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ABSTRACT
Spatiotemporal residual noise in terrestrial earth observation products,
often caused by unfavorable atmospheric conditions, impedes their
broad applications. Most users prefer to use gap-filled remote sensing
products with time series reconstruction (TSR) algorithms. Applying
currently available implementations of TSR to large-volume datasets is
time-consuming and challenging for non-professional users with limited
computation or storage resources. This study introduces a new open-
source software package entitled ‘HANTS-GEE’ that implements a well-
known and robust TSR algorithm, i.e. Harmonic ANalysis of Time Series
(HANTS), on the Google Earth Engine (GEE) platform for scalable
reconstruction of terrestrial earth observation data. Reconstruction tasks
can be conducted on user-defined spatiotemporal extents when raw
datasets are available on GEE. According to site-based and regional-
based case evaluation, the new tool can effectively eliminate cloud
contamination in the time series of earth observation data. Compared
with traditional PC-based HANTS implementation, the HANTS-GEE
provides quite consistent reconstruction results for most terrestrial
vegetated sites. The HANTS-GEE can provide scalable reconstruction
services with accelerated processing speed and reduced internet data
transmission volume, promoting algorithm usage by much broader user
communities. To our knowledge, the software package is the first tool
to support full-stack TSR processing for popular open-access satellite
sensors on cloud platforms.
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1. Introduction

Long-term archived remote sensing datasets collected by satellite missions such as AVHRR
(Advanced Very High-Resolution Radiometer), Landsat, Sentinel, and MODIS (Moderate
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Resolution Imaging Spectroradiometer) provided unprecedented opportunities for earth system
science research and global ecosystem monitoring (Bretherton 1985; Reichstein et al. 2019; Shiklo-
manov et al. 2019; Steffen et al. 2020; Yu et al. 2022a). However, satellite-based land surface obser-
vations, especially by optical or thermal sensors, are often contaminated by different sources of
noise such as clouds, shadows, aerosol, and observational geometry (Holben 1986; Zhou et al.
2021). Many data processing strategies have been designed to eliminate the effect of contaminated
observations on downstream applications (Shen et al. 2015). For some remote sensing products,
most contaminated observations can be correctly identified by strict quality control (QC) pro-
cedures (Zhu and Woodcock 2012) and are excluded in further analysis, resulting in gaps in the
dataset. Because of limited spectral bands and complex noise sources, both omission or commission
errors still existed in quality control procedures, which leaves residual contaminated observations in
a dataset, or some valid observations are masked out (Zhou et al. 2021). For sensors with very dense
observations (e.g. daily for MODIS), the derived land surface products (e.g. vegetation index) com-
monly used the temporal compositing method to remove noisy observations by assuming that noise
appears as a fast disturbance compared with the slower evolution of land surface conditions (Hol-
ben 1986). Residual contaminated observations can still exist after the temporal compositing pro-
cessing as continuous cloudy-sky may last longer than selected temporal compositing windows
(Roerink, Menenti, and Verhoef 2000; Zhou, Jia, and Menenti 2015).

To further fill the gaps and eliminate the impact of residual contaminated observations, a pano-
ply of time series reconstruction (TSR) algorithms has been proposed in past decades by interpolat-
ing values of gapped position based on valid observations within a temporal window (Hird and
McDermid 2009; Geng et al. 2014; Zhou et al. 2016a; Li et al. 2021). According to the principle
of missing information restoration, Li et al. (2021) categorized these methods as temporal-based
methods, frequency-based methods, and hybrid methods. Temporal methods such as MVC (Hol-
ben 1986), Savitzky–Golay (SG) filter (Chen et al. 2004), Asymmetric Gaussian (AG) function
fitting (Jonsson and Eklundh 2002), and Double Logistic (DL) function fitting (Beck et al. 2006;
Yang et al. 2019) reconstruct noisy time series based on temporally neighbor observations or phe-
nological characteristics of vegetation, which can capture local detail variation well (Zhou et al.
2016a). In contrast, frequency-based methods including Fourier analysis (Menenti et al. 1993), Har-
monic ANalysis of Time Series (HANTS) (Roerink, Menenti, and Verhoef 2000) and wavelet trans-
form (WT) (Lu et al. 2007) assume noisy observations always present as high frequency
components in time series. The methods mainly eliminate the impact of noisy observations by
decomposing time series into sub-signals into different frequencies and removing high-frequency
components. Both the temporal-based methods and frequency-based methods only consider tem-
poral continuity while ignoring spatial correlation of time series. Hybrid methods combine both
spatial and temporal information together for image reconstruction. All the Temporal Spatial
filter (TSF) (Fang et al. 2008), Search and Fill Algorithm with Moving Offset Method (SFA-
MOM) (Padhee and Dutta 2019), Spatio-Temporal Savitzky–Golay (STSG) method (Cao et al.
2018) and Spatio-Temporal Tensor completion (ST-Tensor) method (Chu et al. 2021) belong to
this category. Most of the above-mentioned methods have been carefully evaluated and successfully
applied to regional or global reconstruction. None of them can be superior to all other methods
under different conditions according to previous performance evaluation (Hird and McDermid
2009; Zhou et al. 2016a; Julien and Sobrino 2019).

The Harmonic Analysis of Time Series (HANTS) is one of the most widely applied TSR algor-
ithms, especially for time series of vegetation products (Menenti et al. 1993; Verhoef, Menenti, and
Azzali 1996; Roerink, Menenti, and Verhoef 2000). The main advantage of HANTS includes (1)
inherent coherence of harmonic components with periodical phenology rhythms, (2) low-pass
filtering to preserve the slower phenological signals while excluding the high-frequency noise
induced by adverse atmospheric conditions, (3) simple implementation of the method (via itera-
tively linear least-square fitting), and (4) powerful compression for raw time series (Menenti
et al. 2010; Zhou et al. 2021). HANTS were initially proposed to process time series of optical
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vegetation products such as Normalized Difference Vegetation Index (NDVI) (Menenti et al. 1991,
1993; Verhoef 1996; Roerink, Menenti, and Verhoef 2000), Leaf Area Index (LAI) (Jiang et al. 2017),
and Enhanced Vegetation Index (EVI) (Potgieter et al. 2007). Julien, Sobrino, and Verhoef (2006)
and Alfieri, De Lorenzi, and Menenti (2013) successfully applied the method to reconstruct Land
Surface Temperature (LST) products. To eliminate the effect of observation gaps and underesti-
mated observations caused by raindrops of microwave data, Shang, Jia, andMenenti (2015) adopted
the HANTS to reconstruct the polarization difference brightness temperature (PDBT) at 37 GHz.
The global reconstruction performance of HANTS for NDVI products had been systematically
evaluated by Zhou, Jia, and Menenti (2015), which suggested that the reconstruction error of
HANTS in terms of Root Mean Squared Deviation (RMSD) remained less than 0.05 over most ter-
restrial surface except the high latitude boreal forest area and part of tropical rainforest area. The
subsequent performance evaluation and method comparison studies also documented the perform-
ance of HANTS was comparable with and, in some cases, better than other methods (Zhou et al.
2016a; Julien and Sobrino 2018; Zhang et al. 2021). The HANTS was proposed with several
user-defined control parameters, which offered users valuable flexibility in analyzing environmental
time series with diverse characteristics, yet it can be challenging for inexperienced users to set an
appropriate value for each parameter. Zhou et al. (2021) tried to address the problem by optimizing
parameter settings for HANTS in global NDVI reconstruction and providing estimates of biome-
specific parameters. In addition to being embedded in HANTS for TSR purposes, the harmonic
analysis model has also been applied intensively to extract seasonal patterns of surface reflectance
data from Landsat (Zhu, Woodcock, and Olofsson 2012; Verbesselt, Zeileis, and Herold 2012; Zhu
et al. 2015; Yan and Roy 2020; Zhou et al. 2022), which had been embedded into the Continuous
Change Detection and Classification (CCDC) algorithm, and Breaks For Additive Seasonal and
Trend monitor (BFASTmonitor) model for rapid land cover change detection (Xian et al. 2022).
In general, with the intrinsic property of ideally capturing the seasonal dynamic of vegetated surface
and well-evaluated performance, the harmonic-based model including HANTS received wide-
spread attention from research communities using time series remote sensing data, especially for
time series reconstruction purposes.

Much effort had been made to develop algorithms for time series reconstruction (e.g. HANTS)
(Li et al. 2021), phenological metrics extraction (Zeng et al. 2020), and land cover change detection
(Zhu and Woodcock 2014; Zhao et al. 2022) using time series of remote sensing data. However,
most algorithms were proposed as proofs-of-concept or simply implemented for academic usage.
Users need to implement the algorithms according to published scientific papers or adapt the
shared core source codes for specific datasets and area of interest, which are somewhat challenging
for many current and potential users (Eerens et al. 2014). For example, previous implementations of
HANTS were mainly provided as source code in a variety of programming languages, which needs
further coding work by specialized users for different applications (Zhou et al. 2021). In practice, the
so-called full-stack TSR processing of long time series of images might involve collecting data,
image mosaic, resampling, projection transformation, pixel-by-pixel reconstruction, and organiz-
ation and output of resulting images, etc. For a large volume earth observation data cube, one
even needs to optimize the code by parallel processing during TSR. User-friendly implementation
of these TSR methods for automatic full-stack TSR processing (e.g. without an additional coding
workload) can further promote usage outside the academic domain. As a pioneer software package
for time series analysis in remote sensing, the Timesat was developed by Jönsson and Eklundh
(2004) for automatic phenological matrices extraction. The software embedded Asymmetric Gaus-
sian (AG), Double Logistic (DL), Savitzky – Golay (SG) algorithms for vegetation index profile
smoothing. Owning to its friendly Graphic User Interface (GUI) and consistent maintenance
efforts from authors (Jönsson and Eklundh 2004, 2007; Eklundh and Jönsson 2012, 2017), the soft-
ware had been widely applied for time series processing and assessment of vegetation dynamic in
past decades. The SPIRITS software is another stand-alone toolbox developed for the processing
and analysis of time series of raster data, which includes many tools with the main aim of extracting
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vegetation indicators from image time series, estimating the potential impact of anomalies on crop
production, and sharing this information with different audiences (Eerens et al. 2014; Rembold
et al. 2015). To further integrate available gap-filling methods, Belda et al. (2020) developed the
DATimeS software that can generate cloud-free composite images with more than 30 gap-filling
methods and capture seasonal vegetation dynamics from regular or irregular satellite time series.
These PC-based software packages for time series analysis incorporated one or several gap-filling
or smoothing methods with user-friendly GUI, which facilitated the time series reconstruction pro-
cessing for non-professional users.

Nevertheless, the quickly upgraded satellite sensors with higher spatial and temporal resolutions
still posed computational challenges in applying these desktop-based packages for large-scale (in
terms of both temporal and spatial) time series image processing (Rembold et al. 2015). One of
the most promising approaches to take advantage of the ‘Big data’ of earth observation is to rep-
resent these analysis methods by introducing cloud-based tools and data repositories (Guo,
Wang, and Liang 2016, 2020; Gomes, Queiroz, and Ferreira 2020). According to a web-based survey
on cloud-based services for big earth data, most workflow users preferred to execute on cloud plat-
forms to improve the overall efficiency of data handling aspects, especially for time series analysis
(Wagemann et al. 2021). Built from a collection of technologies available on Google infrastructure,
Google Earth Engine (GEE) is a powerful cloud-based platform for big EO data management and
analysis (Gorelick et al. 2017). Since its launch in 2010, the platform has boomed global-scale EO-
based applications such as forest monitoring, water mapping, and rapid land cover change detec-
tion (Tamiminia et al. 2020). On the GEE platform, users’ data processing requests can be sent to
the server side for execution by customizing code based on either JavaScript or Python APIs. To
further overcome the programming barriers faced by users, especially local managers who are
not familiar with or good at these APIs, it is necessary to provide user-friendly GUI by embedding
core processing algorithms backend on the GEE platform, which can facilitate the translation of
data to knowledge or decision (Huntington et al. 2017; Zhang et al. 2020). Inspired by this idea,
Huntington et al. (2017) developed a GEE-based web application, Climate Engine, to process, visu-
alize, download, and share climate and remote sensing datasets in real time. Li et al. (2019) designed
a GEE-enabled software for efficiently generating high-quality user-ready Landsat mosaic images,
based on which users can request high-quality Landsat images over any region and any period
via provided GUI. The well-known land-cover change detection methods such as CDCC (Arévalo
et al. 2020), BFASTmonitor (Hamunyela et al. 2020), and LandTrendr (Kennedy et al. 2018) were
also implemented in GEE with interactive GUI based on JavaScript API of GEE in recent years.

Time series reconstruction for remote sensing is a data-intensive processing procedure, and high
processing efficiency is one of the leading development trends of time series reconstruction tech-
niques (Li et al. 2021). The efficiency can be significantly improved by implementing TSR methods
on GEE as the platform natively support pixel-based processing and can handle huge earth obser-
vation dataset archived on Google cloud infrastructure (Gomes, Queiroz, and Ferreira 2020). Kong
et al. (2019) proposed an extended reconstruction method of the Whittaker Smoother, namely
wWHd (weightedWhittaker with dynamic parameter λ in the spatial dimension), and implemented
it as the first available denoising method on the GEE platform. Based on the weighted Savitzky –
Golay filter method proposed by Chen et al. (2004), Chen et al. (2021) proposed the Gap Filling
and Savitzky – Golay filtering method (GF-SG) for reconstructing Landsat NDVI time series and
also implemented it on the GEE. Users can freely adapt the source code (in JavaScript) of these
implementations for flexible and efficient time series reconstruction. However, these codes only
implemented proposed kernel algorithms, but none provided interactive GUI for users.

This paper aimed to introduce HANTS implementation on the GEE (HANTS-GEE) for scalable
time series reconstruction processing with user-friendly GUI, which supports custom dataset set-
tings (e.g. vegetation index) and spatiotemporal extent, model parameters, and export parameters
for reconstruction tasks. The scalability is mainly achieved by offering users customizable TSR ser-
vices across both temporal and spatial scales. To our knowledge, this tool is the first one focused on
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full-stack TSR processing on a cloud platform. With this software package, users can conduct
reconstruction tasks for any datasets (available on GEE), regions, and periods (limited to the raw
dataset) without coding work. In practice, the HANTS algorithm and its implementation frame-
work on GEE were described in section 2. Section 3 mainly reported the reconstruction perform-
ance of HANTS-GEE in terms of accuracy as well as processing efficiency. Finally, several relevant
issues of the new tool were discussed in section 4.

2. HANTS and the implementation on GEE

2.1. Mathematics of HANTS

The introduction of Fourier analysis into time series of NDVI images for classifying agro-meteor-
ological vegetation zones at a continental scale by Menenti et al. (1991, 1993) provided a new per-
spective for time series analysis of remote sensing data. Given a time series of N NDVI images, the
Fast Fourier Transform (FFT) allows decomposing time profiles of NDVI into N/2 sinusoidal com-
ponents i.e. harmonic components. The amplitudes and phases of certain components (for
instance, those with a period of one year, six months, etc.) can be related to agro-biological
phenomena, such as the growth of vegetation in response to the yearly recurrent patterns of cli-
mates. Practically, considering the invertible cloud contamination of the time series of NDVI
images, the Harmonic ANalysis of Time Series (HANTS) was developed at National Aerospace Lab-
oratory (NLR) to extract robust harmonic components using only significant frequencies expected
to be present in the time profiles (Menenti et al. 1993; Verhoef 1996). Harmonic analysis is a branch
of mathematics concerned with the representation of functions or signals as a superposition of per-
iodic functions (Menenti et al. 1993; Roerink, Menenti, and Verhoef 2000; Zhou, Jia, and Menenti
2015). When it is used to reconstruct time series of remotely sensed data, the basic formula is writ-
ten as.

ỹ(tj) = a0 +
∑NF
i=1

[ai cos (2pfitj)+ bi sin (2pfitj) (1)

y(tj) = ỹ(tj)+ 1(tj) (2)

Here y, ỹ, and 1 are the original series, the reconstructed series, and the error series, respectively.
tj is the time when y is obtained (observed), where j = 1, 2,… , N with N as the maximum number of
observations (samples) in a time series. The symbol NF is the number of periodic terms in the series,
says the number of harmonic components associated with the frequencies fi. These selected harmo-
nics consist of a base frequency and a series of integer multiples of the base frequency. ai and bi are
coefficients of the trigonometric components with frequencies fi. a0 can be viewed as the coefficient
at zero frequency, which is the average of the series. The harmonic fitting can be achieved by solving
the equations above using the linear least square method. Equation (1) can be further rewritten as:

ỹ(tj) = a0 +
∑NF
i=1

Ai cos (2pfitj − wi) (3)

Ai =
��������
a2i + b2i

√
(4)

wi = tan−1 bi
ai

(5)

Where Ai and wi are the amplitude and phase for the i-th harmonic components respectively.
These parameters extracted from time series of NDVI were closely linked to phenological pattern
of vegetation (Menenti et al. 1993, 2010; Roerink et al. 2003; Jia et al. 2011).
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Based on the principle of harmonic analysis described above, the HANTS removes.
outliers and fills gaps by the following steps:

(1) Checking the time series and flag samples outside the valid range of data. All samples beyond
this range will be rejected.

(2) Fitting the remaining valid samples of the series by several prescribed harmonic components.
(3) If the maximum signed bias between the fitted series and the valid samples is larger than a user-

defined threshold and the number of the remaining samples exceeds the minimum number of
samples necessary for the reconstruction process, then the samples with bias larger than the
user-defined threshold are identified as ‘outliers’ and rejected for further model fitting and
return to step (2). Otherwise, stop the processing.

A series of parameters of the HANTS algorithms need to be set carefully, and Zhou et al. (2021)
optimized the parameter setting for global NDVI Reconstruction. Compared to FFT, the HANTS
holds greater flexibility in the choice of frequencies and the length of the time series. In addition,
unlike FFT, the input samples of HANTS are not required to be equidistant in time.

2.2. Conceptualization & implementation of HANTS-GEE

The HANTS-GEE was designed to fill gaps in the time series of terrestrial remote sensing products
that are available directly or can be derived from other products archived on the GEE platform. In
general, these products are susceptible to biased noise (e.g. cloud cover) and reveal continuous land
surface conditions such as NDVI, Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Land
Surface Index (LST), Surface Reflectance (SR), etc. The products supported in the current
implementation of HANTS-GEE are listed in Table 1.

The core reconstruction algorithm of HANTS was implemented in the ‘hants’ function which
constructs a linear regression system according to Equation (1) based on input raw image collec-
tions and predefined model parameters including the number of harmonic components (NF), Fit-
ting error thresholds (FET), and the direction of biased noise (hilo), and Degree of Over-
Determination (DoD). A detailed explanation of these parameters can be found in Roerink,
Menenti, and Verhoef (2000), and Zhou et al. (2021). Land surface vegetation is inevitably impacted
by long-term (e.g. multiple-year) disturbance caused by climate variation or anthroponotic activi-
ties and presents asymmetric patterns in time series of annual NDVI profiles (see Figure 2 of Zhou
et al. 2016a). Zhou et al. (2016a) illustrated that a multiple-year harmonic component (e.g. 24-
month component) can be included in the HANTS to account for the multiple-year variation.
Zhou et al. (2016b) further demonstrated that the inclusion of multiple-year harmonic components
in HANTS can significantly improve global reconstruction performance. In the implementation of

Table 1. List of products currently supported by HANTS-GEE.

Raw Dataset (short
name) Data source

Temporal
range

Spatial (m) / temporal
(days) res.

NDVI-MODIS NDVI of MODIS sensors onboard both Terra and Aqua
(MOD13Q1 + MYD13Q1)

2000∼present 250 m/8 days

EVI-MODIS EVI of MODIS sensors onboard both Terra and Aqua
(MOD13Q1 + MYD13Q1)

2000∼present 250 m/8 days

NDVI-MODIS (Daily) NDVI derived from daily band reflectance data of MODIS
(MOD09GQ)

2000∼present 250 m/ daily

NDVI-AVHRR NDVI from several NOAA’s AVHRR sensors (GIMMS3g) 1981∼2015 8000 m/15 days
LAI-MODIS LAI derived from MODIS sensors (MCD15A3H) 2000∼present 500 m/4 days
NDVI-S2 NDVI of Sentinel-2 (MSI sensor) 2015∼present 10 m/4 days
NDVI-Landsat NDVI of Landsat series (L4/L5/L7/L8) 1984∼present 30 m/5∼16 days
LST-MODIS Land Surface Temperature products of MODIS (MOD11A1

+ MYD11A1)
2000∼present 1 km / 4 days
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HANTS-GEE, a harmonic component with a 2-year period was added to the regression model by
default to account for possible inter-annual variation in input series. The nHarms set by users on
the GUI was used to control the number of harmonic components with intra-annual periods, e.g.
12-month, 6-month, and 4-month. In this case, the total harmonic components (i.e. NF) in this
implementation was nHarms + 1 and the number of coefficients of Equation (1) was 2*nHarms
+ 3 ( = 2*NF+1). Zhou et al. (2021) suggested setting the FET to 0.05 for global MODIS NDVI
reconstruction and the parameter can be adjusted by users for different products and biomes.
The ‘hilo’ parameter can be set as ‘Low’, ‘High’, and ‘None’, which indicated the possible direction
of biased noise is negative, positive, and unbiased, respectively. For example, noise in the NDVI
time series is normally considered negatively biased as clouds and shadows produce much lower
NDVI compared to the vegetated surface (Holben 1986; Roerink, Menenti, and Verhoef 2000).
For time series with all observations well qualified, the ‘hilo’ can be set as ‘None’ and the harmonic
regression model is applied to smooth the series (i.e. without iterations for outlier detection). The
linear system was solved using the Ridge regression method by the ‘ee.Reducer.ridgeRegression’
function of GEE to prevent unstable solutions. The Ridge regression contained a regularization fac-
tor to dampen the randomness of the solutions. According to Zhou et al. (2021), the regularization
factor (i.e. Delta in HANTS) was set as 0.5 by default.

There are three main processing steps in HANTS-GEE (Figure 1):

(1) Preprocessing: a gap-filling processing-ready image collection is constructed according to the
user-defined EO-based product, spatial and temporal extent. Each image inside the result
image collectionmust contain a ‘dependentBand’ band for the raw data to be gap-filled. The sol-
ution of the HANTS method is an iterative linear regression problem, where raw observations

Figure 1. Full processing steps of HANTS implementation on GEE. The light-yellow blocks are core steps (functions) implemented
on GEE (JavaScript code). The processing of the green block is implemented in Python.
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are dependent (or response) variables and harmonics are independent (or predictor) variables.
Raw datasets need to be rescaled tomeaningful ranges and converted to float or double precision
type in this step. For example, the raw NDVI products of MODIS sensors, officially released in
signed integer type with a scale of 0.0001, are rescaled to a range between−0.2 and 1.0. Users can
add new datasets for gap-filling with very little coding work in the ‘rawDs’ function. Currently,
supported datasets ready for reconstruction processing are listed in Table 1.

(2) Multiple years processing: Current system was mainly designed for remote sensing products
from sensors onboard satellites with sun-synchronous orbits, the temporal resolution of which
can range from daily to monthly. Although users may request reconstruction tasks spanning
one year or several years (e.g. 2001∼2020), the gap-filling is conducted on a yearly basis over
the prepared raw dataset in step 1) by calling the ‘hants’ function (i.e. the gap-filling kernel).
Unlike the SG filter, HANTS used a global optimal fitting method which pursues the least
fitting error for all input observations, and thus if the method is applied to multiple years (e.g.
ten years) directly, one can expect the smallest overall fitting error but substantial occasional
biases (Zhou et al. 2021). To reconstruct input time series on a yearly basis can effectively reduce
local biases. A three-month temporal overlap in default is used for yearly gap-filling to ensure the
continuity of processing between consecutive years. For example, to process the NDVI of 2009,
raw NDVI observations between October 1, 2008 and March 1, 2010 are used as input to recon-
struct the time series between January 1, 2009 and December 31, 2009. The output interval par-
ameter can be set to output results at different temporal resolutions from daily to monthly.

(3) Export results: the reconstructed result (image collections) can be exported to either Google
Drive or Assets of GEE. In this step, the spatial/temporal resolutions of the output image
should be set. Users can export results in four formats, i.e. FINAL, FINAL_RAW, COEF,
and COEF-FULL format:
a) ‘FINAL’ format: reconstructed images with user-specific temporal intervals (e.g. 8-day) over

the selected time periods can be exported in Google Drive or Assets. Additionally, a scale
and offset parameter can be further set to rescale and convert the final output into 16-bit
integer type, which further reduces the data transmission volume (See section 3.2). In
this format, all the raw values (where high quality or outliers) are replaced by values
extracted from fitted harmonic models. This is the default format for regular long-term
time series reconstruction tasks.

b) ‘FINAL_RAW’ format: the output of this format is very similar to that of ‘FINAL’ format
except that only outliers in a time series (identified in step 2 of the model fitting process, see
section 2.1) are replaced by values extracted from the well-fitted harmonic model but other
high-quality raw data are used as output directly. In this case, for pixels with marginal con-
taminated observations, the smoothing effect of harmonic fitting can be suppressed com-
pared with the output of ‘FINAL’ format.

c) ‘COEF’ format: images of harmonic coefficients i.e. coefficients of sine (bi in Equation (1))
and cosine (ai in Equation (1)) for each harmonic component, which needs to be converted
to time series images (FINAL format) of relevant products by users at local workstations
using supplemented python code ((i.e. ‘COEF2Final.py’). It should be mentioned that it
is only allowed to extract the coefficients from yearly observations instead of multiple
years. For each year, there will be 2*nHarms + 3 coefficient bands in the exported image.
The ’COEF’ format was mainly designed to speed up the exporting process and reduce
the data transmission (or downloading) volume for users, especially for large-area proces-
sing (see section 3.2).

d) ‘COEF-FULL’ format: The HANTS algorithm can be applied to full input time series (i.e.
multiple years) and the amplitude (Ai in Equation (3)) and phase (wi in Equation (3))
images of each harmonic are exported. The ‘COEF-FULL’ model can capture the general
dynamic pattern of pixels (Zhu et al. 2015) and export amplitudes and phases of vegetation
time series, which hold valuable phenological information (Menenti et al. 1993, 2010).
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Result data exported to Google Drive can be downloaded by users for further analysis. Results
exported to Asserts can be further retrieved into the GEE coding environment through ‘retriveR-
econColFromAsset’ function and used for other applications in the GEE.

A GUI (Figure 2) was implemented to support users to set all parameters as mentioned earlier,
including raw datasets, spatial/temporal extent, HANTS parameters, export settings, etc., without
any coding work. The temporal extent setting is determined by all available images of raw datasets,
and users can set the temporal processing range by choosing the start year and the end year. The
spatial extent can be set by using vector data in Assets or interactively created geometry layers in the
map window. Moreover, an interactive plotting function on the GUI can be used to interactively
check the reconstruction performance of HANTS for any place on the planet, where both raw
and reconstructed time series were plotted in one chart. The software package is available at
https://github.com/jiezhou87/HANTS–GEE (accessible on January 30, 2023).

3. Performance evaluation of HANTS-GEE

3.1. Overall reconstruction accuracy of remote sensing products

3.1.1. The application of HANTS-GEE for different remote sensing products
The HANTS has been documented for reconstructing different remote sensing products such as
NDVI, LAI, LST, etc (Julien, Sobrino, and Verhoef 2006; Menenti et al. 2010; de Jong et al.
2011; Alfieri, De Lorenzi, and Menenti 2013; Jiang et al. 2017). And the HANTS-GEE was designed
for multiple-source products (as listed in Table 1) processing and the list can be easily expanded by
users. Here we intended to provide a general perspective on the capability of the HANTS-GEE to
eliminate impacts of problematic observations in EO products by visually checking the reconstruc-
tion performance for different products over four selected sites (Table 2). The four selected sites
represent different ecosystems and distinct climate conditions (i.e. cloud patterns), which can high-
light the adaptability of HANTS-GEE for global reconstruction. Note that all data used in this sub-
section were extracted from the data products list in Table 1.

The HANTS-GEE perfectly recovered a smooth growth curve for each site based on 8-day NDVI
observation fromMODIS (combined both Terra and Aqua), although less than 50 percent of obser-
vations of all sites (except the Mead) were flagged as high quality (QA = 0) (Figure 3A-D). For many

Figure 2. GUI for the scalable gap-filling processing with HANTS.
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cases, even NDVI observations flagged as contaminated by partial cloud (QA = 1), snow (QA = 2),
or complete cloud (QA = 3), these observations did not deviate significantly from the upper envel-
ope of NDVI profiles. This means the QA information provided with vegetation index products
may give an inaccurate indication. In other words, contaminated observations flagged by QA
should not be excluded directly for time series reconstruction (Zhou et al. 2021). For example, if
only high-quality observations (QA = 0) were used in time series reconstruction, continuous
gaps lasting more than three months e.g. over Krasnoyarsk, COMPLETE 141, and Mongu may
result in failed upper envelop reconstruction. The MODIS LAI profiles have much denser
MODIS NDVI profiles (i.e. 4-day vs 8-day) and much more observations are flagged as high quality
(i.e. QA = 0) (Figure 3E-H). The HANTS-GEE still can construct a smooth upper envelope of the
LAI profile of each selected site very well.

Although the NDVI time series derived from Landsat series satellites (L5, L7, and L8) shared
similar temporal resolution (i.e. around 8 days per sample) as the combined NDVI products of
MODIS onboard TERRA/AQUA, the latter NDVI time series produced from daily observation
using Maximum Value Composition (MVC) hold much denser high-quality observations
(Figure 3A-D and Figure 3I-L). In the winter season (from October to March of the following
year) of the Krasnoyarsk site (Figure 3I), the long gaps in the NDVI profile from Landsat caused
by the dark winter at high latitude resulted in artifacts at the two ends of the reconstructed series.
To further address this large gap problem, the pre-filling process suggested by Beck et al. (2006) can
be implemented before the HANTS reconstruction. Nevertheless, the smooth growth pattern rep-
resented by Landsat observations can be well recovered by HANTS-GEE for each selected site. It
should be noted that only one active sensor onboard Landsat-5 was available during 1984∼1999,
while the observation density increased gradually after 1999 with the successful launching of Land-
sat-7/8/9. In this case, the accuracy of the reconstruction result provided by HANTS-GEE might
change in different periods. When the HANTS-GEE was applied to process NDVI time series

Table 2. List, localization and biome sampled by the selected field sites.

Site name Country Lat Lon Biome

Krasnoyarsk Russia 57.270 91.600 Needleleaf Forest
Mongu Zambia −15.438 23.253 Shrubland/Woodland
Mead USA 41.165 −96.469 Agriculture (corn/soy)
COMPLET 141 Myanmar 23.452 95.762 Wood Savannas

Figure 3. Reconstruction performance of HANTS-GEE for MODIS-NDVI (A-D), MODIS-LAI (E-H), Landsat-NDVI (I-L), and Sentinel-2-
NDVI (M-P) products over four sites: Krasnoyarsk, Mongu, Mead, and COMPLETE 141. Raw observations (‘Raw’) and reconstruction
result series (‘Recon’) are given in red and blue respectively. Black dots represent quality assessment (QA) value for observation
(MODIS-NDVI: 0- Good Data, 1- Marginal Data, 2- Snow/Ice, 3- Cloudy. MODIS-LAI: 0- Good quality (main algorithm with or with-
out saturation), 1- Other quality (back-up algorithm or fill values).).
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derived from Multispectral Instrument (MSI) sensors onboard Sentinel-2A/B, much more detail
can be captured compared to NDVI from Landsat satellites as Sentinel-2/MSI provides a higher
revisit frequency (around 4 days) on average (Figure 3M-P).

3.1.2. Case for regional reconstruction effects
To further demonstrate the effect of time series reconstruction on a regional NDVI image, HANTS-
GEE was applied to reconstruct time series of MODIS NDVI (MOD13Q1) images in 2021 of the
middle reach of the Yangtze river. The growing season in this region starts in March. The NDVI
image on May 9, 2021 (i.e. raw NDVI, Figure 4A) shows rather low values (<0.4) in the central
part where only cloudy composited pixels were available in the 16-day MVC processing window
(Figure 4B). In addition, the difference in observation quality caused significant ‘edge effect’ in
the raw NDVI image (i.e. the edge indicated by the red ellipse in Figure 4A), which is an unrealistic
spatial pattern in an NDVI image. The reconstruction processing successfully eliminated the cloud
contamination as well as the ‘edge effect’ in the raw NDVI image, where we observed a significant
increase of NDVI in the reconstructed image (Figure 4D), especially over the cloud-covered forest
area (Figure 4C). The reconstructed NDVI image also presented more reasonable vegetation pat-
tern, with the NDVI of forest area being much higher than that of cropland area.

3.1.3. Consistency between HANTS-GEE and HANTS-Python
As mentioned in Section 1, the global reconstruction performance of HANTS had been systemati-
cally evaluated by Zhou, Jia, and Menenti (2015) and Zhou et al. (2016a). We prefer the new
implementation of HANTS on GEE can completely consistent with the PC-based implementation,
in which case the global reconstruction accuracy can be assessed according to our previous per-
formance evaluation result directly. However, the GEE shared a different computation framework
compared to local workstations or personal computers, which resulted in a small difference in time

Figure 4. Reconstructed NDVI image and raw NDVI image of the middle reach of Yangtze river in China: (A) Raw MODIS NDVI
(MOD13Q1) on May 9, 2021; (B) Quality control flag for the raw NDVI image; (C) Reconstructed NDVI image by HANTS-GEE; (D) the
scatterplot between reconstructed NDVI and raw NDVI images. The ‘red ellipse’ in (A) indicated the sudden change in NDVI (edge
effect) caused by a difference in observation quality.
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series fitting results as mentioned by Kennedy et al. (2018). To evaluate the consistency between the
HANTS-GEE and traditional PC-based implementation, we compared the reconstruction result of
the MODIS NDVI time series in 2021 using HANTS-GEE and a publicly available implementation
of HANTS by Python (see Espinoza-Dávalos et al. 2017, hereafter HANTS-Python). The MODIS
NDVI time series in 2021 across BELMANIP2 (BEnchmark LandMultisite ANalysis and Intercom-
parison of Products) sites were reconstructed by HANTS-GEE and HANTS-Python, respectively.
The BELMANIP2 was designed to represent terrestrial vegetation types and their phenology
with a set of selected sites, where the percentage of sites for each biome closely matches the global
fractional abundance of each biome (Baret et al. 2006). Numerous previous product comparison
and performance evaluation studies frequently used BELMANIP2 sites as a reference for global veg-
etation dynamic patterns (Zhou et al. 2016a; Franch et al. 2017; Zhou et al. 2021). There were 445
sites in the BELMANIP2 dataset, of which 80 non-vegetated sites were excluded from analyses. The
parameter setting of HANTS was adopted from Zhou, Jia, and Menenti (2015). The correlation
coefficient and root mean squared error (RMSE) between the reconstructed result for each site
were calculated to assess the fidelity of implementations.

Among the 365 vegetation-covered sites, more than 310 sites reported very high correlation
(>0.99) and low RMSE (<0.02) (Figure 5, Table 3), which indicated rather good consistency between
HANTS-GEE and HANTS-Python across most global sites. Across all biomes, the average corre-
lation is larger than 0.92, and the average RMSE is smaller than 0.05. In fact, less-than-ideal

Figure 5. Map of the correlation coefficient (A) and Root Mean Squared Error (RMSE) (B) between MODIS NDVI in 2021 recon-
structed by HANTS-GEE and HANTS-Python over global BELMANIP2 (BEnchmark Land Multisite ANalysis and Intercomparison of
Products) sites. The inset plot inside each map plot is the histogram for corresponding measurement. Sites with maximum yearly
NDVI less than 0.2 (i.e. sparse vegetation or bare ground) were excluded. NDVI products from MODIS sensors onboard both Terra
and Aqua were used as input for reconstruction.
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consistency mainly appeared at part sites over Evergreen broadleaf forest (EBF) and Evergreen nee-
dleleaf forest (ENF) sites. The EBF sites are mainly distributed across tropical rainforest areas where
very few clear-sky satellite NDVI observations are available because of frequent cloud coverage (Beck
et al. 2006; Julien and Sobrino 2018). In addition, HANTS algorithm aimed to use multiple sinusoi-
dal wave to seasonal dynamic of input signals while the seasonal dynamic of NDVI over EBF sites
was rather weak compared to other biomes (Menenti et al. 1993). The limited valid observations and
weak seasonal dynamics introduced unstable model fitting and poorer reconstruction performance
of HANTS (Zhou, Jia, and Menenti 2015, 2021). The ENF sites are mainly distributed over the
Northern high latitude area (around 60°N), where the vegetation may regularly be covered by
snow in winter. The snow falling in winter and melting in the next spring normally occurred very
fast, which resulted in sudden changes in observed NDVI signals (Beck et al. 2006). The selected
low-frequency harmonics of HANTS were not enough to capture such sudden change patterns
and caused unstable model fitting in the ENF area as well (Zhou, Jia, and Menenti 2015, 2016a).

As regards the slight discrepancy between theHANTS-GEEandHANTS-Python, therewere at least
two factors that should bementioned. Firstly, in the HANTS-Python implemented by Espinoza-Dáva-
los et al. (2017), only the observation with the largest fitting error (and larger than the FET at the same
time) is removed as outliers during each iteration (i.e. one outlier each iteration). However, the
HANTS-GEE removed all observations with fitting errors larger than FET as outliers during each iter-
ation (i.e. all outliers each iteration). To check the effect of this difference on the consistency, the orig-
inal HANTS-Python was modified to ‘all outlier each iteration’ (i.e. HANTS-Python_M). Compared
with the original HANTS-Python, the consistency between HANTS-GEE and HANTS-Python_M
was further improved significantly in terms of both correlation and RMSE (Table 3). Particularly,
the correlation increased from 0.0.922 (0.939) to 0.992 (0.972) and RMSE decreased from 0.012
(0.041) to 0.004 (0.026) over the EBF (ENF) sites. Until now no conclusion on which outlier removing
strategies performs better for global reconstruction. In fact, even with different outlier removing strat-
egies the consistency across biomes is rather high (see the ‘HANTS-GEEvsHANTS-Python’ columnof
Table 3). In addition, the implementation of the ‘one outlier each iteration’procedure is rather complex
in GEE currently. In this case, we kept the ‘all outlier one iteration’ strategy inHANTS-GEE. Secondly,
both two implementations used ridge regression to solve the constructed harmonic models, however,
the GEE and python respectively applied the Cholesky decompositionmethod and lower – upper (LU)
decompositionmethod in backends to solve linear systems.This can explain the remaining small differ-
ence betweenHANTS-GEE andHANTS-Python_M evenwith the same procedures (see the ‘HANTS-
GEE vs HANTS-PYTHON_M’ column of Table 3).

Table 3. Biome-based comparison statistics between HANTS-GEE and HANTS-Python and modified HANTS-Python (HANTS-
Python_M). HANTS_Python was provided by Espinoza-Dávalos et al. (2017). HANTS-Python_M was modified from HANTS-
Python by adapting the outlier removing procedure as removing all observations with fitting errors larger than FET during
each iteration, which is the same procedure applied by HANTS-GEE.

Biomes

HANTS-GEE vs HANTS-
PYTHON

HANTS-GEE vs HANTS-
PYTHON_M

No. of SitesCorrelation RMSE Correlation RMSE

Grasses/cereal crops (GCC) 0.998 0.007 0.999 0.005 97
Shrubs (SHR) 0.999 0.005 0.999 0.004 60
Broadleaf crops (BCR) 0.995 0.008 0.999 0.006 19
Savanna (SAV) 0.997 0.008 0.998 0.005 62
Evergreen broadleaf forest (EBF) 0.922 0.012 0.992 0.004 61
Deciduous broadleaf forest (DBF) 0.990 0.020 0.998 0.012 28
Evergreen needleleaf forest (ENF) 0.942 0.041 0.972 0.026 29
Deciduous needle-leaf forest (DNF) 0.984 0.037 0.992 0.030 9
Average 0.978 0.017 0.994 0.012 -
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3.2. Processing efficiency

One main purpose of HANTS-GEE is to provide efficient time series reconstruction services for
users by taking advantage of the powerful computing resource of the GEE platform. Users may sub-
mit a reconstruction task for products with large spatial extent (e.g. global), long time periods (e.g.
10 years), or high spatial resolution (e.g. 10 m for Sentinel-2), where processing speed becomes the
core concern of users. However, the final computing speed of a specific reconstruction task is
dependent on the computing resource (e.g. the number of CPUs) allocated by the data management
system of GEE in real-time by accounting for the total resource available in the resource pools (Gor-
elick et al. 2017; Tamiminia et al. 2020). In this case, the same task submitted at a different time may
take a very different processing time. Taking a reconstruction task for one year global 5-km 16-day
NDVI product of MODIS as an example, the processing time with HANTS-GEE can range from
15 min to 50 min. As a comparison, the processing time on a local workstation with 8-processing
cores for the same task is 106 min, whereas the HANTS was parallelly implemented with Python.

Time series reconstruction in remote sensing is a data and computation-intensive process. The
reconstruction results of HANTS-GEE were exported either to Google Drive or the GEE Asserts,
which hold quota restrictions for google users (e.g. 15 Gigabyte free storage for Google Drive).
The reconstruction tasks cannot succeed without upgrading the storage space for exported file
volumes exceeding the upper limits. On the other hand, users usually need to download exported
reconstruction results in Google drive to local workstations for further analysis. The limited inter-
net bandwidths in some world regions may become the main bottleneck for further applications. To
reduce the data transmission volume, users of HANTS-GEE can choose to export coefficients of
harmonic components (i.e. ai and bi in Equation (1)) instead of the final reconstructed image
time series by setting exporting format as ‘COEF’. In this case, the number of bands of exported
GeoTIFF image ( = 2*NF + 1) will be no more than 13 as the NF for vegetation index reconstruc-
tion is normally set smaller than 6 (Zhou et al. 2021). Practically, to produce an 8-day gap-free
NDVI product in ‘FINAL’ format, there will be 46 images to be exported. In general, if 4 harmonics
are used in HANTS, there will be 9 coefficients in total for an annual reconstruction thus there will
be 9 images to be exported in ‘COEF’ format, which results in an 80% reduction in data trans-
mission volume compared to the ‘FINAL’ format. Even if 6 harmonic components were used,
there would still be a 71% data volume reduction. In addition, the data type of exported images
in ‘FINAL’ format is converted from double float (64-bit) to signed integer (16-bit) by the scale
and offset settings, which further reduced data transmission volume.

4. Discussion

Time series reconstruction is a critical data processing step for most remote sensing applications,
especially for observations or products acquired by optical or thermal sensors (Holben 1986;
Zhou, Jia, and Menenti 2015; Yu et al. 2022b). A panoply of TSR algorithms has been proposed
in the past decades, and various studies on different regions had extensively evaluated their perform-
ances. However, the lack of convenient and efficient software packages or tools specified for TSR pur-
poses hampered the popularity of these TSR algorithms for non-professional users or non-academic
communities. The proposed HANTS-GEE provided users with a scalable tool for rapid and efficient
time series reconstruction of remote sensing products. The scalability is mainly achieved by offering
users customizable TSR services across both temporal and spatial scales, as well as by the full tem-
poral and spatial coverage where raw remote sensing observation or products are available on GEE.
Powered by the GEE, the HANTS-GEE improved traditional workstation-based time series proces-
sing of remote sensing products by 1) transferring complex data processing procedures such as
image mosaic, resampling, and reprojection to the GEE server; 2) speeding up the processing by par-
alleling based on the scalable computation and storage resources of GEE; 3) reducing the data trans-
mission volume more than 50% by the data compression capability of HANTS. Moreover, the
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implementation of the kernel algorithm (i.e. ‘hants’ function) completely follows the procedures
described by Roerink, Menenti, and Verhoef (2000) and Zhou, Jia, and Menenti (2015). The suit-
ability of using HANTS-GEE for multiple product reconstruction was illustrated by reconstructing
time series of different remote sensing products over four representative sites and a regional recon-
struction case. Our analysis further proved that the HANTS-GEE can provide users with consistent
reconstruction results with that of PC-based HANTS implementation (HANTS-Python) over the
most terrestrial vegetated surface. In other words, the HANTS-GEE shared a similar reconstruction
performance with HANTS-Python. In this case, users can refer to Zhou, Jia, andMenenti (2015) and
Zhou et al. (2016a) for quantified global reconstruction accuracy of HANTS. Except for the datasets
listed in Table 1, users can ingest other datasets derived from the remote sensing dataset on GEE by a
limited revision to the ‘rawDs’ function. Users can also upload their datasets to the GEE assets and
ingest them to HANTS-GEE for high-efficiency reconstruction.

The frequency-based methods such as Fourier analysis (Menenti et al. 1993), harmonic analysis
(Jakubauskas, Legates, and Kastens 2002), and generalized spectral analysis (Malamiri et al. 2018)
have popularized in time series analysis of remote sensed data. It should be mentioned that the cur-
rent implementation of HANTS-GEE strictly followed procedures of the HANTS algorithm pro-
posed by Verhoef, Menenti, and Azzali (1996) and Roerink, Menenti, and Verhoef (2000). In a
narrow sense, the HANTS was aimed to reconstruct remote sensed time series with biased obser-
vations by constructing harmonic models and removing outliers iteratively. The HANTS should
be differentiated from general harmonic analysis methods that are directly applied to gapped time
series in that outliers had been identified with ancillary information and removed in advance.
The latter pays more attention to filling existing gaps and extracting the seasonality of time series
(e.g. Jakubauskas, Legates, and Kastens 2002; Zhu and Woodcock 2014). We already noted several
studies argued that they implemented HANTS on GEE by referring to the script shared by Nick Clin-
ton at https://goo.gl/lMwd2Y (Xie and Fan 2021; Yang et al. 2022a, 2022b). It seems these studies
only used harmonic models to fit time series but didn’t iteratively remove outliers, which is a
kind of misuse of HANTS. The classic HANTS has been implemented with different programming
languages and gets widely used in the remote sensing community (Zhou et al. 2021). The advantage
and drawbacks of the classic algorithm were thoroughly discussed and understood by users through
previous applications and performance evaluation works (e.g. Zhou, Jia, and Menenti 2015; Her-
mance 2007). One can expect more and more users may apply the classic HANTS algorithm for
time series reconstruction in remote sensing. In this context, we believe the implementation of
such a classic HANTS algorithm in GEE will provide a great convenience for potential users.

Based on the current implementation of classical HANTS on GEE, several potential improve-
ments can be expected in the future. Hermance (2007) introduceed a penalty function of roughness
damper to the OLS solver of harmonic models for stable fitting with high-order harmonics. Zhou
et al. (2022) proposed the Harmonic Adaptive Penalty Operator (HAPO) for harmonic analysis of
unevenly distributed time series. By introducing a new penalty function to minimize unexpected
fluctuations in the model, the overfitting issue of regression in time series with temporal gaps
was substantially reduced. These strategies can promote the robustness of the solution for con-
structed linear harmonic models. In addition, Zhou et al. (2021) optimize the parameters of
HANTS for global NDVI reconstruction and proposed suggestions for biome – specific parameter
settings, which can be further introduced in the HANTS-GEE tool for automatic parameter setting.

In general, the HANTS-GEE provided a cloud-based framework for full-stack TSR purposes.
The tool can be further improved in several aspects in the future. Firstly, more TSR algorithms
can be further embedded in the framework to fulfill accuracy requirements for different regions
as the performance of TSR algorithms always presented significant spatial heterogeneity (Zhou
et al. 2016a; Julien and Sobrino 2018). The SG and WS algorithms had been implemented on
GEE (Kong et al. 2019; Chen et al. 2021) and can be easily adapted to the current framework. At
the same time, it should be noted that not all TSR can be easily implemented with the restricted
API provided by GEE, especially for algorithms relying on non-linear systems such as DL and
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AG (Jönsson and Eklundh 2004; Zhou et al. 2016a). Secondly, some intermediate time series feature
extraction procedures, such as phenology metrics extraction and vegetation anomaly detection, can
be further implemented in the tool, which can facilitate users interested in general time series analy-
sis of remote sensing products on GEE. Moreover, the GUI of HANTS-GEE was implemented with
the limited user interface API provided by GEE, which can be further improved by designing a new
browser-based GUI for HANTS-GEE via the python API of GEE.

Nevertheless, algorithms for time-series reconstruction such as HANTS, relying only on tem-
poral high-quality observations for model fitting, ensured the independence of ancillary infor-
mation and the capacity to be adapted to reconstruct any time series of remotely sensed data.
However, raw time series with insufficient high-quality observations (e.g. temporally continuous
cloud coverage or low revisiting frequency) may challenge these TSR methods. For example,
although the current HANTS-GEE can be used to reconstruct the NDVI time series of Landsat
since 1984 practically, the reconstruction performance for some regions can be quite questionable,
especially before 2000, due to unbalanced regional satellite data receiving capability (Wulder et al.
2016). Advanced solutions such as combining spatiotemporal information together (Chu et al.
2021; Yan and Roy 2020), and fusing observations from multiple sensors (Gao et al. 2006; Qiu
et al. 2021) have been proposed for better reconstruction performance. Further efforts should be
dedicated to embedding these strategies into HANTS-GEE to mitigate the reconstruction chal-
lenges for cloud-prone and observation-inadequate areas.

5. Conclusion

Time series reconstruction is an important pre-processing procedure for most applications based
on long time-series remote sensing products. In practice, the procedure is data and computation
intensive no matter which methods users applied. In this case, the processing efficiency should
also be considered in addition to reconstruction accuracy to provide better time series reconstruc-
tion service for users. This paper introduced an implementation of the well-evaluated and widely
applied Harmonic ANalysis of Time Series (HANTS) on the cloud-based GEE platform (i.e.
HANTS-GEE) for scalable time series reconstructing of terrestrial remotely sensed products. The
performance evaluation result suggested that the HANTS-GEE can achieve comparable reconstruc-
tion accuracy as the workstation-based HANTS implemented with Python while providing appreci-
able improvement in processing efficiency via the powerful computation and storage capacity of the
GEE. The code and detailed user manual can be found at https://github.com/jiezhou87/HANTS–
GEE where any bugs and issues related to the tool can be reported by users. Further work on
improving reconstruction accuracy, enriching time series processing functions, as well adapting
the graphic user interface of the tool can be expected in future.
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