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We have employed a feedback cooling scheme, which combines high-frequency mixing with

digital signal processing. The frequency and damping rate of a 2 MHz micromechanical resonator

embedded in a dc SQUID are adjusted with the feedback, and active cooling to a temperature of

14.3 mK is demonstrated. This technique can be applied to GHz resonators and allows for flexible

control strategies. VC 2011 American Institute of Physics. [doi:10.1063/1.3608148]

Mechanical systems in the quantum regime1–3 can be

used to answer fundamental questions about quantum mea-

surement, decoherence, and the validity of quantum mechan-

ics in macroscopic objects. This requires a mechanical

resonator that is cooled to such a low temperature that it is in

its ground state for most of the time. In the past few years,

tremendous progress has been made in actively cooling reso-

nators,3 mainly by using sideband cooling2,4,5 and active

feedback cooling.6–8 The latter technique has mainly been

applied to low-frequency (kHz) resonators combined with

optical detection. The largest cooling factors have been

obtained using velocity-proportional feedback, i.e., by feed-

ing back the differentiated displacement signal. However, at

higher frequencies, delays in the feedback system seriously

degrade the cooling performance. Here, we demonstrate a

feedback cooling technique9 with a nearly unlimited band-

width, based on fast digital signal processing (DSP) in

combination with single-sideband mixing. A 2 MHz micro-

mechanical resonator with inductive readout is cooled to

14.3 mK using this scheme.

Figure 1(a) shows the device, which consists of a dc

SQUID with a part of its loop suspended. This forms a 50

lm long flexural resonator with its fundamental mode

around f0 � 2 MHz. The chip is glued onto a piezo element

for feedback and actuation and is cooled in a dilution refrig-

erator with a minimum bath temperature of 15 mK. By

applying an in-plane magnetic field B (green), a displace-

ment of the beam u changes the amount of flux through the

dc SQUID loop. When a bias current IB is applied, a change

in flux results in a change in the SQUID voltage V. This

way, the dc SQUID is a sensitive displacement detector.10 In

all measurements presented here the same working point for

the dc SQUID is used, to avoid backaction-induced changes

in frequency and damping.11

The thermal noise of the resonator is used to calibrate

the dc SQUID detector. Figure 1(b) shows the displacement

noise spectrum Suu measured at two different cryostat

temperatures T. The thermal motion of the resonator shows

up as a peak on top of the imprecision noise floor Sunun
.

The cryogenic-amplifier-limited displacement noise is

2 fm=
ffiffiffiffiffiffi
Hz
p

at T¼ 15 mK. The area under the peak is the am-

plitude of the Brownian motion of the resonator squared.

When the temperature of the refrigerator is increased to

T¼ 0.3 K, the spectrum changes: Firstly, the noise floor is

higher due to a decrease in the transduction, dV/du, as the

critical current decreases with increasing temperature.10

Secondly, the peak is higher and wider (the intrinsic damp-

ing rate c0 increases with temperature), indicating that the

thermal motion is larger at higher temperatures. The resona-

tor temperature T0 ¼ k0hu2i=kB (k0¼ 110 N/m is the spring

FIG. 1. (Color online) (a) Schematic overview of the SQUID detector (red)

with the integrated flexural resonator. (b) Displacement noise spectra with-

out feedback. (c) The resonator temperature extracted from the thermal noise

spectra plotted against the mixing chamber temperature. (d) Generic linear

system representation (e.g., Ref. 12) of feedback cooling. (e) The feedback

filter consists of a digital signal processor with a single-sideband mixer at

the input and output.
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constant) is plotted against T in Fig. 1(c): It follows the cryo-

stat temperature for T > 50 mK (solid line) and saturates

below this value.

To further lower the resonator temperature, active feed-

back is employed, where the displacement of the resonator is

fed back to it to damp its thermal motion. Fig. 1(d) illustrates

the generic process3: The thermal force noise Fth: k0fth
drives the resonator whose response is HR ¼ f 2

0 =ðf 2
0 � f 2

þ if c0=2pÞ. Note that fth and the other signals are scaled to

have the unit of position. The force results in a displacement,

which is measured by the dc SQUID detector, and impreci-

sion noise un is added to its output v. This signal is fed to the

feedback filter with transfer function Gfb. The actuation a is

multiplied by A, which consists of the SQUID transduction,

an attenuation (�40 dB), and the piezo responsivity. Finally,

the resulting piezo displacement up exerts an inertial force

on the resonator. Note that, in practise, crosstalk (X) exists

between the applied feedback and the detector output, which

modifies the system response.

To fully characterize the linear system, an ac signal is

applied to a [see Fig. 1(d)] and the response at v is measured

at the same frequency, while sweeping the driving frequency

across the resonance. In this case, the feedback Gfb is dis-

abled. From this network-analyzer measurement, the ele-

ments A¼ 1.94� 10�4 exp(�0.73i) and X¼ 0.26 exp(2.56i)
of the linear systems are obtained, as well as the parameters

of HR: f0 and c0. The non-zero phase of A is due to the time it

takes for the signal to travel through the whole system. If an

analog differentiator would be used for Gfb, this delay causes

the feedback to not be purely velocity proportional, thus

degrading the cooling performance. The DSP-based feed-

back presented here can compensate for this effect as demon-

strated below.

Our implementation of the feedback filter Gfb is shown

in Fig. 1(e). The high-frequency input signal v is split and

both branches are mixed with local oscillator (LO) signals

with a 90� phase difference between them. This in-phase and

quadrature (IQ) mixer gives both quadratures vs and vc of the

input signal. The LO frequency is fLO¼ 2.0492 MHz so that

the down-mixed signals oscillate at fR � fLO¼ 8.9 kHz. They

are digitized and the DSP (Adwin Pro II at a sampling rate

fs¼ 820 kS/s) applies the following transformation to the

input signals to generate two output signals ac and as:

ac

as

� �
¼ gfb

cos hfb �sin hfb

sin hfb cos hfb

� �
vc

vs

� �
: (1)

These quadratures are then up-converted by the LO fre-

quency with a second IQ mixer. The final result is a signal a
at the original frequency that is phase-shifted by the feed-

back phase hfb and multiplied by the feedback gain gfb, i.e.,

Gfb¼ gfb exp(ihfb). The only frequency requirement for this

mixing scheme is that the quadratures do not change faster

than the sampling rate, which is equivalent to cR=2p. fs=2.

The operation is thus not limited to resonators with frequen-

cies within the bandwidth of the DSP, allowing feedback

cooling of radio and microwave frequency resonators. Note

that the imprecision noise floor is still determined by the

cryogenic amplifier; the contributions from the mixers and

discretization are negligible.

The feedback modifies the resonator response from HR

to its closed-loop form H
0
R

3:

H
0

R ¼
f 2
0

f 2
0 � f 2 þ if c0=2p� f 2

0 G
0
fbA

; (2)

where G
0
fb ¼ g

0
fbexpðih0fbÞ ¼ Gfb=ð1� XGfbÞ is the feedback

filter modified by the crosstalk. The real part of G
0
fbA modi-

fies the resonance frequency from f0 to fR � f0ð1� Re

½G0
fbA�=2Þ, whereas the imaginary part changes the damping

from c0 to cR � c0 � 2pf0Im½G0
fbA�. Both the frequency shift

and the change in damping depend periodically on the phase

of G
0
fbA and the maximum frequency shift is half the maxi-

mum damping rate change.

In order to achieve optimal cooling, the feedback phase

is varied for a fixed feedback gain as shown in Fig. 2. The

feedback gain is chosen sufficiently small so that G
0
fb � Gfb.

At every point, the thermal noise spectra are measured and fit-

ted to obtain the resonance frequency (top), the damping rate

(center), and the resonator temperature (bottom). The reso-

nance frequency and damping rate show the expected sinusoi-

dal dependence on the feedback phase. The amplitude of the

frequency shift is half of that of the change in damping, con-

sistent with the discussion above. The phase where the damp-

ing is maximized coincides with the lowest resonator

temperature and zero frequency shift. At this phase, the sys-

tem delay is compensated and a pure velocity-proportional

FIG. 2. (Color online) Feedback phase dependence of the resonator fre-

quency (a), damping rate (b), and resonator temperature (c) for gfb¼ 0.1.

The dashed lines indicate their measured values in the absence of feedback,

f0, c0, and T0 respectively; the solid line is the phase dependence calculated

using independent measurements.
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feedback is applied to the resonator (i.e., ffAGfb¼�p/2). The

phase dependencies can also be calculated without any free

parameters by using the values from the network characteri-

zation [Fig. 1(d)]. Figure 2 show that these are in good agree-

ment with the feedback results.

To further cool the resonator, the feedback gain is

increased at the optimal phase as indicated in Fig. 3. First,

the resonator temperature decreases rapidly with increasing

gain due to the increased damping rate. However, by increas-

ing the gain further, more of the imprecision noise un is fed

back as force noise. This causes a steady increase in TR for

large gfb. The minimum temperature that can be reached is

set by Sunun
and the solid line shows the predicted curve for

velocity-proportional feedback7,13 calculated with the exper-

imental parameters. The achieved minimum of 14.3 mK is

close to the predicted lowest temperature of 14.0 mK. Note

that a temperature of 14.3 mK corresponds to an average

thermal phonon occupation of �n � kBTR=hfR ¼ 138 for a 2

MHz resonator. The heterodyne DSP-based technique

employed in this work thus successfully reaches the lowest

temperature possible for the standard fully analog approach,

but now applied to a high-frequency resonator.

Another advantage of DSP-based feedback is that the

transformation of vs and vc to ac and as can be designed with

almost arbitrary transfer characteristics, allowing the imple-

mentation of optimal control strategies.14 In the measure-

ments in Fig. 3, the input signal is digitally filtered using a

Fourier transform filter, which is centered around f0 and has

a tunable filter bandwidth Df. The filter reduces the band-

width of the feedback, which prevents excessive signal out-

put outside the resonator bandwidth that may overload the

detector or the amplifiers. The inset of Fig. 3 shows the root-

mean-square output voltage as a function of gfb for three val-

ues of Df. For the full bandwidth (fs/2¼ 410 kHz), an insta-

bility occurs around gfb¼ 0.23, which affects the cooling.

The 10 kHz bandwidth, which is used for the cooling curve

of Fig. 3, has two orders of magnitude less actuation com-

pared to the full bandwidth, enabling efficient cooling with-

out affecting the closed-loop response as long as

Df 	 cR=2p. This again illustrates the versatility of our digi-

tal quadrature feedback cooling platform.
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FIG. 3. (Color online) Resonator temperature as a function of feedback

gain, showing both the feedback measurements (symbols) and calculations

for pure velocity-proportional feedback (solid line). The inset shows the

root-mean-squared value of the actuation signal
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ci þ ha2
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as a func-

tion of gain for different filter bandwidths.
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