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Sammanfattning

Optimal kontroll är ett paradigm för att lösa optimeringsproblem som omfattar
dynamiska system som ska kontrolleras. Den kan lösa problem med skörd av
fisk där vi vill optimera skörd av fisk genom att betrakta fisket som en kontroll-
funktion som verkar på tillståndet i det dynamiska systemet, som representerar
tillväxten av fiskarter i miljön. Andra modelleringsaspekter av optimal styrning
är att definiera slutkostnader och löpande kostnader, t.ex. maximering av vins-
ten. Vi håller terminalvillkoret jämförbart för ett antal olika arter. Det baseras
på den ursprungliga populationen.
Genom att använda Hamiltonianen för optimal styrning och Pontryagins maxi-
miprincip kan vi beräkna de optimala tillståndsbanorna som motsvarar lämpli-
ga optimala styrningar. Hamiltonianen är beroende av tillståndsekvationen och
driftskostnaderna. Vi presenterar två metoder för att modellera driftskostna-
derna. Ett tillvägagångssätt som inte är direkt överförbart till problemet med
skörd av fisk, men som leder till en slät Hamiltonian, vilket förenklar härledning
och beräkning avsevärt. Den andra metoden, som är likvärdig med vinstmaxi-
mering, leder till en icke slät Hamiltonian. Detta leder till hopp-diskontinuerliga
derivator som behövs för beräkningen. Vi föreslår att man reglerar Hamiltoni-
anens derivator med hjälp av lämpliga släta funktioner, så att det är likvärdigt
med att reglera Hamiltonianen direkt. Vi ger detaljer för genomförandet av bå-
da tillvägagångssätten upp till system med n konkurrerande arter. Därefter går
vi in i detalj på algoritmer och den implementerade programmeringsstrukturen.
Slutligen visar vi genom numeriska experiment, för en och två arter, samban-
det mellan den optimala kontrollen och slutkostnaderna. Men mer intressant
är att de släta hamiltoniska modellerna är otillräckliga, vilket ger upphov till
att reglerade hamiltoniska modeller är att föredra. Intressant nog resulterar det
senare tillvägagångssättet i en stabil lösning, där kontrollen fungerar som en
stabilisator.



Abstract

Optimal control is a paradigm for solving optimization problems involving dy-
namical systems, which are to be controlled. It is able to solve fish harvesting
problems, in which we want to optimize harvesting out-take by considering
fishing as a control function that acts on the state of the dynamical system,
which represents the growth of fish species in the environment. Other mod-
elling aspects of optimal control are defining terminal costs and running costs,
e.g. maximizing profit. We keep the terminal condition comparable for a differ-
ent number of species. It is based on the initial population.
By using the optimal control Hamiltonian and Pontryagin’s Maximum Prin-
ciple we can calculate the optimal state trajectories corresponding to suitable
optimal controls. The Hamiltonian is dependent on the state equation and
the running costs. We present two approaches of modelling the running costs.
An approach that is not directly translatable to the fish harvesting problem,
but it leads to a smooth Hamiltonian, which greatly simplifies derivation and
computation. The other, which is equivalent to maximizing profit, leads to a
non-smooth Hamiltonian. This leads to jump-discontinuous derivatives needed
for computation. We propose to regularize the derivatives of the Hamiltonian
using suitable smooth functions, such that it is equivalent to regularizing the
Hamiltonian directly. We give details for implementing both approaches up to
systems of n competing species. After which we go into detail on algorithms
and programming structure implemented. Finally, in modest numerical experi-
ments, for one and two species, we show the relation between the optimal control
and the terminal costs. But more interestingly, that the smooth Hamiltonian
models are inadequate and regularized Hamiltonian models are the preferred
choice. Intriguingly, the latter approach results in steady state solution, where
the control acts as a stabilizer.
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1 | Introduction
Fishing is a practice practice dating back at least 40.000 years all the way to
hunter-gatherers, who, in contrast to what the name suggests, were mostly fish-
ermen and foragers [1]. Fishing is a relatively stable non-dangerous method of
gathering food, which made it the preferred practice next to foraging. Nowa-
days, most of us (luckily) do not have to gather our own food anymore and can
simply rely on supermarkets. However, people all across the world still depend
greatly on fish harvesting for their livelihood. The world population is increas-
ing rapidly, which increases the need for food in order to sustain itself, making
it necessary to fish more (intensively). This, however, puts more stress on the
environment and its ecosystems. The number of fisheries that are unsustainable
increases, which increases the risk of ecosystem overfishing [2]. The necessity
arises to fish in a sustainable way.
Mathematics can help in modelling fishing strategies in order to get a better
idea what optimal fishing strategies look like and how to make them sustainable.
Optimal control theory is able to deal with such questions in a flexible way. It
combines different areas of mathematics, e.g. differential equations, optimiza-
tion and dynamical systems.
Through the use of Pontryagin’s maximum principle, the Lagrange multiplier
method and the Hamilton-Jacobi-Bellman equation we will explain the relation
between the state equation, costate equation and optimal control Hamiltonian.
Details for single species, two species and n-species models are set out, analyzed
and computed. A central role in computing optimal fishing strategies is reserved
for the Hamiltonian, independent of the control α,

H(x, λ) := min
α∈A
{L(x, α) + λ · f(x, α)},

which is a combination of the running cost, L, an (auxiliary) costate λ and
state equation x′ = f(x, α), where x is the state and α is the control. In this
thesis we set out two approaches of formulating the running cost. In the first
approach the running cost is not directly translatable to the fishing problem
but the resulting Hamiltonian is smooth (concave) in both x and λ. The second
approach is intuitively related to the fishing problem, however, the resulting
Hamiltonian is non-smooth. In order to solve such problems we regularize the
Hamiltonian with smooth Hamiltonians, Hδ, that satisfy

Hδ → H as δ → 0.

We iteratively solve the problem by decreasing δ and use the solution obtained
in the previous iteration as a first guess for the current iteration. Technically,
for computations we only need to use the partial derivatives of the Hamiltonian,
which for the non-smooth Hamiltonian are jump discontinuous. By regularizing
the heaviside step function appropriately we make sure that it is equivalent to
regularizing the Hamiltonian as a whole.
Finally, for both approaches the advantages and disadvantages followed from
mathematical analysis, numerical implementations and simulations are set out.
Based on these observations we give preliminary conclusions on modelling sus-
tainable fish harvesting strategies.
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2 | Mathematical Background
We find optimal fishing strategies by combining various mathematical areas. In
order to explain the road ahead we need to digest some relevant theory related to
differential equations, optimization, optimal control and numerical analysis. In
this chapter we give a concise overview of all relevant topics related to differential
equations and optimization. Chapter 3 and 4 are reserved for optimal control
and numerical analysis, respectively. The reader who has sufficient knowledge
about mathematics in general is advised to skip to Chapter 5.

2.1 Preliminary Definitions

For the sake of brevity we will list the relevant definitions, starting with elemen-
tary definitions and moving on to more complicated mathematical structures.

• A set A is a collection of elements, such that a ∈ A (a is an element of
A). Examples are N = {1, 2, · · · } andR = {· · · ,−π,−2,−1, 0, 1, 2, π, · · · }.

• A function f is a mapping from a set A into B, denoted f : A→ B such
that for a ∈ A : f(a) = b ∈ B.

• A function f is continuous in a point d if its limit exists, i.e.

lim
x→d

f(x) = f(d).

And it is continuous on a set D if it is continuous in every d ∈ D.

• A function f : A → R lipshitz continuous if there exists a constant
L > 0, s.t.

|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ A.

The constant L is called the Lipschitz constant.

• A function f is called convex if

∀λ ∈ [0, 1],∀x, y ∈ D : f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

A function is called concave if −f is convex.

• A function f : A → R is called linear in a variable x if ∀x, y ∈ A :
f(x+ y) = f(x) + f(y) and ∀c ∈ R : f(cx) = cf(x). If a function is linear
it is both convex and concave.

• A function f : R→ R is differentiable if the limit

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
,

exists and is finite. The notations df
dx an fx(x) are also possible.

• A function f is called smooth on a domain D if it is differentiable every-
where (hence continuous).

5



• The partial derivative, w.r.t. the i-th variable, of a function f : Rn → R
is defined via

∂f(x)

∂xi
:= lim

h→0

f(x1, . . . , xi, xi + h, xi+1, . . . , xn)− f(x)

h
,

where x = (x1, . . . , xn), assuming it exists and is finite. The notations
∂xi

f(x) and fxi
(x) are also possible. We can summarize all partial deriva-

tives into a vector, called the gradient of f

∇f =

∂x1
f(x)
...

∂xnf(x)

 .

• The Jacobian, J f , of a multi-variable function f is the matrix of its
partial derivatives, i.e.

J f(x) =

(
∂2f(x)

∂xi∂xj

)
ij

.

• Minima and maxima of a function f are called extrema. A point x
is called a global minimum if f(x) < f(y),∀y 6= x. It is called a local
minimum if f(x) ≤ f(y) for every y in the neighbourhood of x. Local and
global maxima are defined similarly.

• A point c is called a stationary point of a function f if the derivative at
that point vanishes, i.e. if f ′(c) = 0. Extrema are examples.

• We highlight the mathematical structure of a space, which is a set with
some added structure. Usually in the form of a distance, metric or a norm.
We only restrict ourselves to examples, forgoing all the tedious details. For
instance, adding the notion of distance to the set of real numbers, R, turns
to a space of numbers, where one can say 1 is closer to 0 than 3. Similarly,
one can define a function space by taking a certain set of functions and
adding some structure.

• A vector space Rn, where the distance between two elements x, y ∈ Rn is
defined by a norm, e.g. themaximum norm: ‖x−y‖max = supn |xi−yi|.

• The space of continuous functions C between two fixed sets A and B,
is defined as follows

C := {f : A→ B| f is continous},

where one would need to define the distance (or metric) between two
function-elements. E.g. the infinity norm: f, g ∈ C : ‖f − g‖max =
supx |f(x)− g(x)|.

• The space of differentiable functions on a set D is defined as

C1(D) := {f |f : D → R f differentiable}.

The space of n times differentiable functions, Cn, is defined similarly.
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• A functional, J : F → R is a function that maps the function u (from a
function space F) to a scalar, i.e. J(u) ∈ R∀u ∈ F .

• A (functional) derivative in u of a functional J : F → R in a direction
g ∈ F is defined via

dJ(u+ εg)

dε

∣∣∣
ε=0

:= lim
ε→0

F (u+ εg)− F (u)

ε
.

This is known as the Gateaux derivative. If the limit exists for all direc-
tions g ∈ F we say J is (Gateaux) differentiable in u. Furthermore, if all
the gateaux derivatives (in u) vanish we will use the notation ∂uJ(u) = 0.
Integrals are functionals, we treat functionals only in the context of inte-
gration, hence restricting ourselves to functional of the form

J(u(x)) =

∫ x2

x1

L(u, x) dx.

Note that we can add a constant arbitrarily without changing the defini-
tion.

2.2 Differential Equations

Now we can properly define a Differential Equation (DE). DE’s are equations
involving unknown functions and their derivatives. They are in some sense
similar to algebraic equations, but instead of the solution being a number (or
a set of numbers) the solution is a function (or a set of functions). They are
classified by their highest order derivative. Systems of coupled DE’s also exist.
They are coupled in the sense that a variable of one DE can be part of another
DE.

Equilibrium Solutions

In general, solving a DE is more complicated than solving algebraic equations.
Sometimes solutions do not even exist and only in special cases is the solution
analytic - one can write down a closed form expression. Usually, one is more
interested in finding equilibrium solutions. An equilibrium solution is a solution
for which the derivatives are equal to zero. In such solutions the rate of change
is zero and the solution is constant.

Relevance of DE’s

One may wonder why DE’s are important. Generally, functions and derivatives
represent physical quantities and their rate of change. With a DE one can define
relationships between them. They are ubiquitous concepts in various scientific
fields, including but not limited to engineering, physics, finance and biology.
For example, there are differential equations describing the orbitals of planets,
growth of populations and fluid flows. In some sense, the world is governed by
DE’s. But, perhaps it is more precise to say that DE’s are an elaborate toolbox
to describe (or model) the (infinitely) complex nature of the world around us.
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2.2.1 Ordinary Differential Equations
Different types of DE’s exist. The simplest ones are called Ordinary Differential
Equations (ODE’s). An ODE contains an unknown function of only one vari-
able, say x, its derivative(s) and possibly additional given functions (of x). To
get a feeling for ODE’s we present an example.

Example 1: Newton’s second law of motion, F = ma,1 can be written as a
second-order ODE. Namely,

m
d2x

dt2
= F (x(t)),

where x(t) is the position of a particle for every point in time, F (·) is a known
function and m is the mass of the particle in question. One example is Hooke’s
law

m
d2x

dt2
= −kx(t),

which describes the movement of an undamped spring. It has the following set
of analytic solutions

x(t) = c1 cos(
√

k
m t) + c2 cos(

√
k
m t),

where (c1, c2) ∈ R2. Another more complicated (non-linear) example is

m
d2x

dt2
= −kx(t)(1− ax(t)),

sparing the details of the (hideous) analytic solutions.2

W.l.o.g.3, we restrict ourselves to ODE’s of the first order of the following
form

dx

dt
= g(x(t), t),

where g is a known (multivariable) function of the variable x(t), which is itself
an unknown function t. Let F denote the space of possible solution-functions.
By adding an initial condition, the value of x at time t0, the ODE is called an
Initial Value Problem (IVP), as follows

dx

dt
= g(x(t), t)

x(t0) = x0

,

where x0 ∈ R. The solution is an unique element of F (if it exists). If such a
solution exists and is unique then the IVP is called well-posed. If the function
g is continuous (in every point of (x, t)) and Lipschitz continuous in x then the
IVP will be well-posed.

1Force is mass × acceleration.
2The interested reader is invited to check the solution via their favourite ODE solver. My

personal favourite is WolframAlpha: m x”(t) = -kx(t)(1-ax(t)).
3Without loss of generality
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2.2.2 Partial Differential Equations
Another type of DE is a Partial Differential Equation (PDE). A PDE contains
functions of multiple variables and their partial derivatives. They are more
difficult than ODE’s in terms of interpretation, solutions and solvability. Very
rarely does a solution to a PDE have an explicit expression. And numerically
solving PDE’s is far more computationally extensive than solving ODE’s, yet
not impossible. They are classified via their highest order partial derivative.
The set of solutions for a PDE is infinite (if it exists). Similar to an IVP a PDE
can be turned into a Boundary Value Problem (BVP) if boundary conditions are
specified. A BVP is well-posed if the solution exists and is unique. Even if the
solution is unique it is still highly dependent on the type of boundary constraints
in question. We will not go into detail, since they are mostly beyond the scope
of this thesis. To get a general idea we provide an example.

Example 2: The Heat Equation is a first-order time second-order space PDE,
it describes the flow of heat in a medium. In its most general form it is defined
as

∂u

∂t
= 4u,

where 4 = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n
is a differential operator called the Laplace operator.

In one dimension this translates into

ut = uxx,

where u := u(x, t) is the heat at position x at time point t, it can describe the
heat evolution in a one-dimensional rod. And in two dimensions

ut = uxx + uyy,

where u := u(x, y, t) is the heat at position (x, y) at time point t, it can describe
the heat evolution in a two-dimensional plate.

2.2.3 Non-linear Differential Equations
Lastly, we will reflect on the difference between a linear and non-linear DE.
A non-linear DE is a differential equation that is not linear in the unknown
function or its derivatives. Example 1 clearly show the distinction between a
linear and non linear DE. Eventhough the difference looks subtle, solving a non-
linear DE is far more complicated. This fact holds both in terms of analytic
solutions as well as for solving the DE numerically.

2.3 Optimization

Another area which is necessary to touch upon is mathematical optimization.
We will mostly restrict ourselves to the basics and essential topics in relation to
optimal control. In general, optimization aims at minimizing (or maximizing)
a decision function over a set of (decision) variables (or points) under a set of
constraints. Some additional notes: we use the term points instead of variables,
since this is more appropriate in our context. For readability, we omit the
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ambiguity between minimizing or maximizing.4 If there are no constraints in
the Optimization Problem (OP) then we are dealing with unconstrained OP. In
its most general form it is

minimize
x ∈ Rn

f(x)

For f we would like to find a global minimizer x∗, which is called the optimal
solution. By finding the stationary points of f we hope to find the minima of
f , but those may be local minima. If f is a convex function then it is a lot
easier, since, for a convex function every local minimum is a global minimum.
In general, it is more difficult to know if a local minimum is global.

2.3.1 Constrained Optimization
If constraints are involved, we are dealing with constrained optimization. They
are more difficult to solve, since feasibility plays a role. We say a point x is
feasible if no constraint is violated. If one (or more) constraints are violated
the point is deemed infeasible. In usual terminology, let n be the dimension of
x and m be the number of constraints. We can write a constrained OP in the
following form

minimize
x ∈ Rn

f(x, y)

subject to y = g(x)
(2.1)

where f : Rn × Rm → R is called the decision function, y ∈ Rm, and g(x) :
Rn → Rm the constraint function. The latter consists of m known functions
gi conveniently summarized into a function g(x) = (g1(x), . . . , gm(x)). To be
completely precise we also assume f, g ∈ C1. For (2.1) it is even more difficult
to find a global minimum with feasibility playing a role.

2.3.2 Lagrange Multiplier Method
One way of tackling a constrained optimization problem is by applying the
Lagrange multiplier theorem:

Theorem 1 (Lagrange Multiplier Theorem). Consider a constrained optimiza-
tion problem with decision function f : Rn → R and constraint function g(x) :
Rn → Rm, both in C1. Let x∗ be an optimal solution to

minimize
x ∈ Rn

f(x)

subject to c = g(x)
(2.2)

Then there exists λ ∈ Rm such that

∇f(x∗) =

m∑
i=1

λi∇gi(x∗).

Using this theorem a constrained OP can be transformed into an uncon-
strained OP by using the so-called Lagrangian function. The Lagrangian for-
mulation of (2.1) is

L(x, y, λ) = f(x, y) + λ>(y − g(x)),

4Note that maximizing a function f is the same as minimizing −f .
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where λ ∈ Rm are known as Lagrangian Multipliers. Every element λi corre-
sponds to a constraint function gi. In a way, the Lagrange multipliers act as
coefficients of the gradient for the optimal point and contains relevant informa-
tion of the optimal point.

Necessary Condition

As previously stated, being a stationary point is a necessary condition for a
minimum. Hence, we need the derivatives of the Lagrangian to vanish, i.e.

∇L(x, y, λ) :=

∂xL(x, y, λ)
∂yL(x, y, λ)
∂λL(x, y, λ)

 = 0 ⇐⇒


0 = y − g(x)

0 = ∇yf(x, y) + λ

0 = ∇xf(x, y)−
m∑
i=1

λi∇gi(x∗)
,

where ∇xf(x, y) and ∇yf(x, y) are the gradient w.r.t. x and y, respectively.
Note that the first condition corresponds to the original constraint, the third
condition is the Lagrange multiplier theorem and the second translates into

λi = −∂f(x, y)

∂yi
, i = 1, . . . , n.

Hence for (local) minima there necessarily needs to be a relation between the
Lagrange multipliers and the gradient of f w.r.t. y.
The idea of Lagrangian multipliers is implemented in optimal control theory
through the use of costates, which will be elaborated upon in the next chapter.
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3 | Optimal Control
By first covering optimal control in general we lay out the framework in which
we will define the problem of finding optimal fishing strategies. To this extent
we need to cover relevant topics like (co)states, control functions, dynamic pro-
gramming, the Hamilton Jacobi Bellman Equations and Pontryagin’s Maximum
Principle. Chapter 6 is reserved for the application of optimal control in the
case of fish harvesting.

3.1 Control Theory

Control theory is the area of mathematics that deals with dynamical systems
which can be controlled, in the sense that the evolution is influenced by an
external force (or agent). A dynamical system is a system in which a function
describes the time dependence of a point in a so-called state space. We will
consider dynamical forms as a system of ODE’s, as follows{

x′t = f(xt, αt), 0 < t < T

x0 = x0
, (3.1)

where xt := x(t) is a n-dimensional function, dependent on t, known as the state
(of the system), x0 is the initial condition and αt is another function representing
the control. To be very technical, x : [0, T ]→ Rn and α : [0, T ]→ A, where T
is the end-time and A is called the control set, hence

f : Rn ×A→ Rn.

For each initial point there are multiple trajectories describing the evolution of
the system, depending on the choice of the control. One can wonder which set
of final states can be reached depending on the control in question, or which
control would be possible and which would be optimal for a certain objective.
Formally we define a set of (all possible) admissible controls, via

A = {αt : [0, T ]→ A | α is measurable},

where a measurable function is a function between two underlying spaces that
preserves the structure of the spaces.1 Now we are ready to formulate an optimal
control problem (CP) in a general form, as follows

J [α∗t ] := minimize
α ∈ A

∫ T

0

L(xs, αs) ds+ g(xT )

subject to x′t = f(xt, αt),

x0 = x0,

(3.2)

where α∗t is called an optimal control, L(xt, αt) : Rn×A→ R is known as the
running cost and it models the cost from 0 to T , g(xT ) : Rn → R is called the

1A function f is measurable if the pre-image of any measurable set is measurable. Techni-
cally one needs this condition, since a non-measurable function is really weird, creating various
problems in subsequent derivations.
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terminal cost and is related to the terminal condition of the state trajectory.
Both L and g are problem specific. The entire problem is subject to an IVP,
known as the state equation, where f is called the flux. An optimal control
solution α∗t is dependent on T , L, f , g(xT ) and x0.

3.2 Lagrange Multiplier Functions

Analogous to the Lagrangian Multiplier Method for a constrained OP we can
rewrite the problem in the form of a Lagrangian. To this extent define

L(x, λ, α) := g(xT ) +

∫ T

0

L(xs, αs) + λs · (f(xs, αs)− x′s) ds,

where λt : [0, T ] → Rn is the Lagrange multiplier function. In optimal control
this is called the costate. The notation x ·y denotes the inner product between
two vectors x and y.2 It holds that

α∗t = arg min
α∈A

L(x, λ, α). (3.3)

Hence, we would like to satisfy
∂xL(x, λ, α) = 0

∂λL(x, λ, α) = 0

∂αL(x, λ, α) = 0

.

The derivation of the following conclusions can be found in Appendix A.1. The
first equation leads to the following system{

−λ′t = ∂x (L(xt, αt) + λt · f(xt, αt))

λT = ∇g(xT )
, (3.4)

which is known as the costate equation. And satisfying the second equation
is identical to satisfying the state equation, i.e.

x′t = f(xt, αt), 0 < t < T.

The last equation leads to

∂α (L(xt, αt) + λt · f(xt, αt)) = 0. (3.5)

Optimal Control Hamiltonian

The following might seem slightly arbitrary, but we will motivate it in a later sec-
tion. Notice that f(x, α) = ∂λ (L(xt, αt) + λt · f(xt, αt)). This suggest defining
a function via

h(x, λ, α) := L(xt, αt) + λt · f(xt, αt), (3.6)

which we will call the Hamiltonian function. Noting that (3.5) indicates

α∗t = arg min
α∈A

h(x, λ, α).

2The inner product x · y is another way of saying x>y, but the former notation leads to
less confusion in subsequent sections.
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This motivates the idea of defining the optimal control Hamiltonian, via

H(x, λ) := min
α∈A

h(x, λ, α). (3.7)

3.3 Dynamic Programming

There is another way of solving CP (3.2), which makes use of what is known as
dynamic programming. In this degree, define the value function

v(x, t) := inf
α:[t,T ]→A

{
g(xT ) +

∫ T

t

L(xs, αs) ds

∣∣∣∣∣xt = x

}
. (3.8)

The value function represents the optimal value of CP (3.2) but for a shorter
time period [t, T ]. Notice that v is independent on the control, αt, and that

J [α∗t ] = v(x0, 0) ∧ v(x, T ) = g(xT ), ∀x.

If we look at the problem backwards, from end, t = T , to beginning, t = 0
and we manage to solve the similar problem of finding the optimal solution for
t ∈ [τ, T ], where τ is very close to T , then this help us in solving the original
problem. This new problem is embedded in the original problem. Solving a
problem in this manner is usually called backward induction and it motivates
dynamic programming.

3.3.1 Hamilton-Jacobi-Bellman Equation
Using definition (3.8) one can derive a PDE to which v must adhere to. The
entire derivation is in Appendix A.2. We state that v(x, t) must satisfy,{

∂tv(x, t) + min
α∈A
{L(xt, αt) + ∂xv(x, t) · f(xt, αt)} = 0

v(x, T ) = g(xT )
.

This is known as the Hamilton-Jacobi-Bellman Equation (HJB). This PDE is
the defining relation of the dynamic programming approach. If we insert (3.6)
into the HJB we get{

∂tv(x, t) + min
α∈A
{h(x, ∂xv(x, t), α)} = 0

v(x, T ) = g(xT )
. (3.9)

3.4 Hamiltonian System

By setting λt := ∂xv(x, t) and using (3.7) we get{
∂tv(x, t) +H(x, λ)) = 0

v(x, T ) = g(xT )
.

The HJB equation and the optimal control Hamiltonian can be summarized
into the following theorem from [3]. It relates the optimal control problem
(and its dynamical system) to a Hamiltonian system, i.e. showing that the
characteristics of the HJB equation is a Hamiltonian system.
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Theorem 2 (Hamiltonian System). Assume the (value function) v ∈ C2 and
H ∈ C1, and

x′t = ∂λH(x, λ),

where λt := ∂xv(x, t). Then xt and λt satisfy the Hamiltonian System{
x′t = ∂λH(x, λ)

−λ′t = ∂xH(x, λ)
. (3.10)

Note that using this theorem the optimal control problem turns into a system
of coupled ODE’s, which is significantly easier to solve than the HJB equation,
which is a PDE.
There are two remarkable properties that hold for every Hamiltonian. Firstly,
the change over time is constant, i.e. ∂tH(x, λ) = 0. Thus, H is constant over
time. And that the flow of the Hamiltonian system is a symplectic mapping. In
other words, the flow in the phase-space is volume-preserving, i.e. the area of a
phase space is unchanged after the symplectic mapping is applied. We will not
go into detail on this. But the fact itself leads to a more appropriate numerical
scheme. For details on symplectic mappings we refer to [4].

3.4.1 Pontryagin’s Maximum Principle
If we can find the optimal control Hamiltonian, then we can find a family of
optimal control trajectories that is a local minimum. This is a central result
in optimal control, called Pontryagin’s Maximum Principle (PMP). It was first
formulated by Pontryagin [5], who thought of optimal control in terms of max-
imization problems. We will formulate it for minimization problems.

Theorem 3 (Pontryagin’s Minimum Principle). The optimal state x∗t , control
α∗t (and costate λ∗t ) must minimize the Hamiltonian function, i.e.

H(x∗, λ∗) := h(x∗, λ∗, α∗) ≤ h(x∗, λ∗, α), ∀α ∈ A.

Additionally, λ∗t must satisfy the costate equation, i.e.{
−λ′t = ∂xh(x∗, λ, α∗)

λT = ∇g(xT ).
.

These conditions are necessary conditions for an optimal control.

Note that PMP is not a sufficient condition for optimality. Using PMP alone,
we cannot conclude a control is globally optimal. We state without proving
that the a solution to HJB equation does offer sufficient conditions. But this
involves solving a PDE, which in general is very difficult. On the other hand,
any control that does not satisfy PMP cannot be optimal. As such it is useful
to find candidate optimal controls.
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4 | Numerical Analysis
Now that we understand optimal control from a theoretical perspective we need
to transform it using numerical procedures in order to numerically compute the
optimal control. But first we explain how to simulate the non-controlled state
equations, which also helps us understand the numerical scheme for optimal
control computations.

4.1 Simulating Differential Equations

Consider a generic ODE of the form {x′(t) = f(x, t), x(0) = x0}. W.l.o.g.
assume x is one-dimensional. We discretize the time-dimension into N time
points (with step-size ∆t = T

N ) as follows

tn =
n

N
T, n = 0, . . . , N. (4.1)

Next we define xi := x(ti),∀i and x̄ =
(
x0, . . . , xN

)
.

4.1.1 Forward Euler
This discretization leads us to approximate the derivative x′(ti) via

x′i =
xi+1 − xi

∆t
,

with approximation error O(∆t). This is known as the forward-difference ap-
proximation. Hence, the forward difference numerical scheme for solving an
ODE would be

xi+1 = xi + ∆tf(ti, xi), ∀i,

which is known as the forward Euler method. It is an explicit method, i.e.
the solution at xi+1 depends on xi and ti only. It can be solved iteratively by
using the solution of the previous time step in the next iteration. However, it
can be numerically unstable, meaning that the numerical solution can blow up
for equations where the exact solution does not.

4.1.2 Backward Euler
By adding a slight modification to the forward Euler method, via

xi+1 = xi + ∆tf(ti+1, xi+1), (4.2)

the backward Euler method is created. This method is implicit, the solution
of xi+1 depends on xi+1 and ti+1 as well. An advantage of using backward
Euler is numerical stability - it will not blow up. Conversely, we have to solve
the numerical scheme as a whole, making the implementation more costly.
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4.2 Numerical Optimal Control

We wish to approximate the solutions to CP (3.2) numerically. The functional
J [α∗] can be approximated (numerically) via the value function v(x, t) of Equa-
tion (3.8), i.e.

v̄(x̄,∆t) = min
ᾱ∈AN

{
g(xN ) +

N−1∑
n=0

L(xn, αn)∆t

}
, (4.3)

where αi := α(ti), ᾱ =
(
α0, . . . , αN

)
. Since the control is discrete we can

’simplify’ the set of admissible controls to be AN ⊂ RN , where A is the control
set. Note the simplifying elegance of integration in the numerical world.

4.2.1 Symplectic Euler
The CP under consideration is equivalent to Equation (3.10) in Theorem 2, the
dynamical system’s Hamiltonian formulation. One of properties of a Hamilto-
nian is that every flow is symplectic. It would therefore make sense to use a
method that has this property as well. Using forward difference, we can trans-
form Equation (3.10) into{

xi+1 = xi + ∆t Hλ(xi, λi+1), x0 = x0

λi = λi+1 + ∆t Hx(xi, λi+1), λN = ∇g(xN )
. (4.4)

Notice that the Hamiltonian is a function of xi and λi+1, which makes the
whole scheme implicit. This numerical scheme is called the symplectic Euler
method.

Convergence

Symplectic Euler works well for approximating the solution provided the control
is a smooth function. A rigorous proof is found in [6]. The main conclusion is
the following.

Theorem 4. If (x∗, α∗) is a smooth optimal solution of (3.2) and (x̄∗, ᾱ∗) is
the approximated solution computed using (4.4), then

‖v − v̄‖C = O(∆t),

where ‖ · ‖C is the infinity-norm for continuous functions, i.e. for f ∈ C(A),

‖f‖C = sup
f :A→R

|f(x)|.

Thus if ∆t→ 0, i.e. N →∞, the numerical solutions converge to the continuous
optimal solution.

4.2.2 Regularization
However, non-smooth controls exist and are relevant, as we will see in subsequent
chapters. If the the optimal control α∗t , as a function of xt and t is non-smooth,
then the Hamiltonian will also be non-smooth and the above conclusion about
convergence does not hold any more. Luckily [6] gives insight on how to proceed,
which we summarize in a theorem.
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Theorem 5. Let H be the corresponding non-smooth Hamiltonian, and define
a regularization, Hδ, such that in the limit they are equivalent, i.e.

‖H −Hδ‖C = O(δ).

Then the solution of the regularized problem, v̄δ(x̄,∆t), also converges to the
continuous solution, i.e.

‖v − v̄δ‖C = O(∆t+ δ +
(δt)2

δ
).

This result is central to this thesis and will be used extensively to calculate the
harvesting strategies (controls) for the optimal control problems formulated in
Chapter 6.
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5 | Mathematical Biology
After all the relevant background is introduced it is time to develop the necessary
mathematical framework to study the evolution of fish species over time. Firstly,
we introduce a single species model, and describe the evolution of fish densities.
Then we will move on to competing species models, starting with two species
and then generalizing to n-species.

5.1 Modelling Species

Biological systems are, in general, incredibly complex systems. For ecosystems,
e.g. ,they consisting of numerous different species interacting amongst each-
other. Each component can be of utmost importance; from the wolf - being the
apex predator it can transform barren wastelands into lush forests [7], to bees
being the key pollinators to our own crops [8], to name a few examples. With
the help of differential equations we try to model these natural phenomena as
dynamical systems; up to a certain degree of correctness. Such complicated
systems can have a substantial number of parameters. Usually, the more pa-
rameters the model takes into account, the more complicated it gets and the
harder it will be to compute numerical solutions, and infer relevant conclusions.

5.2 Single Species Model

We will start by modelling a single species of fish. To this extent we use the
Logistic Equation, which was first formulated by Verhulst, in 1838, in his paper
titled a ’Note on the Law of Population Growth’ [9]. To this day it is still a
widely used model, as a basis for more complex models. It is able to describe
the evolution of people [10], bacteria [11] and fish species [12].

5.2.1 Logistic Equations
The Logistic Equation is a non-linear ODE of the following form

x′t = rxt

(
1− xt

k

)
, (5.1)

where x(t) describes the evolution of the size the population over time. It is
subject to r > 0, the intrinsic growth rate, and k > 0, the carrying capacity of
the environment. Both parameters depend on the species in question and k can
be thought of as the maximal sustainable population. In dynamical systems
theory xt is known as the state trajectory - it evolves over time subject to
the state equation (5.1). Firstly, we note that x < 0 makes no sense from a
populations perspective.
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Equilibrium Solutions

Firstly, note that the logistic equation describes a parabola. Hence, there are
two equilibrium solutions, namely

xt = 0 ∧ xt = k ∵ 0 = xt −
x2
t

k
.

The first solution corresponds to no population and the second coincides exactly
with the carrying capacity. The trivial solution is unstable since, 0 < xt < k
the solution will increase, by virtue of x′t > 0. If xt > k the solution will
decrease, by virtue of x′t < 0. Hence the xt = k is stable. By characterizing the
equilibrium solutions we get a better understanding of the possible trajectories
of the dynamical system.

Analytic Solution

Furthermore, an analytical solution can be found,

x(t) =
kx0

x0 + (k − x0)e−rt
, (5.2)

where x0 is the initial population - the initial condition. In Figure 5.1 various
solutions for different initial conditions are given. Here r = 1, K = 150. The
orange lines indicate the stable equilibrium solutions.

Figure 5.1: A plot showing the evolution of the logistic equation (r = 1,K = 150) for various
starting conditions, x0 = {0, 10, 20, . . . , 200}. The orange lines indicate the stable equilibrium
solutions.

5.3 Competing Species Model

Moving on two interacting species. For which we will make use of what is
known as the Lotka-Volterra equations. Lotka first published these equations
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in 1920 [13] and a few years later Volterra independently published them in
another paper [14]. These equations are applied to predator-prey interactions.
The system of ODE’s is of the form{

x′(t) = αx− βxy
y′(t) = δxy − γy

,

where x(t), y(t) correspond to the prey and predator population, respectively.
The parameters α, β, δ, γ > 0 are parameters describing the predator-prey in-
teractions.

5.3.1 Competing Lotka–Volterra Equations
The predator-prey model does not take into account the carrying capacity and
growth rate, like in the logistic equation. In our analysis we will use a gener-
alization of the predator-prey model, known as the Competing Lotka-Volterra
equations, which assumes that both species ’compete’ for the same resources.
The model takes into account the carrying capacity and growth rate of each
species directly. It is a coupled system of non-linear ODE’s, as follows

x′t = r1xt

(
1− xt +m12yt

k1

)
y′t = r2yt

(
1− m21xt + yt

k2

) , (5.3)

where xt, yt correspond to two different species each with their own growth rate
ri and carrying capacity ki. The parameters mij represents the effect species
i has on species j. The terms in the numerator impact the rate of change in
the population. Firstly, the size of the population of a species impacts its rate
change, similar to the single species model. Secondly, the population of ’one’
species is also impacted by the size of the ’other’ population. If ’one’ population
is large it requires a lot of resources, decreasing the amount of resources available
for sustaining the ’other’ population.

Equilibrium Solutions

Being a system of ODE’s the mathematical analysis is also more involved. It is
possible to reformulate the (5.3). To this extent define the state of the dynamical
system via xt = (xt, yt) and then we end up with

x′t = rx>t
(
1−K−1Mx

)
, (5.4)

where the parameters are summarized in vectors r = (r1, r2), k = (k1, k2)
(K = diag(k)) and a matrix M = (mij)ij , with all-ones on the diagonal. This
is known as the interaction matrix. Here rx> = diag(r1xt, r2yt), this is called
an outer-product. For convenience we will define f = (f1, f2) s.t. x′ = f(x, y).
By analysing x′t = 0 we distinguish three cases:

• firstly, xt = (0, 0) is the trivial solution of no populations,

• secondly, if xt = (0, k2), the model reduces to a single species model
(r2, k2) for y and by symmetry xt = (k1, 0); a single species model (r1, k1)
for x,
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• lastly, and most interestingly, for xt 6= 0, we get

1 = K−1Mx ⇐⇒ x = M−1k ⇐⇒ x =
1

1−m12m21

(
K1 −m12K2

K2 −m21K1

)
,

the equilibrium solution being a point in the (x, y)-plane.

Before we analyze the latter further, we conclude that for the two species model,
there are situation where it stabilizes to a one species model. One species dies
out and the other will move to its stable equilibrium solution. This phenomenon
is called competitive exclusion. If two species both survive, then it is called
competitive coexistence. Additionally, notice that the equilibrium solutions
do not depend on r. The time it takes to reach such an equilibrium solution
will however by dependent on r.

Figure 5.2: Phase space plots for different situations of two competing species. The top
plot indicates competitive coexistence, i.e. a stable equilibrium solution at x = (64, 60). The
Bottom line shows two instances of competitive exclusion. In the first there is an unstable
equilibrium in x = (24, 28), which depending on the initial condition moves to the stable
equilibrium solutions (k1, 0) = (80, 0) or (0, k2) = (0, 100). In the second a stable equilibrium
solution x = (80, 0). The lines indicate solution-trajectories and the arrow indicates the
direction which the solution propagates.

The third case is more difficult. We will be less rigorous and use Figure 5.2
to describe the different cases. In Figure 5.2 three different phase plots, for
different transition matrices, are presented. Here

r = (1, 1), k = (80, 100) and M1 =

(
1 0.2

0.3 1

)
, M2 =

(
1 2
3 1

)
, M3 =

(
1 0.2
3 1

)
,

where Mi corresponds to Figure i, counting from from top to bottom and left
to right. The lines indicate solution-trajectories and the arrow indicates the
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direction which the solution propagates. The phase plot changes drastically
depending on the parameters. Let x∗ be the solution to the linear system, i.e.
Mx = k. If x∗ > 0 then it describes an equilibrium point in the phase plane
of the two species. Depending on M two things occur: the point is stable or
unstable. If the point is stable competitive coexistence occurs, which is visible
in the top plot of Figure 5.2. If the point is unstable competitive exclusion
occurs, where the surviving species is dependent on the initial condition, visible
in the right plot of Figure 5.2. If x∗ ∨ y∗ < 0 then the solution does not lie in
the first quadrant (x > 0) and hence competitive exclusion occurs, like in the
right plot Figure 5.2.

Stability Of Equilibrium Solutions

Mathematically one can distinguish if a point is stable or unstable by investi-
gating the eigenvalues of the Jacobian of f = (f1, f2) at x∗, i.e. solving for
λ:

J f(x∗)− λI =

(
r1(1− 1

k1
(2x∗ +m12y

∗) − r1
k1
x∗

− r2
k2
y∗ r2(1− 1

k2
(m21y

∗ + 2x∗)

)
− λI = 0.

We will not go into detail on this, since it is of minor importance. Systems where
competitive exclusion occurs are less relevant, since we can (safely) assume
that in nature those systems would already be in stable equilibrium. None the
less, for comparing models for devising optimal fishing strategies, they can give
additional insight on the behaviour of the controls.

Analytic Solutions

An analytic solution for two species model if all the (6) parameters are consid-
ered independent is yet unknown [15]. Notably, if one or more parameters are
connected, then there exists a analytic solution, but this is beyond the scope of
this thesis. Having said that we do not need an analytic solution, considering
we can compute one numerically using the methods described in Section 4.1.

5.3.2 n-Species Competitive Model
The dynamics presented in (5.3) can easily be extended for allowing more than
two species. Consider n species, xi, i = 1, . . . , n; each with their own growth
rate ri and carrying capacity Ki. This leads to the following system of coupled
(non-linear) ODE’sx′i(t) = rixi

1− 1

Ki

n∑
j=1

mijxj

 , i = 1, . . . , n, (5.5)

where mij represents the interaction between species i and j, mii = 1∀i.
System (5.5) is identical to (5.4), where r = (r1, . . . , rn), k = (k1, . . . , kn),
K = diag(k) and M = (mij)ij , with all-ones on the diagonal.
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Equilibrium Solutions

With two species it is already complicated to write out all possible equilibrium
solutions. As explained the stable solution of one species is also an equilibrium
solution for the two species model. For n species, we have n different equilibrium
solutions in which a single species survives. For two or more species competi-
tive existence and competitive exclusion plays a role. And every subset k < n
of species could be in competitive existence or exclusion. An n-species model
has 2n subsets. But there is a structured way to think about all the possibilities.

Consider a k species model, where k < n. If only one species dies out and
the rest survives there is competitive existence between those k − 1 species.
Hence, the case where all species survive is interesting in its own right, since
it is one of the equilibrium solutions for a model with more than k species. In
other words, we can use analysis of interaction of 0 < k < n species in eval-
uating all equilibrium states for the n species model. By following the same
line of reasoning as in the two species models we can distinguish three types of
stationary states:

• Firstly, trivial solution, x = 0.

• Secondly, ’k-subset’ solutions, let I ⊂ {1, . . . , n} s.t. |I| = k, be the indices
of the k species that survive, where 0 < k < n. This describes a k species
model with parameters (r′,K ′,M ′) corresponding to the fish that coexists
after the rest has gone extinct, which will have the equilibrium solution
y ∈ Rk s.t.

M ′y = k′.

• Thirdly, the ’principal’ solution which corresponds to all the fish surviving.
The equilibrium solution is a point x∗ ∈ Rn s.t.

Mx∗ = k.
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6 | Modelling Harvesting Strate-
gies

The previous chapter is devoted to analyzing non-controlled differential equa-
tions, which we will use to define controllable differential equations. Together
with running and terminal costs we can construct an optimal control problem.
We use the results of Chapter 3, PMP and the Hamiltonian Systems formula-
tion, to derive the derivatives of the optimal control Hamiltonian necessary to
implement the models. The derivation is in the sense of numerical approxima-
tion, we will therefore be less rigorous. The results are reserved for Chapter
8.

6.1 Modelling strategies

To construct an optimal control problem for the modelling of fish harvesting
strategies we need to define the following:

• a state equation {x′t = f̃(xt, αt), x0 = x0}; related to the dynamical
system in question,

• the running cost L(xt, αt) and terminal cost g(xT ),

• and the time horizon, [0, T ].

The running cost and terminal costs are partly subjective. Consider a single
species model, we need to define f̃ , s.t.

x′t = f̃(xt, αt), 0 < t < T,

where α : [0, T ] → R is the control function that represents fish harvesting.
Clearly, for fishing we want α(t) ≥ 0, ∀t, since αt denotes the fish harvesting
intensity. But beyond that choice of α is free.

Constant Control

We start with the simplest version, fixed control a ∈ R. To this extent let

x′t = f(xt)− a,

where f(xt) = rxt(1 − xt

k ), corresponding to the Logistic Equation. From an
analytical perspective the logistic equation, which is a parabola, is shifted by
−a. We can find the equilibrium solutions of x′ = 0 via

f(xt) = a ∴ x2 − kx− ak

r
= 0 ∴ x± = 1

2

(
k ±

√
k(k − 4

a

r
)

)
,

where x− is an unstable solution and x+ is a stable solution of the controlled
ODE. Hence, the optimal control is exactly the height of the parabola, i.e.

a∗ =
kr

4
.
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The state equation has one equilibrium solution x∗ = k
2 , which is unstable. If

the fish population drops below x∗ then the population will die out. This is
clearly undesirable, motivating the subsequent state equations in which the size
of the population at every timestep is taken into account.

6.2 Single Species

For a single species model we will apply the state equation:

x′t = f(xt)− αtxt,

where f is the logistic equation, i.e. f(xt) = rxt(1− xt

k ). Since f is concave in
x, f̃ is concave as well.

Equilibrium Solution

Note that the equilibrium solution of the above state equation, i.e. the αt that
makes x′t = 0 is precisely

αt = r(1− xt
k

).

Then the control and state are in balance and the rate of change is zero. It
would be ideal if we could find a control that balances the fish out take and
increase of fish population, generating a steady state solution for the x state.

Terminal Costs

First we will define the terminal costs. From a sustainability perspective, it
would make sense to have terminal costs that are related to the initial popula-
tion. For one species consider,

g(xT ) = C(xT − x0)2

where C > 0 is the weight of the terminal cost. This would penalize a control
depending on the final endpoint of the trajectory. A higher C would force the
solution to end up closer to x0. Note that the terminal condition penalizes more
fish as much as less fish. Since this condition is natural (and only used in the
ending condition of the costate equation) we keep it fixed and only differentiate
in the running costs, L(x, α).

6.2.1 Smooth Hamiltonian

The Hamiltonian function (3.6) depends on the state equation, f̃(xt, αt), and
the running costs, L(xt, αt). If the running costs is a smooth function, then the
resulting optimal control Hamiltonian is smooth as well. And we can directly
apply Theorem 2 with PMP to find an optimal control. To this extent we will
first consider

L(xt, αt) = 1
2α

2
t − cαtxt,

where c is the reward for fishing an amount αt ·xt, at time t. We assume c to be
the (constant) price of fish on the market. Although it is not completely clear
what the running costs means. One can think of the first term as representing
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the cost of fishing with an intensity αt. The second term relates to maximizing
profit. An optimal control strategy would in this case be

h(x, λ, α) = L(xt, αt) + λtf̃(xt, αt) =
1

2
α2
t − αt(c+ λt)xt + λtf(xt)

∂h

∂α
= αt − (c+ λt)xt = 0 ∴ α∗t (x, λ) = (c+ λt)xt.

For readability we set ν := α∗t . Hence, the optimal control Hamiltonian is

H(x, λ) = − 1
2ν

2 + λtf(xt),

which is a concave function of xt and λt. Written as such to clarify the use of
the fact, for a function η

∂

∂x
1
2 (η(x, y))2 = η

∂η

∂x
,

which will be used extensively throughout this chapter. This leads to the fol-
lowing (smooth) derivatives{

Hx(x, λ) = −ννx + λtf
′(xt) = −(c+ λt)

2xt + λtf
′(xt)

Hλ(x, λ) = −ννx + f(xt) = −(c+ λt)x
2
t + f(xt)

.

The optimal fishing strategy can be found through the PMP using the sym-
plectic Euler scheme (4.4), calculating the optimal state x∗i (and costate λ∗i ),
corresponding to the optimal control α∗i . Afterwards we compute the (numeri-
cal) optimal control via

α∗i = ν(x∗i , λ
∗
i ), i = 0, . . . , N.

6.2.2 Non-smooth Hamiltonian
Conversely, if we consider

L(xt, αt) = −cαtxt,

it is completely clear what the running costs mean, namely, maximizing profit.
But the optimal control Hamiltonian,

H(x, λ) = min
α:[0,T ]→A

{−αt(c+ λt)xt + λtf(xt)},

is linear in both λ and α and concave in x.1 Thus, the optimal control α∗t
depends on the minimum and maximum of control set A, depending if (c+λt)xt
is negative or positive. Noting that αt ≥ 0 we can safely assume [0, αmax],
otherwise α∗t =∞, which is undesirable.2 Thus

H(x, λ) = −αmax((c+ λt)xt)
+ + λtf(xt),

1A function that is linear is both convex and concave and the minimum of a concave
function is again concave.

2Note we could also define a minimal fishing effort αmin > 0. However this would only
complicate the problem further and will not yield more satisfying results than the αmin = 0
case.

27



where R(ν) := [ν]+ = max{0, ν}, which is known as the ramp function. The
ramp function is continuous, but not smooth, since the derivative at ν = 0 is
undefined. Thus the resulting optimal control Hamiltonian is non-smooth. By
excluding the case (c+ λt)xt = 0 we could write{

Hx = −αmaxH[(c+ λt)xt](c+ λt) + λtf
′(xt)

Hλ = −αmaxH[(c+ λt)xt]xt + f(xt)
, (6.1)

where

H[ν] = I{ν > 0} =

{
0 if ν > 0

1 else
,

is the heaviside step function (and I{·} is the indicator function). The terms
c + λt and xt are due to the chain rule. The heaviside step function is discon-
tinuous at x = 0. Hence, both derivatives are discontinuous for xt = 0, when
the population died out, and λt = −c. Even though the first case would never
be part of an optimal control strategy the second case is far from ideal.

Figure 6.1: A plot showing the heaviside step function (dashed line) and the regulariza-
tion for different δ. The key issue with a regularization is that there will always be values
approximately 1

2
. This is clearly visible in the red circle.

6.2.3 Regularization
As we will see in the next chapter implementing the above formulation directly
will have problematic results. We therefore apply a regularization procedure by
defining a smooth Hamiltonian that in the limit is equal to the above defined
non-smooth Hamiltonian. Noting that the ramp function is the only non-smooth
part we could regularize this with an appropriate function, i.e. Sδ(ν) such that

‖R(ν)− Sδ(ν)‖C = O(δ).

This would lead to a regularized Hamiltonian, Hδ(x, λ) := −αmax S
δ(ν) +

λtf(xt), which we then need to differentiate in two directions. Since we only
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need the derivatives in the numerical implementation we regularize the discon-
tinuous derivatives separately. The discontinuity of both derivatives is due to
the heaviside step function, which we regularize via

sδ(ν) =
1

1 + exp(− 2
δ ν)

.

Then
‖H(ν)− sδ(ν)‖C = O(δ).

In Figure 6.1 various steps of the regularization and the heaviside step function
(dashed line) are given. No matter how close to zero δ will be, there will always
be values approximately 1

2 . This fact is pointed out by the red circle. By setting
ν := (c+ λt)xt the regularization (of the derivatives) looks like{

Hδ
x(x, λ) = −αmax s

δ(ν)νλ + λtf
′(xt)

Hδ
λ(x, λ) = −αmax s

δ(ν)νx + f(xt)
. (6.2)

A word of Note

We need to be careful approaching the regularization this way, since it is not
trivial that regularizing the derivatives separately is equivalent to regularizing
the Hamiltonian directly. However, note that the ramp function can also be
defined as

R(ν) =

∫ ν

−∞
H(η) dη,

we can see that

∂

∂x
R(ν(x, λ)) =

∂ν

∂x

dR(ν)

dν
= νxH(ν) ∧ ∂

∂λ
R(ν(x, λ)) = νλH(ν).

Conversely, by defining sδ(ν) as the regularization above, and setting

Sδ(ν) :=

∫ ν

−∞
sδ(η) dη,

we can make sure that the regularized Hamiltonian and its derivatives align.

6.3 Two Competing Species

The two competing species model will be based on (5.3), which will be used in
the form {

x′t = f̃1(xt, yt)

y′t = f̃2(xt, yt)
.

For every two species model we will use the terminal condition

g(xT , yT ) = C1(xT − x0)2 + C2(yT − y0)2,

where Ci is a parameter for how important species i is relative to the other
species. The derivation is analogous to Section 6.2, we will therefore be more
brief.
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6.3.1 One-dimensional Control
We start by controlling the state equation(s) using a single control function, i.e.{

x′t = f1(xt, yt)− q1αtxt, x0 = x0

y′t = f2(xt, yt)− q2αtyt, y0 = y0
,

where qi > 0 is the catchability of species i. The catchability is necessary in this
case, since it would be restrictive to assume that both fish are caught at equal
rate. This one-dimensional control mimics the situation where two fish species
are harvested by a single fishing strategy - fished with the same method. For
convenience define f = (f1, f2). Although, being ad hoc we will use the term
single control.

Smooth Hamiltonian

In line with Section 6.2.1 we define

L(x, y, α) = 1
2α

2
t − αt(c1q1xt + c2q2yt),

where ci is the cost of species i. Using (3.6) we get

h(x, y, a) = 1
2α

2
t − αt(q1(c1 + λ1)xt + q2(c2 + λ2)yt) + λt · f

∴ α∗ = q1(c1 + λ1)xt + q2(c2 + λ2)yt,

where λi := (λi)t are the costates and λt := (λ1, λ2). By setting

ν(x, y, λ) := q1(c1 + λ1)xt + q2(c2 + λ2)yt,

and filling (3.7) we get

H(x, y, λ) = − 1
2ν

2 + λt · f.

with derivatives 
Hx = −ννx + λt · ∇xf
Hy = −ννy + λt · ∇yf
Hλ = −ννλ1

+ f1

Hµ = −ννλ2
+ f2

. (6.3)

Regularized Hamiltonian

In line with Section 6.2.2 and 6.2.3 we define

L(x, y, α) = −αt(c1q1xt + c2q2yt).

Set ν := (c1 + λ1)q1xt + (c2 + λ2)q2yt then

H(x, y, λ) = −αmax(ν)+ + λ · f,

and 
Hx(x, y, λ) = −αmax s

δ(ν)νx + λt · ∇xf.
Hy(x, y, λ) = −αmax s

δ(ν)νy + λt · ∇yf
Hλ1

(x, y, λ) = −αmax s
δ(ν)νλ1

+ f1

Hλ2
(x, y, λ) = −αmax s

δ(ν)νλ2
+ f2

.

By comparing all the previous partial derivatives we clearly see a pattern emerg-
ing.
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6.3.2 Two-Dimensional Control
On the other hand, we could use a two-dimensional control functions for con-
trolling the evolution of each species separately, i.e.{

x′t = f1(xt, yt)− α1xt, x(0) = x0

y′t = f2(xt, yt)− α2yt, y(0) = y0

,

where αi := αi(t) and αt := (α1, α2). This would model the situation where
you would fish both species differently. We will use the term double control for
short.

Smooth Hamiltonian

Defining

L(x, y, α) = 1
2αt · αt − αt ·

(
c1xt
c2yt

)
,

then h(x, y, λ, α) = 1
2αt · αt − αt ·

(
(c1 + λ1)xt
(c2 + λ2)yt

)
+ λt · f and thus

∂h(x, y, α)

∂α
= α)t −

(
(c1 + λ1)xt
(c2 + λ2)yt

)
= 0 ∴ α∗t =

(
(c1 + λ1)xt
(c2 + λt)yt

)
.

As expected the controls of species 1 and 2 are independent. Note that sin-
gle control is the sum of the double control functions, but weighted by their
catchability. By setting ν := (ν1, ν2) = α∗ we get H(x, y, λ) = − 1

2ν · ν + λt · f.
and 

Hx(x, y, λ) = −ν1(ν1)x + λt · ∇xf
Hy(x, y, λ) = −ν2(ν2)y + λ · ∇yf
Hλ(x, y, λ) = −ν1(ν1)λ + f1

Hµ(x, y, λ) = −ν2(ν2)µ + f2

.

Regularized Hamiltonian

Define
L(x, y, α) = −αt ·

(
c1xt
c2xt

)
,

then h(x, y, λ, α) is linear in αi and hence

H(x, y, λ) = −αmax ·
(

(ν1)+

(ν2)+

)
+ λ · f

where αmax = (αmax,1, αmax,2) is the maximal fishing effort for species i. By
regularizing both controls separately, using sδ1 and sδ2 we get the following
derivatives 

Hx = −αmax,1s
δ1(ν1)(ν1)x + λt · ∇xf

Hy = −αmax,2s
δ2(ν2)(ν2)y + λt · ∇yf

Hλ1
= −αmax,1s

δ1(ν1)(ν1)λ1
+ f1

Hλ2
= −αmax,2s

δ2(ν2)(ν2)λ2
+ f2

.
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6.4 n-Competing Species

We will use the system
x′t = f(xt)− αt ∗ xt,

where f = (f1, . . . , fn) and fi corresponds with the ith equation of (5.5) and ∗
denotes element-wise multiplication, i.e.

a ∗ x =

a1x1

...
anxn

 .

Smooth Hamiltonian

In the next chapter we will see that the smooth Hamiltonian is inadequate in
some cases. But for the sake of completeness, we derive the derivatives needed
to do the calculations. Consider

L(x, α) =
1

2
αt · αt − αt · (c ∗ xt),

where c = (c1, . . . , cn). This leads to α∗ = (c+ λt) ∗ xt and

ν := (ν1, . . . , νn) s.t. νi := (ci + λi)xi,

and the n derivatives,{
Hxi

= −νiνixi
+ λ · ∇xi

f

Hλi
= −νiνiλi

+ fi
, i = 1, . . . , n.

Regularized Hamiltonian

Lastly, consider
L(x, α) = −α · (c ∗ x),

then the Hamiltonian is linear in αi, hence

H(x, λ) = −
n∑
i=1

αmax,i ((ci + λi)xi)
+

+ λ · f.

Define νi := (ci + λi)xi. Applying the regularizations sδ1 , . . . , sδn we get{
Hxi

= −αmax,is
δi(νi)νixi

+ λ · ∇xi
f

Hλi
= −αmax,is

δi(νi)νiλi
+ fi

, i = 1, . . . , n.
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7 | Experimental Setup
After all the relevant topics (and functions) have been derived it is time to con-
struct a program for computing numerical solutions to the models from Chapter
6. In the next chapter we set out (interesting) results. But first we explain all
the particulars of the discretization, methods and algorithms used to generate
those results. This is followed by a concise overview of the Object Oriented
(OOP) structure implemented.

7.1 Experimental Setup

For the numerical experiments we used Python (3.9) (in Pycharm 2021.3.2
Professional Edition) to write the code structure. The code was run on Mac OS
X (x86_64 version 10.15.7) with a 2,5 GHz Dual-Core Intel Core i5 processor
and a total RAM of 8 GB (1600 MHz DDR3).

7.2 Implementation

In Chapter 4 numerical optimal control has already been explained in a more
general sense. We build onto this knowledge, start a bit trivially and moving
onto more complex algorithms. We will try to distinguish between mathematical
functions and functions in programming, by referring to the latter as methods.
The algorithms and methods will be formulated for n-species models, in general.

7.2.1 Numerical Implementation
We use the same discretization procedure as formulated in Equation 4.1. For
reference, the method that generates a discrete time interval [T0, Tend] of N
points is denoted generateTimeline(T_0,T_end,N).

Scaling

In order to make it easier to understand and relate all the different results we
scaled all the state-trajectories corresponding to species, i.e.

x̃i =
xi
ki
, i = 1, . . . , n.

This makes sure that every fish trajectory will be between 0 and 1.

Solving Non-Linear Equations

Throughout this chapter we will make extensive use of the method1 fsolve(func,guess,...),
which returns the roots a system of non-linear equations. It basically solves

F (Y ) = 0,

1It is part of the Scipy v1.80 module, where the guess is called x_0 but this would be
unnecessarily confusing.
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Figure 7.1: Two instances of the forward and backward Euler solutions, for Equation 5.3,
where r = [2, 1], k = [1, 1], x0 = [0.5, 0.45] and m12 = 0.5, m21 = 0.4. In the left figure
(N,∆t) = (50, 0.1) is used; it is clear that Forward Euler ’overshoots’ Backward Euler. In the
right figure (N,∆t) = (20, 1), here the instability of Forward Euler is clearly visible.

for a function F : Rn → Rm and a vector Y ∈ Rn. The inputs of fsolve are
a method func and an initial guess, guess. A proper initial guess is necessary
for convergence. For completeness, we state that fsolve uses the Powell’s dog
leg method [16], which is an iterative optimization algorithm for the solution of
non-linear least squares problems. We will not go into detail on this, since it is
beyond the scope of this thesis.

Simulating ODEs

Moving on to ForwardEuler and BackwardEuler. The forward Euler method
is relatively straight forward. Consider the system of ODE’s, i.e. x′t = f(x) s.t.
f : Rn → Rn, then

Algorithm 1 Generate Forward Euler Solution

function ForwardEuler(x0, N,∆t)
x0 ← x0

for i = 1, . . . , N do
xi+1 ← xi + ∆tf(xi)

return (x0, . . . ,xN )

Here xi := x(ti) = (x1(ti), . . . , xN (ti)). Backward Euler is a bit more involved,
since we need to solve the implementation as a whole, for which we use the
method fsolve(f,guess).

Algorithm 2 Generate Backward Euler Solution

function BackwardEuler(Y ,x0, N,∆t)
x1, . . . ,xn ← split(Y , n)
F 0 ← −x0 + x0 + ∆tf(x0)
for k = 1, . . . , N do
F k ← −xk + xk−1 + ∆tf(xk)

return (F 0, . . . ,FN )

guess ← ForwardEuler(x0, N,∆t)
solution ← fsolve(BackwardEuler, guess)
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Note that the initial guess is the solution of the forward Euler method, which is
close to the actual solution, another initial guess would also be possible. Figure
7.1 shows two instances of the forward and backward Euler solutions, for a two
species state equation.

7.2.2 Numerical Optimal Control
Moving onto the optimal control part we will use similar algorithms to calculate
optimal control strategies. As previously indicated we can distinguish two types
of models, with a smooth Hamiltonian and with a non-smooth Hamiltonian. In
the latter a regularization is used.

Smooth Hamiltonian

Firstly, for a smooth Hamiltonian the symplectic Euler method, described in
Section 4.2.1. can be used ’directly’. For this we will use the following Al-
gorithm, considering an n-species model, see Section 6.4. In order to derive
convergence we first calculate the non-controlled solution, i.e. the solution if no
fishing has been done on the whole time horizon. This leads to an initial guess
for x. To get an initial guess for the co-states λ we use the following algorithm,
which is forward difference but backwards in time. It is based on the second
equation in (3.10). Using this we can build a method generating non controlled

Algorithm 3 Generate a λ

function GenerateLambda(x, N,∆t)
λ0 ← g(xN )
for i = N − 1, . . . , 1 do
λi−1 ← λi + ∆tHx(xi,λi)

return (λ0, . . . ,λN )

solution, from x0 N steps (of ∆t) forward in time:

Algorithm 4 Generate a Non-Controlled Solution

function GenerateNonControlledSolution(x0, N,∆t)
x← BackwardEuler(x0, N,∆t)
λ← GenerateLambda(x, N,∆t)
guess← (x0,λ0, . . . ,xN ,λN ) return guess

Note that we could also have used the forward Euler approach in the above
algorithms. But we have chosen for the backward Euler, since it is uncondition-
ally stable and it does not ’overshoot’ the solution. Using this procedure we
can calculate an appropriate initial guess (x,λ) and solve the optimal control
model via the algorithm:
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Algorithm 5 Solving an n Species Model

function SymplecticEuler(Y ,x0, N,∆t)
x1,λ1, . . . ,xn,λn ← split(Y , 2n)
N ← length(x1)
F 0 ← −x0 + x0 + ∆tHλ(x0,λ

0)
for k = 1, . . . , N do
F k ← −xk + xk−1 + ∆tHλ(xk−1,λk)
Gk−1 ← −λk−1 + λk + ∆tHx(xk−1,λk)

GN ← −λN +∇g(xN )
return (F 0,G0, . . . ,FN ,GN )

guess ← GenerateNonControlledSolution(x0, N,∆t)
solution ← fsolve(SymplecticEuler, guess)

Lastly, we point out that the optimal control is computed through

αi = (ci + λi) ∗ xi, i = 1, . . . , n.

In Experiment 7.1 we give an example of what the solution in terms of state,
costate and control looks like. Technically speaking, the costate is an auxilliary
function, and in the results this outcome will be omitted. But for completeness
we will add it for the three subsequent experiments. Additionally, we will not
draw any preliminary conclusions between the three subsequent experiments.
This will be reserved for Chapter 8.

Experiment 7.1: Consider a single species of fish, with parameters

r = 1, x0 = 0.50,K = 0.75,

with an optimal control time horizon [0, 4], which we discretize with N = 200.
For the running cost we set c = 1 and the weight of the terminal cost is C =
4. The results are visible in Figure 7.2. The left figure is the non-controlled
solution, computed using Equation (5.2) and on the right the solution of the
optimal control problem.

Figure 7.2: On the left a non-controlled solution computed via (5.2). On the right optimal
control solution calculated via the smooth Hamiltonian of Section 6.2.1. Parameters: r =
1, x0 = 0.50,K = 0.75 and T = 4, c = 1, C = 4.
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Non-Smooth Hamiltonian

It is possible to write the Equations of (6.1) in programming language using
boolean expressions, i.e.

((c+ λi)xi > 0) =

{
True, if (c+ λi)xi > 0,

False, else
, i = 0, . . . , N,

where in computer bits True ≡ 1 and False ≡ 0, which is identical to the
heaviside step function. This approach fails, because fsolve is not able to deal
with these boolean expressions, since its derivative cannot be approximated. As
is visible from the next example.

Experiment 7.2: Consider the same experiment as in Experiment 7.1, where
we assume αmax = 1. But with a non-smooth Hamiltonian programmed using
boolean expressions. The computations reported ’RuntimeWarning: The iter-
ation is not making good progress, as measured by the improvement from the
last five Jacobian evaluations’. In other words the solution did not improve for
5 iterations, concluding that a root (x, λ) is not found. The results are visible
in Figure 7.3. Clearly, x(t) is not the correct evolution of the species, since
the trajectory of x(t) from T = 0.9 (the moment when there is no control ap-
plied) onward is very odd. This behaviour occurs around λ = −1, exactly where
c+ λ = 0.

Figure 7.3: The non-optimal control solution calculated via the non-smooth Hamiltonian
of Section 6.2.2, which did not converge. Parameters: r = 1, x0 = 0.50,K = 0.75 and
T = 4, c = 1, C = 4.

Regularized Hamiltonian

In case of the regularization we need to implement an algorithm that solves
the problem for different δ’s recursively. Consider an n-species problem, with
n different regularization functions, sδ1 , . . . , sδn , where δi is the regularization
coefficient for species i. Then we can set a threshold, δmin,i, for each regular-
ization. For convenience we set all threshold to be the same. Beforehand we
set a factor for dividing the δ’s. To this extent set ρ = 2. Then we apply the
algorithm:
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Algorithm 6 Solving an n Species Model Recursively

guess ← GenerateNonControlledSolution(x0, N,∆t)
solution ← fsolve(SymplecticEuler, guess)
j ← 0
while maxi δi > δmin do

δjmod(n) ← δjmod(n)/ρ
solution ← fsolve(SymplecticEuler, solution)
j+ = 1

return solution

The only difference in the SymplecticEulermethod is thatHδ
x := (Hδ1

x1
, . . . ,Hδn

xn
)

and Hδ
λ are used instead of Hx and Hλ, respectively. Finally, we would like to

point out that the optimal control is computed through

αi = αmax,i s
δ
i (ci + λi ∗ xi), i = 1, . . . , n.

Some remarks on the δ’s

• The term jmod(n) is division modulo n. Division where only the remain-
der is left, i.e. jmod(n) = r where j = qn + r : q ∈ N. Modulo division
makes sure that at every iteration another parameter is shrunken. The
algorithm can only terminate if for each species, the parameter for regu-
larization is shrunk sufficiently, i.e. ∀i : δi < δmin.

• Note that if each regularization has a different threshold the algorithm
would look a lot messier, since we should only shrink a δ that is higher
than the threshold, and skip the other ones.

• Some argumentation of the procedure is insightful. It is possible to model
every regularization with the same regularization parameter δ. This would
speed up the procedure a lot.

• Conversely, a lot of iterations only changing a shrinking δi per iteration
would lead to more stable results. Consider a case where there are 10
species, then we can either shrink one delta or shrink all 10 δ’s. Every
iteration would yield a slightly different results instead of one big change,
which might lead the algorithm from converging to the wrong solution.

Continuing onto an experiment.

Experiment 7.3: Consider the same experiment as in Experiment 7.2, but
with the regularized derivatives of Equation 6.2. We start with δ = 100 and
decrease it to δmin = 10−10.
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Figure 7.4: The optimal control solution calculated via the regularized Hamiltonian of
Section 6.2.3 for which we employed Alogorithm 6. It corresponds to the the non controlled
solution (left plot) of Figure 7.2. Parameters: r = 1, x0 = 0.50,K = 0.75 and T = 4, c =
1, C = 4.

It is interesting to note that in Experiment 7.3 there is a period where the
optimal control strategy is to fish at half the maximal rate. At first sight it may
seem odd that such controls are even possible. But one needs to consider that
the choice of optimal control functions is not restrictive, even more so if a non-
smooth Hamiltonian is allowed. The choice of control at every discretization
point is a number in [0, αmax]. One could think of a period where α = 0.5 as a
function which switches between 1 and 0 continuously. Hence, making α(t) = a,
possible at any point in time, ∀a ∈ [0, αmax].

Long Time Horizon

Solving an optimal control problem on a long time horizon could lead to prob-
lems. Firstly, a long time horizon needs a large number of time points increasing
the computation time. Secondly, the initial guess plays an important role in con-
vergence. We initiate fsolve with a guess based on the non-controlled solution,
but a non-controlled solution looks very different from a controlled solution.
Therefore, it would be useful first solve a short time horizon problem, get an
optimal solution, append it a little by a non controlled trajectory and use that
as a next guess for the slightly longer time horizon. To this extent we will use
the following algorithm.

Algorithm 7 Long Time Horizon Iteration
N = N0

guess ← GenerateNonControlledSolution(x0, N,∆t)
solution ← fsolve(SymplecticEuler, guess)
while N ≤ Nmax do

appendage ← GenerateNonControlledSolution(xN , dN,∆t)
guess ← append(solution, appendage)
N+ = dN
solution ← fsolve(SymplecticEuler, guess)

return solution

Here xN is the last state of the trajectory, which is used as an initial condition
from which the non controlled solution propagates N time steps. This algorithm
is for the smooth-Hamiltonian models. The only difference using it for the reg-
ularized hamiltonians would be to add the recursive procedure of Algorithm 6
instead of fsolve.
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7.3 Programming Implementation

A lot of time and effort is spent on the programming and implementation of
the above specified numerical implementation. For reference we will shortly
elaborate on the approach used. The full code can be found on Github.

7.3.1 OOP
In approaching a programming project of this size it is usually wise to think
ahead how to structure the program. This alleviates a lot of the stress, error
correcting and debugging later on. To approach it in a structured way, one can
use Object Oriented Programming (OOP). OOP is a paradigm in which you
write programs structured around classes of different objects. A class can be
seen as a blue print for the object - which is an instance of a class. Classes
can have subclasses which have similar structures. The ’parent’ of a subclass
is called the superclass. To keep it simple we will be talking about objects
(of classes) mostly. An object can have different attributes and methods (or
functions).

Example 3: Consider you want to built a computer game which involves
training a (virtual) dog and teaching it tricks. Then one can think of the ’dog’
as being a class, and ’golden retriever’ (Golden_Retriever) is a subclass of
Dog. All dogs have four legs (attribute) and they all bark (method), denoted
bark(). Therefore we would define those in the class Dog. Additionally we
will define an attribute name, which will be empty until we ’create’ (initiate) a
Dog(name)-object. Via what is called inheritance, the Golden_Retriever-class
will also have a name, four legs and be able to bark. Since all golden retrievers
are dogs, but not all dogs are golden retrievers, you can benefit from making
this distinction. A golden retriever is able to learn tricks, but not all dogs can.
So it would make sense to give the Golden_Retriever ’trick’-methods like, e.g.
sit, fetch and spin. Since a dog needs to learn a trick to do it, we would have
boolean values, like can_sit, can_fetch and can_spin, which will be False.
All the above is class-structure; the blue-prints.
We can initiate an object of the class Golden_Retriever(name), by giving it a
name, say: Buttercup. After some training Buttercup learns ’sit’, which changes
the boolean can_sit to True and then the Buttercup-object can use the method
sit().

The concept of inheritance is driven by logic. It makes programming complex
things substantially more convenient, a lot less error-prone and easier to debug.
However, it takes some practice to learn how to program using OOP.

Program Class-structure

To get an idea of how we tackled the presented numerical setup an overview of
the OOP-structure is given in Figure 7.5 and 7.6. The self variable in every
method is related to the python code and is not important.2 Two groups of
classes are presented. The first FishPool, which represents the fish population,
for one an two species. Attributes of these objects are, e.g. r, k and mij .

2It describes that the method, is a method of the object. Methods of classes are also
possible.
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Methods are, e.g., functions like the logistic equation or being able to plot ODE
solutions.

Figure 7.5: A schematic overview of the user-defined Classes for the one and two species
models. Blue dots indicate Classes, red dots indicate methods and yellow dots attributes. The
arrows relate to inheritance, where the Class the arrow points at is the parent of the subclass.

Secondly, we have an OptimalControl ’package’, which has classes related to
optimal control. An Optimal Control problem is a general class. By initializing
it with a FishPool we turn it into a FishingProblem. All the main computation
is done inside these classes and subclasses, like solve (from FishingProblem).
The smooth hamiltonian-cases use this method to solve the Fishing Problem for
certain initial conditions, e.g., x0. Or in case of the regularized Hamiltonian it
uses the method solveRecursively(), which makes use of the method solve()
(from the superclass) to solve for different δ (until δ < δmin). Furthermore, the
superclass defines methods like Hx, Hλ used in the Symplectic Euler scheme.
This can be done by noting the similarity of Equation 6.1 and 6.2 for a single
species, e.g., and then defining distinct methods for computing the optimal α
(in the subclasses).
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Figure 7.6: A schematic overview of two user-defined Classes related to the Optimal Control
Problem, where the input is a Object (from the class) of FishPools (Figure 7.5). Blue dots
indicate Classes, red dots indicate methods and yellow dots attributes. The arrows relate to
inheritance, where the Class the arrow points at is the parent of the subclass.

Lastly, we point out two classes, which are not connected by inheritance,
but by embedment. The Solution1D is initiated with x1:N , λ1:N , α1:N and a
timeline 0 = t0, . . . , tN = T . We elaborate on one method, passY(), which
passes

Y = (x1, λ1, . . . , xN , λN ).

The Solution2D-object is initiated with two Solution1D-objects, for species 1
and 2. And it also has a passY() method, denoted Solution2D.passY(), which
uses the Solution1D.passY() methods of both to generate

Y = (Y1, Y2),

where Yi is the output of passY() for species i.
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8 | Results
After a simple explanation on how the whole set-up is implemented, we set
out several results for different experiments. Each experiment considers a par-
ticular model. The numbering of figures corresponds with the numbering of
experiments. Due to time constraints no worthy results have been computed for
the n-species models. Every plot is titled with the size of their discretization,
N , and the functional value u, computed using (4.3). We will therefore omit
those details from the text.

8.1 Comparison

Each model can have several solutions, which are not necessarily optimal. A
solution consists of a triplet (x̄, λ̄, ᾱ) and a functional value v̄(x̄,∆t), where
x̄ = (x0, . . . ,xN ) with xi ∈ Rn the state (of n species) at time point ti. We
point out some additional remarks.

Comparison of Solutions

Firstly, comparison between solutions of the same model is relatively straight-
forward. A solution a is ’better’, or more optimal, than another other solution
b if the value of that functional is lower, i.e. if ūa ≤ ūb. Secondly, a solution
is more sustainable than another solution if the value of g(x(T )) is lower, i.e.
0 ≤ g(xNa ) ≤ g(xNb ).

Comparison of Models

Comparison between models is a lot more involved. If two models have the same
functional (objective function) they can be compared, in the sense, that their
solutions can be better (or worse).
Conversely, if the functional of two models are different in either the running
cost or the terminal costs, then we cannot claim one solution is better based on
the value of both functionals. However, we can still compare two solutions (of
two different models) in the sense sustainability.
Usually, if two models have the same running costs but different terminal costs,
then the solution with the heavier weighted terminal costs will be more sustain-
able then the other, yet (probably) worse than the other solution. For single
species models this is trivial, but for two species it is not.

Example 4: Consider two different species, with initial population (x0, y0) =
(10, 50). For two solutions their end-time populations are

(xT , yT ) = (13, 51) and (11, 53).

This makes the differences (3, 1) and (1, 3), but we cannot directly say which is
more sustainable. It is like comparing apples and oranges. Maybe one species
is a lot bigger than the other, a lot of those species would mean more biomass,
but this is not (directly) a measure for sustainability. What is better for the
planet is best left to the biologist, we only wish to address the complexness of
comparison.
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Lastly, if two models have different running costs then we can not compare
the solutions since they are optimized for different situations. Alas, we cannot
compare the solutions of a smooth Hamiltonian-model with its corresponding
non-smooth (regularized) Hamiltonian-model, in the sense of optimality.

8.2 Single Species

We first start with the single species models, for details see Section 6.2 and its
implementation Section 7.2.2.

8.2.1 Smooth Hamiltonian
In this first experiment we will vary only the terminal cost, to see how the
optimal control is affected.

Experiment 8.1 (Varying Terminal Costs 1): Consider 7.1, but with C = 1,
C = 4 and C = 10 instead. The results are summarized in Figure 8.1, where
the left, middle and right correspond to C = 1, 4 and 10, respectively. The
functional values for all three models are very close and the trajectory xt changes
accordingly.

Figure 8.1: Optimal control solution calculated via the smooth Hamiltonian of Section 6.2.1
for three different weights (C) of the terminal costs. Parameters: r = 1, x0 = 0.50,K = 0.75
and T = 4, c = 1, C = 1, 4, 10.

Lastly, we investigate the model for long time horizons:
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Figure 8.2: Optimal control solution calculated via the smooth Hamiltonian of Section
6.2.1 for three different time horizons. Parameters: r = 1, x0 = 0.50,K = 0.75 and T =
5, 10, 15 , c = 1, C = 1.

Experiment 8.2 (Long Time Horizon 1): Consider a single species model
with r = 1, k = 1, x0 = 0.5. and optimal control parameters T = 5, 10, 15, c =
1, C = 1. The results are in Figure 8.2, where the upper-left is the non-controlled
evolution. For long time horizon, the solution moves to a steady state for the
fish population, stabilizing it until the end time comes close.

All in all the smooth control seems to work quite well: it can fish in such a
way that it forces the optimal trajectory closer to the initial population.

Figure 8.3: Optimal control solution calculated via the regularized Hamiltonian of Section
6.2.3, for different δ. The final solution is more clearly visible in Figure 8.4. Parameters:
r = 1, x0 = 0.50,K = 0.75 and T = 4, c = 1, C = 4.
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8.2.2 Regularized Hamiltonian
For details on the regularized method see Section 6.2.3 and its implementation
7.2.2. We set δ = 100 and δmin = 10−14. To get an idea how the solution
changes for different δ we set up the following experiment:

Experiment 8.3 (Recursive Solutions): Consider Experiment 7.3, but with
C = 1. In Figure 8.3 various solutions for different regularizations are visible -
each iteration the solution changes a little forcing the solution into a non-smooth
form. The final form is more clearly visible in the top of Figure 8.4.

Next we varificate, that the regularized model is able to adjust to a different
weight (C) of the terminal costs. This is done similar to Experiment 8.1.

Figure 8.4: Optimal control solutions calculated via the regularized Hamiltonian of Section
6.2.3, for different C. Parameters: r = 1, x0 = 0.50,K = 0.75 and T = 4, c = 1, C = 1, 4, 10.

Experiment 8.4 (Varying Terminal Costs 2): Consider the same situation
as in 7.3. The results can be seen in Figure 8.4, where the top, left, right
corresponds to C = 1, 4 and 10, respectively. Again the functional values for all
three models and the state trajectories change accordingly. Additionally, note
that in all three models the optimal state trajectory is in equilibrium, for an
extended period of time, as is the optimal control.

By comparing Experiment 8.1 and 8.4 we draw three conclusions.

• Firstly, the optimal control trajectory of regularized Hamiltonian changes
more drastically, whereas the former increases more rapidly in the end if
C gets smaller.
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• Secondly, both models always produce terminal conditions which are lower
than the initial population. It is rewarding to let the fish population de-
crease and stop fishing near the end-time to let the population recuperate.
But for such a trajectory the end condition will always be less than the
initial condition, i.e. xT < x0. Otherwise the optimal control could have
kept fishing because the terminal cost does not distinguish between more
or less than the initial population.

• Thirdly, the regularized Hamiltonian shows extended periods where both
state is in an equilibrium solution, due to the optimal control being con-
stant. Conversely, the smooth Hamiltonian does not show such a stabiliz-
ing behaviour between the state and the control in a short time horizon.

In the third experiment we will extend the time horizon to see how the optimal
control adjusts to this change.

Figure 8.5: Optimal control solutions calculated via the regularized Hamiltonian of Section
6.2.3, for different (short) time horizons, T = 1, 1.5, 2.5 and 3.5. Parameters: r = 1, x0 =
0.50,K = 0.75 and c = 1, C = 4.

Experiment 8.5 (Short Time Horizon): Consider a single species model with
r = 1, k = 1, αmax = 1, x0 = 0.4 and optimal control parameters c = 1, C = 10,
we vary

T = 1, 1.5, 2.5 and 3.5.

The results are in Figure 8.5, from which it is clear that all the optimal controls
aim for the same steady state. The longer the time horizon the longer the
control keeps the state trajectory in steady state. Once the end time comes
close the control forces the trajectory back to a lower condition. If we set
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C < 10 then the state trajectory would have ended closer to the initial solution
and the steady state would be maintained for a longer duration. Interestingly
the optimal control stabilizes for short time periods.

Next we propose an experiment for long time horizons identical to the situ-
ation in Experiment 7.3.

Figure 8.6: Optimal control solutions calculated via the regularized Hamiltonian of Section
6.2.3, for different (short) time horizons, T = 5, 10 and 15. Parameters: r = 1, x0 = 0.50,K =
0.75 and c = 1, C = 4.

Experiment 8.6 (Long Time Horizon 2): Consider Experiment 7.3 but with
regularized Hamiltonians. The results are visible in Figure 8.6. The non-
controlled solution and optimal control solutions using the smooth Hamiltonian
is visible in Figure 8.2. Clearly the two steady state solutions do not align.

Note that in this last experiment C = 1. If C > 1 then the end-time pop-
ulation would be closer to the initial population. Thus from both Experiment
8.4 and 8.6 we can conclude that setting C = 1 is not restrictive and would not
change the steady state solution. In other words, the optimal control is only
dependent on the penalization of the terminal cost, once the end-time is close.
This fact also holds for the smooth Hamiltonian case, but is less visible.
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Figure 8.7: Plots showing the dependence of the functional value v̄ on the regularization
parameter δ. Values are based on Experiment 7.3, but for different time horizons T = 4, . . . , 10.
Left is an enlarged plot of the case T = 4.

Finally, we will quantitatively compare how the δ parameter influences the
functional value v̄.

Experiment 8.7 (δ vs v̄): We consider the same situation as Experiment 7.1
and vary the time horizon, from T = 4, . . . , 10. The results are visible in Figure
8.7. On the left plot we zoomed in on the case T = 4. And on the right all T ’s
are visible.

8.2.3 Conclusion
By comparing all previous experiments, we conclude that both approaches gen-
erate appropriate optimal controls. For long time horizon they both create
steady state trajectories, because the control stabilizes the state trajectory. In
the steady state the control is also constant. Note that the steady states of
both approaches differs. But from a sustainability perspective they are both
appropriate, since extending the steady state for larger time horizons would
yield optimal controls as well.
Conversely, the results for short time horizons differ. The regularized Hamil-
tonian approach is able to stabilizes those systems quickly. But, the smooth
Hamiltonian is not able to stabilize those systems, due to being less flexible, in
the sense that the optimal control trajectory cannot change drastically (become
non-smooth).

8.3 Two Competing Species

Moving onto the two species models we use the models explained in Section
6.3. In this situation competitive coexistence and competitive exclusion plays
an important role, for details we refer to Section 5.2.1. We will therefore treat
both results separately. We will discuss one-dimensional and two-dimensional
control in parallel. To be able to compare both results we need to set q = (1, 1),
since then the functionals coincide.
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8.3.1 Competitive Coexistence
To get an idea what both controls will look like for a system with species that
coexist.

Smooth Hamiltonian

To get an idea what both controls will look like for the same dynamical system
we use similar specifications for single control and double control with a smooth
Hamiltonian using two different experiments.

Figure 8.8: Optimal control solution calculated via the smooth Hamiltonian of Section 6.3
for the one-dimensional and two-dimensional control situations. On the top the related non-
controlled solution is visible. Parameters: r = (1, 1), x0 = (0.5, 0.55),K = (1, 0.75),m12 =
0.3,m21 = 0.6 and T = 10, c = (1, 1), C = (10, 10).

Experiment 8.8 (Competitive Coexistence 1): Consider a two species model
with parameters

r = (1, 1), k = (1, 0.75),M =

(
1 0.3

0.6 1

)
, x0 = (0.5, 0.55).

The interaction between the species is not significant and both species coexist.
Let the optimal control parameters be T = 8, c = (1, 1) and C = (10, 10), which
coincides with T . The results are visible in Figure 8.8. The top, left, right fig-
ures are the non-controlled solution, single control and double control solutions,
respectively. Both approaches seem to work to some extent. Obviously, is it
more difficult for the single control to balance both end time populations with
the initial population. A trade-off, favouring x above y, is visible. The double
control is clearly more appropriate from a sustainability perspective.
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Figure 8.9: Optimal control solution calculated via the regularized Hamiltonian of Section
6.3 for the one-dimensional and two-dimensional control situations.The related non-controlled
solution is visible in Figure 8.8. The bottom row corresponds a solution with a lower threshold.
Parameters: r = (1, 1), x0 = (0.5, 0.55),K = (1, 0.75),m12 = 0.3,m21 = 0.6 and T = 10, c =
(1, 1), C = (10, 10).

Regularized Hamiltonian

Next, we do the same experiment but with the regularized Hamiltonian ap-
proach:

Experiment 8.9 (Competitive Coexistence 2): Consider Experiment 8.8 but
with the non-smooth Hamiltonian. Let αmax = 1 and

δmin = 10−4 and 10−8,

for the single control model and αmax = (1, 1),

δmin = (10−4, 10−4) and (10−8, 10−8),

for the double control model. The results are visible in Figure 8.9, where the
bottom row is the smallest threshold. The left and right figures correspond to
single and double controls, respectively. A smaller threshold forces the solu-
tions to be more piecewise linear, whereas the larger threshold allows for more
smooth transitions (considering the control trajectories). Interestingly in the
double control case the control forces a steady state on both species, which
clearly is desirable. Such a steady state could be extrapolated to form optimal
controls for larger time horizons. All states appear similar, even for ’different’
optimal controls. From the functional values we conclude that the resulting
state trajectories are almost identical. Note that we used N = 500 in the last
plot, since the algorithm did not converge with N = 400. The number of time
points was insufficient for the large time horizon.
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If we compare Experiment 8.8 with 8.9, we see that for the single control
the resulting state trajectory is relatively similar, even thought the controls are
not similar.1

8.3.2 Competitive Exclusion
Moving on to competitive exclusion, which is a more involved situation. One
species is bound to die out. From a modelling perspective it is interesting to see
how the model behaves on for these conditions. We will discuss one-dimensional
and two-dimensional control in parallel. To compare we again set q = (1, 1).

Smooth Hamiltonian

We do an experiment similar Experiment 8.8 from the previous section.

Figure 8.10: Optimal control solution calculated via the smooth Hamiltonian of Section 6.3
for the one-dimensional and two-dimensional control situations. On the top the related non-
controlled solution is visible. Parameters: r = (1, 1), x0 = (0.5, 0.55),K = (1, 0.75),m12 =
3,m21 = 2 and T = 10, c = (1, 1), C = (10, 10).

Experiment 8.10 (Competitive Exclusion 1): Consider Experiment 8.8 but
with

r = (0.5, 1),M =

(
1 3
2 1

)
,

the rest of the parameters are identical.The results are visible in Figure 8.10.
The top, left and right figures are the non-controlled solution, single control

1This comparison is justified since the resulting state trajectory is dependent on the controls
only.
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and double control solutions, respectively. The results are undesirable, since for
both cases the optimal control is negative for a substantial part in the end. This
clearly is not an acceptable fishing strategy.

One could try to produce appropriate controls based on the control in Ex-
periment 8.10 by afterwards setting α̃ = (α)+, i.e. α̃i = (αi)

+ for i = 1, 2.
However, this would also affect the state trajectory, hence, changing the whole
solution. But we cannot afterwards be sure that we are in an optimal control
any-more. This clearly is far from ideal.

Regularized Hamiltonian

Next, we do the same experiment but with the regularized Hamiltonian ap-
proach.

Figure 8.11: Optimal control solution calculated via the regularized Hamiltonian of Section
6.3 for the one-dimensional and two-dimensional control situations.The related non-controlled
solution is visible in Figure 8.11. The bottom row corresponds a solution with a lower
threshold. Parameters: r = (1, 1), x0 = (0.5, 0.55),K = (1, 0.75),m12 = 3,m21 = 2 and
T = 10, c = (1, 1), C = (10, 10).

Experiment 8.11 (Competitive Exclusion 2): Consider Experiment 8.10 but
with a regularized Hamiltonian. Let αmax = 1 and

δmin = 10−4 and 10−8,

for the single control model and αmax = (1, 1),

δmin = (10−4, 10−4) and (10−8, 10−8),
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for the double control model. The results are visible in Figure 8.11, where
the bottom row is the lowest threshold. The left and right figures correspond
to single and double controls, respectively. Again, the threshold plays a role
in how smooth the optimal control is and the resulting state trajectories are
almost identical. Note that both the single control and double control are able
to deal with competitive extinction, to some degree. One could suggest that
the x-control (on the right) is inappropriate, but remembering it means fishing
intensity, and is multiplied by xtwhich is zero, this makes sense.

8.3.3 Conclusion
We conclude that in the two species models the smooth Hamiltonian is inade-
quate to find acceptable optimal controls. It makes it possible to boost the state
trajectory via negative controls, i.e. increase the population. This happens at
least in cases where competitive exclusion plays a role. Furthermore, the one-
dimensional control is less flexible than the two-dimensional control, in the sense
that it makes the dynamical system less controllable. The regularized Hamilto-
nian with two-dimensional control produces state trajectories that for most of
the duration are in steady state, similar to the steady states in Experiment 8.5
and 8.6.

n Species

Using these results we could predict what the conclusions for the n-species mod-
els will be. However, we have to be careful projecting these conclusion drawn
for 2 species, onto the n-species. For the single species the smooth Hamiltonian
is adequate, but it has undesirable results in 2 species models. Having said
that we can safely assume the smooth Hamiltonian approach would break down
for n ≥ 2. It is also likely that the single control models will be inadequate,
consideration it only works to some extent in n = 2. It would be even harder
to balance more than two species with just a single control. With more species
competitive exclusion and competitive coexistence still place a role. Hence, in
the n-dimensional control regularized Hamiltonian approach we anticipate sim-
ilar behaviour for both the competitive exclusion and competitive coexistence.
Thus, the model will (probably) behave in the same way for competitive co-
existence, that is produce a state trajectory that is constant for each of the
n-species. And the competitive exclusion model for which k < n species survive
will have k species in constant steady state, each controlled by their related con-
trol function. Additionally, the population of n− k species dies will be equal to
zero, even if the control functions are not identically zero, making the controls
irrelevant.

8.4 Long Time Horizon

It is worthy to note that all the above results are computed by direct imple-
mentation of the algorithms. From the previous experiments it is clear that
the non-controlled solutions and the controlled solutions are not similar, in
the sense that the trajectories differ substantially. However, we use this non-
controlled solution as a first guess in the direct implementation. But this may
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not be ideal, and as described in detail in Section 7.2.2, it may lead to problems
with convergence. It may happen that solving directly leads to worse optimal
control. Hence, we devised Algorithm 7 to solve a problem with a long hori-
zon. To check if the result differs we do an experiment where we apply the
LongTimeHorizon(T0, N0, Nmax, dN) to the regularized Hamiltonian approach
with two-dimensional controls from Experiment 8.9 and 8.9.

Experiment 8.12 (Long Time Horizon vs Direct Implementation): Con-
sider Experiment 8.9 and 8.9 in a regularized Hamiltonian setting with two-
dimensional controls. For the LongTimeHorizon-method we set

T0 = 2.5 , N0 = 125 , Nmax = 500 , dN = 25.

Then ∆t = 2.5
125 = 0.02, T = Nmax ∗ ∆t = 10.0 and the algorithm will take 15

steps of size dN . Additionally, we speeded up the solveRecursively-method,
by shrinking δ1 and δ2 at each iteration (instead of seperately). The results are
visible in Figure 8.12. By comparison of functional values we can see the left
figure is actually quite close to the solution computed via direct implementation.
The same cannot be said for the right figure. There the direct implementation
clearly produced a control which is better, in the sense of optimality.

Figure 8.12: Two plots computed with LongTimeHorizon(T0, N0, Nmax, dN)-method. The
left and right plot correspond to two-dimensional regularized Hamiltonian approach (with
the lowest threshold) in Experiment 8.9 and 8.11, respectively. Parameters: T0 = 2.5 , N0 =
125 , Nmax = 500 , dN = 25.

Technically, based on Experiment 8.12 it is very difficult to draw conclu-
sions. As seen in previous examples optimal controls that are different still
produce similar functional values, making it hard to justify that the method
LongTimeHorizon does not work. Optimal control problems in general are diffi-
cult, but regularizing and calculating it numerically adds a lot of extra layers of
complexity. Maybe the algorithm did not converge in this single case, or, maybe
there are not enough time points to draw actual conclusions. Perhaps we should
not have shrunken both parameter at the same time. But then the algorithm
would take a lot longer to compute. To oppose this disconcerting note, we draw
some relevant conclusions:

• For the competitive coexistence case, we know that we found the same
optimal control, in a way, justifying that it is a suitable candidate for an
optimal fish harvesting strategy.
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• From a theoretical perspective both approaches should work, provided
that the discretization is large enough. Clearly we can always double the
number of time points and see if this improves our optimal control.

• For the competitive exclusion case, we see that the optimal control in both
approaches lead to a steady state for the y species, and that the control
calculated with the direct approach is more optimal. Therefore we can
base a suitable candidate for a fishing strategy of species y as follows

αt =


1 if 0 ≤ t < 0.9

0 if 0.9 ≤ t ≤ 2.1

0.4 if 2.1 < t ≤ 10

.

The hope is that we convey in some way the complexity of addressing practical
problems in an optimal control framework and the extensiveness of optimal
control solutions that can come out of it. The question which optimal control
strategy is ’most’ optimal is in some-ways irrelevant, instead, what matters is
that we can actually find suitable strategies, which suit the same purpose.

8.5 Summary of Results

For reference we give a quick summary of the results drawing some additional
conclusions. Starting with the single species models, the smooth Hamiltonian
approach works quite well for the single species models, it is even able to stabilize
the state trajectory for long time periods. Secondly, the regularized Hamiltonian
approach is able to stabilize the resulting state trajectory in short and long time
horizons. Lastly, both approaches suffer from penalizing trajectories ending
above the initial population as much as below. This is not ideal and can be
considered unsustainable.
When there are two species involved the smooth Hamiltonian approach starts
to break down. It opts for negative fishing intensities, which is undesirable.
The regularized Hamiltonian approach does not suffer from this disadvantage.
Actually, we prematurely excluded the possibility by defining the control set to
be

A = [0, αmax],

which leads to the non-smoothness in the first place.
Additionally, we conclude that the two-dimensional control is the preferred ap-
proach, since it is better able to control the resulting state trajectories. However,
the one-dimensional control (with regularized Hamiltonian) remains an adequate
model in case we assume that only one-dimensional controls are allowed.
Lastly, the long time horizon and direct implementation both produce the same
results, in the case of competitive coexistence. Hence, we conclude that the
optimal control computed via the direct approach, is a suitable candidate for
being the optimal fishing strategy for a dynamical system where two fish species
live in coexistence.
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9 | Conclusion
In this thesis we have presented various ways of formulating an optimal control
problem for generating (optimal) fish harvesting strategies, for a different num-
ber of species. After (mathematically) characterizing all the different models,
they were analyzed and compared. From the comparisons we also draw (pre-
liminary) conclusions on how to generate sustainable fishing strategies.

Mathematically, the models can be categorized into two groups. A group,
which formulates a smooth (optimal control) Hamiltonian opposed to another
group, which formulates a non-smooth Hamiltonian. The former is analytically
tractable and results in a well-posed optimal control problem with a concave
Hamiltonian, which is desirable, since it produces readily computable optimal
control strategies. The latter is derived with the same ease, but results in
a non-smooth Hamiltonian with jump-discontinuous partial derivatives. The
derivatives are necessary for setting up the symplectic Euler scheme. Therefore,
the use of a regularization for the discontinuous part of the partial derivatives
has to be implemented. The derivatives are regularized separately, but in such
a way, that it is equivalent to regularizing the Hamiltonian directly. This is
necessary to obtain optimal control solutions of the regularized problem, which
are also optimal control solutions for the non-regularized problem.

From a fish harvesting perspective, the non-smooth Hamiltonian related to a
running cost is clearly defined. It concerns maximizing of profit. Conversely, the
smooth Hamiltonian has a term which is not related to optimal harvesting. It
can in some way be related to the cost of fishing, but this is partly an arbitrary
choice. It is added to make the resulting Hamiltonian concave, and hence, more
analytically tractable. However, it turned out that this additional term is (too)
restrictive and in some cases produces optimal controls that are partly negative,
which is undesirable from a fish harvesting perspective.
The non-smooth Hamiltonian is therefore the preferred choice, since it is able
to stabilize the state trajectories for more than one species. This actually leads
to constant steady states, which are independent of the end time. However,
using the regularized version its is very hard to know if the optimal control,
that is produced by numerical scheme is actually optimal. Fishing is a practical
problem. Usually for more practically oriented optimal control problems it is
satisfactory that a candidate control solution satisfies the Pontryagin’s Maxi-
mum Principle, since this implies local optimality.

The mathematical analysis even gives insight in finding fishing strategies that
can be considered sustainable. Firstly, in the non-smooth Hamiltonian models
the optimal state & control solution will after some time settle on a steady state
for both trajectories. This steady state is kept for an extended period of time.
This suggests that one can stabilize the fish population by fishing the optimal
amount over an extended period of time.
Secondly, by adjusting the weight of the terminal costs we can force the control
solution’s state trajectory to end closer to the initial population ; or further
away. A disadvantage of the proposed terminal cost is that it penalizes a larger
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end-time population, than the initial population, the same way as an end-time
population which is lower, than the original population. Therefore, we propose
further investigation into different terminal cost functions that penalize ending
conditions differently, which could in turn lead to more sustainable optimal har-
vesting strategies.

In conclusion, addressing the problem of fish harvesting using optimal control
theory is appropriate. The formulation of a non-smooth Hamiltonian creates
a tractable problem. Specifically, in the case of fish harvesting when controls
only affect a single species, the derivatives of the Hamiltonian are separable.
Furthermore, optimal control theory is sufficiently flexible to adjust the optimal
control to adhere to sustainability desires.
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A | Appendix
A.1 Derivation of the Necessary Conditions for

the Lagrange Multiplier Method

In this section we will formulate necessary conditions for Equation 3.3. We will
(loosely) follow the derivation presented in [3]. For readability we will omit the
t-dependence if functions, like x,λ or α are elements of another function, i.e.

f(x, α) := f(xt, αt).

Remember that a (local) minimizer is a stationary point. Thus an optimal
solution would necessarily satisfy the following system (note that we changed
the order)

∂λL(x, λ, α) = 0, (A.1)
∂xL(x, λ, α) = 0, (A.2)
∂αL(x, λ, α) = 0. (A.3)

Depending on the dimension these conditions can be either in one or multi-
ple dimensions. We will derive corollaries for each equation. Throughout this
section we will use the following theorem.

Theorem 6 (Fundamental Lemma of Calculus of Variation). If a function f is
continuous on an open interval (a,b) and satisfies the equality∫ b

a

f(t)h(t) dt = 0,

for all smooth functions h vanishing at the boundary of (a, b), then f is zero.1

Equation (A.1)

Since ∂λL(x, λ, α) = 0 we know

d

dε
L(x, λ+ εv, α)

∣∣∣
ε=0

= 0, ∀v(t).

Let λ̃t := λt + εvt be a small change in λ, then

0 = lim
ε→0

L(x, λ̃, α)− L(x, λ, α)

ε
,

= lim
ε→0

∫ T
0
εvs · (f(xs, αs)− x′s) ds

ε
,

=

∫ T

0

vs · (f(xs, αs)− x′s) ds

Hence,
x′t = f(xt, αt), ∀0 < t < T.

The latter consequence is justified by Theorem (6).
1Technically, the functions h should be compactly supported on (a, b), but this is beyond

the scope of this thesis, and usually vanishes suffices.
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Equation (A.2)

We will follow the same line of reasoning as above. To this extent let x̃t :=
xt + εut be a small change in x, then the derivative x′ also changes a little, i.e.
x̃′t = x′t + εu′t. First note by Taylor expansion that

g(x̃T ) = g(xT + εuT ) = g(xT ) + ε∇g(xT ) · uT +O(ε2),

L(x̃, λ, α) = L(x, λ, α) + ε (∂xL(x, λ, α) · ut) +O(ε2),

f(x̃, α) = f(x, a) + εJxf(x, α)us +O(ε2),

where Jxf(x, α) is the Jacobian, the matrix of partial derivatives of f w.r.t. x,
i.e. Jxf(x, α) = (∂xi

fj(x, α))ij . Combining everything leads to

L(x̃, λ, α)−L(x, λ, α) = ε

(
∇g(xT ) · uT +

∫ T

0

∂xL(x, α) · us + λs · (Jxf(x, α)us − u′s) dt

)
+O(ε2).

Hence, ∂xL(x, λ, α) = 0 leads to

0 =
d

dε
L(x̃, λ, α)

∣∣∣
ε=0

= ∇g(xT ) · uT +

∫ T

0

∂xL(x, α) · us + λs · (Jxf(x, α)us − u′s) dt

= ∇g(xT ) · uT +

∫ T

0

(∂xL(x, α) · us + Jxf(x, α)λs) · us − λs · u′s dt

= ∇g(xT ) · uT −
[
us · λs

]T
0

+

∫ T

0

(∂xL(x, α) + Jxf(x, α)λs + λ′s) · us dt

= (∇g(xT )− λT ) · uT +

∫ T

0

(∂xL(x, α) + Jxf(x, α)λs + λ′s) · us dt

In the third step integration by parts is used and in the fifth u0 = 0, since
x̃0 = x0 = x0. Concluding (by Theorem 6)

0 = ∂xL(x, α) + Jxf(x, α)λt + λ′t and 0 = ∇g(xT )− λT .

To see the latter, remember that this must hold for every uT , thus eliminating
the case that the terms would cancel each other out. Summarizing, (A.2) is
equivalent to the following system{

−λ′t = ∂x (L(x, α) + λt · f(x, α))

λT = ∇g(xT )
, (A.4)

which is known as the costate equation.

Equation (A.3)

Let α̃s := αs + εws be a small change in α, then

0 =
d

dε
L(x, λ, α̃)

∣∣∣
ε=0

=

∫ T

0

∂αL(x, α) · ws + λs · Jαf(x, α)ws dt

=

∫ T

0

(∂α (L(x, α) + λs · f(x, α))) · ws dt
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Then using Theorem 6

∂α (L(x, α) + λt · f(x, α)) = 0.

A.2 Derivation of the HJB-Equation

In this section we will derive the HJB equations from the value function defined
in 3.8. Again we will follow [3]. To this extent

v(x, t) : = inf
α:[t,t+τ ]→Rn

inf
α:[t+τ,T ]→Rn

{
g(xT ) +

∫ T

t

L(x, α) dt

∣∣∣∣∣xt = x

}

= inf
α:[t,t+τ ]→Rn

{
inf

α:[t+τ,T ]→Rn

{
g(xT ) +

∫ T

t+τ

L(x, α) dt

}
+

∫ t+τ

t

L(x, α) dt

}

= inf
α:[t,t+τ ]→Rn

{
v(x, t+ τ) +

∫ t+τ

t

L(x, α) dt

}
Hence, we can conclude by subtracting v(x, t) on both sides:

0 = inf
α:[t,t+τ ]→Rn

{
v, t+ τ)− v(x, t) +

∫ t+τ

t

L(x, α) dt

}
.

Consider the value function, but slightly evolved in time, i.e. t̃ = t + τ , then,
by Taylor expansion

v(x, t+ τ) = v(x, t) + τ(∂tv(x, t) + f(x, α) · ∂xv(x, t)) +O(τ2),

where where x′t = f(x, a). Then

0 = inf
α∈A

{
τ(∂tv(x, t) + f(x, α) · ∂xv(x, t)) +

∫ t+τ

t

L(x, α) dt
∣∣∣
τ=0

}
0 = inf

α∈A
{∂tv(x, t) + f(x, α) · ∂xv(x, t) + L(x, α)}

0 = ∂tv(x, t) + inf
α∈A
{L(x, α) + f(x, α) · ∂xv(x, t))} .

A word of note, in the above derivation we assume that the value function is
differentiable. However, this is not true in the general case. But since we only
touch upon the HJB equation, through the fact that for an optimal control the
HBJ equation is a sufficient condition, it will be treated as a footnote importance
our purpose.
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