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Abstract

Defect centres in diamond are promising building blocks for quantum networks thanks to along-lived
spin state and bright spin-photon interface. However, their low fraction of emission into a desired
optical mode limits the entangling success probability. The key to overcoming this is through Purcell
enhancement of the emission. Open Fabry—Perot cavities with an embedded diamond membrane
allow for such enhancement while retaining good emitter properties. To guide the focus for design
improvements it is essential to understand the influence of different types of losses and geometry
choices. In particular, in the design of these cavities a high Purcell factor has to be weighed against
cavity stability and efficient outcoupling. To be able to make these trade-offs we develop analytic
descriptions of such hybrid diamond-and-air cavities as an extension to previous numeric methods.
The insights provided by this analysis yield an effective tool to find the optimal design parameters for a
diamond-air cavity.

1. Introduction

Quantum networks rely on entanglement distributed among distant nodes [1]. Nitrogen-vacancy (NV) defect
centers in diamond can be used as building blocks for such networks, with a coherent spin-photon interface that
enables the generation of heralded distant entanglement [2, 3]. The long-lived electron spin and nearby nuclear
spins provide quantum memories that are crucial for extending entanglement to multiple nodes and longer
distances [4-8]. However, to fully exploit the NV centre as a quantum network building block requires
increasing the entanglement success probability. One limitation to this probability is the low efficiency of the NV
spin-photon interface. Specifically, entanglement protocols depend on coherent photons emitted into the zero-
phonon line (ZPL), which is only around 3% of the total emission [9], and collection efficiencies are finite due to
limited outcoupling efficiency out of the high-refractive index diamond. These can both be improved by
embedding the NV centre in an optical microcavity at cryogenic temperatures, benefiting from Purcell
enhancement [10-17]. A promising cavity design for applications in quantum networks is an open Fabry—Perot
microcavity with an embedded diamond membrane [9, 18-20]. Such a design provides spatial and spectral
tunability and achieves a strong mode confinement while the NV centre can reside in the diamond membrane
far away (=~ pm) from the surface to maintain bulk-like optical properties.

The overall purpose of the cavity system is to maximise the probability to detect a ZPL photon after a
resonant excitation pulse. This figure of merit includes both efficient emission into the ZPL into the cavity mode,
and efficient outcoupling out of the cavity. The core requirement is accordingly to resonantly enhance the
emission rate into the ZPL. However this must be accompanied by vibrational stability of the system; an open
cavity design is especially sensitive to mechanical vibrations that change the cavity length, bringing the cavity off-
resonance with the NV centre optical transition. Furthermore the design should be such that the photons in the
cavity mode are efficiently collected. We aim to optimize the cavity parameters in the face of these (often
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contradicting) requirements. For this task, analytic expressions allow the influence of individual parameters to
be clearly identified and their interplay to be better understood. In this manuscript we take the numerical
methods developed in [19] as a starting point, and find the underlying analytic descriptions of hybrid diamond-
air cavities. We use these new analytic descriptions to investigate the optimal parameters for a realistic cavity
design.

We define two boundary conditions for the design of the cavity, within which we operate to maximize the
figure of merit: the probability to detect a ZPL photon. Firstly we require the optical transition to be little
influenced by decoherence and spectral diffusion so that the emitted photons can be used for generating
entanglement between remote spins [2]. Showing enhancement of the ZPL of narrow-linewidth NV centres is
still an outstanding challenge. The demonstration in [9] employed NV centresin a 1 4m thick membrane with
optical transitions with a linewidth under the influence of spectral diffusion of 1 GHz, significantly broadened
compared to the 2213 MHz lifetime-limited value. While the mechanism of broadening is not fully understood,
using a thicker diamond may be desired. We therefore conservatively use a diamond membrane thickness of
4 pm in the simulations throughout this manuscript. Secondly, we consider a design that enables long
uninterrupted measurements at cryogenic temperatures, potentially at a remote location with no easy access
(such as a data center), through the use of a closed-cycle cryostat. The vibrations induced by the cryostat’s pulse
tube can be largely mitigated passively [20]. Active stabilisation of Fabry—Perot cavities has been demonstrated
[21,22], including at a high bandwidth [23, 24], however these results have not yet been extended to operation in
a pulse-tube cryostat. In the simulations in this manuscript we therefore assume that vibrations lead to passively
stabilised cavity length deviations of 0.1 nm RMS [20]. While these boundary conditions influence the simulated
maximally achievable probability to detect a ZPL photon, the analytic descriptions in this manuscript are not
limited to these parameter regimes.

The layout of this manuscript is the following. We start by describing the one-dimensional properties of the
cavities in section 2. These are determined by the distribution of the electric field over the diamond and air parts
of the cavity and its impact on the losses out of the cavity. In section 3 we extend this treatment to the transverse
extent of the cavity mode, analysing the influence of the geometrical parameters. Finally we include real-world
influences of vibrations and unwanted losses to determine the optimal mirror transmittivity and resulting
emission into the ZPL in section 4.

2. The one-dimensional structure of a hybrid cavity

The resonant enhancement of the emission rate in the ZPL is determined by the Purcell factor [10, 25]:

C3eAg 1
41n; svv’

(D

P

where £ describes the spatial and angular overlap between the NV centre’s optical transition dipole and the
electric field in the cavity; cis the speed of light, )\ is the free-space resonant wavelength and », the refractive
index in diamond. év is the cavity linewidth (full width at half maximum of the resonance that we assume to be
Lorentzian), and Vis the mode volume of the cavity. While the ZPL emission rates can be enhanced through the
Purcell effect, the off-resonant emission into the phonon side band (PSB) will be nearly unaffected in the
parameter regimes considered. This is the result of the broad PSB transition linewidth (6vpsp is several tens of
THz), thatleads to a reduced effective quality factor, replacing v/év — v/év + v /6vpsg [26]. Thisresultsin a
low Purcell factor for the PSB. Selection rules for the optical transitions further prevent enhancement of the ZPL
emission rate to ground states other than the desired one. The resulting branching ratio of photons into the ZPL,
into the cavity mode is therefore [11, 15]:

BoF, + 1
where 3, is the branching ratio into the ZPL in the absence of the cavity. Values for (3, have been found in a range
~ 2.4-5% [9, 11]; we here use 3y = 3%. Note that to maximize the branching ratio we should maximize the
Purcell factor, but that if 3, F, > 1 the gain from increasing F,, is small.

To optimize the Purcell factor through the cavity design we should consider the cavity linewidth and mode
volume. In this section we focus on the linewidth of the cavity, that is determined by the confinement of the light
between the mirrors. In section 3 we evaluate the mode volume of the cavity.

The cavity linewidth is given by the leak rate out of the cavity: 6 = « /(2) . For a general bare cavity this can
be expressed as:
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(b)
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Figure 1. Plane-concave fiber-based microcavities. (a) Experimental plane-concave fiber-based microcavity. The cavity is formed at
the fiber tip. Reflections of the fiber and holders are visible in the mirror. (b) The geometry of an open diamond-air cavity is described
by the diamond thickness ¢, air gap t,,, and the dimple radius of curvature (ROC). The most important losses are through the mirror
on the air-side (Ly,,) and on the diamond-side (£y,4), and from scattering on the diamond-air interface (Ls ps) resulting froma
rough diamond surface with surface roughness op4.

Llosses perround —trip 1 L  ¢/(2nl) _ vpsr

27 round - trip duration T 2monl /c 2w/L F

bv = , 3)
for a cavity of length L in a medium with refractive index n. £ are the losses per round-trip. In the last two steps
we have written the expression such that one can recognize the standard definitions of free spectral range

(vrsr = ¢/(2nL)) and Finesse (F = 27 /L). By using this description we assume that the losses per round-trip
are independent of the cavity length, which is true if losses appear at surfaces only.

For ahybrid diamond-air cavity (figure 1) this definition does not work anymore: due to the partially
reflective interface between diamond and air, we cannot use the simple picture of a photon bouncing back and
forth in a cavity. Instead, we should consider the electric field mode and its relative energy density in each part of
the cavity. Staying close to the formulations used for a bare cavity, and choosing the speed of light in the diamond
part (¢/n,) as a reference, the duration of an effective round-trip is ¢/ (2ng Leg ), where Leg is an effective cavity
length. This effective length should contain the diamond thickness and the width of the air gap weighted by the
local energy density of the photon mode, relative to the energy density in the diamond membrane. Generalising
this, the effective length of the cavity system can be described by the ‘energy distribution length’ [27]:

f €(2)|E(2)|*dz
cav
fO”lemax,dlz/z

In this formulation € = ¢yn” is the permittivity of a medium with refractive index 1, E(2) is the electric field in the
cavity and E, . 41s the maximum electric field in diamond. The integral extends over the full cavity system, such
that the effective length automatically includes the penetration depth into the distributed Bragg reflectors
(DBR). The resulting formulation for the linewidth of a hybrid cavity analogous to equation (3) is:

_ ¢/ (2n4Lef)
Qr/Le)

where L. are the losses encountered during the effective round-trip. Here, like in the bare cavity case, we
assume these losses to occur only at surfaces. This is a realistic assumption since the most important losses are
expected to be from mirror transmission and absorption and diamond surface roughness.

In the above we have taken the field in diamond as reference for the effective round-trip. This choice is
motivated by the definition of the mode volume as the integral over the electric field in the cavity relative to the
electric field at the position of the NV centre—in diamond. It is given by [26, 28]:

[ e@IE@PET
V= cav — — , (6)
€ (1) |E(7) |
with 7 the position of the NV centre, that we assume to be optimally positioned in an antinode of the cavity field
in diamond, such that E (%) = Epay4- We choose to explicitly include effects from sub-optimal positioning in
the factor £ in the Purcell factor (equation (1)) rather than including them here. If we evaluate the integral in the
radial direction we see that the remaining integral describes the effective length as defined above:

7T_WOZfcave(z)lE(z)lzdz B e

V= = — L, 7
2 EOnc%IEmax,dlz 4 ¢

(C))

L =
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where wy is the beam width describing the transverse extent of the cavity mode at the NV, that we will come back
to in section 3. We notice that the effective length appears in both the linewidth and the mode volume. In the
Purcell factor (F, ~ 1/(6v'V)), the effective length cancels out. This is the result of our assumption that the losses
per round-trip occur only at surfaces in the cavity.

The parameter relevant for Purcell enhancement in equation (5) is thus L. Since these are the losses in an
effective round-trip, we expect that they depend on the electric field distribution. We therefore first analyse the
electric field distribution in the following section, before finding the effective losses related to the mirror losses
and diamond surface scattering in sections 2.2 and 2.3.

2.1. Electric field distribution over diamond and air
The electric field distribution in the cavity on resonance is dictated by the influence of the partially reflective
diamond-air interface. If the two parts were separated, the resonant mode in air would have an antinode at this
interface, but the mode in diamond would have a node at that position. These cannot be satisfied at the same
time, such that in the total diamond-air cavity system the modes hybridize, satisfying a coupled system
resonance condition” [19, 20]. Two special cases can be distinguished for these resonant modes: the ‘air-like
mode’, in which the hybridized mode has an antinode at the diamond-air interface, and the ‘diamond-like
mode’ in which there is a node at the interface. For a fixed resonance frequency matching the NV-centre’s ZPL
emission frequency (470.4 THz), the type of mode that the cavity supports is fully determined by the diamond
thickness. The tunable air gap allows for tuning the cavity to satisfy the resonance condition for any frequency.
Using a transfer matrix model [19, 29] we find the electric field distribution for both the air-like and the
diamond-like modes, as shown in figures 2(a) and (b). If the cavity supports a diamond-like mode, the field
intensity (proportional to nE.;, . [30]) is higher in the diamond-part, and vice-versa for the air-like mode. The
relative intensity of the electric field in the cavity in the diamond membrane compared to the air gap is shown in
figure 2(c) for varying diamond thicknesses. The relation that the relative intensity satisfies can be explicitly
inferred from the continuity condition of the electric field at the diamond-air interface:

2mt, 2mtang

Ernaxa sin( Xo ) = Ernax,d sin( o ) (8
where the air gap t, corresponds to the hybridized diamond-air resonance condition (see footnote 4):
1 2 t
t, = ﬁ arctan| —— tan Thatd + B , 9)
2m g Ao 2

for an integer m. We use n,;, = 1. The relative intensity in the air gap can thus be written as:

E; 1 2 2
o _ _sinz(M © g cos? [ 2ata ) (10)
ndEmax,d ng )\0 AO

This ratio reaches its maximal value 1, for an air-like mode, while the minimal value 1 /7, is obtained for a
diamond-like mode. This relation is shown in figure 2(c) as a dashed line, that overlaps with the numerically
obtained result.

To remove the mixing of diamond-like and air-like modes, an anti-reflection (AR) coating can be applied on
the diamond surface. This is in the ideal case a layer of refractive index nyg = /ny ~ 1.55 and thickness
tar = Ao/ (4nsg). The effect of a coating with refractive index n5r is shown as a gray line in figure 2(c). For a
realistic coating with a refractive index that deviates from the ideal, a small diamond thickness-dependency
remains (see footnote 4).

Next we determine the diamond thickness-dependency of an NV centre’s branching ratio into the ZPL’. For
this we need to find the linewidth and mode volume: we use the transfer matrix to numerically find the cavity
linewidth from the cavity reflectivity as a function of frequency, and we calculate the mode volume using
equation (7). The method with which we determine the beam waist w,, will be later outlined in section 3. We
further assume that the NV center is optimally placed in the cavity. To include the effect of surface roughness we
extend the Fresnel reflection and transmission coefficients in the matrix model as described in [19, 31-33] (see
footnote 4). Figure 2(d) shows that the resulting emission into the ZPL is strongly dependent on the electric field
distribution over the cavity, both for the cases with and without roughness of the diamond interface.

Since we have already seen that the effective cavity length does not appear in the final Purcell factor, the
varying emission into the ZPL with diamond thickness has to originate from varying effective losses in
equation (5). In the next paragraphs we develop analytic expressions for the effective losses that indeed exhibit

see supplementary information available online at stacks.iop.org/NJP/20/115004/mmedia.

> Weare happy to provide the code on request.
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Figure 2. Diamond-like and air-like modes in a diamond-based microcavity. (a), (b) The electric field strength (orange, left axis) in a
diamond-air cavity satisfying the conditions for (a) an air-like mode and (b) a diamond-like mode is calculated using a transfer matrix
model. (¢) The relative intensity of light in the diamond membrane and air gap is described by equation (10). It oscillates between

ng ~ 2.41 for the diamond-like mode and 1 /1,4 ~ 0.4 for the air-like mode. When the diamond is anti-reflection (AR) coated, the
oscillations vanish. To stay on the same resonance for varying diamond thickness the air gap is tuned. The corresponding values on the
top x-axis do not apply to the cavity with AR coating. (d) The fraction of photons emitted into the ZPL shows a strong dependency on
the diamond thickness, presented for three values of RMS diamond roughness o,4. The emission into the ZPL is determined from
equations (1) and (2), with the mode volume as described in section 3. The linewidth is numerically found from the transfer matrix
model (solid lines) or with analytic descriptions using equation (5) together with equation (11)and (15) (black dashed lines). The
mirror transmittivity corresponds to a distributed Bragg reflector (DBR) stack with 21 alternating layers of Ta,Os (n = 2.14) and SiO,
(n = 1.48) (giving L4 = 260 ppm and Ly, p = 630 ppm). The dimple radius of curvature used is ROC = 25 pm.

this dependency on the electric field distribution. We address the two most important sources of losses in our
cavity: mirror losses and roughness of the diamond-air interface.

2.2.Mirror losses
As described at the start of this section the mirrors on either side of a bare cavity are encountered once per
round-trip, making the total mirror losses simply the sum of the individual mirror losses. For a hybrid cavity, we
have rephrased the definition of linewidth to equation (5) by introducing an effective round-trip. In this picture,
the mirrors on the diamond side are encountered once per round-trip, while the losses on the air side should be
weighted by the relative field intensity in the air part. The resulting effective mirror losses are described by:

2

max,a

E
Lttt = ———Lya + L (11)
M4 Emax,d

where Ly, are the losses of the mirror on the air side, £y 4 the losses of the diamond side mirror and the relative
intensity in the air gap is given by equation (10). Since this factor fluctuates between 1/n, for the diamond-like
mode and n, for the air-like mode, the effective losses are lower in the diamond-like mode than in the air-like
mode. This results in the strong mode-dependency of the emission into the ZPL in figure 2(d). The analytic
expression for the effective mirror losses can be used to calculate the fraction of NV emission into the ZPL,
resulting in the black dashed line in figure 2(d). This line overlaps with the numerically obtained result. Our
model using the effective round-trip thus proves to be a suitable description of the system.

In figure 3(a) the effective losses are plotted for a relative contribution of Ly , to the total mirror losses, that
are fixed. If this contribution is larger, the deviations between the effective mirror losses in the diamond-like and
air-like mode are stronger.
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Figure 3. Effective losses in a diamond-based microcavity. (a) The effective losses in the cavity depend on whether the cavity supports a
diamond-like or air-like mode. The difference is most pronounced if the losses on the air side are dominant. For the fixed value of
Lat,a + Ly,a = 890 ppm shown, the effective losses can be up to /2150 ppm in the air-like mode (orange line), or aslow as 470 ppm
in the diamond-like mode (blue line). Scattering on the diamond-air interface (green and red lines) increase the losses in the diamond-
like mode, but do not affect the air-like mode. (b) Depending on the bare losses on the air mirror and the amount of diamond surface
roughness the total losses are lowest in the diamond-like mode (shaded region above the black curve) or the air-like mode (below the
curve).

For a cavity withan AR coating (Ep,y ; = 14 E .y 4) the losses would reduce to the standard case

La.a + L4 as expected. From the perspective of fixed mirror losses the best cavity performance can thus be
achieved in a cavity without AR coating, supporting a diamond-like mode.

2.3. Scattering at the diamond-air interface
Next to mirror losses the main losses in this system are from scattering due to diamond roughness. The strength
of this effect depends on the electric field intensity at the position of the interface.

The electric field intensity at the diamond-mirror interface depends on the termination of the DBR. If the
last DBR layer has a high index of refraction, the cavity field has a node at this interface, while if the refractive
index is low the field would have an antinode there. The losses due to diamond surface roughness are thus
negligible with a high index of refracted mirror. Such a mirror is therefore advantageous in a cavity design, even
though alow index of refraction termination interfaced with diamond provides lower transmission ina DBR
stack with the same number of layers [19]. We assume a high index of refraction mirror termination and thus
negligible surface roughness losses throughout this manuscript. The mirror transmissions specified already take
the interfacing with diamond into account.

At the diamond-air interface the field intensity depends on the type of the cavity mode. The air-like mode
(with anode at the interface) is unaffected, while the diamond-like mode is strongly influenced (figures 2(d) and
3(a), green and red lines).

From a matching matrix describing a partially reflective rough interface [19, 31-33], we can find the effective
losses at the interface. To get the effective losses on one side of the interface, we find the difference between the
intensity of the field travelling towards the surface and the intensity of the field travelling back. The field
travelling away from the interface contains contributions both from the reflected field, as well as from the field
transmitted through the other side of the interface. For one side, this is thus described as:

LS,IZ =1- |E1,ou’t|2/|E1,in|2 (12)
=1~ |p,,Eiin + To1Eainl/|Evinl?, (13)

where E ;, and E, ;, are the incoming field from the left-hand side and right-hand side of the interface
respectively. E; o is the outgoing field on the left-hand side of the interface. Furthermore, p;; and 7/, are the
reflection and transmission coefficients extended to include surface roughness (see footnote 4).

We evaluate this expression for losses from the diamond-side and from the air-side, multiplying the latter by
the relative intensity (equation (10)) as we did in the case for the mirror losses. The resulting losses per effective
round-trip are:

2

Eax
Lseit = Lspa + —5=—Ls ap (14)
ngq max,d
2
. 2 1 4
o sin? | 2t | (LA 1) o of 4790a | (15)
Ao ng Ao
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In the evaluation of this expression we use a Taylor series approximation for the exponents in the reflection and
transmission coefficients, and keep terms up to O((47opa / Ao)?). A detailed derivation can be found in the
supplementary information (see footnote 4). This description matches well with the numerically found result,
which is evidenced in figure 2(d) where the gray dashed lines obtained with equation (15) overlap with the
numerical description (green and red lines).

In the case that the diamond would be AR coated, the coating roughness is expected to follow the diamond
roughness. In this case, scattering losses are always present, with only a small modification based on the exact
diamond thickness. The amount of scattering losses is however lower than in the diamond-like mode.

2.4. Minimizing the effective losses

Assuming that mirror losses and scattering at the air-diamond interface are the main contributors to the losses,
the total effective losses are L = Lygeff + Lseff- Other losses could originate from absorption in the diamond
or clipping losses (see section 3.2), but have a relatively small contribution in the considered parameter

regimes [19].

As described above, an AR coating on the diamond membrane ensures that the intensities of the electric field
in diamond and air are the same, while they would otherwise fluctuate with the diamond thickness. The mirror
losses are then independent of diamond thickness, and the scattering losses are close to constant. The mirror
losses with an AR coating are higher than the losses in the case of no AR coating in the diamond-like mode for the
same mirror parameters. The scattering losses however are lower with an AR coating than in the diamond-like
mode. Whether the highest Purcell factor can be achieved with or without AR coating thus depends on the
relative losses. For the parameters in figure 2 if the roughness is <0.4 nm a higher Purcell factor can be achieved
in the diamond-like mode without an AR coating than with an AR coating.

Ifthe diamond is not AR coated, we can decide to select either a diamond-like or air-like mode. From the
previous section we see that Ly ¢ is lowest for the diamond-like mode, while Lg ¢ is largest in that case.
Whether a system supporting an air-like or a diamond-like mode is preferential depends on their relative
strength. To be able to pick this freely requires tuning of the diamond thickness on the scale Ay/(41,) = 66 nm,
or using the thickness gradient of a diamond membrane to select the regions with the preferred diamond
thickness. Note that the diamond thickness does not have to be tuned exactly to the thickness corresponding to a
diamond-like mode. From figure 2(c) it is clear that the effective mirror losses are reduced compared to the AR
coating value in a thickness range of ~z40 nm around the ideal diamond-like value, corresponding to about 35%
of all possible diamond thicknesses.

Using the analytic expressions for the losses (equations (11) and (15)) we can decide whether beingin a
diamond-like and air-like is beneficial. If the total losses in the diamond-like mode are less than the total losses in
the air-like mode, it is beneficial to have a cavity that supports a diamond-like mode. This is the case if:

2 12
(4wqm)(nd+-D0u D <(nd__lJ£Mﬂ, (16)
A() ng nd

Figure 3(b) shows the £y, for varying op4 for which both sides of the above expression are equal. In the region
above the curve, where equation (16) holds, the best Purcell factor is achieved in the diamond-like mode. In the
region below the curve, the Purcell factor is maximized for the air-like mode.

Concluding, to achieve the highest Purcell factor low losses are key. These losses are strongly influenced by
whether the cavity supports diamond-like or air-like modes. Analytic descriptions of the mirror losses and losses
from diamond surface roughness depending on the electric field distribution, enable to find whether a diamond-
like or air-like mode performs better.

3. Transverse extent of Gaussian beams in a hybrid cavity

Having analysed the one-dimensional structure of the cavity, we turn to the transverse electric field
confinement. We have seen in equation (7) that the mode volume can be described as

2
TTW, d
V:—fiﬂz&uwmﬂw, (17)
7TW02,d Ao 2

where we define a geometrical factor g, = (n—) ,and wq 4 is the beam waist in diamond. Since L.g cancels
d

outin the Purcell factor, g, captures all relevant geometrical factors in the mode volume. Note that combining
equation (1) with equation (17) and (5), the Purcell factor can be written as F, = 3£/(g, Lefr)-

In this section we describe how to find the beam waist wy 4, and which parameters play a role in minimizing
it. Furthermore, we quantify the losses resulting if the beam extends outside of the dimple diameter.
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Figure 4. Transverse extent of Gaussian beams in a microcavity. (a) The transverse extent of the cavity mode is described using a
Gaussian beams model [19], with a beam in diamond (blue) and air (orange), that are coupled at the diamond-air interface, where the
beam widths match and the beam curvatures satisfy n;,R, = R, for a planar diamond surface. The beam curvature of the air beam at
the dimple follows the dimple’s radius of curvature (ROC, here 25 pm). The beam waist of the diamond beam (w ;) is fixed at the
plane mirror, whereas the position of the air beam waist (wy ;) atz = Az, is obtained as a solution to the model. (b) Schematic of the
cavity geometry. The dimple has a Gaussian shape with diameter D, (full width at 1/e of the Gaussian) and radius of curvature ROC,
resulting in a minimum distance from fiber to mirror of z;. The extent of the fiber (Dy) in combination with a fiber tilt & resultin an
minimum extra cavity length of z. Figure is not to scale. (c), (d) Numerical (solid lines) and analytical (dashed lines) solutions for (c)
wy,qand (d) the corresponding factor g, (equation (17)) exhibit a stronger dependence on the air gap than on the diamond thickness,
as described by equation (21). The exact analytic solution overlaps with the numerically obtained result. (e), (f) The ratio of the beam
width on the concave mirror w,, (¢) and the dimple diameter D, determine the strength of the clipping losses per round-trip (f). We
here fixt; = 4 pm.

3.1. Beam waist

We describe the light field in our cavity using a coupled Gaussian beams model [19]. The hybrid cavity supports
two Gaussian beams: one that lives in the air gap of the cavity, and one in the diamond (figure 4(a), indicated in
orange and blue respectively). The boundary conditions for the model are provided by the diamond thickness,
width of the air gap and the radius of curvature (ROC) of the fiber dimple (see footnote 4). In the model we
assume that the diamond surface is planar. We note that this deviates from the assumption in [19], where the
diamond surface is assumed to follow the beam curvature at the interface. The latter assumption would
introduce a lensing effect, leading to a narrower effective beam waist than for a plane surface. The planar
interface causes mixing with higher-order modes, but the influence of these effects is expected to be small due to
the large ROC of the mode at the interface [19].

A solution to this model provides the beam waist of both beams (wy ; and wy ,) and the related Rayleigh
lengths (20,4, 20,,) as well as the location of the beam waist of the air beam with respect to the plane mirror, Az,,.
Previously such a model has been solved numerically [19], but an analytic solution gives insight in the influence
of the individual cavity parameters. The analytic solution that we find is given by (see footnote 4):

Woa = Wois (=20 & 20,4/ 14)> (18)




I0OP Publishing NewJ. Phys. 20 (2018) 115004 SBvan Dam et al

Az, — td(l _ L), (19)

ng

1/4
Wod = Ao ((tu + t—d)(ROC - (ta + t—d))] . (20)
™ ng nq

In the last expression for the beam waist we recognize the standard expression for the beam waist of a plane-
concave cavity [18], but with a new term taking the position of cavity length:

L'=t,+ H (=t, + t; — Az,). 21
ng
As an important result, the influence of the diamond thickness is a factor 1/n, ~ 0.42 less than that of the width
of the air gap. We indeed see in figures 4(c) and (d) that increasing the air gap from 1 to 4 ym (green line) has a
larger effect on w; 4 and gy than increasing the diamond thickness from 1 to 4 ym (orange line).

The minimal air gap that can be achieved is set by the dimple geometry (see figure 4(b)). Smooth dimples
with a small ROC can be created in several ways, including with CO; laser ablation or focused-ion-beam milling
of optical fibers or fused silica plates [18, 34—37]. The dimple depth for dimple parameters as considered here is
typically z; &~ 0.2-0.5 pm, while a relative tilt between the mirror of an angle 6 introduces an extra distance of
zr = Dy /2sin(0) =~ Df0/2, whichis ~4 pm for afiber cavity (see footnote 4). This last effect if thus dominant
over the dimple depth. To reduce the minimal air gap in fiber-based cavities, the most important approach to
lowering the mode volume is thus by shaping the fiber tip [38]. For cavities employing silica plates the large
extent of the plates demands careful parallel mounting of the mirror substrates.

3.2. Clippinglosses
The laser-ablated dimple has a profile that is approximately Gaussian (figure 4(b)). Beyond the radius D,;/2 the
dimple significantly deviates from a spherical shape. If the beam width on the mirror (w,,,) approaches this value,

significant clipping losses result [18]:
2
Laip = exp(Z(Dd—/z) ] (22)

Wm

Using our coupled Gaussian beam model we find a numerical (figure 4(e), solid line) and analytical (dashed line)
solution to the beam width on the mirror and the resulting clipping losses (figure 4(f)). Like wy 4, w,,, is influenced
more strongly by the air gap width than by the diamond thickness. Consequently, the clipping losses are small
even when the diamond membrane is relatively thick. For a Gaussian dimple with ROC = 25 pmand
z; = 0.3 pm, we expectthat D; ~ 7.7 pm. In this case for f; ~ 4 pmandt, < 2 pm, the influence of clipping
losses is negligible compared to other losses. The influence of clipping losses can be larger for cavity lengths at
which transverse mode mixing appears [39].

Finally we note that the clipping losses should be treated in line with the method developed in section 2. The
effective clipping losses are the clipping losses as found above, weighted by the relative field intensity in air
(equation (10)).

4. Including real-world imperfections

From the perspective of Purcell enhancement alone the requirements for the mirrors of our Fabry—Perot cavity
are clear: since the Purcell factor is proportional to the quality factor of the cavity, high reflectivity of the cavity
mirrors will provide the largest Purcell factor.

But when including real-world imperfections, we have to revisit this conclusion. In an open cavity system,
having high-reflectivity mirrors comes with a price: the resulting narrow-linewidth cavity is sensitive to
vibrations. And next to that, unwanted losses in the cavity force motivate an increase of the transmission of the
outcoupling mirror, to detect the ZPL photons efficiently. In this section we analyse how both these effects
influence the optimal mirror parameters.

4.1. Vibration sensitivity

The benefit of tunability of an open Fabry—Perot cavity has a related disadvantage: the cavity length is sensitive to
vibrations. This issue is especially relevant for systems as considered here that require operation at cryogenic
temperatures. Closed-cycle cryostats allow for stable long-term operation, but also induce extra vibrations from
their pulse-tube operation. In setups specifically designed to mitigate vibrations passively [20] vibrations
modulate the cavity length over a range with a standard deviation of approximately 0.1 nm. Here we discuss how
to make a cavity perform optimally in the presence of such vibrations.
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Figure 5. Optimal mirror parameters for a cavity under realistic conditions. (a), (b) Vibrations impact the average emission into the
ZPL (solid lines) for (a) the diamond-like mode and more strongly for (b) the air-like mode. A reduced vibration sensitivity can be
achieved for both by increasing the total cavity losses at the expense of alower on-resonance Purcell factor. The fraction of ZPL
photons outcoupled through the desired mirror (dashed line) can be increased by increasing the total losses via the transmittivity of
the outcoupling mirror T,. Outcoupling is assigned to be via the flat mirror, and the used parameters are £y, = 84 ppm,

La,a = T, + 34 ppm, opa = 0.25 nm RMS, and ROC = 20 pm. (¢), (d) By choosing an optimal T,, (dashed line, right x-axis) the
maximum outcoupled fraction into the ZPL for each level of vibrations (solid line, left x-axis) is obtained for (c) the diamond-like
mode and (d) the air-like mode.

If vibrations change the cavity length, the cavity resonance frequency is modulated around the NV center
emission frequency. For a bare cavity (with 1., = mc/(2nL)) the resonance frequency shift dv,., due to
vibrations over a characteristic (small) length dL can be described by:

|dVreS| = Vres dL/L (23)

Comparing this to the cavity linewidth v = vpsp /F = ¢/(2nLF) and using t/,es = ¢/(nAg res) We find:

Do dL (24)
6’/ >\0,res

For the impact of the vibrations the cavity length is thus irrelevant: rather the finesse plays an important role. If
we demand that dv,,; < évwe find that we would need to limit the finesse to F < Ag res/ (2dL).

For a hybrid cavity the frequency response is modified compared to the bare cavity situation by the influence
of diamond-like and air-like modes. To find the modified response we evaluate the derivative of the resonance
condition (see footnote 4) at the diamond-like and air-like mode:

dvres c (1 L —1 2n4ty ) 25)

dta (ta + ndtd) )\O,res ng + 1 ta + naty
The plus-sign on the left hand side corresponds to the case for an air-like mode, and the minus-sign corresponds
to a diamond-like mode. A diamond-like mode is therefore less sensitive to vibrations than an air-like mode.

o~ 7GHz A" in the air-like mode, while

d;’—:‘“ ~ 1 GHz A~ in the diamond-like mode. The vibration susceptibility of a cavity with an AR coated
diamond reduces to the bare cavity expression, equation (23), with L = t, + ngt; + A¢/2,and thus takes an
intermediate value between those for the air-like and diamond-like modes.

We include these vibrations in our model that describes the emission into the ZPL (see footnote 4). The
results are shown as solid lines in figures 5(a) and (b), for the diamond-like and air-like mode respectively. For a
system with vibrations oy, = 0.1 nm, the emission into the ZPL for the diamond-like mode is ~240% for total

losses of =800 ppm, corresponding to a finesse of F ~ 8000.

duv,

This difference can be significant. For f; ~ 4 pmandt, ~ 2 um,
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The optimal losses may thus be higher than the minimal value set by unwanted losses. The losses can be
increased by increasing the transmission through the outcoupling mirror. In this way not only vibration stability
but also an improved outcoupling efficiency is achieved, as we see below.

4.2. Outcoupling efficiency

We do not only want to enhance the probability to emit a ZPL photon per excitation, but also want to couple this
photon out of the cavity into the desired direction. The outcoupling efficiency is given by 1, = 1, /Legr, with T,
the transmittivity of the outcoupling mirror. We choose to assign the plane mirror on the diamond side of the
cavity as the outcoupling mirror. This assignment is motivated by comparison of the mode-matching
efficiencies between the cavity mode and the dimpled fiber, and between the cavity mode and the free space path.
For the free space path in principle perfect overlap with the Gaussian mode can be achieved, while for the fiber
side this is limited to /250% for a cavity with ROC = 20 pm, t; = 4 um,andt, = 2 pum[18, 40] (see footnote
4). Moreover, in this regime the mode-matching efficiency can only be improved by increasing each of these
parameters, thereby compromising Purcell enhancement (see footnote 4). Since the plane mirror is interfaced
with diamond, we note that in the transmission T, this diamond termination has to be taken into account. When
using a DBR stack with a high refractive index final layer, T, is higher than the transmission of the same stack

in air.

Thelarger the unwanted losses (L. — Tg,) in the cavity are, the higher the transmission through the output
mirror has to be to achieve the same outcoupling efficiency. The contributing unwanted losses are transmission
through the non-outcoupling mirror, scattering and absorption in both mirrors, and scattering at the diamond-
air interface. Using values of ~250, ~224 and ~210 ppm for mirror transmission, scattering and absorption [20],
and a diamond-air interface roughness of op4 = 0.25 nm [9, 41, 42], we find that the unwanted losses are
139 ppm (236 ppm) for the diamond-like (air-like) mode using the analytic expression from equation (11)
and (15).

An outcoupling efficiency 7y > 0.5 is then achieved for T, > 139 ppm (236 ppm). The additional losses this
would add to the cavity system are less than what is optimal for typical vibrations of gy, ~ 0.1 nm
(—Legs =~ 800 ppm (3000 ppm)) for both the diamond-like and air-like modes. Vibrations thus have a
dominant effect. To improve the cavity performance in this regime focus should thus be on the reduction of
vibrations over the reduction of unwanted losses. A possible route for vibration reduction is by extending active
cavity stabilisation techniques for Fabry—Perot cavities [21-24] to operation under pulse-tube conditions.

Including the outcoupling efficiency in our model we find the fraction of photons that upon NV excitation
are emitted into the ZPL and subsequently coupled out of the cavity into the preferred mode (dashed lines in
figures 5(a), (b)). For each value of vibrations, we can maximize this fraction by picking an optimal T, For the
diamond-like and air-like mode the results of this optimization are shown in figures 5(c), (d). For vibrations of
0.1 nm, the best results (/235% probability of outcoupling a ZPL photon) are expected to be achieved in a
diamond-like mode with T, ~ 1200 ppm. We note that this corresponds to a modest Purcell factor of 40,
leading to an excited state lifetime reduction to 5.2 ns, and a lifetime-limited linewidth of 31 MHz. Purcell
factors higher than this lead to increased linebroadening, which should be taken into account for optical
excitation, see e.g. [43]. Increased Purcell factors at such levels have a small effect on the resulting emission into
the ZPL (equation (2)), and thus a limited benefit for an optimal design.

5. Conclusions

In summary, we have developed analytical descriptions giving the influence of key parameters on the
performance of a Fabry—Perot cavity containing a diamond membrane. This analytical treatment allows us to
clearly identify sometimes conflicting requirements and guide the optimal design choices.

We find that the effective losses in the cavity are strongly dependent on the precise diamond thickness. This
thickness dictates the distribution of the electric field in the cavity, with as extreme cases the diamond-like and
air-like modes in which the field lives mostly in diamond and air respectively. As a result, the losses due to the
mirror on the air side are suppressed by a factor n,in diamond-like modes while they are increased by the same
factor in the air-like modes. In contrast the losses resulting from diamond surface roughness are highest in the
diamond-like mode. The two types of losses can therefore be traded-off against each other. If the diamond
surface roughness can be made sufficiently low (<0.4 nm RMS for mirror losses on the air gap side of 85 ppm),
the total losses are lowest in the diamond-like mode.

The transverse confinement of the cavity is captured in a geometrical factor g, that depends on the beam
waist alone. Itis determined by the ROC of the dimple and an expression that captures the effect of the cavity
component thicknesses: t, + /1, The width of the air gap ¢, thus has a dominant influence, while the
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influence of the diamond thickness #, is reduced by the diamond refractive index n,. From a geometrical
perspective, the focus in the cavity design should thus be on small radii of curvature and small air gaps.

Although the highest Purcell factors are achieved for low cavity losses, vibrational instability of the cavity
length and the presence of unwanted losses suggest that lowering the cavity finesse can be advantageous. We find
that a cavity supporting an air-like mode is more severely affected by vibrations than one supporting a diamond-
like mode. For example, for vibrations of 0.1 nm RMS and unwanted losses of 22190 ppm we find that the
optimal fraction of ZPL photons reaching the detector is obtained with a diamond-like mode and an
outcoupling mirror transmission of T, ~ 1200 ppm.

The experimentally realistic parameter regimes considered here include a 4 um diamond thickness to
support optically coherent NV centres and vibrations of 0.1 nm RMS under pulse-tube operation with passive
stabilisation. In this regime with an optimized design an emission efficiency of ZPL photons into the desired
outcoupled optical mode after resonant excitation of 35% can be achieved. This constitutes a two orders of
magnitude improvement compared to existing approaches, for which the branching ratio into the ZPL is ~3%
and the collection efficiencies are typically ~10% [44].

Purcell enhancement with open Fabry—Perot cavities will open the door to efficient spin-photon interfaces
for diamond-based quantum networks. The analysis presented here clarifies the design criteria for these cavities.
Future experimental design and investigation will determine how to combine such cavities with resonant
excitation and detection for spin-state measurement [45] and long distance entanglement generation
[44, 46, 47].
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