robust, RL provides a very interesting possible
solution to the problem. RL is in fact mainly used for a Markovian decision process (MDP). In this
class of problems, which will be described more in detail in Section 5.8, the environment is not
deterministic. Hence, without going into details, a network trained using RL methods will be able to
give the optimal command, given all the possible future perturbations. Such perturbations have to
be included in the training model. Hence, the more such a model is realistic, the better the outcome
is supposed to be.

Because of what concluded from Chapter 4, the network will be trained with RL having as only
objective that of minimizing the final∆V . This leads to some issues though, which will be described
in Section 6.6, and solved.

1At the best of the author’s knowledge, the current state-of-the-art of deep networks consists of using around 20 layers.
Still, this research will make use of much smaller networks than those.
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Figure 5.1: Architecture of a neural guidance.

From the description just given, a network trained with RL can theoretically be a very powerful
tool. Such a potential does not come without any drawbacks, as it will be specified in Section 5.8.

5.2 NEURAL GUIDANCE DESIGN
Before giving any example, it will be shown here how an ANN will be used in this research. While
this is being described, the reader should refer to Figure 5.1. At this point, the neural network is still
to be considered as a black-box, and its proper functioning will be clearer at the end of this chapter.

The navigation input is first transformed into the inputs that is used for the neural guidance, and
then normalized. The choice for the network inputs will be explained in Section 6.4. Normalization
is needed because a neural network works best with inputs on the order of magnitude of about 1,
and symmetrical around zero. The neural network then elaborates the input, and gives an output.
The commanded bank-angle is eventually a function of that output. An example of such a function
is, in the case of aerocapture, given in the next section, by Equation (5.1).

5.3 NEUROCONTROLLERS AND NEURAL GUIDANCE
The output of a controller is a non-linear function of the state; for the computations to occur real-
time, such function has to be relatively simple. Thus, it is difficult to have complex control functions.
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A neural network can be trained to approximate the input of an optimal control problem: when
used as a controller, it would then be able to give the approximate output in real-time of a very
complex and computationally demanding function. The output could satisfy the requirements for
real time control, since the number of computations done by a neural network is very limited.

As an example, Zhou [2002] applied the concept of teaching an ANN to follow an optimal-control
problem to the guidance of homing missiles. The use of neural networks as controllers is widespread
nowadays, and in spaceflight is not rare, especially in academic research. In addition, neural net-
works have been used to approximate the behavior of specific controllers, such as inverse dynamics
control [Zhou et al., 2014], H∞ control for nonlinear systems [Cheng and Lewis, 2007]. Eventually,
very recently Sanchez-Sanchez et al. [2016] used, with excellent results, deep networks for terminal
landing guidance. The networks successfully reproduced optimal control trajectories in closed-loop
simulations.

The use of a universal approximator to reproduce optimal control solutions is clearly very attrac-
tive. However, something better could even be done, with RL. This branch of artificial intelligence,
described in Section 5.8, allows an adaptive element such as an ANN to learn the control that is
optimal for a stochastic environment. As an example, Gelly and Vernis [2009] used neural networks
trained with RL as a guidance system for aerocapture. Always Gelly and Vernis [2009] applied the
same concept to terminal landing guidance.

5.3.1 NEURAL GUIDANCE IN SOLAR SYSTEM EXPLORATION

This subsection aims to provide two examples in which neural guidance was used in solar system
exploration. These are Gelly and Vernis [2009] and Sanchez-Sanchez et al. [2016]. The first one was
chosen because it is a case of RL applied to the same problem of this research, together with another
case of applied to terminal landing; the second because it used supervised learning to teach deep
neural network (DNN)s optimal control solutions.

The guidance developed by Gelly and Vernis [2009] was applied to the MSR mission, and con-
sisted of an aerocapture on Mars with an entry velocity of 5687 ms−1, initial flight-path angle of
-10.24° at 120 km altitude. The target orbit had an inclination of 50° and an apoapsis altitude of
500 km.

They used an feed forward neural network (FFNN) with five neurons in the input layer, twelve
neurons in the hidden layer, and two neurons in the output layer. The two outputs µ1 and µ2 were
defined such that:

cosσcmd = µ1√
µ2

1 +µ2
2

sinσcmd = o2√
µ2

1 +µ2
2

(5.1)

The inputs consisted of orbital energy, eccentricity and inclination of the current orbit, velocity (it is
not specified whether it was the relative or the inertial velocity) and non-gravitational acceleration.

In their work, the optimization used was a genetic algorithm, consisting of 20 individuals evolved
along 500 generations, with a mutation rate of 1%. To each individual corresponds a specific set of
parameter for the neural guidance. The fitness of each individual was evaluated according to its
performance in 600 dispersed simulations. It is easy to compute that the training involved the sim-
ulation six million trajectories. For this reason, they needed to use a simplified model during the
training. As it will be explained in Section 5.9, this is the major drawback of actor-only methods.

In the first generations, the fitness function was such to heavily punish guidance laws leading
to crash or skipout. In the later generations, once the guidance was such that target apoapsis was
ensured with a limited error, the fitness function was then changed such to minimize the final ∆V
and the bank angle consumption, which is a scalar value somehow proportional to the integral in
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time of σ̇. The inclusion of the bank angle consumption in the fitness function was very important
to allow the guidance to achieve aerocapture with one only bank reversal, which is a very interesting
capability, as it was stated in Chapter 4.

The guidance was then evaluated on 1000 Monte Carlo dispersed trajectories, different from the
600 used during training. Their guidance scored, on average, much better than their benchmark tra-
ditional guidance (called feedback trajectory control) in all the performance parameters that were
evaluated: maximum g-load, maximum heat-flux, accuracy in apoapsis altitude and in inclination,
final ∆V needed. It also turned out to be more robust than the benchmark, by scoring better than
it in the worst case for all parameters except for one, the altitude error at apoapsis. Thus, improve-
ment in robustness can be made. Moreover, the worst case for the neural guidance was, for many
parameters, better than the average case of the benchmark guidance, specifically for error in incli-
nation and final ∆V . Analysing Figure 5.2, it seems that in this case the neural guidance behaves
as one would expect, by following, with some margins, a bang-bang trajectory, except for the very
initial states, in which it is not very clear what is happening.

Their analysis has two drawbacks, however: one consists of the fact that an extremely large num-
ber (6,000,000) of simulated trajectories has been used during training. The second is the fact that
they have not completely exploited the RL framework at its best, since they did not use very per-
turbed environments in the training (they used the equivalent of the US76 c, but for Mars, and pretty
much the same kind of variations in initial conditions that were used in this research).

Gelly and Vernis [2009] used the exact same method to optimize also the terminal landing phase
on Mars. It is of no interest now discussing their exact setup. However, it is interesting to look at Fig-
ure 5.3: the neural guidance that minimizes the consumption behaves in a way that is hard to un-
derstand, showing two peaks in thrust, whereas the Apollo-E guidance behaves relatively smoothly,
despite showing a few "hiccups". This shows another problem of RL: it is likely that the resulting
network may behave in ways difficult to understand from an engineering point of view, making the
verification process harder. This is instead more rare in supervised learning.

Figure 5.2: Bank-angle profile of neurally guided
aerocapture [Gelly and Vernis, 2009].

Figure 5.3: Command history of neurally guided terminal
landing [Gelly and Vernis, 2009].

Eventually, the work done by Sanchez-Sanchez et al. [2016] is worth being mentioned. They
showed how single layer networks cannot be taught (with supervise learning) to successfully ap-
proximate optimal control solutions for terminal landing, and DNNs should be used for that pur-
pose. Their training is based on 150 thousand optimal control trajectories, with 100 data points
for each trajectory, and is done with stochastic gradient descent. Moreover, they also showed how
DNNs with rectified linear units (ReLU) as activation functions are more successful for the goal.

This concludes the description of ANNs used in examples similar to that of aerocapture guid-
ance. It has so far been shown that the neural guidance schemes have always turned out to be very
high performing, both using RL and supervised learning. In some cases, they might give outputs
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that are counterintuitive to an engineer. An additional drawback would be the fact that they are
computationally very demanding to program. This is not a problem per se, but it implies the fact
that if there are sudden changes in mission requirements, a different solution should be used.

5.4 ARTIFICIAL NEURONS
The neuron is the fundamental element of an ANN. Its task is quite simple, and consists of three
phases: first, it multiplies every input xi it receives by their respective weights wi and adds a de-
fined threshold value, or bias, b to it; then, it sums the weighted inputs, and eventually it uses an
activation function. Thus, in general, the computations done by a neuron are:

Y = fN (X ), (5.2)

X =
n∑

i=1
xi wi −b, (5.3)

where Y is the output.
The most commonly used activation functions are the sign function, sigmoids, and ReLU.
Among the sigmoid functions, the one that will be used in this research is the hyperbolic tangent:

f (X ) = e2X −1

e2X +1
, (5.4)

The importance of having a monotonic and non-linear function is due to Kolmogorov [1957]
theorem, and will be explained later.

A neuron can therefore be characterized by:

• its activation function fN ;

• its threshold, or bias b;

• its weights wi .

In a neural network, usually the activation functions are the same for all the neurons. Thus, a neuron
is characterized only by the so-called augmented vector w [Engelbrecht, 2007]:

w =
[

w1 w2 ... wnl−1 b
]T

(5.5)

where nl−1 is the number of neurons in the precedent layer. Consequently, every layer is character-
ized by a weight matrix of the size (nl−1 +1)×nl .

5.5 FEEDFORWARD NEURAL NETWORKS
As neurons in brains, artificial neurons also need to be organized and interconnected within each
other; in an ANN, neurons are usually organized in layers. The most common structure is the FFNN,
where every neuron’s output is one of the inputs for all the neurons of the following layers.

Although interesting, a discussion on networks topology2 is not necessary, since it will be shown
that FFNNs have all it needs to be used as a neurocontroller, and, being the simplest and most used
kind, it would be unnecessary to try to use other topologies.

In an FFNN neurons are arranged into layers. Each neuron receives weighted inputs from all
and only the neurons of the previous layer, and then sends their input to all and only the neurons of
the following layer.

2In mathematics, topology is the study of space under continuous deformation. Network topology refers instead to how
a network is arranged. In this report, the word topology will always refer to this second meaning.
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Figure 5.4: Feed Forward Neural Network architecture [Engelbrecht, 2007].

The output of a one-hidden layer FFNN can be computed as follows (assuming that the thresh-
old b is the weight of an additional neuron whose output is -1, as in Figure 5.4):

ok,p = Xok,p

= f

nh+1∑
j=1

wk j f
(

X y j ,p

)
= f

nh+1∑
j=1

wk j f

(
ni+1∑
i=1

w j i zi ,p

)
(5.6)

assuming that the activation function is the same for every neuron in every layer.
Kurková [1992] demonstrates, using Kolmogorov’s theorem, that, provided that there is an ap-

propriate number of neurons, a FFNN with one hidden layer that uses a monotonic and non-linear
activation function can approximate any continuous function of the kind Rni n →Rnout ; moreover, it
is proved that, when using that same activation function, and using two hidden layers, any discon-
tinuous function can be approximated too. Their theorem has only theoretical importance, and it
will be seen in the next subsection that in practice many more than two hidden layers can be used.

An FFNN can be considered as a non-linear mapping of Rni n → Rnout [Engelbrecht, 2007], and
can be used as a means for universal regression, since they can approximate any function with ni n

inputs and nout outputs.
A major drawback of FFNNs is that of not giving any insight in the problem. It is in fact very hard

to understand what happens within a network, and the difficulty increases with increasing the size
of the network itself.

5.6 DEEP NETWORKS
A DNN is a network with more than one hidden layer. There exist different kinds of deep networks,
but here only FFNN will be treated, being the most commonly used for control problems.

In many problems, DNNs can have millions of parameters and as many as 20 layers; because of
this, they can learn much more complex functions than single hidden layer networks can [LeCun
et al., 2015]. Their use will be limited to much smaller networks in this research, and mainly for
supervised learning. In fact, they are generally not very popular for reinforcement learning yet, due
to their high dimensionality.

Their general advantage (in supervised learning) in control problems with respect to single layer
FFNNs with the same number of parameters has been shown by Sanchez-Sanchez et al. [2016] for
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optimal terminal landing.Deep networks have the an additional advantage over shallow networks:
for DNNs, incurring in a local minimum is not relevant. In fact, most local minima in deep networks
perform equivalently well, and therefore initialization is not a problem [LeCun et al., 2015]. The
training of a deep network does not differ much from that of a shallow network, and most of the
recent contests are being won by DNNs trained by pure supervised learning [Schmidhuber, 2015].

Because of their large size, batch methods for supervised learning are usually not advised for
this kind of networks. Most often, stochastic gradient descent (SGD) (see Section 5.7.3), or some
variations are used. Nevertheless, Le et al. [2011] advice to use batch methods in minibatches
(which would be, anyway, much larger than the batches used in stochastic gradient descent, but
not as large as the entire dataset). The two methods mentioned are a limited memory version of
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which is a method to approximate the
Hessian without the use of second order information, and is, as an example, also used in Sparse
Nonlinear OPTimizer (SNOPT) [Gill et al., 2007], and the conjugate gradient.

5.7 SUPERVISED LEARNING
In supervised learning a dataset, that shall include both inputs and outputs, should be provided.
Thus, a model that provides the output should be needed. In this case, the most natural solu-
tion would be using optimal-control theory, but also other possibilities are available, as it will be
explained in Section 6.5. The most efficient way of computing the gradient is backpropagation, de-
scribed in the coming subsection. The gradient can then be used in different ways depending on the
algorithms used. However, before describing these algorithms, the issue of overfitting is mentioned.

5.7.1 BACK-PROPAGATION

The principle behind back-propagation is that of analytical derivative rules. Due to the charac-
teristic topology of FFNNs, however, the method makes extensive use of the chain rule. Supervised
learning can be seen as an optimization problem, in which the cost function is the sum of the square
errors of all the input output pairs [LeCun et al., 1998]:

J =
np∑

p=1

E p

np
=

np∑
p=1

1

2np

(
Yp − fN N

(
θ,xp

))2

, (5.7)

where np is the number of input-output pairs. An important difference between this and a normal
optimization problem though is that in this case the goal is not that of searching for the global op-
timum, since that would be an overfitting solution [Hastie et al., 2001]. Overfitting is a common
problem in supervised learning, and will be better analyzed in the next subsection.

Since fN N is continuous in the parameters θ, it is possible to minimize the cost function using
gradient descent. Moreover, the analytical derivative can be found using the chain rule (now for
only the pth input-output set):

∂E p

∂θ
= ∂E p

∂fN N

(
θ,xp

) ∂fN N

(
θ,xp

)
∂θ

(5.8)

It is then possible to use the chain rule in a layer-by-layer fashion. If each layer were considered
as a network itself, whose input are the outputs of the previous layer, and whose outputs are fed as
inputs for the next layer. As an example, the derivatives of the error with respect to the parameters
of the before-last layer can be computed as follows:

∂E p

∂θnl−1
= ∂E p

∂fnl

(
θnl , fnl−1

) ∂fnl

(
θnl , fnl−1

)
∂fnl−1

(
θnl−1, fnl−2

) ∂fnl−1
(
θnl−1, fnl−2

)
∂θln−1

, (5.9)
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where fl is the output of the l th layer (and, equivalently, the input to the (l +1)th layer). The parame-
ters of layer l are those that multiply the outputs of the neurons (and therefore, the parameters that
multiply the input belong to the layer before). Generalizing, the derivative of the error with respect
to the parameters of the l th layer depends on the derivative of the error with respect to the final
output, as well as on the derivatives of the output with respect to the input of any of the subsequent
layers, and, eventually, on the derivative of the output of the l th:

∂E p

∂θl
= ∂E p

∂fnl

(
θnl , fnl−1

) ∂fl
(
θl , fl−1

)
∂θl

nl∏
j=l+1

∂f j

(
θ j , f j−1

)
∂f j−1

(
θ j−1, f j−2

) . (5.10)

In the previous equation, when l = j = 1, f0 appears, which is the input to the network, xp . It is only
now that it might become clear why the algorithm is called backpropagation. Each derivative, in
fact, depends on the subsequent layers. It is also important to notice that the dependence on the
following layers does not include the derivative of the output of those layers with respect to their
parameters, but only with respect to their inputs. Nevertheless, the latter depends on the input of
such layers. At last, it should be noticed how the output of the final layer is a function of all the
parameters. Therefore the gradient of the error with respect to any parameter is a function of all of
the parameters. The gradient is eventually computed by forward propagating first, to obtain E p and
all the fl , and then backpropagating to obtain the gradient of Ep with respect to the parameters of
any of the previous layers. The missing piece is now that of how to compute the derivative of the
output of a layer with respect to both its parameters and its inputs:

∂fl
(
θl , fl−1

)
∂θl

= fa
(
fl−1

)
, (5.11)

∂fl
(
θl , fl−1

)
∂fl−1

(
θl−1, fl−2

) = θl fa
′ (fl−1

)
, (5.12)

where fa is the activation function, and can be different in different layers (in particular in the last
one, which is often linear). These formulas can easily be derived when considering that fl = θfa(fl−1).
The derivative is slightly different for the weights that involve the biases. The derivative of a hyper-
bolic tangent with respect to its input function can be computed recursively:

fa(x)′ = 1− f 2
a (x). (5.13)

For a ReLU:

f ′
a(x) =

{
0 if x ≤ 0
1 if x > 0.

(5.14)

Technically, the gradient should be undefined for x = 0. However, using the previous equation is not
a problem in practice.

In case of sigmoidal activation functions, the gradient can easily vanish for the first layers of a

deep network. That is because
∥∥∥fa

′ (fl−1
)∥∥∥≤ 1, and the parameters are, on average, smaller than one

as well. Moreover, the larger the parameters, the smaller would be the absolute value of fa
′ (fl−1

)
.

Possible ways to mitigate this problem are simply either not using deep networks, or using differ-
ent methods other than simple stochastic gradient descent (AdaDelta, described in Subsection 5.7.4
is a good candidate, together with AdaGrad, Subsection 5.7.6), or using ReLU instead of sigmoids,
whose derivative is either 1 or 0. Another interesting alternative that has gained popularity recently
is extreme learning machine (ELM). In this discipline, networks with only one, very large, hidden
layer, with sigmoidal activation functions, are used. The particularity is in the fact that the param-
eters of the hidden layer are randomly initialized, and never updated. The only parameters to be
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updated are those of the output layer, and the model is therefore linear in the parameters (but not
in the state) [Huang et al., 2015, 2006]. It has been proven that, even for random parameters in
the hidden layer, the so trained networks still have the universal capabilities of single hidden layer
FFNNs, despite being linear in the parameters.

It is important to efficiently code the algorithm to not compute any of the values more times
than needed. In the end, the computational cost of the gradient with respect to all the parameters
is in the same order of magnitude as that of computing the output [Schmidhuber, 2015].

Nowadays, almost every supervised learning algorithm makes use of back-propagation, either
to compute the gradient ∂E p /∂θ or the Jacobian ∂Yp /∂θ for a certain input-output pair. In fact,
while still used for unsupervised learning, gradient free methods such as evolutionary strategies or
simulated annealing are not popular anymore for supervised learning problems, especially when
involving deep networks. Exceptions of course still exist, such as the work done by Rere et al. [2015].

VERIFICATION

A code for back-propagation of neural networks with an arbitrary number of layers was developed
during for this research. The reason why this was needed is justified by Subsection 5.7.8. The code
is specific for hidden layers with hyperbolic tangents as activation functions, and a linear output
layer. Nevertheless, it can be easily modified, to adapt to either ReLU or other activation functions.

It was done for a shallow network first, and a deep network later. The first step consisted of
comparing the gradient computed by back-propagation with the gradient computed by finite dif-
ferences. The latter was computed with different sizes of finite differences. The error between the
two converged to almost zero for decreasing finite differences, down to 10-8, and then increased,
most likely because of numerical errors. Also, in deep networks, for same finite differences, the
error was larger in the first layers than in the last ones.

5.7.2 OVERFITTING

Overfitting is the process by which the regression model ends up learning the noise of the training
set. Overfitting can occur if training continues for too long and, at the same time, the network
has too many nonlinear parameters. Having too many parameters per se is not a problem, since
overfitting can be easily avoided with a couple of methods. Having too few parameters can instead
result in having not enough flexibility to capture the nonlinearities in the data [Hastie et al., 2001].

Overfitting is caused by an exceeding number of nonlinear parameters. Therefore, a way to
avoid it consists of the so called weight decay, or regularization parameter: a quadratic weight is
given to each weight, such that they are mostly kept close to zero. When a sigmoid, or hyperbolic
tangent, activation function is used, a small weight shrinks the function to its linear part. When
doing backpropagation, this method has the consequence of simply adding a term λθ when com-
puting the gradient, where λ≥ 0 is a tuning parameter.

Another way, more direct, consists of using validation data. The main idea consists of checking,
every some training epochs, whether the regression has improved also for some validation data that
is not being used during training. Once there is no improvement on the validation set, training
is interrupted, and the network is tested on a third set, the test set. Each input-output pair can
belong to only one of these sets. Typical way of splitting the data set is using 70 % of the data for
training, and 15 % for validating and testing [Engelbrecht, 2007]. However, this method does not
avoid overfitting, but only causes the training to stop when overfitting occurs: for this reason, the
optimal choice is to use also regularization.

5.7.3 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent (SGD) is the most commonly used method for training large networks
[LeCun et al., 2015]. The concept consists of computing the gradient using backpropagation for
only a small set of the input-output pairs, and then update. It is based on the concept according
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to which it is possible to obtain a noisy gradient of
∑np

p=1 E p by evaluating only a small subset of
the data. It is called stochastic because the samples used to compute the gradient are randomly
picked. Such method has many advantages, such as not having large memory requirements, not
easily being stuck in local optima (despite being a gradient descent method, the noise due to the
stochasticity of the samples contributes in this), and converging much faster than methods using
gradient descent on the entire batch [LeCun et al., 1998].

The general equation for stochastic gradient descent is:

θ(k+1) = θ(k) −α∇∇∇θ
nm∑

p=1

E p

nm
, (5.15)

where nm is the size of the minibatch being used, and α is a learning rate. The elements in the
minibatch are randomly picked. Due to the noise in the gradient estimates, α needs to be zeroed
during training, since the variance of the gradient is proportional to it:

α= min(α0,α0 ∗N /k), (5.16)

where N is the number of iterations after which the decay begins. Another option consists of, in-
stead, increasing the size of the minibatch with the number of iterations.

The addition of momentum is often used to speed up the learning. Also, momentum helps
in reducing the noise as well, by annealing the components of the direction that are caused by the
presence of noise. Momentum is simply added as follows, in a recursive way [Rumelhart et al., 1986]:

ν(k+1) =µν(k) −α∇∇∇θ
nm∑

p=1

E p

nm
, (5.17)

θ(k+1) = θ(k), (5.18)

were ν is the momentum, and µ is the momentum rate. Already three tuning parameters have
been introduced so far, al pha0, N , and µ, together with np . It is already clear now, that tuning a
stochastic gradient descent algorithm may become very hard. However, it is possible to introduce
some modifications to make some of the parameters self-adapting. Subsections 5.7.4 to 5.7.6 are
all cases of self-adapting algorithms that make use fo SGD and that were implemented during this
research.

5.7.4 ADADELTA

AdaDelta is an adaptive learning method first proposed by Zeiler [2012]. According to him, the
method has various advantages, the most important of which are probably the fact of not needing
any tuning for hyperparameters, together with the implementation of learning rates specific to each
parameters. Both these advantages are usually characteristic to batch, second-order learning tech-
niques. Moreover, it does so with very small increase in computational requirements. Therefore,
it combines the advantages of stochastic gradient descent together with many of the advantages of
second order batch methods.

AdaDelta is based on two main ideas. The first consists of the fact that, especially when training
deep networks, the gradients of the parameters of the lower layers can be of orders of magnitude
smaller than those of the outer layers. Hence, it may be efficient to have different learning rates for
different parameters, being larger for those whose gradient is smaller. This is done by computing the
discounted mean square of the gradients and dividing the update by that value. At each evaluation,
the discounted mean square is updated:

E
[

g2
]

k
= ρE

[
g2

]
k−1

+ (
1−ρ)

g2
k , (5.19)
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where gk is the latest gradient estimate and ρ is a decay constant (usually just set equal to 0.95,
without need of any tuning). The square operation is done element by element.

The second consideration is a simple idea to make the algorithm resemble more a second order
method, despite using first order information only. The idea is that in second-order method the
update is proportional to the ratio between the first and the second derivative. Consequently, the
inverse of the second derivative is proportional to the ratio between the update of a second order
method and the first derivative:

∆x =
∂ f
∂x
∂2 f
∂x2

→ 1
∂2 f
∂x2

= ∆x
∂ f
∂x

. (5.20)

The last term is therefore approximated:

∆θ
∂ f
∂θ

≈

√
E

[
∆θ2

]
k−1

+ε√
E

[
g2

]
k +ε

, (5.21)

where E
[
∆x2

]
k−1

is computed the same way as Equation (5.19), and ε is a very small parameter that

has the twofold goal of avoiding to have a division by zero, as well as initializing the first update. The
update rule is then:

∆θ =−

√
E

[
∆θ2

]
k−1

+ε√
E

[
g2

]
k +ε

gk . (5.22)

It should be noted that for obvious recursiveness reasons, the root mean square of the updates used
is that of the previous iteration.

In theory, this method is supposed to make some sort of the diagonal Hessian approximation.
Nevertheless, such approximation is done using the assumption that the previous updates have
been obtained using a second order method too. An obvious consequence of this fact is the large
dependence on ε, which governs the very first update (and is also the only tunable parameter of this
technique), as also shown in the test cases proposed by Zeiler [2012]. Nevertheless, the tuning is
very easy to do, and in most cases ε= 10−6 is a good solution.

5.7.5 NATURAL GRADIENT

The natural gradient as an update method for neural networks was first proposed by [Amari, 1998].
This was done because the space of the neural networks (whose coordinates are its parameters) is
Riemannian, and not Euclidean. Without going too much into detail, this means that the gradient
does not coincide with the steepest descent direction [Amari, 2016], because the shortest distance
in a Riemannian space is not a straight line. Despite not being too complex nor too long, the proof
of this will not be reported. The interested reader may refer to Amari and Douglas [1998] who also
provide a very simple but efficient two-dimensional example of how the Riemannian metric can
speed up convergence if a paremeter space is not Euclidean.

Amari [1998] shows not only that the metric of the parameters of a neural network is Rieman-
nian, but also that such metric coincides with the Fisher Information Matrix (FIM). The proof of
both these statements is rather obscure for someone lacking some background in information ge-
ometry and statistics, and is therefore not reported. The interested reader may look up to the origi-
nal paper, or to a more recent version in Amari [2016].

Going directly to the point, the natural gradient ∇̃θ is obtained as follows:

∇̃∇∇θ = F(θ)−1∇∇∇θ, (5.23)
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where F (θ) is the FIM. It is important to notice that the metric is a function of the parameters only,
and not of the inputs of the network. However, it is usually obtained by sampling, since its definition
(which, also, will not be reported here) involves the expected value operator.

Amari et al. [2000] propose an adaptive method to sequentially approximate the matrix:

Fk (θk ) = (1−ε)Fk−1(θk )+ε∇∇∇θ f (xk−1,θk−1)∇∇∇θ f (xk−1,θk−1)T , (5.24)

where ε is a term vanishing with time. This way no sampling is needed, other than that already
used for the computation of the gradient itself. The equation contradicts the fact that the matrix is
a function of the parameters; however, assuming that the updates are small at each step, the error is
negligible.

Always Amari et al. [2000] then show how to directly estimate the inverse of the FIM:

Fk (θ)−1 = (1+ε)Fk−1(θ)−1 −εFk−1(θ)−1∇∇∇θ f ∇∇∇T
θ f Fk−1(θ)−1. (5.25)

It should be noted that, according to the previously used definitions, ∇∇∇T
θ

f is what was previously
called the Jacobian, and does not depend on the expected output yp .

The update step of a natural gradient method is then:

θk+1 = θk −αFk (θ)−1∇∇∇θE
(
xp ,yp ,θk

)
. (5.26)

The natural gradient can then easily implemented in an SGD method, and is usually very robust
with respect to the two tuning parameters ε and α.

Despite not requiring the inversion of the matrix, this method is still computationally quite de-
manding, in that it requires the multiplication by the inverse of the FIM, both in the parameters
update and in the matrix update. Such multiplications are not demanding per se, but since they
occur at each update, and SGD may require millions of updates, they may slow down the algorithm
too much, especially when having large networks. Despite the algorithm would convergence in less
iterations, the total time needed may happen to be larger than in simple SGD.

More sophisticated and efficient algorithms using the natural gradient are used for deep learn-
ing as well [Desjardins et al., 2015; Pascanu and Bengio, 2014; Povey et al., 2015; Roux et al., 2008].
Moreover, the natural gradient is particularly popular in actor-critic and policy gradient reinforce-
ment learning methods [Bhatnagar et al., 2009; Grondman et al., 2012], since the main drawback
of it, which is the computational cost of having to multiply the inverse of the FIM, is negligible
with respect to the computational cost of the simulation of the episode. Examples of reinforcement
learning algorithms making use of the natural gradient are Peters and Schaal [2008] for actor-critic
and Kakade [2001] and Miyamae et al. [2010] for actor-only methods.

5.7.6 ADAGRAD

AdaGrad is one of the most popular adaptive methods for stochastic gradient descent, and was first
proposed by Duchi et al. [2011]. Their goal is that of obtaining second-order methods by using the
square-roots of the gradients. First they define:

Gk =
k∑

i=1
∇∇∇θi

(∇∇∇θi
)T (5.27)

which plays a fundamental role in the algorithm. The idea behind this algorithm is that of using
information about the geometry of the previous updates to exploit the local curvature. It can be
seen how the definition of Gk reminds, in some ways, the way that the inverse of the FIM is updated
in Equation (5.25).

They then propose a first update rule for the algorithm:

∆θ =−η(
Gk

)−1/2∇∇∇θ. (5.28)
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However, as for the natural gradient, this update rule can be problematic when using large networks.
Therefore, they propose the algorithm that is now known as AdaGrad:

∆θ =−ηdiag
(
Gk

)−1/2∇∇∇θ.k (5.29)

At this point, the matrix Gk can be dropped, since its diagonal is the sum of all the gradients at each
epoch, element by element. It is, in some ways, equal to the denominator of AdaDelta, but without
discount. This means that the value continuously increases with time, and ends up providing the
algorithm with a decaying rate, as in SGD. Here, the decay is specific per each parameter, which is a
great advantage when using deep networks. Moreover, the algorithm is designed such that rare, but
important features are given the proper importance: in fact, when a parameter that has usually very
small gradients, turns out to have a rather large gradient, it ends up having a much larger update
than it would have if also the previous gradients were large. Instead, parameters whose updates are
often large, tend to have smaller updates. AdaGrad has the advantage with respect to AdaDelta of
having a learning rate that automatically annihilates; however, it has the drawback of having the
parameter η to be tuned (AdaDelta has ε to be tuned instead, but it is usually just let equal to 10-6).

5.7.7 LEVENBERG-MARQUARDT

Levenberg-Marquardt (LM) is a common method used in nonlinear fitting problems, that has very
successfully been applied to machine learning. A good overview of the method is given by Yu and
Wilamowski [2011]. The main concept is the following: the approximated Hessian of the sum square
error (over the entire data-set, or at least a large portion of it) with respect to the parameters, is
computed, and then used to iteratively solve the optimization problem, using Newton’s method.

The elements of the Hessian can be obtained as follows:

hi , j =
∂2E

∂θi∂θ j
=

1
2∂

2
np∑

p=1

nm∑
m=1

e2
p,m

∂θi∂θ j
=

np∑
p=1

nm∑
m=1

(
∂ep,m

∂θi

∂ep,m

∂θ j
+ ∂2ep,m

∂θi∂θ j
ep,m

)
, (5.30)

where nm is the length of the output vector. Since Newton’s method assumes that ep,m is close to
zero, one can neglect the computation of the second term of the sum, which is the most demanding
one. Therefore, the entire Hessian can be approximated by using first-order information only:

Hk ≈ JT
k Jk (5.31)

Therefore, the update ∆θk can be computed as follows:

∆θk =
(
JT

k Jk

)−1
Jk ek . (5.32)

The latter is the general update rule for a Gauss-Newton method, in which the Hessian has been
approximated (otherwise, it would be the standard Newton method). In the LM algorithm, there is
a small modification, to ensure that the Hessian is invertible:

H ≈ JT J+µI, (5.33)

where µ is a dynamic combination coefficient. The goal of the combination coefficient is that of
raising all the eigenvalues of the same value (µ, indeed), and therefore diminishing the conditioning
number of the Hessian. From a more intuitive point of view, a large µ makes the method resemble
more a steepest descent gradient method: this may be particularly useful in case of very small cur-
vatures, where a second-order method tends to induce too large steps. To understand the reason of
this, it can be seen that with a very large µ, the method reduces to:

∆θk = (
µI

)−1 Jk ek = 1

µ
Jk ek . (5.34)
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Figure 5.5: Flow-chart for the LM training algorithm.

Therefore, the larger µ, the more the method resembles a first order method, with update rate
smaller at every step. In most cases, µ is a dynamic value that is updated at each iteration. The
most traditional way of updating µ consists of using a certain value, test the new error after the up-
date, and either accept the result (if the new error is smaller than the previous one) and decrease
the value, or increase the value and check again. For these reasons, the LM algorithm is also called
"damped least squares" method.

However, other possibilities exist. As an example, Suratgar et al. [2007] propose to useµ= 0.01eT e.
This way, µ is larger when the errors are larger (when the assumption done to derive the Gauss-
Newton method is stronger), and adapts itself without the need of a line search; however, there is
no assurance that an improvement occurs at each update step.

Another modification, which was implemented by Marquardt, is that of using the diagonal of the
approximated Hessian rather than the identity matrix to damp the method [Transtrum and Sethna,
2012]:

H ≈ JT J+µdiag
(
JT J

)
. (5.35)

With this implementation, for large µ the algorithm resembles more the first step of the AdaDelta
algorithm, and should therefore be more efficient than if using the identity matrix.

The flow-chart in Figure 5.5 shows how the algorithm is designed. The correct value of µ is esti-
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mated by trial and error, and increased whenever the solution is rejected, meaning that it causes an
increase in the sum of the error on the training set. If a solution is accepted, the algorithm moves to
the next iteration, and µ is decreased. Usual values are multiplying or dividing by 10. In this case, it
was found that having a multiplication by 2 and a division by 3 turned out very efficient. There is no
upper no lower bound to the value of µ. If the maximum number of inner iterations is reached, the
algorithm starts a new outer iteration with the new value ofµ. When the inner iterations are over (ei-
ther because of having reached the maximum number, or because the solution has been accepted)
the algorithms computes the error on the validation set. If there has not been an improvement in
the last smax iterations, the training stops. It is important that the algorithm saves the network that
performed best in the validation set. The algorithm may stop also if the maximum number of itera-
tions is reached.

5.7.8 LEARNING ALGORITHMS VERIFICATIONS

All the algorithms mentioned in this section have been developed, verified, and tested during this
research. Table 5.1 provides a useful summary of the performance of all the training methods used,
and a comparison with some methods included in the MatLab Toolbox. It does not include, how-
ever, any results concerning the simple SGD nor the natural gradient. The first is not included be-
cause it simply consists of backpropagation; the second because it has eventually not been used in
any of the trainings in this research.

All the algorithms have been tested on a network with 3 hidden layers with 10-8-5 neurons, all
with hyperbolic tangent as activation function, and linear output functions. The training ratio was
70 %, and the regularization parameter λ= 10−2. Between brackets, is the number of training dones
for a specific version of the algorithm. The MatLab routines are called with their function name. The
final peformance is always evaluated on the full set (training, validation and testing set together). As
a last note, when testing the algorithms, the network used is the one from the epoch that scored the
best in the validation dataset. This is to avoid that an overfitted network is used in the final testing.

The table shows that, in general, the codes here developed achieve better results than those of
the Matlab Toolbox. They do so, though, with larger computational requirements. The training with
the developed algorithms takes usually 2 to many times longer than the MatLab algorithms. After a
further investigation, it was noticed that such difference occurs because of how the networks have
been coded. The algorithms implemented in this research need averagely as many, or less, function
evaluations than those of the MatLab Toolbox, while achieving better results. In addition, the SGD
methods provided by MatLab perform particularly poorly. This is very important, since they are the
only methods that can be used to train deep networks. Hence, this subsection justifies the need of
implementing algorithms for both backpropagation as well as for supervised learning.

5.8 REINFORCEMENT LEARNING
Reinforcement learning is a branch of artificial intelligence that is directly inspired by how learn-
ing occurs in intelligent beings. In a formal way, RL consists of mapping to each state the action
that maximizes the expectation of future rewards [Engelbrecht, 2007; Sutton and Barto, 2012]. In-
formally, it can be defined as learning by interaction, or learning by exploration and exploitation.
Exploration refers to the act of attempting new actions, whereas exploitation consists of making use
of what was previously learned.

5.8.1 ELEMENTS OF RL
A few general concepts are necessary before discussing the RL framework [Engelbrecht, 2007]:

• Agent: is the learner, the decision maker.
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Table 5.1: Algorithms’ performance on the building energy dataset from MatLab.

Algorithm/
Options

End
conditions

Time RMS
Standard
deviation

of RMS

trainlm (100)
MatLab default

15 fails / µ= 1010 8 s 0.0396 0.0045

traingdx (100)
MatLab default

15 fails 10 s 0.0652 0.0395

traingda (100)
MatLab default

15 fails 4 s 0.1017 0.0287

LM (10)
λ0 = 1

5 fails / 30 epochs 71 s 0.0368 0.0014

LM (10)
λ0 = 0.01

5 fails / 30 epochs 76 s 0.0464 0.0204

LM (10)
λ0 = 100

5 fails / 30 epochs 72 s 0.0370 0.0013

LM (10)
λ0 = 1

5 fails / 10 epochs 25 s 0.0414 0.0028

LM (10)
λ0 = 1

5 fails 151 s 0.0361 0.0013

AdaDelta (100)
ε= 10−6, N = 10, γ= .9

2 000 batches 26 s 0.0433 0.0018

AdaDelta (10)
ε= 10−5, N = 10, γ= .9

2 000 batches 33 s 0.0462 0.0025

AdaDelta (10)
ε= 10−6, N = 10, γ= .99

2 000 batches 31 s 0.0440 0.0024

AdaDelta (10)
ε= 10−6, N = 100, γ= .9

5 000 batches 606 s 0.0358 0.0013

AdaDelta (10)
ε= 10−6, N = 1, γ= .9

10 000 batches 41 s 0.0481 0.0027

AdaDelta (10)
ε= 10−7, N = 10, γ= .9

2 000 batches 33 s 0.0501 0.0034

AdaDelta (10)
ε= 10−7, N = 10, γ= .9

10 000 batches 184 s 0.0400 0.0004

AdaGrad (100)
η= 0.1, N = 10

1 000 batches 15 s 0.0441 0.0022

AdaGrad (100)
η= 0.1, N = 10

2 000 batches 31 s 0.0414 0.0014

AdaGrad (10)
η= 0.1, N = 10

10 000 batches 145 s 0.0384 0.0009

AdaGrad (10)
η= 0.1, N = 100

1 000 batches 141 s 0.0395 0.0005

AdaGrad (10)
η= 0.1, N = 100

5 000 batches 531 s 0.0356 0.0011
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Figure 5.6: Reinforcement learning problem [Engelbrecht, 2007].

• Environment: is whatever cannot be modified by the agent. It is generally defined by the
transition function (for a discrete or a stochastic system), or the dynamics equations (for a
continuous deterministic environment). It is, in the case of this research, equivalent to the
model.

• State s ∈ S : is the state in which the agent is. Since a full description of the state is often
impossible, the state is limited to the input that the agent receives.

• Action a ∈A: is the decision made by the agent. According to the dynamics, or the transition
function of the problem, the couplet s, a will evolve the state of the agent to the future state,
either deterministically or according to the probability distribution d(s′|s, a), where s′ is the
state of the agent in the future time-step.

• Policy π: is the law, or rule, or function, or probability distribution, according to which an
action a is taken depending on the current state s.

• Immediate reward r (s, a, s′): is the scalar value of how good the latest action has been.

• Value function Vπ(s): is the value of all the future rewards that are expected to be obtained
when in state s following policy π.

• Action-value function Qπ(s, a): is the value of all the future rewards that are expected to be
obtained when in state s, taking action a, and then following policy π.

The environment used in RL problems can usually be modeled as an MDP [Sutton and Barto,
2012], in which the state consequent to an action is a probability distribution and not deterministic.
This can include aerocapture problems, where the state (as known by the guidance logic, thus, the
input for the guidance), together with the action, cannot deterministically define a future state,
because of perturbations and lack of information. In a discrete-time Markovian decision process,
the future state s′ is indeed the result of the probability distribution d(s′|s, a) previously mentioned.

5.8.2 VALUE FUNCTIONS AND BOOTSTRAPPING

At this point of the description, discrete states and actions are considered.
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The core of reinforcement learning lies in the correct evaluation of the value function. It is clear
from its definition that the evaluation of the value function for any state implies having an unbiased
expectation of how the state will evolve in the future for an infinite amount of time.In mathematical
terms, a value function is defined as (for episodic tasks only, since this is the concern of this research)
[Sutton and Barto, 2012]:

V (x) = E

[
nt∑

t=1
γt r (t )

]
(5.36)

where γ is a discount factor, between 0 and 1.
An optimal value function V ? is the value function referred to the optimal policy π?, the policy

for which the corresponding value function is higher than any other at any state. For an optimal
value function:

V ?(s) ≥Vπ(s), for any π, and for all s ∈S (5.37)

The same condition holds for the optimal action-value function Q?(s, a). These imply, after a short
derivation, the Bellman optimality equations [Bellman, 1957]:

V ?(s) = max
a∈A

p∑
s′

(s′|s, a)
[

r (s, a, s′)+γV ?(s′)
]

(5.38)

Q?(s, a) =
∑
s′

p(s′|s, a)

[
r (s, a, s′)+γmax

a∈A
Q?(s′, a)

]
(5.39)

Both equations express the concept of bootstrapping, which consists of evaluating a value function
as the sum of its immediate reward plus the discounted value of the value function of the following
state [Sutton and Barto, 2012].

From this the policy improvement theorem [Sutton and Barto, 2012] can be derived, which is
the foundation of dynamic programming. It states that, if, for all s ∈S :

Qπ(s,π′(s)) ≥Vπ(s) (5.40)

then π′ is as good, or better, than π. By applying this criterion, it is possible to iteratively optimize
the policy and its corresponding value function. This should be done for any state, and for any ac-
tion possible, iteratively, both because of the randomness of the state transition, and because every
update is based on a previously non-optimal value function of the following state. After virtually
an infinite number of iteration, convergence occurs. It is clear that this method becomes infeasible
for problems with large state-space and action-space; moreover, it is proved that its convergence
time increases polynomially with the size of the state-space, and exponentially with the number of
dimensions. The latter is the so-called "curse of dimensionality" [Bellman, 1957].

5.8.3 Q-LEARNING

Q-learning partly solves the previous problem [Watkins, 1989]. It consists of learning from a real sit-
uation (or simulation). Learning starts from a certain state, and then goes on. By so doing, the only
states to be updated would be those that occur during a real situation, largely saving computational
time with respect to dynamic programming. The update rule for this kind of learning is [Sutton and
Barto, 2012]:

Q(s, a) ←Q(s, a)+α
[

r (s, a)+γmax
a′ Q(s′, a′)−Q(s, a)

]
(5.41)

where α is a constant smaller than 1, which is needed because of the non-deterministic properties
of the environment and because of the non optimal value of Q(s′, a′), and the expression in the
parenthesis is referred to as the δ:

δ=
[

r (s, a)+γmax
a′ Q(s′, a′)−Q(s, a)

]
(5.42)

The value of δ is obtained by substituting the values obtained in Bellman’s optimality equation.
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5.8.4 ELIGIBILITY TRACES

When optimizing, the∆V of an aerocapture, all of the rewards are given at the final step, once the∆V
can be determined. Thus, an update rule for the only previous state may slow down the convergence
process indefinitely. This is solved using Q(λ)-learning, which makes use of eligibility traces.

An eligibility trace Z is initialized at the beginning of each episode by setting Z (s) = 0 for all
s ∈S . Then, at each time-step:

Zt (s) =
γλZt−1(s) ifs 6= st

1 ifs = st
(5.43)

The update is then done for all s ∈S , using the δ as computed for the Q-learning:

Q(s, a) ←Q(s, a)+αδZ (s) (5.44)

By so doing, and properly tuning the value for λ (its optimal value depends on the problem, but in
most examples shown in Sutton and Barto [2012] the best value is between 0.8 and 0.9), one can be
certain that part of the value function at the final state is propagated backwards to the initial state
as well.

However, if one is looking for the optimal action-value function, a problem occurs. It is in fact
possible that a certain action a appears to be less optimal than other actions just because the cor-
responding state-action function considers the not yet optimal policy π. However, it is possible that
that very action a would be optimal if the action-value function were the optimal one. This can
leave the state consequent to that action to never be explored, and thus the optimal action-value
function found would not be a global optimum. To solve this, an element of randomness in the
decision process is added. A policy is called greedy if it always tries to maximize the value function:

π′(s) = argmax
a∈A

Qπ(s, a) (5.45)

It is called ε-greedy if instead it takes a non-optimal decision with probability ε. The choice of ε is
fundamental to the convergence of the method, and is usually decreased in time during learning
[Sutton and Barto, 2012].

When taking a non-optimal action at time tk in a Q(λ) learning method, the effects of such
choice propagate backwards because of the eligibility trace. This is something undesired, since in
this case the algorithm is just exploring, and thus the consequences of taking a non-optimal action
at tk would negatively affect the states previous to that non-optimal decision. At this point, two
different philosophies are possible: using Watkins’ Q(λ) [Watkins, 1989], one deletes the trace once
the non-optimal action is taken; using Peng’s Q(λ) [Peng, 1993; Peng and Williams, 1996] instead, a
new simulation starts where the non-optimal action is taken, but the previous one is also continued,
such that the update of the final state can reach the initial state.

Watkins’ Q(λ) is clearly less efficient than Peng’s Q(λ), since the propagation backwards in time
is interrupted, making the eligibility traces less efficient. In the extreme case, assuming ε = 1,
Watkins’ Q(λ) would be reduce to a simple Q-learning method, which, as it was mentioned, would
be very inefficient for the problem of aerocapture. Peng’s Q(λ), on the other hand, although more
efficient, highly increases the complexity of the structure of the algorithm: if, as an example, one
had a simulation lasting 100 time-steps, and an ε= 0.1, the final number of simulations consequent
to that single one would easily be about 210, since, on average, every simulation would split into two
every ten time-steps. This would not be a problem from a computational point of view, since each
of those simulations would contribute to optimizing the action-value function, but from the point
of view of the architecture of the software.
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5.9 CONTINUOUS RL
A final complication occurs because of the continuity of the state-action space. So far, only discrete,
or tabular, states were considered. To make RL possible in continuous state-action spaces, para-
metric function approximators, such as the previously discussed FFNNs, have to be used, for both
the value and the policy functions.

An algorithm such as Q(λ), when made continuous with the aid of a parametrized function, is
a critic-only algorithm. The policy does not play a role in the optimization process, since all the
decisions made are either optimal with respect to the action-value function or, if using an ε-greedy
policy, random.

These kind of algorithms suffer of the fact that either the action spectrum has to be discrete,
either an optimization problem has to be used at every step. Moreover, the approximate action-
value function would be biased for most of the cases, and no guarantee of convergence is available
[Grondman et al., 2012]. However, they have the advantage that the update occurs at each time-step.

The opposite to those are actor-only methods (where the name actor stands for the agent), in
which the agent is a parametrized function, and no explicit value function is used. They are di-
vided into two categories: those searching in action space, and those searching in parameter space.
Actor-only methods that search in action space are particularly popular for tasks with no delayed re-
wards. That is because they do not make use of a value function, which is the only means of keeping
delayed rewards into account, without running entire episodes. Examples of these are the REIN-
FORCE algorithms [Williams, 1992], in which a policy is reinforced whenever the reward is larger
than a certain baseline. Without going into details, the baseline is the average reward encountered
up to that moment. Always Williams [1992] gives an example of how the same method can be used
for episodic tasks with delayed rewards, using "unfolding-in-time" mapping.

Moreover, REINFORCE algorithms converge particularly slowly because of the large noise in
the gradients, due to the use of stochastic policies. Randomness is extremely important in that it
provides exploration, and should not be removed. The way the algorithm works is indeed by taking a
stochastic action whose probability density distribution is defined by the current policy parameters:
if the action gives a larger reward than the baseline, the action is reinforced.

The main advantage of these algorithms is indeed that they work in the action space, instead of
in the parameters space: this means that the reinforcement can be provided by back-propagation,
which is extremely efficient.

However, the presence of a baseline cannot work with the problem of this research, since the
maximum obtainable reward depends on the initial conditions and perturbations, and differs very
much one case from the other. Therefore, a policy tested with unfavorable initial conditions will
always be negatively reinforced, even if it obtained the theoretically maximum achievable rewards
for those initial conditions.

Policy gradient methods that work in the policy parameter space can be used for episodic tasks
instead, if they are updated only at the end of an episode, or of a Monte Carlo run of episodes, in a
way that maximizes the total rewards of the episode(s). In some ways, the evolutionary strategies
used by Gelly and Vernis [2009] could be included into this category. Policy gradient methods that
search in parameter space have the disadvantage that they have to deal with a much higher dimen-
sionality, since the parameter space can easily have 100, or 1,000 dimensions. However, they can
make use of global optimizers, and get rid of many problems that are specific to RL. A particularly
efficient method is PGPE, developed by Sehnke et al. [2008]. The super-symmetric version of it is
the algorithm that will be used in the RL part of this research, for reasons that will be explained in
the next subsection.

The problem of the baseline could have also been solved by actor-critic methods. With these, it
would be possible to update the policy (and, in this case, also the value) networks at each time-step,
while still keeping delayed reward into account. However, they require linear approximators to be
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able to reach global optima. Moreover, they are very difficult to tune. An example of this application
in the aerospace field is provided by van Kampen et al. [2006], who showed that it can be used to
control the longitudinal dynamics of an F16.

In the case of this research, an additional drawback of using an actor-critic method is the fact
that the rewards are a function of the final conditions only: thus, the method would have largely
relied on bootstrapping, and this could have made the learning less robust.

5.10 POLICY GRADIENT WITH PARAMETERS EXPLORATION

Sehnke et al. [2008] developed a method called PGPE for episodic tasks, with delayed rewards, to
tackle the first problem of actor-only methods, concerning the variance of the gradient. They pro-
pose to move the exploration to the parameters, instead of to the action. By so doing, a policy is
perturbed, and then is deterministic during the entire episode. Then, by sampling, the gradient
with respect to the policy parameters is estimated. The method still uses a baseline, and is therefore
not suitable for this research. However, the problem is first mitigated by Sehnke et al. [2010], with
the SyS PGPE, and then completely removed by Sehnke [2013], who introduced the Super SyS PGPE,
which is entirely baseline-free.

The main reason why Super SySPGPE is used is indeed the fact that it is baseline-free, it is a
global optimizer, and it has proven to be working very well with high-dimensional policies such as
an FFNN.

The method is here reported. Any derivation is skipped, and can be found in the original papers.
The main concept behind SySPGPE is that of having a random perturbation ε in the parameters,
and evaluate the episode for that perturbed policy. Same is done for a policy that is perturbed in the
exactly opposite direction (−ε). Then, the mean value of the parameters is shifted in the direction
of the one that scored best, in a way proportional to how much better the perturbation was. It is
important to notice that the current policy is never evaluated. Moreover, what is estimated this
way, is more of a global trend rather than a gradient, since the perturbation is always very far from
being infinitesimal. For this reason, the method is also very suitable for global optimization of high-
dimensional problems, as it will be shown later.

The perturbation is drawn from a Gaussian distribution, whose mean µ and standard deviation
σ are different for each parameter. The update rule is the following, normalized according to Sehnke
and Zhao [2015]:

∆µ=αµ
ε
(
r+− r−)

2m − r+− r− , (5.46)

where r+ is the reward obtained by the policy perturbed by ε, r− is the reward obtained the policy
perturbed by −ε, and m is the maximum obtainable reward Alternatively, without normalization:

∆µ=αµ
ε
(
r+− r−)

2
. (5.47)

The variance with which the perturbations are drawn is also updated. To do so, it is necessary, for
each parameter µi , to obtain a perturbation ε∗i that is the mirror of the original perturbation εi . In
other words, it is necessary to generate a function that, if εi belongs to the central 5% of a Gaussian
distributions, finds the corresponding ε∗i belonging to the outer 5%. A closed-form function that
does this exactly is unknown, and Sehnke [2013] proposes a function that is a very good approxima-
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tion of it. Without giving any derivation:

φi = 0.67449σi , (5.48)

ai =
φi −‖εi‖

φi
, (5.49)

ε∗i = εi

‖εi‖


e

c1
‖ai ‖3−‖ai ‖
log(‖ai ‖)

+c2‖ai ‖
if ai ≤ 0

eai(
1−a3

i

)c3 ai otherwise,
(5.50)

where c1 = −0.06655, c2 = −0.9706, and c3 = 0.124. Such distribution has a standard deviation of
1.002 times that of the original one, and a slightly different shape. With this, another pair of samples
is generated, using ε∗ and −ε∗. The mean reward of these two is r−−, whereas the mean reward of
the previous two is r++. Also, these two samples can participate in Equation (5.47) if one substitutes
ε with

(
ε∗+ε)/2, and computes r+ as the mean of the rewards obtained with ε and ε∗ (and r− as

the mean of the rewards obtained with −ε and −ε∗). The standard deviation can then be updated
as:

ετ =
{

ε if r++− r−− ≤ 0
ε∗ otherwise

(5.51)

∆σi =ασ
ετi 2−σ2

i
σi

∥∥r++− r−−∥∥
2

. (5.52)

This way, the standard deviation of a certain parameter decreases if the highest rewards are ob-
tained when such parameters is perturbed by more than one median deviation (φi ), and increases
otherwise. Also in this case, normalization is possible, dividing by

(
2m − r++− r−−)

.

5.10.1 VERIFICATION

The algorithm has been reproduced for this research. The verification consisted of two parts: first,
checking whether the mirrored function was properly written. This was done by generating one
million of random samples, and mirroring them, and then checking the distribution of the samples.
Then, the software was validated by optimizing the Rastrigin function, which is provided by Matlab.

The method turned out to reach the global optimum almost always for a 10-dimensional Rast-
rigin, and achieved local optima extremely close to the global one for both the 100- and the 1,000-
dimensional Rastrigin. A convergence plot of the latter case for an average of 10 attempts is shown
in Figure 5.7. The convergence curve is extremely similar to the one obtained by Sehnke [2013] in
their validation. The same metaparameters were used (and the search space was bounded between
-10 and 10 in every dimension). To give an idea of the complexity of the problem, an sequential
quadratic programming (SQP) method stops in the closes local minimum, and also many global
optimizers such as simulated annealing or evolutionary algorithms often have a hard time in solv-
ing the Rastrigin problem for high dimensionalities.

Figure 5.8 shows instead the convergence for the 100-dimensional Rastrigin, with an initial vari-
ance very large (σ0 = 20). The convergence curve is quite curious, and seems to be followed by every
one of the different 100 optimization attempts. This sort of curve will be encountered again in this
research, and will be interpreted as an indicator of a too large σ0. However, it does not cause exces-
sive problems, since the convergence curve for the same problem (not reported here) with a smaller
initial variance (σ0 = 2), converges about 55,000 iterations, instead of 65,000. It would be certainly
of interest to investigate whether this feature can be exploited in to make the optimization faster.

In conclusion, the algorithm, meant as a global optimizer, is verified. However, the advantage of
this method is that it also uses some sort of gradient information. For this reason, it can be used in
a sequential way in RL problems. More about this will be shown in Section 6.6.
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Figure 5.7: Average and standard deviation of the
convergence curve of the PGPE for the 1,000-dimensions

Rastrigin. Statistics from 10 different optimizations.
σ0 = 2, αµ = 1, ασ = 0.01.
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Figure 5.8: Average and standard deviation of the
convergence curve of the PGPE for the 100-dimensions
Rastrigin, with high initial variance. Statistics from 100

different optimizations. σ0 = 20, αµ = 1, ασ = 0.01.

5.11 CONCLUSIONS
In this chapter the the basics of machine learning and reinforcement learning have been described.
It was explained in Section 5.1 that both are very attractive as a guidance solution for aerocapture.
Specifically, through the first one, it is theoretically possible to obtain a neural network that should
be able to give the approximation of the solution of an optimal control problem in real time.

However, optimal control problems are suited for deterministic cases. In aerocapture, the op-
timal solution for a deterministic environment is very different from the optimal solution for a
stochastic environment, for reasons that were shown in Subsection 4.3.1. Hence, RL seems like an
even better solution. RL has many branches, and each branch is divided in a variety of algorithms
and methods. Among all, Super SySPGPE was chosen, given the fact that it can update the network
after each episode (instead of after a Monte Carlo run of episodes, like evolutionary algorithms), has
global optimization properties, and does not need a baseline.



6
SOFTWARE DESIGN, VERIFICATION AND

VALIDATION

All the computational tools needed for this research have been developed, and used, on MatLab.
The software developed includes many different tools, listed below:

1. a trajectory simulator;

2. an NPC guidance;

3. a trajectory solver;

4. a machine learning architecture, including all the algorithms that were tested in Chapter 5;

5. a reinforcement learning architecture.

The design, verification and validation of all the tools that have been developed throughout
this research is reported in this chapter. Before that, a short discussion about the already available
software is carried out.

6.1 AVAILABLE SOFTWARE
There are a few software already available that will be used during the research. Those only concern
neural network simulation and training, numerical integration and the US76 Atmosphere model.
The packages concerning neural network training have only been used for verification in Subsection
5.7.8. Also there, motivation for not using the available MatLab Neural Network Toolbox was given.
Thus, it is possible to start with the integrators.

Integrators. MATLAB has already implemented many routines that can numerically integrate us-
ing variable time-step methods, like ode23, ode45 and ode113, which are respectively, Runge-Kutta
(RK)23, RK45 (Dormand-Prince), and variable time-step, variable order Adams-Bashforth-Moulton
of orders 1 to 12. The latter is a multi-step solver, and therefore needs to be initialized using a differ-
ent method, which is not specified. Fixed steps solvers are also available, all of the RK family, from
the first order to the fifth.

US76 Atmosphere. Rather than a tool, this is just a function. The one use is not the MatLab built-in
function, which is only valid up to little higher than 84 km altitude, but the "Complete 1976 Standard
Atmosphere" uploaded on the MatLab File Exchange by Brent Lewis in 2007. Some of the output of
the function were compared with the table in [NASA, 1976], and found that the software was correct.
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6.2 SIMULATOR ARCHITECTURE
In this section, the high level architecture of the simulator is described, followed by the operations,
and the external forces.

6.2.1 HIGH-LEVEL ARCHITECTURE

The simulator is responsible to numerically reproduce the flown trajectories. The inputs it receives
(not including the various databases being used), are the initial conditions, two different arrays and
a scalar number specifying the perturbations, and a guidance scheme. The simulator also includes
a simple attitude controller/planner, but since this research is not focused on attitude control, it is
not changeable, and therefore it is not considered as an input. The outputs are the control and state
histories of the vehicle, as well as the encountered density time series. The reason why the latter
is also included as an output is because the atmospheric density perturbation model can be quite
complex, and therefore the density cannot be obtained easily from the histories and the inputs.
An additional vector of data about the final state is outputted, which gives information about the
final planar ∆V , the ∆V including the needed inclination change, and the final apoapsis. The state
history is given in spherical, relative coordinates. If desired, it is possible to transform that set of
data into any other needed. Moreover, using the density history and the spherical relative state, it is
possible to directly obtain the load factor history (together with the perturbations data), as well as
the heat-flux history (both cold and hot wall), from which the heat-load history can be integrated.
The choice of saving only one set of variable, and of not including heat-flux nor heat-load history, is
done to reduce the required memory.

6.2.2 OPERATIONS

The simulator starts propagating the trajectory according to all the pre-set perturbations (in this
phase, with the exception of density small-scale perturbations) until the minimum drag is reached,
always set to 0.5 g. After that, the guided phase begins. The only different thing is that now, every
one second, the commanded bank-angle is computed, and the consequent bank-angle trajectory
is planned. Such a phase ends if either the drag goes back to be below 0.5 g, or if the altitude goes
below the sea level, or, even, if the descent becomes steeper than γ =-70°. The latter condition is
implemented for two reasons: first, the vehicle would never recover from such a steep descent, and
therefore the aerocapture can be considered not successful, and second, a flight-path angle of -90°
would cause the heading angle to be not defined. Alternatively, in a few cases, the drag condition
for the guidance is substituted by the 100 km altitude line, above which the guidance is shut down
(in any case, the trigger condition stays 0.5 g). The last phase of the simulation is then concluded
either if apoapsis is reached (true anomaly θ = 180°), or if the flight is almost vertical, as well as if
the velocity goes below 0.3 Vc , or the altitude goes below 0 km. In case the orbit is still hyperbolic,
integration would end 3000 s after the end of the closed-loop phase. Such condition holds also in
the exoatmospheric phase, even though one should carefully select proper initial conditions before
launching the software. In case the target apoapsis is such that half orbital period at that altitude is
much larger than 3000 s, the duration can be changed. This process can be seen in Figure 6.1.

These three phases are labeled, respectively, "exoatmospheric phase", "closed-loop phase", and
"exit" phase. The labels’ names are not completely truthful to the essence of the phases themselves,
since in the exoatmospheric phase the aerodynamic force is still included, and the exit phase might
happen to be the "before-crash" phase. Table 6.1 summarizes all the characteristics of each phase.

All the forces and perturbations (if active) are included in the closed-loop phase. In the other
phases, the only perturbations not included are the small-scale density perturbations. As a final
remark, one might debate the need of including all the forces in both the exoatmospheric and exit
phase. The reason is twofold: first, Keplerian orbits could not be used, because of the presence
of the J2 gravity term, which becomes important especially in those phases. Second, during those
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Figure 6.1: Flow chart for the high-level architecture.

phases the dynamics of the vehicle are very slow, and also, since no closed-loop is active, adaptive
time-steps integrators can be used: these two factors, combined, cause the two phases to be neg-
ligible from a point of view of computational demands with respect to the closed-loop phase. The
small-scale perturbations cannot be included in the exit phase nor in the exoatmospheric, because
not compatible with adaptive step-size integrators. However, the loss is negligible, as previously
explained.

6.2.3 EXTERNAL FORCES

The external forces play a major role in the motion of the vehicle in the Propagation boxes of Figure
6.1. One could refer to Figure 6.5 on page 116 to see the full flow chart of the external forces.

The external forces include the aerodynamic force, and the oblate gravity field. The computa-
tion of the gravitational force is rather simple, since it makes use of the inertial Cartesian coordi-
nates, and only needs the constants of J2 and µ.

A little more complicated is the case of the aerodynamic force. To compute it, it is necessary
to obtain the density, and thus the altitude, which is a function of the position and velocity in the
spherical coordinates, as well as the relative velocity. Moreover, the direction of the aerodynamic
force in the inertial frame is a function of all the angles in the spherical, relative coordinates, as well
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Table 6.1: Integration phases characteristics.

Phase name End Conditions (OR) Forces Perturbations Integrator

Exoatmospheric ∆t > 3000 s, D > 0.5 g All All but small-scale Adaptive

Closed-loop
D < 0.5 g (or h > 100 km),

h < 0 km, γR < -70°,VR < 0.5Vc
All All Fixed-step

Exit
θ = 180°, ∆t ≥ 3000 s, h < −1 km,

γR < -89°,VR < 0.3Vc
All All but small-scale Adaptive

Table 6.2: Constants used.

Name Symbol Value Units

Earth rotation ωcb 7.2921159 ×10-5 rads−1

Earth gravitational parameter µ 3.986004418×1014 m3 s−2

Earth J2 J2 1.08262668×10-3 -

Earth Equatorial radius Re 6.378137×106 m

Earth flattening parameter f 3.352810664747×10-3 -

Air gas constant R0 2.8699×102 Jkg−1 K−1

Stefan-Boltzmann constant σ 5.670367×10-8 Wm−2 K−4

as of the bank-angle. Density can also be depend on the large-scale and small-scale perturbations.
Because the small-scale perturbations are rather complex, they are treated in Subsection 6.2.5. The
forces are also functions of the aerodynamic coefficients, which are, in turn, functions of the local
speed of sound (and, therefore, altitude), and relative velocity. Therefore, a few rotations and coor-
dinates transformations are needed to compute the aerodynamic force. Also, many constants are
needed. Those are summarized in Table 6.2. For simplicity, not only the constants used for the ex-
ternal forces are included in the table, but also those used in Subsection 6.2.8 (except for those that
are specific to some equations).

VERIFICATION

Every block of Figure 6.5 has been verified manually. A few blocks, however, deserved more at-
tention than others. The transformation blocks have been verified for special cases. The altitude
routine has been verified by computing the altitudes at the Equator and at the Poles. The transfor-
mation to rotating coordinates has been verified with its inverse; in addition, it has been tested that
it would not cause singularities at specific states, such as zero or vertical velocity, or position over
the Poles. Eventually, an additional verification can be seen in Subsection 6.3.1, where the propaga-
tor is compared to propagators that use different variables. Below are reported the verification for
the tool outputting the external forces. However, this is not to be confused with the full validation,
that includes validation of the vehicle and atmospheric models, and which is reported in Subsection
6.2.7.

Central Gravity. The gravity force has been verified in two steps. First step consisted in reproduc-
ing a Keplerian orbit, neglecting any perturbations due to either atmosphere or J2. The simulation
consisted of reproducing an orbit with a semi-major axis of 7000 km, inclination of 30° and eccen-
tricity 0.1 for the duration of a full civil day. Using a very high accuracy propagator, the change
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in semi-major axis at the end of the simulation was 3×10-3 m. The eccentricity has a variation of
3.5×10-11. Other parameters, such as the inclination or the RAAN, have variations that are on the
order of magnitude of the machine accuracy. Considering that a full aerocapture would last no
longer than one hour, this makes the verification successful.

J2 Gravity. The second step consists of verifying the effect due to J2. This is done for the same
conditions as before, except that the eccentricity is now set to 0. The simplest way to verify this
block consists of using the energy equation including the potential energy due to J2:

E = 1

2
V 2
I − µ

r
+ 1

2
µJ2

R2
e

r 3

(
3sin2δ−1

)
. (6.1)

This energy is constant during the entire orbit, with variations due to numerical errors in the order
of 10-3 Jkg−1. Hence, the acceleration due to the oblate gravity field can be considered verified.

Drag Force. The drag force test is the first of two tests involving the aerodynamic force. The test
consists of letting an object fall from high altitude, and compare its speed to the local terminal ve-
locity, which changes along the altitude due to changes in gravity and, mainly, density. The vehicle
is supposed to accelerate as long as its velocity is smaller than the local terminal velocity. Once
it is larger, it should start decelerate, and asymptotically reach terminal velocity. This behavior is
also seen in any re-entry problem: the vehicle usually continues accelerating for the first part of
the flight, until D > −g sinγ. In re-entry, since the flight is not vertical, deceleration begins before
the speed becomes larger than terminal velocity. The terminal velocity is computed, at any point,
setting D = g , which implies:

Vt =
√

2g m

ρSCD
, (6.2)

with g and ρ both functions of altitude. In this case, an atmosphere with constant scale height has
been used.

To avoid any effects due to Earth’s rotation, the freefall starts above the North Pole. The object
has a mass of 50 t, and a ballistic coefficient of 176.8 kgm−2. In the first attempt, the flight is set
to be vertical, and any lift that would cause the flight to change direction is set to zero. Figure 6.2
shows the velocity of the falling object and the local terminal velocity as functions of altitude. It
can be seen that the object continues accelerating until it crosses the terminal velocity. The sign
of the acceleration is positive as long as the velocity is smaller than the terminal velocity, and is
then negative once the velocity overshoots terminal velocity. Afterwards, the two asymptotically
approach each other. Interestingly, if the freefall begins from some lower altitude (e.g., 20 km), the
overshoot does not occur, and the velocity approaches the terminal velocity from below.

The second case concerns a ballistic descent. Here, the equilibrium velocity involves the sine of
the flight-path angle, since, in a non-rotating planet, deceleration only begins when D > −g sinγ.
Therefore:

Veq =
√

−2g m sinγ

ρSCD
if γ< 0, (6.3)

whereas if γ > 0 the vehicle decelerates in any case. In this second test, the flight begins horizon-
tally at an altitude of 100 km with circular velocity. Deceleration starts immediately, even though
the velocity is smaller than the terminal velocity, because the flight-path angle is zero, and thus
the equilibrium velocity is also zero. Because of the drag, the horizontal velocity decreases continu-
ously: hence, the terminal and equilibrium velocities become asymptotically the same, and so does,
even though more slowly, the vehicle’s velocity. This process can be seen in Figure 6.3.

Consequently, the drag force can also be considered verified.
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Figure 6.2: Velocity and terminal velocity during freefall
from 500 km altitude.
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Figure 6.3: Velocity, terminal velocity and equilibrium
velocity during ballistic entry.

Lift Force. The lift force is verified using the analytical solution of skipping entry. Analytical solu-
tions make use of a variety of assumptions. It will be shown that for conditions that tend to those
assumptions, the simulator gives solutions that tend to the analytical ones. Two of the predictions
of the theory are [Mooij, 2014]:

γF =−γE ; (6.4)

VF =VE e
2γE
L/D . (6.5)

Two of the main assumptions of the analytical solutions are flat Earth and aerodynamic force much
larger than gravity. Both of these become closer to be true if the radius of the plane tends to infinity.
Therefore, the two equations above mentioned will be tested for increasing planet radius. Additional
assumptions include constant aerodynamic coefficients and exponential atmospheric density. The
entry interface occurs at 100 km, with local escape velocity and a relative entry flight-path angle of
−10°: this way, the expected ratio between entry and final velocity is 2.0100 for L/D = 0.5 and 1.4177
for L/D = 1.

Figure 6.4 shows the trajectories for increasing Earth radius. The vertical lines correspond to the
theoretical, analytical values. The trajectories have been computed for nine exponentially increas-
ing radii of the celestial body, from R = RE to R = 256RE . It can be seen that there is an asymptotic
behaviour, and the final velocity tends to the analytical one for the radius tending to infinity. Specif-
ically, when L/D = 0.5, the difference is larger than 200 ms−1 for R = RE , whereas for the largest ra-
dius the difference is about 3 ms−1. When L/D = 1, the difference decreases from around 400 ms−1

to 3.5 ms−1. The same convergence occurs for the flight-path angle. Since the plots are very similar,
they are not reported here. For L/D = 0.5 the final flight-path angle when R = RE is 7.0268°, whereas
for the largest radius it is 9.9999°.

At this point, all the forces have been verified to be working correctly. An additional verification
will be done in Subsection 6.3.1. However, these verifications do not include verification of the
models used, such as the vehicle, the atmosphere, the planet’s shape and so on. For those, the
validation of (almost) the full model is reported in Subsection 6.2.7.
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Figure 6.4: Convergence of numerical solutions to analytical solution for increasing planet radius; BC =159.15 kgm−1.
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6.2.4 VEHICLE

The vehicle model does not require much discussion. In fact, all that is used is an interpolation
of lift and drag coefficients as a function of Mach number. The angle-of-attack is not even play a
role in the simulator, despite it is indirectly needed to compute the corresponding aerodynamic
coefficients at each Mach number.

In addition to that, some perturbations may be included. Those are kept constant during the en-
tirety of the trajectory, and are a variation in ±10 % in both lift and drag coefficients (independently),
as well as a ±1.5 % variation in mass, unless otherwise specified.

6.2.5 ATMOSPHERIC DENSITY PERTURBATIONS

Three kinds of atmospheric density perturbations are designed to occur in this simulator. The first
and simplest one, is that of multiplying the density profile by a constant random number larger than
0. In this research, such number is in the interval [0.5, 1.5]. However, this kind of perturbation will
not be the subject of this subsection.

The other two kinds of perturbations are the small-scale and the large-scale perturbations, both
according to the Earth GRAM-99 database, as described in Subsection 3.6.3.

The large-scale perturbation subroutine takes as inputs altitude, latitude and longitude of the
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spacecraft, together with an array with the 4 random variables described in Subsection 3.6.2 (φQ , Q,
Qnm , and av ), and uses all this data to compute ρl by Equation 3.43. The altitude is then also used
to interpolate the value of σρ,l . The product of these is then multiplied by the unperturbed density
at the given altitude, and added to it. This is done each time the propagator needs to compute the
external forces.

The small-scale perturbation subroutine is instead a little more complicated. In addition, it
requires a particular initialization. The initialization takes as input a seed to initiate its random
sequence. Since the small-scale perturbations require a random number at each step, and since
the duration of the trajectory is unknown before-hand, it would not make much sense to provide
an entire random sequence before. Therefore, for each trajectory a random seed is provided to
initiate the sequence. Moreover, the model includes two cross-correlated variables, which are used
to compute the artificial horizons of the horizontal and vertical scale sizes. To be sure that the cross-
correlation is not affected by the two initial values randomly given to those, a sequence of 100 of
those is generated.

The small-scale main subroutine is activated at each guidance call, and it takes as inputs alti-
tude, velocity, and flight-path angle of the vehicle, together with the last values of the sequences
described in Subsection 3.6.2. It then estimates the expected displacements by linearization, and
uses them to compute the various auto-correlation terms. After that, the random variables are gen-
erated, the severe perturbations condition is checked, and ρl at the next guidance call is generated,
using theσρ,l for the current altitude. This last detail makes it obvious that a discontinuity in density
occurs at each guidance call. However, such discontinuity is rather small, sinceσρ,l does not change
very fast with altitude. Also, the discontinuity is always outside of the integration boundaries. At last,
a linear, time-dependent profile connecting the current µρ(x) to the next one is generated, and then
multiplied by the currentσρ,l . At each function evaluation, such value is then multiplied by the local
density, and added to it. The architecture for this piece of software can be seen in Figure 6.6 (only
for the small-scale perturbations, since the large-scale perturbations are much simpler).

VERIFICATION

Each block of the large-scale subroutine has been verified by simply checking, by hand each of the
single operations. Concerning the small-scale software, the same thing has been done for most of
the blocks. However, the most complicated ones, which are those generating the auto-correlated
and the cross-correlated variables, have been subject to a more intense statistical campaign.

Specifically, the block generating µ(x′) has been verified by generating one million samples with
two different values of rµ,ρ . The verification has been carried out by using the property of Equation
3.48.

The same thing has been done for the artificial scale sizes. In that case, the cross-correlation has
also been checked, using the property of Equation 3.50. It turned out that, in every case, the average
product between the two variables came much closer to the value of rc when removing the first 50
variables. That is due to the fact that the first part of the sequence is rather largely dependent on the
initial choices for νL and µL . For this reason, the sequence was always initialized by generated 50
cross-correlated variables before using them in the trajectory.

At last, the frequency of the severe perturbations was also checked. However, after a statistical
evaluation, it ended up being almost twice as likely than predicted according to Psev . This somewhat
makes sense. In fact, severe perturbations occur when either of the artificial scale sizes go beyond
the Psev value. The two scale sizes are cross-correlated, but their cross-correlation is relatively small
(in the tested case, at h = 70 km, it is 0.64) and Psev = 0.01 on average. Therefore, it is very unlikely
that both scale sizes cause turbulence at the same time. However, the software is kept like this: in
fact, it is preferred to have a more turbulent than usual model.

As desired by the authors of the model, the severe perturbations turn out to be "patchy", in the
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Table 6.3: Statistical verification of the small-scale perturbation model. Cases 1 and 2 refer to a simulation lasting 100
hours, whereas the simulation in Case 3 lasts 1 000 hours. rρ expected is computed using the value of the occurred Psev .

Conditions Expected values
V [kms−1] h[km] γ [deg] d t [second] rρ rc,L rLz rLh

Case 1 10 70 0 0.1 0.9964 0.64 0.9995 0.9995
Case 2 10 70 -3 0.1 0.9896 0.64 0.9967 0.9967
Case 3 10 70 -3 1 0.9092 0.64 0.9675 0.9675
Case 4 10 70 -3 0.1 0.9895 0.64 0.9967 0.9967

Standard deviations Occurred values
µρ νLz µLh rρ rc,L rLz rLh

Case 1 0.9931 0.9867 0.9850 0.9829 0.6039 0.9733 0.9699
Case 2 0.9927 0.9933 0.9963 0.9760 0.6280 0.9833 0.9894
Case 3 0.9996 0.9975 1.0001 0.9084 0.6379 0.9626 0.9677
Case 4 1.0005 1.0005 1.0001 0.9915 0.6421 0.9977 0.9970

Severe Turbulence
Psev Psev occurred Patchiness Turbulence size [km]

Case 1 0.0081 0.0124 0.9633 27.2
Case 2 0.0081 0.0134 0.9066 10.7
Case 3 0.0081 0.0142 0.7356 37.8
Case 4 0.0081 0.0145 0.9133 11.5

sense that once the severe perturbation is triggered, it is likely to last more than only one iteration.
Patchiness was measured by computing the average product of the severe turbulence index (equal
to 0 if non severe, equal to 1 if severe) at iterations i and i −1, and dividing it by the average value
of the severe turbulence (which is the occurred probability of having severe perturbations). From
that, it is possible to derive the average duration of severe turbulence, 1/(1−patchiness), and, con-
sequently, the physical size of the turbulence.

Table 6.3 shows the expected values and the obtained one for the statistics of three simulations.
All three cases refer to a hypothetical spacecraft that flies at the same speed, altitude and flight-path
angle for 100 hours in Cases 1 and 2, and 1 000 hours in Cases 3 and 4.

There are some inaccuracies in the first two cases. The standard deviations are instead all very
close to one (as expected), even though they are much closer to it in Case 3. The reason why Case
3 is more similar to expectations is because it has smaller autocorrelation values. Therefore, less
samples are needed to have a statistically representative case. Case 3 is also more accurate in all the
autocorrelation and cross-correlation values.

Eventually, Case 4, which is exactly the same as Case 2, but run for 10 times the time (and, thus
number of samples) shows how the model tends to the expected value with an increasing number
of samples.

Therefore, this tool can be considered verified. The only unexpected result is the fact that the
turbulence has a much larger average size in Case 3 than in Cases 2 and 4, whereas they should, in
theory, be the same. However, this value is even more sensitive to the sample size than the previ-
ously discussed values, since turbulence occurs only about 1 % of the times.

6.2.6 IDEAL CONTROLLER

Applying an ideal controller to the simulator is a simple task. To include an ideal controller that
satisfies the constraints on angular rate and acceleration, while, at the same time, achieving the
target command in minimum time, and without overshoot, is slightly more elaborate.

In this subsection, a way for the guidance commands to satisfy the constraints on the attitude
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dynamics is proposed. Alternatively, this can be seen as a way to reproduce attitude dynamics as
controlled by an ideal controller that respects the physical constraints of the vehicle. In addition,
such an ideal controller achieves the target command in minimum time. It is stressed that the at-
titude dynamics are not simulated, and bank-angle and bank-angle rate behave as state variables
that are only functions of the bank-angle acceleration. There are, thus, no actuators involved in the
simulation.

To not complicate matters further, the attitude variables are expressed in the aerodynamic frame.
Moreover, as already mentioned, the angle-of-attack is always in trim position, and is assumed to
be subject to no dynamic constraints, whereas the sideslip angle is always set to zero. Any pertur-
bations in those angles are not considered.

The only attitude variable controlled is the bank-angle, subject to angular rate and acceleration
constraints. It is assumed that the only torque acting is the one due to the RCS.

The fact that there are no perturbations makes the problem in part simpler. However, a simple
proportional controller would overshoot, whereas a proportional-integral-derivative (PID) would at
least need some tuning, and it is not sure it could achieve optimality.

For the controller to be ideal, it should reach the commanded bank-angle in the shortest time
possible, while not exceeding the constraints. This could be set up as a minimum time and con-
strained optimal control problem. However, due to the simplicity of the problem, another option is
possible.

To achieve minimum time, the RCS always operates in a bang-bang fashion, which implies maxi-
mum acceleration and deceleration, unless already at maximum rotational rate. The ideal controller
plans a trajectory (here, the word trajectory is used in the sense it has in control theory, which is that
of a control- and/or state-history) in the t − σ̇ plane. It designs a trajectory in that plane which has
the following characteristics:

1. Begins with σ̇= σ̇0, and always finishes with σ̇= 0.

2. The inclination of the line is always ‖σ̈‖ = σ̈max, or σ̈= 0, only if ‖σ̇‖ ≡ σ̇max.

3. The integral of the trajectory is such that σ0 +
∫ t f

t0
σ̇d t =σcmd .

4. The trajectory has maximum two inclined segments, and a total of no more than three seg-
ments.

These characteristics together imply that the trajectory leads from the current state to σ f = σcmd

and σ̇ f = 0 in the shortest time possible. The initial and final conditions are ensured by the Char-
acteristics 1 and 3. Characteristic 2 implies that the planned trajectory has the maximum integral,
in absolute value, in the shortest time. Characteristic 4 implies that there cannot be any overshoot.
Moreover, the integral of any trajectory planned following Characteristic 2 can be analytically com-
puted using areas of rectangles and triangles only.

If the difference between current bank-angle and commanded bank-angle is larger than 180°,
the controller also decides which direction to turn. This is done, however, without considering the
current initial bank rate. How a trajectory respecting these characteristics is designed is the subject
of the remaining part of this subsection.

At first, the ideal controller tries to plan a trajectory in which the final bank-angle rate is set to

zero, as fast as possible. If that leads to a final error ∆σ∗
0 =

∥∥∥σ∗
f −σcmd

∥∥∥ < ∆σmax, then that will

be the trajectory. If that is not the case, the controller computes the maximum rotational velocity
σ̇max,aux it has to reach to achieve σcmd in the shortest time possible, while subject to acceleration
constraints, but no velocity constraints. Using basic triangle geometry:

σ̇max,aux = sign
(
∆σ∗

0

)√∥∥∥∥∆σ0σ̈max +
1

2
σ̇2

0

∥∥∥∥. (6.6)
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The reason of this equation can be deduced by Figure 6.7. Because the acceleration is always max-
imum, ∆Ta = 2σ̇max,aux /σ̈max, and also, ∆Tσ̇,0 = σ̇0/σ̈max, no matter the sign of σ̇0. Therefore, ∆σ0,
which is the integral of the trajectory, is always equal to the area of the blue triangle, minus the area
of the red dashed triangle. That is because, if σ̇0 and σ̇max,aux have the same sign, then that’s equal
to just shifting the t0 line to the right. In case they are not, the t0 line is shifted to the left. Then
the integral includes the entire blue triangle, and the red triangle. But the latter is in the negative
semi-plane, and it is therefore subtracted. Consequently:

∆σ=
σ̇2

max,aux

σ̈max
− 1

2

σ̇2
0

σ̈max
, (6.7)

which, when inverted, gives Equation 6.6. The reason why σ̇max,aux takes the sign of ∆σ∗
0 instead

of the sign of ∆σ0 is that, as previously mentioned, the controller first checks what the final bank-
angle error is if simply the rotational rate were zeroed. Since that part is necessary, because one of
the conditions is the zero of the bank-angle rate at the end of the trajectory, it is only depending on
that sign, that the controller decides whether the integral that should be added is either positive or
negative.

Figure 6.7: Independence of σ̇max,aux with respect to the sign of σ̇0.

At this point, it is necessary to check whether the rotational rate saturates, which is, whether∥∥σ̇max,aux
∥∥ > σ̇max. If not, the planning is complete. If yes, an additional correction is needed.

Looking at Figure 6.8:

∆Tsat ,1 =
2
(∥∥σ̇max,aux

∥∥− σ̇max

)
σ̈max

. (6.8)

Moreover, the red dashed triangle gives an additional integral that should be added to the trajectory,
by lengthening it in time. The addition in time is equal to the area of the triangle, dividing by the
maximum angular rate:

∆Tsat ,2 =
1
2∆Tsat ,1

(∥∥σ̇max,aux
∥∥− σ̇max

)
σ̇max

. (6.9)

The trajectory would then be the triangle cut as in Figure 6.8 with added, during the saturated
part, an additional saturated part of duration ∆Tsat ,2, and is shown in Figure 6.9.
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As an addition, the piece of software has the option of not commanding any change if the differ-
ence between the current bank-angle (if the rotational rate is zero) and the commanded bank-angle
is smaller than a certain threshold. With this method, it is also easy to implement additional possi-
ble random error margins in the final bank-angle and bank-angle rate.

When seeing the procedure in the σ̇−t plane, it can be possible to prove that this trajectory min-
imizes ∆t . In fact, to do so, it is necessary to have the largest possible integral below the trajectory,
which is obtained by having a trajectory that is always as steep as possible, until it reaches σ̇max.

Eventually, the bank-angle trajectory is implemented as a time-dependent parameter in the
equations of motion. The trajectory is renewed at the following guidance command.

Figure 6.8: Saturation of bank-angle rate. Figure 6.9: Final bank-angle trajectory.

VERIFICATION

The ideal controller has been verified in two steps. At first, it has been checked whether the gen-
erated trajectory followed all the characteristics mentioned above. This was done visually, by accu-
rately selecting a variety of cases. In these cases, it is attempted to have different situations, such as
∆σ0 and σ̇0 with same and opposite sign, as well as cases with and without saturation, and a case
with∆σ0 and σ̇0 with same sign, but with∆σ∗

0 with opposite sign (in the legend, it is the case where
σ f =105°). In every case checked, the ideal controller behaved as expected.
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Figure 6.10: Simulation of the constrained bank-angle immediately after Phase 2 has been triggered.

The controller can eventually be validated by visually checking its performance when in action.
In Figure 6.10, it is shown how it performs starting from the very moment in which the Lu guidance
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described in Chapter 4 triggers Phase 2 (withσd = 85° in this case), at t = 83.5 s. In the case reported
here, both the controller and the guidance update with a frequency of 10 Hz. Being the commanded
angle very far from the current angle, the controller plans saturation. It takes indeed about 3 sec-
onds, as expected, to reach full speed, which occurs at t = 86.5 s. The same thing happens when
decelerating. The inclination of the line after saturation is, also as expected, equal to 15 °s−1.

6.2.7 SIMULATOR VALIDATION

In addition to all the verifications reported in the previous subsections, the simulator can be vali-
dated by comparison with Robinson et al. [2009]. In that paper, many details are given about how
the simulations were simulated. Moreover, those simulations were carried out using Program to
Optimize Simulated Trajectories (POST), a NASA software that has been validated using real flight
data. Of particular interest are the results reported in Table 5 of Robinson et al. [2009], which con-
cern Earth aerocapture. The simulated flight is for the same capsule used in this research; the atmo-
spheric model used is the US76, and the initial velocities and flight-path angles, together with the
final conditions (the apoapsis is always 500 km) are given. Moreover, the gravity model includes J2,
(despite the surface model is spherical). The initial heading and latitudes are unknown. Therefore,
in this validation, the flight begins at the Equator, and is headed northwards, with χR,0 = 0°.

The flights are for constant bank-angles, which means that no guidance is required for the val-
idation. With this comparison, the software will be validated in its rather basic version: unguided,
uncontrolled, for unperturbed US76 Atmosphere, and spherical Earth, with oblate gravity field. In
addition, in some cases the mass of the spacecraft has been modified, to match the various ballistic
coefficients of the paper.

The first case to be tested is Case 1 of Table 5 of Robinson et al. [2009]. It is an Earth aerocapture
at Mars entry conditions, with full lift down. It has been chosen because with that trajectory the
heat-flux could also be validated. The entry flight-path angle that was found to achieve a 500 km
altitude aerocapture is −5.101505°, differing by at least 0.005° from the entry angle in the paper. The
amount of significant digits is important in this case: in fact, already an entry angle of -−5.101506°
causes a miss of about 40 km. The other cases tested are Case 2, which is equivalent to Case 1, but
with full lift-up, and Cases 11 and 12, which are more challenging since the entry velocity is much
larger. Also, a different ballistic coefficient is used in the last 2 cases.

In Case 2, the mismatch is a little larger. This is due to the fact that the trajectory is full-lift
up, and therefore there is a much smaller sensitivity to entry conditions. As an example, in this
case, a difference in entry conditions of 0.01° causes an miss of 20 km, whereas in Case 1, the miss
was 40 km with a difference in entry angle 104 times smaller. The mismatch in Case 12 is the largest,
amounting to about 0.04°, whereas the mismatch in Case 11 is the smallest, being at least 0.003° (and
also the most sensitive to initial conditions). Table 6.4 shows a summary of the 4 validation cases
that were tested. Figure 6.11 shows instead the trajectories corresponding to the various cases.

The theory that the small mismatch in entry conditions is due to the unknown initial latitudes
and headings, and not to error in the simulator, is supported by the propagators analysis in Sub-
section 6.3.1, in which it is shown that 3 different propagators, all using diffent equations of mo-
tion (Cartesian inertial, spherical relative dimensional, and spherical relative dimensionless), lead
to solutions that differ only by negligible values (in the order of magnitude of meters in apoapsis
altitude). However, this is not entirey true, since all the propagators use the same models for atmo-
sphere and vehicle aerodynamics, and therefore the mismatch might be in those (despite the output
of all those subroutines have been verified independently).

6.2.8 HEAT-FLUX ESTIMATOR

The heat-flux has been estimated off-line using the theory of Subsection 3.5.5. The heat-flux is com-
puted using the Detra-Hidalgo relation for the convective heat-flux, with hot wall correction, and
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Table 6.4: Comparison of some cases from Table 5 of Robinson et al. [2009] with the results obtained with the simulator
developed in this research.

Original Data Validation
Case no. VR,0 [ms−1] γR,0 [°] BC (M = 30) [kgm−2] σ [°] γR,0 [°]

1 12,201 -5.09 122 180 -5.101505
2 12,201 -7.29 122 0 -7.326

11 16,007 -6.39 356 180 -6.39836365
12 16,007 -10.18 356 0 -10.221

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
·104

0

20

40

60

80

100

120

140

160

180

200

VI [m/s]

h
[k

m
]

Case 1
Case 2
Case 11
Case 12

Cover image credit: ESA - D. Durcros (2002); Atmospheric Re-entry Demonstrator - artist’s impression

Figure 6.11: Trajectories corresponding to 4 different cases of Table 5 of Robinson et al. [2009], which are summarized in
Table 6.4.

the Tauber-Sutton relation for the radiative heat-flux. The adiabatic wall temperature is computed
from the total enthalpy interpolating data from Menart and Henderson [2008]. The wall temperature
is computed assuming an emissivity coefficient ε = 0.8, equal at every wavelength1. Two different
effective nose radii are used: an effective nose radius of 4 m is used for the convective flux, and an
effective nose radius of 2.9 m is for the radiative flux. Both have been chosen according to Robinson
et al. [2009], and are the effective radii corresponding to an angle of attack of about -20°, which is
the one occurring at superorbital velocities.

1The emissivity/absorptivity for the radiative heat-flux is instead set to 1. This is not a contradiction, since the emissiv-
ity/absorptivity of a real material is a function of the wavelength. It is unknown what value is used by Robinson et al.
[2009].
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The wall temperature requires an iterative procedure to be accurately estimated.however, it is
not a problem to estimate the wall temperature using the heat-flux of the previous time-step, as it
is also done by Robinson et al. [2009]. The wall temperature is initialized setting equilibrium at the
first time-step, in which the convective heat-flux is not corrected for hot wall. When computing the
wall temperature, it is assumed that it has zero conductivity towards the inside of the spacecraft,
and no ablation heat is considered either.

For the same reasons, it is not a problem to integrate the total heat-load along the trajectory
using very low accuracy quadrature methods: the integral is computed by summing the heat-flux
history, which is sampled at 1 s frequency. Figure 6.12 shows the process described above.
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Figure 6.12: Flow chart for the heat-flux and heat-load estimator.

VALIDATION

The equations for radiative and convective heat have both been manually verified. Specifically, the
radiative heat equation has been verified in all its components, which are the linear interpolation,
the computation of the exponent for the nose radius, and the final equation.

The computation of the temperature by energy balance has been verified the same way. In ad-
dition, the heat-flux for the trajectory of Case 1, Table 5 of Robinson et al. [2009] was evaluated, and
compared to the heat-flux computed by then. The comparison was done for stagnation point only.
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Also the interpolation of the data from Menart and Henderson [2008] has been visually verified, by
checking that the shape and magnitude of the data was the same as in their plot.

For a validation of the tool, the reader may refer to Figures 6.13 and 6.14, keeping in mind that
the heat-rate history computed here is based on a trajectory that is slightly different from the origi-
nal one.

It was found that the peak convective heat-flux is larger than expected, by about 25 %. How-
ever, this should not surprise, since a different (less accurate, and more conservative) formula was
chosen. As an example, using the Sutton-Graves equation instead, one would obtain (for the same
trajectory), a peak convective heat-flux that is much closer to that of the compared paper, being
larger by less than 10 %. Once more, this proves the limited applicability of these approximations,
and how these should be used as an indicator of the order of magnitude rather than as an accurate
estimate.

The radiative heat-flux is also a little off, with an error of around 20 %, being the peak 1.01 MWm−2.
This is less expected, since the formulation used is exactly the same. However, when seeing these
differences, one should also keep in mind that the trajectory used for validation is not exactly the
same as the one of the paper, as shown in Subsection 6.2.7. This is something not to be under-
estimated, since the heat-flux (especially the radiative) is extremely sensitive to the density. It is
estimated that if the heat-flux peak were off by 1 km in altitude (which is not so unlikely, given
the different initial conditions), and therefore by 0.85 times in density, the radiative heat-flux peak
would reduce to 0.83 MWm−2. Convective heat-flux is instead much less sensitive to the density,
and therefore such variation would not affect it much (about 7 % only: this way, the Sutton-Graves
equation would match very well with the validation data). Wall temperature profile matches instead
very closely the target one, with a peak of about 2500 K, but this is no surprise, since the temperature
is much less sensitive to any heat-flux error.

In both the simulated case and the one used as comparison, the radiative heat-flux peak slightly
anticipates the convective peak, and occurs a little before 100 s after entry interface.

Eventually, the hot corner has not been estimated. The reason is that in Robinson et al. [2009],
for the same trajectory, the ratio between stagnation and hot corner heat-flux is far from being 1.6
(and the temperature is almost the same, meaning that the difference is not due to a change in
wall temperature). Moreover, at the hot corner the radiative heat-flux is different than at stagnation
point. All these factors make it such that it is likely that there are more factors to be held into account
when estimating the fluxes at the hot corner.

As a conclusion, the validation can be said to be successful. All these equations are in fact ex-
tremely sensitive to the trajectory, and the use of different equations can matter a lot. As previ-
ously mentioned, if the peak occurred in Robinson et al. [2009] at 1 km altitude higher than in the
here simulated trajectory, which is very possible, considering the fact their entries are slightly shal-
lower, the radiative heat-flux peak would be almost the same. In the same conditions, using the
Tauber-Sutton relation instead of the Detra-Hidalgo, the convective heat-flux would also be almost
the same. Nevertheless, the Detra-Hidalgo relation is chosen, because better suited to the problem,
and more conservative. Moreover, the difference between the two relations is in the range found in
Carandente et al. [2013].

6.3 PROPAGATORS AND INTEGRATORS ANALYSIS
Four different kinds of propagators have been analysed during this research. It was decided, in
Chapter 3, that a propagator in Cartesian and inertial coordinates will be used for the simulator.
The NPC guidance uses instead spherical relative coordinates.

A guidance logic needs to integrate the trajectory on-board and in real-time. Therefore, a trade-
off between accuracy and computational time is needed. Commonly used implementations for this
goal are described in Chapter 3, and are:
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Figure 6.13: Computed heat-flux for Case 1, Table 5, of
Robinson et al. [2009], at stagnation point.

Figure 6.14: Heat-flux for Case 1, Table 5, at stagnation
point. From Robinson et al. [2009].

• Dimensional equations, time used as independent variable

• Dimensionless equations, time used as independent variable

• Dimensionless equations, energy used as independent variable

For simplicity, throughout this section, when talking about spherical coordinates, it is implied
that a rotating frame is used.

The goal of this section is that of analyzing the effect of the choice of a different integrator on
speed and accuracy of the solution. Moreover, as mentioned in Subsection 3.9.3, the integration
using energy as independent variable introduces some errors, which shall be quantified.

The error in final velocity (as function of either energy or altitude) is the only performance pa-
rameter that will be used. Some importance to the error history will also be given.

Cartesian inertial equations will also be used for verification. A match between spherical and
Cartesian propagators would be a final verification of both the equations of motion.

For simplicity, the mission in the first part of this section is a normal entry case, and not an ae-
rocapture. The baseline mission used here consists of an entry on a rotating, oblate Earth beginning
at an altitude of 100 km, with a relative velocity of 11 kms−1 and a relative flight path angle of -5°, at
a latitude of 45° North. The initial heading is 45°, and the bank-angle is equal to 90° during the entire
flight: from a planar point of view, this entry is ballistic; the flight is therefore unguided, and is set
to last 180 s, unless otherwise stated. The vehicle used is the Apollo Command Module in trimmed
condition. The mass of the Apollo Command Module is reduced to 5,115 kg, and its lift coefficient
is reduced by 10 %: by so doing, at hypersonic speed, this vehicle has the same ballistic coefficient
and lift-to-drag coefficient as the Orion MPCV, used by Lu et al. [2015].

6.3.1 PROPAGATORS VERIFICATION

In this subsection the equations of motion are verified by comparison. First, Cartesian equations
of motion will be used as benchmark for the spherical rotating. This does not mean that the Carte-
sian equations of motion are more correct. Simply, to plot the difference, one of the two has to be
set as reference. If, then, the difference between the two propagations is negligible, both can be
considered verified.

Figure 6.15 shows that the propagators all agree with their solutions, when integrated with an
RK5 and a time-step of 0.1 s. The final difference between Cartesian, inertial, and spherical, dimen-
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sional propagators is in the order of 10-10 ms−1, with a maximum error on the order of 10-9 ms−1

during the integration. The maximum difference between Cartesian, inertial, and spherical, dimen-
sionless coordinates is instead one order of magnitude larger.

It is impossible to state which of these solutions is more accurate, but it does not matter, con-
sidering the very small difference.

For the above mentioned reasons, when referring to the "exact solution" it will be referred to one
of these solutions; moreover, when talking about error, it will be meant a displacement from exact
solutions obtained with RK5 and a step-size of 0.1 s.
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Figure 6.15: Displacement in velocity of spherical, dimensional, and spherical, dimensionless, coordinates (both with
time as independent variable) from propagation in Cartesian, inertial, coordinates. Integration step of 0.1 s.

6.3.2 ENERGY-INDEPENDENT PROPAGATOR

The investigation and comparison of the propagator that uses energy as independent variable with
the other propagators is a little more complicated. In fact, it is at first necessary to know what the
final energy is. This is done using the previously mentioned "exact solution". Moreover, the integra-
tion will occur with uniform energy steps, which will end up to be very different from the uniform
time-step, it is necessary to interpolate the values of one solution to find the difference between
the other. In this case, it is decided to compute the dimensionless energy at each time-step of the
"exact solution"; then, the velocity is interpolated with a spline2 function with respect to dimen-
sionless energy, and the difference is computed at each energy-step of the solution that uses energy
as independent variable. The result can be seen in Figure 6.16.

It should be stressed that at any point in that plot the energy is the same for the two compared
solutions: therefore, for an error in velocity there is a corresponding error in altitude. The very first
integration step causes an error in velocity of 1 ms−1. That error is then reduced to about 2 cms−1

by the end of the integration. It cannot be said how an initial value problem such as this one initially
diverges, and later converges. However, it is interesting to investigate the cause of the initial peak
in error. As stated in 3.9.3, the equations using energy as independent variable are not completely
compatible with a rotating planet. Thus, at first, it is investigated whether the exclusion of these two
elements reduces the error of the equations. The resulting plot is almost completely equal, and is
therefore not reported here. The cause of such large error is therefore to be found elsewhere.

A hypothesis consists of the fact that the initial energy step might be very large. The error for an
RK method of order p, if all the first p +1 derivatives of f (x, y) exist [Hairer et al., 1993], is bounded

2A spline interpolation cannot be very accurate. Nevertheless, it will be seen that the error in the propagation is much
larger than the error caused by the use of interpolation.
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Figure 6.16: Error in velocity of spherical, dimensionless coordinates (with energy as independent variable). Integration
step of 5.1793×10−4 dimensionless energy units.

by the following equation: ∣∣y(x0 +h)− y1
∣∣≤ K h(p+1) max

0≤t≤1
y p+1(x0 + th), (6.10)

where y p+1 is the p+1th derivative of the integrated function.
When using energy as independent variable, all the derivatives are divided by the drag, which

is extremely low in the beginning of the simulation. This causes very large errors during the first
steps. To prove this, two tests have been done: Figure 6.17 shows the error for a simulation with the
same number of steps, in a span of 18 s only, neglecting rotation of the Earth and gravity due to J2.
It should be noted that the integration step in the energy domain has now become much smaller
than ten times only: in fact, despite the time span has decreased by ten times, the energy span has
decreased by much more than that, and the energy step is now about 500 times smaller. According
to the theory of integrators, this should mean an improvement in the accuracy of about 1016 times.
By inspection of the plots, one can notice that also in this case there is an initial tendency to an error,
but with a much smaller order of magnitude. To properly understand how small that initial peak is,
the reader should think that the oscillations in this plot are as large as the relative tolerance of the
machine, which, using Matlab, is 2.2×10−16. The peak of the error has been reduced of, instead of
the theoretically predicted 1016 times, 1011 times, which is, however, satisfactory.
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Figure 6.17: Error in velocity of spherical, dimensionless coordinates (with energy as independent variable). Integration
step of 1.0968×10−6 dimensionless energy units. Integration for the first 18 seconds of the entry trajectory.

A situation like the previous one would however not happen in an NPC guidance: in fact, the
logic is only triggered once the drag deceleration has a minimum value of 0.05 g. For this reason, a
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second test is done, in which the simulation begins with a drag of 0.05 g, to check whether this set
of equations is valid when used in the guidance. A comparable value of the drag is found at 91 km
altitude and with a relative velocity of 11 kms−1. This happens about 10 s after the beginning of the
baseline simulation. For this reason, this test is started with the same conditions found after 10 s of
integration of that simulation, and lasts 10 s less.

The error in the non-rotating case (plot on Figure 6.18) is much smaller than the one shown in
Figure 6.16.The error peak is still about 8 cms−1. However, when the step-size is reduced, not much
happens in this case: the deviation is then probably caused by the approximation Ė =−DV .
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Figure 6.18: Error in velocity of spherical, dimensionless coordinates (with energy as independent variable). Integration
step of 3.6500×10−4 dimensionless energy units. Integration for the 17 seconds following the first 10 seconds of the

entry trajectory.

During aerocapture, one finds very low drag also during the exit phase. Depending on what
value one sets as the exit altitude for the guidance integration, the final drag may be even much
smaller than the one found in the initial part of this case. And if the drag is still large enough at
that set altitude, then one would have a large error in the predicted apoapsis (that large drag would
keep on acting on the spacecraft also after that altitude, and would be not accounted for, unless an-
alytically estimated). It is therefore advised to not use energy as independent variable and uniform
integration step in aerocapture guidance. In the next subsection, it will be evaluated whether the
use of adaptive step is instead a better choice.

6.3.3 AEROCAPTURE CONVERGENCE

The convergence test has been done for an aerocapture mission. Such mission involves the same
initial conditions as before, except for an initial velocity of 13 kms−1 and an initial flight path angle
of -4.6934°. The commanded bank-angle is constant, and equal to 135°. The final apoapsis has an
altitude of 500 km, if considering a Keplerian orbit starting from above 100 km altitude.

The same simulation has been run using uniform time-steps between 0.1 s and 20 s, with a reso-
lution of, where possible, up to 0.1 s, and compared to the exact solution obtained as in the previous
subsection. The mission lasts 511 s.

The convergence analysis obtained for the dimensional, spherical coordinates, can be seen in
Figure 6.19.

The plot in Figure 6.19 is particularly useful because it can be used to fulfill the requirements for
the integrators. Keeping in mind the fact that the curve is almost exactly the same for a Cartesian
inertial propagator, considering that an error in apoapsis of around 10 m would be acceptable for
the simulator, an integration with a time-step of 0.5 s is sufficient with an ode3, and a time-step of
1 s is sufficient with an ode5. The guidance usually has a frequency of 1 Hz: therefore, an order 3
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Figure 6.19: Error in final apoapsis as a function of integration time-step (integration in spherical coordinates).

with step-size 0.5 s is used.
Strangely enough, the convergence exponent3 p +1 of Equation 6.10 is, for an order 5 method,

quite similar to that of an order 3 (they are, respectively, 3.64 and 3.1). This convergence analysis was
done also with RK1, RK2 and RK4. Integrators of order up to 3 have an error that decreases similarly
according to Equation 6.10; such a behavior stops existing with solvers of higher order than that. A
possible explanation for this phenomenon is discussed in Subsection 6.3.4.

For the inner loop, a lower accuracy is sufficient. Even an error on the entire trajectory of a few
kilometers in apoapsis would be acceptable, because such an error in prediction would be corrected
during flight. Moreover, the closer to the exit phase, the smaller the error in the prediction becomes;
to have high accuracy at the end it is necessary to be accurate in the prediction mainly at the end of
the atmospheric phase. Nevertheless, an error in prediction in the initial part of aerocapture makes
the guidance less optimal.

6.3.4 ADAPTIVE ORDER AND STEP TRADE-OFF

In this subsection, the Matlab subroutines ode113, ode45 and ode23 are applied to the aerocapture
problem, with both the use of dimensional and dimensionless variables. Figure 6.20 shows that
none of the adaptive methods is capable to achieve an accuracy comparable to that of fixed step
solvers. This may be explained by looking at Figure 6.21: it is in fact seen that a tolerance lower than
10-10 does not cause a further increase in number of time-steps. Moreover, the smallest time-step,
when integrating at the highest allowed relative tolerance with ode45, is only 0.16 s, much larger
than what is used to achieve high accuracy solution with a very similar non adaptive method (the
Runge-Kutta of order 5). Also, the general behavior of the time-steps size is relatively strange, espe-

3The convergence exponents have been computed with linear regression of the logarithm of the step size and the loga-
rithm of the error.
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cially for the ode45 (both shown in in Figure 6.22, together with the ode23) and ode113 solvers, and
might have something to do with interpolated data, which causes discontinuities in higher order
derivatives. The latter statement may be further strengthened by the comparison of the time-step
size with a use of the ode23 solver. The ode23 is an embedded Runge-Kutta method, specifically
of the Bogacki-Shampine kind, which uses only three function evaluations per step. The time-step
size for that solver follows a much less irregular path. Since this problem is thought to be happening
because of aerodynamic data, a simulation with constant aerodynamic coefficients is run; however,
the same pattern holds. By further analysis and visual comparison, it is found that the peaks in step-
size of the ode45 and ode113 integrators occur at altitudes of approximately 71 km and 86 km, which
are two points of discontinuity in the temperature gradient, which in turn causes a discontinuity in
the scale-height, as explained in Subsection 3.6.1. The discontinuity does affect the ode23 solver as
well, but much less. This is again probably because of Equation 6.10.
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Figure 6.20: Comparison of apoapsis error as a function
of relative tolerance settings, using dimensional spherical

coordinates.
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Figure 6.21: Comparison of number of steps required for
similar relative tolerance setting when integrating

aerocapture using dimensional spherical coordinates.
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Figure 6.22: Stepsize of different integrators as a function of time.
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Figure 6.23: Error in apoapsis as a function of number of
steps used for different solvers, with dimensional

propagator ("d" stands for dimensional).
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Figure 6.24: Error in apoapsis as a function of number of
steps used for different solvers ("d" stands for

dimensional).

Figure 6.20 and 6.21 should be considered when doing the trade-off. The parameter one has
control over is the relative tolerance, and not the number of time-steps, nor the average time-step.
Figure 6.20 shows that there is a large variance in accuracy with a certain relative tolerance. To en-
sure an accuracy of 1 km, one should use a tolerance of no larger than 10-10 with ode113; a tolerance
of 10-7 is sufficient to achieve the same goal with ode23. Analyzing Figure 6.21, one can see that
those values correspond to 300 time-steps for ode113, and only 200 for ode23 (which corresponds
to 600 function evaluations). Hence, despite the larger variance of ode113, that solver is still the
preferred one for the goal of this research. Comparing these results with the fixed step-size solvers,
it is seen that the same accuracy is achieved with about 500 steps with a third order solver and with
about 170 steps for the fifth order solver (which corresponds to 1020 function evaluations). There-
fore, the adaptive solver is more convenient than a uniform solver if high accuracy is not required
(for some reasons, most of these solvers seem to not be able to achieve a better accuracy than 200 m,
except for ode23). It is required to have an accuracy of order of magnitude of about 102 m; also in
this case, it turns out that ode113 is more efficient than both ode23 and ode45. Therefore, ode113 is
chosen, and the relative tolerance is set to 10-10.

The analysis of this subsection was referred to the dimensional equations, supposing that the
same would hold for the dimensionless equations. However, it will be seen in the next subsection
that, unfortunately, this is not the case.

To end this paragraph, it shall be reminded that this analysis is only preliminary, and one should
be careful in generalizing these results to all aerocapture cases. Before doing that, a more thorough
analysis should be done, which would be including different aerocapture scenarios, with different
bank-angles, different initial conditions and target conditions.In brief, ode113 is thought to be the
best choice for this work, but there is not a 100 % confidence in this choice, since it is based on the
analysis of a single case, and there is nor the time nor the interest to have a more statistically relevant
analysis of this for the current research. Moreover, also different atmospheric models may affect
the choice: it is indeed quite likely that the use of a simple exponential model for the atmosphere
would lead to a higher efficiency of the ode45 and ode113 solvers, whereas the use of an atmospheric
model that includes, for example, the so-called small scale perturbations, which cause frequent
discontinuities in the temperature gradient, would probably make the ode23 solver more efficient
than the others.
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6.3.5 NPC PROPAGATOR TRADE-OFF

Now that it has been decided that ode113 is the best integrator, it is interesting to evaluate which
propagator works best with ode113. Even though each propagator includes different computations,
it is believed that the difference in computational requirements between the three spherical prop-
agators is negligible. In fact, the largest difference may occur when using energy as independent
variable, and consists in the removal of one of the equations; nevertheless, the amount of transcen-
dent functions remains the same. For this reason, the comparison in computational requirements
will be, also in this case, based on number of function evaluations.

Despite the hope that the previous choice of integrator would have held also for the other prop-
agators, it was immediately found that the situation is more problematic than expected. In fact, the
use of ode113 in spherical dimensionless coordinates cannot ensure an accuracy higher than 10 km;
the situation is even worse when using ode45, in which case the minimum error is in the order of
magnitude of 30 km. Nevertheless, when using ode23, the accuracy improves to less than 100 m.
Since all the solvers seem to get stuck in accuracy at an arbitrary point, another, slightly perturbed,
mission is simulated (the one using constant coefficients of drag and lift); however, very similar re-
sults are found. It can then be expected that the point at which accuracy stops improving is not
so arbitrary. It is also curious to notice how the dimensional and dimensionless solutions overlap
exactly for tolerances of 10-6 or larger, both in error and number of steps.

With Figures 6.27 and 6.28, one can easily compare the efficiency of using the dimensional prop-
agator with the ode113 solver (the best solver for dimensional propagator) with respect to using any
other solver with the dimensionless propagator. In accordance with those it is hence chosen that
the equations of motion for the NPC will be integrated using the ode23 in combination with the
dimensionless propagator. This is because this choice provides very little variance (which means
more robustness), high accuracy and low computational cost. The default setting will be a relative
tolerance of 10-6. An additional reason consists of the fact that ode113 shows (as ode45) large and
sudden stepsize variations in proximity of discontinuities. Such variations also affect the computa-
tions.

6.3.6 SUMMARY

The conclusions below are made based on the integrators that are provided by Matlab. It could be
possible that different integrators may be more efficient.

It is stressed that the results of this analysis should be limited to the point mass dynamics. When
including attitude dynamics, it is likely that this analysis would not be valid anymore.

To summarize:

• High order integrators do not perform as expected because of discontinuities. This trend has
been found to be true for RK4, RK5 and ode45. ode113 is an exception, possibly because it
might be reducing the order of the integration in the proximity of the discontinuities. It could
be possible to stop and restart the integration where the discontinuities occur. This though,
requires a root search during integration, which also has its drawbacks in terms of compu-
tational time.A root search would be required because the location of the discontinuities is
known in terms of altitude, but the independent variable is only either the time or energy.
Thus, in proximity of the discontinuity, the integrator should also solve for t h(t ) = hdi sc ,
where hdi sc is the altitude at which the discontinuity occurs. Because of the many discon-
tinuities, this would happen many times during a single simulation. Consequently, RK3 with
step-size of 0.5 s is chosen as default integrator for the simulator.

• With same number of time-steps, adaptive solvers are more accurate than uniform step-size
solvers. The advantage is not very large, though.

• Using energy as independent variable is not advised for aerocapture. This is because the
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derivatives become very large when propagating the motion in proximity of the atmospheric
exit. This in turn causes large errors.

• ode113 combined with a dimensional propagator, and set relative tolerance, is the best solu-
tion, in terms of ratio between accuracy and number of time-steps. Nevertheless, it is affected
by large time-step variations. These variations are caused by discontinuities in the atmo-
sphere, and slow down the computational time. The variations are displayed in Figure 6.22.

• For the latter reason, ode23 in dimensionless coordinates is preferred to ode113 in dimen-
sional coordinates.

As a last remark, it should be stated that the MatLab built-in adaptive solvers do not seem to
improve their accuracy for relative tolerances smaller than 10-10, despite the minimum allowed tol-
erance is 2.2× 10−14. They do not even seem to be trying, since the number of steps does not in-
crease either. In some cases, this happens for even larger relative tolerances. It is possible that such
a problem may not occur if setting an absolute tolerance.

6.4 NEURAL GUIDANCE
Figure 5.1 should be kept in mind while reding this section. The neural guidance has been designed
in a way such that it would most resemble, in terms of inputs, the original guidance by Lu et al.
[2015]. There, the inputs are the six state variables, together with the two additional filtered densities
ρL and ρD . However, a few transformations are done to make the input supposedly more "intuitive"
to the neural logic, but the filtered densities are instead used as such.

The only state variables that are kept the same are the relative velocity and altitude (in the NPC,
the range and the latitude are indeed used to compute the altitude, despite this does not qualify as
one of the six state variables). Of the remaining four state variables, the longitude is simply removed,
since it does not have any effect on the propagation of the motion, nor on the final performance.
The flight-path angle, azimuth and latitude are substituted by the eccentricity, the inclination, and
the total orbital energy. This substitution might sound controversial, but without going into any
mathematical proofs, it is sufficient to think that even though not explicitly, all these three Keplerian
elements, together with altitude and relative velocity, are nonlinear functions of all the spherical
state variables, except for the longitude.

Hence, no information is lost in this substitution. On the contrary, the information has become
more significant: the three Keplerian elements define exactly the target orbit, and relative velocity,
altitude, and the filtered densities define exactly not only the current aerodynamic force (and the
gravitational one), but they can also be used to predict exactly how that force would evolve in time,
if the real atmospheric profile were the US76 c.

This choice of variables differs from that of Gelly and Vernis [2009], and makes the set simply
more robust, even though larger. In their work, in fact, they use the same three Keplerian elements,
the relative velocity, and the sensed acceleration. This set has the advantage of being more compact,
but is less robust. As an example, the neural guidance cannot distinguish between deviations in the
lift or the drag coefficients. Also, in a non-spherical planet, it might have a hard time determining
its inertial velocity or range. This is because it would somewhat estimate its range from the density
(deduced from relative velocity and sensed acceleration): doing this would not take into account of
the oblateness of the planet. However, what is missed here is the deviation from the average oblate-
ness of the planet, and thus the error made would be much smaller than the 20 km of difference
between equatorial and polar radius. While the latter is not a big drawback, not having a distinction
between deviations in lift and drag might be problematic. Nevertheless, the results obtained in their
work were very successful.

The choice of the outputs is instead different, depending on whether supervised or reinforce-
ment learning is used. In the case of reinforcement learning, the same choice of as in Gelly and
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Vernis [2009] is made. The bank-angle is computed from the outputs of the network µ1 and µ2:

σcmd = atan2
(
µ1,µ2

)
. (6.11)

However, in supervised learning, this does not seem an advisable choice, since the cosine of the
bank-angle would have an error that comes from the error of two outputs. In some cases it would
cancel out, but in other cases it would sum up, leading to large errors. Hence, the design choice is
such that:

cosσcmd =µ1; (6.12)

signsinσcmd = signµ1. (6.13)

Of course, the command is then corrected such that the bank-angle is real.

As a last remark, the inputs to the neural networks should be normalized (this is not needed
for the output instead, since the last layer is linear). Normalization is usually done in a way such
that the inputs are as much as possible symmetrical around zero, and that have a standard distribu-
tion not larger than one. As an alternative, it is possible to have them such that they are uniformly
distributed, with extrema smaller than 1.5 (even though this is not a strict boundary). Hence, the
inputs are normalized as follows (the bar means that the variable is normalized; unless specified,
the original variables are in SI units):

Ē = 2E/V 2
c , (6.14)

ē = e − .5, (6.15)

ī = (i − i?)/5, i in degrees, (6.16)

ρ̄D = 2(ρD −1), (6.17)

ρ̄L = 2(ρL −1), (6.18)

V̄R =VR/Vc −1.5, (6.19)

h̄ = 3h/hex −1.5. (6.20)

Some variables end up not being symmetrical with respect to zero. One such example is the al-
titude, which never goes to 0 km, and also never reaches hex , because the guidance is shut down
before that. Searching for the best normalization would an effort that would lead to marginal, if any,
benefits.

At last, the neural guidance architecture can be summarized as the following list:

1. Obtain state and filtered densities.

2. Transform state.

3. Normalize input.

4. Compute output with the FFNN.

5. Compute output.

Every block of this sequence has been verified manually, except for the fourth, which was veri-
fied in Chapter 5.
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Figure 6.25: Flow chart for the architecture of the trajectory solver.

6.5 SUPERVISED LEARNING ARCHITECTURE

The supervised learning architecture consists of two main components. One is the trajectory solver,
which generates the data. The other is the actual learning tool.

A trajectory solver has been chosen, instead of an optimizer, for three major reasons. The first
is that the optimal solution is likely to be very similar to a bang bang trajectory: if the network were
taught to follow that, the system would lose in robustness.

The second reason is that, if the optimal trajectory were not a bang bang (which, in the 3-
dimensional space, is possible, even though it should not differ much from it), it would be necessary
to either prove that the optimal trajectory is unique, or to set up the problem such that the solution
would be optimal. The first case is very hard to do; the second case can be done by making the
problem convex, and is also a very difficult task. A recent success to formulate a reentry problem as
a convex optimization problem was done by Liu et al. [2016].

A third reason comes from the fact that it is sufficient to have a guidance that outputs the con-
stant required bank-angle to obtain an optimal aerocapture guidance, comparable with the one by
Lu et al. [2015]. In fact the following structure could be given to the guidance: as long as the out-
put bank-angle were lower than a certain threshold, which we should call again σd , the guidance
should give a command equal toσ0; if, instead, the output were larger, a Phase 2 would be triggered,



138 6. SOFTWARE DESIGN, VERIFICATION AND VALIDATION

and from then on the commanded bank-angle would always be equal to the one computed by the
network. The careful reader might now see that this concept is exactly equivalent to the optimal
NPC aerocapture. The only the difference lies in the fact that here the commanded output would be
computed almost instantenously by the network.

The solver looks for the unique combination of constant bank-angle and reversal time that takes
the spacecraft from the initial conditions to the desired orbit. For the solution to be unique, there
needs to be a uniqueness in the choice of the initial sine of the bank-angle: this was chosen such
that, initially, the inclination error would always increase. The initial bank-angle is therefore de-
pendent on the initial conditions. At this point, it is clear that the attempt is that of replicating the
modlat guidance.

The flow chart for the trajectory solver is given in Figure 6.25. At first, the cosine of the bank-
angle that leads to the desired apoapsis is sought with te bisection-secant method. Then, an initial
guess for the reversal time is given. Every time the reversal time is changed, the final apoapsis is also
modified. Hence, at this point, the system in two equations

i (cosσ, tr ev − i?) = 0, (6.21)

rapo(cosσ, tr ev )− r?apo = 0, (6.22)

is solved. The method used is a modification of Newton-Raphson. In this case, the variables are
updated one at a time, and the update is damped. This is done to avoid instabilities that would
otherwise be encountered. The solver is not efficient at all, but does what it is meant to do. Once
the trajectory is solved (or when the limit of iterations, set to 200, is exceeded), the solver gives a
label l to the trajectory according to the following:

1. l = 1 if convergence is highly accurate;

2. l = 0.5 if limit of iterations is exceeded, but the trajectory is still accurate enough;

3. l = 0.2 if the cosine of the bank-angle is larger than one in absolute value;

4. l = 0 if none of the above conditions hold.

These labels are important during training. As an example, if l = 0.2, the data concerning the
cosine might still be used in training, but the one concerning the sign of the sine would not. The
perturbations in the solver are of larger magnitude than those generated for the Monte Carlo run
(1.2 times exactly), and the atmosphere used is the US76 c.

Initially, there was the interest in using the US76 l also in the solver, such that, in theory, the
network would have been able to learn the command including some part of the perturbations.
This would have been very interesting, since it had the potential to make the neural guidance more
robust than the NPC, even though it would in turn have made the dataset more noisy though. In the
end, this idea was not pursued. Eventually, the perturbations are 20 % larger than those used in the
Monte Carlo simulations, and are generated from a different random seed.

Concerning the learning architecture, there is not much to add with respect to what was written
in Chapter 5. For completeness, the corresponding flow chart is provided in Figure 6.26.

6.5.1 VERIFICATION

The verification of the learning tool is mainly discussed in Chapter 5, where all the algorithms have
been tested. The remaining blocks in the architecture have been verified manually.

The verification of the solver was also rather simple. In fact, the first part (the bisection-secant
method) was already verified in Chapter 4. Instead, the second part, has been verified automatically
by the labeling block. A trajectory that did not converge would by labeled as such.
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Figure 6.26: Flow chart for the architecture of the trajectory solver.

6.6 REINFORCEMENT LEARNING ARCHITECTURE

The main part of the architecture, which is the update algorithm, has been verified in Chapter 5.

The PGPE algorithm has the possibility of being used in different ways. The first consists of using
it as a global optimizer, since it has such capability. In such case, one would do a setup equivalent
to that of Gelly and Vernis [2009], but would substitute their evolutionary optimizer with the PGPE.
Their work was very successful, but also computationally very demanding. Moreover, there is no
real reason to believe that the PGPE would substantially improve their method (or improve it at all).

However, PGPE is also capable of giving an, even though very noisy, estimate of the gradient,
with four evaluations of the function only. Hence, the problem could be seen as something very
similar to supervised learning with SGD. The function to minimize would be, instead of the error
of an input-output set, would be the peformance of the network with some given perturbations in
initial conditions and atmosphere. The gradient would then be estimated, instead of using back-
propagation, by PGPE. The update would then occur according to the currently estimate of the gra-
dient, as well as to the set metaparameters.

As in SGD, the gradient obtained by a single sample is already a noisy estimate of the general
function; moreover, in this case, the gradient of the sample is itself noisy, since it is obtained heuris-
tically. For these reasons, the method, despite potentially very strong, may also be very challenging.
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A flow chart of the reinforcement learning architecture can be seen in Figure 6.27.
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Figure 6.27: Flow chart for the reinforcement learning architecture.

As a last remark, the inputs used are the same as those for the supervised learning problem.
However, the output is in this case the same as in Gelly and Vernis [2009], since it already proved to
be successful for a reinforcement learning problem. In addition, a modification was included such
that the bank-angle controller would always bring the spacecraft to the commanded bank-angle via
the shortest path. As an example, if the current bank-angle were 90°, for a commanded bank-angle
of −95° the controller would go to 265° instead.

As in the supervised learning paradigm, the perturbations are 20 % larger than those used in the
Monte Carlo, and are generated from a different random seed. However, in this case, the baseline
atmosphere used is the GRAM99 l.

6.6.1 CREDIT ASSIGNMENT

That of assigning a proper reward function is a one of the major problems of RL. As shown in Chapter
4, the trajectory minimizing the ∆V minimizes also load factor peak, heat-rate peak and integrated
heat-load. This is very helpful, since the problem is automatically reduced from a multi-objective
(minimum∆V and minimum heat-load) constrained (load factor peak and heat-flux peak) to a sin-
gle objective, unconstrained optimization.
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However, if randomly initialized, a network would also lead to many crashes. It is therefore
important to set up a credit assignment for those case as well. Giving simply a very high value,
equal for any crash, is not a good solution, since the PGPE uses gradient information. Hence, it is
necessary to distinguish between the "quality" of different crashes.

The conditions according to which the simulator stops because the crash has become inevitable
are the same each time. Given this, one may compute the time after which the crash happens. If
one repeats the trajectory with the same conditions, and every time changes the network such that
the crash happens a little later, at some point the crash should not happen anymore, because the
point of discontinuity between crash and success would be reached. Hence, following the opposite
the gradient of the time would be a good way to "get out" of the crashing zone. This reasoning is,
however, just intuitive, and it is possible that, unless otherwise proven, following the direction of
increasing time may lead to a local maximum, in which the trajectory is still crashing. However,
this method is further strengthened by analyzing the duration of flight for a trajectory with constant
bank-angle, which, before skipout is reached, is constantly increasing, as shown in Figure 6.28.
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Figure 6.28: Duration of aerocapture as a function of cosine of the bank-angle, for the same conditions as in Figure 4.11.

From this, two different credit assignment functions were proposed (keeping in mind that the
PGPE maximizes the fitness function):

f1 =
{

1,000
tend

if crash
1,000
∆Vtot

otherwise
(6.23)

f2 =
{

700− tend if crash
3,000−∆Vtot otherwise

(6.24)

Unless later specified, with ∆Vtot it is meant the ∆V including the out-of-plane component.
Both these functions have strong discontinuities, which seem to be inevitable. This might or not

be a problem. For sure, it is well known that having discontinuities in the proximity of the optimal
point causes major issues in any gradient based optimizer.

6.6.2 VERIFICATION

The algorithm has already been verified in Chapter 5. However, here, its application to the RL prob-
lem is verified. The verification of this concept consisted of an aerocapture trajectory optimization.
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Figure 6.29: Bank-angle history for the trajectory optimized by the PGPE.

The optimization was done using a neural network: simply stated, the same network that would
later be used in the reinforcement learning, is here used as a parametric guidance for a single tra-
jectory. This verification is useful to understand whether the two functions f1 and f2 are suitable to
the problem, together with verifying whether the entire architecture is properly functioning.

The verification has been done for the same conditions, with three sets of different metaparam-
eters.

The best results have been obtained withαµ = 0.5,ασ = 0.1 andσ0 equal to 2. The trajectory was
optimized with 5,000 iterations, which equals to a total of 20,000 simulated trajectories. However,
nothing can be said about how these parameters would affect the learning in a reinforcement learn-
ing paradigm. Figure 6.29 shows the quasi bang-bang control history obtained, where the bank
reversal and the shift from Phase 1 to Phase 2 (even though those phases are here not explicitly
set, but found by the optimizer) happen suddenly and concurrently, while moving from −50° to
150°. The trajectory hence combine the two major shifts in bank-angle in a single one. Eventually,
this leads to a ∆V of about 83 ms−1 (the value includes the lateral burn); in similar conditions, the
mod σd =120° achieved a ∆V around 3 ms−1 smaller. The ∆V of the trajectory obtained here in-
cludes also the lateral component though. The trajectory obtained with this method is less optimal
than what could theoretically be achieved with an instantaneous bang bang trajectory. Nonetheless,
three considerations are worth mentioning:

• The constraints on attitude dynamics are enforce during this simulation. Hence, an instanta-
neous shift from σ= 0° to σ= 180° would not be possible.

• The optimized trajectory minimizes the full∆V , which includes the lateral component. Thus,
a problem more complex than the optimization of the planar ∆V is being solved.

• The trajectory is flown in the GRAM-99 l atmosphere.

For these reasons, it could be interesting to further investigate how PGPE can be used as a tra-
jectory optimizer, in combination with an FFNN, but also with other kinds of parameterization.

In conclusion, this method can be considered verified. It is very promising, even though the
challenges are evident.
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RESULTS

This chapter presents the results obtained while training and testing the networks with the two dif-
ferent methods described in Chapter 5, supervised learning and reinforcement learning. Respec-
tively, their training setup has been described in Sections 6.5 and 6.6. The test setup was described
in Section 6.2.

Section 7.1 describes in detail the results obtained with the supervised learning setup. After
many attempts and lessons learned, some successful results, as defined in Section 2.7 were ob-
tained. In Subsection 7.1.5, partial conclusions concerning this setup are drawn.

Section 7.2 is much shorter, and discusses the results obtained with the reinforcement learning
architecture. The training process is described, and some initially obtained results are presented.
Nonetheless, it is clear that a large problem arises.

The networks have been trained extensively and have been tested in different environments.
Throughout this chapter, the reader should keep in mind the fact that, from a high-level point of
view, this problem is extremely large. Possible variables in the supervised learning problem are:

1. Topology of the network.

2. Distribution of the perturbations in the data set.

3. Size of the data set.

4. Bank reversal speed (finite or infinite) in the data set.

5. Use of one or two networks for sine and cosine of the bank-angle.

6. Training algorithm used.

7. Choice of the input set.

8. Splitting of the data into training, validation, and testing set.

Among these variables, the only one that requires further explanation is the last one. The validation
and test data sets are usually picked randomly from the full data set. However, in this case, the data
set is sampled from a certain number of trajectory. Hence, it might seem that splitting the data set
into training trajectories and validation trajectories might make more sense. In fact, it might be
possible that the network overfit the trajectories, in the sense that it would learn how to generalize
along a trajectory, but not between one trajectory and the other.

Possible variables in the reinforcement learning problem are:

1. Topology of the network.

143
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2. Distribution of the perturbations in the training simulations.

3. Choice of the input set.

4. Credit assignment function.

5. Metaparameters settings.

Moreover, in case difficulties were encountered, an additional option could consist of reducing
the difficulty of the problem, by excluding the lateral guidance.

Therefore, the reader should not expect that all the possible variations will be explored.

7.1 SUPERVISED LEARNING NETWORKS
The results of the supervised learning can be divided into three stages. From one stage to the other,
the variables previously mentioned have been changed, according to some of the lessons learned
from the precedent stage.

Different network topologies were explored. The three main options were a small, single hid-
den layer network with only 25 hidden neurons (labeled SN), a larger one with 4 hidden layers of
16 hidden neurons each (labeled 4DN), and a very large one with 6 hidden layers of 128 neurons
each (labeled VLN). Repsectively, each network has 226, 961, and 83,713 parameters. The first two
networks were trained with LM, which is better performing than any other method, if networks and
dataset are not too large. For the second network, however, the dataset always had to be reduced to
a maximum of 200,000 (which means 140,000 in the training set, since the remaining 60,000 would
make the validation and testing sets).

The choice of the networks’ size was rather simple: a small network could use the LM algorithm
and a large dataset, a medium size network could also use LM, but would require a smaller dataset;
however, it would allow more complex functions to be reproduced. A large network would instead
require SGD, but would allow for much more complex functions to be reproduced. The choice of
a deep network in contrast to a single hidden layer network for the medium size network comes
from the results obtained by Sanchez-Sanchez et al. [2016], who showed that, for equal number of
parameters, a deep network is a better guidance solution (for terminal landing, in this case) than a
shallow one.

Concerning the choice of the network, one may think that the one used by Gelly and Vernis
[2009] could be a good solution. Their network had 12 hidden neurons and one single layer only,
and their output layer was nonlinear. However, the formulation of the problem in terms of RL is very
different from when the problem is in terms of supervised learning. In fact, an additional problem
of shallow layers is that of finding being stuck in local optima; as stated in Section 5.6, such prob-
lem does not really occur in deep networks, and of course does not happen for shallow networks
if evolutionary optimization is used, as in Gelly and Vernis [2009]. A proof of this is the fact that
Sanchez-Sanchez et al. [2016] also showed that larger networks outperform shallower ones.

7.1.1 STAGE 1
In the first stage, a data set of 5,000 trajectories was used, in which the bank reversal time was finite,
and equal to the one used in the prediction of the modlat guidance (10.5 °s−1). The trajectories were
dispersed in the exact same way as described in Section 6.5. The total number of data points was
536,639.

The first problems occurred already with the search for the switching time. Being the reversal
time finite, it would affect the trajectory consistently. Hence, there would be an additional instability
in the solver when the bank-angle were close to 90°: in fact, the reversals were set to pass by the 0°
or 180° angle depending on which the bank-angle were closest. Hence, it was necessary to block
the reversal direction during the solving. This lead to a non-uniqueness of the solution, since some
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trajectories with bank-angle below 90° ended up having a reversal upwards, and vice versa. It was
initially believed that this would not cause any noticeable problems.

The concept developed in Stage 1 is not comparable to any of the guidance systems from Chap-
ter 4. In some sense, it is similar to the simple guidance; however, it does include the lateral logic.
Moreover, in this case, the bank-angle is commanded in a way such that the reversal, is already in-
cluded in the prediction, at the right moment, and in its whole duration. Another way of seeing
this is thinking of a modlat guidance, in which however the logic goes to Phase 2 since the begin-
ning, and in which at each iteration both the bank-angle and the reversal time are iterated. Hence,
it solves the trajectory as a function of two variables, as explained in Section 6.5. Such a solution is
computationally much more demanding than any of those obtained by the NPC, and is therefore
even less likely to be possible in real-time: this fact justifies even further the use of ANNs. If work-
ing, this would have a much more robust lateral guidance than the modlat. It could then be made
bang-bang by setting σcmd =σ0 as long as σcmd <σd .

In this part of the research, any unfeasible trajectory would still be labeled as non-converging,
and hence the network would not learn it. The states during the reversal were given the sign of the
sine as it would be after the reversal: this is because the lateral logic starts the reversal when the
output changes sign.

The regularization parameter was always kept equal to 10-5. The very first trainings ended up
stopping very early, with an RMS of1 about 0.11. It was easy to find out that the main problem was
how the output for the sine was set: the fact that it had to suddenly change value from 1 to -1, or vice
versa, caused large errors in the proximity of the shift, which in turn led the learning to early stop.
Hence, it was decided to split the problem in two: one network would learn the cosine, and another
one would learn the sign of the sine.

At this point, the training was done only for the medium and small size networks: since already
some troubles were encountered, as will be shown below, Stage 1 was interrupted before training
the 6DN.

TRAINING

After all the issues mentioned above, the training for the SN and the 4DN turned out to be rather
successful, even though very different from each other. During training, the performance of the
network is evaluated in terms of root means square (RMS) error with respect to the validation set.

One can see from Figure 7.1 that there is a large difference between the accuracy obtained by SN
and by 4DN, as well as there is between the accuracy of the vertical and the longitudinal guidance.

The vertical guidance reach an RMS of 0.017 in the case of the SN, and 7.8×10−4 for the 4DN.
These mean, supposing all the errors were equal in magnitude, an average error in the cosine of
the bank-angle of, respectively, 0.132 and 0.028, or 6.6 % and 1.4 %. These imply some rather large
errors; however, reminding the large variations in guidance commands that were found in Chap-
ter 4, which were caused by the atmospheric perturbations, such a deviation does not seem too
bad. Hence, these networks will be tested in a Monte Carlo run. The performance of the 4DN was
checked also on the data samples outside of its reduced training set: the overall RMS turned out to
be 0.001, only 20 % worse than the validation set.

Also of interest is to check how the guidance reproduces the dataset. In Figure 7.2, it is seen how
the two guidance concepts show the last 1,000 samples of the dataset, which amount to around 9
trajectories. An oscillatory behavior occurs, and inaccuracies are large for the SN, especially at the
beginning of each trajectory. Nevertheless, the DN4 seems to be performing very well, as expected
from the previously analyzed data.

The case of the lateral guidance is, at first sight, much more critical. However, evaluating the
lateral guidance from its RMS error is unfair, since it only has to indicate the correct sign. A more

1For the entirety of this chapter, by RMS it is meant its squared value, or the mean of the square errors.
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Figure 7.1: Performance of the networks on the validation sets during learning.
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Figure 7.2: Targets and networks outputs for the last 1,000 samples of the dataset.

fair way to evaluate its performance consists of checking how often the guidance has a different sign
from what it is supposed to have. This check has been done for both networks, for all the points in
the dataset (this means that the 4DN network has been tested for points outside its training data as
well): the SN ended up being correct 98.56 % of the times, whereas the 4DN was correct 99.09 % of
the times. Hence, both lateral logics can be considered to be properly trained.

Considering the not very large difference between the two lateral logics, it was decided to only
use the one from the 4DN, independently from the network that would be used in the vertical guid-
ance. This same lateral guidance would be kept also during Stage 2.
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TESTING

The neural guidance logics were tested in the same Monte Carlo runs described in Section 4.8, but
for the US76 c and the GRAM-99 ls environments only. The choice was made because the US76 c is
the same environment used in the solver, and hence is useful in understanding the behavior of the
networks, whereas the GRAM-99 ls is the most challenging atmosphere.

Figure 7.3 shows the longitudinal performance of the neural logics in the US76 c environments,
whereas Figure 7.4 shows their performance in the GRAM-99 ls. In both environments, and for
the 4DN only, there is a cloud of about 4 % of the total samples that has been cut from the figure,
lying at altitudes between 1,000 and 3,000 km, for flight-path angles between -5.35° and -5.15° in
the GRAM-99 ls and between -5.50° and -5.05°. In all four cases there is a clear line in which the
guidance is relatively accurate in apoapsis (even though still many orders of magnitude less than
any of the NPC guidance systems from Chapter 4), which goes from an initial flight-path angle of
−6.4° to about −5.5°. The same outliers found in Chapter 4 are also there, even though not very
clearly visible. The corresponding ∆V follows a curve similar to that of the simple guidance, as
expected. In that range of entry angles, in the GRAM-99 ls atmosphere, the SN has an average error
of 20.5 km in apoapsis and an average∆V of 247.2 ms−1. In that same range, the 4DN has an average
error of 19.0 km and a ∆V of 243.7 ms−1. In the US76 c the 4DN turns out instead to be a little more
accurate, with an average error of 16.5 km in apoapsis altitude against the average 20.7 km scored by
the SN (always in that same range of entry angles).
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Figure 7.3: Performance of the networks in the US76 c environment.

In addition to the main line there are however at least three recognisable patterns in each case:
a cloud of points, spread for a large range of low shallow flight-path angles, with very high apoapsis
(including the cloud for the 4DN above mentioned, and not shown in the plots), a line of trajectories
with very low apoapsis (all between 100 and 120 km altitude) for shallow entry angles, and a few
crashes, also occurring for shallow entries. It is rather counterintuitive that a shallow entry may
lead to a low apoapsis, or even to a crash. These patterns (excluding the crashes) cause the cloud of
high ∆V s for shallow entry angles that occur in every case. Despite not being very intuitive, Figure
7.5 helps visualize this correlation.

Given the strange distribution of the performance, a table summarizing the statistics of the net-
work would be of no use.

If one were to notice a difference in the performances of the two networks, it would be the fact
that when entry angles become shallow, they start deviating in opposite directions: the 4DN has a
low apoapsis for entries between −5.4° and −5.3° (in the GRAM-99 ls), and then has high apoapsis;
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Figure 7.4: Performance of the networks in the GRAM-99 ls environment.
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Figure 7.5: Correlation between ∆V and apoapsis for both networks in the GRAM-99 ls environment.

the SN, instead, starts having high apoapsis at entries of around −5.6°, and then has low apoapsis
for entry angles shallower than −5.4°.

The performance of the lateral guidance is worth being mentioned. As the longitudinal guid-
ance, also the lateral guidance becomes inaccurate for shallow entries. However, it becomes very
inaccurate also for very steep entries. This makes sense, thoguh,since in those cases the bank-angle
is very close to 0°. Figure 7.6 (left) shows this pattern.

Eventually, the behavior of the network along specific trajectories is analyzed next.

REQUIREMENTS ASSESSMENT

Because of what was concluded in Chapter 4, the only parameter to be analyzed to meet the require-
ment will be the ∆V . In terms of the requirement GD-1 of Section 2.7, the SN and the 4DN perform
equivalently well. For both networks, and both environments tested, there is a very wide range of
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Figure 7.6: Performance of the lateral guidance: final inclination error (left) and ratio between lateral and longitudinal
∆V (right).

entry angles for which the ∆V is bounded with 3 standard deviations. Such value is 450 ms−1, and
it can be ensured for entry angles between -6.4° and -5.6°. Within such a range, and for entry angles
between -6.1° and -5.6°, the lateral guidance gives a lateral ∆V of maximum 5 % of the planar ∆V .
Hence, for the latter range, the requirement GD-1 is met with a total∆Vmax of 475 ms−1. Such a per-
formance is still very far from that of the concepts of Chapter 4. Thus, further effort will be made in
the next subsections to lower the ∆Vmax. Before that, an additional analysis of the specific behavior
of the guidance is carried out.

BEHAVIOR

This subsection analyzes the specific behavior of the neural guidance. Such an analysis is important
to give further insight in the problem, and find possible solutions to the problems encountered.

Figures 7.7 and 7.8 show the bank-angle history for the two networks in both the US76 c and
the GRAM-99 ls environments; respectively, they show a relatively steep entry (γ0 = −5.991°), and
a shallower one (γ0 = −5.374°). Unfortunately, there is no guidance concept from Chapter 5 that
is similar to the one reproduced by these networks, which is a hybrid between the simple and the
modlat. This is meant in the sense that it does not perform a bang-bang trajectory, but it keeps into
account the future reversal. As a reference, the guidance simple flew the trajectories with an almost
constant bank-angle of, respectively, 47.5° and 83.0°. The trajectories taken here shall be considered
as two examples only.

Figure 7.7 shows that, for the same initial conditions, the SN network gives a much noisier out-
puts than the 4DN. In addition, the initial error seen from the training samples in Figure 7.2 is here
very evident, and causes an initial bump of about 20°. The behavior of the 4DN is particularly good
instead. It is indeed almost suspicious that it can keep a constant bank-angle during the entirety of
the trajectory in the GRAM-99 ls environment, especially after the reversal. If one remembers Figure
4.37, in which the trajectories obtained with the Lu guidance in the GRAM-99 ls environment were
extremely noisy, especially towards the end, it is evident that this linearity may even look suspicious.
In addition, while doing so, it aims the apoapsis with an error of 800 m only, as shown in Table 7.1.

Figure 7.8 shows that in the shallow entry case, the solutions obtained by the SN and the 4DN
networks diverge from each other after the reversal. In addition, in the case of the GRAM-99 ls,
there occurs a problem strictly related to the one found in the solver. In fact, the network receives
the command to reverse when the bank-angle is slightly below 90°, and thus turns in the opposite
direction from the others guidance systems. This, in turn, leads to a completely different trajec-
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Figure 7.7: Bank-angle history for the two networks, in
two different atmospheres.
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Figure 7.8: Bank-angle history for the two networks, in
two different atmospheres.

tory. Moreover, it seems likely that the network had "expected" that the turn should have been
upwards. In fact, when the guidance turns upwards (in the US76 c environment), the bank-angle
after the reversal remains quite the same (at least immediately after the reversal); instead, when it
turns downwards, it diverges much faster. This plot shows two clear drawbacks of both logics: the
first consists of diverging with a low flight-path angle; the second is the problem of the ambiguity
of the bank-angle reversal, which, if different from what expected, may lead to undesired results. In
fact, in that case, the final apoapsis turns out to be 98 km below the target. To facilitate the compar-
ison, Tables 7.1 shows the performance of the guidance systems, together with the comparison of
the Lu, the modlat, and the simple for the same conditions.
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Figure 7.9: Examples from each of the three different possible failure modes, obtained with the 4DN, in the US76 c.

Eventually, it is interesting to see how some samples from the three failing patterns behave,
to look for possible solutions. Figure 7.9 shows three trajectories that can help understand what
happens in each of the three cases. It is clear that what causes the difference between a low apoapsis
failure and a high apoapsis failure is the commanded bank-angle when the reversal is triggered, and
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Table 7.1: Performance of the trajectories from Figures 7.7 and 7.8.

Fig. 7.7 (γ0 = −5.99°) Fig. 7.8 (γ0 = −5.37°)

Guidance Atmo rapo ∆V ∆Vtot ∆i rapo ∆V ∆Vtot ∆i
[km] [ms−1 ] [ms−1] [deg] [km] [ms−1] [ms−1] [deg]

SN US76 c 191.2 319.0 319.5 -0.14 292.3 121.9 124.9 0.18
GRAM-99 ls 187.8 271.8 271.9 -0.07 329.7 120.4 130.4 0.32

4DN US76 c 200.5 293.1 294.4 -0.21 147.7 226.4 227.7 -0.17
GRAM-99 ls 201.9 247.2 247.5 -0.10 102.5 692.3 693.0 -0.23

simple US76 c 200.0 284.2 - - 200.0 122.5 - -
GRAM-99 ls 199.8 243.6 - - 198.3 109.1 - -

Lu US76 c 200.0 83.7 - - 200.0 72.9 - -
GRAM-99 ls 199,6 82.0 - - 200.0 74.9 - -

modlat
σd =120°

US76 c 200.0 76.1 76.9 -0.08 200.0 51.1 51.1 -0.00

GRAM-99 ls 199.2 71.7 72.1 -0.06 200.0 49.9 49.9 -0.00

the consequent direction of the reversal. The crashing case is instead a very shallow entry (γ0 =
−5.106°). In that case, it is less likely that the cause of the deviation from the correct trajectory is
the reversal. An indication of what the problem could be can however be found by analyzing the
training data set. Figure 7.10 shows a histogram of the outputs of cosσ. It is seen that trajectories
with very low cosσ are particularly rare. Hence, the networks are not well trained at guiding the
vehicle when they are supposed to give a command with cosσ close to -1. In addition, trajectories
flying close to such conditions are already inherently more unstable, as stated in Subsection 2.5.2.
Moreover, this reason would automatically explain also why there are less crashes in the GRAM-
99 ls environment: trajectories with cosσ ≈ −1, are correlated to not only very shallow flight-path
angles, but also very low densities. Figure 7.11 shows the correlation between cosσ and ρ̄D . Since
the density variations are much larger than the CD variations, this can bee seen as a correlation
between density displacement of the atmosphere and cosσ (in fact, the corresponding plot with
ρ̄L is very similar). In the GRAM-99 ls the density variations from the nominal US76 profile are
smaller than in the US76 c, and hence there are less trajectories flown at very high bank-angle. This
is further proved by the fact that all the crashes (in the US76 c environment) occur not only with
shallow initial flight-path angles, but also with atmospheric densities that are between 30 % and 50
% less than nominal.

The latter reasoning explains two major problems of the current concept: one is the reversal,
which, when included in the training, causes an ambiguity that leads many trajectories to a large
error. There was an attempt to change the reversal direction logic in many different ways: this in-
cluded shifting the discrimination angle (from 90°, to 95°, 100°, or 80°), which brought some light
benefits when moved to 95°, or uniforming the rotation direction, which worsened the problem.

The second major problem is indeed the initial conditions and perturbations in the trajecto-
ries used as database. In fact, despite the training distribution is representative of the distribution
encountered in testing, it is not a choice that enhances robustness, since some conditions are en-
countered too rarely during the training. Hence, a distribution of conditions that is not realistic will
be expected to give more robustness to the networks.

Another issue that arises from Figure 7.9 is that of infeasible, or close to infeasible, trajectories.
Despite all the three trajectories do reach saturation, they clearly do so too slowly. A clear case is
that of the crashing trajectories, which reaches full lift-up only after its velocity is way below circular
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Figure 7.10: cosσ distribution in the training data set of
Stage 1.
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Figure 7.11: Correlation between cosσ and ρ̄D for the
training set of Stage 1. For 3,000 data points picked

randomly.

velocity, and hence there is no possibility for aerocapture to occur anymore. This issue is due to the
fact that any trajectory that would not reach apoapsis would not be included in the training set.

LESSONS LEARNED

A summary of what can be concluded and implemented from Stage 1 follows. Some of these lessons
were then implemented in the following Stage.

1. Given the used formulation of the output, it is convenient to separate the sine from the cosine
into two different networks. This was noticed immediately in the beginning of this Stage, and
was implemented already.

2. The bank reversal causes a non-uniqueness in the function that has important and negative
consequences. Many trajectories that behave very well until the reversal lose their target af-
terwards.

3. A subset of trajectories with shallow initial flight-path angle and low density profiles are poorly
represented in the training data set.

4. The networks, even for steep and easy entries, are still many orders of magnitude less accurate
than the NPC. At this point of the training, it is believed that such a large error is caused by the
reversal, which brings the vehicle in regions of the input space for which it has not been very
well trained.

5. The networks do not know what to do when they are in a state in which the trajectory has
become infeasible.

7.1.2 STAGE 2
In the second stage, the previously mentioned lessons learned were implemented as follows:

1. The first item of the previous list was already implemented in the previous stage.

2. The trajectories in the solver were modified to have an instantaneous bank reversal: this way,
the non-uniqueness was removed. There was also an attempt to have a finite time reversal,
but always in the same direction. This attempt was aborted after too many trajectories did
not converge in the solver. This happened for both the reversal directions.
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3. The distribution of the entry angles was modified to have shallow entries more frequently
than before.

4. Unfeasible trajectories were included in the training set.

At this point of the research, any unfeasible trajectory would still not be considered: this way,
it would be possible for the user to decide whether to include any of these solutions. However, it
became soon evident that including unfeasible trajectories with the value of the cosine equal to
either 1 or -1 was not a good idea. In fact, doing this would cause a non-smoothness of the function,
which would be difficult for the networks to learn, and cause the learning to stop early. Hence, at
this stage, it would not be possible to implement the last item of the list.
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Figure 7.12: Apoapsis altitude for the 4DN of Stage 2 in the US76 c environment.

With this correction, the networks were able to achieve RMS during learning similar to those of
Stage 1. However, when testing, the performances of the network turned out much worse than the
previous case. It is believed that an important issue that occurred is the fact that, after the reversal,
which occurs, during testing, in a finite time, the network would end up in states that were never
explored during training. Because of that, their accuracy would be much lower. Figure 7.12 shows
the performance of the 4DN in the US76 c. The problem is clear: any trajectory whose reversal is
downwards ends up in a low apoapsis or crashing trajectory, whereas any trajectory whose reversal
is upwards ends in a high apoapsis. The pattern is a little similar to that of the SN of Stage 1; however,
much more enhanced.

LESSONS LEARNED

This Stage has not improved the previous one. That of the bank reversal is a major issue in this
problem, and will hence be avoided for the remaining of this research. In addition, an analysis
of the training trajectories showed that still very few were flown with cosσ ≈ 1, which means that
the probability of having a shallow entry should be increased further. The lessons learned can be
summarized as:

1. That of the reversal is a complex problem that should be tackled aside from the longitudinal
guidance. A possible solution would be that of including entries from a wider set of initial
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headings, as well as initial flight-path angles. This will not be done in this research, and the
lateral logic will be dropped.

2. Shallow entries are still not frequent enough.

3. The networks have a hard time learning infeasible trajectories if they are flown with ‖cosσ‖ = 1.

7.1.3 STAGE 3
After the retrogression of the previous Stage, it was decided to simplify the problem, and add a few
more modifications. The changes include (referring to the list above):

1. The solver now looks for a constant bank-angle only: there would be no reversal in the data
set. Also, inclination has been removed from the inputs of the guidance.

2. The distribution of the entry angles has been modified to further increase the probebility of a
shallow entry.

3. Unfeasible entries would now be flown (in the solver) with ‖cosσ‖ > 1.

The entry angles distribution was obtained from a uniform distribution with extrema 0 and 1,
and raised to the third power. It was then denormalized, such that a 0 would be the shallowest entry,
whereas a 1 would be the steepest entry. This resulted in having the output sample distribution
shown in Figure 7.13. The same figure also shows the fact that trajectories with imaginary bank-
angles were flown. In addition, the number of trajectories for the database was increased to 20,000.
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Figure 7.13: cosσ distribution in the training data set of Stage 3.

In this Stage, the SN has been modified to having 25 hidden neurons. To avoid any confusion,
this network will be labeled as SN25.

LEARNING

The new dataset included 2,036,366 data points. The SN25 was trained with 800,000 of those, whereas
the 4DN was trained with 200,000. In both cases, LM was the chosen training algorithm. In addi-
tion, a very large network (labeled VLN) with 5 hidden layers of 128 neurons each was trained with
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AdaDelta, given its extremely large number of parameters (83,585). A network of equal size was also
trained with AdaGrad, but no sensible differences were found in the final outcome. In this case, ε
was set equal to 10−8, and the updates were done with mini-batches of three samples at a time. After
500,000 updates, the size of the mini-batches was increased to 256.

The learning curve of the networks trained with LM are very similar to those from Stage 1. This
fact is quite important, since the inclination has been removed from the inputs. This means that the
differences in trajectories due to perturbations in inclination are negligible, at least from a guidance
point of view. This means that deviations in the Coriolis acceleration can be neglected. This is an
example of the strong pattern recognition capabilities of the machine learning framework.

The network trained with AdaDelta has a rather noisy learning, curve. The noise decreases once
the size of the mini-batches increases. Despite its complexity, the network ended up achieving an
RMS of only 0.036, definitely underperfoming it expectations. Nonetheless, a closer check of its per-
formance leads to some doubts. Figure 7.14 shows indeed these patterns. At first sight, it might look
like a very similar case to that of the SN shown in Figure 7.2. However, it is much more extreme, since
the errors in the beginning of the trajectory are much larger, and much smaller in the remaining of
it. This behavior is not even proper overfitting, and is worth further investigations. A closer look to
the parameters shows that they are on average very small, leading the network to behave very close
to linearly. This might be because the regularization parameter has not been adapted to this larger
network, and could have caused underfitting.
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Figure 7.14: Targets and networks outputs for the first 1,000 samples of the dataset of Stage 3.

PERFORMANCE

The three networks have all been tested in the same scenarios as Stage 1.
At this point, the guidance systems have been able to perform much better, especially the SN25

and the 4DN in the GRAM-99 ls. An analysis of how these new logics meet the requirements of
Section 2.7 will be given in the next subsubsection. Figure 7.15 shows that the VLN has a tendency
to overshoot the apoapsis in the US76 c. This trend exponentially increases for shallow entries,
leading to some misses of 1.000 km. In a case, the apoapsis even goes beyond the limits of the figure.
Nevertheless, it causes no crashes, as opposed to the other networks, shown in Figure 7.16. Also in
this case, however, there is an outsider that goes beyond the figure.

The figures show that the accuracy is still many orders of magnitude lower than that of the NPC.
Also, it is a little difficult to understand which between the SN25 and the 4DN performs best, but it
is a rather non relevant race. The VLN is instead clearly out of the competition.
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Figure 7.15: Apoapsis altitude for the VLN in the US76 c
environment.
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Figure 7.16: Apoapsis altitude for the SN25 and the 4DN
in the US76 c environment.
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Figure 7.17: Apoapsis altitude for the SN25 and the 4DN
in the GRAM-99 ls.
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Figure 7.18: ∆V for the SN25 and the 4DN in the GRAM99
ls.

For all networks, the performance rather improves in the GRAM-99 ls. Figure 7.17 shows that
no crashes occur ever for the SN25 and 4DN. The VLN in GRAM-99 ls is not reported: it still has its
tendency to high apoapsis for shallow entries, but in a lighter way. Eventually, Figure 7.18 shows
the ∆V performance in this environment. A strong resemblance to the simple NPC guidance is
clear. From this point of view, the 4DN slightly outperforms the SN, especially for steep entries.
Being the simple a common benchmark guidance, the performance of these networks can now be
considered acceptable. However, this is in a very limited case, being that of the GRAM-99 ls. If larger,
even though constant, perturbations were to occur, the networks would not perform well. This is
somehow opposite to what happens with the NPCs, and is probably an indication of the fact that
during training larger perturbations should be used. However, in terms of accuracy all networks still
perform very bad.

The main conclusion of this Stage is that with the current setup, it is not possible to achieve
high accuracies in the apoapsis altitude. However, this is not very relevant from a performance
point of view, since the final∆V is similar to the simple NPC, a common benchmark for aerocapture
guidance (even though not the best performing one).

In addition, there is the suspect that the perturbations in density should be increased in the
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training data, at least if it is wanted to have a network capable of performing in the US76 c environ-
ment.

REQUIREMENTS ASSESSMENT

Also in this case, in terms of the requirement GD-1 of Section 2.7, the SN and the 4DN perform
equivalently well. For both networks, in the GRAM-99 ls environment, there is a range of entry
angles for which the∆V is bounded with 3 standard deviations. Such value has now been decreased
to 210 ms−1, and it can be ensured for entry angles between -5.6° and -5.1°. In the US76 c, such a
range has to be slightly shifted, and the upper bound increased, to avoid a few crashing trajectories.

The VLN can ensure a successful aerocapture for steep initial flight-path angles only. As shown
in Subsection 2.5.1, the final ∆V is always larger in those cases. Thus, the VLN is less performing, in
terms of the requirements stated for this research. It is difficult to say why this happens. Nonethe-
less, it is noticed that no crashes occur, for the entirety of the tested cases, even in the US76 c.

7.1.4 IMITATING THE OPTIMAL NPC
Given the previous decent results, it was decided to try to imitate the Lu guidance with the neural
networks. The concept is explained in Section 6.5.
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Figure 7.19: ∆V for the SN25 when imitating Lu in the GRAM-99 ls.

The results produced with this attempt are nonetheless quite disappointing. The ∆V for the
SN25 in the GRAM-99 ls is shown in Figure 7.19. The apoapsis altitude error shows a similar pat-
tern. The other networks displayed behaviors similar to this, and their performance is therefore not
reported. All the trajectories belonging to the ark on top show the same pattern: they trigger Phase
2 way too late, and are then very slow at correcting this, taking an average of 40 s. This attempt is
clearly a failure. When run in the US76 c, there was a clear correlation with the atmospheric density:
the network would end up in the upper ark if the atmosphere was thicker than average.

This is possibly explained by the fact that the Lu guidance brought the vehicle in states that were
never explored during training. More about this is discussed in the next subsection.
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7.1.5 CONCLUSIONS

At this point, some acceptable results have been obtained. Nevertheless, the accuracy in apoapsis
altitude is still many orders of magnitude worse than that of the numerical predictor correctors.

Most importantly, the failure in imitating the guidance by Lu made clear what is probably the
largest flaw of this implementation, which consists of using trajectories which only sensible vari-
ations in initial conditions is the flight-path angle (velocity was also changed, but very mildly, as
well as the initial heading, but that does not count when not considering the lateral guidance: the
remaining 5 parameters concerned either the vehicle or the environment).

To explain this, it is necessary to go back to the 3-dimensional corridor (energy, flight-path angle,
and dynamic pressure) as explained in Subsection 4.3.3. In these datasets the main perturbations
were the density, the lift and drag coefficients, and the initial flight-path angle. Let us freeze the
first three parameters for the moment, which give a pair of value of ρD and ρL constant along the
trajectory.

A single trajectory with constant bank-angle describes a line in the three-dimensional corridor.
At this point, if one varies the initial flight-path angle, the family of trajectories so produced cannot
generate other than a surface. This means that, for constant ρD and ρL , the data set explores only
a very small subset of the space; namely, a surface instead of an entire 3-dimensional space. This
problem can only be solved by either varying another variable in the initial conditions, which would
be the velocity, or by having initial conditions starting randomly in the corridor, as if the spacecraft
were spawning randomly with infinite improbability at random points. If the first option is chosen
also the range of initial flight-path angles should be widened.

Both approaches have their disadvantages. Varying the initial velocity would lead to having a
good portion of the dataset that is outside the corridor, and therefore not really useful. However,
having a randomly spawning vehicle might also be problematic, since defining the edges of the 3-
dimensional entry corridor may be problematic.

This problem became evident only when trying to imitate the guidance by Lu, but is however
probably the main reason why a still large variance in the apoapsis range is obtained; in fact, any
perturbation, which includes imprecise commands as well, may lead to a state for which the guid-
ance would not have been able to generalize, and would therefore would give an inaccurate com-
mand, which in turn, would act as a further perturbation. Also, this might be the reason why shallow
networks perform almost as well as deep networks: not being provided any data outside of the above
mentioned surfaces, their performance once out of those has no reason to differ. This is also prob-
ably the reason why Figures 7.7 and 7.8 showed no oscillations in the GRAM-99 ls environment: the
network would indeed not be able to recognize those differences.

Hence, the most important conclusion is that:

It is necessary to simulate trajectories initialized at random points along the corridor,
or to sensibly vary the initial velocity as well.

This conclusion can be read as the necessity to include the RL principle of exploration also in super-
vised learning. This is because, if supervised learning is used for a control problem, the similarity
between the two methods is great.

Eventually, the best performing concept is the one developed in Stage 3, which can ensure a
maximum ∆V of 250 ms−1 in the GRAM99 ls environment.

Other lessons learned are:

1. The inclination is only important for the lateral guidance. This does not mean that the effect of
the Coriolis acceleration is negligible, but only that there is no need to account for deviations
in it.

2. Learning infeasible trajectories with infeasible commands adds robustness to the guidance.
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3. To have a performing network in the US-76 c environment it is necessary to increase the den-
sity perturbations magnitude.

7.2 POLICY GRADIENT NETWORKS
The RL networks have been trained in the GRAM-99 l environment. For reasons previously ex-
plained, it means that they will not be able to generalize to environments with stronger perturba-
tions in magnitude, such as the US76 c, but even the GRAM-99 ls.

The networks were trained using both f1 and f2 from Section 6.6 as performance parameter. The
training setup is also described there.

The first credit assignment function f1 grows exponentially for high performing trajectories.
There were no real expectations for it to give good global performances, but it was expected to
be more of a test to understand whether learning occurs properly. Given that function structure,
the policy is expected to highly prioritize learning for the high performing trajectories, neglecting
the low performance one, not to mention the crashing trajectories. Because of this, there is the ex-
pectation that the so-trained network might perform well for shallow flight-path angles, where the
previous networks failed most often. Here, all networks have one single layer with 16 parameters.

Figure 7.20 shows the performance parameter during training for three cases, averaged on 200
iterations. The algorithm was set to stop once the average standard deviation went below a cer-
tain value. However, training became uninteresting way before those conditions were reached. In
addition, in the case of Set 3, the training performance started decreasing before it was manually
stopped. The three sets differ from each other only in terms of initial standard deviation: Set 1 has
σ0 = 1, Set 2 has σ0 = .5, and Set 3 has σ0 = 2. The particularity about Set 3 is the fact that, despite
having a rather low average performance, it began at around the eight thousandth, displaying some
rare but extremely high performing trajectories (with respect to the rest), that were having fV = 16,
consisting of a ∆V of about 60 ms−1. Unfortunately, it was not stopped in time to be able to test the
network when it was displaying this extreme behavior.
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Figure 7.20: Targets and networks outputs for the first 1,000 samples of the dataset of Stage 3.

When tested in a Monte Carlo run, the results show patterns that are almost frustrating to an-
alyze, and none of the expectations are met. To give some of such examples, Figures 7.21 and 7.22
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Figure 7.21: Performance of Set 1.
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Figure 7.22: Performance of Set 2.

show the performances of Set 1 and Set 2 respectively (both have a crash rate of about 0.5 %, not
included in the plots). In Set 1, a dichotomy in ∆V occurs for steep entry angles. There is no corre-
lation between any of the perturbations and whether the performance would lie on the lower or on
the higher branch. Hence, the cause of this dichotomy should be searched in the specific behavior
of the guidance commands. This is done in Figure 7.23, showing two trajectories with almost same
(and steep) entry angles of −6.1°. What happens is, once again, clear and evident. At some point, the
network gives a command that is about 180° "far" from the current state. This can lead, at any time,
to a rotation in one or the other direction. Despite slightly different from the problems encountered
in the previous section, this is is a case strictly related to the previous one. The network attempts
a turn close to 180°, very close to a bang-bang maneuver (even though, in this case, different from
what expected), which has an outcome that may seem as almost random. Here, failure occurs for a
different reason from the supervised learning case though. In practice, once the network "realizes"
that it turned the wrong direction, it does not even try to correct its trajectory. This is because low
performing trajectory are extremely poorly rewarded, no matter what.

If the commanded bank-angle were set to be included between −180° and 180° during testing
only, the red trajectory from Figure 7.23 would behave a little similar to the blue one. Nonetheless, it
would still have a large final ∆V of 563.3 ms−1. This is because it would end in regions of the space
that were probably never explored during training. Moreover, when doing the same modification
to the entire Monte Carlo set, the average performance decreases, since other trajectories probably
rely on the fact that the bank "revresal" occurs in the other direction. It is then definitely important
to make this modification during training already.

There is no need to carry out further investigation. This sort of instability may be extremely
complicated for a network to deal with, also because the method used relies on gradient informa-
tion. If it were not for that dichotomy in the ∆V , it seems like the curve were similar (even though
less performing) to the one found with the Lu guidance, and displayed in Figure 4.23.

Set 2 is instead more merciful. Nonetheless, the patterns are hard to understand also in that
case, and the performance is still in no way close to that of the numerical guidance systems.

More training sets, with different metaparameters and credit assignment functions were being
carried in parallel while analyzing these first results. None of those ever achieved any particularly
good results, most likely for the same reason.

If one considers the distribution of the performance of Set 1, and removes the detached branch,
it is possible to recognize a pattern that is similar to that of the Lu guidance, but averagely less
performing.
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Figure 7.23: Difference in bank-angle history between a high- and a low-performance steep entry trajectory of Set 1.

Comparing the performance of the two sets, it is evident that the results are very sensitive to the
training initial conditions and to the different metaparameters used. This could however still be just
another consequence of the afore mentioned issue.

In relation to the problem statement of Section 2.7, both Set 1 and Set 2 can ensure aerocapture
with a maximum ∆V smaller than 1000 ms−1. Nonetheless, such a values is very large, and much
less performing than what is achievable with supervised learning networks.

It is thus believed that if the problem of the reversal is solved, good performances could be
achieved. This would be quite remarkable, since the trajectories simulated during the training of
Set 1 were about 100,000, as opposed to the 6,000,000 done by Gelly and Vernis [2009].

7.3 SUMMARY
This chapter ends not without having had some struggles. It is clear that application of artificial
intelligence to this problem is more complex than initially believed, and anything concerning the
lateral control causes a variety of unexpected problems.

Some conclusions have been drawn for the supervised learning method in Subsection 7.1.5. A
summary of those can be read in the next chapter.

Notably, it is possible to achieve an aerocapture with a neural guidance trained with super-
vised learning with a total ∆V of less than210 ms−1, for entry angles between -5.1° and -5.6° in the
GRAM99 ls. Despite being 3 times less performing than the optimal concepts such as the mod and
Lu of Chapter 4, this result is still remarkable because of the much higher computational speed of
ANN. This is interesting because of the last requirement stated in Section 2.7.

On what concerns the reinforcement learning part, it was found out way too late what was a
main problem during learning. Of course, it might as well not be the only one. Hence, the research
question stays open; nevertheless, it can be narrowed down. The next chapter summarizes this work
and, among other things, discusses the results in light of the main research question.





8
CONCLUSIONS AND RECOMMENDATIONS

This thesis aimed to answer the research question:

Can an artificial intelligence guide a spacecraft to achieve aerocapture in an optimal and
robust way?

The answer is partly positive, in the sense that an artificial intelligence can guide a spacecraft
in a robust way, but far from optimal. The best result obtained for the case in object is a ∆V of
210 ms−1, whereas the optimal NPC can achieve a ∆V of 90 ms−1.

To answer the research question, the state-of-the-art numerical predictor-corrector has also
been analyzed, modified, and improved. But before doing so, the aerocapture trajectory has been
thoroughly studied in most of its aspects. Thus, the conclusions are divided into three main cate-
gories:

1. trajectory related conclusions;

2. NPC related conclusions;

3. artificial intelligence conclusions.

Additional conclusions that can be labeled as "others" were inferred either during verification or
during the software design. The conclusions are the topic of the next section. Afterwards, recom-
mendations for future work will be listed.

8.1 CONCLUSIONS
To not be repetitive, only the major conclusions will be reported here. Concerning the trajectory of
aerocapture:

T1 It has been mathematically proven in Section 4.1 that having an exit orbit with a high periapsis
can be, in terms of ∆V , approximately as important as having an exit orbit with an accurate
final apoapsis. As an example, for the case in object, an exit orbit that misses the apoapsis
by 1 km needs the same ∆V of an exit orbit that is extremely precise in apoapsis, but has a
periapsis that is 1 km lower.

T2 In Subsection 4.3.2, it has been mathematically proven that, given some assumptions, and
except for some rare exceptions, the integral in time of any function of density and velocity
during aerocapture is minimized by a bang-bang trajectory. These functions include most of

163
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the simplified formulas for the heat rate. Thus, it is a good approximation to assume that the
total heat load during aerocapture is always minimized by a bang-bang trajectory. The order
of the commands depends on the function itself.

T3 In Subsection 4.3.3, it has been shown, with the aid of numerical methods, that heat rate and
load factor peaks during an aerocapture are minimized by a bang-bang trajectory. Specifically,
such a trajectory should be lit-up lift-down.

T4 For the case in object, the problem of optimizing the aerocapture can be reduced from a
multi-objective, constrained optimization, to a single-objective, unconstrained optimization.
This was found in Section 4.8.

T5 Because of the short duration of the maneuver, the constraints on the attitude dynamics and
kinematics of the vehicle play a major role in the maneuver. This concept was already intuited
in Subsection 2.5.1, and further strengthened when analyzing the guidance logics in Section
4.8.

The numerical predictor-corrector by Lu et al. [2015] has then been analyzed, and some mod-
ifications have been proposed. Also, because of the previous results, it has been found that such
guidance is optimal also in terms of minimizing heat rate and load factor peaks. For the case in
object, it also minimizes the total heat load.

The following are the major conclusions that can be drawn from the analysis and the modifica-
tions brought to their guidance. Unless otherwise stated, all these conclusions are drawn from the
results of Section 4.8.

G1 Including a simplification of the attitude kinematics makes the optimal aerocapture guidance
concept more robust. Specifically, as shown in Section 4.7, the transition between Phase 1 and
Phase 2 is predicted more accurately. This, in turn, makes it such that less tuning is required
to have an optimal aerocapture guidance. Extensive testing in Section 4.8 has shown that
choosing a single value of σd for the entire mission works appropriately. This is opposed to
the original work by Lu et al. [2015], for which σd = f

(
V0,γ0

)
, and requires some effort to be

tuned.

G2 The modified Newton - Raphson method is a numerical method that reduces the number of
iterations per guidance call from an average of 10 - 20 needed with Brent’s method, to only 2.
In all cases tested, it met the requirements. It does not cause any decrease in final ∆V , but
in highly perturbed environments such as the US76 ls or the GRAM99 ls, it leads to apoapsis
misses that are averagely 4 km larger than other, more computationally demanding, numeri-
cal methods. The method does require some tuning.

G3 The bisection-secant method is a numerical method for which the maximum number of it-
erations to converge is smaller than Brent’s method. It is thus, conceptually, more robust.
Nonetheless, an analysis of the number of iterations required has not been carried out.

G4 Both numerical methods that were proposed here are capable to guide an aerocapture with
initial hyperbolic velocity. The capability has not been tested though.

G5 In light of the optimal aerocapture guidance problem as stated in Section 2.7, the mod,σd =120°,
guidance can ensure, for a range of initial flight-path angles included between -5.6 degree and
-5.1 degree, a successful aerocapture with maximum ∆V of 80 ms−1. In addition, a maximum
load factor of 5 can be ensured, which satisfies the requirement for manned flight, and a max-
imum integrated heat load of 650 MJm−2 is never exceeeded. The limit of maximum heat rate
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of 18 MWm−2 is also never exceeded. All these statements are true for a variety of environ-
ments, and do not include the targeting of a specific final inclination. A decrease of 10° in σd

leads to an average increase of 7 ms−1. Such an improvement disappears when small-scale
perturbations are included.

G6 The lateral guidance here proposed is very sensitive to how the atmospheric perturbations are
modeled. Specifically, in the GRAM99 ls there is no wide enough range of initial flight-path
angles for which the component of the ∆V due to out-of-plane correction is less than 50 % of
the planar component. In the US76 c environment instead, such a component is less than 5
% for the same range of initial flight-path angles in which the guidance is optimized. It has
not been verified at the moment whether such a low performance in ls environments is due
to the coupling of the lateral guidance with the modified Newton method, even though this
is, at least in part, quite likely, because of the feature stated at the end of Subsection 4.5.2.

On what concerns the guidance logics making use of artificial intelligence, the conclusions are
less extensive. These are all based on the results presented in Chapter 7.

AI1 When using machine learning, the choice of the set of trajectories chosen for the training is
very important to make the concept robust enough. This set should go beyond the conditions
that are expected to be found during testing. Specifically, adding trajectories flown with imag-
inary bank-angle (which implies ‖cosσ‖ > 1) ensures robustness for flights close to saturated
conditions.

AI2 The best result achieved in this research can ensure an aerocapture with a maximum ∆V of
210 ms−1. This value slightly changes depending on the environments in which the guidance
is tested. Both the SN25 and the 4DN can achieve such a result, when trained using LM. A
larger network trained with AdaDelta is instead less performing. It is believed that better per-
formances have not been obtained mainly because of the previous conclusion. Despite being
less performing, the neural guidance so obtained is very interesting, since it is sure it can be
used in real time. Such a statement cannot be said certainly true for the NPC instead.

AI3 For the setup used in this research, the lateral guidance works best if treated by a separate
network. This is because of the discontinuous nature of that logic.

AI4 PGPE is an RL method that still seems promising for application to the optimal aerocapture
guidance concept. Nevertheless, it is difficult to use. As an example, a seemingly very small
detail lead, during this research, to the impossibility of having a converging network. It is pos-
sible that additional problems need to be addressed before such a method can be successful.

Eventually, other conclusions include:

OT1 It was shown, in Section 6.6, that PGPE, combined with a parameterization provided by an
FFNN, can be used as a trajectory optimizer. The result achieved was not the theoretical opti-
mum. Nonetheless, the so optimized trajectory was obtained for the GRAM99 l environment,
it included the∆V due to inclination correction, as well as constraints caused by the rotation.
Hence, the difference from the theoretical optimum can be justified. Nonetheless, further
comparisons should be carried out in this direction. Eventually, the optimized trajectory was
obtained after 5,000 iterations, which implies 20,000 simulated trajectories.

OT2 A way to reproduce optimal attitude control in the simulation, while respecting the con-
straints on maximum angular velocity and accelerations has been proposed, and proven to
work efficiently, in Subsection 6.2.6. Optimality is in the sense of achieving the target com-
mand in minimum time, without overshoot.
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OT3 When treating the vehicle as a point mass, the benefits of using high order integrators highly
reduce. This is mainly caused by the discontinuities in temperature gradients of the atmo-
sphere, which, in turn, cause discontinuity in the scale height. The convergence exponent of
RK5 is reduced to 3.64, instead of the theoretically achievable 3.1. This conclusion was drawn
in Section 6.3.1.

8.2 RECOMMENDATIONS
Recommendations for future work are strictly related to the conclusions. The following would be
interesting topics for further studies:

1. Related to Conclusions T2 and T4, it would be interesting to study the conditions required for
the minimum heat load trajectory to be the same as the minimum ∆V trajectories. So far, it
has been only shown that the two trajectories do coincide for the case in object, but do not for
lower entry trajectories. Dependencies on the vehicle should also be studied.

2. It is believed that what has been stated in Conclusion T3 might be mathematically proven.
Such a demonstration would be of valuable interest.

3. Related to Conclusion G1, it would be interesting to see how the mod concept works if the
actuators are less than optimal. Such a concept requires indeed an estimation of σ̇av g , which
has been tuned for the constraints enforced in this research. Such constraints have not been
varied during testing. Thus, evaluating the response of the guidance to such a deviation would
be of valuable interest. Of course, the robustness of the guidance to errors in navigation
should also be studied.

4. The statement of Conclusion G3 should be put to test. The same should be done for Conclu-
sion G4.

5. Strictly related to Conclusion G6, it should be studied whether the inaccuracies of the lateral
guidance in ls environments is cause by a coupling with the modified Newton method. In
other words, the modlat concepts should be tested with the bisection-secant method.

6. Concerning Conclusions AI1 and AI2, a dataset with a wider range of initial conditions, that in-
clude variations in initial velocities, as well as wider range of initial flight-path angles, should
be used. It is believed indeed that the networks in this research have been trained for only a
subspace of all the possible states, making them less robust.

7. A consequence of Conclusion AI4 is the fact that it should be studied whether PGPE can give
better performance for this problem, if the issue found in Section 7.2 is solved.

8. In general, it would be of valuable interest to use different sets of inputs for the neural guid-
ance logics.

9. In relation to Conclusion OT1, the optimization method should be compared to the results of
other optimizers, in similar conditions. Moreover, it should also be tested with other parame-
terizations, such as the more common σ= f

(
E

)
.

10. Concerning Conclusion OT2, it would be of valuable interest to use the same concept as a
real attitude dynamics controller, even though this would require some modifications of the
outputs. Interestingly, such a concept is believed to be possibly used in real-time, even at
very high frequencies, since it only requires solving four explicit equations. Thus, there would
be no need of tracking the planned bank-angle trajectory, since such a trajectory could be
recomputed almost instantaneously.



8.2. RECOMMENDATIONS 167

11. The statement of Conclusion OT3 should be complemented with an evaluation of even higher
order solvers, including, possibly, integrators of classes other than RK. Moreover, it would be
interesting to evaluate whether such a conclusion would be valid when including attitude
dynamics as well. Attitude dynamics are usually much faster than longitudinal dynamics,
and thus in such a case it is likely that high order integrators would still be beneficial.
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A
PREDICTIVE LOAD-RELIEF

The predictive load-relief is a method developed by Lu [2014] by which an NPC can, at the same
time, satisfy the constraints on heat flux peak and on load factor, and still maximize the perfor-
mance. This concept is somewhat opposite to that of the Apollo skip entry guidance, in which,
when the load factor or the heat flux is sensed to be larger than the constraint, full lift-up is com-
manded [Moseley, 1969]. This way, the vehicle completely loses its target. Moreover, the constraint
will be exceeded anyway, since the loads would keep on increasing for some time even despite the
full lift-up command. With the predictive load-relief developed by Lu [2014], not only the vehicle
starts reacting way before the loads are exceeded, but also, it does so while still not abandoning its
target.

The concept is simple, but extremely ingenious: at any point in the predicted trajectory, the
derivatives of heat flux and load factor are computed: if they are such that, after having been lin-
earized, it is predicted that one of the constraints would be exceeded within some time δ, then the
bank angle at that point starts to deviate from the guessed bank angle by a certain amount, pro-
portional to how much the excess would be. This happens in the prediction, and therefore, once
convergence occurs, one has a predicted trajectory whose bank angle is constant for most of its
part, but increases whenever the load constraints are dangerously approached. This way, not only
the constraints are never approached, but the load-relief is also predicted since the beginning of the
trajectory. Lu [2014] shows how this method is successful in entry guidance. In general, it leads to
an initial more downward bank angle, which causes a larger energy dissipation in the beginning, to
then increase the bank angle, when the loads become relevant.

The method was applied to the aerocapture NPC, as advised by Lu et al. [2015]. Conceptually
speaking, this method has a few drawbacks when applied to aerocapture.

First of all, its major benefit is that of causing larger energy dissipations in the beginning, when
the load factor and heat rate are not too large, such that less energy needs to be dissipated later. This
is useful for an entry problem, where there is a constraint in range, but not much in aerocapture,
where there is not such a constraint. It is indeed this lack of range constraint that makes it such that
the bang-bang approach is the most effective also from a constraint point of view.

Second, the fact that this NPC guidance is divided in two phases, makes it a little complicated to
apply this method. It might make sense to use it only in Phase 2, since in Phase 1 the bank angle is
fixed. Nevertheless, it should be reminded that Phase 2 is initially planned to be flown at a certain
constant σd , which is limited to a certain value for robustness purposes: if Phase 2 were flown at
even larger bank angles (which is what this predictive load-relief causes it to do), the whole purpose
of limiting σd would be lost. In other words, the method would decrease the robustness.

Third, the minimum load trajectory is indeed a bang-bang, and there is not much that can be
done about it: in most cases, all the peaks happen in Phase 1, after a full lift-up segment of flight,
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which means that there is no way that the loads can be reduced further. If that is not the case, it
would mean that the entry flight path angle was very shallow, and the peaks would not be exceeded.
In the verification (immediately subsequent to this subsection), it will be shown how the method
was implemented, and validated it on an entry case; however, it will also be shown that, when ap-
plied to aerocapture, the method causes some problems, and this makes its application not very
interesting. At last, below is reported the algorithm used by Lu [2014], step by step (only the load
factor is treated, but the derivation is absolutely equivalent for the heat flux).

The main concept on which the derivation is based is that the dynamics of the flight-path an-
gle are slower than the altitude dynamics. Therefore, the sine of the flight-path angle is used as
pseudocontrol for the slower altitude dynamics, since:

ṙ =V sinγ (A.1)

The derivative of the acceleration a =
p

L2 +D2/m is computed as (for constant aerodynamic coef-
ficients):

ȧ =−2aD

V
+aV βr sinγ := Aa +Ba sinγ, (A.2)

where the approximation V̇ = −D has been used. Aa and Ba are both negative. δ is a prediction
horizon parameter. Linearizing, the acceleration at the end of the finite horizon is approximated:

a
(
t +δ)= a (t )+ ȧδ= a + Aaδ+δBa sinγ. (A.3)

Since the goal is that of enforcing a
(
t +δ)≤ amax :

sinγ≤ amax −a − Aaδ

Baδ
:= sinγmax . (A.4)

During the entirety of the trajectory, a reference flight-path angle is defined:

sinγr e f = max
{
sinγ, sinγmax

}
, (A.5)

for sufficiently small δ, γr e f = sinγ for most of the trajectory.
At this point, one defines also ḣr e f = V sinγr e f ; if such altitude rate is enforced, the maximum

acceleration should not be exceeded in the finite horizon δ. Eventually, in the prediction (as well as
in the guidance logic output) the bank-angle control is:

L cosσcmd = L cosσbase −k0

(
ḣ − ḣr e f

)
, (A.6)

where k0 ≤ 0 is a constant gain. This latter passage is justified by the fact that L cosσ directly in-
fluences V γ̇ in the equations of motion. σbase is the constant bank angle used in the prediction.
However, Equation A.6 is used also when computing the guidance logic output. It is stressed that
despite the one applied is a finite horizon prediction in the interval

[
t , t +δ]

, the consequence is
equivalent as to having an infinite horizon prediction, since Equation A.6 is enforced along the pre-
dicted trajectory: therefore, t slides along the entire trajectory.

A.1 VERIFICATION
The method has been implemented and included in the NPC guidance. Figures A.1 and A.2 show
the open-loop trajectories predicted when setting different constraints. Entry conditions are the
same for all three cases. There is no target crossrange, and thus the baseline bank angle has been
manually changed from one case to another, being 50° for the unconstrained case, 100° for the case
constrained at 4 g and 150° for the trajectory constrained at 2.5 g. The prediction seems to be prop-
erly working: however, the trajectories are obtained by letting the cosine of the bank angle uncon-
strained, which, in turn, becomes larger than one. Thus, the figures show that the concept works
properly but tuning is not appropriate for these cases (in which k0 = 1000 and δ= 16 s).
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Figure A.1: Open-loop simulation of re-entry with
predictive load relief.
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Figure A.2: Load factor history for open-loop simulation
of a re-entry with active predictive load relief.

In the open-loop guidance, cosines of the bank angle larger than 1 are allowed. In fact, be-
cause of the adaptive solvers used, constraining the cosine of the bank angle would trigger major
instabilities. As an example, when running the simulation of the trajectory constrained at 2.5 g, and
constraining the cosine of the bank angle, the simulation requires 4915 time-steps, 91 % of which
are computed in a region of time between 155 s and 165 s, with an average step-size of 2.3 ms. As
a comparison, only 500 steps are needed (highest tolerance is being used at the moment). These
instabilities can be seen in Figure A.4. Moreover, the so introduced constraint does not improve the
quality of the trajectory: the only difference now is that, since control authority is limited, the tra-
jectory does not satisfy the constraint. Figure A.3 shows in fact that the trajectory predicted limiting
the cosine of the bank angle violates largely the limit on the load factor, for a relatively large period
of time. Therefore, introducing this constraint in the NPC only does not offer any advantages.
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Figure A.3: Load factor history for the an open-loop
infeasible trajectory with constraints on cosσ.
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Figure A.4: Bank angle profiles for trajectories with and
without constraints on cosσ.

An extensive trade-off has been done to attempt to optimize the parameter in a way that the
constraints are respected as much as possible, while keeping the cosine of the bank angle as low
as possible. After analysing Figures A.5, A.6, A.7 and A.8, in which different combinations of the
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parameters have been attempted, it is noticed that a way to both satisfy the load factor constraint
and the bank angle constraints, consists of using a large horizon and a small gain. This way, it is
given more time to the guidance to react to possible future load factors. Moreover, a small gain is
necessary if one does not want to force the bank angle to exceed its physical limits.

However, such situation may cause too large deviations in the original trajectory, and also causes
the trajectory to stay very far from its constraints. This becomes especially problematic in aerocap-
ture. For these reasons, the values advised by Lu [2014] will also be used in aerocapture as first guess,
and then it will be evaluated whether they should or not be changed. However, it was immediately
noticed that a large value of k0 leads to too frequent skipout: hence, when used, the predictive load
relief will have a very small valu of k0, compensated, if necessary, by more conservative constraints.
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Figure A.5: Sensitivity of the bank angle profile (cosine)
planned by the NPC for the case of flight constrained at

2.5 g with respect to the parameters k0 and δ.
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Figure A.6: Sensitivity of the bank angle profile (cosine)
planned by the NPC for the case of flight constrained at

2.5 g with respect to the parameters k0 and δ.
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Figure A.7: Sensitivity of the load factor history for the
trajectory planned by the NPC for the case of flight

constrained at 2.5 g with respect to the parameters k0 and
δ.
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Figure A.8: Sensitivity of the load factor history for the
trajectory planned by the NPC for the case of flight

constrained at 2.5 g with respect to the parameters k0 and
δ.

As a final remark, one should again look at Figure A.3. Despite such load factor profile is very
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close to that in Figure 17 of Lu [2014], which is for an unfeasible trajectory as well, one might notice
that the second peak has no reason to exist. In fact, when comparing the trajectory with the corre-
sponding bank angle profile, (red line in Figure A.4), it is obvious that the bank angle is not saturated
when the peak happens, about 370 s after t0. Such a peak also happens in both constrained trajec-
tories in Figure A.2. In a more thorough analysis of the trajectory constrained at 2.5 g, with no limit
on the cosine of the bank angle, it is noticed that the computation of ȧ is wrong, and begins to be
negative at about 365 s after t0; at that point, a is still larger than amax , and therefore the bank angle
is still different from the baseline. In fact, the predicted future acceleration after δ is larger than
the maximum allowed until t = 395 s; after that, the bank angle is reduced to the baseline profile,
whereas the load factor is still increasing. This peak can therefore be caused by a wrong assumption
when analytically computing ȧ. The main simplification done in that process is that of neglecting
gravity when assuming V̇ =−D , therefore neglecting the radial component of the gravity (the other
components are all much smaller); the error done is in fact negligible in the initial phase of the tra-
jectory, when the flight path angle is very small, but may become considerably larger in the final
phase, when the trajectory is steeper for a capsule-like vehicle.

Moreover, this error is relatively more important, the smaller the maximum acceleration. To
solve this, the method is rewritten assuming V̇ = −D − gr sinγ. The result can be found in Figure
A.9: there, the remaining, much smaller, peaks, are caused only by large changes of the aerody-
namic coefficients, that mainly occur at small Mach number, and therefore should not occur during
aerocapture. These peaks in fact disappear when simulating using constant aerodynamic coeffi-
cients. In the figure, one can also find the acceleration predicted by the guidance after time δ: since
the controller in use is only proportional to the difference between the maximum admissible load
factor and the predicted one, such acceleration is never brought exactly to zero, and this causes an
almost constant bias of 0.02 g during the entire trajectory.
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Figure A.9: Load factor history using predictive load relief that assumes V̇ =−D − gr sinγ. Constraint at 2.5 g, cosine of
the bank angle unconstrained.
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