COMPUTATIONAL STALL PREVENTION USING ELECTROMAGNETIC FIELDS

A. Sedaghat, A. R. Azimian and S. A. Akbari

Department of Mechanical Engineering Isfahan University of Technology, Isfahan, Iran e-mail: <u>Sedaghat@cc.iut.ac.ir</u> Web page: <u>http://www.iut.ac.ir</u>

Key words: Electromagnetic Field, Lorentz Force, Flow Separation, Navier-Stokes, TVD Schemes.

Abstract. *The dangers of exceeding stall margin for an aircraft wing or its engine are severe.* Stall occurs at high angles of incidence where separation occurs over control surfaces. Separation may be controlled using magneto-hydrodynamics (MHD) techniques if the flow can be electrically charged. In this preliminary study, a flow solver was developed based on the governing Navier-Stokes equations for compressible flows. The flow solver uses an implicit, high resolution, and Total Variation Diminishing (TVD) scheme. The flow solver was modified to include the effects of the electromagnetic field prescribed by Lorentz force. Two problems were investigated here. First, the separated subsonic flows are considered over a flat plate at high angles of attack. Second, an oblique shock wave leading to boundary layer separation is investigated for the flat plate in supersonic flows. For the case of subsonic flow, flow separation has been completely prohibited applying the electromagnetic field over the entire plate. The lift coefficient has been increased considerably. However, the overall drag coefficient has not been reduced noticeably. For the case of supersonic flow, the electromagnetic field was only applied in the vicinity of separated region in which it has been completely removed. Adequate amounts of the Lorentz force can be determined to evaluate feasibility of this technique for practical applications.

1 INTRODUCTION

The dangers of exceeding stall margin for an aircraft wing or its engine are severe, with the potential for the lack of maneuvering control or engine failure and loss of the aircraft. Stall occurs at high angles of incidence when large flow separation develops over control surfaces. Flow separation control using electromagnetic fields is one of the techniques which may be applied in an aircraft for preventing the stall occurrence. The electromagnetic field represented by the Lorentz force has been extensively used for fluids with high conductivity, such as liquid metals or semiconductor melts. For much lower electrical conductive fluids such as seawater fluids, there is a growing application of the electromagnetic field with the aid of an additional external electrical field. For an aircraft at transonic or supersonic speeds, it may be practical to produce an electromagnetic field when the aircraft stalls and save lives and the airplane.

Control of flow separation by suction was first demonstrated by Ludwig Prandtl¹ together with the presentation of his boundary layer theory. Since that time, many active and passive techniques to control wall bounded flows have been developed. If the fluid is electrically conducting, an additional possibility of flow control is given by the application of the Lorentz force f. This electromagnetic body force results from the vector product of the magnetic induction B and the current density j.

$$f = j \times B \tag{1}$$

The current density is given by ohm's law

$$\mathbf{j} = \boldsymbol{\sigma}(\mathbf{E} + \mathbf{U} \times \mathbf{B}) \tag{2}$$

Where E denotes the electric field, U the velocity, and σ is the electrical conductivity, respectively. Depending on the conductivity of the fluid, one can distinguish between two different types of magneto hydrodynamic (MHD) flow control. If the fluid has a high conductivity like liquid metals or semiconductor melts, an external applied magnetic field alone can have a strong influence on the flow. As described by the right term of Equation 2, the interaction of the flow with the magnetic field causes electrical currents in the liquid. These currents again interact with the external field and generate the Lorentz force field as given by Equation 1. Typical electrolytes like seawater possess a much lower electrical conductivity in the order of $\sigma \approx 10 S/m$. Therefore, electrical current generated by the U×B term are too small to produce a noticeable Lorentz force. In order to obtain current densities large enough for flow control purposed in electrolytes, an additional external electric field E has to be applied.

The idea to influence the boundary layer of a low conducting fluid by electromagnetic force dates back to the 1960s². Only recently, it has attracted new attention to control turbulent boundary layers³⁻⁶. Several different force configurations have been investigated

mainly with the aim to reduce the skin friction of turbulent boundary layers.

The application of wall normal Lorentz force has been studied experimentally by Nosenchuck and Coworkers^{3, 7} which suggest strong reduction in turbulent skin friction. However, numerical simulations of comparable configuration by O'Sullivan, Bitingen, and Crawford⁸ have not shown this strong reduction. The use of wall parallel forces in streamwise direction to control separation occurrence was first proposed by Lielausis and Gailitis². The influence of such a force on a turbulent boundary layer has been studied experimentally by Henoch and stace⁵ and numerically by Crawford and Karniadakis⁶. Both report a reduction of stream wise velocity fluctuations, but also an increase of the skin friction with applied Lorentz force.

The aim of the present article is to investigate boundary layer separation control for compressible flows. A high-resolution, implicit, and TVD solver was used to solve compressible Navier-Stokes equations. The investigations are focused on the use of wall parallel Lorentz forces in streamwise direction to control a separated boundary layer flow over a flat plate at high angles of incidence.

2 GOVERNING FLUID FLOW EQUATIONS

Neglecting body forces and volumetric heating, the non-dimensional form of compressible Navier-Stocks equations in the transformed coordinate system for two dimensional flows can be written as:

$$\frac{\partial \hat{U}}{\partial t} + \frac{\partial \hat{F}}{\partial \xi} + \frac{\partial \hat{G}}{\partial \eta} = 0$$
(3)

where

$$\hat{U} = U/J$$

$$\hat{F} = (\xi_x F + \xi_y G)/J, \quad \hat{G} = (\eta_x F + \eta_y G)/J$$

$$J = \xi_x \eta_y - \xi_y \eta_x$$
(4)

In the above, $\xi = \xi(x, y)$ and $\eta = \eta(x, y)$ are coordinate transformation function and *J* is the Jacobian of the transformation. The vectors *U*, *F* and *G* are given by:

$$U = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \end{bmatrix}, \quad F = \begin{bmatrix} \rho u \\ P + \rho u^2 - \tau_{xx} \\ \rho uv - \tau_{xy} \\ (e+P)u - u\tau_{xx} - v\tau_{xy} + q_x \end{bmatrix}, \quad G = \begin{bmatrix} \rho v \\ \rho uv - \tau_{xy} \\ P + \rho v^2 - \tau_{yy} \\ (e+P)v - u\tau_{xy} - v\tau_{yy} + q_y \end{bmatrix}$$
(5)

where ρ , u, v, e, q are respectively density, velocity components along x, y directions, total energy and heat flux. The components of shear stress tensor are as follow:

$$\tau_{xx} = \frac{\mu}{\text{Re}} \left(\frac{4}{3} \frac{\partial u}{\partial x} - \frac{2}{3} \frac{\partial v}{\partial y} \right)$$

$$\tau_{yy} = \frac{\mu}{\text{Re}} \left(\frac{4}{3} \frac{\partial v}{\partial y} - \frac{2}{3} \frac{\partial u}{\partial x} \right)$$

$$\tau_{xy} = \frac{\mu}{\text{Re}} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
(6)

The governing Navier-Stokes equations have been used in non-dimensional form.

3 THE ELECTROMAGNETIC FORCE

The concept of a streamwise Lorentz force was first proposed by Gailitis and Lielausis² to stabilize a laminar flat plate boundary layer. The force distribution produced by the stripwise geometry shown in Figure 1 can be calculated by series expansions of the magnetic and electric fields (Grienberg⁹). The resulting force decays in a good approximation exponentially with the wall distance y. Considering also higher terms, a variation of the force density with the spanwise coordinate z appears. This variation arises from the singularities of the equations for the magnetic and electric field at the front of the magnets and electrodes, respectively.

The streamwise Lorentz force can be generated by a strip wise arrangement of electrodes and permanent magnets of alternating polarity and magnetization, respectively; as sketched in Figure 1. If both electric and magnetic fields have only components in y and z direction and neglects the induced currents $\sigma(U \times B)$ compared to the applied one σE , the cross product $j \times B$ has an x component only.

For given magnet configuration the distribution and the amplitude of the force can be determined by the polarity of the electrodes and the magnitude of the current density. That means also time dependent forces can easily be applied by just feeding an appropriate current to the electrodes. However, electrochemical aspects like the production of electrolytic bubbles have to be considered.

In Figure 2, the distribution of the Lorentz force calculated by the finite element Maxwell solver OPERA¹⁰ is shown. An exponential decay away from the wall, but also the distinct maxima of the force caused by the singularities is clearly visible. Averaged over the spanwise coordinate z, the mean force density is given by:

$$F = \frac{\pi}{8} j_0 M_0 e^{-\frac{\pi}{a}y}$$
(7)

where M_0 denotes the magnetization of the magnets and j_0 the applied current density σE_0 , respectively. The magnetic induction B_0 at the surface of the magnetic poles can be calculated from the geometry of the magnets and their magnetization M_0 . Electrodes and magnets have the same width *a*.

Tsinober and Shtem¹¹ have used incompressible boundary layer equations to include the electromagnetic force where a non-dimensional parameter is introduced as:

$$Z = \frac{\pi}{8} \frac{j_0 M_0 a^2}{\rho U_0 v}$$
(8)

which it describes the ratio of electromagnetic to viscous forces. It corresponds to the square of the Hartmann number if one compares it with usual MHD flows. However, the normalization of the full Navier-Stokes equations lead to an additional non-dimensional parameter.

$$N = \frac{j_0 B_0 L}{\rho U_0^2}$$
(9)

N is the so-called interaction parameter giving the ratio of electromagnetic to inertial forces. B_0 is the surface magnetization of the permanent magnets and *L* is a characteristic length equal to the chord length *c* in the case of hydrofoils. Obviously *N*, *Z* and *Re* are not independent, since $Z/N \sim Re$. In this study the G flux in the compressible flow equations (3) may be modified as follows

-

$$G = \begin{bmatrix} \rho v \\ \rho u v - \tau_{xy} + \frac{J_0 B_0 a}{\pi \rho U_0^2} \exp\left(\frac{-\pi yL}{a}\right) \\ P + \rho v^2 - \tau_{yy} \\ (e + P)v - u\tau_{xy} - v\tau_{yy} + q_y + u \frac{J_0 B_0 a}{\pi \rho U_0^2} \exp\left(\frac{-\pi yL}{a}\right) \end{bmatrix}$$
(10)

with the freestream velocity of U_0 . This allows no further treatment of the numerical algorithm used for solving the full Navier-Stokes equations and can be easily employed for high speeds as far as the induced currents $\sigma(U \times B)$ can be neglected. This assumption was also employed for the problem of shock induced separation studied in here.

For the canonical case of a flat Plate boundary layer, the streamwise pressure gradient is zero. Provided Z = 1, the boundary layer thickness reaches an asymptotic value. That means that the momentum loss due to the wall friction is just balanced by the momentum gain caused by the electromagnetic force. This consequences an exponential boundary layer profile of the following type:

$$\frac{u}{U_0} = 1 - e^{\frac{-\pi}{a}y}$$
(11)

This profile has two orders of magnitude higher critical Reynolds number than the Blasius profile¹², so that transition will be delayed considerably.

Flow separation occurs according to Prandtl¹ when fluid decelerated by friction forces is exposed to an adverse pressure gradient stronger than the remaining kinetic energy of the fluid. The boundary layer separates from the wall and a recirculation region forms. Consequently, form drag increases and lift possibly decreases.

To prevent separation, the momentum deficit of the boundary layer has to be overcome and the pressure gradient of the outer flow has to be balanced. Experimental demonstration of separation prevention¹⁰ on a flat plate by means of a streamwise Lorentz force has shown in Figure 3. In Figure 3a, the flow around the plate without Lorentz force at an angle of attack of 18 degrees is shown. Since the Reynolds number based on the plate length is small, i.e. $Re = 1.2 \times 10^4$, the flow separates laminar at the leading edge without reattachment. Because of the leading edge separation, the flow should be influenced already at the nose of the plate. Consequently, the magnet/electrode array is placed just behind the half cylinder forming the leading edge of the plate.

The flow situation under the influence of a Lorentz force of N = 6.87 is shown in Figure 3b. As the bubble strips indicate, the boundary layer is attached over the whole length of the plate. Due to the pressure rise in the outer flow, the boundary layer fluid is strongly decelerated at the leading edge. By the Lorentz force, the near wall fluid is subjected to acceleration while passing the plate. This can be seen by looking at the shape of the hydrogen bubble stripes near the plate.

Separation of flow causes a form or pressure drag on the moving body simply due to the pressure difference between forward and backward stagnation point. This form drag estimates practically the total drag of bluff bodies at higher Reynolds numbers. Separation prevention can reduce the form drag to zero.

The application of a streamwise Lorentz force for separation prevention has two additional consequences on the drag. On one hand due to the exponential force distribution, the velocity gradient at the wall and therefore wall friction is increased. On the other hand, the force exerts thrust on the body. At high enough forcing parameters a configuration is possible, where thrust overcomes drag.

3 NUMERICAL METHOD

A class of implicit, second order accurate, total variation diminishing (TVD) scheme has been adopted here for computation of two dimensional compressible flows. The method is based on upwind and symmetric TVD schemes reported by Yee¹³ and further modified by Sedaghat^{14, 15} for computation of viscous flows. In this work, the symmetric TVD method with the MINMOD^{14, 15} limiter function was selected due to better predictability for low subsonic flows.

For computation of 2D compressible flows over a flat plate at high incidence angles as sketched in Figure 4, an algebraic grid generator with clustering mesh points in the boundary layer was used. In Figure 5, a 62×62 mesh generated over the flat plate is shown. The

computational domain consists of a rectangle with length 0.5m and the height equals to five times of laminar boundary layer thickness.

As the initial condition (t=0), all quantities was set to their free stream values, which means that the plate is inserted suddenly into an undisturbed flow with free stream condition specified everywhere. The free stream Mach number was set to $M_{\infty} = 0.2$ for producing comparable results with incompressible flow equations and the Reynolds number was specified as Re = 1.2×10^4 .

For the supersonic case, the Skebe's experiments¹⁷ was adopted. These experiments have been widely used for validation of laminar compressible CFD codes. An oblique shock with deflection angle of $\theta = 4.52^{\circ}$ was generated on the developing laminar boundary layer as sketched in Figure 7. The incoming Mach number of $M_{\infty} = 1.963$ and the Reynolds number of Re = 6.13×10^{6} per meter was achieved at the NASA Lewis wind tunnel over a 0.0852 meter long plate.

4 RESULTS AND DISCUSION

A flat plate has been considered as a test case to investigate the effects of Lorentz force in separation prevention at high angles of attack. The free stream angle of attacks was varied from 17 degrees up to 19.5 degrees. The electromagnetic field parameters were set according to the values tabulated in Table 1.

Computational results in form of density contours together with the domain vector plots are shown in Figure 6 for a flat plate at 18 degrees angle of attack. The closer view of these contours is shown in Figures 6 at the leading and trailing edges which indicate full separation over entire length of the flat plate. This was also observed experimentally as shown in Figure 3a.

Similarly when applying Lorentz force, computational results in the form of density contours and the boundary layer vector plots are shown in Figure 7 for the flat plate at 18 degrees angle of attack. The contours are shown at the leading edge and the trailing edge of the plate which shows the entire boundary layer over the length of the flat plate is attached . This is also observed experimentally in Figure 3b.

The lift coefficient was compared over a range of angle of attacks for "no Lorentz" and "with Lorentz" inclusion of the electromagnetic force in Figure 8. The maximum 0.8% lift rise was observed based on the values of electromagnetic parameters used at the angle of

attack of 19.5 degrees. A slightly increase in drag coefficient can be observed at higher angles of attack due to increase in skin friction (see Figure 9). In all computations, convergence was achieved after 5000 iterations.

For the supersonic case, the schematic of the supersonic flow over a high inclined flat plate is shown in Figure 10. Pressure contours are clearly indicates the shock-boundary layer interaction leading to a local separation as shown in Figure 11. Velocity vectors are plotted in Figure 12 in the vicinity of the shock-boundary layer interaction which also indicates a local separation region. By plotting the skin friction coefficient at different values of the applied current density in Figure 13, it is observed that above values of $J_0 = 2$ the flow separation can be prevented; however, higher values of the current density will increase the values of the skin friction coefficient. Appropriate values of electromagnetic field may be found by tuning the parameters tabulated in Table 1 for the desirable flow control. Optimum practical values may be found computationally for preventing stall occurrence.

5 CONCLUSIONS

- The effects of Lorentz force in separation prevention for a flat plate at high angles of attack was studied numerically. To characterize the flow separation control, the arrangement of an experimental apparatus in a water channel was adopted for comparing overall performance qualitatively.
- A class of high resolution TVD schemes was used for solving the compressible Navier-Stokes equations over the flat plate with inclusion of MHD effects. The flat plate was computationally set to simulate low speeds at a range of angles of attack also supersonic shock-boundary layer interaction leading to separation. In all cases studied, separation has been completely prohibited using the Lorentz force induced by the electromagnetic field. By increasing angles of incidence, the lift coefficient as well as the drag coefficient over the plate has been increased. However, lift gain is greater than drag increase. For the supersonic case, adequate amount of MHD forces are quantified for separation control.
- From this preliminary investigation, it is evident that the current CFD code can be used to accurately calculate flow fields in presence of electromagnetic fields and to examine it for a wide range of flow conditions. This concept may be used to increase performance of hydrofoils as well as airfoils at high speeds.

In overall, the range of applicability of electromagnetic field may be evaluated computationally for preventing an aircraft or its engine from stall. With the growing number of techniques in flow control, computational results for an aerofoil or a wing may give guidelines for developing electromagnetic systems in the new generation of aircrafts. This is the subject of current investigations where shock induced separation may be controlled for transonic and supersonic aircrafts.

REFERENCES

- [2] L. Prantl, "Über Flüssigkeitsbewegung beisehr kleiner Reibung," In Verhandlg. III. Intern. Math. Kongr, p. 484-491, Heidelberg, (1904).
- [3] A. Gailitis and O. Lielausis, "on a possibility to reduce the hydronamical resistance of a flat plate in an electrolyte," Applied Magnetohydrodynamic Reports of the Physic Institute, p. 12-143, (1961).
- [4] D.M. Nosenchuck and G.L. Brown, "Direct spatial control of wall shear stress in a turbulent boundary layer," In so, R.M.C., Speziale, C.G. and Launder, B.E., editors, Near wall turbulent flows, p. 689-698, Elsevier, (1993).
- [5] J.C.S. Meng, C.D. Henoch and J.D. Herbes, "Seawater electrohydrodynamics: A new frontier," Magnetohydrodynamics, 30(4), p. 401-418, (1994).
- [6] C. Henoch and J. Stace, "Experimental investigation of salt water turbulent boundary layer modified by an applied steamwise magnetohydrodynamic body force," Phys. Fluids, 7, p. 1371-1383, (1995).
- [7] C.H. Crawford and G.E. Karniadakis, "Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. streamwise forcing," Phys. Fluid, 9, p. 788-806, (1997).
- [8] D.M. Nosenchuck, G.L. Brown, H.C. Culver, T.I. Eng and I.S. Huang, "Spatial and temporal characteristics of boundary layers controlled with the Lorentz force," 12th Australian Fluid Mechanics Conference, p. 93-96, Sydney, (1995).
- [9] P.L O'Sullivan and S. Biringen, "Direct numerical simulations of low Reynolds number turbulent channel flow with EMHD control," Phys. Fluids, 10(5), p. 1181, (1998).
- [10] Grieberg, E., "On determination of properties of some potential fields," Applied Magnetohydrodynamics, Reports of the Physics Institute, 12, p. 147-154, (1961).
- [11] T. Weier, U. Fey, G. Gerbeth, G. Mutschke and V. Avilov, "Boundary layer control by means of electromagnetic forces," ERCOFTAC Bulletin 44, pp.36–40, (2000).

- [12] A.B. Tsinober and A.G. Shtern, "On the possibility to increase the stability of the flow in the boundary layer by means of crossed electric and magnetic fields," Magnitnaya Gidrodinamica, 3(2), p. 152-154, (1967).
- [13] T. Weier, G. Gebeth ,G. Mutschke ,E. Platacicis and O. Lialausis, "Experiments on cylinder wake stabilization in an electrolyte solutions by means of electromagnetic forces localized on the cylinder surface," Experimental Thermal and Fluid science, 16, p.84-91, (1998).
- [14] H.C. Yee, "Implicit total variation diminishing (TVD) schemes for steady-state clculations," J. Comp. Phys., 57, pp. 327-360, (1985).
- [15] A. Sedaghat, A finite volume TVD approach to transonic flow computation, PHD Thesis, The University of Manchester, (1997).
- [16] A. Sedaghat, S. Shahpar and I.M. Hall, "Drag reduction for supercritical aerofoils", 20th ICAS Congress, Sorrento, Italy, 8-13 September, (1996).
- [17] S.A. Skebe, I. Greber and W.R. Hingst, "Investigation of two-dimensional shockwave/boundary-layer interaction," AIAA 25(6), (1987).

L(m)	a(m)	Re×10 ⁴	j ₀ (A)	$B_0(T)$	α (deg)
0.5	0.01	1.24	10	1.0	18.0

Table 1 : Electromagnetic field parameters

Figure 1: Sketch of the electric (thin) and magnetic (thick) fields and the resulting Lorentz force (gray arrow) over a flat plate¹⁰.

Figure 2: Calculated Lorentz force distribution over the flat plate.

Figure 3: Inclined plate without (a) and with (b) suction side Lorentz forces¹⁰.

Figure 4: The schematic of the subsonic flow over a high inclined flat plate.

Figure 5: The structured mesh generated over the flat plate for the subsonic case.

Figure 6: Flow separation over the entire inclined plate without applying the Lorentz force at $\alpha = 18^{\circ}$, Re = 1.4×10^{4} .

Figure 7: Attached flow over the entire inclined plate with applying the Lorentz force (cited in Table 1) at $\alpha = 18^{\circ}$, Re = 1.4×10^{4} .

Figure 8: Lift coefficient values for a flat plate

Figure 9: Drag coefficient values for a flat plate showing effects of electromagnet field at Re = 1.4×10^4 .

Figure 10: The schematic of the supersonic flow over a high inclined flat plate.

Figure 11: Pressure contours showing the shockboundary layer interaction leading to a local separation.

Figure 12: Velocity vectors and separation contours in the vicinity of the shock-boundary layer interaction.

Figure 13: Separation is prevented and the skin friction is increased using electromagnetic field over the flat plate for the supersonic case; overall view (above) and closer view (below).