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Semi-Decentralized Generalized Nash
Equilibrium Seeking in Monotone

Aggregative Games
Giuseppe Belgioioso and Sergio Grammatico

Abstract—We address the generalized Nash equilibrium
seeking problem for a population of agents playing ag-
gregative games with affine coupling constraints. We focus
on semi-decentralized communication architectures, where
there is a central coordinator able to gather and broadcast
signals of aggregative nature to the agents. By exploiting
the framework of monotone operator theory and operator
splitting, we first critically review the most relevant avail-
able algorithms and then design two novel schemes: 1) a
single-layer, fixed-step algorithm with convergence guar-
antee for general (noncocoercive, nonstrictly) monotone
aggregative games and 2) a single-layer proximal-type al-
gorithm for a class of monotone aggregative games with
linearly coupled cost functions. We also design novel ac-
celerated variants of the algorithms via (alternating) inertial
and over-relaxation steps. Finally, we show via numerical
simulations that the proposed algorithms outperform those
in the literature in terms of convergence speed.

Index Terms—Distributed algorithms, multi-agent sys-
tems, optimization methods, scalability.

I. INTRODUCTION

A. Aggregative Games

An aggregative game is a set of coupled optimization prob-
lems, each associated with an autonomous agent, i.e., an inde-
pendent decision maker, where the cost function of each agent
depends on some aggregate effect of all the agents in the popu-
lation [1]–[3]. Namely, the aggregative feature arises whenever
each agent is affected by the overall population behavior, hence,
not by some specific agents. In general, such a special feature is
typical of incentive-based control in competitive markets [4] and
in fact engineering applications of aggregative games span from
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demand side management in the smart grid [5], [6] and charging
control for plug-in electric vehicles [7], [8] to spectrum sharing
in wireless networks [9] and network congestion control [10].
With these motivating applications in mind, aggregative games
have been receiving high research interest, within the operations
research [11] and especially the automatic control [12]–[17]
communities. Researchers have in fact studied and proposed
solutions to the generalized Nash equilibrium problem (GNEP)
in aggregative games, which is the problem to compute a set of
decisions such that each is individually optimal given the others.
Remarkably, the aggregative structure has been exploited to
mitigate the computational complexity for large population size,
and in fact the proposed solution algorithms are primarily non-
centralized, i.e., almost (semi-) decentralized and distributed,
where the computations by the agents are fully decoupled.
Essentially, in semi-decentralized algorithms, the agents do not
communicate with each other, but rely on a reliable central
coordinator (e.g., an aggregator) that gathers the local decisions
in aggregative form and then broadcasts (incentive) signals, e.g.,
dual variables, to all the agents [13]. On the other hand, in
distributed algorithms, there is no central coordinator, so the
agents communicate with each other to cooperatively estimate
or reach consensus on the signals of common interest, e.g., dual
and auxiliary variables. The latter algorithmic setup is also called
partial-decision information [18], [19], because the agents do
not have direct access to the aggregative effect on their cost
functions, thus, they should estimate it via reliable, truthful
peer-to-peer communications, e.g., via cooperative consensus
protocols. These features motivate us to focus on the semi-
decentralized algorithmic structure in this article.

B. Literature Review

The literature on semi-decentralized GNE seeking in aggrega-
tive games is quite recent. Belgioioso and Grammatico [13]
designed the first semi-decentralized GNE seeking algorithm
for (nonstrictly/strongly, noncocoercive) monotone aggregative
games1, where the algorithm derivation relies on the so-called
forward-backward-forward (FBF) operator splitting. In parallel,
for the class of strongly monotone games, Yi and Pavel [20], [21]
proposed the first preconditioned forward-backward (pFB) op-
erator splitting method, which is applicable to aggregative

1For ease of reading, with (strict/strongly) monotone game, we mean game
with (strict/strongly) monotone pseudo-subdifferential mapping (§II-C).
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games with semi-decentralized algorithmic structure—as shown
in [22], the outcome of the pFB method for aggregative games
is in fact the so-called asymmetric project algorithm (APA)
[23, §12.5.1], proposed for aggregative games in [15]. Effec-
tively, [13] and [20] are the first works to adopt an elegant
and general mathematical approach based on monotone operator
theory [24] to explicitly model GNEPs, to decouple the coupling
constraints via Lagrangian duality, and in turn to exploit operator
splitting methods for systematically designing (noncentralized)
GNE seeking algorithms. Next, we refer to some other relevant
GNE seeking algorithms for or applicable to aggregative games.
For a class of unconstrained strictly monotone games, Ye and
Hu [6] proposed continuous-time saddle-point dynamics. For
strictly monotone games with equality coupling constraints,
in Liang et al. [14] proposed continuous-time projected pseudo-
gradient dynamics paired with discontinuous dynamics for dual
and auxiliary variables. For unconstrained, strongly monotone
aggregative games, Deng and Liang [16] proposed continuous-
time, integral consensus-based dynamics. Recently, De Persis
and Grammatico [17] proposed continuous-time, integral dy-
namics for a class of strongly monotone aggregative games.

From the literature on (semi-decentralized) GNE seeking
in aggregative games, several critical issues emerge. First, the
solution methods available for general (nonstrictly, noncocoer-
cive) monotone aggregative games are limited to algorithms that
require at least two demanding computations (projections) and
two communications (between the agents and the coordinator)
at each iteration, see, e.g., the FBF [13] and extra-gradient
(EG) based methods [23, §12.6.1]; instead, computationally
convenient algorithms, e.g., the pFB [21], require strong mono-
tonicity of the game. Surprisingly, there is currently no single-
communication-per-iteration, fixed-step algorithm for merely
monotone aggregative games. For instance, the pFB method
does not always converge in merely monotone games, not even
under vanishing step sizes [25]. From a practical perspective, the
available algorithms may require a large number of iterations,
and in particular of communications between the agents and
the central coordinator, to converge. For example, algorithms
based on the iterative Tikhonov regularization (ITR) [26] require
double-layer vanishing step sizes, which considerably slows
down convergence. Finally, often, the local step sizes of the
algorithms are based on global properties of the game data, that
however should be unknown to the local agents in practice—on
the contrary, little or no coordination among agents should be
necessary to set the step sizes with guaranteed convergence.

C. Contribution

In this article, we fully exploit monotone operator theory and
operator splitting methodologies to study and address the main
technical and computational issues that currently afflict (semi-
decentralized) GNE seeking in aggregative games. Specifically,
our main contributions are summarized in the following.

1) We characterize the available (semi-decentralized) al-
gorithms with a general operator-theoretic perspective,
which allows us to establish basically the most general
convergence results and draw a fair technical comparison

among these algorithms (Section III), as well as to possi-
bly improve convergence speed, e.g., via accelerations.

2) We present the first single-layer, single-communication-
per-iteration, fixed-step algorithm for (nonstrictly, nonco-
coercive) monotone aggregative games (see Section IV-
A)—essentially, the most desirable algorithmic features
for the most general class of monotone aggregative games
one could hope for.

3) We present a very fast, single-layer, single-
communication-per-iteration, fixed-step, proximal
algorithm for a class of (nonstrictly) monotone
aggregative games with linearly coupled cost functions
(see Section IV-B)—essentially, the most desirable
algorithmic features with the fastest convergence ever
experienced for a special, popular, class of monotone
aggregative games.

4) We design an alternating inertial acceleration scheme,
which is applicable to some algorithms (see Section IV-C)
and that, remarkably, in some particular cases outper-
forms the classic inertial acceleration in terms of nu-
merical convergence—mathematically, we prove that our
alternating inertia preserves averagedness of operators,
thus, the convergence is desirably Fejér monotone.

D. Notation and Definitions

Basic Notation: R denotes the set of real numbers, and
R := R ∪ {∞} the set of extended real numbers. 0 (1) denotes
a matrix/vector with all elements equal to 0 (1); to improve
clarity, we may add the dimension of these matrices/vectors as
subscript. A⊗B denotes the Kronecker product between the
matricesA andB. For a square matrixA ∈ Rn×n, its transpose
is A�, [A]i,j represents the element on the row i and column j.
A � 0 (� 0) stands for positive definite (semidefinite) matrix.
Given A � 0, ‖ · ‖A denotes the A-induced norm, such that
‖x‖A = x�Ax. ‖A‖ denotes the largest singular value of A;
eigmax(A) and eigmin(A) denote, respectively, the largest and
the smallest eigenvalues of A. Given N scalars, a1, . . . , aN ,
diag(a1, . . . , aN ) denotes the diagonal matrix with a1, . . . , aN
on the main diagonal. GivenN vectors x1, . . . , xN ∈ Rn, x :=
col(x1, . . . , xN ) = [x�1 , . . . , x

�
N ]�.

Operator-Theoretic Definitions: Id(·) denotes the identity
operator. The mapping ιS : Rn → {0, ∞} denotes the
indicator function for the set S ⊆ Rn, i.e., ιS(x) = 0
if x ∈ S , ∞ otherwise. For a closed set S ⊆ Rn, the
mapping projS : Rn → S denotes the projection onto
S , i.e., projS(x) = argminy∈S ‖y − x‖. The set-valued
mapping NS : Rn ⇒ Rn denotes the normal cone operator
for the set S ⊆ Rn, i.e., NS(x) = ∅ if x /∈ S, {v ∈ Rn |
supz∈S v�(z − x) ≤ 0}otherwise. For a functionψ : Rn → R,
dom(ψ) := {x ∈ Rn | ψ(x) <∞}; ∂ψ : dom(ψ) ⇒ Rn

denotes its subdifferential set-valued mapping, defined as
∂ψ(x) := {v ∈ Rn | ψ(z) ≥ ψ(x) + v�(z − x) for all z ∈
dom(ψ)}; proxψ(x) = argminy∈Rn ψ(y) + 1

2‖y − x‖2
denotes its proximal operator. A set-valued mapping F :
Rn ⇒ Rn is (strictly) monotone if (u− v)�(x− y) ≥ (>) 0
for all x �= y ∈ Rn, u ∈ F(x), v ∈ F(y); F is η-strongly
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monotone, with η > 0, if (u− v)�(x− y) ≥ η‖x− y‖2 for
all x �= y ∈ Rn, u ∈ F(x), v ∈ F(y). JF := (Id + F)−1

denotes the resolvent operator of F ; fix(F) := {x ∈
Rn | x ∈ F(x)} and zer(F) := {x ∈ Rn | 0 ∈ F(x)}
denote the set of fixed points and of zeros, respectively.

II. GENERALIZED NASH EQUILIBRIUM PROBLEM IN

AGGREGATIVE GAMES

A. Problem Statement

We consider a set of N agents, where each agent i ∈ I :=
{1, . . . , N} shall choose its decision variable (i.e., strategy) xi
from the local decision set Ωi ⊆ Rn with the aim of minimizing
its local cost function Ji(xi,x−i), which depends on the local
variable xi and on the decision variables of the other agents,
x−i := col({xj}j∈I\{i}) ∈ Rn(N−1).

In this article, we focus on the class of aggregative games,
where the cost function of each agent depends on the local
decision variable and on the value of the aggregation, i.e.,

avg(x) := 1
N

N∑
i=1

xi. (1)

Specifically, we consider local cost functions of the form

Ji(xi,x−i) := gi(xi) + fi (xi, avg(x)) (2)

where gi and fi satisfy the following assumptions.
Assumption 1: For each i ∈ I, the function gi is continuous

(possibly nondifferentiable) and convex, and fi( · , 1
N ·+ y) is

continuously differentiable and convex, for any y ∈ Rn. �
Cost functions as in (2) are the most general considered in the

literature of monotone games [27, Rem. 1], [28, § 12].
Furthermore, we consider generalized games, where the cou-

pling among the agents arises not only via the cost functions, but
also via their feasible decision sets. In our setup, the coupling
constraints are described by an affine function, x �→ Ax−
b, where A := [A1| . . . |AN ] ∈ Rm×nN , b :=

∑N
i=1 bi ∈ Rm.

Thus, the global feasible set reads as

X =

(∏
i∈I

Ωi

)⋂{
x ∈ RnN |Ax− b ≤ 0m

} ⊆ RnN (3)

while the feasible decision set of each agent i ∈ I is character-
ized by the set-valued mapping Xi, defined as

Xi(x−i) :=

{
yi ∈ Ωi | Aiyi ≤ bi +

N∑
j �=i

(bj −Ajxj)

}

where Ai ∈ Rm×n and bi are local parameters that define how
agent i is involved in the coupling constraints.

Remark 1 (Affine constraints): Affine coupling constraints,
as considered in (3), are the most common in the literature of
monotone games, see for example [12], [14], [15], [21]. For
the sake of compactness, we did not include coupling equality
constraints in (3). However, all the results in the remainder of
the paper can be straightforwardly adapted to cover this case.�

Next, let us formalize standard convexity and closedness
assumptions for the constraint sets.

Assumption 2: For each i ∈ I, the local set Ωi ⊆ Rn is
nonempty, closed and convex. Moreover, the global set X
satisfies Slater’s constraint qualification. �

In summary, the aim of each agent i, given the aggregate
decision avg(x), is to choose a strategy, x∗i , that solves its
local convex optimization problem according to the game setup
previously described, i.e., for all i ∈ I⎧⎪⎪⎪⎨

⎪⎪⎪⎩

argmin
xi∈Rn

Ji (xi,x−i) = gi(xi) + fi (xi, avg(x))

s.t. xi ∈ Ωi

Aixi ≤ bi +
N∑
j �=i

(bj −Ajxj)

(4)

where the last constraint is equivalent to Ax− b ≤ 0. From a
game-theoretic perspective, we consider the problem to compute
a Nash equilibrium [29], as formalized next.

Definition 1 (Generalized ε−Nash equilibrium): A collective
strategyx∗ ∈ X is a generalized ε−Nash equilibrium (ε−GNE)
of the game in (4) if, for all i ∈ I
Ji
(
x∗i ,x

∗
−i
) ≤ inf

{
Ji(y, x

∗
−i) + ε | y ∈ Xi(x∗

−i)
}
. (5)

If (5) holds with ε = 0, then x∗ is a GNE. �
In other words, a set of strategies is a Nash equilibrium if no

agent can improve its objective function by unilaterally changing
its strategy to another feasible one.

Remark 2 (Existence of a GNE): If Assumption 2 holds with
bounded local strategy sets Ωi’s, the existence of a GNE follows
from Brouwer’s fixed-point theorem [28, Prop. 12.7], while
uniqueness does not hold in general. �

B. Nash Versus Aggregative (or Wardrop) Equilibria

In aggregative games with cost functions as in (2), the condi-
tion in (5) specializes as: for all i ∈ I and y ∈ Xi(x∗

−i)

gi(x
∗
i )+fi (x

∗
i , avg(x

∗)) ≤ gi(y) + fi

(
y, 1

N y+
1
N

N∑
j �=i

x∗j

)

where the decision variable of agent i, i.e.,x∗i , appears also in the
second argument of fi, since x∗i contributes to form the average
strategy, i.e., avg(x∗) = 1

N x
∗
i +

1
N

∑N
j �=i x

∗
j .

The concept of aggregative (or Wardrop) equilibrium (for-
malized in Definition 2) springs from the intuition that the
contribution of each agent to the average strategy decreases
as the population size grows. Technically, the influence of the
decision variable of agent i on the second argument of its cost
function fi vanishes as N grows unbounded.

Definition 2 (Generalized aggregative equilibrium): A col-
lective strategyx� ∈ X is a generalized aggregative equilibrium
(GAE) of the game in (4) if, for all i ∈ I

gi(x
�
i ) + fi (x

�
i , avg(x

�)) ≤
inf
{
gi(y) + fi (y, avg(x

�)) | y ∈ Xi(x�−i)
}
.

�
We note that Nash and aggregative equilibria are strictly

connected. In fact, under some mild assumptions, it can be
proven that every GAE equilibrium is an ε-GNE equilibrium,
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with ε vanishing as N diverges [15, §4]. Thus, in large-scale
games where the agents are unaware of the population size,
e.g., [30], a GAE represents a good approximation of a GNE.

C. Variational Equilibria

In this article, we focus on the subclass of variational GNE
(v-GNE) that corresponds to the solution set of an appropriate
generalized variational inequality, i.e., GVI(P,X ), namely, the
problem of finding x∗ ∈ X such that

〈z∗,x− x∗〉 ≥ 0, ∀x ∈ X , z∗ ∈ P (x∗)

where the mapping P : RnN ⇒ RnN denotes the so-called
pseudo-subdifferential (PS) of the game in (4), defined as

P (x) :=
∏N
i=1 ∂xi

Ji (xi, x−i) . (6)

Namely, the mapping P is obtained by stacking together the
subdifferentials of the agents’ cost functions with respect to their
local decision variables. Given the splitting structure of the cost
functions in (2), it follows by invoking [24, Cor. 16.48 (iii)]
componentwise that the PS can be written as the sum of a set-
valued mapping and a single-valued one:

P = G+ F

where

G(x) :=
∏N
i=1 ∂gi(xi) (7)

F (x) := col
(
{∇xi

fi(xi, avg(x))}Ni=1

)
. (8)

Note that, since the local decision variable xi of agent i
enters also in the second argument of the cost function fi(·, 1

N ·
+ 1
N

∑
j �=i xj), with Leibniz notation, we have that

∇xi
fi(xi, avg(x))

=
(∇xi

fi(xi, z) +
1
N∇zf(xi, z)

)∣∣
z=avg(x)

. (9)

In the remainder of the article, let us refer to F as pseudo-
gradient mapping (with a little abuse of terminology).

Under Assumptions 1 and 2, it follows by [28, Prop. 12.4] that
any solution to GVI(P,X ) is a (variational) Nash equilibrium
of the game in (4). The inverse implication is not true in general,
and actually in passing from the Nash equilibrium problem to
the GVI problem most solutions are lost [28, § 12.2.2]; indeed,
a game may have a Nash equilibrium while the corresponding
GVI has no solution. Note that, if Ji in (2) is continuously dif-
ferentiable for all i ∈ I, then P is a single-valued mapping and
GVI(P,X ) reduces to VI(P,X ), which is commonly addressed
in the context of game theory via projected pseudo-gradient
algorithms, e.g., [11], [15], [22].

Next, we assume monotonicity of the PS mapping P , which
“is one of the weakest conditions under which global conver-
gence can be proved” for VI-type methods [29, § 5.2].

Assumption 3 (Monotone and Lipschitz pseudo-gradient):
The mapping F in (8) is maximally monotone and �−Lipschitz
continuous over Ω :=

∏
i∈I Ωi, for some � > 0. �

It directly follows that also the PS P is maximally monotone
since it is the sum of two maximally monotone operators [24,

Cor. 25.5], i.e., P = G+ F , where G is maximally monotone
as concatenation of maximally monotone operators [24, Prop.
20.23] (i.e., the subdifferentials of the continuous and convex
functions gi’s [24, Th. 20.25]), and F is maximally monotone
by Assumption 3.

The following lemma recalls some sufficient conditions for
the existence and uniqueness of a variational GNE (v-GNE).

Lemma 1 (Existence and Uniqueness of v-GNE): Let As-
sumption 2 be satisfied. The following conditions hold.

(i) If Ωi is bounded, for all i ∈ I, and P is (strictly) mono-
tone, then there exists a (unique) solution to GVI(P,X ).

(ii) If P is strongly monotone, then there exists a unique
solution to GVI(P,X ). �

Proof: (i) [24, Prop. 23.36]; (ii) [24, Cor. 23.37]. �
Hereafter, we assume that a v-GNE of the game in (4) exists.
Assumption 4 (Existence of a v-GNE): The set of solutions to

GVI(P,X ) is nonempty. �
Remark 3 (Approximate pseudo-gradient): Let all cost func-

tions (fi)i∈I be uniformly bounded (on their respective feasi-
ble sets) for all population sizes, N . As the latter grows, the
second term in the right hand side of (9) vanishes. In fact, if
limN→∞ avg(x) <∞, we have that

lim
N→∞

∇xi
fi(xi, avg(x)) = ∇xi

fi(xi, z)
∣∣
z=limN→∞ avg(x)

.

(10)
Thus, let us define an approximate version of the PG in (8)

for large-scale games, i.e.,

F̃ (x) := col

({
∇xi

fi(xi, z)
∣∣
z=avg(x)

}N
i=1

)
(11)

and the correspondent approximate PS, i.e.,

P̃ := G+ F̃ . (12)

As for v-GNE, one can show that any solution to GVI(P̃ ,X )
is a (variational) GAE (v-GAE) of the game in (4) [17]. �

D. Nash Equilibria as Zeros of a Monotone Operator

In this section, we exploit operator theory to recast the Nash
equilibrium problem into a monotone inclusion, namely, the
problem of finding a zero of a set-valued monotone operator.
As first step, we characterize a GNE of the game in terms of
KKT conditions of the interdependent optimization problems
in (4). For each agent i ∈ N , let us introduce the Lagrangian
function Li, defined as

Li(x, λi) := Ji(xi,x−i) + ιΩi
(xi) + λ�

i (Ax− b)

where λi ∈ Rm
≥0 is the Lagrangian multiplier associated with the

coupling constraints. It follows from [28, §12.2.3] that the set
of strategies x∗, where the Mangasarian–Fromovitz constraint
qualification holds at x∗i for the set Xi(x∗

−i), for all i ∈ I, is a
GNE of the game in (4) if and only if there exist some dual
variables λ∗

1, . . . , λ
∗
N ∈ Rm

≥0 such that the following coupled
KKT conditions are satisfied:

∀i ∈ I :

{
0 ∈ ∂xi

Ji(x
∗
i ,x

∗
−i) + NΩi

(x∗i ) +A�
i λ∗

i

0 ≤ λ∗
i ⊥ −(Ax∗ − b) ≥ 0.

(13)
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Similarly, we characterize a v-GNE in terms of KKT con-
ditions by exploiting the Lagrangian duality scheme for the
corresponding GVI problem, see [31, §3.2]. Specifically, if X
satisfies the Slater’s condition (Assumption 1), it follows by
[31, Th. 3.1] that x∗ is a solution to GVI(X , P ) if and only if
there exists a dual variable λ∗ ∈ Rm

≥0 such that{
0 ∈ ∂xi

Ji(x
∗
i ,x

∗
−i) + NΩi

(x∗i ) +A�
i λ∗, ∀i ∈ I

0 ≤ λ∗ ⊥ −(Ax∗ − b) ≥ 0.
(14)

To cast (14) in compact form, we introduce the set-valued
mapping T : Ω× Rm

≥0 ⇒ RnN × Rm, defined as

T :

[
x

λ

]
�→
[
NΩ(x) + P (x) +A�λ

NRm
≥0
(λ)− (Ax− b)

]
. (15)

The role of the mapping T in (15) is that its zeros correspond
to the v-GNE of the game in (4), or, equivalently, to the solutions
to the KKT system in (13) with equal dual variables, i.e., λi = λ∗

for all i ∈ I, as formalized in the following statement.
Proposition 1: Let Assumptions 1, 2 hold. Then, the follow-

ing statements are equivalent:
(i) x∗ is a v-GNE of the game in (4);

(ii) ∃λ∗ ∈ Rm
≥0 such that, the pair (x∗i , λ

∗) is a solution to
the KKT in (13), for all i ∈ I;

(iii) x∗ is a solution to GVI(P,X ); and
(iv) ∃λ∗ ∈ Rm

≥0 such that col(x∗, λ∗) ∈ zer(T ). �
Proof: The equivalence (i)⇔(iii) is proven in [28, Prop. 12.4].

(iii)⇔(iv) follows by [31, Th. 3.1]. (iv)⇔(ii) follows by noting
that (13), with λ∗

1 = . . . λN = λ∗, is equivalent to (14), whose
solutions corresponds to the zeros of T [31, §3.2].

A similar equivalence can be derived for v-GAE. �
Proposition 2: Let Assumptions 1, 2 hold. Then, the follow-

ing statements are equivalent:
(i) x� is a v-GAE of the game in (4);

(ii) ∃λ� ∈ Rm
≥0 such that, the pair (x�i , λ

�) is a solution to the
KKT in (13) with∂xi

Ji(x
�
i ,x

�
−i) replaced by∂gi(x�i ) +

∇xi
fi(x

�
i , z)

∣∣
z=avg(x�)

, for all i ∈ I;

(iii) x� is a solution to GVI(P̃ ,X );
(iv) ∃λ� ∈ Rm

≥0 such that col(x�, λ�) ∈ zer(T̃ ), where T̃ is
analogous to T in (15) with P replaced by its approxi-
mation P̃ in (12). �

Proof: The proof is similar to that of Proposition 1. �

III. GENERALIZED NASH EQUILIBRIUM SEEKING:
OPERATOR-THEORETIC CHARACTERIZATION

A. Zero Finding Methods for GNE Seeking

In Section II-D, we show that the original GNE seeking
problem corresponds to the following generalized equation:

find ω∗ := col(x∗, λ∗) ∈ zer(T ). (16)

Next, we show that the mapping T can be written as the sum
of two operators, i.e., T = T1 + T2, where

T1 : ω �→ col(F (x), b) (17)

T2 : ω �→ (NΩ(x) +G(x))×NRm
≥0
(λ) + Sω (18)

and S is a skew symmetric matrix, i.e., S� = −S, defined as

S :=

[
0 A�

−A 0

]
. (19)

The formulation T = T1 + T2 is called splitting of T , and
we exploit it in different ways later on. We show next that the
mappings T1 and T2 are both maximally monotone, which paves
the way for operator splitting algorithms [24, § 26].

Lemma 2: Let Assumptions 1–3 hold. The mappings T1 in
(17), T2 in (18) and T in (15) are maximally monotone. �

Proof: T1 is maximally monotone since F is such by As-
sumption 3, b is a constant, thus maximally monotone, and
the concatenation of maximally monotone operator remains
maximally monotone [24, Prop. 20.23]. The first term of T2,
i.e., (NΩ +G)×NRm

≥0
, is maximally monotone, since normal

cones of closed convex sets are maximally monotone and the
concatenation preserves maximality [24, Prop. 20.23]; the sec-
ond term, i.e., S, is linear and skew symmetric, i.e., S� = −S,
thus maximally monotone [24, Ex. 20.35]. Then, the sum of
the previous terms, namely, T2, is maximally monotone by
[24, Cor. 25.5], since domS = RnN+m. Equivalently, the max-
imal monotonicity ofT = T1 + T2 follows from [24, Cor. 25.5],
since domT1 = RnN+m. �

In the remainder of this section, we characterize the main
features and limitations of some existing semi-decentralized
algorithms for aggregative games with coupling constraints from
a general operator-theoretic perspective.

Remark 4 (Generalized aggregative equilibrium seeking): In
light of Proposition 2, the same operator-theoretic approach can
be exploited to recast the GAE seeking problem as a mono-
tone inclusion problem. It follows that all the GNE seeking
algorithms introduced next can be adopted for seeking a GAE.
Specifically, for gradient-based algorithms, it is sufficient to
replace ∇xi

fi(xi, avg(x)) in (8) with its approximate version,
i.e., ∇xi

fi(xi, z)
∣∣
z=avg(x)

. �

B. Preconditioned Forward-Backward Algorithm

The main idea of the preconditioned forward-backward algo-
rithm (pFB, Algorithm 1) is that the zeros of the mapping T in
(15) correspond to the fixed points of a certain operator, which
depends on the chosen splitting (17)−(18) [24, §26.5] and on
an arbitrary symmetric, positive definite matrix Φ, known as
preconditioning matrix [20]. The pFB method, proposed in [20]
for strongly monotone games, is applicable to aggregative games
with semi-decentralized algorithmic structure [22], in which
case it reduces to the APA [23, §12.5.1], also proposed in [15].
A critical assumption for the convergence of this method is the
cocoercivity of the pseudo-gradient mapping F in (8).

Assumption 5 (Cocoercive pseudo-gradient): The mapping
F in (8) is γ−cocoercive on Ω, for some γ > 0. �

Remark 5 (Sufficient conditions for cocoercivity of F ): If F
is μ−strongly monotone and �−Lipschitz, � ≥ μ > 0, then F
is (μ/�2)−cocoercive. On the contrary, cocoercive mappings
are not necessarily strongly monotone, e.g., the gradient of a
nonstrictly convex smooth function. Some sufficient conditions
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Algorithm 1: Preconditioned forward-backward (pFB).

Initialization: δ> 1
2γ ; ∀i ∈ I, x0i ∈Rn, 0<αi≤ (‖Ai‖+

δ)−1; λ0 ∈ Rm
≥0, 0 < β ≤

(
1
N

∑N
i=1 ‖Ai‖+ 1

N δ
)−1

.

Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:

yki = xki − αi(∇xi
fi(x

k
i , avg(x

k)) +A�
i λk)

xk+1
i = proxαigi+ιΩi

(yki )

dk+1
i = 2Aix

k+1
i −Aix

k
i − bi

2. Central coordinator: dual variable update
λk+1 = projRm

≥0
(λk + β avg(dk+1))

for cocoercivity of F based on the local cost functions (fi)i∈I
are provided in Appendix A1. �

Remark 6: (i) The local auxiliary variables yi’s and di’s are
introduced to cast Algorithm 1 in a more compact form. The
quantity avg(dk+1) := 1

N

∑N
i=1(2Aix

k+1
i −Aix

k
i − bi) mea-

sures the violation of the coupling constraints, technically, it is
the “reflected violation” of the constraints at iteration k.

(ii) The proximal operator in Algorithm 1 reads as

proxαigi+ιΩi
(y) =

{
argmin
z∈Rn

gi(z) +
1

2αi
‖z − y‖2

s.t. z ∈ Ωi.

If gi = 0, then the primal update in Algorithm 1 becomes a
projection, i.e., proxαigi+ιΩi

= projΩi
. �

If Assumption 5 holds and the step sizes {αi}i∈I and β are
small enough, then the sequence (col(xk, λk))k∈N generated by
Algorithm 1 converges to some col(x∗, λ∗) ∈ zer(T ), where x∗

is a v-GNE, see [22, Th. 1] for a formal proof of convergence.
Algorithm 1 is semi-decentralized. In fact, at each iteration k,

a central coordinator is needed to:
(i) gather and broadcast the average strategy avg(xk);

(ii) gather the reflected violation of the constraints avg(dk);
(iii) update and broadcast the dual variable λk.

Specifically, after each central and local update in
Algorithm 1, a communication stage follows. The central co-
ordinator broadcasts to all the agents the current values of the
aggregation avg(xk) and the multiplier vector λk. In return, each
agent i ∈ I updates its own strategy xi, based on the received
signals, and forwards it to the central coordinator. Moreover,
at each iteration only two vectors, in Rn and Rm, respectively,
are broadcast, independently on the population sizeN . Each de-
centralized computation consists of solving a finite-dimensional
convex optimization problem, for which efficient algorithms are
available.

Remark 7: The primal-dual iterations of Algorithm 1 are
sequential, namely, while the local primal updates xk+1

i can
be performed in parallel, the dual update, λk+1, exploits the
most recent value of the agents’ strategies, dk+1

i . This feature is
convenient since it follows the natural information flow in the
considered semi-decentralized communication structure. �

Algorithm 1 as a fixed-point iteration: The dynamics gen-
erated by Algorithm 1 can be cast in a compact form as the

fixed-point iteration

ωk+1 = RFB(ω
k) (20)

where ωk = col(xk, λk) is the vector of the primal-dual vari-
ables and RFB is the so-called FB operator [24, (26.7)]

RFB := (Id + Φ−1T2)
−1 ◦ (Id− Φ−1T1) (21)

where T1 and T2 as in (17)and (18) and Φ is a preconditining
matrix, here defined as

Φ :=

[
ᾱ−1 ⊗ In −A�

−A Nβ−1Im

]
(22)

with ᾱ = diag(α1, . . . , αN ). When the mapping T1 is coco-
ercive (see Assumption 5), T2 is maximally monotone (see
Lemma 2) and the step sizes in the main diagonal of Φ are
set as in Algorithm 1, then the preconditioned mappings Φ−1T1
and Φ−1T2 satisfy the following properties with respect to the
Φ−induced norm ([21, Lemma 7]):

(i) Φ−1T1 is γδ−cocoercive w.r.t. ‖ · ‖Φ;
(ii) Φ−1T2 is maximally monotone w.r.t. ‖ · ‖Φ.

It follows from [24, Prop. 26.1(iv)–(d)] that the FB operator
RFB in (21) is averaged with respect to the same norm, i.e.,

iii) RFB is ( 2δγ
4δγ−1 )−averaged w.r.t. ‖ · ‖Φ.

Hence, the Banach–Picard fixed-point iteration in (20) con-
verges to some ω∗ := col(x∗, λ∗) ∈ fix(RFB) [24, Prop. 5.16],
where fix(RFB) = zer(T ) [24, Prop. 26.1(iv)–(a)], zer(T ) �= ∅

(Assumption 4) and, therefore, x∗ is a v-GNE by Prop. 1. We
refer to [21], [22] for a complete convergence analysis.

Inertial pFB Algorithm: To conclude this section, we recall
the inertial version of the pFB (see Algorithm 1), originally pro-
posed for the more general context of generalized network games
in [21, Algorithm 2] and summarized here in Algorithm 1B.

We note that the inertial extrapolation phase, at the end of the
local and central updates, improves the converge properties of
the pFB algorithm. The convergence of Algorithm 1B can be
studied via fixed-point theory [32], or by relying on the inertial
version of the FB splitting method [33]. We refer to [21, Th. 2]
for a complete convergence proof of this algorithm.

Algorithm 1B: Inertial pFB (I-pFB).

Initialization: θ ∈ [0, 1/3) and δ > (1−θ)2
2γ(1−3θ) , with γ as in

Assumption 5; for all i∈I, x0i=x̃0i∈Rn, 0 < αi≤(‖Ai‖+
δ)−1; λ0 = λ̃0 ∈ Rm

≥0, 0<β≤
(

1
N

∑N
i=1 ‖Ai‖+ 1

N δ
)−1

.

Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:

yki = x̃ki − αi(∇xi
fi(x̃

k
i , avg(x̃

k)) +A�
i λ̃k)

xk+1
i = proxαigi+ιΩi

(yki )

x̃k+1
i = xk+1

i + θ(xk+1
i − xki )

dk+1
i = 2Aix

k+1
i −Aix̃

k
i − bi

2. Central coordinator: Dual variable update:
λk+1 = projRm

≥0
(λ̃k + β avg(dk+1))

λ̃k+1 = λk+1 + θ(λk+1 − λk)
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Algorithm 1B as a Fixed-Point Iteration: The dynamics gen-
erated by Algorithm 1B can be cast in a compact form as the
following inertial fixed-point iteration:

ω̃k = ωk + θ(ωk − ωk−1) (23a)

ωk+1 = RFB(ω̃
k) (23b)

where ωk = col(xk, λk) and ω̃k = col(x̃k, λ̃k) are the stacked
vectors of the iterates andRFB is the FB operator defined in (21).
The convergence analysis of inertial schemes as in (23) are stud-
ied in [32]; while more precise conditions for the convergence
of (23) are derived in [33, Th. 1].

C. Algorithms for Merely Monotone Aggregative Games

When the pseudo-gradient mapping F is non-cocoercive,
nonstrictly monotone, then Algorithm 1 may fail to converge,
see [25] for an example of nonconvergence. Few algorithms
are available in the literature for solving merely monotone (ag-
gregative) games with coupling constraints, each with important
technical or computational limitations.

Iterative Tikhonov Regularization (Algorithm 2): To be ap-
plicable to games with (non-cocoercive, non-strictly) mono-
tone pseudo-gradient mapping, the forward-backward algorithm
should be augmented with a vanishing regularization. This
approach is known as ITR and generates a forward-backward
algorithm with double-layer vanishing step sizes [26, §1.3(a)]

∀i :
{
yki = xki − γk(∇xi

fi(x
k
i , avg(x

k)) +A�
i λk + εkxki )

xk+1
i = projΩi

(yki ), dk+1
i = Aix

k+1
i − bi

λk+1 = projRm
≥0

(
λk + γk(Navg(dk)− εkλk)

)
.

The convergence proof is based on the fact that the actual
step size γk must vanish faster than the vanishing regularization
parameter εk, [26, (A2.2), §2.1]. The extension of ITR schemes
to nonsmooth games can be possibly achieved by discretizing
the algorithm proposed in [34, § 4].

Inexact Preconditioned Proximal-Point (Algorithm 3): Re-
cently, the inexact preconditioned proximal-point (PPP)
method [27] was proposed to solve monotone (aggregative)
games, virtually with no additional technical assumption other
than monotonicity of the PS mapping P . When applied to the
game in (4), the PPP [27, Algorithm 2] generates a double-layer
algorithm, in which at each (outer) iteration k, the inner loop
consists of solving (inexactly) an aggregative game without
coupling constraints and with cost functions J̄i’s defined as

J̄ki (xi,x−i) = Ji (xi,x−i) + (A�
i λk)

�
xi + αi‖xi − xki ‖

2

where λk, i.e., the dual variable, and xki , i.e., the so-called cen-
troid, stay fixed during the inner iterations. When the subgame is
solved with the desired precision εk, namely, an εk−NE profile
x̄k is reached, the agents update their centroids

(∀i ∈ I) : xk+1
i = x̄ki , dk+1

i = 2Aix
k+1
i −Aix

k
i − bi.

Finally, the central coordinator updates the dual variable as

λk+1 = projRm
≥0
(λk + β avg(dk+1)).

The primal-dual dynamics generated by the PPP can be cast
in compact form as the fixed-point iteration

ωk+1 = JΦ−1T (ω
k) + ek (24)

where ωk = col(xk, λk) is the vector of primal-dual iterates,
JΦ−1T is the so-called resolvent operator of the mapping Φ−1T ,
defined as JΦ−1T := (Id + Φ−1T )−1, and ek is an error term
that accounts for the inexact computations of JΦ−1T (ω

k).
When the mapping T is maximally monotone (Lemma 2) and

the step sizes in the main diagonal of Φ are set such that Φ � 0,
then the resolvent JΦ−1T is firmly nonexpansive [24, Prop. 23.8]
(1/2−averaged) w.r.t. the Φ−induced norm, i.e., ‖ · ‖Φ. More-
over, if the error sequence (ek)k∈N is summable (which is guar-
anteed by solving the regularized subgames with increasing pre-
cision, namely

∑∞
k=0 εk <∞), then the inexact fixed-point iter-

ation (24) converges to someω∗ := col(x∗, λ∗) ∈ fix(JΦ−1T ) =
zer(T ) �= ∅ [24, Prop. 5.34], where x∗ is a v-GNE. We refer
to [27] for a complete convergence analysis of Algorithm 3.

Remark 8 (Computational Limitations of ITR and PPP): The
solution of each subgame of the PPP (see Algorithm 3), requires
nested (inner) iterations, and, therefore, multiple communication
stages between the agents and the central coordinator. Similarly
to the (doubly) vanishing step sizes of the ITR schemes (see
Algorithm 2), that lead to slow speed of convergence in practice,
we can regard double-layer or nested iterations as an important
computational limitation. �

Tseng’s Forward-Backward-Forward Splitting: To solve non-
cocoercive, non-strictly monotone aggregative games via non-
vanishing iterative steps or nested iterations, the forward-
backward-forward (FBF) method [24, §26.6] adds an additional
forward step to the FB algorithm. In Algorithm 4, we introduce
a modified version of the FBF algorithm for aggregative games,
originally proposed in [13, Algorithm 1].

Algorithm 4 improves [13, Algorithm 1] on two main aspects.
(i) (Partially uncoordinated step sizes) each agent i ∈ I and

the central coordinator have decision authority on their
own local step sizes.

(ii) (Additional projection) The local updates in step 3 and
the central update in step 4 are projected onto the local
feasible sets, Ωi’s and Rm

≥0, respectively. These addi-
tional projections make sure that the iterates xki ’s live in
the domain of correspondent functions fi’s and in fact
can improve the convergence speed of the algorithm.

The convergence analysis of Algorithm 4 is (almost) identical
to that of [13, Algorithm 1], thus, we discuss it briefly next.

Algorithm 4 as a fixed-point iteration: In compact form, the
dynamics generated by Algorithm 4 read as

ωk+1 = RFBF(ω
k) (25)

whereωk = col(xk, λk) is the stacked vector of the primal-dual
variables and RFBF is the so-called FBF operator, i.e.,

RFBF := projΩ×Rm
≥0

◦ ((Id−Ψ−1U1)

◦ JΨ−1U2
◦ (Id−Ψ−1U1) + Ψ−1U1

)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2023 at 09:30:46 UTC from IEEE Xplore.  Restrictions apply. 



BELGIOIOSO AND GRAMMATICO: SEMI-DECENTRALIZED GENERALIZED NASH EQUILIBRIUM SEEKING 147

Algorithm 4: Tseng’s forward-backward-forward (FBF).

Initialization: For all i ∈ I, x0i ∈ Rn and 0 < αi <
(�+ ‖A‖)−1; λ0 ∈ Rm

≥0 and 0 < β < (�+ ‖A‖)−1.
Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:

yki = xki − αi(∇xi
fi(x

k
i , avg(x

k)) +A�
i λk)

x̃ki = proxαigi+ιΩi
(yki )

d̃ki = Aix
k
i − bi

2. Central coordinator: dual variable update

λ̃k = projRm
≥0
(λk + β avg(d̃

k
))

3. Local: Strategy update, for all i ∈ I:
rk+1
i = x̃ki − αi(∇xi

fi(x̃
k
i , avg(x̃

k)) +A�
i λ̃k)

xk+1
i = projΩi

(xki − yki + rk+1
i )

dk+1
i = Aix̃

k
i − bi

4. Central coordinator: dual variable update

λk+1 = projRm
≥0
(λ̃k + β(avg(dk+1)− avg(d̃

k
)))

where U1 and U2 characterize an alternative splitting of the
mapping T in (15), i.e., T = U1 + U2, where

U1 : ω �→ col(F (x), b) + Sω (26)

U2 : ω �→ (NΩ(x) +G(x))×NRm
≥0
(λ) (27)

and Ψ is the preconditining matrix, here defined as

Ψ :=

[
ᾱ−1 ⊗ In 0

0 Nβ−1Im

]
. (28)

When the mappings U1 and U2 are maximally monotone
(which can be proven when Assumption 3 holds true by fol-
lowing a similar technical reasoning of that in Lemma 2), U1 is
Lipschitz continuous (see Assumption 3) and the step sizes in
the main diagonal of Ψ are set small enough, then the fixed-
point iteration (25) converges to some ω∗ := col(x∗,λ∗) ∈
fix(RFBF) = zer(T ) ∩ (Ω× Rm

≥0) = zer(T ) [24, Th. 26.17],
where x∗ is a v-GNE. We refer to [13, Th. 2], for a complete
convergence analysis, which is applicable to Algorithm 4.

Remark 9 (Double communication round): At each central
and local update of Algorithm 4 a communication takes place.
Hence, each iteration of Algorithm 4 requires two communica-
tion rounds between the agents and central operator. �

Finally, we note that an inertial version of Algorithm 4, with-
out the extra projections (in steps 3, 4) and with fully coordinated
step sizes that match across the agents and the central coordinator
can be derived based on [35, Th. 4].

IV. GENERALIZED NASH EQUILIBRIUM SEEKING: ADVANCED

ALGORITHMS

In this section, we design two novel semi-decentralized GNE
seeking algorithms obtained by solving the monotone inclu-
sion in (16) with different zero-finding methods: the forward-
reflected-backward splitting [36] and, for a particular subclass of
aggregative games with linear-coupling functions, the proximal-
point method with (alternated) inertia. The main features of the

proposed algorithms, e.g., convergence guarantees and commu-
nication requirements, are summarized and compared with those
of the existing methods in Table I.

A. (Inertial) Forward-Reflected-Backward Algorithm

In this section, we present a single-layer, single communi-
cation round algorithm for monotone generalized aggregative
games that overcomes the technical and computational limita-
tions of all the algorithms in Section III-C. The design of the
proposed method (i.e., Algorithm 5) is based on the forward-
reflected-backward splitting (FoRB) recently proposed in [36]
to find a zero of the sum of two maximally monotone operators,
one of which is single-valued and Lipschitz continuous.

Also for Algorithm 5, we describe the generated dynamics as
a compact inertial iteration, step

ωk+1 = (Id + Φ−1T2)
−1(ωk − 2Φ−1T1(ω

k)

+ Φ−1T1(ω
k−1) + θ(ωk − ωk−1)) (29)

where ωk = col(xk, λk) is the stacked vector of primal-dual
variables, the components mappings T1, T2 as in (17)and (18)
and the preconditioning Φ as in (22). If the step sizes in the
main diagonal of Φ are chosen small enough, then the iteration
(29), namely, the inertial FoRB splitting [36, Corollary 4.4]
on the operators Φ−1T1 and Φ−1T2, converges to some ω∗ :=
col(x∗,λ∗) ∈ zer(T1 + T2) = zer(T ), where x∗ is a v-GNE.

Our first main result is to establish global convergence of
Algorithm 5 to a v-GNE when the mapping F is maximally
monotone and Lipschitz continuous (see Assumption 3) and the
step sizes are chosen small enough.

Theorem 1 (Convergence of FoRB (Algorithm 5)): Let As-
sumptions 1–4 hold true. The sequence (col(xk, λk))k∈N gen-
erated by Algorithm 5, globally converges to some col(x∗, λ∗) ∈
zer(T ) �= ∅, where x∗ is a v-GNE. �

Proof: See Appendix VI-B. �
Remark 10 (Single communication round): Algorithms 4

(FBF) and 5 (FoRB) are the only single-layer, fixed-step algo-
rithms for GNE seeking in (noncocoercive, nonstriclty) mono-
tone generalized (aggregative) games. The main advantage of
Algorithm 5 is that it requires only one communication round

Algorithm 5: Inertial FoRB (I-FoRB).

Initialization: θ ∈ [0, 1/3) and δ > 2�/(1− 3θ), with � as
in Assumption 3; ∀i ∈ I, x0i , x

−1
i ∈ Rn and

0 < αi ≤ (‖Ai‖+ δ)−1; λ0, λ−1 ∈ Rm
≥0,

0 < β ≤
(

1
N

∑N
i=1 ‖Ai‖+ 1

N δ
)−1

.

Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:
rki = 2∇xi

fi(x
k
i , avg(x

k))−∇xi
fi(x

k−1
i , avg(xk−1))

xk+1
i = proxαigi+ιΩi

(xki − αi(r
k
i +A�

i λk)

+θ(xki − xk−1
i ))

dk+1
i = 2Aix

k+1
i −Aix

k
i − bi

2. Central coordinator: dual variable update
λk+1 = projRm

≥0
(λk + β avg(dk+1) + θ(λk − λk−1))
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TABLE I
COMPARISON AMONG V-GNE ALGORITHMS. LEGEND: C STANDS FOR COORDINATED STEP SIZES, P-UC FOR PARTIALLY UNCOODINATED, F-UC FOR FULLY

UNCOORDINATED; MON FOR MONOTONE, SMON FOR STRONGLY MONOTONE, COCO STANDS FOR (MONOTONE AND) COCOERCIVE

15

22 26 27

35

13

(between the agents and the central coordinator) per iteration
instead of the two required by the FBF, see also Remark 9. �

B. Customized Preconditioned Proximal-Point Algorithm

In this section, we focus on a particular class of aggregative
games, where the cost functions have the form

Ji(xi,x−i) = gi(xi) + (C avg(x))�xi (30)

where C = C� is a symmetric matrix. We emphasize that this
particular structure arises in several engineering applications,
where xi denotes the usage level of a certain commodity, whose
disutility is modeled by the cost function gi(xi), while the term
Cavg(x) represents a price function that linearly depends on the
average usage level of the population, see [5], [30], [37]–[40]
for some application examples.

The following lemma shows that aggregative games with such
special structure are generalized potential games [41, Def. 2.1].

Lemma 3: Consider monotone aggregative games with agent
cost functions as in (30) and C = C�. There exists a con-
tinuous function φ : RnN → R such that ∂φ = P , with P =∏N
i=1 ∂xi

Ji(xi, x−i). �
Proof: For aggregative games with linear coupling functions

as in (30), the pseudo-subdifferential P in (6) reads as

P =
∏N
i=1 ∂xi

gi +
1
N (IN + 1N1�

N )⊗ C. (31)

Let φ(x) :=
∑n
i=1 gi(xi) +

1
2x

�( 1
N (IN + 1N1�

N )⊗ C)x,
then it is easy to verify that ∂φ = P . �

It follows by Lemma 3 that a v-GNE corresponds to a solution
to the optimization problem argmin φ(x) s.t. x ∈ X . However,
in many practical setups, a centralized solution to this problem
is not viable since it would require a high degree of coordination
among selfish agents and also an “unbearable overload of infor-
mation exchange” [41, §3.3]. Moreover, distributed optimization
algorithms, see, e.g., [42], can only deal with feasible sets X
in (7) with Cartesian product structure (namely, the case of
non-generalized games) and cost functions with a separable form
(i.e., dependent only on local decision variables). This motivates
us to investigate a customized algorithm for aggregative games
with cost functions as in (30), which we summarize in Algo-
rithm 6 and denote as I-cPPP (or cPPP, when θk ≡ 0).

Algorithm 6: Inertial customized PPP (I-cPPP).

Initialization: 0 ≤ θk ≤ θk+1 ≤ θ̄ < 1/3 for all k ≥ 0;
for all i ∈ I, x0i ∈ Rn, 0 < αi < ‖Ai‖+ N−1

N ‖C‖; λ0 ∈
Rm

≥0, 0 < β <
(

1
N

∑N
i=1 ‖Ai‖

)−1

.

Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:

yki = x̃ki − αi
(
C avg(x̃k) +A�

i λ̃k
)

xk+1
i = argmin

z∈Ωi

gi(z)+
1

2αi

∥∥z−yki ∥∥2 + 1
N

(
C(z − x̃ki )

)�
z

x̃k+1
i = xk+1

i + θk(xk+1
i − xki ) (32)

dk+1
i = 2Aix

k+1
i −Aix̃

k
i − bi

2. Central Coordinator: dual variable update

λk+1 = projRm
≥0

(
λ̃k + β avg(dk+1)

)
λ̃k+1 = λk+1 + θk(λk+1 − λk) (33)

The following theorem establishes global convergence of Al-
gorithm 6 to a v-GNE of aggregative games with linear coupling
functions as in (30), when the associated PS P is maximally
monotone, as postulated next.

Assumption 6: The pseudo-subdifferential mappingP in (31)
is maximally monotone over Ω. �

We remark that this assumption is less strict than
Assumption 3, since the monotonicity of the coupled part F
is not required. Necessary and sufficient conditions for the
(strong) monotonicity of P for this class of aggregative games
are discussed in [43, Cor. 1]. For instance, C � 0 is sufficient to
guarantee a maximally monotone PS mapping.

Theorem 2 (Convergence of I-cPPP (Algorithm 6)): Consider
the game in (4) with cost functions in (30). Let Assumptions 1,
2, 4, 6 hold. Then, the sequence (col(xk, λk))k∈N generated by
Algorithm 6 globally converges to some col(x∗, λ∗) ∈ zer(T ),
where x∗ is a v-GNE. �

Proof: See Appendix VI-C. �
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Remark 11 (v-GAE seeking via I-cPPP): As for gradient-
based methods, to compute a v-GNE via Algorithm 6, the agents
must know the population size N . However, if an approximate
solution, i.e., a v-GAE, is equally desirable, this requirement can
be relaxed by removing the correction term 1

N (C(z − x̃ki ))
�
z

in the local primal update of each agent i. �
Algorithm 6 as a fixed-point iteration: In compact form, the

dynamics generated by Algorithm 6 read as

ω̃k = ωk + θk(ωk − ωk−1) (34a)

ωk+1 = JΦ−1
C T (ω̃

k) (34b)

where ωk = col(xk, λk) is the stacked vector of primal-dual
iterates, JΦ−1

C T = (Id + Φ−1
C T )−1 is the generalized resolvent

operator of the mapping T in (15) with preconditioning matrix

ΦC := Φ +

[
1
N (IN − 1N1�

N )⊗ C 0
0 0

]
(35)

with Φ as in (22). The iteration in (34) corresponds to the
inertial proximal-point method in [44] applied to the mapping
T preconditioned with ΦC. When T is maximally monotone
(which follows by Assumption 6) and the step sizes in the main
diagonal of Φ are set such that ΦC � 0, then JΦ−1

C T is firmly

nonexpansive ( 12−averaged) w.r.t. the ΦC−induced norm, i.e.,
‖ · ‖ΦC . Moreover, if the inertial parameter θk is nondecreasing
and small enough, then the inertial fixed-point iteration (34)
converges to some ω∗ := col(x∗,λ∗) ∈ fix(JΦ−1

C T ) = zer(T )
[44, Th. 2.1, Prop. 2.1], where x∗ is a v-GNE. We provide the
full convergence analysis in Appendix A3.

Remark 12 (cPPP is a single-layer algorithm): Both the
PPP (see Algorithm 3) and our cPPP (see Algorithm 6) rely
on the same fixed-point iteration, which is generated by the
proximal-point method. However, while the PPP is double-layer,
namely, it requires the solution of a subgame at each iteration,
cPPP is single-layer. The idea behind the cPPP is in fact to
exploit the special structure of the pseudo-subdifferential P in
(31) to customize the preconditioning matrix, ΦC, and in turn
solve the inner loop of the PPP with a single implicit iteration,
namely, the parallel solution of N local, decoupled, strongly
convex optimization problems. Our cPPP is devised specifically
for the subclass of aggregative games presented in this section,
thus, its applicability is mainly limited to this class of games. �

Remark 13 (Fully-uncoordinated step sizes): Unlike all the
previously presented gradient-based algorithms, the choice of
the local step sizes and inertial parameters in Algorithm 6 is
based on local information only.2 To the best of our knowledge,
this is the first and only inertial, fixed-step v-GNE seeking
algorithm that enjoys this important property. �

Over-Relaxed cPPP (Algorithm 6B): To conclude this section,
we present the over-relaxed variant of cPPP, i.e., or-cPPP. This
new method is obtained by substituting the inertial steps of
primal and dual variables in Algorithm 6, i.e., (32) and (33),
respectively, with the relaxation steps

x̃k+1
i = x̃ki + θk(xk+1

i − x̃ki ) (36)

2Except for the population size N , which is implicitly necessary for comput-
ing an exact v-GNE.

λ̃k+1
i = λ̃k + θk(λk+1 − λ̃k) (37)

where the relaxation sequence (θk)k∈N must be chosen s.t.

θk ∈ [0, 2] ∀k ∈ N,
∑
k∈N

θk(2− θk) = ∞. (38)

Similarly to Algorithm 6, or-cPPP can be compactly cast as
the following Krasnosel’skii–Mann fixed-point iteration:

ω̃k+1 = ω̃k + θk(JΦ−1
C T (ω̃

k)− ω̃k). (39)

Thus, its convergence readily follows by [24, Prop. 5.16],
since the generalized resolvent JΦ−1

C T is 1
2−averaged w.r.t. the

ΦC−induced norm [24, Prop. 23.8]. While there is no interest in
doing under-relaxation with θk less than 1, over-relaxation with
θk larger than 1 (close to 2) may be beneficial for the convergence
speed, as often observed in practice.

C. Alternating Inertial Steps for Averaged Operators

In this section, we propose an alternating inertial scheme,
which is applicable to the algorithms in Sections III and IV, and
whose updates can be described as a special fixed-point iteration
of an averaged operator. An advantage of this scheme is that
the generated even subsequence is contractive (Fejér monotone)
towards a v-GNE. Furthermore, the inertial extrapolation step
sizes, θk, can freely vary in [0, 1), namely, they do not need to
be monotonically nondecreasing. These requirements are less
restrictive than those in [32] and [44].

Next, we first introduce the idea of alternated inertia in
operator-theoretic terms, and then apply it to two v-GNE seeking
algorithms, the I-pFB (see Algorithm 1B) and the I-cPPP (see
Algorithm 6). Let R be an averaged mapping. The alternating
inertial Banach–Picard iteration then reads as follows:

ω̃k :=

{
(1 + θ)ωk − θωk−1, if k odd

ωk, if k even
(40a)

ωk+1 = R(ω̃k) (40b)

where ω−1 = ω0 is the initialization.
Lemma 4: Let R be η−averaged, with fix(R) �= ∅. Then,

the even subsequence (ω2k+2)k∈N generated by (40), with θ ∈
(0, 1−ηη ), converges to some ω ∈ fix(R). �

Proof: The odd and even subsequences in (40b) read as

∀k ∈ N :

⎧⎪⎨
⎪⎩
ω2k+1 = R(ω2k)

ω2k+2 = R((1 + θ)ω2k+1 − θω2k)

= R ◦ ((1 + θ)R− θId) (ω2k).

(41)

Let us define the mappingRθ := R ◦ ((1 + θ)R− θ Id). The
next lemma shows that, for θ small enough, Rθ is averaged and
has the same fixed points of R. �

Lemma 5: Let R be η−averaged, with η ∈ (0, 1), and set
θ ∈ (0, (1− η)/η). The following statements hold:

(i) (1 + θ)R− θ Id is μ−averaged, with μ = η(1 + θ);
(ii) fix((1 + θ)R− θ Id) = fix(R);

(iii) Rθ is ν−averaged, with ν = η+μ−2ημ
1−ημ ∈ (0, 1);

(iv) fix(Rθ) = fix(R). �
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Proof: (i) It directly follows from [24, Prop. 4.40].
(ii) ω ∈ fix((1 + θ)R− θ Id) ⇔ (1 + θ)R(ω)− θ(ω) = ω ⇔
(1 + θ)R(ω) = (1 + θ)ω ⇔ ω ∈ fix(R). (iii) It follows by [24,
Prop. 4.44], since Rθ is the composition of R and (1 + θ)R−
θ Id, that are η− and μ− averaged, respectively. (iv) It follows
by [24, Cor. 4.51] that fix(Rθ) = fix(R ◦ ((1 + θ)R− θ Id)) =
fix(R) ∩ fix((1 + θ)R− θ Id)) = fix(R).

In view of (41) and Lemma 5, the even subsequence in (40b)
can be recast as

ω2k+2 = Rθ(ω
2k), ∀k ∈ N (42)

where Rθ is ν−averaged, with ν ∈ (0, 1) given by Lemma 5
(iii). Thus, the convergence of the sequence (ωk+2)k∈N to some
ω̄ ∈ fix(Rθ) = fix(R) follows by [24, Prop. 5.16]. �

Finally, we propose some explicit rules to choose the alternat-
ing inertial extrapolation step sizes for the pFB (see Algorithm
1B) and for the cPPP (see Algorithm 6). In fact, in Section V-B,
we observe via numerical simulations that in some cases these
alternating-inertial variants outperform the standard-inertial al-
gorithms in terms of convergence speed. Let us then conclude
the section with the associated convergence results.

Corollary 1 (Convergence of alternating inertial pFB (aI-
pFB)): Let Assumptions 1, 2, 4, and 5 hold true. Then, the
sequence (col(xk, λk))k∈N generated by Algorithm 1B with
extrapolation steps set as

θk =

{
θ ∈

[
0, 2δγ−1

2δγ

)
, if k odd

0 if k even
(43)

globally converges to some col(x∗, λ∗) ∈ zer(T ) �= ∅, where
x∗ is a v-GNE. �

Proof: The pFB algorithm (see Algorithm 1) reads as the
fixed-point iteration in (20), where the mapping RFB is η :=
( 2δγ
4δγ−1 )−averaged w.r.t. the Φ−induced norm. Therefore, the

iteration with alternated inertia and extrapolation step sizes 0 ≤
θ < 1−η

η = 2δγ−1
2δγ converges by Lemma 4. �

Corollary 2 (Convergence of alternating inertial cPPP (aI-
cPPP)): Consider the game in (4) with cost functions as in
(30). Let Assumptions 1, 2, 4, 6 hold true. Then, the sequence
(col(xk, λk))k∈N generated by Algorithm 6 with extrapolation
steps

θk =

{
θ ∈ [0, 1), if k odd

0, if k even
(44)

globally converges to some col(x∗, λ∗) ∈ zer(T ) �= ∅, where
x∗ is a v-GNE. �

Proof: cPPP reads as the fixed-point iteration in (34)
with θk = 0 for all k > 0, where the resolvent mapping
JΦ−1

C T is firmly-nonexpansive, i.e., η := 1
2−averaged, w.r.t. the

ΦC−induced norm. Therefore, the iteration with alternating
inertia and extrapolation step sizes 0 ≤ θ < 1−η

η = 1 converges
by Lemma 4. �

Remark 14 (Convergence rate): We recall that pFB, cPPP and
their alternating-inertial variants can be compactly cast as fixed-
point iterations of some averaged operators. It follows by [45,
Th. 1] that their sequences of fixed-point residuals, i.e., ‖ωk+1 −
ωk‖2, converge with rate o(1/(k + 1)). �

V. ILLUSTRATIVE APPLICATION: CHARGING CONTROL OF

PLUG-IN ELECTRIC VEHICLES

To study the performance of the proposed algorithms, we for-
mulate a charging coordination problem for a large population of
nooncooperative plug-in electric vehicles (PEV) as a generalized
aggregative game, as in [15, §6]. In Section V-A, we introduce
the model for the PEV agents, formalize the charging control
game and verify that the necessary technical assumptions are
satisfied. In Section V-B, we compare the performance of our
algorithm against some standard methods.

A. Game Formulation

We adopt the same model in [15, §6]. Consider the charging
coordination problem for a large population of N � 1 nonco-
operative PEV over a time horizon made of multiple charging
intervals {1, 2, . . . , n}. The state of vehicle i at time t is denoted
by the variable si(t). The time evolution of si(t) is described by
the discrete-time system

si(t+ 1) = si(t) + bixi(t), t = 1, . . . , n

where xi(t) denotes the charging control input and bi the charg-
ing efficiency.

Constraints: At each time instant t, the charging input xi(t)
must be nonnegative and cannot exceed an upper bound x̄i(t) ≥
0. Moreover, the final state of charge must satisfy si(n+ 1) ≥
ηi, where ηi ≥ 0 is the desired state of charge of vehicle i. We
assume that each PEV agent i decides on its charging strategy
xi = col(xi(1), . . . , xi(n)) ∈ Ωi ⊂ Rn, where the set Ωi can
be expressed as

Ωi := {xi ∈ Rn | 0 ≤ xi(t) ≤ x̄i(t), ∀t = 1, . . . , n

and
n∑
t=1

xi(t) ≥ li

}
(45)

where li = b−1
i (ηi − si(1)) and si(1) is the state of charge at

the beginning of the time horizon.
Furthermore, for each time instant t, the overall power that

the grid can deliver to the PEV is denoted by NK(t), thus
introducing the following coupling constraints:

1
N

N∑
i=1

xi(t) ≤ K(t), for all t = 1, . . . , n (46)

which in compact form can be cast as (1�
N ⊗ In)x ≤ NK, with

K = [K(1), . . . K(n)]�.
Cost Functions: The cost function of each PEV represents its

electricity bill over the horizon of length n plus a local penalty
term gi (e.g., the battery degradation cost [7], [46]), i.e,

Ji(xi,x−i) =
n∑
t=1

gi,t(xi(t)) + pt

(
d(t) + avg(x(t))

κ(t)

)
xi(t)

=: gi(xi) + p(avg(x))�xi (47)

where gi is convex and the energy price for each time interval
pt : R≥0 → R>0 is monotonically increasing, continuously dif-
ferentiable, and depends on the ratio between the total consump-
tion and the total capacity, i.e., (d(t) + avg(x(t)))/κ(t), where
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d(t) and avg(x(t)) := 1
N

∑N
i=1 xi(t) represent the non-PEV

and PEV demand at time t divided by N and κ(t) is the total
production capacity divided by N as in [47, (6)].

Aggregative Game: Overall, each PEV i, given the charging
inputs of the other PEV, aims at solving the following optimiza-
tion problem:

(∀i ∈ I) :

⎧⎪⎨
⎪⎩

argmin
xi∈Rn

gi(xi) + p(avg(x))�xi

s.t. xi ∈ Ωi,

(1�
N ⊗ In)x ≤ NK.

(48)

Next, we show that the proposed charging control game in (48)
does satisfy our technical setup. The local cost functions Ji’s in
(47) are convex w.r.t. the local variable xi, the local constraint
sets Ωi’s in (45) are nonempty (for an appropriate choice of the
parameters), convex and compact, the coupling constraints in
(46) are affine and their intersection with the local constraints
nonempty (for an appropriate choice of the parameters), namely,
the Slater’s condition holds true. Hence, Assumptions 1 and 2
are satisfied. In particular, there exist at least one GNE of the
game in (48), see Remark 2.

The correspondent PG in (8) and approximate PG in (11) read
more explicitly as follows:

F̃ (x) = col ({p(avg(x))}i∈I) (49)

F (x) = F̃ (x) + 1
N col

(∇zp(z)|z=avg(x)xi}i∈I
)
. (50)

The following lemma shows the properties of these mappings
depending on the choice of the price function p in (47).

Lemma 6 ([15, Lemma 3]): The following conditions hold:
(i) for all i ∈ I, let gi be convex and the price function p be

monotone, then F̃ in (49) is maximally monotone;
(ii) for all i ∈ I, let gi be convex and the price function p be

affine, i.e., p(avg(x)) = Cavg(x) + c, withC ∈ Rn×n,
and strongly monotone, i.e., (C + C�)/2 � 0, then F
in (50) is strongly monotone. �

Proof: (i) and (ii) follow from [15, Lemma 3 (i)]. �

B. Numerical Analysis

In our numerical study, we consider an heterogeneous popu-
lation of PEV playing over a time horizon of n = 24 charging
intervals. All the parameters of the game are drawn from uni-
form distributions and fixed over the course of a simulation.
Specifically, for all i ∈ I, we set: the desired final state of
charge li in (45) according to li ∼ (0.5, 1.5), where ∼ (τ1, τ2)
denotes the uniform distribution over an interval (τ1, τ2) with
τ1 < τ2; for all t ∈ {1, . . . , n}, the upper charging input bound
as x̄i(t) ∼ (1, 5), with probability 0.8, x̄i(t) = 0 otherwise. For
all t, the non-PEV demand d(t) is taken as the typical base
demand over a summer day in the United States [47, Fig. 1];
κ(t) = 12 kW, and the upper bound K(t) = 0.55 kW is chosen
such that the coupling constraints in (46) are active in the middle
of the night.

In the remainder of this section, we study the convergence
properties of the proposed algorithms on two different scenarios
characterized by a different choice of the price function p and
local cost functions gi, in (47).

Fig. 1. Number of iterations to achieve convergence for FoRB (Al-
gorithm 5, θ = 0) and FBF (see Algorithm 4) versus populations size
N . The areas contain the outcome of 10 random simulations for
each N ∈ {50, 60, . . . , 200}. Convergence is considered achieved when
‖xk − x�‖/‖x�‖ ≤ 10−4, where x� is a v-GAE.

1) Monotone Price Function: Consider the price function

pt (avg(x(t))) := 0.15
(
d(t)+avg(x(t)))

κ(t)

)1.5
, ∀t. (51)

As in [47, §VII.B] and a local cost function gi defined as

gi(xi) = πi

(
n∑
t=1

xi(t)

)2

+ a�i xi, ∀iI (52)

where πi ∼ (0.1, 0.8) and ai(t) ∼ (0.1, 0.4), for all t ∈
{1, . . . , n}. Under these choices, it follows from Lemma 6 (i)
that the approximate PG in (49) is maximally monotone. There-
fore, a v-GAE of the game in (48) can be found with the
algorithms in Section III-C and the FoRB (see Algorithm 5).

In Fig. 1, we compare the total number of iterations required
by FBF (see Algorithm 4) and FoRB (see Algorithm 5) to achieve
convergence to a v-GAE (i.e., ‖xk − x�‖/‖x�‖ ≤ 10−4), over
different population sizes N varying from 50 to 200 agents.
For eachN , we run 10 simulations with random parameters. On
average, FoRB converges at least 5 times faster than FBF in terms
of number of iterations, and, thus, 10 times faster in terms of
communication rounds between PEVs and central coordinator.
Moreover, unlike FBF, the convergence speed of FoRB seems
not affected by increasing the number of agents and randomly
varying the parameters of the problem.

2) Affine Price Function: Consider the price function

p(avg(x)) := C avg(x) + c (53)

where C = In, c = col(d(1), . . . , d(n)), and the local convex
cost function gi, for all i ∈ I, as

gi(xi) =
1
2x

�
i Qixi + p�i xi. (54)

For instance, the local penalty term gi in (54) can model a
convex quadratic battery degradation cost as in [7, (5)], [46, (8)],
possibly plus a quadratic penalty ‖xi − xref

i ‖2 on the deviation
from a preferred charging strategy xref

i ∈ Ωi.
Under these choices, the pseudo-gradient mappingF in (50) is

strongly monotone, by Lemma 6 (ii), and Lipschitz continuous,
since affine. Thus, it follows by Remark 5 that F is cocoercive.
The unique v-GNE of the game in (48) can be found with the
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Fig. 2. Iterations to achieve convergence for different population sizes.
Each polygon is the average over 120 random simulations. Convergence
is considered achieved when ‖xk − x∗‖/‖x∗‖ ≤ 10−6. (a) Heteroge-
neous population of PEVs. The step sizes of pFB and cPPP have been
set 1% smaller than their theoretical upper bounds. (b) Homogeneous
population of PEVs. The step sizes of pFB and cPPP have been set 1%
smaller than their theoretical upper bounds.

algorithms in Section III-B and, since the cost functions have
the same structure as in (30), with the cPPP.

First, we consider an heterogeneous population of PEV’s, by
setting the parameters of the penalty terms gi in (54) as fol-
lows: Qi = diag(q(1), . . . , q(n)), pi = col(pi(1), . . . , pi(n)),
with qi(t) ∼ (0.1, 4) and pi(t) ∼ (0.2, 2), for all t. In Fig. 2(a),
we compare the average number of iterations required to achieve
convergence (i.e., ‖xk − x∗‖/‖x∗‖ ≤ 10−6) for pFB (see Algo-
rithm 1), cPPP (see Algorithm 6) and their inertial variants, for
different population sizesN . For eachN , we run 10 simulations

with random parameters and considered the average number of
iterations for convergence. The step sizes of all the algorithms
are set 1% smaller than their theoretical upper bounds. On
average, cPPP outperforms pFB. For both pFB and cPPP, their
inertial variants show better performances with respect to the
vanilla-flavour algorithms. Overall, the over-relaxed cPPP is the
fastest among all the considered methodologies. We note that,
the convergence speed of all the algorithms seems only mildly
affected by the population size.

In Fig. 2(b), we repeat the same analysis for an homogeneous
population of PEVs. Specifically, we set the parameters of the
local penalty term in (54) as Qi = 0.1 and pi = 0.2, for all i ∈
N . The performances of all the algorithms improve w.r.t. to the
case with heterogeneous agents. On average, cPPP requires less
then half the iterations/communication rounds of pFB. For both
pFB and CPPP, their inertial variants show better performances
with respect to the standard algorithms. Overall, the alternated
inertial cPPP (aI-cPPP) and the over-relaxed cPPP (or-cPPP) are
the fastest among all the considered methodologies (less than 50
communication rounds with the central coordinator to achieve a
precision of 10−6, independently on the total number of PEVs).

VI. CONCLUSION AND OUTLOOK

Generalized Nash equilibrium problems in monotone ag-
gregative games can be efficiently solved via accelerated,
semi-decentralized, single-layer, single-communication-per-
iteration, fixed-step algorithms. For this class of equilibrium
problems, the over-relaxation seems the most effective provably-
convergent decentralized way to speed up convergence. The
study of adaptive step sizes is left for future work.

APPENDIX

A. Sufficient Conditions for Cocoercivity of the
Pseudo-Gradient

In this appendix, we provide some sufficient conditions –
inspired by [48, Section III-B] – for cocoercivity of the pseudo-
gradient F in (8) based on properties of the functions (fi)i∈I .

Lemma 7: For all agent i ∈ I, assume that the function
hi(x) : x �→ fi(xi, avg(x)) is twice continuously differen-
tiable, and let the following conditions hold:

(i) ∇xi
hi(x) is �i−Lipschitz continuous on Ω;

(ii) there exists a positive constant μi such that

inf
x∈Ω

eigmin(∇2
xi
hi(x)) ≥

∑
j∈I\{i}

sup
x∈Ω

‖∇2
xj ,xi

hi(x)‖+ μi.

Then, the pseudo-gradientF (x) = col((∇xi
hi(x))i∈I) in (8)

is γ−cocoercive, with γ = mini∈I{μi}/(maxi∈I{�i})2. �
Proof: Define the matrix ΥF ∈ RN×N , with entries

[ΥF ]i,j :=

{
infx∈Ω eigmin(∇2

xi
hi(x)), if i = j

− supx∈Ω ‖∇2
xj ,xi

hi(x)‖, otherwise.
(55)

Under the conditions in Lemma 7 (ii), it follows by the
Gershgorin’s circle theorem, e.g. [49, Th. 2], that ΥF is positive
definite with eigmin(ΥF ) = mini∈I{μi}. In turn, it follows
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from [48, Prop. 5.(c)] that the pseudo-gradient F is μ−strongly
monotone, with μ = mini∈I{μi}. Moreover, under the condi-
tions in Lemma 7 (i) it follows thatF (x) = col((∇xi

hi(x))i∈I)
is �−Lipschitz continuous with � = maxi∈I{�i}. Finally, from
Remark 5 it follows that F is γ−cocoercive with γ =
mini∈I{μi}/(maxi∈I{�i})2. �

B. Proof of Theorem 1

To establish global convergence, we show that the following.
(i) Algorithm 5 corresponds to the (preconditioned) inertial

FoRB splitting method [36, (4.12)] in (29).
(ii) If the step sizes {αi}i∈I , β and the extrapolation

parameter θ are chosen as in Algorithm 5, then
the assumptions of [36, Corollary 4.4] are satisfied,
hence (col(xk, λk))k∈N globally converges to some
col(x∗, λ∗) ∈ zer(T ) �= ∅, where x∗ is a v-GNE.

(i): Let us recast Algorithm 5 in a more compact form as

xk+1 = diag(proxα1g1+ιΩ1
, . . . ,proxαNgN+ιΩN

)

◦ (x̃k − ᾱ(2F (xk)− F (xk−1) +A�λk)
)

(56)

λk+1 = projRm
≥0

(
λ̃k + β(2Axk+1 −Axk − b)

)
(57)

where x̃k := xk + θ(xk − xk−1) and λ̃k := λk + θ(λk −
λk−1). Since diag(proxα1g1+ιΩ1

, . . . ,proxαNgN+ιΩN
) =

(Id + NΩ + ᾱG)−1, it follows by (56) that (Id + NΩ +
ᾱG)(xk+1) ∈ x̃k − ᾱ(2F (xk)− F (xk−1) +A�λk), which
leads to

− (2F (xk)− F (xk−1)) ∈ (NΩ +G)(xk+1) +A�λk+1

+ ᾱ−1(xk+1 − x̃k)−A�(λk+1 − λk) (58)

where we used ᾱ−1NΩ(x
k+1) = NΩ(x

k+1). Equiva-
lently, it follows from (57) that (Id + NRm

≥0
)(λk+1) ∈

λ̃k + β 1
N (2Axk+1 −Axk − b), which leads to:

− b ∈ NRmN
≥0

(λk+1)−Axk+1

−A(xk+1 − xk) +Nβ−1(λk+1 − λ̃k). (59)

Letωk := col(xk, λk) be the stacked vector of the iterates and
ω̃k = ωk + θ(ωk − ωk−1). The inclusions in (58) and (59) can
be cast in a more compact form as

−(2T1(ω
k)− T1(ω

k−1)) ∈ T2(ω
k+1) + Φ(ωk+1 − ω̃k)

where T1, T2, and Φ as in (17), (18), and (19), respectively. By
making ωk+1 explicit in the last inclusion, we obtain

ωk+1 = (Id + Φ−1T2)
−1

◦ (ω̃k − 2Φ−1T1(ω
k) + Φ−1T1(ω

k−1)) (60)

which corresponds to (29), thus concluding the proof.
(ii): Before studying the convergence of iteration (60), we

show that, if the step sizes are chosen as in Algorithm 5, then
the preconditioning matrix Φ is positive definite.

Lemma 8: Let {αi}i∈I and β be set as in Algorithm 5. Then,
the following statements hold:

(i) Φ− δI � 0;

(ii) ‖Φ−1‖ ≤ δ−1. �
Proof: (i): By the generalized Gershgorin circle theorem [49,

Th. 2], each eigenvalue μ of the matrix Φ in (19) satisfies at least
one of the following inequalities:

μ ≥ α−1
i − ‖A�

i ‖, ∀i ∈ I (61)

μ ≥ Nβ−1 −
N∑
j=1

‖A�
j ‖. (62)

Hence, if we set the step sizes {αi}i∈I , β as in Algorithm 5,
the inequalities (61), (62) yield to μ ≥ δ, where δ > 0 by de-
sign choice. It follows that the smallest eigenvalue of Φ, i.e.,
eigmin(Φ), satisfies eigmin(Φ) ≥ δ > 0. Hence, Φ− δI � 0.

(ii): Let eigmax(Φ)be the largest eigenvalue ofΦ. We have that
eigmax(Φ) ≥ eigmin(Φ) ≥ δ. Moreover, ‖Φ‖ = eigmax(Φ) ≥
eigmin(Φ) =

1
‖Φ−1‖ ≥ δ. Hence, ‖Φ−1‖ ≤ δ−1. �

Since Φ−1 is δ−1−Lipschitz, by Lemma 8 (ii), and T1 is
�−Lipschitz, by Assumption 3, then their composition, i.e.,
Φ−1 ◦ T1, is τ−Lipschitz continuous, with τ := δ−1� < (1−
3θ)/2, since δ > 2�/(1− 3θ), by design choice.

The fixed-point iteration (60), that corresponds to Algo-
rithm 5 by the first part of this proof, is the inertial FoRB
splitting algorithm on the mappings Φ−1T1 and Φ−1T2. The
convergence of (60) to some ω∗ := col(x∗,λ∗) ∈ zer(T1 + T2)
follows by [36, Corollary 4.4, Remark 2.7], since Φ−1T1 and
Φ−1T2 are maximally monotone in the Φ−induced norm and
Φ−1T1 is τ−Lipschitz continuous, with τ < (1− 3θ)/2. To
conclude, we note that ω∗ ∈ zer(Φ−1T1 +Φ−1T2) = zer(T ),
since Φ � 0, by Lemma 8 (i), and T1 + T2 = T . Since the limit
point ω∗ ∈ zer(T ) �= ∅, then x∗ is a v-GNE of the game in (4),
by Proposition 1, thus concluding the proof. �

C. Proof of Theorem 2

To establish global convergence, we show that the following:
(i) Algorithm 6 corresponds to the inertial proximal-point

method [44, Th. 2.1] in (34);
(ii) if the step sizes {αi}i∈I , β and the inertial parameters

θk are chosen as in Algorithm 6, then the assumptions of
[44, Th. 2.1, Prop. 2.1] are satisfied, hence
(col(xk, λk))k∈N globally convergences to some
col(x∗, λ∗) ∈ zer(T ), where x∗ is a v-GNE.

(i): With some cosmetic manipulations, we can rewrite the
local primal update of agent i as the solution to

xk+1
i = argmin

z∈Ωi

Ji
(
z, x̃k−i

)
+ (A�

i λ̃ki )
�
z + 1

2αi

∥∥z − x̃ki
∥∥2

with Ji as in (30). Equivalently, xk+1
i must satisfy

0n ∈ ∂xi

(
Ji
(
xk+1
i , x̃k−i

)
+ (A�

i λ̃ki )
�
xk+1
i

+
1

2αi

∥∥xk+1
i − x̃ki

∥∥2) .
Since ∂xi

Ji(x
k+1
i , x̃k−i) = ∂xi

gi(x
k+1
i ) + 1

N

∑N
j �=i Cx̃

k
j +

2
NCx

k+1
i , then the previous inclusion can be rewritten as

0n ∈ ∂xi
gi(x

k+1
i ) + 2

NCx
k+1
i + 1

N [(1�
N ⊗ C)xk+1 − Cxk+1

i ]

+A�
i λk+1

i + 1
αi
(xk+1
i − x̃ki )− 1

N [(1�
N ⊗ C)(xk+1 − x̃k)
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+ C(xk+1
i − x̃ki )]−A�

i (λ
k+1 − λk). (63)

By stacking-up the inclusions (63), for all i ∈ I, we obtain

0nN ∈ G(xk+1) + 2
N (IN ⊗ C)xk+1−

1
N ((IN − 11�)⊗ C)xk+1 +A�λk+1 + ᾱ−1(xk+1 − x̃k)

+ 1
N ((IN − 11�)⊗ C)(xk+1 − x̃k)−A�(λk+1 − λ̃k)

(64)

where the first 3 terms on the right-hand side corre-
spond to the pseudo-subdifferential mapping P (xk+1),
i.e., G(xk+1) + 2

N (IN ⊗ C)(xk+1)− 1
N ((IN − 11�)⊗

C)(xk+1) = P (xk+1).
It follows by the dual update in Algorithm 6 that (Id +

NRm
≥0
)(λk+1) ∈ λk + β 1

N (2Axk+1 −Ax̃k − b), which yields

0m ∈ NRmN
≥0

(λk+1)− (Axk+1 − b)

−A(xk+1 − x̃k) +Nβ−1(λk+1 − λ̃k). (65)

Let ωk := col(xk, λk) be the stacked vector of the iterates.
The inclusions in (64) and (65) can be cast in a compact form as

0 ∈ T (ωk+1) + ΦC(ω
k+1 − ω̃k)

where T and ΦC as in (15) and (35), respectively. By making
ωk+1 explicit in the last inclusion, we obtain

ωk+1 = (Id + Φ−1
C T )−1(ω̃k) (66)

where the auxiliary updates can be cast in a compact form as

ω̃k = ωk + θk(ωk − ωk−1). (67)

By combining (66) and (67), we obtain the fixed-point iter-
ation in (34), that corresponds to the iteration in [44, Th. 2.1]
applied on Φ−1

C T and, thus, concludes the proof.
(ii): The following Lemma shows that, if the step sizes are

chosen as in Algorithm 6, then the preconditioning matrix ΦC is
positive definite.

Lemma 9: Let {αi}i∈I and β be set as in Algorithm 6, then,
ΦC � 0. �

Proof: This proof follows the same technical reasoning of the
proof of Lemma 8 (i) and, thus, is omitted. �

The fixed-point iteration (34), that corresponds to Algorithm
6 by the first part of this proof, is the inertial proximal-point
algorithm applied on the operator Φ−1

C T . The convergence of
(34) to some ω∗ = col(x∗,λ∗) ∈ zer(Φ−1

C T ) follows by [44,
Th. 2.1, Prop. 2.1], since Φ−1

C T is maximally monotone in
the ΦC−induced norm and 0 ≤ θk ≤ θk+1 ≤ θ̄ < 1/3, for all
k > 0. To conclude, we note that ω∗ ∈ zer(Φ−1

C T ) = zer(T ),
sinceΦC � 0, by Lemma 9. Since the limit pointω∗ ∈ zer(T ) �=
∅, then x∗ is a v-GNE of the game in (4), by Proposition 1,
concluding the proof. �
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