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ABSTRACT

This report summarizes a multi-year research effort to
develop and validate a feedback algorithm for medium-range air-
to-air interceptions with realistic capture conditions,
compatible with the deployment of advanced guided weapons in a
future air combat scenario. In this report a review of previous
works as well as some new results are presented.

The proposed guidance algorithm is based on the application
of singular‘perturbation techniques. The algorithm consists of
two major elements. A fast converging iterative algorithm
provides a three-dimensional "reference flight trajectory” (RFT).
It is the solution of a "reduced-order" problem, in which the in-
terceptor velocity vector can be instantaneously oriented towards
the optimal direction. The RFT is tracked by using two feedback
control laws for steering the velocity vector in horizontal and
vertical planes.

The feedback approximation presented herein differs from
similar works reported in the open literature by covering all
phases of an air-to-air interception, includiné the terminal
"zoom" maneuver. Moreover, at each milestone of the reported
multi-year investigation the results obtained by simulating the
feedback control laws were compared with "exact" (open-loop) op-
timal solutions. This process allowed to introduce modifications
in the suboptimal control solution leading to a very satisfactory
(better than 0.5%) pay-off accuracy.

The exémples included in this report, featuring both previous
generation (F-4) as well as state-of-the-art (F-15) fighter
aircraft models, clearly demonstrate the structural robustness of
the feedback guidance laws.

The hierarchical structure of the algorithm, the explicit
feedback form of the control laws and the validated high ac-
curacy, make the algorithm a very attractive candidate for a
real-time implementation on board of a future interceptor

aircraft.
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I. INTRODUCTION

Interception of adversary aircraft with the objective to dis-
rupt a hostile mission has been a basic air-to~air task since
the very first years of air warfare. Not surprisingly, this task
has spurred a continuous research effort as a part of evaluating
air-to-air combat performance of fighter aircraft. The assumption
of a known adversary trajectory allows to formulate the intercep-
tion as a minimum-time optimal control problem. Simplified
analysis [1, 2] indicates that the optimal trajectory of the in-
terceptor has three distinct phases:

(i) an initial turn-climb-acceleration phase,

(ii) a steady-state cruise at maximum speed,




(iii) an end-game terminating with capture as determined by
the weapon of the interceptor.

Such a decomposition is valid only if the initial conditions of
the encounter allow the interceptor to reach its maximum speed
before the end-game is initiated, a condition generally satisfied
in long-range interceptions. For shorter ranges, phase (ii) dis-
appears and the initial and terminal parts of the trajectory are
merged together. The optimal control solution associated with
such a trajectory is generally obtained in an open-loop form by
Asolving a high dimensional nonlinear two-point-boundary-value
problem using some iterative algorithm. ?

For a real-time airborne application, as well as for a sys-
tematic performance assessment, a reasonably accurate feedback
approximation of the optimal control solution is more useful.
This challenge drew a considerable interest for investigations in
- the last decade. The first works [3, 4] were oriented towards
long-range interceptions of low flying targets with the require-
ment of point capture. Later extensions included medium-range
scenarios, characterized by the absence of the dash ségment [5],
validation by ground based pilot-in-the-loop simulations [6] and
some flight testing [7]. These last activities [6,7] provided an
encouraging proof of feasibility for such algorithms.
Unfortunately, however, the accuracy of the guidance algorithm
derived in [5] by applying singular perturbation methods, has
never been tested.

The objective of this Chapter is to summarize a multi-year
joint effort of the authors to develop and validate a feedback
algorithm for medium-range air-to-air interceptions with realis-
tic capture conditions compatible with the deployment of advanced
guided weapons in a future air combat. This effort was based,
similarly to [3-7], on a singular perturbation approach, but used
a different multiple time-scale model. Moreover, at each mile-

stone during the development of the algorithm, a special effort



was undertaken to compare the outcome of the feedback approxima-
tions to the optimal control solution. In the open literature
only a single similar study of limited scope [8].is known. In the
first phase, horizontal [9,10] and vertical [11,12] interceptions
were analyzed separately, leading to an enhanced insight into the
problems associated with each planar maneuver. The feedback
guidance law for a three-dimensional interception was then syn-
thesized based on a vectorial combination of the two-dimensional
controls and compared to the results of open-loop optimal control
solutions [13,14].

This Chapter includes a review of previous works [9-14], as
well as some new results and is organized as follows. In Section
II the detailed mathematical formulation of the problem is
presented and the formal optimal control solution is derived. In
Section III modeling considerations and the application of sin-
gular perturbation theory for approximating the optimal control
in feedback form are outlined. In Section IV the interception in
the horizontal plane is analyzed and a uniformly valid feedback
guidance law is derived. In section V the problems of the inter-
ception in a vertical plane are discussed and the synthesis of
the resulting feedback guidance law is presented. It is followed
in Section VI by the description of the problems involved in the
synthesis of a three-dimensional feedback control strategy and a
new numerical example, in which the simulated feedback approxima-
tion is compared with the open-loop optimal solution, using an
aircraft model representative of a state-of-the-art high-perfor-

mance fighter interceptor.

II. PROBLEM FORMULATION
A. MATHEMATICAL MODEL

The air-to-air interceptions analyzed in this chapter are
characterized by the following features:




(1)

(i1)

(1ii)

The adversary aircraft'(target) is assumed to fly at a

fixed altitude and direction with constant speed.

The initial distance of separation is large compared
with the turning radius of the interceptor, but not
large enough to allow the interceptor to reach its
maximum speed. This last statement defines the domain
of "medium-range" interceptions.

The interception terminates when the distance of
separation becomes equal to the effective firing range
of the interceptor weapon (assumed to be an air-to-air

missile).

In a Cartesian coordinate system, centered at the target (T)

and with the x-axis is aligned with its velocity vector, the

equations of relative motion (see Fig.1l for the definition of the

variables) are given by:

A
VcosY cosX - VT = Fx . x(t,) = x, (1)
VcosY sinx 2 Fy v Y(ty) = vy, (2)
i - . A
Ah = h = VsinY = Fh . Ah(t,) = h(t,) - hT = Ah, (3)

The dynamic model of the interceptor assumes a flat non-

rotating earth, point-mass approximation and thrust aligned with

the velocity vector. The corresponding equations of motion are:

g[(T-D)/W - sin7] & F, . V(ty) =, (4)
(8/V)[(L/W)cosp - cosv] 4 F, ./ T(t,) = 7, (5)
(8/VcosY) [ (L/W)siny] 4 Fy v X(t) = X, (6)



Fig. 1 Three-dimensional Interception Geometry.

The aerodynamic forces (lift and drag) and the maximum available

thrust are functions of speed and -altitude:

L = O.5p(h)V2$CL (7)
D = O.Sp(h)VZSCD (8)
T =T, (V) (9)

Based on the definition of the aerodynamic load factor:

n 4 (L/mw » (10)




and assuming a parabolic drag polar, the total drag force can be

expressed as:

D=D, + n2Di = D(h,V,n) , (11)

where the zero-lift drag and the induced drag in level flight

(n=1) are defined respectively by:

O.SpVZSCD (12)

DO

2Kw2/(pv25) , (13)

o
i

The non-dimensional coefficients CD and K are functions of Mach
0

number. In this mathematical model the controls are:
(i) The throttle parameter n constrained by:
0snsi1 (14)

(ii)  The bank angle p which determines the direction of the
lift force.

(iii) The aerodynamic load factor n defined by Eq.(10). It
is subject to two different constraints: a structural

limit which is effective at high speeds:

|n| s Doax (15)

and a limit imposed by the maximum lift coefficient:

2
In| s n (n,v) & 945%Y—§ c. (M) (16)

max

Quite often it is convenient to use as controls the horizon-

tal and vertical components of the load factor, defined by:



A .
p = 0 sinp (17)

o]
(]

e

n n cosp : ' (18)

v
The interceptor's trajectory has to be confined, as any other
maneuver, to the flight envelope of the aircraft, determined by

the following state constraints:
O<h . sShsh (19)

Vmin(h) SV ¢ vmax(h) (20)

B. OPTIMAL CONTROL FORMULATION

For the sake of a concise formulation let us define the state
vector of the three-dimensional interception problem as:

xT

4 (x, y. ah, V, T, X) (21)

The optimal control problem to be solved is to determine the
*

control vector Q*T A {(n , p*, n*) that brings the interceptor
" from a given set of initial conditions X(t,) to a terminal
manifold, - which depends on the effective weapon firing en-
velope, - in the shortest possible time, subject to the state and
control constraints. The performance index is therefore the final

time:

J=ldt =t, , (22)
Joe e e

defined by the terminai manifold:

te = arg { @[tf.ﬁ(t=tf)]= 0} (23)




The variational Hamiltonian of this problem is:

H=-1+A.X+ constraints = H(X, A, U) , (24)

where the costate vector A has to satisfy the adjoint equations:

A ):
and the corresponding transversality conditions:
- 3% ‘
A(tf) =V a_x- t=t ’ ) (26)l

f

where v is a Lagrange multiplier. .
According to the Maximum Principle the optimal controls have
to maximize the Hamiltonian:
*

U = arg max H(X, A, U) (27)
U

Moreover, since time does not appear explicitly in the equa-
tions and the final time is not specified:

*a

H H(g,A,g*)'= H|, =0 | (28)

te
This formulation requires to solve a nonlinear two-point-
boundary-value problem of 12 dimensions, resulting in K*(t).
A*(t) and consequently g*(t). A feedback approximation of the op-
timal control can be obtained if one can approximate the adjoint
variables by explicit functions of the state variables. One ap-
proach to carry out such an operation is the application of

singular perturbation theory, as outlined in the next section.



III. APPLICATION OF SINGULAR PERTUR-
BATION THEORY | |

A singular perturbed dynamic system is characterized by a
small parameter €, multiplying the time derivatives of some com-
ponents of the state vector. These components behave as "fast"
variables compared to the other part of the state vector. This
indicates that the mathematical structure of singularly perturbed
systems is always associated with the physical phenomenon of
time-scale separation. Singularly perturbed mathematical models
are frequently encountered in celestial mechanics, fluid
dynamics, physical chemistry etc. and have been subjects of
thorough investigations [15-19]. The basic approach to solve sin-
gular perturbation problems, formulated as initial value
problems, has been the method of Matched Asymptotic Expansions
[20, 21]. This method was also extended to deal with two-point
boundary-value problems and adapted to solve optimal control
problems as well [22-26]. .

If one sets in a singular perturbation problem € = 0, the
"fast" dynamics are neglected and the order of the dynamic system
is reduced. The solution of the "reduced-order" system 'may serve
as an approximation, though it cannot satisfy the initial and
terminal conditions imposed on the "fast" variables. This
deficiency is corrected by initial and terminal "boundary-layer"
solutions computed on a stretched time-scale. Expanding all vari-
ables in both the original and the boundary-layer problems in
asymptotic power series of e and matching the corresponding terms
lead to a uniformly valid "composite solution" of the problem.
Using only a finite number of terms of the expansions yields an
approximation. The optimal control solution approximated by this
method is obtained in an open-loop form. It was, however, found
[23, 27-28] that if the terminal constraints do not involve the
"fast" variables, the terminal "boundary-layer" may disappear and

in this case the optimal control approximation can be expressed




10

in'a feedback form. This result, which is very attractive for
real-time on-line applications, was recently confirmed [29] by
démonstrating that under certain conditions, the optimal feedback
control solution of a singularly perturbed system can be con-
structed, - by a recursive solution of the Hamilton-Jacobi-
Bellman equation, - as a single and uniformly valid expansion of
the parameter e.

The application of singular perturbation theory to optimize
aircraft trajectories is based on identifying the actual time-
scale separations between the state variables. In a linear time-
invariant system such time-scale separation can be expressed by
the ratio of the respective eigenvalues, which in some case is a
small parameter. An appropriate scaling transformation results in
multiplying the derivative of the "fast" variable by this small
parameter. In the strongly nonlinear problems encountered in
flight mechanics the identification of a small parameter as-
sociated with the observed time-scale separation is, unfor-
tunately, rather difficult. For this reason it was proposed [30]
to insert the singular perturbation parameter ¢ artificially by
multiplying the observed "fast" time derivatives. This approach,
called in some papers [9-14] a "forced singular perturbation"
technique (FSP), has been used in most aircraft performance op-
timization studies [3-14, 27]. In [28] it was formally
demonstrated that the zeroth-order feedback control approximation
of an FSP problem is identical to the solution of a similar clas-
sical SP problem obtained by a scaling transformation. Moreover,
this result was later extended to higher order corrections
[31,10].

The application of the FSP technique for obtaining a zeroth-
order feedback control approximation can be summarized by the
following steps:

1. Order the state variables according to their relative rate

of change (the faster following the slower). This first
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step is of major importance and the key to a satisfactory

result.

."Transform the set of original state equations to a

singularly perturbed multiple time-scale dynamic model by
nultiplying the time derivatives of the "fast" variables
of the same time-scale by increasing powers of €. It is
preferable to have only a single (active) variable on the
same time-scale.

Set é = 0 and solve the resulting "reduced-order" optimal
control problem. In this "reduced-order” solution the
"fagt" variables play the role of pseudo-controls,
constrained to an "integral manifold". Thus, the controls,
as well as the respective costate variables are functions

of the "slow" state variables only.

. Solve the first "boundary layer" problem by a time-scale

stretching transformation. In this stretched time-scale
the "slow" variables are frozen to their initial values.
The major element in the solution is to express the active
costate variable as a function of the active state
variable and the frozen initial values of the "slow"
states. )

Repeat this step for all "boundary layers". It will
finally result in approximating all costate variables by a
feedback type expression as functions of the "frozen"

initial states and the active state.

. Find the expression for the control variables in the last

(fastest) "boundary layer"'at the initial time. This
expression will be a function of the initial conditions
only.

Since any current state can be considered as a new set of
initial conditions, a uniformly valid feedback control law
can be synthesized by replacing the initial values of the

state variables with the current values.




12

The method for higher order corrections is similar, however
the matching process is far more elaborate. For details the
reader is referred to [31].

Since the application of the above outlined method to the
problem of a three-dimensional air-to-air interception involves
very complex modeling éonsiderations, in the next sections the

more simple planar geometries are analyzed.

IV. INTERCEPTION IN A HORIZONTAL PLANE

A. FORMULATION OF THE HORIZONTAL INTERCEPTION
PROBLEM

1. DYNAMIC EQUATIONS

For the restricted case of flight in a horizontal plane
(Fh= 0+ Y =0), it is sometimes more convenient to describe the
relative motion between the two aircraft in polar coordinates,

using the distance of separation R and the line-of-sight angle :

0 .
"

VTcosw - Vcos(y - X) 4 fR(w.V.x) (29)

C- Vosing + Vo sin(y - X)J/R 4 fw(R.w.V.x) (30)

< .
n

The condition of vertical force equilibrium, obtained by sub-
stituting in Eq.(5) Y = FY= 0, relates the bank angle p to the
load factor n by:

n = 1/cosp |, | ' (31)
allowing to eliminate the load factor n from the problem formula-

tion. As a consequence, the equations of motion (4) and (6)

reduce to:
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ne-

< .
n

(&/W) [Ty, = Dy = (1 + tanm)D,1 & £(n.V.) (32)

> .
"

(g/V)tany £ £, (V,n) (33)

In this formulation the interceptor's motion is governed by
two independent control variables, the throttle parameter n and
the bank angle p. The maximum admissible value of the bank angle
is determined by the load factor constraints given by Egs.(15)-
(16), i.e.:

lul s w0 (34)

where:

11} ' (35)

p_ = sec_l{ nin [nL,n

max max

2. OPTIMAL CONTROL FORMULATION
The variational Hamiltonian for the horizontal problem is:

H = -1 « Apfp + A £+ Ayfy + A £, + constraints (36)

The adjoint differential equations and the corresponding

transversality conditions are:

A = - o | ' (37)
Aw - -8 A (tg) = 0 (38)
A = - Ay(tp) = 0 (39)
;‘x = - % , Ax(tf) =0 (4o)
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Assuming that an optimal control solution exists, the Maximum
Principle can be used to express the optimal controls in terms of

the state and adjoint variables:

o>
v
o
3
L]
—
2 =
n

min [ |u |m ] sien(a,) (41)

A, <O :. n =0 , u =4p sign(Ax) , (42)

max

where H, is the unconstrained optimal bank angle, given by:

A
X W
B, = arc tan ( VD, (43)
\) i
A singular throttle arc, along which AV= O over a non-zero
time interval, is likely to occur in isolated situations only

[30,32].

Since time does not appear explicitly in the equations and
the final time is not specified, one also has:

*
H =H =0 ' (4y)
f

Substantial simplification of the two-point-boundary-value
problem is obtained by closed-form integration of the adjbint
eqﬁations [32]. It is readily verified that the solutions to
Egs.(37)-(40) are:

cos(y - wf) .

Ay = (45)

R Sin(‘b = ¢f) 46
A= - (46)

V.cos{v- X,.) - V cos{v, - %)
f £ 'r £

Agfo(n, Vo) = = [Af (V,u) +
V'V XX Fplbe Ve Xp)

(47)
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R sin(y - wf) - VTsinwf(tf- t)
M T F (v VoiXo) (48)
RV £ £'°f
The special case AX = Ax = 0 1is of particular intergst.
Substitution of Eqs.(45)-(46) into Eq.(40) shows that:

oH \Y sin(wf - X)

X X fR(wf,vf,xf)

(49)

From Eqs.(49) and (43) it is then clear that in this case the
extremal is a straight line given by:

X = = constant | L (50)

be

If AV > 0, this straight-line trajectory is flown with full
throttle and zero bank angle. However, the possibility of a zero-
throttle bank angle chattering arc arises if AV < 0.

The quantities A and')\x in Eqs;(41)-(43) vanish at the final

\Y
time. Thus the control at tf depends upon the derivatives of
these quantities. Taking the limit in Eq.(43) as t » tf results

in:

. - W -
lim p = arc tan( 2D.tan(¢f Xf)] (51)
t s ¢t i

Due to the depgndence on the unspecified terminal quantities
wf, va Xf and tf. the optimal control law can not be implemented
in a feedback form. Extremal trajectories can be generated only
by backward integration for an assumed termination of the
encounter. For a medium-range scenario, such extremals can be
characterized as consisting of a turning phase followed by a
phase of accéleration. During the initial phase the interceptor
executes a hard turn to the direction of the final line-of-sight,
possibly decelerating in the process. Then in the second phase

the interceptor accelerates to the final velocity, flying a
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nearly straight line trajectory at full throttle. It is evident
from Eq.(51) that for this type of engagement the final
parameters wf and xf'must be selected such that the absolute
value of the difference of the two is very small. Recall from
Eq.(50), that if wf= xf, a degenerated straight-line extremal is
obtained.

In order to obtain én approximation of the optimal control in
feedback form for the variable speed horizontal interception

problem, the method of forced singular perturbation is applied.

B. SINGULAR PERTURBATION ANALYSIS

1. MODELING CONSIDERATIONS

The success of the singular perturbation approach depends
largely on the ability to identify time-scale separations of the
state variables. The assessment of the time-scale separations ié
largely based on an understanding of the system's dynamic be-
havior, depending on such factors as aerodynamic characteristics,
engine performance, vehicle weight, atmospheric conditions, cap-
ture conditions and the initial conditions of the encounter. It
has to be noted that different assumptions concerning the sys-
tem's dynamic behavior, may lead to a different ordering of the
dynamics. For instance, in [34] velocity is assumed to be the
fastest variable of all. This particular ordering implies suffi-
cient control over velocity, i.e. a very high thrust to weight
ratio, and is therefore appropriate mostly for rocket propelled
vehicles. The time-scale selection employed here is based on the
following observations:

* In a mediumfrange scenario, the initial separation
distance is relatively large and therefore the rate of
change in the direction of the line-of-sight will be slow
compared with the turning rate of the interceptor.

« Longitudinal acéelerations of a fighter aircraft are
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generally much smaller than the lateral accelerations used
for turning.

* The equations describing the relative motion of the two
aircraft in polar coordinates are highly coupled and
should therefore be analyzed on the same time-scale.

By assuming the velocity dynamics tovbe faster than the rela-
tive position dynamics, a rather simple closed-form feedback
solution can be obtained [9]. This formulation requires the
initial conditions of the encounter to be such as to allow the
interceptor to reach maximum speed. Unfoftunately, even for high-
performance fighters the assumed time-scale separation can not be
warranted for all initial conditions of interest. Hence this for-
mulation does not apply to a medium-range scenario as defined in
Section II,A.

Based on the above it seems appropriate that for the variable
speed medium-range horizontal interception problem the state
variables R, ¢, V are considered on the same "slow" time-scale,
while X is designated the role of "fast" variable.

The dynamic equations and boundary conditions associated with

the singularly perturbed dynamic model selected here, are:

R = fp(e.V.X) R(t,) =B, . R(t) =d  (52)
v or £ RVX) b(te) = %, (53)
Vo= £ (V) V(t,) =V, (54)
X = £,(Von) X(t) = X, (55)

The system of adjoint equations and corresponding transver-

sality conditions may be written as:

. - _
Ae = - 3R (56)
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aH

Aw = -3 Aw(tf) = 0 (57)
. - . 8H

. 3H
ehy = = 3y Ax(tf) =0 , (59)

- where H remains as defined in Eq.(36). The optimality conditions
given by Egs.(41)-(44) also remain unchanged in the singular per-
turbation formulation.

A detailed analysis leading to the derivation of a feedback
guidance law based on the above FSP model is presented in [10]

and is briefly reviewed in the next subsection.

2. HORIZONTAL GUIDANCE LAW SYNTHESIS

Taking the limit in Egs.(55) and (59) as ¢ » 0, the following
necessary conditions for optimality of the "reduced-order" solu-

tion are obtained:

r Vrsin(wr - Xr)

uT= 0 C1: G f =0 (60)
' X £ ( r Vr xr) '

R\We VeeXe

where superscript "r" is used to denote the "reduced-order" solu-
tion. Note from Eq.(60). that in the "reduced-order" problem X
takes on the role of control variable, whereas the original con-
trol p now becomes a constraint. It is clear, that the optimal
trajectory of the interceptor in the "reduced—order" problem is a
straight line. The optimal heading xF is readily found from
Eq. (60): ‘

xF = ¢; = constant . (61)
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Though the "reduced-order" system of state equations is
three-dimensional, the optimal direction xT of the straight-1line
trajectory can be solved in terms of the initial state with a
minimal computational effort, compatible with real-time require-
ments. To support the development of a geometrical solution for
the reduced-order problem (see Fig.2), the following integrals

are introduced:

)Y \Y

£ f
A = | 4t 4y - (W/g)
I, (Ve,Vp) = J' dt v,dv av = Jvo T -, - D)) av (62)
't e (W/g)
A _ dt _ V(W/g
IS(V,,Vf) = J vdt = JV Vv av = JV (Tm =D, - Di) av
(63) .

4

cross-range
Y

Rosinyg

Igcos X® deosX®

.
>

down range X

Fig. 2. "Reduced-order” Solution in the Horizontal Plane.
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Equations (62)-(63) give the time and distance needed by the
interceptor to reach the velocity Vf starting at V,, while flying
a straight line trajectory. Based on these expressions, the in-

terception geometry can be solved in Cartesian coordinates:

ro_ | r - r r
x(tf) = d cosXx” = R,cosy, + It(v°’vf)VT IS(V,,Vf)cosx
(64)
y(tp) = d sinx” = R,siny, - Is(v,,v;‘)sinxr (65)

Equations (64)-(65) can be solved by a simple one-dimensional
search, yielding both V? and Xx* in terms of the initial condi-
tions (R, ,%,,V,):

r

e = ValRouuy Vo) X = X(Ry,4,,V,) (66)

Ve

Based on Egs.(66) and (61), the "reduced-order" solution can
be completed by evaluating the initial values_of the "slow" ad-

joints, using Egs. (45)~(47):

cos[¥, - X(R,,¥,,V,)]

A;‘(to) = _ _ é XR(RQ .% 'vu)
VTcos[X(R..wa.V.)] - Vf(Rn'wo’vn)
(67)
r - R,sin[tb, - i(Ro o¢o ova)] A -
Aw(to) = — _ = A (Ro'woovg)
Vpcos[X(Ry ¥, ,V,)] - Ve(Rq s¥, . V,) v
(68)
B(ey) = et e et i
Vpcos[X (R, ,4g,V,)] - Ve(Ry 199,V ) (Tmax - D, - Di],
4

XV(R,,w,,V,) | (69)
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The boundary-layer system (denoted by superscript "b") is ob-

tained by introducing the time transformation:
T=(t-t)/e (70)

into the original system given by Egs.(52)-(59), yielding:

g%b = ef (,V,X) | | (71)
g%b = ef, (R,0,V, 1) ; (72)
g%b = efy(n,V.u) (73)
%%b = £, (V.p) | G
Z%g - - e% | (75)
::_3 S _' (76)
| :)\Ts .- (77)
i':_s = - Z—’f T (78)

In the zeroth order boundary-layer approximation, obtained by

setting € = 0 in Eqs.(71)-(78), all "slow" state variables
b Ab Ab)
R’V
their initial values at t = 0. Moreover, according to the

(Rb.wb,vb) and corresponding adjoints (A remain frozen at

Matching Principle [25], these values have to be equal to the

initial values of the "reduced-order" solution, i.e.:
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]}
]

¥, , Vb(r)

fos]
—
"
~

u

R, . wP(r) v, (79)

AR(E) = AR(E,) o AD(T) = AT(5,) . AD(T) = AD(L,)  (80)

Substitution of Egs.(79), (80) and (67)-(69) into Eq.(44),
allows the "fast" heading adjoint in the turning boundary layer
A?(T) to be expressed in terms of the initial "slow" states, the
active state Xb(T) and the control ub(r). Assuming unconstrained
control for t = 0, substitution of this result into the optimal
control solution given by Egs.(41)-(43), yields the following ex-

pression for the optimal bank angle in the boundary layer:

tan u°(0) = tanp__(V,) x
2v, ' X(Ry %, ,V,) - X,
(- 1*/2sin[ =
Vf(Ra vq’g vvn) - Vo
= tanp(R, , ¥, .V, . X, ) » (81)
where:
T _ - D,
tanu_ (V,) = [22E—— 1142, (82)
1

is the bank angle for a steady~state horizontal turn.
A uniformly valid zeroth-order feedback law can be syn-
thesized by merely replacing the initial state by the current

state.

3. DISCUSSION

Analysis of singular perturbation approximate solutions
reveals a characteristic behavior very similar to that of open-
loop extremals for medium-range scenario's. Both the exact and

the approximate control strategies are characterized by a
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gradually decreasing rate-of-turn as the flight direction
asymptotically reaches its reference value. The main difference
between the two control strategies is the reference direction. In
the singular perturbation solution the final line-of-sight angle,
which is the reference direction in the exact solution, is ap-
proximated by the instantaneous collision course. The larger the
difference between the instantaneous collision course and the
final line-of-sight angle, the worse the accuracy of the singular
perturbation approximation. Obviously, a large difference is
merely a reflection of a lack of "true" time-scale separation.
The guidance law derived in [9] (and also used in [11] and
[13]), which is based on treating the velocity dynamics on a
separate intermediate time-scale, exhibits great similarity with
the guidance law given by Eq.(81). In fact, the guidance laws are
the same, except that in [9] the reference velocity Vf(R,w,V) is
replaced by the maximum velocity and the reference direction
X(R,%,V) is replaced by the so-called "modified collision
course". It is evident that the performance of this guidance law
suffers substantially in encounters where the initial sepération
distance is not sufficiently large to permit: the interceptor to

attain maximum velocity.

C. NUMERICAL EXAMPLES

In order to evaluate the accuracy of the zeroth-order feed-
back strategy and the possible need for first-order corrections,
two numerical examples are considered. In both examples the ap-
proximate feedback solutions are compared with the respective
open-loop extremal solutions. The first example is typical of a
medium-range scenario. The boundary conditions, the selected
parameters and some characteristic results for this example are
summarized in Table 1. The geometric perturbation parameter eg.

borrowed from the constant-speed interception problem [9,28,31],
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is introduced in Table 1 to serve as a measure of time-scale
separation.

Although for the presented example the accuracy of the
guidance law of Eq.(81) is more than adequate, improvements may
be called for in case of relatively short-range engagements. Such
improvements can be obtained by incorporating first-order correc-
tion térms in the singular perturbation control approximation.

The only difference between the exact optimal solution and
the zeroth-order singular perturbation approximation is that in
the singular perturbation approach the slow adjoints (AR'Aw'AV)
are approximated by the "reduced-order" feedback expressions
(XR'xw’XV)’ Thus, improving the approximate feedback control
solution implies improving the estimates of the slow adjoints,
while preserving the feedback form.

Improved estimates of the slow adjoints can be obtained by
extending the singular perturbation analysis to include first-
and higher-order corrections. In [10] the guidance law of Eq.(81)
was improved by incorporating first-order correctionsb, obtained
using the method of Matched Asymptotic Expansions (MAE) [22-26],
in a feedback form. |

In order to demonstrate the improvements that can be obtained
by incorporating first-order corrections in the guidance law, an
example of a relatively short-range engagement is presented. The
conditions and results for this example are summarized in
Table 2.
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Table 1 Comparison of Exact and Approximate Solutions for a Medium-range
' Example in the Horizontal Plane

target h = 12000 m
Vo= 300 m/s
initial o =11192m
state v, =64.57°
V, =349.6 m/s
X, =-89.61°
final state Rf =d =2000 m
exact solution approx. solution approx. solution
at initial state at initial state
[Eq. (81), Ref. 10] [Ref. 13]
"free" \Vf =28.65573°
final Ve=4552m/s | V=4368m/s V¢ =6052m/s
state X ¢ =28.65° X = 25.45° X =41.69°
final time te= 1050s Tf= 105.2s Tf= 1112 s
Interceptor’s best turning radius at V = Voir min = 2543.5m
Geometric perturbation parameter (r mi n/R J: € g = 0.227
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Table 2 Comparison of Exact and Approximate Solution for a Short-range
Example in the Horizontal Plane

target h T= 12000 m
‘VT =350 m/s
initial R =63185m
state V_=18.87°
V,=598.2 m/s
Xo =-44391°
final state Rf= d=2000m
exact solution zeroth-order - first-order
approx. solution approx. solution
at initial state at initial state
(Eq. (81), Ref. 10] [Ref. 10]
"free" Wf= 30.08239°
final Vp=543.4m/s Vf =600.1 m/s Vf =555.4m/s
state X ¢=28.65° X=9.6° X =1262°
final time ty=270s _tf =278s -t.f =27.1s
Interceptor’s best turning radius at V = Voir min = 7447.2 m
Geometric perturbation parameter (r minR o) Eg = 1.18
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These results show that in this case with a rather large'
value of eg, the payoff error of the zeroth-order approximation
is of the order of 3%. The error in the reference (predicted
final) values is even larger. The first-order singular perturba-
tion approximation is rather successful in predicting the final
values of the state-variables and, as a consequence, iﬁ provides
an outstanding payoff accuracy even for an engagement starting '
within the best turning circle of the interceptor.

The improved accuracy comes at the expense of some additional
computations. Although in relative tepms the first-order algo-
rithm requires about twice as much CPU time as the zeroth-order
algorithm, in absolute terms, the overall computational_effort is

still rather modest.

V. INTERCEPTION IN A VERTICAL PLANE

A. FORMULATION OF THE VERTICAL INTERCEPTION
PROBLEM '

1. EQUATIONS OF MOTION

The equations of motion for an air-to-air interception con-
fined to a vertical plane are obtained by setting in Egs. (1-6)
y = 0. This leads via Fy= O toX =0 (or X = n) and consequently

tou =0 (or yu =n). The resulting equations of motion are:

x = V cosY - v fE (v,Y) (83)
sh = V siny 2 £, (V,Y) - (84)
V= gl(nT___ - D,- nzni)/w - sinv] & £,(h,V,7,n,n) (85)
Y = (g/V)[n - cosT] t £,(v,7,n) (86)
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In these equations ~«n § Y § n , which allows both for incoming

and outgoing targets (see Fig.3).

h h
T T
I Vs by bp-mm - Vi
| l
| |
! |
Ah Ah<0 |
!
|
| i
IO A R Ve, - A |
| ! I '
| x>0 N i x<0 &
I~ i | '
! [ 1 !
7 ! | !
0 X 0 X
a)Incoming target b) Outgoing target

Fig. 3. Vertical Interception Geometries.

In a frequently used alternative formulation the specific

energy:
2
E=h+V'/2g : (87)

is used as a state variable replacing V, which merely continues

to serve as an abbreviation for:
1/2 :
vV = {2g(E - h)}/ (88)

In this case Eq.(85) is replaced by:

E = [nT,,. - Do n2Di]V/w 2 £ (h,E,n.n) (89)
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In the sequel of this Chapter this "energy-state" formulation is
used.

The terminal manifold of the vertical interception is defined

by:

5 = x(tf)2+ [Ah(tf)]z- @ =0 (90)

2. OPTIMAL CONTROL FORMULATION

The variational Hamiltonian for vertical interception is:

H= -1+ Axfx + Ahfh +.AEFE + AYfY + constraints (91)

The necessary conditions for optimality include the adjoint

differential equations and transversality conditions:

3H

Ax = - a—x =0 , ' Ax(tf) = ZVX(tf) (92)
) A (t.) = 2vah(t | (93)
h™ el nity) = 2vah(ty) %3
N ): | -
A = " aE . Aglte) =0 (94)
: 3H
AY = - —37 -’ AY(tf) =0 ’ (95)
where:
EI aH| _ g a_Hl (96)
3h|~ ah| V av|,
and:
aH| _ g aH)
(97)
3E h V aV h
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Unfortunately, the adjoint equations of the vertical inter-
ception cannot be integrated in a analytical form, as it was done
for the horizontal case. The main reason for this difficulty is
the dependence of the thrust and the aerodynamic forces on the
altitude. However, the optimal control solution, if it exists,
can be expressed by using the Maximum Principle in terms of the

state and adjoint variables:

* *

>
v
o
=3
L]
[
=]
n

win [ |n [.n ] sign(A) (98)
Ag<0: m =0, n=n_ sig(r) , (99)

max

where nu is the unconstrained optimal load factor given by:

>

W
LN  (100)
u - Ag 2v2Di

A singular throttle arc, along which AE = 0 over a non~zero time
interval, is likely to occur only in isolated situations.
Since time is not explicitly involved and the final time is
unspecified:
» .
H =H =0 |, (101)
t
f
which allows to determine the value of the multiplier v in
Egs.(92) and (93):

v = {[V(tf)cosY(tf) - VT]x(tf) + V(tf)sinY(tf)Ah(tf)}/Z
(102)

Since at tf both AE and AY vanish, the control at the final

time depends upon the derivatives of these variables. Taking the

limit of Eq.(100) as t » tf results in:
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lin n = 5_% tan8(tg) - T(tp)] . (103)
t-s t i
£

where 8 is the line of sight angle in the vertical plane (see
Fig.3).

B. SINGULAR PERTURBATION ANALYSIS

1. MODELING CONSIDERATIONS

In order to obtain an approximation of the optimal control
solution in a feedback form the approach of forced singular per-
turbation (FSP), outlined in Section III, is to be applied. As a
first step in this direction the following observations, refer-
ring to the time-scale separation of the state variables, are
made:

+ The rate of change of the horizontal range component x 1is

rather gradual, suggesting that it should be considered as
a slow variable.

+ In a medium-range scenario the ﬁaximum speed (specific
energy) of the interceptor cannot be reached. Therefore,
the specific energy has to be considered on the same
time~-scale as the horizontal range component.

+ In most known "energy—sta;e" modéls altitude is considered
as a fast variable compared to the specific energy.

« The flight path angle Y can change much faster than the
relative geometry expressed by x and Ah. .

In some previous studies [30,34] considerable attention was
paid to the coupling between the altitude and the flight path
angle, having its origin in the phugoid mode of an uncontrolled
aircraft. Full consideration of this coupling leads to analyze
both variables on the same time-scale and requires as a conse-
quence to solve a numerically very sensitive two-point boundary
value problem. In [5] it was, however, shown that the error in-

duced by neglecting the coupling and analyzing h and Y on
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separate time-scales is mainly due to a reduced damping of the

resultiﬁg second order dynamic response, while the frequency

remains almost unchanged. Moreover, it was also reported [5] that

this error could be corrected by slightly modifying the cost

function. A similar result was achieved by a feedback approximag-~

tion derived in [11].

Based on the above, the following FSP model is used in the

present analysis:

x = £ (V.7) , x(t,) =

E = fe(h,E,n.n) , E(t,) =

€sh = f, (V,7) 8h(t,) = hy- hy
5

€Y = fY(V.Y,n) . : Y(t,) =7,

(104)
(105)
(106)

(107)

The terminal manifold and the variational Hamiltonian remain

the same as in Egs.(90) and (91). The adjoint equations and the

transversality conditions corresponding to the FSP model are:

>
=
ct
)
i

(108)

(109)

" (110)

(111)
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2. BASIC GUIDANCE LAW SYNTHESIS

The FSP model, represented by Egs.(104)-(111), was solved in
[11] and is briefly reviewed in the following. By setting € = O

in these equations, the "reduced order" problem (the variables
r

are denoted by the superscript "r") with fh

f$= 0 is obtained.

Consequently, one has:
R o :
sinYT" = 0 (112)
and:

n'= cost’ (113)
For an outgoing target (|Y| s n/2) this leads to Y'= 0 and n'= 1,
while for an incoming target (|Y| 2 n/2) Y'= n and n"= -1 (see
Fig.3).

Substituting these results into Eq.(91) and dsing Egs.(101)
and (109) leads to:

Ar = 1 ) = 1 , (114)

x

r r r
VfcosY - VT tVf-VT

as well as to:

(Vr- Vr)cosYr t(Vr-Vr)
g 4 ) (15
VfcosY - VT fE tVf.-VT fE

where V;. the value of vF at tf. is an unknown parameter depend-
ing on the initial conditions and the prescribed terminal range
d. The control variables of the "reduced-order" problem are nr

and hr. For a successful interception V; must be greater than VT.
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Inside the flight envelope the aircraft can accelerate (i.e.,

V? > V' and fg > 0), and therefore nf= 1.

Moreover, the optimal altitude is given by:

f£_(h,E",n=1,n=11)
r E
h"= arg {max e }
h (Vf- V)

4 BT

E", V (116)

f‘) 1]

describing a "reduced-order" optimal flight path in the h-V
plane. A family of such flight paths, parameterized by'V; is
depicted in Fig.4. The value of V? can be obtained, for a given
set of initial and terminal conditions, by a fast converging
iterative process, called "range matching" [5,11]. It solves the

implicit integral equation:

r r
E VicosY™ - V
Ix, [- d = I Jf — —ae | f1 (5, .V))
B £ [R(E,VE),E,n=1,n21]

(117)

where V'is, based on Eq.(88), a function of E and hT(ET,vE). The

).
f
solution yields therefore V? = V?(xn.E,), abbreviated in the se-

-~

quel as V?.

Tmax=0(n=1) \\.

At
altitude ‘}
hikm] 12| VE=600m/s
/
10}
/
sl >'VE=550 m/s
/l'
6+ // Vf=500m/s
L -
,/
2r Y VE400m/s
/
0 1 YA 1 ]
0o n A—T 400 500 600

speed VIm/s]
Fig. 4 Family of "Reduced-order" Trajectories in the Vertical Plane
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Since the "reduced-order" solution, cannot satisfy the
initial conditions of the "fast" variables, Ah and Y, two con-
secutive boundary layer solutions are needed. Substitution of the

stretched time-scale:
T, = (t-t,)/e , (118)

into Egs.(104)-(111) provides the first boundary layer, where the
variables are denoted by the superscript "!". By setting € = O in

these equations the following results are obtained:

x (1,)

1 1 1 1
X,, E (1) = E,, fY(tl) =0+ n = cosY (119)

A (t,) A(e,) » n =1, -0 (120)

X X

n
>
>

e ]
——
A
-
~—
[}

As a consequence of Eq.(120), the active control in this
1
boundary layer is the flight path angle Y which can be approxim-
ated [11] by the following relatively simple feedback form:

1 r ~r
' V £5(E, V) |
Y = arc cos{- 1 o1 }x
f-[f (Eo 'vf ) = fE(Eo)] + Vn fE(Eo)

sign[h® (E,,Vf) - h']

= ?I(E,,vf,hl) , ‘ (121)
where £ (E,,V ) is an abbreviation for f [h (E, , vE ) E,.n =1,n= il]
. f (E, ) is an abbreviation for f (h E,.n =1,n= cosY ), and V

the value of V' expressed by Eq.(88) at E, and n' (E, Vf). The
active adjoint variable in this boundary layer is approximated

by:

1 r 1
Ah(Tl) = Ax tanY | (122)
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In the next boundary layer the time-scale is further

stretched:

T, =1,/€ (123)

Substitution of Eq.(123) into the state and adjoint equations
and setting again € = 0, while denoting the variables of this

boundary layer by the superscript "*", yields:

x (1,) = x,, E (t,) =E,, h(1,) =h, (124)
2 r 2 r 2

Ax(tz) = Ax’ AE(TZ)= AE(t,) > n =1,

A;('tz) = Aitan?1 (E, Ve, by ) (125)

These results allow to obtain a feedback expression for the

unconstrained load factor at t,= O:

~1 ~r
Y (B, Vphy) - 7,
2 ]

2 -~
n (0) = cos¥,+ A(E, ,V5,h,) sin[

~l . .
= nu(xo ’En !hg vYo) ] (126)
where:

2 Wf_[hT(E,,V5),E, ,n=1,n=cos¥ ]
- E ovfsoo""

A(E, Vb, ) = [ 1172 (127)

~r . I i >
Vg- Vo D, (E,.h,) cosT (E,,Vp,h,)

Based on Eq.(126), a uniformly valid zeroth-order feedback
control law can be synthesized by replacing the initial values of
the state variables with their current values. Since this
guidance law is totally independent of the target trajectory, in
[11] an intuitive feedback control was proposed for the terminal

phase of the interception.
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3. GUIDANCE LAW IMPROVEMENTS

Fur;her analysis [12] revealed several deficiencies and error
sources in the guidance algorithm summarized in the previous sub-
section:

(i) The convergence of the aifcraft trajectory guided by
Eq.{(126) towards the reference trajectory of the
"reduced-order" solution is very slow.

(ii) The reference trajectory is discontinuous in the tran-
sonic region (the "transonic jump" phenomenon).

(iii) The solution for the terminal phase of the interception
(terminal boundary layer) is not satisfactory.

The origin of the first deficiency 1lies in Eq.(112), ob~
tained for the "reduced-prder" solution from fﬁ = 0. This result
is clearly incompatible with the actual flight path angle as-
sociated with the "reduced-order" optimal flight path, defined by
Eq.(116). Along every smooth segment of this trajectory the
flight path angle is given by:

sinYR = Iv—;g/(l + ¥ Q!_ } = sinY (E vE ) z 0 (128)

g an’

In order to avoid this problem one can follow the approach
introduced in [35] and replace the altitude by another "fast"
variable Q, defined as:

A 3 f‘E

Q=35 {m} = Q(h,V,Vg) (129)
This variable reaches an equilibrium on the "reduced-order"
optimal trajectory as requested by Eq.(116) and its time deriva-

tive is given by:

e, Ay a2 _ a9, . T-D 2@ A
Q ahh * 3V sinY(Vah g;v) W Sy fQ(h,V,Y) (130)
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Clearly, by replacing Eq.(106) with:

eQ=f (131)

and setting ¢ = O one obtains Eq.{128) because:

aQ 3aQ dv .
'(ﬁ)/(_ﬁ) = 3h o (132)

Indeed, by adding YR to Eq.(121), i.e. redefining:
1 e B
oAy 4R (133)

to replace Yl in Egs.(126) and(127), a significant improvement is
achieved.

The "transonic jump" is a well known characteristic of most
supersonic aircraft. It is the result of the "reduced-order"
modeling, where altitude ié considered as a pseudo-control and as
such the corresponding optimal trajectory can be discontinuous.
In the open-loop optimal solution of the complete point-mass
model such discontinuity does not exist. In terms of rigorous
singular perturbation theory the "transonic jump" has to be
treated as an "internal” boundary layer. Such a solution was ob-
tained recently [36], but unfortunately only in an open-loop
form. In the frame of a feedback algorithm an acceptable solution
is to replace the transonic discontinuity by a continuous
reference flight path, such as a backward extrapolation of the
supersonic subarc of the "reduced-order" optimal trajectory.
Since such a flight path is not optimal in the sense of the
"reduced-order" modeling, it may happen that the argument of
Eq.(121) is greater than 1. In order to avoid such problem, it
was proposed [12] to use instead of Eq (127) another feedback

control law:
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nu(E.x.h,Y) = cosY +
(o’Ih], (E.x)-h] + 2veelYa (E,x)-Y]}/E . (134)

where hgx(E,x) and YZX(E,X) are values obtained from the extrapo-~
lated supersonic subarc. In this expression o and T are control
parameters associated with the linearized second-ordef response
of the aircraft. For the damping ratio the value of § = 0.7 was
selected, while w was obtained by some numerical experimentation
for an optimal performance. For several aircraft models the best
value of w was in the range of 0.08 - 0.15.

The two modifications, which are outlined above, created an
improved feedback control algorithm for steering the interceptor
towards the "reduced-order" flight path asymptotically. This al-
gorithm, being independent of the target altitude, c;nnot
guarantee that the terminal manifold of Eq.(90), which involves a
"fast" variable, is reached. This is an inherent limitation of a
"reduced order" solution, to which singular perturbation theory
provides an answer in the form of a "terminal” boundary layer.
Such a "terminal" boundary layer sdlution imposes two dif-
ficulties. It must be stable in a reversed stretched time-scale
[37], which means a structural instability in a real-time
(forward) implementation. Another difficulty is to determine the
point of transition for starting the "terminal" boundary layer
solution. '

If the target altitude is lower than the final part of the
"reduced-order" trajectory, the terminal phase of the time-op-
timal interception is a dive along the maximum dynamic pressure
limit. This type of trajectories were treated extensively in
[3-5]. In other investigations t11-14] the attention is focused
on interception of high flying targets. In such a situation the
classical energy-state approximation [1] calls for a "zoom" climb
at a constant specific energy until the terminal manifold is.

reached.
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In [12] a closed form analytical solution for such "zoom"
trajectory is derived and proposed as an approximation for the
"terminal" boundary layer solution of the minimum-time intercep-
tion in the vertical plane. The derivation of this closed form
solution is summarized in the Appendix. Here the main results are
repeated, denoting the variables of the constant specific energy
"zoom" by the superscript "z".

The solution is characterized by:

v?/cosT? = V(tf)/cose(tf) = A (135)

f
and the nominal load factor to generate the trajectory is given

by:
n® = 2cost? ’ (136)

The "zoom" trajectory can be completely determined by the
closed form solution. Thus, the unknown constant Af, the starting
time tf and the corresponding horizontal distance x(tf) can be
found. At the same time the entire "zoom" trajectory can be
precomputed and stored. Since the closed form solution is only an
approximation one must monitor the deviation of the actual
trajectory and correct it. For this purpose the following feed-
back control law, motivated by Eq.(103), has been proposed:

n(t 2 t%) = 2cosv + 5%; tan[ 12(8)- Y ] (137)

By incorporating the appropriate corrections to all three
deficiencies, mentioned at the beginning of this subsection, a
modified feedback control algorithm was synthesized [12]. It was
also demonstrated [12] that this new algorithin leads to improve-
ments of the order of 1% in the pay-off in comparison with the

uncorrected guidance law.
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4. ACCURACY ASSESSMENT

The absolute pay-off accuracy of the improved guidance algo-
rithm was tested by a comparison with the open-loop optimal
solution obtained by a very accurate numerical multiple shooting
method [14]. In the numerical examples an unclassified F-4 type
model was used. This comparison, which is summarized in Table 3,
demonstrated a rather satisfact:ory pay-off accuracy of the.

"original™ FSP solution, in the order of 1% .

Table 3 Comparison of Interception Time in the Exact and Approximate Solu-
tions for Medium-range Examples in the Vertical Plane

initial state Rc> = 82800 m
V,=250m/s

¥, = 180° (incoming target)

h =1000m
final state Rf=d= 1000 m
example No. 1 2 3
target hT (m) 4180 - 7000 12000
VT (m/s) 300 300 400
interception | exact solution 122.78 124.03 113.99
time (s) original FSP sol. 123.56 124.86 115.02
modified FSP sol. 122.88 124.26 114.54




The comparison revealed, however, a discrepancy between the

FSP and the optimal trajectories in the subsonic region. There is
a clear indication, as can be seen in Fig.5, that the subsonic
subarc of the reduced-order trajectory is far from "optimal". The
subsonic subarc in the reduced-order solution features a constant
Mach number of M = 0.92 up to an altitude of about 5 km, where
the "transonic jump" starts. In contrast, the open-loop optimal
trajectory is an accelerating climb into the supersonic region.
The origin of this nonoptimality is the incompatibility of the
assumption of IcosYrI = 1, imbedded in the "reduced-order" op-
timization, and Eq.(128) which predicts flight path angles of the
order of 30<35 degrees in the subsonic region. In the supersonic
region, the flight paths angles geherally do not exceed 5-6 de-
grees and the assumption of IcosYrI = 1 remains valid. It is
important to note, that even if the approach of the modified
"fast" variable Q is used, the value of cosY® which maximizes the

Hamiltonian will still be 1.

——— energy-state solution

10 —— exact solution

attitude
h{km)

8

0 /\ L N 1 1 . .
0 200 300 400 500
speed V[m/s]

Fig. 5. Non-optimality of the Subsonic Subarc (F-4 model).
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The practical conclusion drawn from this comparison has been
that the "reduced-order" subsonic subarc should not be used as a
reference trajectory for the FSP feedback algorithm. This conclu-
sion is entirely compatible with the previously introduced cor-
rection in the transonic region. As an accéptable reference
trajectory for the sub and transonic regions a smooth flight
path, which starts at zero altitude and blends into the super-
sonic subarc of the "reduced-order" trajectory,has been proposed
[38]. Such a modification reduced the error of the FSP feedback
approximation for the medium-range interception in the vertical

plane to be less than 0.5%.

VI. THREE-DIMENSIONAL INTERCEPTION

A. MODELING CONSIDERATIONS

Since the FSP models used for the interception in the
horizontal and the vertical planes are different, the extension
of these feedback algorithms to a three-dimensional scenario is
by no means trivial. In [4-6] it was assumed that the azimuth
angle X is a slower variable than the altitude and the flight
path angle Y. This assumption, however, has not been confirmed by
the results obtained in these very works. It turns out that all
three-dimensional interceptions are composed of two phases: a
relativély brief initial turning phase followed by an intercep-
tion in the vertical plane. This observation seems to suggest
that X is a faster variable than h and Y.

In other works [13,14] it was claimed that since horizontal
and vertical turning rates are the components of the same physi-
cal quantity,- namely the total turning rate of the velocity
vector,- both X and Y have to be analyzed on the same time-scale.
This approach is adopted here in the sequel.

The FSP model, proposed for the analysis of the three-dimen-

sional interception, incorporates also the replacement of the
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altitude by Q(h,V) defined by Eq.(129) and it is given as fol-

lows:
X = Fx , x(t,) = x, (138)
y = Fy , v(ty) = y, (139)
. 2
E = FE = fE . " E(t,) = h,+V,/2g (140)
eQ = FQ = fQ . Q(t,) = Q(h,,V,) (141)
5
€Y = F, . Y(t,) = 7, (142)
5¢
€x = F, , x(t,) =%, , (143)
with the terminal manifold:
= x(tf)2+ y(tf)2+ [Ah(tf)]z- d2 =0 (144)

The corresponding variational Hamiltonian is:

H= -1+ Axe + AyFy + AEFE + AQFQ + AYFY + AXFX+ constraints
(145)

The adjoint differential equations and transversality condi-

tions are:
A = - %g =0, A (tg) = 2vx(t) (146)
ro=-Hoy A (Eg) =2 14
ST ay =0 v tp) = 2vy(t,) (147)
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AE = - 3 0 . AE(tf) =0 (148)
oH R
ek, = - — . A (ty) = 2v[ah(t.) /5% (149)
Q aQ E Q*’f f ah E(tf)
2 3H -
€ AY = -3y , AY(tf) =0 (150)
2° dH =
€ AX‘= e . Ax(tf) =0 (151)

B. GUIDANCE LAW SYNTHESIS

Based on the this FSP model the feedback guidance law for
three-dimensional interception is synthesized by following the
approach outlined in [14], [38] and [39]. The solution of the
"reduced-order" problem (obtained by setting € = 0), provides a
"required flight trajectory" (RFT). This trajectory lies in a
vertical plane. Using Egs.(151), (146) and (147), the orientation

‘of this plane can be established:
tan x© = y(tf)/x(tf) = constant (152)

This "reduced-order" solution is based on a three-dimensional
"range matching" process using Egs.(64-65), with the integrals It
and Is evaluated along the RFT, while the velocity is replaced by
the specific energy as the independent variable. As the outcome
of this process the values of the constants x* and V? as well as
the RFT profile, defined by ﬁr(E,V;), and YR(E,V?) are obtained.
Based on the experience gained in [14], two alternative ap-
proaches can be proposed for obtaining the RFT profile for any
given V;.

In the first approach the RFT profile is composed of the su-
personic subarc of the "energy state approximation", defined by

Eq.(116), and a smooth extrapolation back to the initial point of




the subsonic subarc at sea level.

compute the open-loop optimal
pcint-mass aircraft model in the
initial point and the prescribed
imum speed boundary. The initial

have to be selected such as to

be

The second alternative is to
trajectory based on an "exact"
vertical plane, between the same
terminal velocity V; on the max-
and terminal flight path angles

satisfy (at least approximately)

n = cosY.

The use of point-mass extremals to build up a family of
reference trajectories was motivatéd by the perturbation feedback
scheme of [40]. Although the guidance law of [40] has not been
formally derived using singular perturbation analysis, it makes
use of singular perturbation ideas in terms of an assumed hierar-
chical trajectory-family (i.e. boundary-layer) structure.

Considering, for instance, guidance in the vertical plane, the
feedback law of [40] provides optimal altitude/path-angle tran-
sients that funnel into a single energy-range climb path (RFT).
In fact, the structure of the vertical guidance law in [40] is
identical to the one given by Eq.(134), except that in [40] the
feedback gains (and thus ¥ and w) are specified as a function of
specific energy, ensuring optimal transient behavior.

In both cases the practical approach is to precompute and
store a sufficiently large family of reference trajectories,

parameterized by V;. Though the "range matching" is an iterative

process, - a one dimensional search for the appropriate value of
V? to satisfy Eqs.(64-65), - it converges rapidly and is com-

patible with a real time on-line implementation.

The other element of the guidance law synthesis consists of
determining the actual aircraft controls in order to reach the
RFT and tracking it until the terminal phase of the interception
starts. If one assumes that the coupling between horizontal and
vertical turning maneuvers can be neglected, both turning rates
can be optimized independenfly. This is an important simplifica-
tion, which allows to compute the horizontal and vertical com-

ponents of the required load factor separately by using explicit
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feedback expressions obtained in the planar analyses. The
horizontal load factor component Ny . defined by Eq.(17), is com-
puted using Eq.(81) by replacing the initial conditions with the
current value of the state variables as well as X and Vf with x©
and V?. The vertical load factor component N defined by
Eq.(18), is computed by using Egs.(116), (121), (126) and (133),
similarly replacing all initial conditions with the current
values of the state variables. The bank angle p, to be used as

the guidance command is given by:

p = arc tan (n /n ) (153)

while the resultant load factor is expressed as:

n = min {n , nmax'nL} , (154)
where:
n, = [n3+ nﬁ]l/2 . (155)

as shown in Fig.6.

Fig. 6. Three-dimensional Load Factor Synthesis.




In order to test the accuracy of the three-dimensional FSP

feedback control synthesis, several examples were computed in
[14] and [38]. The results of the comparison to the exact open-
loop optimal solution were equally encouraging. They confirmed
the validity of the assumption for neglecting the coupling be-
tween the horizontal and vertical turning maneuvers in a medium-
range scenario. They also demonstrated that the three-dimension
feedback algorithm has about the same pay-off accuracy of 1% as
the one for vertical interception. Moreover, slight modifications
of the algorithm, such as continuous updating of the RFT and cor-
rection for the nonoptimality of the subsonic subarc, lead to an

improved pay-off accuracy, better than 0.5% .

C. NUMERICAL EXAMPLE

All numerical examples presented thus far, make use of the
same aircraft model, which is representative of a previous gener-
ation fighter aircraft (F-4). It seems therefore appropriate to
evaluate at the present time the accuracy of the FSP feedback ap-
proximation on the basis of a more advanced fighter aircraft,
featuring a relatively high thrust-to-weight ratio. For this
reason, a new numerical examble is presented in this subsection,
based on an unclassified approximation of a F-15 aircraft model,
taken from [40].

A comparison of the solutions based on an "exact" set of
point-mass equations of motion with "reduced-order" model solu-
tions has revealed that the influence of the neglected dynamics
in the reduced-order solution is far more significant in the case
of the F-15 than for the F-4 aircraft model. Figure 7 presents a
typical example of such a comparison of the full and reduced-
order solutions for the F-15 model. The results clearly indicate
that the reduced-order solution is hardly suitable to serve as a

RFT in a feedback guidance scheme.
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Fig. 7. Full and "Reduced-order" Solutions (F-15 model).

For this reason the approach to the digital'simulation of the
FSP guidance laws driving the F-15 point-mass system model, has
been to store a one-parameter family of precomputed full-order
point-mass reference trajectories. The "range matching" feature
"of the algorithm is then used to select‘(on-line) the appropriate
member of this reference family, to serve as a RFT.

The use of point-mass solutions for serving as RFT, turned
out to have the additional advantage that, since no failures of
the vertical FSP law could be observed, there was no need to
resort to the guidance law of Eq.(134) in the transonic region.

The initial conditions for the example, as well as some im-
portant results, are given in Table 4. The example is charac-
terized by a low initial speed and altitude and a relatively
large heading error for the interceptor. Figure 8 shows that the
initial conditions of the interceptor in the (V,h)-plane are
close to the corner velocity locus, implying that the interceptor
is capable of achieving relatively high turn rates in the initial

phase. As a result, the heading error is corrected very rapidly
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(in fact, 90% of the horizontal turn is completed within 15
seconds!). The ground track of the initial turn is shown in
Fig.9. Note that the projection of the target velocity vector on
the horizontal plane is aligned with the X-axis of the coordinate
frame. As heading error is decreased, the emphasis shifts towards
high energy and range rates and the control actions are such that
the flight is directed towards the RFT. In this transient flight,
the interceptor executes a dive in order to gain speed, as can be
seen in Fig.8, as well as in Figs.10 and 11. Also note in Fig.11,
the rather large rate-of-change of the path-angle in the initial
phase, typical of a high performance fighter. Since the target'is
flying at a relatively high altitude (some 2000 m above the RFT),

a zoom climb is commanded in the terminal phase.

25

altitude
h{km]

201

—-—.— reference solution
53 S . feedback solution ~  ___-----
~——— exact solution

10r

St

o Il //| l/‘ L L L L J
0 100 200 300 © 400 500 600 700 800

speed V [m/s]

Fig. 8. Comparison of Interceptor Trajectories in the h-V plane.
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Table 4. Comparison of Exact and Approximate Solutions for a Three-dimen-
sional Medium-range Example

target hT= 11278 m

VT =200 m/s
initial R =47424m
state v, = -1.88°

Ah,=-7778 m

vV, = 200 m/s

Y, = 0°

Xo =-120°
final state R £= d=3048 m

exact solution FSP feedback solution

"free" ‘I’f ®) 0.0 0.2
final Ah £ (m) -738.4 -878.1
state Vf (m/s) 609.0 606.0

Y ©) 10.7 149

Xe 0.0 0.2
final time te (s) 174.0 174.65
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Fig. 9. Comparison of Horizontal Trajectory Projections.
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Fig. 11. Comparison of Flight Path Angle Time Histories.

In Figs.8 through 11, a comparison of the simulated feedback
solution and the exact open-loop solution is given. The cor-
respondence between the two solutions is remarkably close. As a
result, the difference in time-of-capture between the optimal
solution and the feedback approximation is only about 0.65 sec
(or 0.4%). About 30% of this error can be attributed to the non-
optimality'of the terminal zoom maneuver and approximately 60% to
the initial turning maneuver. It can be concluded that the pay-
off accuracy of the FSP feedback guidance law is very satis-
factory, even for highly "dynamic" maneuvers, such as the one

demonstrated in the present F~15 example.
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VII. CONCLUSIONS

In this report an extensive investigation, orientea towards
the synthesis of a feedback guidance law for an interceptor
aircraft in a medium-range scenario, is summarized. The guidance
algorithm is based on the application of a singular perturbation
app;oach. It is composed of two major elements. A fast converging
iterative algorithm provides a three-dimensional "reference
flight trajectory” (RFT). It is the solution of a "reduced-order"
problem, where the interceptor velocity vector can be instan-
taneously oriented towards the optimal direction. The RFT is
tracked by using two feedback control laws for steering the
velocity vector in the horizontal and the vertical planes.

In all phases of the reported multi-year investigation the
resultg, obtained by this ieroth-order feedback approximation of
the optimal control, were compared with the "exact" (open-lobp)
optimal solution. This process allowed to introduce modifica-
tions in the suboptimal solution leading to a very satisfactory
(better than 0.5%) pay-off accuracy. '

The new example incorporated in this Chapter, featuring an
F-15 aircraft model, has demonstrated the structural robustness
of the feedback guidance law. Though in generating the RFT the
computational scheme had to be fitted to the aircraft model
characteristics, the feedback guidance formulae have remained un-
changed.

The feedback algorithm presented here can be distinguished
from similar works reported in the open literature by the follow-
ing:

(i) It incorporates all phases of an air-to-air interception

by providing a closed form approximation to the terminal

zoom trajectory.
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(ii) It has been validated by using different aircraft models
and demonstrated a very satisfactory pay-off accuracy,
better than any known result in the open literature.

The hierarchical structure of the algorithm, the explicit

feedback form of the control iaws and the validated high accuracy
make it a very attractive candidate for a real-time implementa-

tion on board of a future interceptor aircraft.
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APPENDIX: TIME-OPTIMAL ZOOM  INTER-
CEPTION AT CONSTANT SPECIFIC ENERGY

This is an idealizedvversion of the terminal phase of a
minimum-time interception in a vertical plane obtained by assum-
ing that the specific energy of the interceptor aircraft is
constant and the flight path angle Y is a control variable. In
order to avoid confusion, the variables in this simplified model
are denoted by a superscript "z". Thus, the first assumption is

expressed by:
hZ+ (Vz)2/2g = E°= constant (156)

As a consequence, the velocity v? is not an independent vari-
able, but merely an abbreviation for:

z z.2z,.1/2

V2= [2g(E%-n%) 1Y (157)

By considering the flight path angle T as a control variable,

the following "reduced-order " dynamic system, starting to

operate at tf is obtained:

% = V3cost?- Vo o x(t7) = xZ (158)
% = VZsinr? . h(t?) = n? (159)

The terminal conditions of the interception are derived from

Eq.(90) in polar coordinates ( being identical to the terminal
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conditions of the full order problem they are not indexed by a

superscript):

-d cosef (160)

hT -d sinef . (161)

where Gf, the direction of the line of sight at tf. is an un-
specified parameter.

The variational Hamiltonian of the time-optimal interception

for this simplified model is:

z z,.2 z z . JZ
H= -1 «+ Ax(V cosY® - VT) + Ah(V sinY“) (162)

The adjoint equations and the corresponding transversality

condition are:

= -2v d cosef (163)

)‘x=-—z-=0'A=A(tf,)=2\)X(tf)

Ix

z

I 3H = - -B (AzcosYz - AzsinYz) ,
h z z X h

dh z \Y

E
z z ,

Ah(tf) = 2v [h (tf) - hT]- -2v d 51n9f (164)

The optimal flight path angle for this "zoom" maneuver, which

maximizes the Hamiltonian is:
zZ_ z,.z
Y“= arc tan (Ah/Ax) (165)

Since time is not explicitly involved and the final time is

unspecified one also has:

H? = 0 - (166)
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and consequently, since due to Eq.(165) Yz(tf) = ef :

v = -1/2d[Vz(tf) - Vpcos,] (167)

By substituting Egs.(163),(166) and (167) into Eq.(162) one
obtains for all t 2 tf :

Z

VZ(AicosYz+ AhsinYz) = Vz(tf)/[Vz(tf) - VTcosef] (168)

Since Eq.(165) implies that:

Ai = G(t)cos1? (169)
and:
Ai = G(t)sinY? : (170)

Substitution of these expressions into Eq.(168) yields:

G(t) = VE(tn)/[VE(V¥(tp) - VocosBp)] (171)

as well as:

Gltp) = 1/[Vz(tf) -V

Tcosef] - (172)

Keeping in mind that according to Eq.(163) A: is a constant,
Egs.(170)-(172) lead to a fundamental relationship which charac-
terizes the minimum-time "zoom" interception at a constant

specific energy:

Vz/cosYz = Vz(tf)/cosef = constant 4 Af _ (173)
and provide a feedback expression for the optimal control 1% for

any given Af:
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1% = arc cos (VZ/Af) , (174)

where V? represents E? and h% via Eq.(156).
From Eq.(174) the rate of change of Y2 and the corresponding

load factor n® can be computed:

1% sinv? = -(1/A,) V| _= (g/A.V?) h% = g sinv?/A (175)
f g2 f f
Consequently:
v? = g/Af= constant (176)

By comparing Eq.(86) to Eq.(176) and using Eq.(174) one can
directly conclude that:

n? = cost®+ (V*/A,) = 2cos7?® (177)

¢
as quoted in Eq.(136).

The closed form solution allows to expréss the unspecified
parameter Of as a function of the initial conditions of the
"zoom" maneuver Ez, h(tf) and Y(tf). Applying Eq.(156) for both
the initial and the terminal state and substituting Eq.(161)

leads to the following quadratic equation for sinef:
EZ- h(tZ , 2 2 z . z 2 z
[E®- h(t,)]sin 9f+ d cos“Y(t,) 51n9f+ h(ty) - thos Y(t,)
z . 2 z
- E°sin"Y(t,) = O (178)

It is easy to see that this equation always has a real positive
root (smaller than 1) for any feasible "zoom-climb" trajectory.
Once 8, is computed from Eq.(178) the terminal altitude can

f
be directly obtained from Eq.(161).
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The time required to complete the "zoom" maneuver is derived

by using Eq.(176):

A
(t.-t?) = & AL [6,- Y(tD)] (179)
£ g cosY(tz) £ ’

The corresponding initial horizontal range is obtained by in-
tegrating Eq.(158) after the substitution of Egs.(173)-(176) and
using Egs.(160) and (179):

Z) _1_Y<_tf‘>__2[ 8,.-7(t%)] + S[sin(26 ) -sin(27(tF))])
x(ty) = - g[ > 17U £ (ty)] 5[sin(26,)-sin o
cosY(ty)
VT V(tf) z z
- — [Bf- Y(ty)Ix(t,) - d cosef (180)

g cosY(tf)

Moreover, all the variables along the entire "zoom" trajec-
tory can be expressed as explicit functions of the optimal
flight path angle Y% and the initial conditions. By matching the
monotonically varying actual horizontal range x(t) with the
result obtained in Eq.(180), the starting time of the "zoom"
maneuver tf can be selected and then the entire trajectory can be
precomputed and stored. Comparison of the actual and the stored
trajectories allows to implement a feedback guidance law as

proposed in Eq.(137).
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