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A B S T R A C T   

The Lilstock outcrop in the southern Bristol Channel provides exceptional exposures of several limestone beds 
displaying stratabound fracture networks, providing the opportunity to create a very large, complete, and 
ground-truthed fracture model. Here we present the result of automated fracture extraction of high-resolution 
photogrammetric images (0.9 cm/pixel) of the full outcrop, obtained using an unmanned aerial vehicle, to 
obtain a spatially extensive, full-resolution map of the complete fracture network with nearly 350,000 ground- 
truthed fractures. We developed graph-based functions to resolve some common issues that arise in automatic 
fracture tracing such as incomplete traces, incorrect topology, artificial fragmentation, and linking of fracture 
segments to generate geologically significant trace interpretations. The fracture networks corresponding to 
different regions within the outcrop are compared using several network metrics and the results indicate both 
inter- and intra-network (layer to layer) structural variabilities. The dataset is a valuable benchmark in the study 
of large-scale natural fracture networks and its extension to stochastic network generation in geomodelling. The 
dataset also highlights the intrinsic spatial variation in natural fracture networks that can occur even in weakly- 
deformed rocks over relatively short length scales of tens of metres.   

1. Introduction 

Fractures in rocks can form networks with fracture tips forming 
abutting or crossing physical interactions with other fractures or 
remaining isolated within rock matrix. The evolution into a final cu-
mulative network pattern is history-dependent. The pattern evolves 
depending upon how loading paths and rock properties governing 
growth affect propagation rates under episodic conditions when failure 
criteria are met, in addition to the superposed effects of pre-existing sets 
(Laubach et al., 2019). The spatial arrangements of fracture networks 
can be a significant geomorphic agent, influencing landscape evolution 
processes (Scott and Wohl, 2019), serve as dissolution pathways for 
karstic cave formation (Boersma et al., 2019; Bertotti et al., 2020), and 
influence subsurface fluid flow patterns that are relevant for hydro-
geological, geo-energy and waste disposal applications (National 
Research Council, 1996; Berkowitz, 2002). Given such non-trivial in-
fluences, it is important to be able to characterize large-scale fracture 
patterns from a network perspective. 

Mechanistic numerical modelling of fracture propagation and sub-
sequent fracture network formation can include complex physics per-
taining to individual fractures such as fracture tip behaviour, fluid 
driven fracturing, interaction of propagating fractures with pre-existing 
discontinuities and other propagating fractures (Laubach et al., 2019). 
Such mechanistic models can be based on extended finite element 
methods (such as Remij et al., 2015; Valliappan et al., 2019 etc), discrete 
element methods (such as Virgo et al., 2016; Guo et al., 2017 etc), and 
phase-field methods (such as Yoshioka and Bourdin, 2016; Lepillier 
et al., 2020 etc), and differ in the way rock substrate and propagating 
fracture are numerically treated. Such complex models are computa-
tionally intensive and are limited in the spatial extent of network evo-
lution. Recent developments include approaches in which fracture 
networks genetically evolve from flaws without resorting to rigorous 
geomechanical treatment (such as Lavoine et al., 2020; Welch et al., 
2019) but large-scale network development is still difficult to realize. 

In such a context, outcrop-derived networks hold relevance. The 
advantage of outcrops is that they implicitly encode spatial organization 
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of networks and network properties can be observed and sampled when 
outcrop quality permits. The proliferation of Unmanned Aerial Vehicle 
(UAV) photogrammetry has lead to an increase in both volumes and 
speed of acquisition of digital outcrop data (Bemis et al., 2014; Hodgetts, 
2013). Coupled with automatic image processing tools, it is now possible 
to obtain outcrop-derived 2D discrete fracture networks (DFNs) at large 
enough scales to enhance our understanding of geometrical organization 
and spatial heterogeneity in natural fracture networks (Palamakumbura 
et al., 2020). 

Outcrop-based characterization of natural fractures typically in-
volves fracture sampling methods such as the use of scanlines (for e.g. 
Priest and Hudson, 1981; Mauldon et al., 2001; Rohrbaugh et al., 2002), 
fracture traces from orthorectified fractured rock images (for e.g. Bis-
tacchi et al., 2015; Bisdom et al., 2017), fracture traces from LIDAR (for 
e.g. Lamarche et al., 2011; Wilson et al., 2011), and geophysical imaging 
such as ground penetrating radar (such as Day-Lewis et al., 2017; Mol-
ron et al., 2020). Recent advances in fracture characterization utilize 
data-fusion techniques in which multi-spectral, hyperspectral, gravity, 
and magnetic remote sensing are combined in outcrop studies. The 
combination of these techniques incorporates high-degrees of geological 
realism. In this contribution, the focus and scope is on the mapping of 2D 
fracture traces using UAV photogrammetry at the Lilstock outcrop, 
Bristol Channel, UK which exposes multiple fractured limestone beds. 

We continue upon the first (Weismüller et al., 2020a,b) and second 
(Passchier et al., 2021) part of this project. The complex shearlet 
transform method (Reisenhofer et al., 2016; Prabhakaran et al., 2019) is 
used to automatically extract fracture traces from high resolution 
photogrammetric data published by Weismüller et al. (2020a,b). A 
critical comparison between automatic and manual tracing was pre-
sented in Weismüller et al. (2020a,b) using topological relationships, 
fracture intensity, and fracture density measures, and showed that the 
quality of automatic tracing is consistent with the interpretations of a 
proficient interpreter. Weismüller et al. (2020a,b) covered five regions 
of 140 sq. m each within the Lilstock pavement while Passchier et al. 
(2021) has mapped the different fracture generations but incompletely. 

In this work, the automatic tracing is extended to an area that is 20 
times larger resulting in a rich dataset that amounts to nearly 800,000 
fracture segments. We develop a set of graph-based programmatic rou-
tines that convert automatically extracted fracture segments into 
geologically significant fracture traces. The areal extent, detail, and 
spatial continuity of the resultant fracture network data, comprising of 
around 350,000 fractures, is unique. The dataset is an important 
benchmark which provides a means to overcome sampling and trunca-
tion effects typically experienced with small fractured outcrops and 
which have so-far limited efforts at fracture characterization. 

2. Fractures as spatial graphs 

Graph theory concerns the study of mathematical structures, graphs, 
that model pairwise relations between objects. The use of graph theory 
and spatial graph representations to represent fracture networks was 
suggested by authors such as Adler and Thovert (1999), Manzocchi 
(2002), Valentini et al. (2007a), Valentini et al. (2007b), Santiago et al. 
(2016), and Sanderson et al. (2019). Such a graph representation 
maintains topological relationships between fracture segments and 
spatial relationships between fracture edges. Topology serves as a means 
to quantify connectivity of a fracture network. Network connectivity 
parameters have important implications for fractured hydrogeologic 
and subsurface modelling (Berkowitz, 2002). In addition to topological 
relationships, fracture networks are also spatial in nature. In this regard, 
fracture networks are similar to roads and power grids in that the net-
works are embedded in space. Such families of spatial networks are 
observed to have steric constraints that impose limitations on the 
maximum degree of a node (Barthelemy, 2018). Many specialized 
methods and techniques developed for spatial graphs can, therefore, be 
applied to fracture network data. 

Graphs are typically represented in matrix forms, allowing the use of 
computational linear algebra techniques and algorithms to investigate 
properties of the network structure, and derive insights into spatial and 
spectral properties. Within the structural geology literature, such ap-
proaches are not widespread as data pipelines that can deliver sufficient 
volumes of fracture data in the form of spatial graphs face several 
challenges in data acquisition and processing. The advent of UAV-based 
data acquisition and automatic fracture trace extraction opens up new 
avenues to use graph algorithms to extract insights from large-scale 
fracture patterns. 

From graph theory, a graph is a pair G = (V, E) with V being a set of 
vertices and E, a set of edges. The abstraction that connects mathematical 
graph theory to fracture networks is that fracture intersections form the 
vertex set, V and fracture segments linking the vertex set V form the edge 
set, E. When a spatial positioning data structure is additionally specified 
to represent position of each fracture intersection in 2D cartesian space, 
the fracture network forms the planar graph, Gp. An example of a frac-
ture network in the form of a graph, with edges representing fracture 
segments and vertices denoting fracture intersections is depicted in 
Fig. 1(a). This is a simple planar drawing where nodes are positioned in 
such a way that there are no edge crossings. The graph has 1746 nodes 
and 2617 edges. The same graph with spatial positioning is depicted in 
Fig. 1(b). 

In this representation, the definition of a geological fracture ‘F’, is 
simply a subset of ‘n’ nodes within the graph. This is also equivalent to a 
subset of ‘n − 1’ connected edges which are contained within the edge 
set that forms a walk or path within the graph (see Fig. 1(c) and (d)). The 
entire fracture network is a list of paths which are specific sequences of 
nodes (and edges). A weighted graph is one in which the edge set is 
associated with weights that can represent, for instance, the relative 
importance of edges within the complete edge list. In case of fracture 
networks, this may simply be the euclidean distance between the end 
nodes of the particular edge. A graph may be directed and referred to as a 
digraph which implies that an edge has a source node and a target node. 
In case of fracture networks, an undirected graph representation is 
sufficient. 

The graph representation where fracture intersections form vertices 
and fracture segments form edges, as depicted in Fig. 1(b), is called the 
primal form (Barthelemy, 2018). There is also a dual form of a graph in 
which fractures from tip-to-tip form graph nodes and interconnections 
between fractures form the edges (Barthelemy, 2018). Such dual rep-
resentations have been used by Adler and Thovert (1999), Valentini 
et al. (2007b), Andresen et al. (2013), and Vevatne et al. (2014) for 
fracture networks. To illustrate the difference between the two repre-
sentations, an example network from Bisdom et al. (2017) is depicted in 
the primal form in Fig. 2(a) with fracture intersections being the vertices 
and fracture segments forming the edges. The dual form where fractures 
from tip-to-tip are nodes and intersections between fractured are edges 
is depicted in Fig. 2(b). It can be observed that the longest fracture 
striking NW-SE has the maximum number of intersections with smaller 
fractures abutting on to or crossing it. The longest fracture is therefore 
the node with the highest degree in the dual graph. Since the dual 
representation considers only topological connections between fractures 
from tip-to-tip, we do not associate any spatial position to the nodes in 
Fig. 2(b). Fig. 2(c) and Fig. 2(d) depict adjacency matrices of the primal 
and dual graphs respectively. The degree of a node denotes the number 
of edges that intersect the particular node. The node degree distributions 
of the primal and dual are depicted in Fig. 2(e) and (f) respectively. The 
node degrees in the primal are subject to geometric constraints with a 
maximum degree of 6 (a hexa type joint). The dual graph degree dis-
tribution is more spread out with 64 being the largest degree. 

By converting fracture network shapefiles to primal graphs, we can 
then use graph algorithms and metrics to analyze the networks. Various 
network metrics can be used to quantify inter- and intra-network vari-
ability in fracture networks using the graph representation. This is a 
novel approach in fracture network analysis in the Geosciences, made 
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possible by the large amount of fractures. We propose that our results 
form a valuable benchmark for future fracture mapping and character-
ization methods, and provide the mapped fractures for further study. 
The network data and the code used is available as supplements with 
this contribution for the benefit of researchers interested in natural 
fracture characterization. 

3. Geology of the study area 

The outcrops studied in this paper are located off the southern coast 
of the Bristol Channel in West Somerset, UK, close to the hamlet of 
Lilstock (see Fig. 3). The area is within a 7.428 sq.km geological Site of 
Special Scientific Interest (SSSI), referred to as the Blue Anchor to Lil-
stock Coast SSSI, due to the exposures ranging from Early Jurassic to 
Lower Lias. Deformation features such as faults, fractures, and joints are 
exposed within the study area (Spruženiece et al., 2020). The site is 
well-studied in terms of structural features, tectonic history, sedimen-
tology, stratigraphy, and basin evolution (for e.g., Kamerling, 1979; Van 
Hoorn, 1987; Nemčok et al., 1995; Rawnsley et al., 1998; Kelly et al., 
1999; Peacock, 2004; Glen et al., 2005; Engelder and Peacock, 2001; 
Belayneh et al., 2006). The regions of interest and the focus of this 
contribution are three fractured limestone pavements referred to as 
benches by Loosveld and Franssen (1992). 

The fractured pavements correspond to the northern limb of a single 
E-W trending anticline formed due to N-S compression during the Ter-
tiary (Dart et al., 1995). We focus on five fractured pavements the extent 
of which is depicted in Fig. 3. The fractured regions are designated as 
Areas 1–5. Areas 1 & 3 and Areas 2 & 4 belong to the same stratigraphic 
layer. The particular areas were chosen as they are largely devoid of 
vegetation and weathering, and contain joints belonging to different 
stages in the tectonic history forming a well-connected spatial network. 
Additionally, the studied regions contain sub-regions which were the 

focus of previous work by Loosveld and Franssen (1992), Rawnsley et al. 
(1998), Engelder and Peacock (2001), Belayneh and Cosgrove (2004), 
Belayneh (2004), and Gillespie et al. (2011). The relationship between 
joints described in the above-mentioned works is discussed by Passchier 
et al. (2021). 

3.1. Structural history 

The structural history of the region may be classified into several 
tectonic phases. Beginning with N-S extension in the Early Jurassic to 
Early Cretaceous and again in the Late Cretaceous to Oligocene (Raw-
nsley et al., 1998), these events are evidenced by E-W striking normal 
faults (Brooks et al., 1988). These extension events were followed by N-S 
Alpine compression during the late Oligocene to Miocene resulting in 
inversion of normal faults and gentle folding, followed by progressive 
relaxation during the Late or post-Miocene (Rawnsley et al., 1998). 
Normal faults and conjugate strike slip faults indicate this event (Dart 
et al., 1995; Glen et al., 2005; Kelly et al., 1999; Nemčok et al., 1995). 
This was followed by burial of up to 1.5 km and exhumation with fea-
tures such as small folds, faults, veins, and joints (Rawnsley et al., 1998; 
Hancock and Engelder, 1989). 

3.2. Previous descriptions of jointing 

The Mode-I joints exposed in the Lilstock are bedding-perpendicular 
and largely stratabound with apertures enhanced by tide-induced 
dissolution, ranging from sub-millimeter at the bottom to an order of 
centimetres at the bed top (Gillespie et al., 2011). The decimeter thick 
limestone layers are intercalated with claystone layers of the order of 
100 − 102 cm thicknesses. A striking feature of the jointing is the 
network that is formed due to joints abutting or crossing each other. The 
presence of small displacement faults within the bench cause visibly 

Fig. 1. A graph with no spatial positioning can be 
simply depicted as nodes and edges with a method of 
planar drawing (Nishizeki and Rahman, 2004). Here a 
fracture network is converted to a graph and drawn in 
a “gravity” layout. (b) The fracture graph with spatial 
positioning applied to each of its nodes (dimensions in 
metres) (c) An example of a fracture network plotted 
as a spatial graph with individual fractures from 
tip-to-tip colour coded based on fracture length (di-
mensions in metres). One fracture is highlighted with 
enlarged nodes (d) enlarged view of a single fracture 
‘F’ within a spatial graph, defined as a set of ‘n’ nodes 
or ‘n − 1′ edges. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the Web version of this article.)   
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identifiable variations in fracture patterns and intensities. The Lilstock 
outcrop also contains several long, fan-shaped joints that emanate from 
asperities on faults (Rawnsley et al., 1998). These joint fans have also 
been described in other outcrops near the Bristol Channel in similar li-
thologies (Bourne and Willemse, 2001). 

The joints are believed to be due to minor tectonic events that post- 
dated the stress inversion. Various authors have interpreted jointing 
histories and number of joint sets based on observations within sub- 
regions of the outcrop. Loosveld and Franssen (1992) identified six 
joint sets based on orientation. Rawnsley et al. (1998) identified four 
main joint sets using characteristics such as orientation, length, and 
spacing. Engelder and Peacock (2001) identified six jointing sets based 
on orientation and abutting criteria. Belayneh (2004) identified six joint 
sets based on orientation, length, and aperture. More recent work by 
Wyller (2019) distinguished ten jointing generations using abutting re-
lationships, length, and orientation. These above-mentioned attempts at 
delineating jointing generations are limited to certain regions within the 
entire outcrop (see Fig. 3). Passchier et al. (2021) utilized the same 
image dataset as ours and was able to identify eight generations of joints 
from manually traced fractures that include all regions covered by the 
previous studies. The criteria used by Passchier et al. (2021) to partition 
individual fractures into jointing generations consisted of combination 

of length, orientation, and abutting criteria. The results highlighted 
considerable spatial variability in jointing with some regions containing 
just 2–3 generations while other areas achieved saturation with the 
maximum eight sets. 

Rawnsley et al. (1998) associate the earliest joint sets as forming 
sub-parallel to regional Alpine compression, with subsequent jointing 
sets being perturbed by faults and influenced by anticlockwise shift of 
maximum horizontal stress during basin-wide relaxation of Alpine 
compression. The youngest joints were proposed to be correlated with 
relaxation or contracting of rock. Engelder and Peacock (2001) sug-
gested that joint formation is linked to minor tectonic events postdating 
the basin inversion. The youngest joints are proposed to be correlated 
with the contemporary stess field (Engelder and Peacock, 2001) or due 
to exhumation in a late stage of the Alpine stress field (Hancock and 
Engelder, 1989). Dart et al. (1995) proposed that the jointing patterns 
involve overprinting of joint generations. 

4. Methods 

4.1. Photogrammetric dataset 

The image data that we consider in this work is extracted from UAV- 

Fig. 2. (a) Primal graph representation of a manually 
interpreted fracture network, Apodi-4, from Bisdom 
et al. (2017) in the Jandaira formation of the Potiguar 
Basin, Brazil having 3309 nodes and 4258 edges. Only 
the largest connected component of the network is 
depicted after removing all isolated fractures. (b) 
Dual graph representation of the Apodi-4 fracture 
network using a ‘force’ layout. Fracture traces from 
tip-to-tip are represented as graph nodes and in-
tersections between fractures are considered as edges. 
The dual representation has 2172 edges and 1082 
nodes. Node sizes are plotted proportional to the node 
degrees and highlights the centrality of the relatively 
few long fractures (c) Adjacency matrix of primal 
graph (d) Adjacency matrix of dual graph (e) Degree 
histogram representing node topology of primal graph 
(f) Degree histogram representing node topology of 
dual graph.   
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derived orthoimagery published as a dataset (Weismüller et al., 2020a, 
b). The full dataset comprises of orthomosaics generated from UAV 
flights at 10 m, 20 m, 25 m, and 100 m. We utilize the orthomosaics 
acquired between 20 and 25 m flight altitude resulting in imagery of 0.9 
cm/pixel. Weismüller et al. (2020a,b) used this value of resolution to 
manually interpret fractures in five 140 sq.m regions within Areas 2 and 
4 (see Fig. 3). Weismüller et al. (2020a,b) also performed automatic 
interpretation in the five regions using the complex shearlet transform 
method (Prabhakaran et al., 2019) and quantitatively compared with 
manual interpretations. The validation of manual with respect to auto-
matic mapping indicated closely similar fracture patterns, generating 
confidence in an endeavour to extend the automatic interpretation to 
larger regions of the outcrop over multiple layers. Passchier et al. (2021) 
used the same image dataset with similar resolution to identify jointing 
generations from manual interpretations within Areas 2 and 4. 

4.2. Automatic tracing workflow 

The complex-shearlet transform (Reisenhofer et al., 2016) was 
extended to automatic outcrop-scale fracture trace extraction from UAV 
photogrammetry by Prabhakaran et al. (2019). The workflow comprises 
of a series image processing steps which is depicted in Fig. 4. The steps 
include complex shearlet-based ridge detection, thresholding, 

skeletonization and polyline fitting. The image data is divided into 
sub-tiles of 1000 x 1000 pixels for efficient computation and considering 
memory requirements. The processing steps are then applied to each tile 
separately. This splitting of the images therefore enables processing on 
multiple workstations. The realized vector geometries are combined into 
shapefiles. The number of image tiles that correspond to each bench is 
summarized in Table .1 along with approximate areal extent. 

Since quality of automatic fracture detection depends on enlarged 
discontinuities owing to weathering or otherwise and given that the 
degree of weathering is spatially variable, a single set of parameters is 
insufficient to efficiently extract all exposed traces. Therefore, three 
different sets of shearlet parameters are used for ridge detection yielding 
three different ridge image ensembles (E1, E2, E3) that capture fractures 
both subtle and well-eroded. The three shearlet system parameters used 
are listed in the data supplement. Various linear combinations (a, b, c) 
are applied to E1, E2, E3 to obtain an optimal Efinal for each image tile as 
per. 

Efinal = aE1 + bE2 + cE3. 
This combined ensemble, Efinal is then used for further image pro-

cessing as per the workflow in Fig. 4. The traces extracted from each 
image tile is then merged as a single shapefile. An example of an image 
tile with a ridge ensemble and the corresponding vectorized shapefile is 
depicted in Fig. 5. Though the Lilstock outcrop is a high-quality 

Fig. 3. Overview of the study area located at Listock, Bristol Channel, UK generated from UAV photogrammetry at an altitude of 100 m. The orthomosaic is available 
as an open dataset (Weismüller et al., 2020a,b). Spatial extent of five areas within the Bristol Channel outcrop where fracture networks are automatically extracted is 
depicted in sequential shades of green. Approximate areas where previous studies done within the same outcrop are also highlighted. (Shapefiles of UK regional 
boundaries used to create inset images is obtained from https://geoportal.statistics.gov.uk/available under an Open Government Licence v3.0.). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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exposure, there are still sources of false positives owing to erosion, water 
puddles, shrubbery, and rubble. These artefacts are removed manually 
using interactive GIS tools. The total time taken for automatic mapping 
for all tiles was 384 h CPU time (using an Intel Xeon processor with 4 
cores, 3.5 GHz, and 32 GB RAM). The time taken to clear the artefacts 
varies between 1 and 2 h per image tile depending upon the image. 

4.3. Shapefiles to graphs 

The automatic traces are in the form of shapefiles. We developed 
MATLAB routines to enable conversion of shapefiles of fracture net-
works into graph data structures and vice-versa. The conversion results 
in a primal graph, which can then be converted to a dual graph if the 
sequence of primal graph edges that correspond to a complete fracture 
from tip-to-tip can be specified. The graph representations can then be 
exported in various graph formats that are readable by graph visuali-
zation software and packages such as Gephi (Bastian et al., 2009), 
iGraph (Csardi and Nepusz, 2006), and NetworkX (Hagberg et al., 
2008). 

4.4. Making graph representations geologically meaningful 

The use of automatic tracing may produce fractures that deviate from 
a manual interpretation. When interpreting by hand, an interpreter 
utilizes multiple cues to trace a fracture from tip-to-tip and identify 
fracture tip topologies. Therefore, using ubiquitous network metrics 
such as cumulative length distributions, rose plots, topological sum-
maries on automatically extracted traces can result in skewed results. To 
this end, we developed a series of graph manipulation routines that take 
the raw graph data input generated from the automatic traces into 
geologically meaningful data. This workflow is summarized in Fig. 6 and 
further described in the following sections. The code supplement con-
tains the implementations of the functions. 

4.4.1. Topological discontinuities 
Automatically traced interpretations can contain topological dis-

continuities. By analysing automatically-traced networks and 
comparing them with manual interpretations, we classify connectivity 
issues and design specific routines to resolve these discontinuities. The 
three most common topological errors are depicted in Fig. 7. These 
include situations when.  

● a degree-1 node is in close proximity to a degree-2 node with near 
orthogonal angles  

● a degree-3 (or Y-node) is present as three closely spaced degree-1 
nodes  

● two degree-2 nodes with sharp orthogonal angles are in close 
proximity 

In order to resolve these topological errors in connectivity, we 
perform a delaunay triangulation (De Berg et al., 2000) on the fracture 
spatial graphs using the nodes as control points. The triangulation cre-
ates tri-elements around the fracture traces. By inspecting the histo-
grams of tri-element areas, anomalous elements with very small areas 

Fig. 4. Automatic detection workflow used to convert UAV photogrammetric 
images to fracture traces used previously in Prabhakaran (2019) and Weis-
müller et al. (2020a,b). 

Table 1 
Study areas and approximate area covered.  

Region Image tiles Approx. area (sq.m) 

Area 1 58 2034 
Area 2 128 6017 
Area 3 25 714 
Area 4 107 6749 
Area 5 34 1473  

Fig. 5. An image tile (9.3 × 9.3 m) from the Bristol Channel dataset (b) computed ridge ensemble (c) the vectorized shapefile overlain on the image.  
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can be isolated. These small tri-elements are formed at the regions of 
topological errors or with very high aspect ratios. Using a suitable cut-off 
area that is determined by visual inspection of the small tri-element 
areas, graph manipulations are performed on the graphs that resolve 
the loss of connectivity depending upon the node types and edge prop-
erties involved. The manipulations involve adding/removing edges and 

nodes and updating the fracture graph. The three types of manipulations 
that are done to rectify topological discontinuities are illustrated in 
Fig. 8. The code implementations are attached within the code 
supplement. 

4.4.2. Resolving artificial fragmentation of fracture segments 
Artificial fragmentation of fracture trace happens when traces 

appear to be connected and topologically correct to visual inspection but 
split and saved separately within the shapefile attribute tables. This kind 
of situation can happen due to tile-wise image processing where fracture 
polylines that are otherwise continuous, are fragmented and saved as a 
cascade of isolated segments. Other reasons are due to the way polylines 
are fitted to skeletonized, binary pixel clusters as per the workflow in 
Fig. 4. The skeletonization procedure specifies branch points between 
intersecting fractures. However, due to varying ridge thickness within 
the image, it is sometimes possible that segments are connected but 
incorrectly labelled from a geological perspective. Such a situation is 
depicted in Fig. 9(a). 

In order to be geologically consistent, the visually continuous but 
disconnected segments have to be combined into a single polyline entity. 
We develop a graph edge linking function that first identifies all degree- 
2 nodes within the graph. For these nodes, node neighbours with degree 
2 are identified and appended into a preliminary node path. The end 
nodes of the node path are queried again for further neighbour nodes 
having degree-2 and repeated till there are no more such nodes in either 
direction of the node path. The resulting node path is now a single 
connected polyline representing a fracture segment. The implementa-
tion is attached within the code supplement. The effect of the edge 
linking is depicted in Fig. 9(b). 

4.4.3. Resolving step-outs 
Automatically identifying fracture edges that belong to a single, 

continuous fracture from tip-to-tip is a task that can face complications 
due to the presence of step-outs or edges that have degree-3 (or Y-nodes) 
on either ends. Such Y-Y motifs often form step-outs which impede 
continuous path finding as they may strike in a different direction as that 
of longer adjacent edges. They turn out to be bottlenecks when we seek 
to identify long and continuous paths using segment strike as a search 
attribute. Examples of such step-out edges are shown in Fig. 10(a) and 
(c). To resolve the issue, we specifically filter for graph edges that are 
below a certain length threshold that have a degree of 3 on both start 
and terminating ends. Below a certain length threshold corresponding to 
the resolution of the image, a merge operation can be carried out deleting 
the step-out and creating a degree-4 node (see Fig. 10(b)) after adding 
three edges and removing one node. In our case we found that a value of 
around 1–2 times the image resolution was sufficient for the merge 
operations. 

Above this length threshold, it is likely that the topology at either end 
of the step-out is correct, but the Y-Y edge needs to be flattened to 
correspond with the strike angle of one pair of edges on either side (see 
Fig. 10(d)). In this case, merging of the step-out may incorrectly displace 
some edges of the spatial graph. In this procedure, the edges that are 

Fig. 6. Sequence of graph manipulation routines to convert shapefiles of 
automatically traced fracture segments to geologically significant fracture 
traces and dual graph representations. 

Fig. 7. Common topological errors caused by automatic detection (a) a degree-3 connection inaccurately traced as a degree-2 node with two nearly orthogonal edges 
in close proximity to a degree-1 node (b) a degree-3 connection incorrectly traced as three degree-1 nodes in close proximity (c) two degree-2 nodes with nearly 
orthogonal edges that are disconnected. 
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connected to the start and terminating nodes of each step-out are 
identified. A walk is identified for each of these edges. Though the step- 
out is a geometric feature that impedes the possibility of a walk, there 
are still possibilities of walks looking upstream on both directions away 
from the step-out. A decision is made as to which direction alongside the 
step-out provides the best increase in walkability based on length of 

walk. Once this is identified, the node of the step-out that causes the 
bottleneck is moved to a more preferable alignment. The sequence of 
graph manipulations involved in this flattening operation consists of 
adding three edges, removing three edges, adding a node, and removing 
one node. The step-out flattening procedure therefore improves the 
walkability in one direction. 

Fig. 8. Detail of rectification of the three types of topological discontinuities using Delaunay triangulation (a) type-1 discontinuity with degree-1 node in close 
proximity to a sharp-angled degree-node (b) type-2 discontinuity with three degree-1 nodes in close proximity (c) type-3 discontinuity with two degree-2 nodes 
having sharp angles in close proximity. 

Fig. 9. Resolving artificial fragmentation (a) an 
example of an artificially segmented fracture is shown 
which is saved as four polyline entries within the 
shapefile. These are highlighted in magenta. The first 
segment (top) is of topology type Y-V-V (where V used 
to denote a degree-2 node and Y a degree-3 node), 
second is a V-V segment, third is a V-Y-V segment, and 
the last one at the bottom is a V-Y segment. (b) The 
graph edge linking converts the fragmented four 
segments into two segments which are both of Y-Y 
topology type. The routine does both merge and split 
operations to ensure that there are no attribute table 
entries in the shapefile that begin or terminate in 
degree-2 nodes.   

R. Prabhakaran et al.                                                                                                                                                                                                                          



Journal of Structural Geology 150 (2021) 104405

9

4.4.4. Straightening fracture segments 
During piecewise polyline fitting as performed when vectorizing 

fracture traces (see Fig. 11(a)), a large number of points are inserted to 
represent the natural sinuosity of fracture traces. Within the graph 
representation these points are degree-2 nodes and are the predominant 
topology type. Although these nodes provide useful local information, in 
terms of overall macro-network topology, it maybe useful to straighten or 
flatten the graph edges by removing these degree-2 nodes and replacing 
them by single edges between the non-degree 2 nodes. This type of graph 
manipulation involves removal of all edges that either start or end in 
degree-2 nodes (or both) and addition of single edges between the non- 
degree 2 nodes. The implementation of this function is attached in the 

supplementary code. The effect of such an edge straightening operation 
is depicted in Fig. 11(b). 

4.4.5. From fracture traces to geologically significant fractures 
The geological identification of a fracture in the outcrop or from 

image data is that of a discontinuity feature that is geometrically 
continuous with the tip extremities either abutting another fracture, 
cutting across another fracture, or terminating within rock matrix. In a 
typical manual interpretation using UAV-derived imagery, the inter-
preter draws polylines in a digitizing software (eg. Adobe Illustrator, 
Coreldraw, QGIS, ArcGIS etc) tracing across image pixels that seemingly 
correspond to a perceived fracture using visual cues within the image 

Fig. 10. An example of automatically resolving a 
stepout by a merge operation (a) stepout Y-Y 
segment depicted in red (b) Y-Y segment removed 
and edges merged to form an X node. An example of 
automatically resolving a stepout by a flatten oper-
ation from Area 4 (c) stepout segments with varying 
strike that can cause loss in continuity when parsing 
for possible walks (d) stepout segments flattened. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 11. An example of straightening of fracture segments (a) original fracture network with piece-wise linear segments and degree-2 nodes (b) fracture segments 
which are straightened removing the degree-2 nodes. 
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coupled with specific knowledge of the particular outcrop and general 
training in structural geology. There are many ways in which such a GIS- 
derived interpretation may be biased and lacking repeatability as dis-
cussed in Andrews et al. (2019) and Peacock et al. (2019). Given these 
considerations, it is useful to have an automated method of obtaining 
geologically significant fractures (or fracture sets) rather than just 
fracture segments. A simple way to assign segments to individual sets is 
to sort based on striking angles as is done in popular tools such as 
FracPaQ (Healy et al., 2017), and NetworkGT (Nyberg et al., 2018); 
however, this may be difficult when fractures are very sinuous. Addi-
tionally as pointed out by Peacock et al. (2018) and Andrews et al. 
(2020), orientation sets need not always equate to an age sets and there 
are drawbacks involved in only considering strike. 

The graph representation of a fracture network is complete when we 
have list of nodes, spatial positioning data corresponding to each node, a 
list of edges with start and terminating points indexed as per node 
numberings, and a list of edge sequences to represent each fracture. 
Automatic tracing cannot yield the edge sequences so that they repre-
sent sets of fractures (tip-to-tip). To this end, a function is developed to 
automatically identify continuous paths along graph edges based on 
twin rules of connectedness and small strike variation. The routine 
considers each edge individually and checks if adjacent edges fall within 
the threshold of edge strike, on either ends of the edge. Sequences of 
edges (or walks) are assigned as fractures. The routine is attached in the 
supplementary code. An example of a continuous and sinuous fracture 
automatically combined from graph segments are shown in Fig. 12. 

In a related publication based on the same dataset as ours, Passchier 
et al. (2021) manually interpret and classify continuous edges as 
belonging to a single generation. We have compared the results of the 
automated function described in this section to the manually assigned 
joint generations of Passchier et al. (2021) and there is generally a good 
agreement. 

4.4.6. Computing dual graphs 
A dual graph can be computed from a primal graph if the edges se-

quences corresponding to individual fractures (tip-to-tip) are known or 
is computed using function described in Section.4.4.5. The dual graph 
depicted in Fig. 2(b), was computed from a shapefile in which fracture 
id’s of manually interpreted fractures were already been listed. Given 
the edge sequence information, obtained either from manual interpre-
tation or automatically, the procedure to compute the dual is by 
initializing an adjacency matrix whose size is equal to number of frac-
tures (Aadj is an n × n matrix where ‘n’ is the number of tip-to-tip frac-
tures). By parsing through the intersections made by each fracture with 
others, the sparse adjacency matrix is then built up by filling in rows and 

columns corresponding to fracture intersection. The function that ac-
complishes this is included in the supplementary code. 

5. Results 

The methods in Section.4 are applied to image tiles corresponding to 
the five selected areas and based on these we generate five large net-
works. The created fracture data are in the form of spatial graphs and 
shapefiles attached in the supplementary data. A summary of the 
number of nodes, edges, and tip-to-tip fractures (or walks) for each area 
is tabulated in Table .2. Edge/node and edge/walk ratios are also shown 
as they give an indication as to the connectedness of the networks. In 
order to illustrate the level of detail within the generated network data, 
zoomed cut-out regions from Area 2 (see Fig. 13(a)-13(c)) and Area 4 
(see Fig. 13(e)-13(f)) are depicted. From the cut-outs of Area 2 in Fig. 13 
(a)-13(c), there are clear visual differences in fracturing even though the 
orientations of fractures are quite consistent among all three samplings. 
This is however, not the case in the cut-outs from Area 4 shown in Fig. 13 
(d)-13(f). In Fig. 13(e), a radial NW-SE trending fracture pattern that is 
orthogonally cut by NE-SW fractures can be observed. The fracturing 
style is very different in Fig. 13(d) with no radial fracturing, higher 
fracture intensity, and smaller bounded blocks. In Fig. 13(f), the frac-
turing intensity is highest with even smaller bounded blocks. 

5.1. Length distributions and fracture set directions 

Trace length distributions corresponding to the five areas are 
depicted in Fig. 14. Trace length distributions show the lengths from 
fracture tip-to-tip. These are affected by boundaries of the sampled re-
gions which may be observed by comparing the plots of largest areas, 2 
and 4, with the other three. In Fig. 15(a) and Fig. 15(b) we depict 
fractures plotted by their length classified into three logarithmic bins for 
Areas 1 & 3 which are stratigraphically the same layer. Similarly, the 
length-binned fractures are depicted for Areas 2, 4 & 5 in Fig. 15(c), (d), 
and Fig. 15(e) respectively. 

The rose plots depicted in Fig. 14 are computed from strike data that 
is a length-weighted average of the strike of edges that sum up to a tip- 
to-tip fracture. The rose plots highlight differences in fracture orienta-
tion between the layers. Orientation of the fractures do not vary 
significantly in Areas 1 & 3. However, Areas 2 & 4 from the same 
stratigraphic layer have considerably different fracture orientations. 
This is illustrated in Fig. 15(d) with Area 4 containing curved and radial 
fractures. However, Area 2 does not have any curved fractures (see 
Fig. 15(c)). Similar to Area 4, Area 5 also has curved fractures as can be 
seen in Fig. 15(e). The scatter in rose-plots corresponding to Areas 4 & 5 
is related to the presence of the curved joints. 

From Fig. 15(c), (d), and Fig. 15(e), spatial variations in the distri-
bution of fractures in Areas 2, 4, and 5 can be observed. The longest 
joints in Area 2 display a spatial variation with a larger concentration to 
the SW (see Fig. 15(c)). In case of Area 4, the radial and curved fractures 
which are also the longest are located in the western part of Area 4 (see 
Fig. 15(d)). The occurrence of these long, radial joints diminishes to the 
east of Area 4. In the case of Area 5, the long fractures has strikingly 
different curvature directions towards its east compared to its west (see 
Fig. 15(e)). 

Fig. 12. Continuous and sinuous fracture from Area 4 automatically joined 
from graph segments with a strike threshold of 20◦. Note that the strike of the 
start and end segment of the fracture vary by more than 50◦. 

Table 2 
Summary of primal graph structure.  

Region Edges (e) Nodes (n) e/n Walks (w) e/w Polygons 

Area 1 42301 30299 1.39 18078 2.34 11992 
Area 2 364703 228661 1.59 123592 2.95 136053 
Area 3 40243 26372 1.52 16900 2.38 13874 
Area 4 365333 235089 1.55 141344 2.58 129690 
Area 5 78151 49771 1.57 28892 2.7 27220  
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5.2. Network topological summary 

From Manzocchi (2002), Sanderson and Nixon (2015), and others, 
an I-node corresponds to a fracture tip that is isolated, a Y-node is 
analogous to fracture tip that has abutting interactions with other 
fractures (or splaying fractures), and an X-node represents an intersec-
tion where one fracture crosses another fracture. The proportions of 
each node type can be summarized in an I-Y-X ternary diagram. To 
quantify network topology, we use node degree histograms instead of 
I-Y-X ternary plots. This is because of the need to depict node degrees 
greater than four which are not unusual in large-scale networks as is 
observed in the Lilstock pavement. Additionally, in the case of dual 
graph representations, where fractures are represented as nodes, the 
node degree can be larger (Valentini et al., 2007a). The node degree 
distribution of the primal graphs corresponding to the five networks is 
depicted in Fig. 16. The node degree distribution of the dual graphs 
corresponding to the five networks is depicted in Fig. 17(a)–(e). Degree 
distributions of all the primal graphs indicate that the predominant node 
topology are Y-nodes with a 70–80% contribution followed by X-nodes. 
A summary of primal graph edge types based on topology is shown in 
Table 3. 

The dual graph degree distributions provide insight into the 

connectivity behaviour of each network. The topological summary of 
the dual graphs are tabulated in Table 4. The node degree value in-
dicates the number of connections that a fracture makes with other 
fractures within a network. Maximum node degrees in dual graphs are 
observed from Areas 4 and 5 which contain continuous and long, radial 
fractures. The correlation between dual graph degree (number of in-
tersections made a fracture) and the fracture length is also plotted in 
Fig. 17(f)–(j) depicting a positive correlation between fracture length 
and number of intersections. The number of connections is least in Areas 
1 and 3. This is possibly an effect of sample size as these regions are the 
smallest and their spatial extent in the N-W direction is quite thin. Area 
2, despite covering more area than Area 5, has a lesser maximum dual 
degree. 

5.3. Bounded area distribution 

The fracture patterns develop and enclose bounded regions of 
unfractured rocks. These enclosed polygonal areas are extracted from 
the spatial graphs by identifying the primary cycles that are created by 
edges. The spatial distribution of areas corresponding to these polygonal 
regions is depicted in Fig. 18 as a chloropleth and depicts the variation 
across the layers. Histograms of the area distributions of each layer is 

Fig. 13. Samples of fracture networks from a single stratigraphic layer across Area 2 and 4 highlighting the differences in fracture network organization. Samples (a), 
(b), and (c) are from Area 2 and (d), (e), and (f) are from Area 4. 
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depicted in Fig. 19. Area 1 appears to have the largest block areas, fol-
lowed by similar distributions for Areas 3 and 5. The largest Areas 2 and 
4 have smaller block areas with visibly more intensive fracturing. 

5.4. Spatial P20 and P21 

Fracture persistence measures (Pij) formulated by Dershowitz and 
Herda (1992) are used to investigate the spatial differences in fracturing. 
The fracture intensity, P21 and fracture density P20 metrics are computed 
using the box-counting method by overlaying the networks with a car-
tesian grid of box size of 2.5 × 2.5m. Fracture intensity (m/m2) involves 
computing 2D trace length per area for each grid box. This is depicted for 
all areas in Fig. 20(a)). Fracture density (m− 2) computes the number of 
segments within each grid box and this is depicted in Fig. 20(b). The 

persistence results reveals regions within the outcrop with different 
fracturing motifs. Area 1 has the least fracturing intensity and density 
which is uniform in the spatial distribution. Area 3 also is homogenous 
in the type of networks present. The greatest variation is in Area 4 which 
has clear regions of low and high P21 and P20 with a demarcable 
boundary. Area 2 has the most intense fracturing over all regions is in 
the eastern parts of Area 2. Similar intense fracturing regions can also be 
seen in the northern parts of Area 4. These are not fracture corridors but 
progressively intense fracturing with smaller block areas. 

6. Discussion 

Manually tracing fracture networks from image data is time- 
consuming and can introduce various types of biases depending upon 

Fig. 14. Fracture network trace maps for all areas with corresponding rose plots and cumulative trace length distributions (a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4 
(e) Area 5. 
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skill, style, and perseverance of the interpreter. These challenges are 
evident from the observed networks in the structural geology literature 
which are not large and not continuous enough to study spatial network 
heterogeneity or do not have sufficient resolution to correctly identify 
topology. Automatic tracing affords rapid and reproducible network 
results which can be applied to large image datasets. In case of the Lil-
stock pavement, high image resolution, enlarged apertures due to 
erosion, high contrast in imagery between the wet apertures and dry 
surface, and lack of vegetation, aided in easily applying automatic 
mapping. One major drawback associated with automatic in-
terpretations which precludes direct usability by a structural geologist 
and which were evident from the results of Prabhakaran (2019) is that 
the detected segments were not yet organized into geologically mean-
ingful, tip-to-tip fractures. 

The treatment of fracture networks as graph data structures with 
spatial positioning allows us to perform various sequences of graph 
manipulations to rectify these issues and convert the data into geologi-
cally realistic fractures. The combined use of automatic tracing and 
application of such specific routines have resulted in a spectacular, 
large-scale fracture network dataset with unprecedented spatial 
coverage and resolution. The network data is of great relevance as it can 
be used to obtain valuable insights into spatial arrangements of fracture 
networks and network morphogenesis. In this section, we delve into 
possible reasons for the observed spatial variations in network geo-
morphology. Issues regarding the applicability of automatic mapping 
and how large-scale network data can be leveraged are also considered. 

6.1. Spatial heterogeneity 

One of the interesting results of our fracture maps is the layeral 
differences in patterns. Areas 1 and 3 have relatively less spatial varia-
tion as can be quantified from spatial plots of fracturing intensity, 

density, and polygonal areas (see Fig. 20(a) and (b), Fig. 18). They are 
also the smallest regions with long and thin strips of exposed rock. Area 
1 corresponds to regions with the least fracture intensity and density, 
and highest bounded areas. The most spatially extensive layer, 
comprising of Area 2 and 4 depict the most striking variations. From 
previous work by Gillespie et al. (2011); Rawnsley et al. (1998); Han-
cock and Engelder (1989) and many others, the long radial, fan-like 
fracture sets are hydraulically-driven and originate from stress concen-
trations on the small fault. This region in the SE of Area 4 also has the 
least fracturing intensity with wide spacing between the radial fractures. 
The interference of small low-displacement faults can also be seen in the 
NE region of Area 2 which again has a low-fracture intensity. Similar to 
Area 4, Area 5 also contains highly sinuous fractures that can be linked 
to the NE trending regional fault. In Area 5, the long, radial fractures 
have strikingly different curvature directions towards its east as 
compared to its west (see Fig. 15(e)). These effects totally disappear in 
Areas 1,2, and 3 which have mostly straight fractures. Within Area 2, a 
trend of high fracturing intensity can be observed towards the SW which 
progressively decreases towards the NE. Area 5 has the largest fracturing 
intensity in its centre and this progressively decreases to its east-west 
peripheries. Passchier et al. (2021) highlighted spatial variations in 
the presence of joints in the regions covered by Areas 2 and 4. From a 
total of eight identified jointing generations, only two are distributed 
evenly across both areas. Three sets of joints exclusively appear in Area 2 
but are absent in Area 4. Another three sets are found in both Areas 2 and 
4, but they are restricted to certain localized regions. The spatial vari-
ation of the polygonal area distributions (Fig. 18) follows a similar trend 
as the fracture persistence plots (Fig. 20(a) and (b)). The spatial varia-
tion in block areas is likely to depend upon the thickness variation of 
limestone and underlying shale layers (Belayneh and Cosgrove, 2004). 

The reasons behind spatial variation may also originate from factors 
not observable from simple photogrammetric data. For example, 

Fig. 15. Plotting fractures by logarithmically spaced length bins (a) Area 1 (b) Area 3 (c) Area 2 (d) Area 4 (e) Area 5.  
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differences in fracturing may emanate from local variations in layer 
thickness, due to changes in mineralogical composition of the host-rock, 
and orientation/strengths of pre-existing structures. Our image resolu-
tion does not include vein or stylolite networks which are also present in 
the outcrop and whose spatial variation may have an influence on the 
development and of the barren fracture networks that we have mapped. 
Spatial layer thickness can be estimated by methods such as ground 
penetrating radar (GPR) and mineralogical variation can be explored 
using UAV-based sensors such as magnetic and hyperspectral imaging. 
Therefore, it is suggested that further investigations into spatial varia-
tion in fracture networks should incorporate data fusion from a variety 
of UAV-mounted sensors, coupled with field-level and ground truthing 
of features that are below remote sensing spatial resolutions. 

6.2. From traces to timing 

Previous work on the Bristol Channel summarized in Section.3 have 
focussed on relationship between structural history of the region, 
exposed fractures, and other large deformation features. Identifying 
fracture generations and sequences of network evolution is routinely 
done based on geometric criteria and topological relationships of frac-
ture tips, sometimes supported by geochemical analysis of cement 
within fractures. The problem of identifying fracture timing from the 
automatically traced fractures was not in the scope of this contribution. 
Using the same dataset as we have used, Passchier et al. (2021) identi-
fied eight generations of fractures traced segments without resorting to a 
fully detailed network interpretation. The oldest generations were 
considered to be the most continuous and longest which do not abut 
against others. Subsequent generations were then identified based on 

Fig. 16. Degree Distributions for the primal graphs with number of nodes corresponding to each topology type (a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4 (e) Area 5.  
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Fig. 17. Degree Distributions for the dual graphs (a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4 (e) Area 5. Correlation between dual Degree and trace length (f) Area 1 
(g) Area 2 (h) Area 3 (i) Area 4 (j) Area 5. 
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strike and abutting criteria w.r.t each older joints generation. In their 
study, a correlation between length and age seemed probable with only 
few exceptions. In the same work, there are also highlighted cases where 
sequential rule-based joint identification results in Escherian paradoxes. 

Another study by Wyller (2019) focussed on an area that roughly 
conforms to the western parts of Area 4 and was able to identify ten sets 
of joints using statistical analysis of joint lengths, orientations, and to-
pology. In this study as well, assigning hierarchies based on abutting 
relations result in paradoxes which Procter and Sanderson (2018) and 
Wyller (2019) refer to as backcycling between joint generations. 

The above studies are based on the assumption that abutting and 
cross-cutting relationships are a sufficient criteria, if not necessary, to be 
able to delineate fracture sets into a hierarchy of fracturing episodes. 
Such approaches may not always suffice, for instance, if fracturing 
drivers are due to high-deformation episodes or if there is evidence of 
complex structural inheritance. In outcrops such as the Lilstock pave-
ment, where fractures are mostly formed in low-deformation settings, 
simple geometric criteria as proposed by Passchier et al. (2021) may be 
programmed to automatically assign fractures into hierarchical epi-
sodes. Given large networks and well-defined criteria, if might be more 
prudent to use statistical strategies such as Markov chains to automati-
cally assign generations (Snyder and Waldron, 2018). The combinatorial 
approach of Potts and Reddy (2000) in the form of younging tables to 
identify deformation histories may also be applied in an automated 
manner. In future work, such automated approaches may be applied to 
the full-detailed fracture networks presented in this paper to compare 
automatically-assigned generations to those that have been 
manually-assigned in previous literature relevant to the Lilstock 
pavement. 

6.3. Extent of applicability of automatic methods 

We have been able to extract a very large number of geologically 
relevant fracture traces focussing only on the opening-mode fractures 
that are visible from a flying altitude of 20–25 m. The quality of the 
interpretations are comparable to the work of a manual interpreter and 

Table 3 
Summary of primal graph edges based on topology.  

Edge type Area 1 Area 2 Area 3 Area 4 Area 5 

1–1  4    
1–3 4041 7048 1007 5127 783 
1–4 139 552 12 87 43 
1–5 3 27 1  8 
1–6  7  1  
3–3 30612 176360 27186 238130 47983 
3–4 6815 127218 10355 99922 23793 
3–5 182 13740 386 4902 1610 
3–6 5 1708 18 329 83 
3–7  141 6 23  
3–8  9    
4–4 478 30074 1161 15094 3327 
4–5 25 6328 100 1522 465 
4–6 1 884 6 129 29 
4–7  63 1 4  
4–8  7    
5–5  392 4 53 25 
5–6  115  9 2 
5–7  11  1  
6–6  13    
6–7  2    
Total 42301 364703 40243 365333 78151  

Table 4 
Summary of dual graph structure.  

Region Nodes (n) Edges(e) e/n Max degree 

Area 1 18078 34077 1.88 65 
Area 2 124006 301077 2.42 177 
Area 3 16900 36320 2.14 73 
Area 4 141344 314537 5.27 347 
Area 5 28892 65867 2.28 236  

Fig. 18. Spatial distribution of polygonal regions highlighting the variation in fracturing across different areas.  
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this is attained in much less time (Weismüller et al., 2020a,b). Often, the 
error in automatic tracing results are within the limits of subjectivity 
associated with even a well-trained interpreter. The largest variation in 
interpretation between manual and automatic is the creation of 
stepped-out segments. This is due to the fact that unlike manual inter-
pretation where the interpreter can make a decision on a possible frac-
ture intersection considering the full outcrop image, automatic methods 
make use of local information in the image which leads to uncertainty in 
regions which are more eroded than normal. The presence of step-outs 
sections was observed by Weismüller et al. (2020a,b) when comparing 
topological differences between the two approaches and revealed that 
manual interpretations result in topological distributions skewed to 
higher node degrees. From a network connectivity point-of-view, such a 
configuration may be correct but this can result in shorter length dis-
tributions. Despite the fact that multiple interpreters may differ in the 
choice of a fracture tip start and end (as shown by Andrews et al., 2019 

in experiments with multiple participants), the issue of curtailed length 
distributions are less likely to arise in manual tracing as interpreters use 
multiple global cues available within an image to decide the continuity 
of a trace. We addressed these issues using the step-out fixing functions. 
The methods developed here are extendable to other photogrammetric 
datasets. 

6.4. Extension of outcrop fracture network data 

In subsurface applications, geomodelers often have to contend with 
sparse borehole fracture data as the only available ground-truth. Since 
geophysical imaging resolution are often too coarse to resolve subsur-
face fractures, outcropping fractures have long been considered as an-
alogues to guide subsurface discrete fracture network models. In a 
typical subsurface situation, it is required to be able to extrapolate away 
and interpolate between points of well control where fracture data exists 

Fig. 19. Bounded area distributions with relative frequency in percentages (a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4 (e) Area 5.  
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in the form of cores, formation micro-images (FMI), and resistive/ 
acoustic logging. This is a highly ill-posed problem as the naturally 
heterogeneous behaviour of fracture patterns are typically under- 
represented. This is due to inherent sampling bias within each well 
data point and well as uncertainty in relationship between large-scale 
geological drivers. 

The commonly used methods for subsurface fracture network 
modelling are based on stochastic point processes that use 1D well data 
input such as fracture size, type, intensity, number of sets, and cumu-
lative length distributions (Thovert et al., 2017). 
Stochastically-generated DFNs that utilize such sparse data to extrapo-
late, are often limited in their ability to represent fracture clustering 
effects, spatial variations in fracture orientation, and topological con-
nections, all of which are observable in natural fracture networks. 

Alternative methods to stochastic point-process based methods such 
as the semi-variogram approach of Hanke et al. (2018) applied to areal 
fracture intensity and fracture intersection density maps, and the mul-
tipoint statistics approach of (Bruna et al., 2019a,b) which use training 
images of user-defined outcrops can help in incorporating more 
geologically-realistic fracture networks into geological models. 

In this respect, one needs to assess the fracture network properties 
that are to be replicated and for which 2D fracture trace maps can 
provide additional value. From our analysis of the large-scale Lilstock 
fracture networks, we would suggest that DFN generating methods 
should also be able to replicate bounded area distributions. This may be 
justified by the fact that fracture networks influence effective rock 
permeability also through time-dependent diffusive effects from the 
matrix. Since matrix block area distributions contributes to the matrix- 
fracture fluid exchange, it needs to be represented as a parameter. A 
second useful parameter that arises from 2D trace maps is the correlation 
between fracture length and number of intersections. From our analysis 
of dual graphs (Fig. 17), we find this to be positively-correlated. 

In the work of Andresen et al. (2013) and Vevatne et al. (2014) where 
fractures are represented using dual graphs, the networks display the 
property of disassortativity in which nodes of larger degree (longer 
fractures) share coordination with nodes of a smaller degree. This is also 
referred to as small-world behaviour (Watts and Strogatz, 1998), a 
property shared by many other classes of networks. A DFN generating 
technique must also be able to replicate disassortativity in network 
realizations. 

At this juncture, we revisit the point on applicability of outcrop- 
derived fracture networks. Recent work by Laubach et al. (2019) have 
raised questions on the use of fracture network data that has no provable 

correlation to subsurface fractures. Ukar et al. (2019) and Laubach et al. 
(2019) proposed protocols to identify suitable analogues based on 
mineral-lining evidence in fractures. In the case of network data pre-
sented in this article, we repeat this caveat that though the data is useful 
in studying the fracture network properties and their spatial distribu-
tion, caution needs to be exerted when extrapolating to subsurface 
conditions. 

Although the results presented in this contribution have a very clear 
network structure with a very low proportion of I-nodes, many outcrop 
fracture studies and subsurface data indicate the prevalence of sub- 
parallel fractures where the isolated type of topology is the most com-
mon. Some examples of such systems are documented by Odling (1997), 
National Research Council (1996), Wüstefeld (2010) etc. Such fractured 
systems which have poor connectivity among the fractures still have an 
impact on fluid flow behaviour (Philip et al., 2005), and there is a need 
for large-scale data pertaining to such systems. 

7. Conclusion 

We present automatically extracted, large-scale fracture networks 
from limestone pavements the Bristol Channel, UK using photogram-
metric data previously published by Weismüller et al. (2020a,b). The 
automatic extraction process combines methods from Prabhakaran et al. 
(2019) and a series of programmatic routines introduced in this 
contribution. The functions developed receive fracture network input in 
the form of a graph data structure, perform node/edge manipulations on 
the graph so as to rectify issues such as lack of connectivity, artificial 
segmentation, and linking of segments. The resultant graphs can then be 
converted into geologically significant fracture traces amenable for 
further analysis. In summary, the main findings of this contribution are 
listed below.  

● Fracture networks from five fractured limestone pavements spread 
over approximately 17,000 sq.m are automatically extracted using 
the complex shearlet transform method from UAV-borne photo-
grammetric imagery. From a spatial graph perspective, the number 
of fracture segments or edges is nearly 800,000.  

● A set of programmatic functions is designed to perform topological 
manipulations on fracture segments, resolve discontinuities, resolve 
artificial fragmentation, and combine segments into geologically 
significant fractures. The programmatic routines are applied to the 
automatically extracted fracture segments and a large-scale fracture 
dataset comprising around 350,000 fractures is presented.  

● Length distributions of fracture networks corresponding to the five 
regions follow a power-law scaling. Fracture orientations in two re-
gions show considerable scatter owing to presence of sinuous frac-
tures, while fractures in the other three regions are organized into 
well-defined orientation clusters.  

● Analysis of node degree distributions of primal graphs indicate that 
the most common topology type is the degree-3 node or Y-node 
indicating the probable sequential development of the networks in 
each of the five studied outcrops with younger and shorter fractures 
abutting on to older and longer fractures. 

● In all the mapped areas, degree distributions of dual graphs posi-
tively correlate to the total fracture lengths highlighting the fact that 
longest fractures are likely to have the largest topological length. All 
the five networks display this property of disassortativity where 
fractures possessing smaller degree attach on to fractures possessing 
a higher degree. 

● The networks possess both inter-network and intra-network vari-
ability despite belonging to similar stratigraphic layers and in weakly 
deformed settings. The variation is quantified using spatial maps of 
block area distributions, fracture density, and fracture intensity, and 
reveal that fracturing patterns in the Lilstock pavement are hetero-
geneous over distances of tens of metres. 

Fig. 20. Fracture intensity, P21 (m/m2) for all areas (b) Fracture density, P20 
(m− 2) for all areas. 
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Spruženiece, L., Späth, M., Urai, J.L., Ukar, E., Selzer, M., Nestler, B., Schwedt, A., 2020. 
Formation of wide-blocky calcite veins by extreme growth competition. J. Geol. Soc. 
178 (2), jgs2020–j2104. 

Thovert, J.-F., Mourzenko, V., Adler, P., 2017. Percolation in three-dimensional fracture 
networks for arbitrary size and shape distributions. Phys. Rev. 95 (4), 042112. 

Ukar, E., Laubach, S.E., Hooker, J.N., 2019. Outcrops as guides to subsurface natural 
fractures: example from the nikanassin formation tight-gas sandstone, grande cache, 
alberta foothills, Canada. Mar. Petrol. Geol. 103, 255–275. 

Valentini, L., Perugini, D., Poli, G., 2007a. The ‘small-world’ nature of fracture/conduit 
networks: possible implications for disequilibrium transport of magmas beneath 
mid-ocean ridges. J. Volcanol. Geoth. Res. 159 (4), 355–365. 

Valentini, L., Perugini, D., Poli, G., 2007b. The “small-world” topology of rock fracture 
networks. Phys. Stat. Mech. Appl. 377 (1), 323–328. 

Valliappan, V., Remmers, J.J.C., Barnhoorn, A., Smeulders, D.M.J., 2019. A numerical 
study on the effect of anisotropy on hydraulic fractures. Rock Mech. Rock Eng. 52 
(2), 591–609. 

Van Hoorn, B., 1987. The south celtic sea/bristol channel basin: origin, deformation and 
inversion history. Tectonophysics 137 (1), 309–334 (Special Issue: Compressional 
Intra-Plate Deformations in the Alpine Foreland).  

Vevatne, J.N., Rimstad, E., Hope, S.M., Korsnes, R., Hansen, A., 2014. Fracture networks 
in sea ice. Front. Phys. 2, 21. 

Virgo, S., Abe, S., Urai, J.L., 2016. The influence of loading conditions on fracture 
initiation, propagation, and interaction in rocks with veins: results from a 
comparative discrete element method study. J. Geophys. Res.: Solid Earth 121 (3), 
1730–1738. 

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature 
393, 440–442. 

Weismüller, C., Passchier, M., Urai, J., Reicherter, K., 2020a. The Fracture Network in 
the Lilstock Pavement, Bristol Channel, uk: Digital Elevation Models and 
Orthorectified Mosaics Created from Unmanned Aerial Vehicle Imagery. RWTH 
Publications. 

Weismüller, C., Prabhakaran, R., Passchier, M., Urai, J.L., Bertotti, G., Reicherter, K., 
2020b. Mapping the fracture network in the lilstock pavement, bristol channel, UK: 
manual versus automatic. Solid Earth 11 (5), 1773–1802. 

Welch, M.J., Luthje, M., Glad, A.C., 2019. Influence of fracture nucleation and 
propagation rates on fracture geometry: insights from geomechanical modelling. 
Petrol. Geosci. 25 (4), 470–489. Thematic Collection: Naturally Fractured 
Reservoirs.  

Wilson, C.E., Aydin, A., Karimi-Fard, M., Durlofsky, L.J., Amir, S., Brodsky, E.E., 
Kreylos, O., Kellogg, L.H., 2011. From outcrop to flow simulation: constructing 
discrete fracture models from a lidar survey. AAPG (Am. Assoc. Pet. Geol.) Bull. 95 
(11), 1883–1905. 

Wüstefeld, P., 2010. Capturing a World-Class Outcrop of a Quality Calcite Vein Network 
on a Polished Limestone Outcrop in the oman Mountains: Creation of a High 
Resolution Panorama and Microstructural Vein Description. 

Wyller, F.A., 2019. Spatio-temporal Development of a Joint Network and its Properties: a 
Case Study from Lilstock uk.  

Yoshioka, K., Bourdin, B., 2016. A variational hydraulic fracturing model coupled to a 
reservoir simulator. Int. J. Rock Mech. Min. Sci. 88, 137–150. 

R. Prabhakaran et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S0191-8141(21)00129-2/sref27
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref27
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref27
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref28
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref28
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref28
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref29
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref29
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref29
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref29
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref30
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref31
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref31
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref31
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref32
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref32
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref32
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref33
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref33
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref34
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref34
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref35
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref35
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref35
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref36
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref36
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref36
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref36
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref37
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref37
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref37
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref37
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref37
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref38
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref38
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref38
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref39
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref39
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref39
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref39
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref40
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref40
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref40
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref40
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref41
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref41
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref42
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref42
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref42
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref43
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref43
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref43
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref44
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref44
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref44
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref45
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref45
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref45
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref46
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref47
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref47
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref47
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref48
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref48
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref49
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref49
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref49
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref49
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref50
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref50
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref50
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref51
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref51
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref52
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref52
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref53
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref53
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref53
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref53
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref54
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref54
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref54
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref55
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref55
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref55
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref56
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref56
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref57
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref57
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref57
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref58
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref58
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref59
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref59
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref60
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref60
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref61
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref61
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref62
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref62
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref62
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref63
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref63
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref63
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref64
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref64
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref65
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref65
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref65
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref66
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref66
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref66
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref67
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref67
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref67
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref68
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref68
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref68
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref69
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref69
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref69
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref70
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref70
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref71
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref71
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref71
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref72
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref72
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref72
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref73
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref73
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref74
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref74
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref74
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref75
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref75
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref75
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref76
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref76
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref77
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref77
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref77
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref77
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref78
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref78
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref79
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref79
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref79
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref79
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref80
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref80
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref80
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref81
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref81
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref81
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref81
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref82
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref82
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref82
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref82
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref83
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref83
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref83
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref84
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref84
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref85
http://refhub.elsevier.com/S0191-8141(21)00129-2/sref85

	Large-scale natural fracture network patterns: Insights from automated mapping in the Lilstock (Bristol Channel) limestone  ...
	1 Introduction
	2 Fractures as spatial graphs
	3 Geology of the study area
	3.1 Structural history
	3.2 Previous descriptions of jointing

	4 Methods
	4.1 Photogrammetric dataset
	4.2 Automatic tracing workflow
	4.3 Shapefiles to graphs
	4.4 Making graph representations geologically meaningful
	4.4.1 Topological discontinuities
	4.4.2 Resolving artificial fragmentation of fracture segments
	4.4.3 Resolving step-outs
	4.4.4 Straightening fracture segments
	4.4.5 From fracture traces to geologically significant fractures
	4.4.6 Computing dual graphs


	5 Results
	5.1 Length distributions and fracture set directions
	5.2 Network topological summary
	5.3 Bounded area distribution
	5.4 Spatial P20 and P21

	6 Discussion
	6.1 Spatial heterogeneity
	6.2 From traces to timing
	6.3 Extent of applicability of automatic methods
	6.4 Extension of outcrop fracture network data

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Code availability
	Data availability
	Funding
	Author contributions
	References


