
Analyzing Similar Build Configurations Across Different GitHub Projects

Calin Manoli

Supervisor(s): Sebastian Proksch, Shujun Huang

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Calin Manoli
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Julia Olkhovskaia

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

GitHub is the home of hundreds of millions of
Open Source Software(OSS) repositories where
users collaborate on projects and find inspiration
for new ideas. Some of these projects have certain
build configurations set up to make building, test-
ing, and deploying the software more time-efficient
and less error-prone. However, setting up the cor-
rect configurations usually requires a lot of time
and a high level of knowledge. This paper aims
to analyze the current practices for setting up build
configurations like the Maven files and GitHub ac-
tions while clustering some of these practices based
on the scope of the project. Thus, we provide
useful information in terms of discovering similar
projects based on the build configurations and dis-
cuss the feasibility of build configuration analysis.
In summary, we provide a comprehensive analysis
of project similarity based on Maven build config-
urations and workflow files, shedding light on the
importance of build configurations for identifying
similar projects, and laying the groundwork for fu-
ture exploration in the realm of build configuration
analysis.

1 Introduction
GitHub hosts hundreds of millions of Open Source Projects
(OSS) and facilitates millions of users to collaborate on cre-
ating software projects. To effectively manage these projects,
developers often employ automated workflows that stream-
line repetitive tasks, minimize potential failure points, and
conserve valuable time. There exists a plethora of tools that
can be used for this purpose, such as the Maven and Gra-
dle build tools, GitHub Workflow pipelines, Docker, etc. For
the majority of these tools, developers are required to know
the best practices of how to properly configure and use them
beforehand. In addition, the best practices can change de-
pending on the scope of the project. While initiatives like
the GitHub Actions Marketplace aim to simplify the setup
process for the GitHub workflows, developers still require a
comprehensive understanding of the most suitable pipelines
for their project’s scope and the most appropriate tools for
their specific use cases. For example, imagine this scenario:
you are a developer working on a project, and as the com-
plexity of the project increases, the time spent on doing repet-
itive tasks also increases. Tasks can be linting code, running
tests to ensure everything works as intended, building and de-
ploying the project, etc. By discovering projects with similar
configurations, developers could potentially get recommen-
dations so that they get inspiration and examples of possible
pipelines and build plugins they can use to ease and automate
their jobs.

This research delves into the feasibility of identifying simi-
lar OSS repositories based solely on the Maven files and their
workflows. Maven and Gradle are very similar tools in terms
of their purpose, in the sense that they are both tools used for
automating the build process of Java-based applications. Al-

though similar, recent reports are showing that Maven is gen-
erally the preferred option of Java developers, with more than
76% of them using it [13]. Hence, we decided to focus our
analysis on Maven. Workflow configurations have also been
selected for analysis since they have the same structure across
all types of projects. Consequently, the project structure for
incorporating such workflows, as well as the files present in
these workflows are standardized, therefore they can provide
valuable data regardless of the programming language or the
purpose of the project. Due to the differences in Maven files
and workflow files, this research is conducted separately for
each type of configuration. Nevertheless, many of the tech-
niques employed for analysis can be applied to both configu-
ration types, as elaborated further in subsequent sections. In
essence, throughout this research, we aim to address the fol-
lowing fundamental question:

”Is it feasible to detect similar GitHub projects in terms of
their build configurations?”

While answering this question, we also answered the fol-
lowing sub-questions:

• How can we compare workflow and Maven files and
what metrics can we use in doing so?

• How can Maven analysis be useful for discovering sim-
ilar projects in terms of their build configurations?

• What patterns can we identify when analyzing workflow
configurations?

• How does the analysis of build configurations differ
from other industry-standard project similarity detection
tools?

• What are the recommendations for related future work?
There are some existing papers and frameworks that aim to

analyze OSS project similarity. Frameworks such as RepoPal
revolutionized similarity search effectiveness by considering
two key data points: ReadME files and GitHub stars [15].
MUDABlue [6] used a more intuitive approach, where the
main focus is on analyzing the source code similarities. How-
ever, build configuration analysis has not yet been adequately
addressed by any of these frameworks. This research aims to
bridge this gap by incorporating some of the techniques used
by frameworks such as RepoPal and MUDABlue, and extend-
ing them for build configurations and Maven configurations,
followed by a comparative analysis of the results.

This research is structured as follows: The Methodology
section describes the selection of configuration files and the
techniques employed in analyzing the similarity of these files.
This section also provides the metrics used to analyze the ef-
fectiveness of these techniques. The Experimental Setup and
Results section provides detailed information about mining
the projects analyzed, a high level overview of the experi-
ments that we decided to run, and finally give the results we
have achieved. In the Framework Comparison Section, we
delve into the investigation of the differences between our
study and an existing project similarity detection framework.
In the Responsible Research section, we reflect on the ethical
aspects of this research and discuss the reproducibility of the
methods used. The Discussion section provides our thoughts
on potential meanings of the results, as well as discuss our

limitations regarding this research. The Future Work section
notes our recommendations for future research and possible
improvements that could be further studied. Lastly, the Con-
clusion section summarizes the contents and key findings of
this research.

In this research, we’ve explored the feasibility of identify-
ing similar GitHub projects based on Maven files and work-
flows. Our findings reveal interesting results in build configu-
rations, demonstrating the potential for effective project simi-
larity detection. Additionally, insights into patterns across di-
verse projects were unveiled through the analysis of workflow
configurations. As we delve into subsequent sections, we’ll
detail the metrics and techniques employed, present experi-
mental results, and discuss the implications. This research
fills a crucial gap in existing frameworks, challenging the tra-
ditional view of project similarity.

2 Literature Review
Several existing frameworks attempt to automatically catego-
rize open-source software projects. For instance, MUDABlue
[6] analyzes source code to assign relevant categories, utiliz-
ing a self-learning approach that evolves the category set dy-
namically. RepoPal [15] leverages topic modeling to group
projects based on semantic similarities in their documentation
and descriptions. In addition, it takes into consideration other
project information, such as users who starred the project, in
order to determine the groups of similar projects.

However, a crucial aspect often overlooked by these frame-
works is the role of build configurations. These configura-
tions specify how a project should be compiled and executed,
significantly impacting its functionality and target environ-
ment. Ignoring these details can lead to inaccurate or incom-
plete categorization, hindering effective project discovery and
collaboration.

Consider two projects—one configured for web deploy-
ment and another for embedded systems. Despite their dis-
tinct scopes, both projects extensively share build configu-
rations, featuring similar workflow pipelines for automated
tests, code linting, and build deployment. While they may
use the same programming language, such as Java, and be
configured with Maven, RepoPal [15] is likely to categorize
them differently due to varying project scopes, leading to dif-
ferences in documentation and audience interest. MUDABlue
[6] may accurately identify the programming languages but
overlook the shared build configurations. Thus, recognizing
their analogous build configurations, tailored to different ex-
ecution environments, becomes essential for unveiling poten-
tial cross-domain knowledge transfer in terms of build con-
figurations.

3 Methodology
This section comprehensively explains the collection and
preparation of the dataset, the selection of configuration files,
the similarity analysis techniques employed, the evaluation
metrics used, and the clustering approach used to group sim-
ilar projects. Our primary aim in this section is to make this
paper as reproducible as possible.

3.1 Data collection and preparation
In this research, we aim to capture the similarity in the di-
verse approaches used to create build configurations, such as
Maven’s Project Object Model files (pom.xml) and workflow
configuration files. Hence, collecting as much data as pos-
sible about different GitHub projects is crucial in potentially
unraveling patterns and trends that might have been unnoticed
before.

Since Maven files are intrinsically different from workflow
configurations, we decided to collect 2 different datasets of
projects, each containing either projects that have been con-
figured using Maven or projects containing workflow config-
urations. This decision is based on 2 key reasons. The first
one is that, by only selecting projects that meet both crite-
ria, we would essentially limit the total number of projects
that can be analyzed, hence leading to a smaller dataset
of projects. The second reason arises from the nature of
workflow files. These files can essentially be configured for
any project, regardless of the programming languages used.
However, Maven is predominantly used for Java projects,
therefore restricting the project space of the research to Java
projects only. Hence, this research is essentially divided into
two sub-studies, each focusing on a specific configuration
type. As such, the foundation of our analysis lies in a cu-
rated dataset of approximately 743 OSS projects from GitHub
configured with Maven (containing a total of 398 different
plugins), as well as 846 projects containing workflow config-
urations with a total of 5345 files. To ensure the relevance
and quality of our dataset, we selected projects that meet the
following criteria:

1. Targeted Relevance: Projects were exclusively selected
if they contain at least one file named ”pom.xml” for
Maven-based projects or a ”.yml” file residing within a
directory containing ”.github/workflows” (hereafter re-
ferred to as pipeline files) for the workflow analysis.
These criteria ensured a baseline level of build config-
uration information for future analysis.

2. Well-Structured Build Configurations: Only projects
that have a correct configuration and structure of the
Maven files (pom.xml files) have been selected. This
was verified by employing the native Maven tools to
build the ”effective-pom.xml” file. Projects that either
failed to build or exceeded a predetermined time thresh-
old of 30 seconds were excluded to maintain the in-
tegrity of the dataset. We found that the average time
needed for Maven tools to build the ”effective-pom.xml”
file is approximately 5.47 seconds with a standard devi-
ation of 5.31 seconds, therefore we believe that a thresh-
old of 30 seconds is generous enough to ensure that
properly configured projects have enough time to be
built.

The data has been collected using an algorithm that makes
use of the GitHub API to query data from it. The algorithm
is split into 2 phases. First, it uses the GitHub API to search
for projects that meet the first criterion mentioned above. The
resulting repositories that match the criterion are aggregated
in 2 separate text files, retaining their unique identifier in the

format of ”username/project name”. Given the research’s fo-
cus on analyzing build configuration files, we decided that
the majority of files within each project should be discarded.
Only the ”effective-pom.xml” file generated by Maven tools
and the pipeline files were retained, forming the core datasets
utilized throughout this paper. As such, the second phase
of the algorithm consists of individually searching through
the lists of projects and saving the needed files, each file be-
ing saved in its corresponding project folder. The algorithm,
datasets, as well as all the files that have been saved, were
made publicly accessible in an online repository [7], in or-
der to provide transparency and a possible basis for future
research.

In addition to the datasets of projects retrieved by using the
GitHub API, we used another 2 datasets for validating our re-
sults. These datasets were used to compare our results with
other frameworks. These datasets consist of projects that can
be found within the CrossSim [9] repository. It is interesting
to note that we chose these projects as validation sets because
it allows us to use the same dataset of projects that have been
used throughout the CrossSim benchmarking, hence mitigat-
ing potential biases in our data. In total, the CrossSim project
mentioned 580 projects. These projects were once again fil-
tered using the aforementioned criteria, resulting in a set of
340 Maven projects and 80 projects containing pipeline files.

For Maven projects, an additional data preparation step was
taken. After each Maven file has been parsed, data regarding
each build plugin has been stored in a project-plugin table,
containing every plugin found in any of the pom.xml files ex-
tracted. Here, the term build plugin refers to plugin data that
can be found encapsulated in the ”build” tag of the effective-
pom.xml file. We then augmented this table with an addi-
tional column containing the Java version information of the
projects

3.2 Similarity Analysis
To capture the complex relationships between build configu-
rations, we employed several similarity analysis techniques.

Initially, we started by vectorizing each data point. Here,
data points can either be a pipeline file or a textual repre-
sentation of every piece of data regarding a project from the
project-plugin table (e.g, a row in this table). This step is
crucial to transform the documents into vectors of numeric
values, which can then be used to compute the similarity.
The vectorization process is done by making use of the Term
Frequency - Inverse Document Frequency (TF-IDF) encoder
[3]. This technique is used to determine the relevance of each
word, such that the most common words that can be found
across the datasets of files are given a low relevance value,
while a high relevance value is assigned to the rare words.
According to J. Beel et al. [1], 83% of text-based recom-
mender systems use TF-IDF to encode the text of the docu-
ments. Related literature, such as RepoPal [15], is no excep-
tion, as the paper suggests making use of this technique to
encode the ReadME files to determine project similarity.

The second step of the analysis consists of calculating the
cosine similarity in the vector space of the files [10]. The us-
age of this metric, in combination with TF-IDF for producing
the vectors of the files, is also suggested by other related lit-

erature such as RepoPal [15], MudaBlue [6], and CLAN [8].
The cosine similarity metric, which produces values ranging
from 0 to 1, where 0 denotes no similarity and 1 signifies
that the files are identical, has been applied to each pair of
projects, and the resulting computations are stored in a simi-
larity matrix. This matrix has then been used throughout the
rest of the research, serving as a foundation for subsequent
clustering and analysis.

3.3 Clustering and visualization
In this research we aim to explore possible hidden patterns
within the build configuration files, therefore we decided to
use the K-Means clustering algorithm [11] to visualize the
data. This algorithm is often used in unsupervised learning
and pattern analysis, therefore, it perfectly fits the scope of
this research. K-Means clustering works by partitioning the
dataset into k different clusters, such that the resulting clusters
contain the closest observation to the cluster’s centroid. Addi-
tionally, according to W. Usino et al. [2], the K-Means algo-
rithm can be used effectively with the cosine distance metrics.

The number k is a predefined number of clusters, which we
identified by using the ”elbow method”. The elbow method
serves as a heuristic for identifying the optimal number of
clusters within a dataset. This technique involves graphing
the intra-cluster variation against the number of clusters and
selecting the bend or ”elbow” in the curve as the optimal clus-
ter count.

The dimensionality of the data is directly linked to the
number of projects in the dataset. As such, each of the pro-
duced vectors is represented in a dimension far greater than
3, which is the maximum dimension we can visualize. There-
fore, employed yet another technique to produce a set of clus-
ters that we can visualize, namely Principal Component Anal-
ysis (PCA). PCA is a dimensionality reduction technique that
transforms high-dimensional data into a lower-dimensional
space while preserving the most relevant information. Hence,
we applied PCA on the similarity matrix, therefore reducing
the vectors to 2 dimensions to facilitate cluster visualization.

4 Experimental Setup and Results
This section details the experimental setup and findings, cov-
ering the collection of GitHub projects, Maven build config-
urations, and GitHub workflow analyses. The project dataset
was obtained using GitHub’s API, with a focus on query-
ing and storing results programmatically. Maven analysis
involved plugin extraction, Term Frequency-Inverse Docu-
ment Frequency(TF-IDF) vectorization, and K-Means clus-
tering for categorization. Workflow analysis, while encoun-
tering challenges in content-based categorization, revealed an
intriguing correlation between file similarity and their parent
organization. The interpretation underscores the significance
of build configurations in project analysis and introduces po-
tential recommendations based on organizational patterns.

4.1 Project collection and preparation
The initial step of this research’s experiments consists of col-
lecting a large dataset of projects that can later be used in the
analysis. To retrieve this set of projects, we used GitHub’s

API, which is publicly accessible and built and maintained
by GitHub itself. However, manually querying the API can be
rather time-consuming, therefore we decided to make an al-
gorithm that programmatically queries the API and then pro-
cesses and stores the results for future use. For this task, we
used and extended an open-source GitHub API wrapper1 that
allowed us to access GitHub’s API within a Java application.
We extended this wrapper by adding methods for specifically
searching for projects with build configurations and storing
these project names in a new text file. As such, each line of
the text file contains the name of the author of the repository
and the repository name, separated by a slash. On GitHub, the
combination of these two data points can be used to identify
a project uniquely. Searching GitHub was based on a Code
Search query, hence only projects that matched this criteria
were taken into consideration. Code Search queries only re-
trieve the files within projects that match the given criteria,
however, we decided to only collect the name of the projects
each file belongs to at this stage.

Since the goal is to retrieve as many projects as possi-
ble that either use Maven configurations or have GitHub
workflows configured, we separated the search process into
two steps, each with its corresponding query. Therefore,
the query for selecting projects with Maven configured is
”path:*pom.xml”, while projects with Workflows configured
were selected using ”path:.github/actions/**.y*ml”. The for-
mer query selects all projects containing a pom.xml file, since
this file is specific to Maven and every Maven project requires
at least one file named like this. The second query selects
all projects that have a subfolder structure ”.github/actions”
present, within which there can be an arbitrary number of sub-
folders that must contain files with either ”.yml” or ”.yaml”
extensions. GitHub actions require this type of project struc-
ture to be able to run workflows on a project, hence every
project that has some workflows correctly set up will be a
part of the set returned by this query.

For projects configured with Maven, we added an addi-
tional step; we used the Maven build tools to build the project
and extract the effective-pom file. This ensured that the
projects were correctly configured and could be run within
a reasonable time frame. It was necessary to include this step
because some projects were either improperly configured or
contained plugins that resulted in build errors. Improperly
configured projects ranged from projects that had not been
maintained in a long time to projects that did not include a
pom.xml file at the root of the project. We decided that the
threshold for considering the build time reasonable would be
30 seconds. Further details for deciding to set the thresh-
old to 30 seconds can be found in the Methodology Section.
These additional conditions reduced the number of projects
from 873 to 743.

4.2 Maven analysis
The goal of analyzing Maven configurations in projects is to
unravel potential patterns and conduct an in-depth analysis of
project similarity. An important step in this endeavor is the
extraction of crucial information from the effective-pom.xml

1https://github.com/hub4j/github-api

file, specifically focusing on understanding the intricate de-
tails of build plugins and their configurations within each
project. Therefore, the initial step for projects containing a
Maven configuration was to extract the relevant information
about the build plugins and their configurations within the
effective-pom.xml file. Hence, a table with all the informa-
tion was created such that:

• Each row of the table represents an individual project.
• Each column represents one of each of the plugins found

in any of the pom.xml files. Additionally, we appended
a column containing information about the Java version
used throughout the project.

• Each project-plugin value contains all the plugin config-
uration data for its corresponding project. Configuration
data contains information regarding the plugin name, its
version, as well as the additional configuration and ex-
ecution setups if present. All this information is struc-
tured as a JSON object and stored as a string. An exam-
ple of such an object can be found in Appendix B.

Hence, the final table consists of 743 rows and 1 Java ver-
sion column as well as another 398 plugin columns. For this
amount of selected projects, visualizing the data becomes dif-
ficult as the images produced are cluttered, hence a subset of
20 random projects has been used for visualizing the tech-
niques explained below. In Appendix A, the visualizations of
the complete sets of projects are provided, however, this sec-
tion will only describe the results of the smaller subset. In the
next sections, we will discuss the insights provided by ana-
lyzing the full set of projects, hence the subset is only used
for facilitating the data visualizations.

Figure 1: The normalized cosine similarity matrix of the Maven
projects for a subset of 20 projects.

Each row of data corresponding to a project has then been
converted to text and vectorized using the Term Frequency-
Inverse Document Frequency(TF-IDF) vectorization tech-
nique [3]. This vectorization technique essentially extracts
the most relevant information regarding each plugin and dis-
regards the most common keywords. It is important to note
that, for the scope of this research, we decided against further
stemming the plugin data. Therefore, keywords such as ”ar-
tifactId” are present in every single data point. This decision
is based on the fact that common words are automatically as-
signed a very low relevancy score by the nature of TF-IDF
vectorization. While stemming could potentially improve the
accuracy of the results and reduce the vector space of each
project, possibly increasing the efficiency and scalability of
the algorithm, it does not bring additional information regard-
ing the feasibility of analyzing build configurations, therefore
it is beyond the scope of this research.

Another benefit of vectorizing the data is that, instead of
text, we are now left with a vector of numbers. While it is not
interpretable by humans, it enables us to effectively use the
cosine similarity metric [10] to measure the distance between
these vectors, as seen in related literature such as RepoPal
[15] and MUDABlue [6]. This computation has been applied
for every pair of projects, and the results have been stored in a
similarity matrix. This matrix was then normalized, such that
the minimum value is 0, representing completely dissimilar
projects, and the maximum value is 1 for identical projects.
Figure 1 represents the visualization of the normalized cosine
similarity matrix for a subset of 20 projects, for easier visual-
ization.

The cosine similarity matrix was then used to cluster
projects using the K-Means clustering algorithm [11]. In or-
der to define the optimal number of clusters to be used, we
employed the elbow method. Figure 6 (found in Appendix
A) depicts the results of the elbow method, where the within-
cluster-sum-of-squares is plotted on the y-axis, and the num-
ber of clusters is plotted on the x-axis. Hence, we can see
that for the same subset of 20 projects chosen initially, the
optimal number of clusters is 3. However, the dimensional-
ity of the data remains very high, therefore visualizing the
clusters in 2 dimensions is impossible without applying a di-
mensionality reduction technique. Overcoming this problem
has been done by making use of the Principal Component
Analysis(PCA) procedure to reduce the data to only 2 dimen-
sions while aiming to preserve as much vector information as
possible. PCA is commonly used across different studies to
plot data in 2 dimensions, enabling the visual identification
of clusters among closely related data points, according to I.
Jollife et al. [5]. With the optimal number of clusters de-
fined and the vector dimensionality of only 2, we have now
employed the K-Means clustering algorithm. Figure 2 de-
picts the clusters created by this algorithm. In this image, the
closer a project lies to another project, the more similar they
are in terms of the Maven file configuration.

Figure 2: The resulting 3 clusters for the subset of 20 Maven
projects.

4.3 Workflow analysis
The projects containing workflows have been analyzed in a
relatively similar manner. Hence, the key procedures of anal-
ysis have been preserved, such as encoding the contents of
the files using the TF-IDF encoder, producing a cosine simi-
larity matrix, applying PCA to reduce the dimensionality for
easier visualization and clustering the data by employing the
Elbow-method technique together with the K-Means cluster-
ing algorithm. However, one of the key differences is we de-
cided to compare the files themselves, rather than the projects

containing them. After applying the elbow method, we found
that the optimal number of clusters is 16. Figure 3 depicts the
resulting clusters.

Figure 3: A plot of every workflow file, belonging to one of the 16
possible clusters.

The natural intuition is, of course, to interpret these clus-
ters as possible categories of files. Based on our knowledge
and past experience with configuring workflows, certain types
of workflows are used more often than others. Naturally, we
decided to test whether the clusters shown in Figure 3 corre-
spond to the most common types of workflows. One of the
key observations in testing this hypothesis was that the major-
ity of files have certain keywords in the name of the file that
can help us identify which type of workflow a particular file
corresponds to. Therefore, we created the following mapping
of possible types and their corresponding keywords that a file
needs to have to belong to that particular category:

• Test: ”test”, ”unit”, ”integration”

• Build: ”build”, ”compile”, ”make”

• Deploy: ”release”, ”deploy”, ”publish”

• Project Management: ”board”, ”issue”, ”label”, ”mile-
stone”, ”pull”, ”request”, ”assign”, ”ticket”

• Documentation: ”doc”, ”readme”, ”license”

• Package: ”package”, ”pack”, ”artifact”

• Docker: ”docker”, ”container”

• Dependency: ”dependency”, ”dependencies”, ”deps”

• Static Analysis: ”lint”, ”checkstyle”, ”codeql”, ”sonar”,
”static”, ”analysis”, ”check”, ”audit”

• Formatting: ”style”, ”format”, ”prettier”

• Plugin: ”plugin”, ”extension”, ”api”, ”bot”

The clustering process produced a total of 16 categories,
however, the distance between some of these clusters was
rather small and the sets were fuzzy, hence, we decided that
these are the main categories that should be considered. The
data points in the previous plot, each corresponding to a
workflow configuration file, have been re-labeled based on
the newly found category. However, the results were unex-
pected. The metric used to compute cluster similarity be-
tween these 2 labelings is the Rand Index adjusted for chance
[4]. This measure computes a similarity measure between
two clusterings by considering all pairs of samples and count-
ing pairs assigned in the same or different clusters in the pre-
dicted and true clustering. The computed adjusted Rand Ind
value for these clustering is 0.03. Therefore, the clusters built
by analyzing the contents of the file and the clusters built on

the file categories are minimally similar. This can also be
seen in Figure 4. Here, Figure 4 only shows files belong-
ing to the Test, Build, and Deployment categories for easier
visualization as adding the rest of the categories produces a
very cluttered image, however, the image generated with ev-
ery category included has been included in Appendix A for
completeness. Therefore, we concluded that analyzing the
file’s contents is not a viable method for discovering the cat-
egory of the file, since the differences between the contents
are not significant enough, and the categories overlap in their
corresponding vector spaces.

Figure 4: A plot containing all the workflow files belonging to one
of the following categories: Test, Build, Deploy.

Although clustering based on the file’s content did not pro-
duce significant results in understanding which type of file
it is, we noticed another interesting fact about the clusters.
Files tend to be more similar to other files created by the
same user/organization, regardless of which type of file it is or
which project it belongs to. In order to measure this, we de-
cided to measure the average similarity between 2 randomly
selected files from all the available files, as well as the aver-
age similarity between files created by the same user or or-
ganizations. Since this process is computationally expensive,
we decided to approximate the averages by making use of the
Law of Large numbers [14], thus repeating the selection of
the 2 random files for a total of 1000 times. Consequently,
we obtained the following results: For files that have been
randomly selected from the complete set of files, the average
similarity is approximately 0.17, while files belonging to the
same organization have, on average, a similarity of 0.56. Fig-
ure 5 depicts the first 5 organizations with the biggest amount
of files created. Therefore, it becomes clear that files created
by the same organization are more likely to have similar con-
tents, regardless of the file’s category.

Figure 5: A plot with the workflow files belonging to the 5 organi-
zations with the most total files created across all projects.

5 Framework Comparison
In this section, we embark on a detailed comparison be-
tween our framework and RepoPal [15], a well-established

tool for analyzing project similarity on GitHub. Noteworthy
is the fundamental distinction in their focus: RepoPal’s re-
sults primarily focus on the semantic analysis of documenta-
tion files, while also incorporating project metadata such as
the users who starred the projects. In contrast, our framework
delves into the analysis of build configurations, encompassing
Maven pom files and workflow files. The motivation under-
lying these comparisons differs from benchmarking perfor-
mance; it seeks to uncover whether our framework possesses
the capability to identify similarities that may have eluded de-
tection by existing frameworks such as RepoPal. Currently,
RepoPal is one of the frameworks that achieve the best results
in terms of project similarity detection. The other framework
with high-quality results is CrossSim [9], however, it was de-
signed as a tool that can be extended to effectively analyze
different project features. Extending CrossSim to incorpo-
rate build configurations is beyond the scope of this research,
therefore we decided in favor of RepoPal as a comparison
framework, which has a predetermined set of features that
are analyzed.

The comparisons of Maven and workflow files have been
conducted separately. In order to compare the similarities,
we used the project dataset provided by CrossSim as a val-
idation dataset. We decided to use this validation dataset
to mitigate potential biases in our project selection. The
Methodology Section explains the reasoning behind this deci-
sion in more detail. Since the CrossSim framework used this
dataset to compare results with other frameworks that have
not been designed to measure build configuration similarity,
some projects in the dataset do not have Maven or workflows
configured. These projects have been therefore ignored. As
such, out of the 580 projects provided, only 340 of them have
been used for the Maven analysis, and only 80 for workflow
analysis, respectively.

The initial step of the comparison has been to run RepoPal
and store the results in text files created for each project. For
Maven analysis, the process of comparing our tool with Re-
poPal went as follows: we selected a project and computed
its cosine similarity to the rest of the projects. For each such
computation, we also looked in the RepoPal results folder and
retrieved the cosine similarity between the selected project
and the other projects. This resulted in 2 different arrays of
numbers, where each array contains either the similarity com-
puted by us or the similarity computed by RepoPal. The in-
dices of the arrays corresponded to the same project in both
arrays. In order to test whether the results are correlated,
we used Spearman’s rank correlation coefficient [12]. This
correlation coefficient is particularly useful in this scenario
because it essentially checks whether the ranking of the re-
sults is correlated. As such, the resulting coefficient is high
in a scenario where the similarity scores are different, as long
as the ranking is preserved. This process has then been re-
peated until each project has been selected. Consequently, we
found that the average Spearman correlation between our re-
sults and RepoPal’s results is 0.033, with a standard deviation
of 0.05. Workflow similarity has been tested in an identical
manner. The resulting average Spearman correlation coeffi-
cient is 0.13, with a standard deviation of 0.10. These correla-
tions indicate a very weak, almost non-existent, positive cor-

relation. Therefore, we can conclude that our results are very
different from RepoPal. However, these are the expected re-
sults, since these tools are designed to measure different data
about projects.

6 Responsible Research
In conducting this research, we are committed to upholding
the highest standards of ethical conduct, transparency, and
openness. This section outlines key principles guiding our ap-
proach, including ethical considerations, responsible data col-
lection and usage, and our dedication to reproducibility and
openness. By adhering to these foundational elements, we
aim to not only ensure the integrity of our study but also fos-
ter collaboration, knowledge sharing, and the advancement of
research within the broader scientific community.

Ethical Considerations This research project adheres to
ethical principles to ensure responsible and respectful treat-
ment of data. We prioritize transparency and open access
to our methodology and findings, fostering collaboration and
knowledge sharing.

Data Collection and Usage We diligently adhere to data
collection best practices, ensuring that the data used in this
research has been collected ethically. We only selected open-
source projects from GitHub, a publicly accessible repository,
ensuring that no unauthorized access to private or sensitive
data was obtained. The dataset used in this research has been
made publicly available in an online appendix [7], promoting
transparency and facilitating further research.

Reproducibility and Openness To promote reproducibil-
ity and facilitate independent verification of our results, we
provided detailed documentation of our methodology, includ-
ing data collection and preprocessing steps, similarity analy-
sis techniques, and clustering algorithms. We also made the
algorithms used in this research publicly available [7], en-
abling other researchers to replicate our findings and extend
our work.

7 Discussion
Our analysis of build configuration similarities in open-
source projects has shed light on intriguing patterns and
raised promising questions for future exploration. By focus-
ing on Maven files and GitHub Actions workflows, we aimed
to gain insights into how similarities in building and deploy-
ment tools and configurations might reflect deeper connec-
tions between projects.

After the Maven analysis, we manually checked some
of the results. An example of one of the findings is that
the projects ”amuthansakthivel/SDET”2 and ”8thlight/Cof-
feeMaker”3 appear to be remarkably similar in terms of the
Maven plugins used and their corresponding configurations.
The similarity score of these projects is approximately 0.97.
Interestingly, while these projects use almost the same plug-
ins, and even the plugin versions are strikingly similar, the
scope of the projects is very different. As such, the first

2https://github.com/amuthansakthivel/SDET
3https://github.com/8thlight/CoffeeMaker

project is a framework for testing the code more easily, while
the latter represents an API for programmatically interacting
with coffee machines. Therefore, projects that traditionally
would not be considered similar, can be very similar in terms
of their build configurations. Hence, we would argue that it is,
in fact, of key importance that build configurations are taken
into consideration when finding similar projects to find in-
spiration regarding possible build tools and configurations. If
only similar projects in terms of the project’s scope were to be
considered, it would be more difficult to provide recommen-
dations of tools that could ease the development, building,
and deployment stages of the projects. To prove that tradi-
tional methods would not work particularly well for this pur-
pose, we decided to run the similarity analysis with one of the
well-established tools also presented in the Literature Review
subsection, namely RepoPal. Further information on the pro-
cess and results of comparing our results with other project
similarity frameworks are discussed in the Framework Com-
parison Section.

Pipeline files revealed yet another interesting observation
that arises from the fact that files are more likely to be simi-
lar if they have been created by the same organization. This
observation is that it could be possible to recommend similar
projects in terms of build configurations by extracting similar
organizations. For example, in Figure 5, ”blacksmith2000”
and ”cafebox” appear to be similar. This can also be cal-
culated by randomly selecting a file made by each organiza-
tion and comparing the similarity. If this process is repeated
1000 times, we obtain an average file similarity of 0.55. Con-
versely, if we do the same process for different organizations,
such as ”blacksmith2000” and ”erxes”, the resulting average
similarity is only 0.06. We can compare all the pairs of or-
ganizations in the same manner and store only the most sim-
ilar ones. These results can be used, in turn, to recommend
projects that might have similar build configurations by rec-
ommending other projects within the same organization or
projects made by a similar organization. Additionally, pre-
computing the information about organizations could poten-
tially lead to improved time efficiencies for finding similar
projects. Therefore, if, for example, ”blacksmith2000” cre-
ates a new project, it is already possible to recommend build
configurations by looking at other projects made by either
themself or ”cafebox”. The category-mapping can also be
used in this process, by recommending files from different
projects of similar organizations that correspond with the de-
sired category of the file. For example, if user ”cafebox”
creates a new file titled ”deploy.yml”, we can already rec-
ommend files corresponding to the same category from the
user ”erxes”. These results could then be combined with the
Maven similarities to achieve a final build configuration simi-
larity score. Interestingly, this score can be, in turn, combined
with other similarity metrics such as dependency similarity,
code similarity, etc. to produce a ”true similarity” score.
However, the process of obtaining this composed similarity
score and retrieving recommendations based on it needs to be
further studied and potentially optimized, as it is beyond the
scope of this paper.

It is crucial to acknowledge the limitations of our study.
Primarily, the analysis focused on publicly available data

from GitHub, potentially skewing results toward popular
choices and configurations. While we did not impose any
popularity conditions for retrieving data from the GitHub
API, we believe that GitHub may return files within larger
projects first, simply because the probability of selecting one
of the files within such a project is higher. This bias can be
removed by adding additional selection criteria, such as the
size or popularity of the project, and then selecting an equal
number of large and small projects, popular and less popu-
lar, etc. Additionally, half of the research focuses on Java
projects configured with Maven. However, Maven is not the
only tool that can be used to configure Maven projects. While
we believe that this analysis would work on other build tools
such as Gradle, this has not been tested throughout the re-
search. Therefore, the validity of the results may be restricted
to Maven. In the future, this can be mitigated by further
studying other popular tools, for example, Gradle and Docker,
as well as Makefiles, etc.

To conclude, our research unveils the potential of ana-
lyzing build configurations as a useful tool for uncovering
hidden connections between projects. This novel approach
challenges traditional notions of project similarity and offers
promising views for knowledge sharing in the software devel-
opment community.

8 Future Work
This study aims to pave the way and establish a foundation
for future analyses of build configurations by exploring their
feasibility and potential techniques, an area that has not been
adequately investigated. While this research lays the ground-
work, numerous unexplored avenues await future exploration.
We propose a set of experiments and studies for the future to
uncover additional insights, as well as enhance and optimize
the build configuration analysis.
Expand the data pool: Incorporating projects from other
platforms beyond GitHub can provide a more comprehensive
and diverse perspective on build configuration similarities.
More importantly, other build configurations such as Gradle
files, Docker files, Kubernetes files, Makefiles, etc. can be
taken into consideration for a more complete and powerful
analysis framework. Furthermore, augmenting the data col-
lection process with additional facets, such as gathering in-
formation on the frequency of updates of the chosen files, the
pipeline runtimes, and other relevant metrics, can refine the
dataset for a more nuanced analysis.
Explore alternative analysis techniques: Utilizing differ-
ent clustering algorithms and similarity metrics can help mit-
igate potential biases, such as organization similarity, and
reveal additional insights into project relationships. For ex-
ample, X-Means clustering could be potentially utilized to
cluster the projects. This algorithm would remove the need
for employing the elbow method, which would, in turn, po-
tentially create a more robust algorithm that needs less hu-
man supervision and analysis. Additionally, metrics such as
Jaccard similarity could be used to analyze the similarity of
Maven files, where only the presence or absence of certain
plugins would contribute to the similarity score. Further-
more, different vectorization algorithms could provide ad-

ditional similarity accuracies. Transformer-based encoders
are an example of such vectorizers, and they are commonly
used in Natural Language Processing as they can encode large
amounts of text while preserving the context of the files,
which could also potentially prove useful for this analysis.

Investigate specific clusters: Delving deeper into the iden-
tified clusters can provide a richer understanding of the shared
challenges, tools, and best practices within each group. We
discussed the observations made throughout this research,
however, further manual analysis is needed to ensure there
are no underlying patterns left uncovered for each cluster.

Develop practical applications: Translate the insights
gained into actionable tools and recommendations that sup-
port developers in choosing appropriate build configurations
for their projects, in real-time. For example, the insights
gained in this research can be used to develop recommender
systems that automatically detect the configurations of the
project a developer is working on and queries GitHub to dis-
cover similar projects, then automatically recommend differ-
ent types of configurations that might be useful.

Add complexity: Integrating results from this framework
with other aspects such as code similarity, documentation
similarity, dependency similarity, etc. could offer a more
comprehensive understanding of project complexity. This
multi-faceted approach provides a more nuanced perspective
on the intricacies of projects.

Enhance Data Preprocessing: Applying stemming tech-
niques to the collected data could also improve the accuracy
of the algorithm. Different stemming techniques could be
used for this purpose, such as ignoring plugins that are essen-
tially in every project for Maven analysis. The plugin version
could also be stemmed since most of the plugins use seman-
tic versioning, in the form of Major.Minor.Patch. Therefore,
the patch values could be discarded, since they do not pro-
vide any additional functionalities. For example, the version
”3.3.0”, would essentially become ”3.3” and all plugins that
have a version starting with this value would be considered
identical.

9 Conclusions
Our exploration of build configuration similarities has yielded
valuable insights into the hidden relationships between
projects. By analyzing publicly available data from GitHub,
we have demonstrated that it is, in fact, feasible to analyze
project similarity through the lens of build configurations.
Furthermore, we discovered that projects with seemingly dif-
ferent goals can share similarities in their build tools and con-
figurations.

The visualizations of the cosine similarity matrix for
Maven projects provide a preliminary glimpse into the land-
scape of project similarities. This matrix, coupled with
the application of K-means clustering offers a more struc-
tured understanding of these relationships(Figures 1 and
2). This revealed distinct clusters of projects sharing sim-
ilar build configurations, even across diverse project types.
Further analysis of specific clusters yielded fascinating in-
sights. We observed that projects with seemingly disparate

functionalities, such as ”amuthansakthivel/SDET” (testing
framework) and ”8thlight/CoffeeMaker” (API for coffee ma-
chines), showed remarkable similarity in their build config-
urations. This suggests that projects, though very different
in their goals, may share common ground in terms of how
they are built. This opens up exciting possibilities for cross-
pollination of knowledge and tools across seemingly unre-
lated projects.

Additionally, it is interesting to note that our analysis
highlights the potential of pipeline configurations as a novel
lens for identifying projects facing similar development chal-
lenges or utilizing toolsets. For instance, the clustering anal-
ysis might reveal groups of projects, such as projects being
developed by the same organization or a similar one, that are,
for example, grappling with specific optimization issues or
security concerns, despite belonging to different application
domains or being developed in different programming lan-
guages. This knowledge can empower developers to discover
potentially relevant solutions and best practices by looking
beyond their immediate project context.

By building upon these conclusions and exploring the ideas
of future work, we can further understand the potential of
build configuration analysis as a tool for the software devel-
opment community and begin unveiling unexpected connec-
tions between projects, even across different programming
languages and application domains. This novel approach
challenges traditional notions of project similarity, highlight-
ing that projects surpass the limits of source code analysis due
to their inherent complexity, thus laying the foundation for
further exploration, which can ultimately lead to more effi-
cient, innovative, and robust software development practices.

A Additional visualizations

Figure 6: The Elbow Method plot for the subset of 20 Maven
projects.

Figure 7: All of the available workflow files, each belonging to one
of the defined categories.

B Data examples
The corresponding value in the project-plugin table for
project ”27786653/ScheduleManager” and plugin ”maven-
jar-plugin” is:

{
’ a r t i f a c t I d ’ : ’ maven− j a r − p l u g i n ’ ,
’ v e r s i o n ’ : ’ 2 . 5 ’ ,
’ c o n f i g u r a t i o n ’ : {

’ a r c h i v e ’ : {
’ m a n i f e s t ’ : {

’ a d d D e f a u l t I m p l e m e n t a t i o n E n t r i e s ’ : t r u e
}

}
}

}
The complete code, project-plugin table, as well as addi-

tional examples and visualizations, can be found in the Online
Appendix [7].

References
[1] Joeran Beel, Béla Gipp, Stefan Langer, and Corinna

Breitinger. Research-paper recommender systems: a
literature survey. International Journal on Digital Li-
braries, 17(4):305–338, Jul 2015.

[2] W. Usino et al. Document similarity detection using
k-means and cosine distance. International Journal of
Advanced Computer Science and Applications, 10(2),
2019.

[3] Lukáš Havrlant and Vladik Kreinovich. A simple proba-
bilistic explanation of term frequency-inverse document
frequency (tf-idf) heuristic (and variations motivated by
this explanation). International Journal of General Sys-
tems, 46(1):27–36, 2017.

[4] Lawrence Hubert and Phipps Arabie. Comparing par-
titions. Journal of Classification, 2(1):193–218, Dec
1985.

[5] Ian T Jolliffe and Jorge Cadima. Principal com-
ponent analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A,
374(2065):20150202–20150202, Apr 2016.

[6] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue.
Mudablue: an automatic categorization system for open
source repositories. In 11th Asia-Pacific Software Engi-
neering Conference, pages 184–193, 2004.

[7] Calin Manoli. Analyzing Similar Build Configurations
Across Different GitHub Projects, Jan 2024. https://doi.
org/10.5281/zenodo.10577178.

[8] Collin Mcmillan, Mark Grechanik, and Denys Poshy-
vanyk. Detecting Similar Software Applications.

[9] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and
Davide Di Ruscio. An automated approach to assess
the similarity of github repositories. 28(2):595–631, jun
2020.

[10] Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Ar-
itsugi. Semantic cosine similarity. In The 7th inter-
national student conference on advanced science and
technology ICAST, volume 4, page 1, 2012.

[11] Kristina P Sinaga and Miin-Shen Yang. Unsupervised
k-means clustering algorithm. IEEE access, 8:80716–
80727, 2020.

[12] C. Spearman. The proof and measurement of associa-
tion between two things. The American Journal of Psy-
chology, 15(1):72–101, 1904.

[13] Brian Vermeer. Jvm ecosystem report, 2021.
[14] Kai Yao and Jinwu Gao. Law of large numbers for un-

certain random variables. IEEE Transactions on Fuzzy
Systems, 24(3):615–621, 2016.

[15] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia,
Quanlai Li, and Jianling Sun. Detecting similar reposi-
tories on github. pages 13–23, 02 2017.

https://doi.org/10.5281/zenodo.10577178
https://doi.org/10.5281/zenodo.10577178

	Introduction
	Literature Review
	Methodology
	Data collection and preparation
	Similarity Analysis
	Clustering and visualization

	Experimental Setup and Results
	Project collection and preparation
	Maven analysis
	Workflow analysis

	Framework Comparison
	Responsible Research
	Discussion
	Future Work
	Conclusions
	Additional visualizations
	Data examples

