
Delft University of Technology
Master’s Thesis in Embedded Systems

Autopilot Design for Software-in-the-Loop
Validation of Fixed-wing UAV Guidance

Laws

Arun Geo Thomas

Autopilot Design for Software-in-the-Loop

Validation of Fixed-wing UAV Guidance Laws

Master’s Thesis in Embedded Systems

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

Arun Geo Thomas
agthomas@student.tudelft.nl

1st August 2019

mailto:agthomas@student.tudelft.nl

Abstract

UnmannedAerial Vehicles(UAVs) have multi-domain applications and fixed-
wing UAVs are a widely used class. There is ongoing research on topics in
view to optimize the control and guidance of UAVs. This work explores the
design, implementation and Software-in-the-Loop validation of an autopilot
using adaptive guidance laws with emphasis on formation control of multiple
fixed-wing UAVs. The work is done on Raspberry Pis in C++ which can be
interfaced to standard autopilots as companion computers.

The work splits a mission given by the user into primitive missions and
uses an adaptive vector field approach for following it. For formation control,
the work implements a discretized version of the Model Reference Adaptive
Control synchronisation laws for multi-agent systems. Simulations are done
in a distributed setting with a server program designed for the purpose. The
server program handles the user inputs and configurations of the UAVs.

iv

Contents

1 Introduction 3
1.1 Research Problem Introduction 3
1.2 State of the Art . 5
1.3 Research Objective . 6
1.4 Report Outline . 7

2 UAV as an Agent 9
2.1 Frame of References for UAVs 9
2.2 Wind Triangle and Course Angle 11
2.3 Euler Lagrange Dynamics of UAV Agents 11
2.4 Propulsion and Aerodynamic Effects 14
2.5 Autopilot Low-level Controllers in Fixed-Wing UAVs 16
2.6 UAV Model for Simulations 16
2.7 Simulation of UAV Dynamics 17

3 Path Planning and Following in Fixed-wing UAVs 19
3.1 Planning of Path Based on User Mission Inputs 19
3.2 Vector Field Approach for Path Following 22
3.3 Adaptive Vector Field Approach for Path Following 24

4 Team of UAVs as a Multi-Agent System 27
4.1 UAV Muti-Agent Systems . 27
4.2 Communication Graph and Types of Nodes 28
4.3 Objectives for Control . 29
4.4 Reference Dynamics for Leader/Follower Synchronization . . 30
4.5 Synchronization of Leader Dynamics to Reference Dynamics . 31
4.6 Synchronization of Follower Dynamics to Reference Dynamics 33

5 System & Software Architecture 37
5.1 System Architecture for Hardware-in-the-Loop Simulation . . 37
5.2 System Architecture for Software-in-the-Loop Simulation . . 40
5.3 Software Architecture for Path Planner Node 41
5.4 Software Architecture for Leader Node 41
5.5 Software Architecture for Follower Node 42

v

6 Synchronization of Data Between Nodes 45
6.1 A Glimpse to Computer Networking 45
6.2 Protocol for Synchronisation of Data Between Nodes 47
6.3 Transfer of Packets Over the Network 49
6.4 Server for Data Synchronisation 51
6.5 Client for Data Synchronisation 52
6.6 Handling User Configurations & Inputs 52

7 Simulations and Results 55
7.1 Simulations for Path Planner Node 55
7.2 Synchronisation of Leader and Follower Node 58

8 Conclusions and Future Work 63
8.1 Conclusions . 63
8.2 Future Work . 64

vi

List of Figures

1.1 Fixed-wing and Rotary-wing UAVs. 4

2.1 Fixed-Wing UAV body Frame. 10

2.2 Elementary rotations defining euler angles (ZYX convention). 10

2.3 Wind triangle for a UAV. 12

2.4 Modelling of UAV for simulations. 17

3.1 Straight line mission. 20

3.2 Loitering mission. 20

3.3 Waypoints mission. 21

3.4 Combinations of straight line and loitering missions. 22

3.5 Splitting of waypoints mission into primitive missions. 22

3.6 Vector field for a straight line path following. 24

3.7 Vector field for a orbit path following. 25

3.8 Difference in bode plot of course angle caused by approximation. 26

4.1 Type and hierarchy of nodes in a typical formation. 29

4.2 Communication graph for UAV formation control. 29

5.1 Hardware for HITL Simulations. 38

5.2 Atitude control loop for fixed-wing UAVs in PX4. 38

5.3 System architecture for a single UAV. 39

5.4 System architecture for UAV formation control. 40

5.5 System architecture for UAV formation control SITL Simu-
lation. 41

5.6 Component diagram for Path planner node. 42

5.7 Component diagram for Leader node. 42

5.8 Component diagram for follower node. 43

6.1 Network architecture. 46

6.2 New protocol over TCP/IP Layers. 47

6.3 Structure of a packet. 48

6.4 Class diagram for class packet. 51

1

7.1 xy plot of path planner node executing straight line mission
in inertial frame. 56

7.2 xy plot of path planner node executing loitering mission in
inertial frame. 57

7.3 xy plot of path planner node executing waypoints mission in
inertial frame. 58

7.4 Close-up image of xy plot of path planner node executing
waypoints mission near to waypoint (500,500). 59

7.5 Plot for the location of leader and follower UAVs for syn-
chronization in a straight line mission. 60

7.6 Plot for the location of leader and follower UAVs for syn-
chronization in a loitering mission. 61

2

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) or drones are flying electro-mechanical
systems which can operate autonomously, or be operated by remote control,
or by a combination of both [1][2]. UAVs are cutting-edge technology sys-
tems and have multi-domain applications ranging from disaster management
missions to home delivery of goods [3][4][5]. With the advancement of tech-
nology, sophisticated UAVs are being developed; of which, fixed-wing UAVs
are a widely used type [6]. Fixed-wing UAVs have extended flying hours in
comparison to Rotary-wing UAVs, as fixed-wing UAVs support gliding in
air with less energy consumption. However, their dynamics, actuation, take-
off and landing involve complicated aerodynamics and mathematics [7][8].
Figure 1.1 depicts Fixed-wing and Rotary-wing type of UAVs. Control and
guidance of UAVs is an active area of research and this work also primarily
focusses on the same. In this chapter, we introduce the problem statement
and the structure of the thesis.

1.1 Research Problem Introduction

According to [9], formation control tries to drive multiple agents to follow a
set of constraints on their states. In the application level, formation control
enables a set of agents or UAVs to fly in a pre-specified spacial formation
(Y,T,V) in the inertial frame to execute a mission. For each type of the form-
ation, we can obtain formation gaps that the UAVs should maintain with
each other. For flying, fixed-wing UAVs rely on aerodynamic lift generated
due to the relative motion of UAV with air. Thus, unlike quad-rotor drones,
fixed-wing UAVs cannot stay stationary in air and constantly needs to be
in motion in-order to be airborne. Thus highly mathematical control al-
gorithms are needed to achieve the formation. Also, the complicated lateral
dynamics of fixed-wing UAVs add to the difficulty in achieving formation
control through ordinary methods.

With emphasis on implementation, the formation control problem can be

3

(a) Fixed-wing UAV. (b) Rotary-wing(Quad-copter) UAV.

Figure 1.1: Fixed-wing and Rotary-wing UAVs.
[Image source: Internet.]

seen as two sub-problems: 1) path planning and following - the ability to
execute the inertial missions provided by the user 2) synchronization - the
need to fly in the formation respecting the formation gaps. Thus as part of
this work, we try to achieve an implementation which addresses both the
sub-problems.

For the first sub-problem, by using guidance laws in literature for path
planning and following, the component developed should be able to plan the
path for the formation of a set of UAVs.

“Agent” is a multi-disciplinary term which can be defined as any entity
which listens and acts on its own environment based on an autonomous logic
[10]. UAVs fit into the above definition and qualify to be called an agent.
Thus the works in literature for multi-agents system can also be applied to
UAVs.

In multi-agent systems, synchronization is the term used to represent the
idea of achieving the same objective by having information about neigh-
bouring agents. Flying in formation can be considered as an extension of
the same with the only difference in having the formation gaps. Thus using
the autopilot component developed, the UAVs should be able to synchronize
its states.

Hardware-in-the-Loop simulation (HITL) is a real-time approach to val-
idate a designed algorithm or software by deploying them in the targeted
hardware with simulated plant and feedback sensors [11]. On the other
hand, Software-in-the-Loop (SITL) is an approach for validating the de-
veloped software or algorithm with the help of mathematical models.

Autopilot is a component used to control the trajectory or orientation of
the aircraft by automated control mechanisms reducing the human effort
[12]. The software component developed in this work fits in the definition of
an autopilot component for UAVs. SITL and HITL simulations are widely
used for the validation of autopilot software components in UAVs. The SITL

4

simulation of the implemented autopilot component and algorithms is in the
purview of this work.

In a nutshell, as part of this work, a design, implementation and SITL
simulation of an autopilot component giving emphasis to formation control is
required. For the simulations, the multiple UAVs in the system should have
a synchronized output while executing the missions provided by the user.
The simulations need to be done in a distributed environment extendable
to HITL or real-word scenarios.

1.2 State of the Art

Autopilot components, comprising of both software and hardware, enable
the basic control and navigation of UAVs [13][14]. Developers can use the
framework and support materials to develop advanced tailor-made applica-
tions. The autopilot components provide Application Programming Inter-
faces (APIs) to extend the ability of autopilot components. The established
autopilot components can handle multiple UAVs at a time, but each UAV
is treated individually with a separate user input. An autopilot component
which handles UAVs operations as a group is absent in the existing imple-
mentations. This poses the question: How the existing autopilot components
can be extended to execute formation flight enabling operations as a group
with a single user input?

For path planning of UAVs, the complex missions for a UAV can be split
into primitive missions which can be individually executed[15]. The path
following algorithms generate a commanded course angle which will gradu-
ally put the UAV into the required mission trajectory. The authors in [16]
do a survey of path following strategies for UAVs. The geometric methods
for UAV path following uses a virtual target point (VTP) along the path
and follow it with pure pursuit or Line of Sight (LOS) guidance laws. Car-
rot chasing algorithm is the simplest of all and makes the UAV constantly
chase a VTP named as carrot using the guidance laws. Nonlinear Guidance
Law (NLGL) uses a different approach for calculation of VTP and the sta-
bility is established by Lyapunov analysis. The advantage of NLGL is that
it works independent of the type of the path. Pure pursuit and LOS-based
path following (PLOS) uses the pure pursuit for driving the UAV close to
the waypoint, and the LOS guidance law for directing the UAV towards
the LOS. Vector Field (VF) based approaches define a field of commanded
course angle for each point around the paths. By following the commanded
angle at each point, the UAVs can track the path gradually with the lowest
cross track error of all algorithms [17]. The adaptive vector field approach
proposed in [18] improves the VF approach by estimating the ground velo-
city used in the control law. This also accounts for the unmodelled dynamics
of first order approximations assumed for the VF method [19][20]. But, Soft-

5

ware implementation and SITL validation of adaptive vector field approach
is an open question.

Work in [21][22][23][24][25][26] are towards addressing the problem of
multi-agent synchronization. For formation control of fixed-wing UAVs,
[27] proposed a graph based method using linearised model and a game the-
ory based Riccati solution. An artificial potential field based approach is
proposed for formation flight in [28]. The approach doesn’t consider the un-
certainties in UAV parameters and uses a linearised model for simulation. In
[23], a Model Reference Adaptive Control (MRAC) graph based approach is
introduced. Parameters such as mass, inertial tensor etcetera of UAVs can
be uncertain because of three reasons: 1) errors in measurements, 2) vari-
ation of parameters due to physical changes in each UAV, and 3) parameter
variation from UAV to UAV due to manufacturing imperfections. Adaptive
control laws have the advantage of online estimation of control law para-
meters, and are thus independent of parameter uncertainties. The work in
[23] proposes continuous-time estimation dynamics and simulates it using
MATLAB ordinary differential equation (ode) solver, which is far from the
reality of distributed discrete-time digital systems communicating through
a network. Thus we frame the question, Can MRAC adaptive synchroniza-
tion work in a distributed setting with periodic inter-UAV communications
through a digital network?

[29][30] gives analysis and approach for simulating the dynamics of UAVs.
But for formation control there involves a team of UAVs. Xplane and Gazebo
are established simulators for UAVs. Both Xplane and Gazebo execute in a
centralized setting and does not support HITL simulation of multiple fixed-
wing UAVs. For quad-copters, Simulation in Hardware is a comparatively
new approach and is in the very early stages of development by the PX4
Development Team. The idea is to simulate drone dynamics in the autopilot
hardware itself, instead of depending on a separate machine for the simula-
tion of the plant dynamics. Motivated from this idea, we frame the question,
Can the fixed-wing UAV plant dynamics be simulated in the accompanying
hardware itself?

1.3 Research Objective

Though the research in control and guidance of UAVs are intense, there are
no autopilot components which has a design and implementation emphas-
ising formation control of fixed-wing UAVs. The objectives of this work
are:

• Design, implement and simulate an autopilot component with em-
phasis on formation control of fixed-wing UAVs.

• Software-in-the-Loop validation of adaptive vector field approach for

6

path following of fixed-wing UAVs.

• Validate MRAC adaptive synchronisation for multi-agent systems in
a distributed setting.

• Simulate the dynamics of multiple fixed-wing UAVs.

1.4 Report Outline

The organization of this report is as follows:

• Chapter 2 introduces the UAV as an agent, analyses the dynamics
of fixed-wing UAVs, and describes the approach for simulating the
dynamics.

• Chapter 3 describes the approach for path planning and following
for fixed-wing UAVs.

• Chapter 4 discusses the approach for synchronization of multiple
UAVs as multi-agent system.

• Chapter 5 introduces the system architecture planned for the HITL
and the reduced architecture for the simulations in this work. The
chapter also discusses the software architecture for the implementa-
tion.

• Chapter 6 introduces the protocol, approach and server design for
exchange of data between nodes.

• Chapter 7 presents the simulations and the results for the imple-
mentations done.

• Chapter 8 concludes the work and points out the directions for future
research.

7

8

Chapter 2

UAV as an Agent

This chapter describes the modelling of UAV as an agent and approach
for the simulation of its dynamics. Section 2.1 introduces the important
frames of references and Section 2.2 explains the wind triangle. Section
2.3 derives the Euler Lagrange dynamics of a UAV using basic mechanics.
Section 2.4 expounds the forces and moments in an airborne fixed-wing UAV
due to aerodynamics and propulsion. Section 2.5 introduces the low-level
controllers introduced by autopilot software and modelling their dynamics.
Section 2.6 models the fixed-wing UAV dynamics into components for the
purpose of simulations. Section 2.7 deals with the approach for simulating
fixed-wing UAV dynamics in a C++ environment.

2.1 Frame of References for UAVs

Frames of references help to uniquely locate and orient in space. In this
section, we define the frames of references which are important for UAV
dynamics. They are:

1. The earth frame F e: is a frame whose origin is fixed to a point on
earth. The frame is assumed to be an inertial frame and having a
flat ie-je plane. According to the NED convention, the unit vectors of
this frame ie, je, and ke are directed towards north, east, and down
respectively. In this work, we use the term inertial frame F i also as
a synonym to address this frame.

2. The vehicle frame F v: represents the inertial frame translated onto
the center of mass of the vehicle. The frame is depicted in Figure 2.1

3. The body frame F b: is defined as shown in the Figure 2.1 and attached
to the centre of mass of the vehicle. The roll axis ib is aligned to the
longitudinal direction from tail to head of the vehicle, pitch axis jb to
the transverse direction along wings, and yaw axis kb perpendicular
to the other two axes forming a right angled coordinate system.

9

4. The stability frame F s: The airspeed Va is the relative velocity
between aircraft and surrounding air. Angle of attack α is the angle
airspeed makes to the ib-jb plane. Stability frame is a frame obtained
by rotating the body frame around jb by the angle of attack α towards
the direction of airspeed.

5. The wind frame Fw: The airspeed vector may also not lie in the ib-kb

plane, and makes an angle to the plane called as side-slip angle β.
By rotating the stability frame by angle β around ks axes to have i
axes aligned with the direction of airspeed vector, we obtain the wind
frame.

North

East

Down

F v

F b

roll axis

pitch axis

yaw axis

Figure 2.1: Fixed-Wing UAV body Frame.

The orientation of any given body frame relative to the vehicle frame can
be represented using three rotations around body frame axes. The set of the
angle measure for the three rotations are called as euler angles [31]. Figure
2.2 shows the three successive rotations for finding euler angles according to
ZYX convention. The yaw rotation happens from the vehicle frame F v to
an intermediate body frame F b1 by an angle of ψ about kv axis. The pitch
rotation happens about jb1 axis of F b1 by an angle of θ. By an angle of φ,
the roll rotation happens about the ib2 axis to obtain the body frame F b

that need to be represented. The euler angles are φ, θ, ψ.

Yaw Rotation

F v

iv

jv
F b1

jb1

ib1

Pitch Rotation

F b2
ib2

kb2
F b1

kb1

ib1

Roll Rotation

F b2

jb2

kb2

F b

kb

jb

Figure 2.2: Elementary rotations defining euler angles (ZYX convention).

The relative orientation between any two frames can be included in calcu-
lations using a rotation matrix. Rotation about any frame axes by an angle

10

θrot to obtain a second frame relates the coordinates as,

p1 = R1
0(θrot)p

0 (2.1)

where p0 ∈ R3 and p1 ∈ R3 are the coordinates of points in frame 0 and
frame 1 respectively, R1

0 ∈ R3×3 is the rotation matrix and a function of the
angle of rotation θrot.

Using the euler angle definition, the rotation matrix from earth frame (or
vehicle frame) to body frame, can be written as,

Rbe(φ, θ, ψ) = Rbb2(φ)Rb2b1(θ)Rb1e (ψ) (2.2)

Thus, the rotation matrix from earth to body frame Rbe is obtained as, cosθcosψ cosθsinψ −sinθ
−cosφsinψ + sinφsinθcosψ cosφcosψ + sinφsinθsinψ sinφcosθ
sinφsinψ + cosφsinθcosψ −sinφcosψ + cosφsinθsinψ cosφcosθ

(2.3)

An interesting property of rotation matrices is given below,

Reb = (Rbe)−1 = (Rbe)T (2.4)

2.2 Wind Triangle and Course Angle

The effect of wind on UAV dynamics can be calculated using the so called
wind triangle, as shown in Figure 2.3 [19]. In vector sense, the wind triangle
can be written as,

Vg = Va + Vw (2.5)

where Va is the velocity of aircraft relative air known as airspeed, Vw is
wind velocity, and Vg is the velocity of aircraft with respect to ground called
ground velocity. The angle between projection of Vg in xy plane of F i and
north direction is called as course angle χ.

2.3 Euler Lagrange Dynamics of UAV Agents

A UAV as an agent, perceives the relative location and orientation respective
to the earth frame using onboard sensors and implement control actions
using actuators to achieve a mission in its environment. Here we model the
Euler Lagrange (EL)dynamics for a UAV. An airborne UAV has six Degrees
Of Freedom (DOF) of a rigid body - three for translation and three for
rotation.

Let m ∈ R be the mass of the UAV, Xe = [x, y, x]T ∈ R3 is the inertial
position of the body, Vb = [u, v, w]T ∈ R3 is the linear velocity of body

11

North

ii

ib

ψ

β

χ

ψw

Va

Vg
Vw

Figure 2.3: Wind triangle for a UAV.

expressed in body frame, E = [φ, θ, ψ]T ∈ R3 are the euler angles of the
body frame from the inertial frame, ωb = [p, q, r]T ∈ R3 be the angular
velocity of body in body frame, Fb ∈ R3 be the net forces acting on the
body expressed in body frame, and Mb ∈ R3 be the net torque acting on
the body expressed in body frame.

The equation of motion in inertial frame is given by Newton’s third law
of motion as,

mV̇e = Fe (2.6)

where Ve ∈ R3 is the linear velocity of the body in inertial frame, and
Fe ∈ R3 be the net forces acting in the body expressed in inertial frame.

Using results in [32], as explained in [33], the relation in body frame can
be written as,

mV̇b +m(ωb × Vb) = Fb (2.7)

Let ωe ∈ R3 be the angular velocity of the body in inertial frame, Me ∈ R3

be the torques acting on the body expressed in inertial frame, and I ∈ R3×3

is the inertia tensor which is assumed to be constant. For rotational motion,
by Euler’s law we can write,

˙(Iωe) = Me (2.8)

The dynamics of the rotational velocity in body frame [33]is,

Iω̇b + ωb × Iωb = Mb (2.9)

Equations (2.7) and (2.9) constitutes the 6 DOF motion equation for
an airborne UAV. Both equations can be written using the components of

12

vectors as,

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 −Ixz
0 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz

u̇
v̇
ẇ
ṗ
q̇
ṙ

+

0 −mr mq 0 0 0
mr 0 −mp 0 0 0
−mq mp 0 0 0 0

0 0 0 0 Izr − Ixzp −Iyq
0 0 0 −Izr + Ixzp 0 Ixp− Ixzr
0 0 0 Iyq −Ixp+ Ixzr 0

u
v
w
p
q
r

 =

[
Fb
Mb

]

(2.10)

Fb and Mb are the net forces and torques acting on the body, which
includes the action of gravity. Gravitational force acts at the centre of
gravity of any body. For small bodies like UAVs, the centre of gravity and
the centre of mass are the same. Thus, the moment by gravitational action
on the UAV is negligible.

Gravitational force always acts in the positive z-axis direction of the earth
frame. Gravitational force on the body represented in earth frame is,

Fge =

 0
0
mg

 (2.11)

Thus, gravitational force in body frame can be expressed as,

Fgb = RbeFge

=

 −mgsinθ
mgsinφcosθ
mgcosφcosθ

 (2.12)

Fb and Mb can be re-written as,

[
Fb
Mb

]
=

−mgsinθ
mgsinφcosθ
mgcosφcosθ

0
0
0

+

τ1
τ2
τ3
τ4
τ5
τ6

 (2.13)

where [τ1, τ2, τ3]
T and [τ4, τ5, τ6]

T are the sum of forces and moments acting
on the body other than gravity. Using (2.13) in (2.10), we obtain the Euler
Lagrange dynamics for a UAV,

13

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 −Ixz
0 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz

︸ ︷︷ ︸
D

u̇
v̇
ẇ
ṗ
q̇
ṙ

︸︷︷︸
q̈

+

0 −mr mq 0 0 0
mr 0 −mp 0 0 0
−mq mp 0 0 0 0

0 0 0 0 Izr − Ixzp −Iyq
0 0 0 −Izr + Ixzp 0 Ixp− Ixzr
0 0 0 Iyq −Ixp+ Ixzr 0

︸ ︷︷ ︸
C(q̇)

u
v
w
p
q
r

︸︷︷︸
q̇

+

sinθmg
−sinφcosθmg
−cosφcosθmg

0
0
0

︸ ︷︷ ︸
g

=

τ1
τ2
τ3
τ4
τ5
τ6

︸︷︷︸
τ

(2.14)

The state-space representation of EL dynamics in (2.14) is,[
q̇
q̈

]
︸︷︷︸
ẋ

=

[
0 1l
0 −D−1C

]
︸ ︷︷ ︸

A

[
q
q̇

]
︸︷︷︸
x

+

[
0

−D−1g

]
+

[
0

D−1

]
︸ ︷︷ ︸

B

τ (2.15)

2.4 Propulsion and Aerodynamic Effects

The actuation in a fixed-wing UAV is done by the propeller (throttle) and
the control surfaces such as rudder, aileron and elevator. Propeller imparts
forward thrust, rudder steers the aircraft, aileron controls the roll and elev-
ator controls the pitch of the aircraft. Using the throttle input, the forces
and moments of propulsion can be calculated. The forces and moments due
to aerodynamics can be calculated with the deflections in rudder, elevator
and aileron.

The force of propulsion can be calculated [19] using the formula,

Fp =
1

2
ρSpCprop[(RΩ)2 − V 2

a] (2.16)

where ρ is the density of air, Sp is the area swept by the propeller, Cprop
is the rotor thrust coefficient, R is the radius of the propeller, Omega =
kmotorδt + qmotor is the motor speed, kmotor,qmotor are motor constants, Va
is the magnitude of velocity od UAV relative to air, and δt is the throttle
input.

In UAVs, often the propeller is mounted in slightly slanting position to the
ib-jb plane of aircraft, but in ib-kb plane. The angle by which the propeller
is tilted is known as the mount angle. Let the mount angle be δmount, the
force of propulsion in body frame is given by,

Fpb =

Fp cos δmount
0

Fp sin δmount

 (2.17)

14

Force due to propulsion Fp is in ib-kb plane. The turning moment due to
propulsion Mpb,

Mpb = rcom−p × Fpb (2.18)

where rcom−p is a vector from centre of mass to any point along the line of
action of force Fpb. Also, rcom−p is expressed in body frame.

For longitudinal dynamics, the aerodynamic lift, drag and pitch moments
acting in the ib-kb plane expressed in stability frame can be calculated [19]
using,

Flift =
1

2
ρV 2

a SCL(α, q, δe)

Fdrag =
1

2
ρV 2

a SCD(α, q, δe)

M =
1

2
ρV 2

a ScCm(α, q, δe)

(2.19)

where S is the planform area, as defined in [34], of single wing, c is the main
chord of the wing, and CL, CD, Cm dimensionless coefficients. The value
of coefficients is determined by the angle of attack (α), the rate of pitch
(q), and the deflection of elevator (δe). These forces in body frame can be
written as, fx0

fy

 = Rbs(α)

−Flift0
−Fdrag

 (2.20)

where Rbs is the rotational matrix from stability to body frame.

For lateral aerodynamics, a force fy directly acts in direction of jb, rolling
moment L and yawing moment N written as [19],

fy =
1

2
ρV 2

a SCY (β, p, r, δa, δr)

L =
1

2
ρV 2

a SbCl(β, p, r, δa, δr)

N =
1

2
ρV 2

a SbCn(β, p, r, δa, δr)

(2.21)

where b is the wingspan, CY , Cl, Cm are dimensionless aerodynamic coeffi-
cients, β is slide-slip angle, δa is deflection in ailerons, and δe is deflection
in elevator.

Thus the aerodynamic force Faero−b in body frame is,

Faero−b =

fxfy
fz

 (2.22)

15

The net force and moment acting on the body are,

F = Fgb + Fpb + Faero−b

M = Mpb +

LM
N

 (2.23)

2.5 Autopilot Low-level Controllers in Fixed-Wing
UAVs

Standard autopilots for fixed-wing UAVs realize low-level controllers such as
[35], 1) yaw rate control, 2) pitch angle control, 3) roll angle control, 4) Total
Energy Control System (TECS) [36] for height and velocity control.

The controllers are realized as discrete time control loops. The continu-
ous time dynamics equations can be reverse-engineered from the discretized
control loops of tuned autopilot controllers, which can be represented as,

ẋc = fc(xc, uc) (2.24)

where xc is the states introduced by the controllers, and uc is the control
input comprising of height, velocity, course angle set points. The control
surface (elevator, rudder, ailerons) deflections and throttle input can be
written as a function of the state xc, i.e.,

δe
δr
δa
δt

 = gc(xc) (2.25)

2.6 UAV Model for Simulations

For simulation of Unmanned Aerial Vehicle (UAV) dynamics, any UAV can
be modelled into components as shown in Figure 2.4. Block 1 represents the
motion of an object, in 3D space, having six degrees of freedoms under the
effect of the net force and net moment acting on it. The ordinary differential
equation can be written as in (2.7) and (2.9) for the motion using basic
mechanics.

As discussed in previous sections, for an airborne body, the major forces
and moments acting on the body are due to propulsion, aerodynamics and
gravity. Block 2 calculates the net force and moments acting on an airborne
body. Block 3 has the dynamics introduced by the low level controllers
which generate throttle input and control surface deflections based.

In this work, for the path planner node simulation, we use the model which
comprises of all the three blocks above. For the simulation of leader and

16

Figure 2.4: Modelling of UAV for simulations.

follower nodes, we use the model with only Block 1 which can be extended
in future to accommodate for dynamics by Block 2 & Block 3.

2.7 Simulation of UAV Dynamics

Consider the state vector of the body,

X =

Xe

Vb
E
ωb

 (2.26)

where all the symbols have meaning as defined in the previous section. In
this section, we derive the expression for Ẋ for the body and establish a
method in C++ to numerically solve X(t) at any time instant t, for a known
initial condition X(0).

The time derivative of X can be written as,

Ẋ =

Ve
V̇b
Ė
ω̇b

 (2.27)

where Ve ∈ R3 is the linear velocity of the body in inertial frame.
Equation (2.7) can be rewritten as,

V̇b =
Fb
m
− ωb × Vb (2.28)

Also, The velocity of body expressed in inertial and body frames are
related by,

Ve = RebVb (2.29)

17

Equation (2.9) can be rearranged as,

ω̇b = I−1(Mb − ωb × Iωb) (2.30)

Given φ,θ,ψ ∈ R are the euler angles as per Z-Y-X convention, a rela-
tionship between euler rates and angular velocity wb can be established [37]
as,

ẇb =

φ̇0
0

+Rbb2

0

θ̇
0

+Rbb2Rb2b1

0
0

ψ̇

= J−1

φ̇θ̇
ψ̇

(2.31)

where R is the rotational matrix, b1, b2 are the two intermediate frames

in euler angles definition, and J =

1 (sinφ tan θ) (cosφ tan θ)
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

.

Thus,
Ė = Jẇb (2.32)

Using (2.29),(2.28), (2.32), and (2.30) in (2.27), we obtain the dynamics
of X as,

Ẋ =

RebVb

Fb
m − ωb × Vb

Jẇb
I−1(Mb − ωb × Iωb)

 (2.33)

Since the dynamics of X in (2.33) is non-linear, we can only solve for X(t)
numerically from the known initial condition X(0).

’Odeint’ is a C++ library for numerically solving ordinary differential
equations [38], and provides various solvers like Runge-Kutta4, Dormand-
Prince etc. The odeint solvers need a functor or a function having the
dynamics as in (2.33). Thus the dynamics of the body is simulated in C++
using a functor and the odeint Dormand-Prince solver.

The C++ code for simulation implements a templated class Drone with
dynamics in Equations (2.33) which takes force and moment inputs. Also,
another template specialization of class Drone inherits from previous class
Drone implementation and adds dynamics in (2.24) utilizing Equations
(2.23) and (2.25). The simulations use the aerodynamic coefficients of a
Bixler fixed-wing UAV, and the continuous time dynamics of the controllers
in ardupilot autopilot tuned for it. This enables us to simulate the complete
dynamics for a fixed-wing UAV.

18

Chapter 3

Path Planning and Following
in Fixed-wing UAVs

This chapter deals with the approach for planning a path based on the user
mission inputs and following the planned path.

Section 3.1 explains the strategy for path planning of a UAV to execute
an inertial mission given by the user. Section 3.2 introduces the concept
of vector fields and application of them in following a path. Section 3.3
describes the adaptive version of the vector field approach for following a
path in fixed-wing UAVs.

3.1 Planning of Path Based on User Mission In-
puts

In this work, path planning is defined as the process of deciding a trajectory
the UAVs will traverse to execute a mission provided by the user. It is not
in the sense of obstacle detection and detours for obstacle avoidance.

A mission is defined as a path or points the UAV should traverse while it
is airborne. From existing UAV software, we list the three standard aerial
missions the UAVs need to execute. They are:

1. Straight Line Mission: In this mission, the UAV needs to traverse a
straight line in the inertial frame F i. The slope and a point through
which the straight line passes defines the mission. The straight line
mission can be written as an ordered pair,

SL = (P,S) (3.1)

where, P = (xp, yp) is a point in the xy plane of F i called line origin,
and S = (xs, ys) is a vector denoting the direction in the xy plane of
F i called line slope. Figure 3.1 depicts a candidate for a straight line
mission.

19

F i x

y xs

ys

(xp, yp)

Figure 3.1: Straight line mission.

2. Loitering Mission: In a loitering mission, the UAV needs to continu-
ously loiter in a circular orbit. The orbit is defined by the centre point
and the orbit radius in the F i. The loitering mission can be written

F i x

y

R

D

(xc, yc)

Figure 3.2: Loitering mission.

as a 3-tuple,

O = (D,R, C) (3.2)

where, D is the direction of loitering (1 for clockwise and -1 for anti-
clockwise), R is a distance in the xy plane of F i called orbit radius,
and C = (xp, yp) is a point in the xy plane of F i called orbit centre, .
An example for a loitering mission is shown in figure 3.2.

3. Waypoints Mission: The UAV needs to traverse through or fly close-
by to a given set of points in inertial frame F i. The set of points
defining these mission are called waypoints. The waypoints mission
can be written as,

W = (R,P) (3.3)

where, R is a distance in the xy plane of F i called turn radius, and
P is a sequence of ordered pairs (xn, yn) such that (xn, yn) is a point

20

in the xy plane of F i for n = 1...N . Figure 3.3 depicts an example of
a mission with three waypoints.

F i x

y

(x1, y1)

(x2, y2) (x3, y3)

Figure 3.3: Waypoints mission.

Straight Line and Loitering Missions are basic (primitives) types. Every
waypoints mission can be split into sub-missions of straight lines and loiter-
ing. In [15], the authors present an approach to split a given waypoints mis-
sion into primitive missions. Figure 3.4 shows the combinations of straight
line and loitering missions that can be achieved using the approach. Dashed
red lines connect the way points, and blue curve is the path planned for the
UAV. Green circles show the circles to which the arcs in the path belong.
In this work, we use the Type II combination for path planning.

For any three consecutive waypoints W1, W2 and W3, we can split into
primitive missions as shown in Figure 3.5. Let the current position of UAV
be L, and turn radius be R. The primitive missions obtained are,

• Mission 1 - Straight Line: The mission is a straight line through cur-
rent location and point M1. In vector sense,

M1 = W1 +
R

tan(cos−1((L−W1)
|L−W1| ·

L−W1+W2−W1
|L−W1+W2−W1|))

(L−W1)

|L−W1|
(3.4)

• Mission 2 - Loitering: A circular orbit centered at M2 with a radius
of R. In vector sense, M2 can be written as,

M2 = W1 +
R

sin(cos−1(L−W2)
|L−W2| ·

L−W1+W2−W1
|L−W1+W2−W1|))

L−W1 +W2 −W1

|L−W1 +W2 −W1|
(3.5)

• Mission 3 - Straight Line: The mission is a straight line through points
W1 and M3. In vector sense, M3 can be written as,

M3 = W2 +
R

tan(cos−1((W1−W2)
|W1−W2| ·

W1−W2+W3−W2
|W1−W2+W3−W2|))

(W1 −W2)

|W1 −W2|
(3.6)

21

(a) Type I. (b) Type II.

Figure 3.4: Combinations of straight line and loitering missions.

• Mission 4 - Loitering: A circular orbit centered at M4 with a radius
of R. In vector sense, M4 can be written as,

M4 = W2+
R

sin(cos−1(W1−W2)
|W1−W2| ·

W1−W2+W3−W2
|W1−W2+W3−W2|))

W1 −W2 +W3 −W2

|W1 −W2 +W3 −W2|
(3.7)

• Mission 5 - Straight Line: The mission is a straight line through points
W2 and W3.

Figure 3.5: Splitting of waypoints mission into primitive missions.

3.2 Vector Field Approach for Path Following

In the previous section, we introduced path planning and a method to obtain
primitive missions from the mission provided by the user. At this juncture,

22

we need a mechanism for the fixed-wing UAV to perform the obtained prim-
itive missions.

Path following is the process of a UAV navigating in space to execute a
primitive mission. The vector field approach for fixed-wing UAVs employed
in [19][17][39] suits this purpose. Cross-track error denotes the deviation
from the required path. In comparison to other approaches, with the least
control effort, the vector field approach gives the lowest cross-track error
[19].

The vector field gives a direction in every point in the inertial plane, along
which the UAV should move to track the path. Since all the coordinates
around the path get a direction eventually leading to the path, it’s like a
field but with only interest in the direction.

Recall the course angle χ defined in Section 2.2. With the vector field
approach, the objective is to asymptotically drive the cross-track error to
zero by controlling the course angle. Thus we construct a vector field around
the desired path to provide the course angle commands to the UAV.

Over the existing low-level controllers from autopilot software, UAVs can
be equipped with basic controllers as designed in [19], to have an approxim-
ated first order course angle χ dynamics given as,

χ̇ = αχ(χc − χ) (3.8)

where, χc is the commanded course angle, αχ is first order time constant.

The vector field around a straight line path is described by,

χd(epy) = χq − χ∞
2

π
tan−1(kslepy) (3.9)

where, epy is cross track error i.e. lateral deviation from path, χq is angle
between north and the straight line, ksl and χ∞ are tuning parameters. An
example vector field generated for straight line path following is given in 3.6
[19].

The control law which drives χ→ χd and epy → 0 while t→∞ is,

χc = χ− χ∞
2

π

βsVg
αχ

sin(χ− χq)−
κsl
αx
sat(

χ̃

εsl
) (3.10)

where, βs = ksl
1+(kslepy)2

, χ̃ = χ − χd, Vg = ‖Vg‖, and κsl, εsl are tuning
parameters.

For orbit, the vector field which describes reference course is given by,

χd(d̃) = γ + λ(
π

2
+ tan−1(kod̃)) (3.11)

where d̃ = d− R, d is distance from orbit center, γ is angle between North
and vector from UAV to orbit center, λ is direction of rotation in orbit, ko

23

0 20 40 60 80 100

x (meters)

0

10

20

30

40

50

60

70

80

90

100
y
 (

m
e

te
rs

)

VF

Path

Figure 3.6: Vector field for a straight line path following.

is a tuning parameter. An example for a vector field described by equation
3.11 is as shown in Figure 3.7 [19].

The control law which drives χ→ χd and d̃→ 0 while t→∞ is,

χc = χ+
Vg
αχd

sin(χ− γ) + βo
λVg
αχ

cos(χ− γ)− κo
αχ
sat(

χ̃

εo
) (3.12)

where βo = ko
1+(kod)2

, and κo, εo are tuning parameters.

3.3 Adaptive Vector Field Approach for Path Fol-
lowing

There are two issues in the vector field approach discussed in section 3.2
which reduces the accuracy and have scope for improvement. They are:

• VF approach works with assumption of course angle dynamics χ̇ =
αχ(χc − χ). But in real UAV, this is a first order approximation of
a higher order system dynamics. The approximation to first order
dynamics, leaves out some dynamics as un-modelled. The bode plot
given in Figure 3.8 depicts the difference between the first order ap-
proximation and actual UAV dynamics [19].

24

-100 -50 0 50 100

x (meters)

-100

-80

-60

-40

-20

0

20

40

60

80

100
y
 (

m
e

te
rs

)

VF

Path

Figure 3.7: Vector field for a orbit path following.

• For the vector field approach Vg = ‖Vg‖) should be known. But Vg is
the vector sum of velocity of UAV w.r.t air and wind velocity, where
wind velocity is an unknown.

The accuracy of the above approach can be increased by adaptively tuning
some parameters of VF in such a way as to compensate for unmodelled
dynamics and unknown wind. Motivated from literature, parameter Vg can
be adaptively estimated to achieve this. The resultant new approach is called
as the adaptive vector field approach. In [18][19] the estimation dynamics
for the adaptive estimation of Vg is derived.

The estimation dynamics of Vg for a straight line following is given as,

˙̂
Vg = Γslµslχ̃χ∞βs

2

π
sin(χ− χq) + Fsl − σslΓslV̂g (3.13)

where Γsl is the estimator gain, µsl is a weighting term, σsl adds a damping
action, and Fsl is a feed-forward term defined as,

Fsl =
∂V̂g
∂χ

[
−χ∞

2

π
βsV̂g sin(χ− χq)− κslsat

(
χ̃

εsl

)]
(3.14)

25

Figure 3.8: Difference in bode plot of course angle caused by approximation.
[Taken from [20].]

where

∂V̂g
∂χ
'Ws sin(ψw,s − χ) + (V 2

a −W 2
s sin2(ψw,s − χ))−

1
2

W 2
s sin(ψw,s − χ) cos(ψw,s − χ)

(3.15)

where Ws = ‖Vw,s‖, Vw,s is the velocity of steady-state wind component,
and ψw,s is the angle steady-state wind component makes with the north
direction [20].

The estimation dynamics of Vg for an orbit path following is given as,

˙̂
Vg = −Γoµoχ̃

(
1

d
sin(χ− γ) + λβo cos(χ− γ)

)
+ Fo − σoΓoV̂g (3.16)

where

Fo =
∂V̂g
∂χ

[
V̂g
d

sin(χ− γ) + λβoV̂g cos(χ− γ)− κosat
(
χ̃

εo

)]
(3.17)

26

Chapter 4

Team of UAVs as a
Multi-Agent System

This chapter discusses the approach for synchronization of multiple UAVs
as multi-agent system.

Section 4.1 formulates the multi-agent system for UAVs and introduces
the overall approach for synchronization. Section 4.2 introduces the com-
munication graph and types of nodes in UAV multi-agent synchronization.
Section 4.3 discuss the control objectives for each type of node. Section 4.4
explains the approach for generating the reference dynamics to which the
leaders and followers should synchronize. Section 4.5 and Section 4.6 discuss
the approach for synchronizing leaders and followers to reference dynamics
using Model Reference Adaptive Control (MRAC).

4.1 UAV Muti-Agent Systems

In Section 2.3, we introduced UAV as an agent and derived the Euler Lag-
range dynamics for UAVs. When we have multiple UAVs,we can consider
that team as a multi-agent system having dynamics as,

Di(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (4.1)

where subscript i ∈ {1...N} uniquely identifies each agent in the team of N
UAVs.

In this work, a particular UAV in the team follows a free designed path
based on user inputs and all other agents synchronize to a dynamics gener-
ated by the UAV.

For synchronisation of multi-agent systems having EL dynamics the graph
based Model Reference Adaptive Control (MRAC) approach presented in
[23] can be used. The approach estimates the parameters of MRC control
laws online to drive the systems of agents into synchronization. Control
allocation is the process by which a required force and moment input is

27

distributed across the propeller and control surfaces of a UAV. This work
does not account for the control allocation and assumes the generated forces
and moments from the control law can be directly implemented.

4.2 Communication Graph and Types of Nodes

For UAV synchronization, we consider a system of UAVs where each UAV
can share its data to others. Two UAVs are said to have a directed connec-
tion if there is a flow of information between one UAV to the other. The
information shared can be the inertial measurements, control inputs, or any
data which helps in formation control. The information flow between UAVs
are better represented using directed graphs called communication graphs.

A directed graph or digraph is composed of nodes and directed edges (ar-
rows). A directed graph can be written as an ordered pair,

D = (V,A) (4.2)

where, V is a set of node (or vertices), and A is a set of ordered pair of nodes
called arrows [40].

Each UAV forms a node in the graph and the directed edges represent the
allowed information flows between the UAVs.

For graph based approach of formation control, nodes in the graph can
be classified into three based on information flow as,

• Path Planner Node: This node decides the path for the complete set
of drones. The node doesn’t receive information from any other nodes
(UAVs) and also generates the dynamics to which all other nodes
should synchronize. Thus the node is called as pinner node in lit-
erature.

• Leader Node: Leader nodes in the formation have access to data from
the pinner node.

• Follower Nodes: The follower nodes have only access to data from
nodes other than the pinner node.

The type and hierarchy of nodes identified in a typical formation is as
shown in figure 4.1. The arrows represent the allowed information flows.

In this work we consider a system of UAVs having a communication graph
depicted as in Figure 4.2. Node 0 is the pinner node. Note that node 1, the
leader node, receives information from the pinner node but not vice versa.
Node 2, the follower node, has access to the information from Node 1.

Mathematically the communication graph in Figure 4.2 can be written as,

D = (V,A) (4.3)

where V = {0, 1, 2}, and A = {(0, 1), (1, 2)}.

28

Figure 4.1: Type and hierarchy of nodes in a typical formation.

Figure 4.2: Communication graph for UAV formation control.

4.3 Objectives for Control

The complete set of UAVs together have to execute the missions provided by
the user. In this work, the path planner UAV executes the received mission
and all other UAVs in the formation synchronize with the path planner node.
Thus we achieve a synchronized flying while performing the given mission.

In Section 4.2, we introduced the path planner (or pinner) node. It is
important to recall that the path planner node does not receive any inform-
ation inputs from other UAVs in the formation. However, the path planner
node uses the information configured by the user for its operation.

Here we define the primary objectives of the path planner node. They
are:

1. Plan the path for the complete formation based on the type of path
input provided by the user.

2. Traverse the planned path using path following techniques.

3. Generate a dynamics to which all other UAVs should synchronize using
their respective controllers.

The design of the path planner node is as such to address these objectives.

29

Objectives 1 & 2 are handled by using the approach in 3. The approach for
achieving Objective 3 of path planner node is explained in Section 4.4.

The control objective of leader node is to synchronize to the reference
dynamics by Model Reference Control (MRC). This requires the precise
knowledge of plant parameters. But given the fact that there could be
variation of plant parameters, a pure Model Reference Control (MRC) law
with known parameters is impossible. Thus a modified control law to address
the uncertainty in parameters is most needed.

The information of reference dynamics from the pinner node is only avail-
able to leader type of nodes and not to the follower nodes. The followers have
access to control input of leaders or other neighbours. If a follower synchron-
izes to the dynamics of its neighbouring nodes, since the neighbouring nodes
already have control inputs for synchronizing it to the reference dynamics,
a synchronization is possible.

Thus the control objective for follower nodes is to synchronize to the refer-
ence dynamics by a Model Reference Controller utilizing information from
neighbouring nodes. Since the plant parameters for both neighbours and
current node cannot be precisely known. the control law should adaptively
sychronize.

4.4 Reference Dynamics for Leader/Follower Syn-
chronization

The graph based Leader/Follower formation control approach in [23] works
by synchronizing to a given reference dynamics. The reference dynamics for
this is formulated as,[

q̇0
q̈0

]
=

[
0 1l
−Kp −Kv

]
︸ ︷︷ ︸

Am

[
q0
q̇0

]
︸︷︷︸
xm

+

[
0
1l

]
︸︷︷︸
Bm

r (4.4)

where q0, q̇0 ∈ Rn, xm the reference model states, Kp, Kv are the pro-
portional and derivative gains of the multivariable PD controller, and r =
q̈d +Kv q̇

d +Kpq
d is a control input.

Currently, the control in path planning UAV has a vector field based
approach which does not ensure a dynamics as given in (4.4) for the UAV.
Thus, the path planner node also needs to generate a reference dynamics
to which all UAVs in the formation should synchronize. From (2.14), EL
dynamics of a UAV can be expressed as

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ (4.5)

On using an inverse dynamic based controller of the form in (4.6) we
obtain the dynamics as in (4.4).

τ = D(q)a+ C(q, q̇)q̇ + g(q) (4.6)

30

where the term a is defined as

a = q̈d −Kv ė−Kpe (4.7)

with e = q − qd.
On applying (4.6) in (4.5), we obtain the error dynamics as,

ë+Kv ė+Kpe = 0 (4.8)

The equation in (4.8) can be re-written in state space form as,[
ė
ë

]
=

[
0 1l
−Kp −Kv

] [
e
ė

]
(4.9)

Since Kp, Kv are positive gains, by construction the state matrix in (4.9)
is Hurwitz. This implies as t → ∞, e → 0 [41] i.e. q → qd. Also, (4.9) can
be easily re-written to obtain the form in (4.4).

In path planner node, we run the dynamics in (4.4) virtually with qd,
q̇d,and q̈d as the inertial measurements (trajectories, velocities, and acceler-
ations) of the path planner UAV. By this method, the reference states xm
will be in close match to the states of the path planner UAV and have the
dynamics in (4.4). The reference states xm are further transmitted to the
leader nodes for leader synchronization.

4.5 Synchronization of Leader Dynamics to Ref-
erence Dynamics

The state-space representation of EL dynamics for any UAV is given in
(2.15) is, [

q̇l
q̈l

]
︸︷︷︸
ẋl

=

[
0 1l

0 −D−1l Cl

]
︸ ︷︷ ︸

Al

[
ql
q̇l

]
︸︷︷︸
xl

+

[
0

−D−1l gl

]
+

[
0

D−1l

]
︸ ︷︷ ︸

Bl

τl (4.10)

In this section, the subscript l in (4.10) represents the values for leader
type UAVs. Model Reference Control is a typical control approach in which
the plant is made to have the dynamics as of a reference model by using
an appropriate control law. The control law is developed by first defining
a control structure, and then finding matching conditions that makes the
closed loop dynamics as that of the reference model. As per [23], the ideal
Model Reference (MRC) Control law for this purpose would be,

τ∗l = Dl(−Kpql −Kv q̇l + r) + Clq̇l + gl (4.11)

where Dl, Cl and gl are matrices as in (2.14), and r = q̈d +Kv q̇
d +Kpq

d is
a control input used in the path planner node.

31

The control law proposed in (4.11) is ideal and requires knowledge of the
matrices Dl, Cl and gl. A Model Reference Adaptive Control (MRAC) law
is proposed in [23] for using the estimates of the matrices. The control law
is,

τl = D̂l(−Kpql −Kv q̇l + r) + Ĉlq̇l + ĝl (4.12)

where D̂l,Ĉl, and ĝl are estimates of matrices Dl,Cl, and gl respectively. The
estimates can be split in linear-in-the-parameter form as,

D̂l = Θ′Dl
ξDl

Ĉl = Θ′Cl
ξCl

ĝl = Θ′glξgl

(4.13)

where Θ matrices are the regressands, and ξ matrices are the regressors.
Using Lyapunov analysis the estimation laws can be established as,

Θ̇′Dl
= −SlB′mPel(−Kpql −Kv q̇l + r)′ξ′Dl

Θ̇′Cl
= −SlB′mPelq̇′lξ′Cl

Θ̇′gl = −SlB′mPelξ′gl

(4.14)

where el = xl − xm, P = P ′ > 0 is such that PAm + A′mP = −Q, Q > 0,
Sl is a matrix such that DlSl = S′lD

′
l > 0.

Here it is important to note that, the laws given in (4.14) depends on r
and xm data from the path planner node.

The composition of regressands and regressors in (4.13) are,

Θ∗Dl
=

ml 0 0 0 0 0
0 ml 0 0 0 0
0 0 ml 0 0 0
0 0 0 Ixl 0 −Ixzl
0 0 0 0 Iyl 0
0 0 0 −Ixzl 0 Izl

 ξDl
=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.15)

Θ∗′Cl
=

ml 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ml 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ml 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Ixl 0 0 Iyl 0 0 Izl 0 0 Ixzl 0 0
0 0 0 0 Ixl 0 0 Iyl 0 0 Izl 0 0 Ixzl 0
0 0 0 0 0 Ixl 0 0 Iyl 0 0 Izl 0 0 Ixzl

ξ′Cl
=

0 r̄l −q̄l 0 0 0 0 0 0 0 0 0 0 0 0
−r̄l 0 p̄l 0 0 0 0 0 0 0 0 0 0 0 0
q̄l −p̄l 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 q̄l 0 −r̄l 0 0 p̄l 0
0 0 0 0 0 −p̄l 0 0 0 r̄l 0 0 −p̄l 0 r̄l
0 0 0 0 p̄l 0 −q̄l 0 0 0 0 0 0 −r̄l 0

(4.16)

32

Θ∗′gl =

ml 0 0 0 0 0
0 ml 0 0 0 0
0 0 ml 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ξgl =

sin θg
− sinφ cos θg
− cosφ cos θg

0
0
0

 . (4.17)

4.6 Synchronization of Follower Dynamics to Ref-
erence Dynamics

The follower synchronizes to reference dynamics exploiting the signals of
the neighbouring agents. Here we consider only followers which listen to the
data from one neighbour.

The state-space representation of EL dynamics for a follower node written
from (2.15),[

q̇f
q̈f

]
︸︷︷︸
ẋf

=

[
0 1l

0 −D−1f Cf

]
︸ ︷︷ ︸

Af

[
qf
q̇f

]
︸︷︷︸
xf

+

[
0

−D−1f gf

]
+

[
0

D−1f

]
︸ ︷︷ ︸
Bf

τf (4.18)

Similarly, the dynamics of any neighbouring agent can be written as,[
q̇n
q̈n

]
︸︷︷︸
ẋn

=

[
0 1l
0 −D−1n Cn

]
︸ ︷︷ ︸

An

[
qn
q̇n

]
︸︷︷︸
xn

+

[
0

−D−1n gn

]
+

[
0

D−1n

]
︸ ︷︷ ︸
Bn

τn (4.19)

The Model Reference Contol (MRC) law for any follower is given in [23]
is,

τ∗f = Cf q̇f +DfD
−1
n τn −DfD

−1
n Cnq̇n −Df (Kpēfn +Kv ¯̄efn) + gf (4.20)

where ēfn = qf − qn, and ¯̄efn = q̇f − q̇n.

The ideal control law proposed in (4.20) use matrices Df , Cf and gf of
the plant, and Dn, Cn and gn matrices of the neighbour. This implies,
in addition to the knowledge of plant parameters, the parameters of the
neighbour also should be known. Since parameters of both follower and
neighbour may change, also considering that the parameters need to be sent
over a network, the law is not the best to implement. In [23], authors propose
a Model Reference Adaptive Control (MRAC) law using the estimates of the
matrices. The control law is,

τf = −D̂f (Kpēfn +Kv ¯̄efn) + Ĉf q̇f + D̂fDnτn − ̂DfDnCnq̇n + ĝf (4.21)

33

where D̂f ,Ĉf , ĝf ,D̂fDn, ̂DfDnCn, are estimates of matricesDf ,Cf ,gf ,DfD
−1
n ,

and DfD
−1
n Cn respectively. The estimates can be split in linear-in-the-

parameter form as,

D̂f = Θ′Df
ξDf

Ĉf = Θ′Cf
ξCf

ĝf = Θ′gf ξgf

D̂fDn = Θ′DfDnCn
ξDfDnCn

̂DfDnCn = Θ′DfDnCn
ξDfDnCn

(4.22)

where Θ matrices are the regressands, and ξ matrices are the regressors.

The estimation dynamics for matrices in (4.22) can be established using
Lyapunov analysis, and they are,

Θ̇′Df
= SfB

′
mPefn(Kpēfn +Kv ¯̄efn)′ξ′Df

Θ̇′Cf
= −SfB′mPefnq̇′fξ′Cf

Θ̇′gf = −SfB′mPefnξ′gf
Θ̇′DfDn

= −SfB′mPefnτ ′nξ′DfDn

Θ̇′DfDnCn
= SfB

′
mPefnq̇

′
nξ
′
DfDnCn

(4.23)

where efn = xf −xn, P = P ′ > 0 is such that PAm+A′mP = −Q, Q > 0,
Sf is a matrix such that DfSf = S′fD

′
f > 0. The estimation dynamics

(4.23) guarantees that the efn → 0 as t→∞.

The composition of regressands and regressors in (4.22) are,

Θ∗Df
=

mf 0 0 0 0 0
0 mf 0 0 0 0
0 0 mf 0 0 0
0 0 0 Ixf 0 −Ixzf
0 0 0 0 Iyf 0

0 0 0 −Ixzf 0 Izf

 ξDf
=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.24)

Θ∗′Cf
=

mf 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 mf 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 mf 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Ixf 0 0 Iyf 0 0 Izf 0 0 Ixzf 0 0

0 0 0 0 Ixf 0 0 Iyf 0 0 Izf 0 0 Ixzf 0

0 0 0 0 0 Ixf 0 0 Iyf 0 0 Izf 0 0 Ixzf

ξ′Cf
=

0 r̄f −q̄f 0 0 0 0 0 0 0 0 0 0 0 0
−r̄f 0 p̄f 0 0 0 0 0 0 0 0 0 0 0 0
q̄f −p̄f 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 q̄f 0 −r̄f 0 0 p̄f 0
0 0 0 0 0 −p̄f 0 0 0 r̄f 0 0 −p̄f 0 r̄f
0 0 0 0 p̄f 0 −q̄f 0 0 0 0 0 0 −r̄f 0

(4.25)

34

Θ∗′gf =

mf 0 0 0 0 0
0 mf 0 0 0 0
0 0 mf 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ξgf =

sin θg
− sinφ cos θg
− cosφ cos θg

0
0
0

 (4.26)

Θ∗DfDn
=

mf

mn
0 0 0 0 0

0
mf

mn
0 0 0 0

0 0
mf

mn
0 0 0

0 0 0 −
IznIxf Ixzf

IxnIzn−IxznIxzn
0

IxznIxf Ixzf
IxnIzn−IxznIxzn

0 0 0 0
Iyf
Iyn

0

Ixn0 0 0
IxznIxzf Izf

IxnIzn−IxznIxzn
0 −

IxnIxzf Izf
IxnIzn−IIxznIxzn

ξDfDn =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.27)

Θ∗DfDnCn
=

mf 0 0 0 0 0
0 mf 0 0 0 0
0 0 mf 0 0 0
0 0 0 Γ1 0 0
0 0 0 0 Γ1 0
0 0 0 0 0 Γ1

0 0 0 Γ2 0 0
0 0 0 0 Γ2 0
0 0 0 0 0 Γ2

0 0 0 Γ3 0 0
0 0 0 0 Γ3 0
0 0 0 0 0 Γ3

0 0 0 Γ4 0 0
0 0 0 0 Γ4 0
0 0 0 0 0 Γ4

0 0 0 Γ5 0 0
0 0 0 0 Γ5 0
0 0 0 0 0 Γ5

0 0 0 Γ6 0 0
0 0 0 0 Γ6 0
0 0 0 0 0 Γ6

0 0 0 Γ7 0 0
0 0 0 0 Γ7 0
0 0 0 0 0 Γ7

0 0 0 Γ8 0 0
0 0 0 0 Γ8 0
0 0 0 0 0 Γ8

0 0 0 Γ9 0 0
0 0 0 0 Γ9 0
0 0 0 0 0 Γ9

0 0 0 Γ10 0 0
0 0 0 0 Γ10 0
0 0 0 0 0 Γ10

0 0 0 Γ11 0 0
0 0 0 0 Γ11 0
0 0 0 0 0 Γ11

0 0 0 Γ12 0 0
0 0 0 0 Γ12 0
0 0 0 0 0 Γ12

ξDfDnCn =

0 −r̄n q̄n 0 0 0
r̄n 0 −p̄n 0 0 0
−q̄n p̄n 0 0 0 0

0 0 0 −q̄n 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −r̄n 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 p̄n 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 q̄n 0 0
0 0 0 0 r̄n 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −p̄n 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 r̄n 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −p̄n 0
0 0 0 0 0 −q̄n
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −r̄n
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 p̄n
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 q̄n

(4.28)

35

36

Chapter 5

System & Software
Architecture

This chapter introduces the system architecture for which the analysis,
design and implementation in this work is targeted. The chapter also brief
the software design of each type of nodes in synchronization.

Section 5.1, describes the architecture for planned Hardware-in-the-Loop
(HITL) simulation. Section 5.2 discusses the motivation for the system ar-
chitecture for which the work is done, and introduces the architecture. Sec-
tion 5.3 briefly explains the software architecture for the path planner node.
The software architecture for the leader and follower nodes are introduced
in section 5.4 and 5.4 respectively.

5.1 System Architecture for Hardware-in-the-Loop
Simulation

Unmanned Aerial Vehicles (UAV) need onboard flight controllers which en-
able stable flight operations, control and communication link to a ground
station. The onboard flight controllers, called as autopilot, are realised us-
ing both hardware and software. For both the software and hardware parts,
there are products from multiple vendors available in the market.

The system under consideration uses Pixhawk cube hardware shown in
Figure 5.1a. Pixhwak cube has a 32bit STM32F427 Cortex-M4F core with
Floating Point Unit (FPU) [42]. It has servo outputs which can be inter-
faced with actuators on the UAVs. The hardware board also has Inertial
Measurement Units (IMUs) for measuring inertial parameters. The board
comes with multiple features which aid in UAV flight control and navigation,
which are not explained here.

The Pixhwak cube runs NuttX OS to have basic real-time operating sys-
tem features for the upper software stack i.e. the autopilot software. The
two established software stacks for UAV autopilot are - Ardupilot and PX4,

37

http://ardupilot.org/
https://px4.io/

(a) Pixhawk Cube 2 (b) Raspberry Pi 3 Model B+

Figure 5.1: Hardware for HITL Simulations.

and Pixhwak cube supports both. The autopilot softwares have various
modes of operations with or without a human in the loop. These stacks
implement discrete time control loops for roll, pitch, yaw. For instance, the
PX4 stack realizes a discrete time cascaded control loop for attitude control
as shown in the Figure 5.2 [35]. The outer loop is a Proportional controller.
This controller operates on the error between the setpoint and the estimated
attitude to generate a rate setpoint. The inner Proportional-Integral (PI)
controller uses the error in rates to compute the required angular acceler-
ation. The autopilot software issues commands to the interfaced actuators
for the required angular acceleration.

Figure 5.2: Atitude control loop for fixed-wing UAVs in PX4.
[Image source: [35].]

The user can configure or interact with the UAV using a Ground Station
(GS) software installed in a Desktop or PC. QGroundControl (QGC) and

38

http://qgroundcontrol.com/

Mission Planner are two well-known ground station software. The ground
station software can be used to upload the autopilot stacks to the UAV.
The autopilot stack and ground station communicate using MAVLink pro-
tocol.Also, a single ground station software instance can handle multiple
UAVs.

The system architecture for a single UAV can be summarised as shown in
Figure 5.3.

Figure 5.3: System architecture for a single UAV.

For formation control of a swarm of UAVs, each UAV needs to transmit
or receive information to or from the neighbouring UAVs. Thus the UAVs
need modules enabling inter-node communications.

With the data received, UAVs need to execute computation intensive
formation control algorithms. The computational power of Pixhawk boards
is only meant for enabling basic UAV operations and does not suffice for
executing intensive algorithms. Pixhawk together with the autopilot soft-
ware supports Offboard Mode. In Offboard Mode, the systems can receive
commands from a companion computer of higher computational power.

Raspberry Pi is a series of small and cheap single-board computers widely
used in computation intensive embedded applications. Raspberry Pi 3 Model
B+ is the latest revision and has a 1.4GHz 64-bit quad-core processor along
with a dual-band wireless LAN. Raspberry Pi 3 Model B+ can be interfaced
as a companion computer for the UAV autopilot. Also, the in-built WLAN
in Raspberry Pi board can be used to establish a communication mechan-
ism for data exchange between the nodes. A picture of raspberry pi and its
widely used logo is shown in Figure 5.1b.

Given the above information, a complete system architecture for UAV
formation control can be proposed as shown in Figure 5.4. The multiple
UAVs are configured using a single instance of Ground Station software.
Each of the UAVs carries a Raspberry Pi 3 Model B+ interfaced as a com-
panion computer. All the Raspberry Pis, of drones in formation, are con-
nected to the server program through Wi-Fi. The server program has two
primary functions: 1) Receive user input for the configuration for formation
flying and configure the UAVs accordingly, 2) Receive and distribute data
between the UAVs. The formation control program executes on the Rasp-
berry Pi receiving configurations and data from the server. The program in

39

http://ardupilot.org/planner/
https://en.wikipedia.org/wiki/MAVLink
https://en.wikipedia.org/wiki/MAVLink
https://docs.px4.io/en/flight_modes/offboard.html
https://www.raspberrypi.org/

Figure 5.4: System architecture for UAV formation control.

Raspberry Pi issues commands to the autopilot using offboard APIs.

In Hardware-in-the-Loop (HITL) simulations, the computer program writ-
ten for a feature is executed in the targeted hardware itself. That means
the program written for Raspberry Pi in the above system should run in
Raspberry Pi and the autopilot stack in Pixhawk. There are no real drones
used in this simulation. But the dynamics of the drones are simulated using
simulators like XPlane, Gazebo etc.

5.2 System Architecture for Software-in-the-Loop
Simulation

From the background information and architecture introduced in the pre-
vious section, the UAVs carry Raspberry Pi Model 3+ as a companion
computer. The formation control algorithm executes in the Raspberry Pi.
Therefore, for the purpose of implementation and validation of the algorithm
it is sensible to reduce the level of the simulation till the Raspberry Pis. A
simulator for simulating the dynamics of UAVs is introduced in the Rasp-
berry Pis itself.

It is also important to state that, the simulation of multiple fixed-wing
UAV dynamics is not supported in the traditional simulators like Gazebo
and XPlane. Also, the computation power needed for simulating multiple
drones in one single machine is high. Adding a drone dynamics simulator
in Raspberry Pi itself helps to address these shortcoming and serves the

40

purpose.

Figure 5.5: System architecture for UAV formation control SITL Simulation.

A reduced version of the architecture in Section 5.1 is used in the simula-
tions in this work. The architecture is as given in Figure 5.5. The Raspberry
Pis execute both the formation control and the UAV dynamics simulator
program. The Raspberry Pi gets information of other drones through the
server, and also reports back its own simulated information to the server to
share across other UAVs. LAN or WLAN can be used for the simulation,
as Raspberry Pis can connect to the server using either of them. The server
receives configuration information from user and configures all UAVs. The
data from UAVs is accumulated in server and is used to create plots of all
the UAVs in formation.

5.3 Software Architecture for Path Planner Node

Logically, the components in path planner node implementation are as shown
in Figure 5.6. The interfaces in the figure are the object or function by
which each component access data from others. The * marked components
are only used in software-in-the-loop simulations and can be replaced in real
scenarios.

5.4 Software Architecture for Leader Node

The software implementation of leader node can be logically shown with a
component diagram as as shown in Figure 5.7. The components exchange

41

Figure 5.6: Component diagram for Path planner node.

data using the interfaces which are pure functions. The * marked compon-
ents are only used in software-in-the-loop simulations and can be replaced
in real scenarios.

Figure 5.7: Component diagram for Leader node.

5.5 Software Architecture for Follower Node

The logical software components in follower node software implementation
are as shown in Figure 5.8. The data interfaces, which are pure functions,
helps in exchange of data between the components. The * marked compon-
ents are only used in software-in-the-loop simulations and can be replaced
in real scenarios.

42

Figure 5.8: Component diagram for follower node.

43

44

Chapter 6

Synchronization of Data
Between Nodes

This chapter describes the approach and implementation by which data is
transferred between nodes to the server and the vice versa. Section 6.1
introduces the terminologies in computer networking and the settings in
targeted architecture. Section 6.2 introduces the a packet-based protocol
for data transfer between the nodes. Section 6.3 expounds how the packet-
based protocol is used for the data synchronization. The server program
is explained in Section 6.4 whereas Section 6.5 describes the software com-
ponent in UAVs which enable the communication with the server. Section
6.6 describes how the system accepts and handles configurations and inputs
from the user.

6.1 A Glimpse to Computer Networking

Computers can communicate with each other, and such connected com-
puters are said to be in a Network. Local Area Network (LAN) are networks
that connect computers or devices so that they can communicate with each
other in a restricted area through wired connections. Wireless Local Area
Networks (WLAN) are LANs in which the computers are linked through
wireless communication. Wi-Fi is a collection of radio technologies used in
WLANs [43]. A Wireless Access Point (WAP) is a type of network hub
which connects a set of devices that forms a WLAN, relaying data between
the connected devices [44].

Every device connected in a network is identified by a unique identifier
called an address. For networks that use Internet Protocol (IP) for commu-
nication, these addresses are known as IP addresses. A network is logically
subdivided into subnetwork or subnet. The portion of the IP address which
represents the subnet can be found by using the subnet mask.

In this work, we follow a server-client architecture for data transfer, op-

45

erating in a network having only one subnet. The server computer is a
computer which runs the server program for distributing data across the
nodes. The server computer and all the companion Raspberry Pis of UAVs,
connected to the network have unique IP addresses to identify them. The
IP address of the server computer is fixed and stored in Raspberry Pis.

The architecture of the network can be represented as in Figure 6.1. In
figure, x is a fixed and known integer, such that x ∈ (1, 254), forming a
static address for the server computer. Also, yn ∈ (1, 254) for n = 1...N ,
N ≤ 253 are pairwise distinct integers different from x.

IP:192.168.0.x

Subnet Mask:255.255.255.0

IP:192.168.0.y1 IP:192.168.0.y2 IP:192.168.0.yn

Figure 6.1: Network architecture.

Every program in a computer that uses the network, should bind to a port.
A port, in computer networking, is a 16-bit unsigned number that specifically
identifies a service offered by a program to a network of computers. Any
second agent in the network can communicate to the program knowing the IP
address of the computer and the port number. There are port numbers which
are reserved by various standards to avoid possible clashes, and all other user
programs are expected to use port numbers outside the reservations. In this
work, the server program is bound to the port number 51717 with provisions

46

to be changed.
TCP/IP and UDP are two established protocols used for communication

between computers through networks. In TCP/IP, data is transmitted as
small packets with acknowledgements to ensure reliable data transfer. UDP
operates in the same level of TCP/IP and does not offer any guarantee of
data reception. The mechanism in TCP/IP to ensure reliable data transfer
introduces an overhead in the turnaround time, which makes it unsuitable
for the kind of purposes where the timing is of crucial importance. Thus,
in this work, we use UDP for data transfer. The C/C++ programming in
Linux environments to write computer applications using TCP/IP or UDP
can be done using insights from [45].

6.2 Protocol for Synchronisation of Data Between
Nodes

In this work, we define, Data Synchronisation as timed update of data of a
node stored in a second node. TCP/IP or UDP are basic protocols which
help in sending bytes of data through the network. We need a mechanism
to create the byte streams from meaningful information that need to be
transferred or vice versa. Thus, in this work we define a higher level protocol
which operates above the Transport layer, customized for the application of
formation control. The new protocol is positioned among TCP/IP protocol
layers as shown in Figure 6.2.

Figure 6.2: New protocol over TCP/IP Layers.

On analysis of formation control, the data that needs to be sent over
the networks can be broadly classified into two. The classification helps in
distinguishing between the data which is time critical and the data that
needs acknowledgements of reception. The classification is as follows:

• Plant Data: The measurements and signals in UAVs, that change in
real time. This consists of the inertial position, attitude, linear velo-
city, angular velocity, and control input. Plant Data is sent periodic-

47

ally without any acknowledgements. Table 6.1 summarizes the plant
data that needs to be sent over the network based on the type of source
UAV. Definitions of symbols xm, r,ql,q̇l, τl,qf , q̇f , τf can be found in
the respective sections.

UAV Type Plant Data to Send Data Length

Path Planner xm, r 18 bytes

Leader ql, q̇l, τl 18 bytes

Follower qf , q̇f , τf 18 bytes

Table 6.1: Plant data to be send over the network.

• Configuration Data: The data for configuring the control in UAVs like
the communication graph, the estimation gains, the path inputs etc.
The configuration packages need to be sent only on request and need
acknowledgements to ensure reliable transmission.

Here we define, Message as a data or group of data that needs to be
sent across the network using the protocol. The new protocol is based on
a structured packet. A packet is a structured representation of the message
to enable transmission and reception programmatically. Every message is
structured into a packet and converted to a stream of bytes that are sent
through the network using Transport Layer. The structure of a packet is as
shown in Figure 6.3.

Figure 6.3: Structure of a packet.

The elements of the packet are described as:

1. START BYTE: An unsigned value of 1-byte length which signifies the
start of a byte stream when each packet is converted to a stream of
bytes.

2. TYPE: The element signifies the type of message. Theoretically, there
can be 256 types since the value is one byte wide.

48

3. DATA LENGTH: The data in any message can be split into unsigned
characters of 1-byte length. The DATA LENGTH signifies the length
of the data being sent i.e. the bytes of the data in the message. Since
the value is an unsigned byte, a maximum of 256 bytes can be sent
over the network in a single packet.

4. DATA 1..n: Holds the unsigned characters split from the data in the
message which needs to be transmitted.

5. CRC 0, 1: The two bytes helps in ensuring the integrity of the message
in the packet. Cyclic Redundancy Check (CRC) is a widely used
algorithm to detect errors in data transmitted over a network. CRC
algorithm generates a reduced number of bytes, from a stream of bytes.
The generated bytes remain the same for a given stream of bytes,
irrespective of the time of execution. In this work, a CRC16 algorithm
which generates two bytes of data is used. At any point, if there is a
mismatch between the received CRC bytes in the packet and freshly
calculated CRC, it signifies that there is a possible error in the contents
of the packet.

The value of START BYTE and entries in TYPE byte are pre-fixed and
universal to the implementation defined using C++ Macros.

A Payload is the actual information in the package intended to be sent
over the network. This includes type of the message, unique id of the UAV,
length of the data, and the data. The length of payload is depicted in Figure
6.3.

In packet structure description, we mentioned the types of messages. The
types of messages are defined based on the contents and the purpose of the
data being sent in the message. The types are summarized in Table 6.2.
Column ’Source’ lists the producer of the messages, and Column ’Target’
denotes the consumer of the messages.

In C++ implmentation, the packet structure is realised as a class shown
in Figure 6.4. All the elements of a packet introduced in Figure 6.3 are data
members of type unsigned char. The class packet has member functions
which help in creating packets of various message type from the data of
the message. The function GetByteStream helps in getting the stream of
bytes from the packet that needs to be sent over the network. Function
SetCRCValue calculates and sets the CRC bytes of the packet.

6.3 Transfer of Packets Over the Network

In previous sections, we introduced the network architecture and the pro-
tocol. The messages are communicated across the nodes with a packet-based
protocol.

49

Type of Message Source Target Purpose of Message

T MODE Server UAV Set mode of UAV

T TYPE Server UAV Set type of UAV

T DATA UAV/
Server

Server/
UAV

Exchange plant data

T EXIT Server UAV Exit UAV programs

T ACK UAV Server Acknowledgment

T CONFIG KPKV Server UAV Send Kp, Kv gains

T CONFIG SGAIN Server UAV Send Si gain matrix

T CONFIG PGAIN Server UAV Send P matrix

T CONFIG COMM GRAPH Server UAV Send allowed comms.

T PATHTYPE Server UAV Configure type of path

Table 6.2: Types of messages.

On the sender node side, the message data is wrapped in an object of
class Packet using the helper functions. The packet is serialized using the
function GetByteStream and resultant byte stream is sent over the network
to the receiver node using the IP address of the node.

The receiver node receives the serialized byte streams sent over the net-
work and needs to retrieve the packet, and thereby the message data. Using
the function recvfrom in C++ socket programming, the incoming data bytes
can be read to a buffer. But the read data in buffer may contain serialized
byte streams of multiple packets. We need a mechanism to read all the
packets from the data buffer.

A start byte signifies the start of a packet. In order to read out a packet,
we need to find the start byte of the packet. There is no guarantee that
we spot a start byte on the first read from the buffer. This implies that
we need to search for start bytes. The value we chose as a start byte could
clash with a byte value from the data, and wrongly pose as a candidate for
a start byte.

Also, if there are missing bytes of a packet, we need to drop the section and
start searching for a start byte again. The packet length can vary depending
on the size of the message. In order to ensure all these requirements, we
introduce a Finite-State Machine (FSM) based algorithm to readout packets
from the data available in the read buffer.

A Finite-State Machine (FSM) or state machine is a model used in com-
puter science in which, at any time, the model can be in exactly one state
among a set of pre-defined finite states. State diagrams depict the operation

50

Figure 6.4: Class diagram for class packet.

of an FSM.

The state machine in packet reception algorithm has seven states. The
finite states for the packet reception algorithm are: 1) Check Start Byte
2) Check Message Type 3) Get Data Length 4) Get Message 5) Check CRC0
6) Check CRC1 .

6.4 Server for Data Synchronisation

The Raspberry Pis send data to the server program using the protocol and
mechanism introduced in the previous sections. The server needs to process
the data packets from the bytes sent by each node and distribute it to other
nodes which are in need.

The server program has to serve all the UAV nodes judiciously. The
program should not listen and serve one node alone for a long period of
time. In order to address this concern and to have enough decoupling, a
multi-threaded server design is required.

There are four main tasks for the server, they are: 1) Handle user con-
figurations and inputs. 2) Read bytes from all the nodes sent through the

51

network. 3) Process the read bytes to packets and check integrity. 4) Dis-
tribute the received packets to interested nodes.

The main thread of the server program executes task 1 and 2. Implement-
ation for Task 1 is explained later in this chapter. For task 2, main thread
continuously reads the data received from the network using the function
recevfrom. In every call of the function recevfrom, together with the data,
the address of the sender node is obtained. The main thread registers the
received data in a map data structure with the address of the sender as the
key.

6.5 Client for Data Synchronisation

Section 6.4 discusses how data is received and handled on the server side.
The companion Raspberry Pi of UAVs also needs a software component
to handle the data over the network. The software component has two
purposes: 1) Send UAVs data to server 2) Receive data sent by server and
process it.

Both the requirements are covered by implementing a class Client. Class
Client runs a separate thread and operates on a singleton class Forma-
tionData. A singleton class has only one instantiated instance in a program.
The same object is provided to all consumers through a static function. The
implementation is made thread-safe using mutex locks.

6.6 Handling User Configurations & Inputs

XML files are widely used for configuration in software engineering. In
this work also, the configuration is handled using a pre-formatted XML
configuration file in the server. The XML nodes and their purpose in the
configuration file are listed below.

1. path: User can set the type of path and the specifics of the path in
this XML node.

2. drones: The drone ID and type of each drone involved in the formation
are configured with this XML node.

3. communications: The allowed information flows between the drones
are configured through this XML node.

4. kpvalues & kvvalues: These XML nodes helps in configuring the Kp

and Kv gains.

5. sgain & pgain: User can input the values for S and P matrices through
this node. Only non-zero values need to be listed along with respective
zero-based column and row indices.

52

On startup or on request, the server reads the XML configuration file and
generates packets to configure the UAVs. The server needs to ensure that the
configuration data reaches the UAVs. Thus, a packet delivery mechanism
with acknowledgements of reception from UAV is necessary.

The server maintains a queue of configuration data packets for each drone.
For any drone, the queue stores only the latest packet of each type. The
dispatcher thread in server periodically sends packets in the queue to the
drones. The packets in the queue are not removed until there is an acknow-
ledgement of reception.

The client in Raspberry Pis on the reception of a configuration package
uses the instance of class ClientPacketHandler to configure the UAV. Also,
the client sends a packet of message type T ACK to the server. The acknow-
ledgement packet has three data, the type and CRC bytes of the received
packet.

Upon reception of the acknowledgement packet from the UAV at the
server, the server finds the packet in the queue which has the same type
as that of the packet being acknowledged. If there is a packet in the queue
with the same type, the server program matches the CRC with the CRC of
the package being acknowledged. On a match, the packet is removed from
the queue.

The server program further reads the keyboard inputs. On hit of a con-
figured key, the server program sends the corresponding configuration to
the client. For example, when key ’f’ is pressed, the server program sends
T MODE message to activate the formation control.

53

54

Chapter 7

Simulations and Results

This chapter discusses the simulations done as part of this work and the
results of the simulations. The chapter is organised as follows: Section 7.1
describes the simulation and results for the path planner node for straight
line,loitering and waypoints mission. Section 7.2 discusses the simulations
and results for the synchronization of a set of UAVs using the adaptive
estimation laws.

7.1 Simulations for Path Planner Node

The path planner node executes the path mission input by the user and
generates a dynamics which all other agents should synchronize to. The
parameters and initial conditions for simulation of path planner node are
given in Table 7.1.

Parameter Value

UAV Type Path Planer

Mass (kg) 1.0

Inertial Position Xe (m) [-100,400,-50]

Linear Velocity Vb (m/s) [15,0,0]

Euler Angles [φ,θ,ψ] (rad) [0.1,0.1,1]

Angular Velocity ωb (rad/s) [1, 1, 2]

Moment of Inertia (kgm2)

 0.02 0 −0.01
0 0.026 0

−0.01 0 0.053

Table 7.1: Parameters and initial conditions for path planner node.

55

For a straight line mission SL1 = (P,S), where line origin P = (100, 0)
and slope S = (1, 1), the plot obtained for path planner in xy plane of
inertial frame is as shown in Figure 7.1. The red colored plot represents
the mission the UAV is expected to execute, the blue plot is the inertial
position of UAV in the xy plane of inertial frame, and green shows the
xy characteristics if the reference generator. It is important to quote that
the plot of inertial position is mostly coinciding with the plot of reference
dynamics, thus hidden. From the plot it is clear that the in simulation path
planner UAV is able to execute the straight line mission from a given initial
condition.

-200 0 200 400 600 800 1000 1200

x (meters)

0

200

400

600

800

1000

1200

y
 (

m
e

te
rs

)

Path Planner Node for Straight Line Mission

Path Planner UAV

Reference Dyamics

Mission

Line Origin

Figure 7.1: xy plot of path planner node executing straight line mission in
inertial frame.

In the simulation for a loitering mission also, the UAV from the initial
location moves gradually towards the orbit, smoothly merges into the orbit
and starts loitering. The loitering mission used for simulation is O1 =
(D1,R1, C1), where radius R1 = 50m, orbit centre C1 = (0, 0), and direction
of rotation D1 = 1(clockwise). The plot obtained for path planner in xy
plane of inertial frame is as shown in Figure 7.2. The colorings of the plot
are the same as in plot in Figure 7.1. The plot is skewed and looks like an

56

ellipse because of the uneven scaling in horizontal and vertical axes.

-150 -100 -50 0 50

x (meters)

-50

0

50

100

150

200

250

300

350

400

450

y
 (

m
e
te

rs
)

Path Planner Node for Loitering Mission

Path Planner UAV

Reference Dyamics

Mission

Orbit Centre

Figure 7.2: xy plot of path planner node executing loitering mission in
inertial frame.

For waypoints mission, the simulations were done for a mission with para-
meters as summarised in Table 7.2. The mission has 5 straight line sections,
2 right and 2 left turns. The plot of location of UAV in xy inertial plane for
this waypoint mission is in Figure 7.3. Since the UAV starts from a point
away from the missions, the vector field approach for straight line missions
gradually takes the UAV to the line connecting [0, 0] and [500, 500], and
proceeds further along the path. From the plots, it is clear that complex
missions can be split into primitive missions and executed thereon.

Radius (m)
Waypoints (m)

1 2 3 4 5 6

50 [0,0] [500,500] [500,0] [0,500] [0,0] [500,500]

Table 7.2: Parameters of waypoint mission.

57

-100 0 100 200 300 400 500

x (meters)

0

100

200

300

400

500

600

y
 (

m
e

te
rs

)
Path Planner Node for Waypoints Mission

Path Planner UAV

Reference Dyamics

Mission

Waypoints

Figure 7.3: xy plot of path planner node executing waypoints mission in
inertial frame.

A close-up image of UAV executing turn around (500,500) shown in Fig-
ure 7.4 reveal that there is a minute mismatch in following the path. The
vector field approach only guarantees the lowest cross-tracking error. While
following the arc of orbit path near (500,500), there is a small cross-track
error. This implies that, the direction of velocity at the point of switch from
orbit to line path, is not exactly coinciding with the straight line mission.
The adaptive vector field approach for straight line mission gradually takes
the UAV back to the straight line mission.

7.2 Synchronisation of Leader and Follower Node

Recall that the simulations for synchronisation in this work are done for
the system of UAVs introduced in Figure 4.2. A normal laptop is used as
the server, and Raspberry Pis as the UAV nodes. The nodes in the system
are connected to the server through LAN. The configurations for the UAVs
were done through the XML configuration file of the server program. Also,

58

450 460 470 480 490 500 510

x (meters)

340

350

360

370

380

390

400

410

420

430

440

y
 (

m
e

te
rs

)
Path Planner Node for Waypoints Mission

Path Planner UAV

Reference Dyamics

Mission

Waypoints

Figure 7.4: Close-up image of xy plot of path planner node executing way-
points mission near to waypoint (500,500).

the UAVs exchange real time data through the server. The real time data
received in the server are written to a flat file and used for creating the plots
using MATLAB.

The parameters for the leader and follower nodes used for simulations are
as given in Table 7.3. Both the leader and follower nodes start from differ-
ent inertial positions. The simulations were executed for cases of straight
line and loitering mission. The simulations were tuned using the gains and
matrices in adaptive estimation laws. The obtained values after tuning are
summarized in Appendix ??.

Figure 7.5 shows the plot for synchronization in a straight line mission.
The blue coloured plots are the reference dynamics generated by the path
planner node, the red by the leader node, and the yellow plot by the follower
node. From the plots it can be concluded that the inertial positions of UAVs
converges over time starting from their respective initial positions. The
glitches in the plot could be caused due to inconsistencies in the network
or the errors induced by the discretization of estimation laws using euler
approximation.

The results for synchronization of UAVs for simulation of a loitering mis-

59

Leader Follower

Mass (kg) 1.0 1.0

Inertial Position Xe (m) [500,500,-50] [0,500,-50]

Linear Velocity Vb (m/s) [15,0,0] [15,0,0]

Euler Angles [φ,θ,ψ] (rad) [0.1,0.1,1] [0.1,0.1,1]

Angular Velocity ωb (rad/s) [1, 1, 2] [1, 1, 2]

Moment of Inertia (kgm2)

 0.02 0 −0.01
0 0.026 0

−0.01 0 0.053

 0.02 0 −0.01
0 0.026 0

−0.01 0 0.053

Table 7.3: Parameters and initial conditions for leader and follower nodes.

0 20 40 60 80 100 120 140

t(seconds)

-500

0

500

1000

x
(m

e
te

rs
)

Plot for inertial x versus time

0 20 40 60 80 100 120 140

t(seconds)

-500

0

500

1000

y
(m

e
te

rs
)

Plot for inertial y versus time

0 20 40 60 80 100 120 140

t(seconds)

-500

0

500

z
(m

e
te

rs
)

Plot for inertial z versus time

Reference Dynamics Leader Follower

Leader & Follower Synchronisation for Straight Line

Figure 7.5: Plot for the location of leader and follower UAVs for synchron-
ization in a straight line mission.

60

sion is given in Figure 7.6, and are very similar to the case of synchronization
in straight line missions. The leader and follower UAVs starting from differ-
ent inertial positions synchronises to the reference dynamics generated by
the path planner node for the loitering mission.

Since the UAVs can be synchronised using the above approach, formation
gaps can be provided to enable the UAVs to fly in a required formation.

0 20 40 60 80 100 120 140 160

t(seconds)

-500

0

500

x
(m

e
te

rs
)

Plot for inertial x versus time

0 20 40 60 80 100 120 140 160

t(seconds)

-500

0

500

y
(m

e
te

rs
)

Plot for inertial y versus time

0 20 40 60 80 100 120 140 160

t(seconds)

-600

-400

-200

0

200

z
(m

e
te

rs
)

Plot for inertial z versus time

Reference Dynamics Leader Follower

Leader & Follower Synchronisation for Orbit

Figure 7.6: Plot for the location of leader and follower UAVs for synchron-
ization in a loitering mission.

61

62

Chapter 8

Conclusions and Future
Work

8.1 Conclusions

In this work, we designed, implemented and simulated an autopilot com-
ponent with emphasis on formation control of fixed-wing UAVs. The work
is carried out in Raspberry Pis which can be extended to real UAV scenarios
with ardupilot or PX4 autopilots as companion computers. The simulations
are done in a distributed manner in with the help of a server designed and
implemented for this work.

The work implements and validates the adaptive vector field approach for
following a path, and is successful in executing straight line or loitering or
waypoints mission. The way-point missions are split into primitive missions
of straight line or orbit.

This work, also do the design, implementation and simulation of the
MRAC synchronisation in a distributed environment which can be used for
formation control in UAVs. The server configures all the nodes and handles
the inter-node communications. The simulations confirm that the approach
works over the distributed network, and the outputs converges for both the
primitive missions - straight line and loitering.

The dynamics of the fixed-wing UAV is simulated with in C++ environ-
ment in the Raspberry Pis using a mathematical model of fixed-wing UAVs
and odeint library. The above approach is advantageous to do simulations
inside distributed computers itself, without depending on a central computer
to simulate the dynamics for all the nodes. Since the simulator considers
the aerodynamics, propulsion effect and low-level controller dynamics, using
the model SITL for any adaptive laws can be done more realistically.

63

8.2 Future Work

This work opens up a plethora of future works which can be based on the
results, among which the important ones are,

• A hardware-in-the-loop simulation of the approaches in this work, us-
ing the C++ libraries developed as part of this work.

• Using technologies like ad-hoc Wi-Fi or Zigbee to have internode com-
munications and comparing effectiveness of each on the adaptive laws.

• Design of a graphical user interface to configure the UAVs and visualize
the real time data.

• Developing and testing discrete time estimation laws instead of the
euler approximated adaptive estimation laws used.

• The MRAC multi-agent synchronization approach does not take into
account of control allocation. Analysis need to be done to incorporate
the effect of control allocation for fixed-wing UAVs.

64

Bibliography

[1] R. Yanushevsky, Guidance of unmanned aerial vehicles. CRC press,
2011.

[2] J. F. Guilmartin, “Unmanned aerial vehicle,” Jul 2018.

[3] J. Gunnar Carlsson and S. Song, “Coordinated logistics with a truck
and a drone,” Management Science, vol. 64, 10 2017.

[4] R. G. L. Narayanan and O. C. Ibe, “6 - joint network for disaster relief
and search and rescue network operations,” in Wireless Public Safety
Networks 1 (D. Cmara and N. Nikaein, eds.), pp. 163 – 193, Elsevier,
2015.

[5] M. R. Haque, M. Muhammad, D. Swarnaker, and M. Arifuzzaman,
“Autonomous quadcopter for product home delivery,” in 2014 Interna-
tional Conference on Electrical Engineering and Information Commu-
nication Technology, pp. 1–5, April 2014.

[6] G. Cai, J. Dias, and L. Seneviratne, “A survey of small-scale unmanned
aerial vehicles: Recent advances and future development trends,” Un-
manned Systems, vol. 02, pp. 175–199, 04 2014.

[7] M. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-
wing and multi-rotor uav for environmental mapping applications: A
case study,” ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6,
pp. 47–54, 08 2017.

[8] A. Filippone, Flight Performance of Fixed and Rotary Wing Aircraft.
Elsevier Aerospace Engineering, Elsevier Science, 2006.

[9] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent form-
ation control,” Automatica, vol. 53, pp. 424 – 440, 2015.

[10] G. Weiss, ed., Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA, USA: MIT Press, 1999.

65

[11] G. Ellis, “Chapter 13 - model development and verification,” in Control
System Design Guide (Fourth Edition) (G. Ellis, ed.), pp. 261 – 282,
Boston: Butterworth-Heinemann, fourth edition ed., 2012.

[12] F. Administration, Advanced Avionics Handbook: FAA-H-8083-6. Sky-
horse Publishing, 2011.

[13] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 6235–6240, 2015.

[14] “Ardupilot open source autopilot.” [Online; accessed 02-July-2019].

[15] E. Anderson, R. Beard, and T. McLain, “Real-time dynamic trajectory
smoothing for unmanned air vehicles,” Control Systems Technology,
IEEE Transactions on, vol. 13, pp. 471 – 477, 06 2005.

[16] S. P.B, S. Saripalli, and J. Borges Sousa, “Unmanned aerial vehicle path
following: A survey and analysis of algorithms for fixed-wing unmanned
aerial vehicless,” Control Systems, IEEE, vol. 34, pp. 42–59, 02 2014.

[17] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector
field path following for small unmanned air vehicles,” in 2006 American
Control Conference, pp. 7 pp.–, June 2006.

[18] Bingyu Zhou, H. Satyavada, and S. Baldi, “Adaptive path following
for unmanned aerial vehicles in time-varying unknown wind environ-
ments,” in 2017 American Control Conference (ACC), pp. 1127–1132,
May 2017.

[19] S. FARI, “Guidance and control for a fixed-wing uav,” MSc thesis,
Politecnico di Milano, 20162017.

[20] S. Fari, X. Wang, S. Roy, and S. Baldi, “Addressing unmodelled path-
following dynamics via adaptive vector field: a uav test case,” IEEE
Transactions on Aerospace and Electronic Systems, pp. 1–1, 2019.

[21] W. Yu, G. Chen, and J. L, “On pinning synchronization of complex
dynamical networks,” Automatica, vol. 45, no. 2, pp. 429 – 435, 2009.

[22] W. Yu, P. Delellis, G. Chen, M. Di Bernardo, and J. Kurths, “Distrib-
uted adaptive control of synchronization in complex networks,” Auto-
matic Control, IEEE Transactions on, vol. 57, pp. 2153 – 2158, 01
2012.

[23] M. R. Rosa, S. Baldi, X. Wang, M. Lv, and W. Yu, “Adaptive hier-
archical formation control for uncertain euler–lagrange systems using
distributed inverse dynamics,” European Journal of Control, 2018.

66

[24] I. Azzollini, S. Baldi, and E. Kosmatopoulos, “Adaptive synchroniza-
tion in networks with heterogeneous uncertain kuramoto-like units,” in
17th European Control Conference (ECC), pp. 2417–2422, 06 2018.

[25] S. Baldi, I. Azzollini, and E. Kosmatopoulos, “A distributed
disagreement-based protocol for synchronization of uncertain het-
erogeneous agents,” in 17th European Control Conference (ECC),
pp. 2411–2416, 06 2018.

[26] S. Baldi and P. Frasca, “Leaderless synchronization of heterogeneous
oscillators by adaptively learning the group model,” IEEE Transactions
on Automatic Control, pp. 1–1, 2019.

[27] R. Chapa-Garcia, M. Jimenez-Lizarraga, O. Garcia, and T. Espinoza-
Fraire, “Formation flight of fixed-wing uavs based on linear quadratic
affine game,” in 2016 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 736–741, June 2016.

[28] Y. Nagao and K. Uchiyama, “Formation flight of fixed-wing uavs using
artificial potential field,” in 29th Congress of the International Council
of the Aeronautical Sciences, 2014.

[29] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk,
“Comprehensive simulation of quadrotor uavs using ros and gazebo,”
in Simulation, Modeling, and Programming for Autonomous Robots
(I. Noda, N. Ando, D. Brugali, and J. J. Kuffner, eds.), (Berlin, Heidel-
berg), pp. 400–411, Springer Berlin Heidelberg, 2012.

[30] W. Rigon Silva, A. da Silva, and H. Ablio Grndling, “Modelling, simula-
tion and control of a fixed-wing unmanned aerial vehicle (uav),” in 24th
ABCM International Congress of Mechanical Engineering, 12 2017.

[31] H. Goldstein, Classical Mechanics. Pearson Education, 2002.

[32] T. R. Kane and D. A. Levinson, Dynamics, theory and applications.
McGraw Hill, 1985.

[33] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics
(2nd Edition). American Institute of Aeronautics and Astronautics,
2007.

[34] J. Roskam and C. Lan, Airplane Aerodynamics and Performance. Air-
plane design and analysis, DARcorporation, 1997.

[35] PX4 Dev Team, “Controller diagrams.”

[36] A. Lambregts, Vertical flight path and speed control autopilot design
using total energy principles.

67

[37] R. Stengel, Flight Dynamics. Princeton University Press, 2015.

[38] K. Ahnert and M. Mulansky, “Odeint solving ordinary differential
equations in c++,” AIP Conference Proceedings, vol. 1389, 10 2011.

[39] E. W. Frew, D. A. Lawrence, C. Dixon, J. Elston, and W. J. Pisano,
“Lyapunov guidance vector fields for unmanned aircraft applications,”
in 2007 American Control Conference, pp. 371–376, July 2007.

[40] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Ap-
plications. Springer Monographs in Mathematics, Springer London,
2008.

[41] K. Ogata, Modern Control Engineering. Instrumentation and controls
series, Prentice Hall, 2010.

[42] PX4 Dev Team, “Cube flight controller.”

[43] The Editors of Encyclopaedia Britannica, Wi-Fi. By Example Series,
Encyclopdia Britannica, inc., 2017. [Online; accessed 06-July-2019].

[44] S. Dasgupta, Encyclopedia of virtual communities and technologies.
Gale virtual reference library, Idea Group Reference, 2006.

[45] W. Gay, Linux Socket Programming by Example. By Example Series,
Que, 2000.

68

	Introduction
	Research Problem Introduction
	State of the Art
	Research Objective
	Report Outline

	UAV as an Agent
	Frame of References for UAVs
	Wind Triangle and Course Angle
	Euler Lagrange Dynamics of UAV Agents
	Propulsion and Aerodynamic Effects
	Autopilot Low-level Controllers in Fixed-Wing UAVs
	UAV Model for Simulations
	Simulation of UAV Dynamics

	Path Planning and Following in Fixed-wing UAVs
	Planning of Path Based on User Mission Inputs
	Vector Field Approach for Path Following
	Adaptive Vector Field Approach for Path Following

	Team of UAVs as a Multi-Agent System
	UAV Muti-Agent Systems
	Communication Graph and Types of Nodes
	Objectives for Control
	Reference Dynamics for Leader/Follower Synchronization
	Synchronization of Leader Dynamics to Reference Dynamics
	Synchronization of Follower Dynamics to Reference Dynamics

	System & Software Architecture
	System Architecture for Hardware-in-the-Loop Simulation
	System Architecture for Software-in-the-Loop Simulation
	Software Architecture for Path Planner Node
	Software Architecture for Leader Node
	Software Architecture for Follower Node

	Synchronization of Data Between Nodes
	A Glimpse to Computer Networking
	Protocol for Synchronisation of Data Between Nodes
	Transfer of Packets Over the Network
	Server for Data Synchronisation
	Client for Data Synchronisation
	Handling User Configurations & Inputs

	Simulations and Results
	Simulations for Path Planner Node
	Synchronisation of Leader and Follower Node

	Conclusions and Future Work
	Conclusions
	Future Work

