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Abstract

Software development often relies on dependencies managed by package man-
agers to simplify the integration of external libraries and frameworks, reducing devel-
opment time. However, developers sometimes choose to bundle dependencies directly
within their software packages. Bundling dependencies means including all necessary
third-party frameworks directly within the application’s distributable archive, such as
a JAR file, to ensure all components are present without needing external installa-
tions. This practice, resulting in Uber JARs (or fat JARs), presents both challenges
and advantages within the Maven ecosystem. This project examines the prevalence,
risks, and impact of Uber JARs by analyzing over 9 million POM files and 12 mil-
lion JAR artifacts from Maven Central, identifying artifacts with previously undetected
vulnerabilities. Notably, 10.48% of the analyzed artifacts, amounting to 915,089.00
, fall under the category of Uber JARs, indicating a significant prevalence within the
Maven repository. Central to this work, JarSift detects Uber JARs’ contents, includ-
ing the libraries, their versions, and vulnerabilities. JarSift’s accuracy is demonstrated
with an F1 score ranging from 0.474 to 0.857, depending on the Uber JAR configu-
ration. Analysis reveals about 17.13% Uber JARs in a small-scale dataset contained
undisclosed vulnerabilities, and 0.63% of all libraries in our dataset fully completely
matched known vulnerable libraries. These findings highlight the need for better de-
tection and mitigation strategies in the Maven ecosystem and inform developers of
potential risks, helping them implement more robust security measures.



Thesis Committee:

Chair: Dr. Annibale Panichella, Faculty EEMCS, TU Delft
University supervisor: Dr. Thomas Durieux, Faculty EEMCS, TU Delft
Committee Member: Dr. Jérémie Decouchant, Faculty EEMCS, TU Delft

ii



Preface

This work concludes my one-year journey into the depths of JARs and my 3 years at TU
Delft. It was a challenging journey filled with lots of joy, many difficulties, and memories
for years to come.

First and foremost, I would like to thank my supervisor, Thomas Durieux, for his amaz-
ing and unwavering advice, feedback, and support throughout this project. This work would
not be the work it is today without all the valuable insights and multiple brainstorming ses-
sions we have had. Moreover, I would like to express my gratitude to Annibale Panichella,
Jérémie Decouchant and Sebastian Proksch

Special thanks to all my friends who have joined me on this journey: Ana, Dan, Ioana,
Ion, Konrad, Mariana, Natalia, Radu, Vlad, Wessel, and many others. The Tuesday drink
and daily coffee breaks provided the needed atmosphere to recharge and get ready for a new
challenge.

Last but not least, I would like to thank my family for their support, love, and encour-
agement along this path.

Dan Plămădeală
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Chapter 1

Introduction

1.1 Context

1.1.1 Evolution of Software Development and Ecosystems

Software development practices have significantly changed in the rapidly evolving informa-
tion technology landscape. From monolithic architectures to microservices, from isolated
development to open-source collaboration, how we create, deploy, and maintain software
has changed dramatically. This evolution reflects technological advances and shifts in how
developers, companies, and end-users perceive and interact with software systems. Today,
software does not exist in isolation; it is a part of a vast and dynamic environment known as
a software ecosystem.

Software ecosystems are complex networks of software projects, platforms, and stake-
holders. These ecosystems dynamically evolve as stakeholders continuously develop, in-
tegrate, and update projects in response to changing needs and technologies. Within these
ecosystems, individual projects typically do not exist in isolation but intertwine with one
another, relying on shared sources, technologies, and infrastructure [10]. The development
contained in these ecosystems often relies on dependencies to reduce costs, improve mainte-
nance, and enhance security [20]. Package managers typically manage these dependencies
and handle tasks such as downloading dependencies and building the software. However,
reliance on external dependencies introduces challenges, particularly in managing these de-
pendencies to avoid security vulnerabilities, licensing conflicts, and compatibility issues.

1.1.2 The role of Uber JARs in Dependency Management

Despite the advantages of using package managers for dependency management, there are
scenarios where developers choose to bundle dependencies directly with their software to
ensure compatibility and avoid conflicts between different versions of dependencies Wang
et al. [25]. Moreover, developers perform this to ensure that all necessary software artifacts
are present for the software to function correctly, especially in environments where the
exact configuration of target systems is unknown. Bundling everything into a single, self-
contained package simplifies deployment and execution, as there is no need to compile the
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1. INTRODUCTION

software to run it [2, 3]. In the Java and JVM ecosystems, this approach is facilitated by
various plugins for popular package managers. Historically, the And project management
tool utilized the One-JAR plugin1, while Maven offers the Maven Shade Plugin2 and the
Maven JAR Plugin3. For Gradle, the Gradle Shadow plugin4 is commonly used. Known as
Uber JARs or fat JARs, these bundles enhance portability and ensure the application can run
in any environment without additional configuration, streamlining the deployment process.

Some software houses and developers are making these Uber JARs available for reuse
in publicly available repositories, including Maven Central. They aim to further facilitate
development processes by sharing a ready-to-deploy package. However, this practice intro-
duces a challenge: developers lack a reliable and systematic method to determine whether
these Uber JARs contain other dependencies or to identify the included ones. This lack of
transparency can complicate dependency management and risk the introduction of dupli-
cate or incompatible versions between the bundled and external libraries in projects that use
these Uber JARs.

1.1.3 Motivations and Implications

Building upon the concept of Uber JARs, this section explores their usage in software de-
velopment and the resulting effects. While Uber JARs offer several advantages, carefully
assessing their benefits and risks is necessary. Throughout our discussion, we will high-
light key aspects that provide significant insight into the implications of using Uber JARs in
various development environments.

As previously mentioned, Uber JARs introduce a set of challenges. To begin with, let us
consider the challenge of dependency conflicts. Bundling dependencies into a single Uber
JAR is efficient but can lead to significant issues. The most important of these is the risk
of conflicts between different versions of the same library [2]. This situation occurs when
multiple libraries or applications bundled with the Uber JAR depend on various versions of
a particular dependency. Such inconsistencies can result in compatibility issues and unex-
pected behavior, commonly referred to in the industry as “dependency hell” [7]. Resolving
these conflicts is challenging and time-consuming, particularly when developers have not
clearly documented the bundled dependencies. This complexity increases if developers are
unaware of the contents of an Uber JAR or if someone has removed the metadata related to
its contents.

Secondly, there is the risk of bundled vulnerabilities. Bundled dependencies in Uber
JARs may contain known vulnerabilities that may go unreported or be challenging to de-
tect. Since developers package the software components together, vulnerabilities in any
dependencies might go unnoticed, representing a considerable security risk. This situation
is especially concerning because it allows undetected vulnerabilities to persist in the appli-
cation, potentially compromising the entire system’s security.

1https://one-jar.sourceforge.net/
2https://maven.apache.org/plugins/maven-shade-plugin/
3https://maven.apache.org/plugins/maven-jar-plugin/
4https://imperceptiblethoughts.com/shadow/
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1.1. Context

Lastly, for context, a Software Bill of Materials (SBOM) is a comprehensive inventory
of all the components, libraries, and modules used in building software. This so-called bill
includes both open-source and commercial elements. By maintaining a detailed SBOM,
developers, and organizations can better manage security vulnerabilities, compliance, and
licensing requirements. However, generating an SBOM has its own set of challenges. While
it is possible to create an SBOM when deploying applications or systems using third-party
Uber JARs, the accuracy of the results is not always guaranteed. Additionally, some Uber
JARs are created in such a way that renders these tools either unusable or unreliable, as
noted in [27]. This occurrence may lead to reporting, compliance, and licensing issues,
especially for companies doing business with governmental organizations.

1.1.4 Research Gap and Problem Statement

When the bundled software is distributed widely, such as when Uber JARs are deployed on
Maven Central for use by other developers, the impact of their use is significantly higher.
The lack of transparency and information about the contents of these Uber JARs can lead
developers to introduce vulnerabilities into their software systems inadvertently. Some li-
braries or artifacts bundled in the Uber JAR may contain vulnerabilities. An average de-
veloper may find establishing the archive’s contents challenging, especially if complex or
uncommon methods were used to create it and the process removed metadata. This lack
of clarity means that these Uber JARs, when used unknowingly, could create attack vectors
that developers are unaware of, which malicious actors may exploit. Such scenarios empha-
size the importance of meticulous documentation and careful management of dependencies
in software development.

Given these concerns, developing tools that facilitate the detection and analysis of the
contents of Uber JARs becomes crucial. While it is indeed valuable to study the prevalence
of Uber JARs in the Maven ecosystem and understand their usage patterns, the immedi-
ate priority is to give developers the means to identify and assess the components within
these bundled packages effectively. Within this context, we propose developing a new tool
specifically designed to address these issues. We intend to create a tool that facilitates the
detection and analysis of the contents within Uber JARs, providing developers with a robust
way to identify, assess, and manage the components bundled in these packages. Moreover,
this tool will allow developers to quickly discern potential vulnerabilities or conflicts hid-
den within Uber JARs, mitigating the risks associated with their use. The substantial growth
trends in the Maven Central Repository, as illustrated in fig. 1.1, emphasize the significance
of such a tool. This repository’s vast and ever-expanding library of components significantly
complicates managing and analyzing software dependencies. As the repository grows, the
diversity and volume of available libraries, including Uber JARs and other bundled pack-
ages, also increase. This expansion amplifies the potential for introducing vulnerabilities
and conflicts and elevates the complexity of effectively managing these components. Our
argument, therefore, shifts towards the critical need for enhanced tools and methodologies
that enable developers to handle the complications introduced by Uber JARs in the software
development and deployment process.

There appears to be a significant research gap regarding the content of the libraries

3
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Figure 1.1: Cumulative number of packages over the years on Maven Central. Note: The
data for 2024 is incomplete.

published on these repositories, with existing studies limiting themselves to a small-scale
analysis of the ecosystem [3]. This research attempts to shed some light on the current state
of the Java ecosystem concerning Uber JARs.

Our investigation reveals that existing tools and the current state-of-the-art can only cor-
rectly recover and detect embedded artifacts in Uber JARs under limited conditions. This
finding raises concerns due to using Uber JARs in software pipelines. In response, we
performed a comprehensive review of open-source and commercial tools aimed at scan-
ning Uber JARs for vulnerabilities. Initial results indicate a notable disparity between the
claimed capabilities of these tools and their actual performance in diverse conditions, high-
lighting a critical area for further research.

For example, the OWASP Dependency-Check 5, a tool praised for its ability to detect em-
bedded libraries, demonstrated limitation when faced with Uber JARs where metadata was
removed, or shading was applied. Similarly, commercial solutions such as Snyk6, Merge-
base7, and the Sonatype Vulnerability Scanner8 showed a significant inability to correctly
identify or detect the embedded artifacts within our test suite.

For this reason, we argue that it is essential to introduce and develop a methodology
and a tool that would provide a straightforward way to extrapolate the libraries used. The

5https://owasp.org/www-project-dependency-check/
6https://docs.snyk.io/scan-with-snyk/snyk-open-source
7https://mergebase.com/java/
8https://www.sonatype.com/products/vulnerability-scanner
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1.2. Contribution

relevant stakeholders could use this information to solve the issues outlined earlier. Put
differently, this tool is expected to enhance the efficiency and speed of the software valida-
tion process and deployment to a production environment significantly. Moreover, the tool
would also allow studying the presence of Uber JARs in the Maven ecosystem.

1.2 Contribution

In this work, we propose JarSift, a tool designed to infer embedded libraries within any
JAR file and identify potential vulnerabilities through integration with a CVE database.
Additionally, we present a dataset containing a list of Uber JARs available on the Maven
Central repository. Furthermore, we showcase an empirical analysis of the Maven ecosys-
tem, offering crucial insights into the prevalence of Uber JARs and identifying potential
vulnerabilities.

1.3 Research objectives

To accomplish the goals mentioned above, we set out to answer the following research
questions:

RQ1 How efficient is JarSift to detect embedded dependencies? In this research ques-
tion, we analyze the precision and recall of JarSift to detect embedded dependencies.
The goal of this research question is to validate the JarSift and to ensure that our
observations for the other research questions are valid.

RQ2 How many Uber JARs are present in our set of artifacts from the Maven Central
Repository? In this second research question, we analyze our dataset’s frequency of
Uber JARs. This research question measures the impact of Uber JARs on the Maven
ecosystem.

RQ3 How many Uber JARs on Maven have known vulnerabilities that remain unde-
tected? In our final research question, which also represents one of the applications
of JarSift, we look for existing Uber JARs that contain vulnerable bundled artifacts
but are not marked as such. Additionally, we attempt to quantify their impact on the
Maven ecosystem.

By answering these research questions, we highlight the current state of Uber JARs in
the Maven ecosystem and illustrate how their usage can be problematic. This work also
opens new research directions, such as analyzing the conflicts that Uber JARs creates in
projects that use them.

1.4 Report structure

The rest of this report is structured as follows: chapter 2 gives a detailed overview of the
background information and context required to understand this research. Chapter 3 delves

5



1. INTRODUCTION

into the related work done in academia on the subject. Chapter 4 goes into detail regarding
this research project’s contributions with chapter 5 describing the methodology used to
answer the research questions and their respective results. Following that, chapter 6 is
used to discuss the results and future work required. To finish it all, chapters chapter 7
and chapter 8 identify possible factors or issues that may have influenced the results of this
research and present concluding remarks, respectively.
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Chapter 2

Background

In this chapter, we provide additional background to the concepts we use in this project. We
start by explaining what Maven is, what CVEs are, and how these are relevant in the Maven
ecosystem. Then, we describe in more detail what shading is and the causes that lead to its
usage.

2.1 Java ecosystem

2.1.1 Maven

Maven1 is a build automation tool that is generally language agnostic and primarily used for
Java, Scala, and other Java platform (JVM) languages such as Kotlin. It mainly takes care
of building all the components and modules required for the final runnable software artifact,
dependency management, testing, deployment, and publishing. Given a declarative set of
dependencies, it will download all the necessary direct dependencies and their respective
transitive dependencies, subsequently integrating them and making them accessible for the
application’s runtime environment. Additionally, it has an exhaustive set of plugins, which
allows for a vast extension of its functionality.

To resolve the necessary dependencies for a project, Maven primarily uses a default
package repository, currently the Maven 2 Central2 repository. However, users can also
easily configure it to consume packages from other repositories, including the Atlassian,
Sonatype, and Spring Plugins repositories, each with millions of indexed packages.

2.1.2 Gradle

Gradle is another modern build automation tool designed with the same end goals as Maven.
The most important differences lie in its emphasis on multi-project builds and tasks, with in-
cremental builds supported by default. The main overlap of interest in this research project’s
context is that Gradle uses the same package repositories as Maven. For this reason, the

1https://maven.apache.org/
2https://repo1.maven.org/maven2/
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2. BACKGROUND

problem we are trying to solve and its respective solution may be applied to the Gradle
ecosystem.

2.1.3 Maven Central Repository

The Maven Central Repository, the primary repository for Maven, has shown remarkable
growth since its creation. At the time of writing this, it contains a vast collection of around
12 million packages, collectively occupying more than 35 terabytes of data. Illustrated in
fig. 1.1, the repository’s size has steadily increased since its inception in 2005, with the
release of Maven 2.0.

In the Java ecosystem, including on the Maven Central repository, each artifact has a so-
called GAV coordinate, which refers to the three essential components of identifying it: the
Group ID, the Artefact ID and its version. Each artifact contains at least a POM file, which
normally describes the GAV coordinate of said artifact. Most artifacts also contain a JAR file
containing the compiled Java bytecode. Some artifacts also have a Javadoc bundle, which
includes all of the artifact documentation in HTML. Moreover, a “sources” archive may also
be present, essentially containing all the Java source code used to obtain the compiled JAR
file. Additionally, sometimes a “tests” and “test-sources” archive may be present. However,
we are mainly interested in the standalone JAR archive.

The repository is a remote directory listing all the artifacts at their respective URLs,
which Maven resolves given the GAV coordinates of the dependencies necessary for a
given project. Maven retrieves the transitive dependencies required for building/running
the project from this source.

2.2 Maven Central CVEs

As we go deeper to understand the potential vulnerabilities of Uber JARs, it is imperative
to look at the role of Common Vulnerabilities and Exposures (CVEs), particularly those
associated with Java Maven Libraries. CVEs track a multitude of ecosystems, which in-
clude the Maven ecosystem as well. Since most modern Java applications are built on top
of countless open-source libraries, mitigating any vulnerability-related risks is of utmost
importance. These must be reported by developers and security advisories must be created
for the relevant parties.

One of Maven’s main features is that it resolves all the dependencies and their respec-
tive dependencies, improves the overall development experience, and makes deploying and
running an application much more straightforward. However, this convenience comes with
the responsibility of ensuring these libraries are secure and free of vulnerabilities, which is
where CVEs come in. In the context of Java Maven libraries, these CVEs give essential
information about known vulnerabilities in libraries published on Maven. CVE IDs identify
direct vulnerabilities and specifically target a defined set of artifacts, usually encompass-
ing a Group ID, an artifact ID, and a version range, or, in other words, a list of entries,
each containing an identification number, a description, and at least one public reference.
In contrast, vulnerabilities from dependencies commonly refer to vulnerabilities related to
dependencies that an artifact transitively requires. For instance, consider an artifact A that
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depends on another artifact B. If B contains a direct vulnerability, integrating A into a project
will lead to B being added to the classpath as well, thus introducing the vulnerability. In
our study of vulnerabilities in Uber JARs, considering these Maven library-related CVEs is
critical. By doing this, we can learn about the scope and nature of potential security risks
linked to using Uber JARs.

Maven users can refer to CVEs to understand risks related to the libraries they use.
However, tracking and managing these vulnerabilities can be difficult, especially for more
substantial projects with many dependencies, and even more so when these dependencies
are included together in an Uber JAR. The MVN Repository3, for example, shows for each
artifact all the known direct vulnerabilities, and if there are any dependencies in the POM
file related to an artifact, shows vulnerabilities from dependencies as well as seen in figure
fig. 2.1. The Maven Central Repository Search4 is gradually being phased out in favor of
the Maven Central5. Both platforms display only the direct vulnerabilities, not the vulnera-
bilities contained in dependencies. However, many tools, plugins for IDEs, CLI apps, and
integration middleware, both commercial and open-source, check for vulnerabilities in all
the dependencies related to a project.

Figure 2.1: Apache Commons BeanUtils 1.9.3 vulnerabilities info on mvnrepository.org

3https://mvnrepository.com/
4https://search.maven.org
5https://central.sonatype.org
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Most of the aforementioned tools rely, in fact, primarily on the National Vulnerabil-
ity Database (NVD) repository and the databases managed by the MITRE Corporation,
commonly referred to as the CVE Program. CVEs, specifically CVE IDs, are created and
assigned by a CVE Numbering Authority (CNA). CNAs are organizations authorized to
assign CVE IDs within their agreed-upon scope. Usually, these include Software Vendors,
Bug Bounty Organizations, and Research and Security Organizations, among others.

To conclude this section, it is important to mention that, for a software artifact being
used in a bigger application to be flagged, the vulnerability inside it is well-known in ad-
vance. In the context of Maven libraries, this may happen if someone reports this vulnerabil-
ity beforehand or if a system detects the usage of a given library in a given JAR library file.
For the latter to happen, the metadata about the composition of the JAR is contained in the
pom.xml file should be present. The primary issue here is that this metadata is sometimes
wholly removed for various reasons, which will be explored in the following section.

2.3 Java Archives

2.3.1 JAR file

A JAR (Java Archive) file is crucial within the Java ecosystem, packaging one or more Java
class files into a single archive. These class files, compiled into JVM bytecode, are essential
for the JVM to load and execute. The structure of a compiled class file is carefully organized
to contain crucial components derived from the source code. It features a section outlining
the class’s access modifiers, its superclass, implemented interfaces, and annotations. Each
class field is also detailed in a separate section, specifying its access modifiers, name, type,
and annotations. Similar precision is applied to each class method, which includes infor-
mation on access modifiers, names, return types, parameter types, and annotations. These
method sections further contain a nested subsection with Java bytecode instructions. A sig-
nificant part of the class file, the constant pool section, combines all numeric, string, and
type constants used in the class, each referenced by their index in the bytecode. This ex-
haustive assembly of information within a JAR file facilitates the distribution and execution
of Java applications in a compact, efficient, and platform-independent manner.

We demonstrate the overall structure of a compiled Java class in table 2.1.
It is important to mention that the compiler generates a separate class file for inner

classes, either with a reference to their enclosing method or the main class containing a
reference to its inner classes if defined in a class. The compilation process strips all com-
ments, and it eliminates package or import sections, converting all names to fully qualified
names (FQNs). For example, the source code seen in fig. 2.2, when compiled, contains the
definitions seen in fig. 2.3, which are in the FQN form. A readable representation can be
obtained using the javap tool included together with most JDK distributions. A more ver-
bose bytecode representation of the first part of the main method of the Main example class
using the same tool can be seen in fig. 2.4. Although it is not meant for humans, one could
easily notice that the source code features can still be easily discernable in the bytecode ver-
sion. Consider the case of the “ArrayList<Integer> list = new ArrayList<>();”
line, which can easily be extracted and seen in the first lines of the bytecode: new #7 and
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Table 2.1: Java Class file structure

Modifiers, name, superclass, interfaces
Constant pool: numeric, string and type constants
Source file name (optional)
Enclosing class reference
Annotation*
Attribute*
Inner class* Name

Field
Modifiers, name, type
Annotation*
Attribute*

Method

Modifiers, name, return and parameter types
Annotation*
Attribute*
Compiled Java bytecode

invokespecial #9, where #7 and #9 are entries of the class file’s constant pool, which
refer to the ArrayList type, and the <init> method of the same type of class, which is, in
fact, the constructor of said class.

2.3.2 Uber JAR

In the fast-paced world of software development, decisions regarding deployment strategies
can significantly impact both the efficacy and security of applications. While the current
consensus and trends point towards more granular and managed deployment strategies, such
as using package managers, legacy deployment approaches, such as using Uber JARs, still
exist.

Uber JARs, from the German “über”, meaning “over” or “super”, also known as a “fat
JAR” or a “JAR with dependencies”. This type of JAR file not only contains the bytecode of
a Java application but also embeds all its dependencies. Typically, in a JVM environment,
each separate dependency contains one or more JAR files containing the Java byte code
implementation of the source class files.

The term “Uber JAR” is inherently subjective and can vary according to context and use
case. For this work, we define an Uber JAR as a software artifact encompassing at least a
portion of its runtime dependencies.

Motivations for using Uber JARs

Developers may create and deploy their Java applications with Uber JARs, for various rea-
sons. One primary motivation is the simplicity of deploying a single JAR, which stream-
lines the process significantly. This approach also eliminates the potential for library ver-
sion mismatches when libraries embedded in multiple JAR files are used simultaneously.
Additionally, constructing the classpath becomes more straightforward, enhancing ease of
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package org.example;

import java.util.ArrayList;
import java.util.HashMap;

public class Main {
public static void main(String[] args) {

ArrayList<Integer> list = new ArrayList<>();

for (int i = 0; i <= 10; i++) {
list.add(Math.floorMod(i, 3));

}

HashMap<String, Integer> ageMap = new HashMap<>();
ageMap.put("John", 25);
ageMap.put("Jane", 30);

// prints the number of 0s in the list
System.out.println(list.stream().filter(i -> i == 0).count());

}
}

Figure 2.2: A minimal example Java source code

Compiled from "Main.java"
public class org.example.Main {
public org.example.Main();
public static void main(java.lang.String[]);

}

Figure 2.3: Java 21 readable non-verbose bytecode example

deployment. In scenarios where no further updates to dependencies are planned, using Uber
JARs becomes even more enticing as maintainability concerns are minimized. Furthermore,
Uber JARs are compatible with the default Java class loader, ensuring broad support and
ease of execution across diverse environments. These factors collectively make Uber JARs
an attractive option for developers seeking efficiency and simplicity in their deployment
pipelines.

Challenges and considerations

Thanks to the widespread adoption of build automation and package managers, software
development increasingly faces the challenge of software bloat. While the benefits of build
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public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: (0x0009) ACC_PUBLIC, ACC_STATIC
Code:
stack=3, locals=3, args_size=1

0: new #7 // class java/util/ArrayList
3: dup
4: invokespecial #9 // Method

java/util/ArrayList."<init>":()V↪→

7: astore_1
[...]
18: iconst_3
19: invokestatic #10 // Method

java/lang/Math.floorMod:(II)I↪→

22: invokestatic #16 // Method
java/lang/Integer.valueOf:(I)Ljava/lang/Integer;↪→

25: invokevirtual #22 // Method
java/util/ArrayList.add:(Ljava/lang/Object;)Z↪→

[...]
35: new #26 // class java/util/HashMap
38: dup
39: invokespecial #28 // Method

java/util/HashMap."<init>":()V↪→

42: astore_2
43: aload_2
44: ldc #29 // String John
46: bipush 25
48: invokestatic #16 // Method

java/lang/Integer.valueOf:(I)Ljava/lang/Integer;↪→

51: invokevirtual #31 // Method java/util/HashMap.put:
(Ljava/lang/Object;Ljava/lang/Object;)
Ljava/lang/Object;

↪→

↪→

54: pop
55: aload_2
56: ldc #35 // String Jane

Figure 2.4: Verbose human-readable representation of the compiled bytecode
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automation and package managers are significant, outweighing their drawbacks, they also
introduce additional complexities for developers. One notable issue is the so-called “de-
pendency hell”, a scenario in which different packages require the same dependency but in
different versions, creating conflicts and complicating project maintenance and leading to
issues [22].

2.3.3 Creation and types of Uber JARs

There is a multitude of plugins and tools that facilitate the creation of Uber JARs. One
of the simplest methods involves manually incorporating JAR files into a larger, final JAR.
However, industry practice often employs plugins associated with the build automation tool.
Notable choices exist for both Gradle and Maven. It is imperative to distinguish among three
primary types of Uber JARs: unshaded, shaded, and JAR of JARs.

Unshaded Uber JARs

Uber JARs are JARs comprising the class files of all or some dependencies necessary for
running the main application code. This process involves unpacking and repacking all
dependency JARs into a single JAR. Unshaded Uber JARs are advantageous because the
default classloader supports them. However, a significant limitation arises when multiple
dependencies supply the same file, such as META-INF/services/javax.xml.parsers.
DocumentBuilderFactory. Duplications like this can lead to overwriting, resulting in er-
roneous behavior. The Maven Assembly Plugin 6 is a standard tool for creating unshaded
Uber JARs.

Shaded Uber JARs

Uber JARs function similarly to unshaded ones, but they involve renaming the package
of some or all dependencies. This technique is used to avoid conflicts arising from dif-
ferent dependency versions included in the shaded Uber JAR. The issue occurs when an
application and one of its dependencies rely on distinct versions of the same artifact. This
situation could lead to conflicts and runtime errors, as the different versions of the library
may have incompatible methods or functionality. Shading addresses this by creating a sepa-
rate namespace by prepending a package name to the original one. The shading mechanism
applies this approach to each library version of the Uber JAR. Doing this makes it possible
to include multiple versions of the same library in the Uber JAR or a Java application with-
out causing conflicts. The application and its dependencies can then use the version of the
library they were designed to work with, as each version exists in its distinct namespace.
The primary issue here is that if a security vulnerability is discovered in a library, it can be
more difficult to find and fix the issue in an Uber JAR that uses shading because the library
might exist under various names due to shading.

Creating shaded Uber JARs is usually achieved by using the Apache Maven Shade plu-
gin7. Its default behavior is similar to that of the Maven Assembly Plugin. However, it only

6http://maven.apache.org/plugins/maven-assembly-plugin/
7https://maven.apache.org/plugins/maven-shade-plugin/
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allows moving (renaming) a given set of classes, GAV combinations, and package patterns.
Notably, certain configuration parameters of this plugin are crucial in correctly determin-
ing the contents of an Uber JAR. These include the “useDependencyReducedPomInJar”
and “minimizeJar” settings. The former replaces the “pom.xml” file in the resulting Uber
JAR with a version lacking dependency information, leading to absent metadata about the
archive’s contents. On the other hand, the “minimizeJar” parameter identifies the list of
used classes and discards the rest from the resulting Uber JAR. Both parameters make it
especially difficult for SCA tools to determine the contents of an Uber JAR accurately.

For Gradle, the Shadow Plugin 8 is often preferred, offering functionalities similar to
the Maven Shade Plugin. Although it’s possible to construct an Uber JAR containing all the
dependencies using Gradle’s build file, this approach does not support shading.

JAR of JARs

JAR of JARs, primarily a legacy approach, is rarely used outside legacy systems. It refers to
a JAR file containing other JAR files embedded within. Utilization of this format requires a
custom classloader capable of adding all the class files contained in the embedded JARs to
the classpath.

2.3.4 Implications for deployment

The primary motive behind using Uber JARs in the industry is their portability and sim-
plicity of deploying such an artifact. The need to manage dependencies separately during
the deployment process disappears altogether. Consequently, the application or artifact can
be executed in any environment supporting the Java Runtime Environment (JRE) without
additional configuration.

8https://imperceptiblethoughts.com/shadow
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Chapter 3

Related work

3.1 Context

Current research on vulnerabilities in Uber JARs and in the Maven ecosystem appears lim-
ited, particularly regarding the number of applications deployed that utilize Uber JARs or
the prevalence of JARs with dependencies on this platform. The primary focus in recent
studies primarily revolves around software debloat, code similarity detection, code dedupli-
cation, and vulnerability detection in standalone (non-Uber) JARs.

However, the work by Davies et al. [4, 9] stands out in the context of our research
project. The authors propose a method allowing the detection of classes from various li-
braries within JAR files, leveraging a unique approach to identification. Their approach
encompasses the creation of a comprehensive database populated with known class hashes.
Once established, this database serves as a reference point, allowing for precise matching
of the contents found in a JAR file against the pre-compiled list of class hashes. While
this project does not extend their solution per se, it fundamentally uses parts of their con-
cept while significantly expanding its precision and scope. Our methodology significantly
enhances the detection capabilities by collecting a broader array of bytecode features. We
carefully ensure that our technique is resistant to common obfuscations such as naming
changes, shading, relocations, and other modifications that typically alter the hash of a file.
Moreover, our approach will be applied to today’s considerably evolved Maven ecosystem,
which has grown substantially since 2011.

3.2 Vulnerabilities in JARs and on Maven Central

Several studies have investigated vulnerabilities in JAR files and the Maven Central repos-
itory. Mir et al. [15] examined the effect of transitivity and granularity on vulnerability
propagation in the Maven ecosystem. They explored how vulnerabilities can spread through
dependencies and assessed their impact. Düsing and Hermann [6] analyzed the direct and
transitive impact of vulnerabilities on different artifact repositories, providing insights into
the propagation patterns. Plate et al. [18] focused on impact assessment for vulnerabili-
ties in open-source software libraries, investigating the consequences and severity of such
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vulnerabilities.
Additionally, Pashchenko et al. [17] conducted research on vulnerable open-source de-

pendencies, developing a method to count and identify those that pose significant risks.
Gkortzis et al. [8] performed a large-scale study on open-source systems, highlighting that
larger source code size poses a higher risk of potential vulnerabilities and that 65% of ana-
lyzed projects contained at least one known vulnerability.

Moreover, the authors argued that the more dependencies a project depends on, the
higher the security risk. Alqahtani et al. [1] argue that present-day vulnerability databases
are not used as well as they could, and to solve this, the authors propose a data-linking
framework that introduces a linking process enabling the tracing of vulnerabilities across
different repository and project boundaries. The most striking finding of this paper is that
when considering transitive dependencies, 415,604.00 Maven projects were potentially
affected by vulnerabilities.

3.3 Software Composition Analysis

The paper by Imtiaz et al. [12] evaluates the performance of various Software Composi-
tion Analysis (SCA) tools in detecting vulnerabilities in software dependencies. The study
reveals significant variations in vulnerability reporting by these tools and highlights the ne-
cessity of not relying on a single SCA tool due to discrepancies. The authors recommend
further research to establish frameworks to identify false positives, a major issue in the
effectiveness of SCA tools.

A recent study by Zhao et al. [27] discussed evaluating various SCA tools for Java,
focusing on their capability to handle different artifact formats. The authors outlined Uber
JARs as a type of Plugin-packed Dependencies (PPD), as being inadequately supported by
most SCA tools, which may lead to incomplete vulnerability detection. The study indicates
that around 10% of projects contain PPD, suggesting that ignoring them could result in
significant false negatives in detection results.

3.4 Code similarity

Code similarity is an important aspect when examining software security. Haq and Ca-
ballero [11] conducted a survey on binary code similarity, comparing various tools for mea-
suring code similarity. Their work provides an overview of existing techniques and their
effectiveness. Misu et al. [16] as part of their code duplication removal part of the pipeline,
used DéjàVu [13], a map of code duplicates on GitHub. The authors employed hashing of
files from each project using the SourcererCC’s file-level tokenizer [21], which facilitated
the identification of exact duplicates and clones with minor differences.

Lopes et al. [13] found that, as part of their study, 60% of the 49 million Java files
on GitHub analyzed were distinct. An important aspect of this study is that their file-level
feature extraction is slim and compares the hash of all the tokens of a source file.

Another recent study by Dietrich et al. [5] focused on clone detection between Java
Maven projects based on the AST tree of the source code. The authors present a new ap-

18



3.5. Software bloat

proach for identifying vulnerable clones in the Maven repository without requiring a custom
index. A relevant point expressed in the paper is that existing SCA tools are often inade-
quate in detecting these vulnerabilities and that these would have to be extended to support
vulnerability detection in shaded and cloned artifacts. By focusing on code similarities in
open-source projects, the authors aim to shed light on overlooked security risks, enhancing
our understanding of software composition analysis’s limitations.

3.5 Software bloat

Software bloat, which refers to the presence of unnecessary or excessive code, can intro-
duce security vulnerabilities. Ponta et al. [19] addressed this issue by studying the attack
surface reduction in an industrial application. They proposed techniques to minimize soft-
ware bloat and enhance security. Soto-Valero et al. [23] conducted a comprehensive study of
bloated dependencies in the Maven ecosystem. Their research shed light on the prevalence
of software bloat and its impact on software security.

3.6 Software packaging

Software packaging plays a crucial role in ensuring the integrity and security of software
artifacts. Merlo et al. [14] explored the topic of repackaging on Android, specifically fo-
cusing on anti-repackaging techniques. They investigated methods to prevent unauthorized
modification and tampering with packaged software. Wang et al. [24] examined the issue
of dependency conflicts in software projects, investigating their implications and relevance.
In a comparative empirical analysis, Wang et al. [26] proposed solutions for resolving de-
pendency conflicts in Java components, aiming to enhance software stability and security.

These related works contribute to understanding vulnerabilities in JAR files and Maven
Central, and code similarity analysis, software bloat, and software packaging.

3.7 Existing solutions

We attempted to gather an exhaustive list of both open-source and commercial tools/services
that provide (Uber-)JAR scanning. We created a small test suite containing 16 JAR files,
which we created or found in the open-source realm. These files try to exhaustively cover
a majority of the parameter combinations and situations that are relevant when it comes to
SCA and vulnerability detection of Java artifacts. Below, we outline details regarding the
files used in the test:

3.7.1 OSS

We explored existing open-source tools used for vulnerability detection and SCA analysis.
Unfortunately, we could only find two such tools - the OWASP Dependency-Check 1 SCA

1https://owasp.org/www-project-dependency-check/
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tool, and Trivy2.

OWASP Dependency-Check

This tool detected the embedded libraries when no shading was applied while correctly
detecting the versions used. However, when the metadata was removed, and shading was
applied, the tool failed to detect any embedded libraries.

For the Uber JARs found on Maven Central (numbered 14 - 16 in table 3.1), the tool
successfully managed to detect the contents of the archives or at least a part of them.

In summary, OWASP Dependency-Check is able to detect libraries embedded in Uber
JARs only if metadata related to these libraries is not removed from the final Uber JAR.

Trivy

Trivy provides, among others, a filesystem scanner that allows scanning JAR, WAR, PAR,
and EAR files. Our experiments with the JAR test suite did not yield anything usable. Based
on Trivy’s documentation, it parses the “pom.properties” and “MANIFEST.MF” files for
information about a given JAR file. If these are not found, it checks its internal database
for information about the JAR based on GAV identifiers, exactly like the previous solutions.
This situation led to the tool being unable to detect anything at all, thus rendering it unusable
for detecting vulnerable contents of Uber JARs.

3.7.2 Commercial

We searched for an exhaustive list of commercial tools that provide (Uber-)JAR scanning.
We managed to test the following commercial tools, which provided the possibility to test
their functionality without purchasing a subscription:

• Mergebase3

• Snyk4

• Sonatype Vulnerability Scanner5

Azul Vulnerability Detection

Azul Vulnerability Detection reportedly uses highly granular detection techniques based on
hashing, enabling it to find vulnerabilities in shaded, fat, and slim JARs. Unfortunately,
they do not provide the possibility to test their claims without acquiring a subscription, and
thus, we can not confirm or infirm their statements.

2https://github.com/aquasecurity/trivy
3https://mergebase.com/
4https://snyk.io/
5https://www.sonatype.com/products/vulnerability-scanner
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Mergebase

Mergebase developers claim they use a fingerprinting mechanism for binary files to identify
and track Java archives’ contents accurately. Our experiments failed to yield any usable
results or detections using their trial version, which is not limited in functionality. All
16 (Uber-)JARs that we tested with Mergebase were not marked as containing vulnerable
libraries. Mergebase could not correctly identify any relevant contents either (identifiers of
the artifacts included in the experiment JARs).

Snyk

Snyk Open Source is Snyk’s, despite its name, commercial product that allows the scanning
and early detection of vulnerabilities in development pipelines. They state limited infor-
mation about the technical implementation of their scanning algorithm. However, based on
information from the technical documentation, the detection mechanism is based on GAV
strings and CVE databases that contain vulnerabilities related to these GAV strings. We con-
firmed this information after running Snyk with our manually created testing suite. Snyk
failed to detect any vulnerable artifacts or any vulnerable contents of the testing artifacts.
Moreover, even though the metadata contained in our artifacts lists vulnerable libraries,
Snyk did not manage to identify these.

Sonatype Vulnerability Scanner

The Sonatype Vulnerability Scanner allows scanning unmanaged JARs. However, based on
our experiments, the scanner is limited to recognizing only known GAV strings. Essentially,
it can only identify artifacts published on Maven Central and are known to have associated
vulnerabilities. Notably, the scanner does not do any advanced archive scanning to deter-
mine the contents of the JARs. Consequently, the scanner correctly identified only the three
artifacts (numbered 14 - 16 in table 3.1) that are listed on Maven Central. Despite these
artifacts containing vulnerable embedded libraries, the absence of reported CVEs rendered
them undetectable by the tool.

3.7.3 Results

To conclude this section, out of all the commercial tools we tested, none of them were
effective at identifying the contents of the JARs that we have created, regardless of the
modifications applied. However, the OWASP Dependency Check tool, which is a widely
used and popular open-source tool in the SCA industry, succeeded in detecting some of
the intentionally problematic Uber JARs. Despite this, it fell short in cases where when
metadata was removed or shading was applied. An overview of the results of our testing can
be seen in table 3.2. These limitations in both commercial and open-source tools underscore
the rationale for developing JarSift.
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Table 3.1: Description of the JARs used to compare existing solutions. Note:
The numbered jars (1-13) include com.fasterxml.jackson.core:jackson-databind:2.9.10.6,
ch.qos.logback:logback-core:1.2.3, and junit:junit:4.11:test in their “pom.xml” files, all of
which are known to be vulnerable.

No. Jar File Description Vulnerable

1 1.jar No maven-shade-plugin applied ✗

2 2.jar Maven-shade-plugin, no additional
params

✓

3 3.jar Like 2, with useDependencyRe-
ducedPomInJar

✓

4 4.jar Like 2, with ch.qos.logback shaded
to org.example.shaded

✓

5 5.jar Like 4, with useDependencyRe-
ducedPomInJar

✓

6 6.jar Like 4, with org.jackson.core
shaded to org.example.shaded

✓

7 7.jar Like 6, with useDependencyRe-
ducedPomInJar

✓

8 8.jar Like 2, without META-
INF/maven/**

✓

9 9.jar Like 3, without META-
INF/maven/**

✓

10 10.jar Like 4, without META-
INF/maven/**

✓

11 11.jar Like 5, without META-
INF/maven/**

✓

12 12.jar Like 6, without META-
INF/maven/**

✓

13 13.jar Like 7, without META-
INF/maven/**

✓

14 flink-shaded-jackson.jar Flink + shaded jackson 2.10.1 with
maven folder

✓

15 flink-shaded-guava.jar Flink + shaded guava 18.0.* with
maven folder

✓

16 kyuubi-shaded-zookeeper.jar Kyuubi + shaded guava 16.0 and
curator 2.12.0 with maven folder

✓
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Table 3.2: An overview of the results returned by the tested SCA tools. In total, 15 artifacts
have to be detected as having vulnerabilities. Moreover, 15 artifacts contain other libraries
embedded in them that had to be detected.

SCA Tool Detects vulnerabilities Detects contents

OWASP Dependency-Check 4/15 (26.66%) 4/15 (26.66%)
Trivy 0/15 (0%) 0/15 (0%)
Mergebase 0/15 (0%) 0/15 (0%)
Snyk 0/15 (0%) 3/15 (20%)
Sonatype Vulnerability Scanner 0/15 (0%) 0/15 (0%)
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Contribution

4.1 Overview and Architecture of JarSift

Figure 4.1 provides a high-level overview of JarSift’s pipeline, detailing each stage from
signature extraction to user interface integration. This section elaborates on each compo-
nent, describing the architecture and scalability decisions required to accommodate the vast
Maven ecosystem.

JarSift begins by extracting signatures from bytecode classes, which is presented in sec-
tion 4.2, followed by storing these signatures in a database to form a comprehensive corpus,
described in section 4.3. It then uses this corpus to identify embedded libraries within Uber
JARs, addressing significant challenges and matching as elaborated in section 4.4. The de-
sign and implementation required adaptation to manage the scale of data involved, which
includes millions of JAR files and billions of classes.

The architecture also integrates a user interface as presented in section 4.6, which en-
hances developer interaction by allowing easy identification of embedded dependencies and
their vulnerabilities. This feature aims to simplify the tool’s operation and promote wider
adoption.

In addition to its core functionalities, we connected JarSift to a database of known vul-
nerable libraries, which we use to identify whether a given Uber JAR contains vulnerable
dependencies. The vulnerability database can be updated and, therefore, support future
vulnerabilities.

We made our tool publicly available on GitHub1.

4.1.1 Corpus generation

At the core of our contributions is a scalable signature extraction method. This initial step
was critical, as it laid the basis for our subsequent work. The objective was to create a
signature capable of withstanding the various transformations that class files might undergo
during the Uber JAR process, thus maintaining the integrity and accuracy of our analysis.

1https://github.com/Cornul11/JarSift
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Figure 4.1: JarSift pipeline high-level architecture.

At this stage, the JarSift scans through all JAR files located in the local .m2 repository,
which is a partial copy of the Maven Central Repository. It extracts features from each
.class file contained in every JAR file. These features are then aggregated into a unique
signature through a high-entropy hashing function, and the resulting signatures are commit-
ted to a MariaDB database. This database, serving as the corpus, becomes a repository of
signature hashes, each linked to a specific library, effectively capturing the characteristics
of countless class files across various libraries. An overview of this stage is presented in
fig. 4.2.

This corpus serves as an extensive database of class signatures from a large set of JVM
dependencies. This database is crucial as it forms the backbone of our tool’s ability to
identify whether a class file within Uber JARs originates from a different library. The
database and the heuristics we apply to it for matching are elaborated on in section 4.4.

4.1.2 Matching and inference

Next, we have the inference phase of JarSift, where it navigates through the given input
Uber JAR, extracting signature hashes in a manner analogous to the corpus creation phase.
However, instead of populating the database, these signatures are used to query the pre-
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Figure 4.3: Overview of the architecture of the inference phase of the pipeline.

established corpus, allowing the tool to identify all libraries embedded within the Uber
JAR. An overview of this stage is presented in fig. 4.3. This phase is critical in addressing
the posed research questions.

4.2 Signature

The signature is the cornerstone of JarSift. The signature aims to create a unique and re-
producible identifier for each different class while withstanding class relocation which nor-
mally moves a class to a different package. Since the signature needs to withstand class
relocation, we could not rely on a file hash. Instead, we had to develop a new signature
mechanism. Indeed, the signature of a class file is defined by the hash digest of the feature
set we extract from the class file. We describe a feature as easily discernible characteristics
and aspects that determine the behavior of a class file, which makes it unique. We selected
the most distinguishable and extractable features from a compiled class file. These features
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include the complete list of the extracted features in appendix B. The feature set consists of
the entity’s name without the package name, its access modifier, the type of fields, the re-
turn type, the argument type, the exception type, and the opcodes and operands of the inner
code of methods. Moreover, we also look at constructors, inner classes, and annotations of
every class file that contains these. We present the complete list of the extracted features in
appendix B.

Fully qualified names (FQN) are used for class identification within the Java Virtual
Machine (JVM). All non-primitive types, classes, and interfaces have their own unique
FQN, and it is the primary mechanism used by the Java Virtual Machine to locate defini-
tions. These normally take the form classpath.Name, with a real example being java.u
til.ArrayList and it describes the path at which said class can be found. Most classes
that start with java are part of the standard library. Other classes are found in JAR files
linked to the classpath, a conceptual collection of in-memory definitions the JVM utilizes
for class lookup. During the Virtual Machine (VM) initialization process, the JVM loads
classes based on their locations in the JAR files or the standard library. Afterward, when a
reference is found, the JVM looks it up in the classpath to retrieve the corresponding class,
which delimits the set of all classes that are loaded in the current JVM runtime.

In fig. 4.4, we present a rough outline of the information we extract from each class file.
In order to make our signature extraction resilient to relocations, renaming, and shading,
we ignore the path. To be more precise, all references to types, classes, and interfaces are
referenced by their fully qualified name (FQN), and since the prefix can always change
depending on the modifications and transformations done to a Java project, we retain only
the last part.

For the extraction itself, we use the ASM library 2 to analyze every given Java class
file. The advantage of this library is that it is JVM language-agnostic and can be used for
many other software ecosystems, such as Groovy and Kotlin. Moreover, considering that
it is a library that analyzes JVM bytecode, it can be used outside of the Java and Maven
ecosystem since it can be used to extract features and analyze the bytecode of other JVM
languages. ASM is used to extract the features as referenced in appendix B. Following the
extraction, these features are aggregated into a dictionary, forming the basis for generating
a unique identifier for each unique class, called the “class hash”. To achieve this, we use the
XXH33 hash function, selected for its efficiency and ability to produce high-entropy hash
values. The hashes are stored in the corpus database.

4.3 Corpus

The corpus is the persistence layer of JarSift, implemented using the MariaDB database
to store the signatures and metadata of known artifacts. This comprehensive collection is
needed to identify if a class is already present in a different artifact, with the matching
algorithm described in section 4.4. The database is also important for a deeper analysis and
understanding of JAR software artifacts, particularly in the context of Uber JARs, allowing

2https://asm.ow2.io/
3https://github.com/Cyan4973/xxHash
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Figure 4.4: The signature extraction procedure

for a multitude of analysis tasks. These include identifying common patterns and trends in
library usage, detecting vulnerabilities, and assessing the prevalence of Uber JARs within
the Maven ecosystem. Furthermore, the deliberate inclusion of extra fields under the library
table allows us to extract insights and generate statistics, seeding our research findings with
empirical data and concrete observations. The schema of this database can be viewed in
fig. 4.5.

4.4 Matching

The matching phase describes the identification of embedded libraries within a given JAR
using JarSift. To accurately determine libraries and their versions contained within an Uber
JAR, we perform a series of steps. These steps include decompressing the JAR file, iden-
tifying all bytecode classes, and computing their signatures as outlined in section 4.2. The
resulting list of signatures, along with the corpus described in section 4.3, serve as inputs
for the matching phase. The objective is to match the signatures from the JAR with those in
the corpus to identify the corresponding libraries.

This process faces numerous challenges, including the presence of common classes,
such as exception classes, that are implemented across multiple projects. Scalability is an-
other significant issue caused by the extensive number of signatures and libraries. Other
issues are caused by ecosystem-related issues, such as the high number of duplications in
Maven Central and complications due to the Uber JAR process, including class relocation,
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Figure 4.5: JarSift persistence layer schema.

shading, and minimization. It is also quite common for the same file to appear across mul-
tiple versions of different libraries. Given this complex context, JarSift faces a non-trivial
problem in accurately identifying unique signatures. This section describes the process that
JarSift follows to minimize the occurrence of false positives.

4.4.1 Preprocessing

To efficiently query the corpus, the signatures of the input JAR must first be encoded. To
achieve this, a temporary table is created in the database to store the signatures of the input
JAR. The temporary table is indexed and stored in memory to speed up the corpus query.
Then, JarSift identifies the packages in which the classes have been declared based on the
path of the class. This information will be used to group signatures together. Another
heuristic we apply here is an invariant condition that two classes in the same package should
remain together. Finally, JarSift indexes the signatures to packages and the packages to
signatures to speed up the matching in later steps.

4.4.2 Matching signature to libraries

The goal of this first matching phase is to identify all the libraries that have at least one class
(in this case, a signature) included inside the JAR. This is done by doing an intersection
between the temporary table (presented in section 4.4.1) and the corpus section 4.3. The
result of this intersection is a list of signatures that are present inside the input JAR and the
libraries contained in the corpus. JarSift then computes the proportion of the library that is
included in the input JAR, e.g., how many classes from the library are included in the input
JAR versus the total number of classes in the library. As a result, we know, for example,
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that 110/112 of Library A’s classes are included in the input JAR, and 11/11 of Library B’s
classes are included in the JAR.

Unfortunately, we cannot always rely on 100% matching because some shading options
can remove some classes.

4.4.3 Candidate selection and ranking

From the matching process, we generate a comprehensive list of potential libraries that also
includes many false positives and noise. In order to reduce the number of false positives, we
develop multiple heuristics that reduce the number of false positives, which are described
below.

We define two sets for use in the matching phase and for subsequent filtering based
on the heuristics described below. The “candidates” set stores potential library candidates
identified during the matching process, while the “selfCandidates” set includes libraries
that are considered to be identical to, or different versions of, the library containing the
input JAR file.

For each class file in the input JAR, we retrieve all libraries containing that file from the
database. We then map each class’s hash to these libraries in the “libToHash” hash table.
The process continues by iterating over each library listed in “libToHash”. Libraries con-
taining less than two unique class hashes are excluded from consideration. This exclusion
helps avoid the misidentification of generic classes, such as exception classes, which often
share the same signatures. On the other hand, if the library includes more than 50% of the
unique class hashes from the input JAR file, it is considered a strong candidate and added
to both “candidates” and “selfCandidates”. If none of these conditions is met, the method
iterates through each package associated with the library. A library is made a candidate and
added to “candidates” if it contains all class hashes found in a particular package and the
package has more than one unique class. The idea is that the two libraries must share a set
of classes that have a strong correlation, specifically being located within the same package
path, to ensure that the classes are related.

Next, the “candidates” list is sorted based on a combination of factors: inclusion ratio -
the ratio of the number of class hashes in the library to the expected number of total classes;
number of class hashes - the number of class hashes the library contains; expected number
of total classes - the expected number of total classes in the library based on database in-
formation; GAV (group ID, artifact ID, version) - lexicographic order of the library’s GAV
string. The goal is to process the libraries with the highest confidence first.

Finally, the database is queried to retrieve detailed information about each library in the
sorted “candidates” list.

4.4.4 Alternative matching

In the process of library identification, it is not uncommon to encounter libraries that are es-
sentially identical across different versions, or that occupy different namespaces altogether.
In this stage, we find all the identical alternatives with the exact same signatures. For exam-
ple, a library might release a new version where the only change is to the test classes, which

31



4. CONTRIBUTION

do not appear in the JAR file. A specific example is the library “org.apache.lucene:lucene-
queryparser”, which shows no bytecode difference between versions 9.9.1 and 9.9.2, result-
ing in identical signatures.

The procedure begins with an iteration through the sorted “candidates” list. For each
library, the presence of class hashes is verified, and if these are not present, the library
candidate is skipped. Then, we compare the library with each library in the “selfCandidates”
list. Libraries identified as different versions of the same library are marked as self and
added to “selfCandidates”.

Lastly, starting from the current position, we iterate through the remaining libraries in
the “candidates” list. In instances where two libraries are considered different versions or if
one library completely contains the classes of another, the current library is considered an
alternative to the other library and vice versa. They are linked accordingly for later usage in
the matching process.

4.4.5 Perfect match identification

This stage of the pipeline is to filter and determine the candidates that are the exact same
library as given in the input JAR. For example, given a list of package names (e.g., org/ap
ache/lucene/search/join), we try to establish a list of libraries that have this package.
Normally, for the given example, only org.apache.lucene:lucene-core of any version
should match the query. However, many other artifacts are matched in this case due to
duplication and shading on Maven Central.

The process begins with a detailed traversal of each package listed in the “packagesTo-
Hashes” map. For every package encountered, we identify all libraries that contain class
hashes found in that package. Then, we check if a package is only associated with a single
library (excluding self and its marked alternatives). To finish this stage, if a library is the
only one associated with a package, it is marked as a “perfect match” and will be further
used within the pipeline.

4.4.6 Post-processing and output

This step finalizes and compiles the final results of the inference, which are used for further
steps, such as vulnerability matching and presenting the results in the UI.

Initially, we filter the “candidates” list to remove any libraries with no class hashes
(these are typically alternatives identified earlier). Then, we return the filtered list of library
candidate objects, which contain information about the potential matching libraries, includ-
ing their GAV, inclusion ratio, number of class hashes, the expected number of total classes,
and whether they are self, perfect matches, or have alternatives.

Given the matching results, we can set a varying inclusion threshold, which we find
fitting to determine the definite inclusion of a library in an input JAR. After filtering by
this parameter, we make use of the vulnerabilities database bundled with JarSift to decide
whether the input JAR contains vulnerable classes.
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4.5 Scaling

For our study, we gathered versioned packages from Maven Central, which is one of the
most popular and widely used repositories of Java artifacts. We collected packages that were
released between 2004 and Feb. 2024. The resulting dataset consists of about 12,316,987.00
unique versioned packages of 445,178.00 projects, weighing in at about 8.20TB . The ini-
tial corpus creation took 36 hours on a 20-core CPU with 188 GB of RAM. This successfully
extracted more than 400 million signatures, 30 million of which are unique. Considering
the vast number of signatures, finding a way to make it scalable and usable was primordial.
With no optimizations, the inference stage of JarSift would have taken unusable amounts
of time, and thus, a multitude of changes had to be applied. Initial attempts involved de-
normalizing the database schema. However, the denormalization process would have taken
an unfeasible amount of time due to MariaDB’s limitations. Moreover, executing the de-
normalization in a multithreaded manner led to concurrency issues, and the database kernel
would reach an unsolvable deadlock.

The next step was to optimize the SQL queries and retrieve only the necessary data.
Moreover, creating indices on the most commonly queried columns and the columns used
in “JOIN” queries led to a big boost in performance. Still, running inferences on big JARs
would lead to very long processing times caused by IO bottlenecks and the limited multi-
threaded capability of MariaDB’s core. For example, a JAR containing 32 thousand class
files would take more than 20 minutes on a modern PC just for the inference phase.

The final phase of our optimization process, which led to the version used in production
and for the evaluation setup, involved a big change in the persistence backend. Given the
availability of vast amounts of memory, loading the main tables into memory was feasible,
which allowed for a vast performance improvement, especially for larger JARs. Moreover,
it allowed a deeper analysis of the presence of vulnerable JARs in other artifacts.

4.6 UI

The UI is the secondary way of using JarSift, enhancing the user interaction by simplify-
ing how developers can analyze and understand JAR compositions. It provides a visual
representation of the JarSift output for a given input JAR, helping identify included depen-
dencies and their vulnerability status. An example of the UI given a JAR containing two
shaded libraries can be seen in fig. 4.6. The UI contains a tree-like structure outlining the
correspondence of each class file to a certain library. Moreover, a list of alternatives or
direct similarities of other versions of the same library is also presented.

In the visual example shown in fig. 4.6, an input JAR containing “net.bytebuddy:byte-
buddy-agent:1.12.13” and “org.slf4j:slf4j-api:1.7.2”, with the correct detection.

The UI also provides information about the detected libraries that are known to contain
vulnerabilities. The same information is provided for the alternative libraries as well. An
example of a manually crafted Uber JAR containing “com.fasterxml.jackson.core.jackson-
databind:2.9.10.6” and other vulnerable libraries are correctly detected and marked as vul-
nerable, as seen in fig. 4.7.
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Figure 4.6: The visual representation of the contents of a an Uber JAR containing
“net.bytebuddy:byte-buddy-agent:1.12.13” and “org.slf4j:slf4j-api:1.7.2”.

Figure 4.7: A crafted Uber JAR containing vulnerable libraries with the UI showcasing this
information.
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Chapter 5

Evaluation

This chapter presents the evaluation results of the three research questions introduced in
chapter 1. Each section is dedicated to a research question and follows the following struc-
ture: evaluation objectives, process methodology, and analysis of the results.

5.1 RQ1: How efficient is JarSift to detect embedded
dependencies?

This research question aims to evaluate JarSift’s effectiveness in detecting embedded de-
pendencies in Uber JARs. This evaluation has been performed in a controlled environment
to ensure the validity and explainability of the results. JarSift results and limitations are
then discussed.

5.1.1 Methodology

The methodology used to evaluate JarSift’s effectiveness was designed to mimic real-world
conditions encountered in the Maven ecosystem as closely as possible. For this purpose,
we created a controlled environment containing a set of projects with known dependencies,
compiled using various shading options to reflect different real-world scenarios. It allows
us to perform the evaluation of our methodology, and specifically of JarSift, based on the
Uber JAR composition ground truth that we collect.

The complete high-level methodology for JarSift is divided into 3 main steps: creating
the dataset of evaluation, executing JarSift on the dataset, and analyzing the results.

Creating the ground truth dataset

The primary goal of creating this ground truth dataset is to have a base of the results that
JarSift is expected to detect in the Uber JAR dataset. This way, we can compare how
effective JarSift is in detecting the contents of a given Uber JAR under different shading
configuration parameters, knowing the embedded libraries beforehand.

To create the ground truth dataset, we define two parameters: m, the maximum number
of libraries to be embedded within an Uber JAR, and n, representing the number of library
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sets for each plugin configuration. These parameters were selected based on an analysis
that showed that these settings provide a comprehensive overview of the typical use cases
encountered by developers. Specifically, with m set to 5 and n equal to 200, the process
will generate 200 “pom.xml” files, each containing 1 to 5 dependencies. For each of these
“pom.xml” files, we mutate the Maven Shade Plugin configuration to establish the effects
of Relocation and Minimize JAR settings, both individually and in combination. This step
quadruples the count, resulting in a total of 800 “pom.xml” files, each representing a unique
configuration scenario.

Given the example input parameters, the output of this procedure is a set of 800 Uber
JARs, each created to also contain metadata detailing the embedded content as per its re-
spective configuration. These serve as the basis for the ground truth against which JarSift’s
detection accuracy is evaluated.

To ensure proper dependency linkage in the resulting Uber JARs, our ground truth
dataset creation process requires classes that can be instantiated. These instantiable classes
are needed to generate dummy Java files that simulate real-world applications. We start by
randomly selecting a number of libraries, from one to m, from our corpus. For each selected
library, we identify and extract the name of a class that can be instantiated.

The instantiable class extraction step is also necessary because, during the Maven Shade
Plugin “package” phase, a class must be instantiated for it to be considered a part of the
final Uber JAR. If none of the selected libraries contains instantiable classes, the library
is disregarded. In the next step, for each initial “pom.xml” file, we configure the Maven
Shade Plugin to either activate or deactivate the Relocation and Minimize JAR configuration
parameters. This results in four distinct “pom.xml” files per set, each corresponding to one
of the configuration permutations.

We use the Maven wrapper’s command, mvn dependency:list, to collect the effective
versions of all direct and transitive dependencies for project compilation and execution.
This information is used as the ground truth for the evaluation. The final step involves
executing mvn package to package each of the 800 “pom.xml” files into its own Uber JAR,
ready for the following evaluation phase. However, we verify whether any class files from
the effective libraries are detected within the Uber JAR. In some cases, no class files from
the dependencies end up in the Uber JAR, which can occur even when “Minimize JAR”
option is not utilized. This absence of class files can happen for several reasons: some
dependencies may only contain test artifacts, documentation artifacts, or other non-class
file components, thus contributing no executable code to the Uber JAR. In scenarios where
the Uber JAR lacks any class files from its dependencies, such Uber JARs are marked as
invalid. These invalid Uber JARs are excluded from further analysis and ignored during the
evaluation phase.

Computing the evaluation metrics

Following the creation of the ground truth dataset, the next step is the evaluation of JarSift’s
performance in detecting embedded libraries within Uber JARs. We describe below the
steps required to compute standard evaluation metrics, including the F1-score, recall, and
precision, which indicate the JarSift’s effectiveness.
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JarSift supports a configurable parameter that we call the inclusion threshold, which
describes the minimum proportion of a library’s classes that must be present for JarSift to
recognize the library as included within the Uber JAR.

The inputs for this evaluation phase are the n Uber JARs created in the previous stage,
each associated with one of four distinct configuration scenarios and their respective meta-
data that describes the expected contents. The output of JarSift represents the list of libraries
that it detects in each Uber JAR.

The steps we take to evaluate the effectiveness of our proposed tool are:

1. Each Uber JAR, generated according to the methodology described earlier, is pro-
cessed using JarSift to infer its contents.

2. A range of inclusion threshold levels, from 0.50 to 1.00 , are used to observe the
effects of varying the requirements of class presence in the detection process.

3. For each threshold level and configuration scenario, we compute a confusion matrix
and other relevant evaluation metrics.

The confusion matrix cases can be described in the following way, with the addition of
a special case that covers the specificity of our signatures corpus:

Table 5.1: Description of Confusion Matrix Cases

Case Description

True Positive A library that is known to be embedded in a Uber JAR by the oracle and
is correctly detected by our tool.

True Negative A library that is known to not be in the Uber JAR and is not detected in
the Uber JAR by our tool.

False Positive A library that is not known beforehand to be contained in the Uber JAR
but is detected to be embedded in a given Uber JAR.

False Negative A library is known to be embedded in a Uber JAR by the Oracle but not
detected by our tool.

Unknown A library that is known to be embedded in a Uber JAR but has not been
detected due to our signature corpus missing its signatures.

Although many methods for creating Uber JARs exist, we have opted to omit them from
our analysis due to their current lack of use or lack of ongoing maintenance, rendering them
irrelevant to the focus of our study. Among these methods are techniques like One-JAR1

and the Jar Task from the Ant automation tool2, which, despite being available, are not
commonly used in current practice. Additionally, manual methods of creating Uber JARs,
such as using archive editors or the jar command-line utility, can yield artifacts that are less
predictable and potentially inconsistent. Given these factors, we have opted to omit them

1https://one-jar.sourceforge.net/
2https://ant.apache.org/manual/Tasks/jar.html
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from our analysis, and we will focus on more widely used and consistently maintained
methods that align with the current trends and practices within the Maven ecosystem.

5.1.2 Dataset

The dataset for this research question comprises 12,316,987.00 versioned JAR packages
from 445,178.00 projects in the Maven Central repository, which we used to populate
the signature corpus. We collected packages and their transitive dependencies released be-
tween 2004 and January 2024. The transitive dependencies include artifacts from other
repositories and from outside of the specified time range, with some artifacts created before
2004.

The artifact retrieval and collection pipelines are beyond the scope of this research
project. However, it was achieved using the Maven Explorer project3, which aims to clone
the complete Maven Central repository.

5.1.3 Results

Table 5.2 presents the effectiveness of JarSift to detect embedded dependencies within Uber
JARs. The table is divided and presents the results based on the different Uber JAR creation
configuration parameters as well as the results with the different inclusion threshold levels.
Highlighted in bold are the best-performing results. The evaluation mainly included two
settings, the “Minimize JAR” and “Relocation” parameters, significantly influencing how
dependencies are packaged and potentially obfuscated in Uber JARs. The presented metrics
for each scenario include precision, recall, and the F1 score, providing a complete overview
of JarSift’s performance across different conditions.

As expected, the precision and recall are influenced by the configuration of the Uber
JAR creation process. The key factors influencing performance are the settings for “Mini-
mize JAR”, “Relocation”, and the variable threshold parameter, which significantly impact
how dependencies are packaged, potentially obfuscated within Uber JARs, and respectively
detected by JarSift.

It is evident that the threshold setting has a significant effect on dependency detection;
specifically, a higher threshold enhances precision but at the expense of recall, pointing
towards a clear trade-off between these metrics. At a threshold of 1.00 , for instance,
while the precision peaks, it is compensated by a decrease in recall, particularly when the
“Minimize JAR” and “Relocation” settings are both enabled.

Minimize JAR and Relocation Enabled

With Minimize JAR and relocation enabled, JarSift demonstrates an improvement in preci-
sion as the threshold increases, reaching its peak precision of 0.850 at a threshold of 1.00.
However, this precision is eclipsed by a low recall value, indicating a trade-off between the
tool’s accuracy in identifying true positives and its ability to capture all relevant embedded
libraries. Based on our investigation, this is caused by the Minimize JAR configuration

3https://github.com/cops-lab/maven-explorer/
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Table 5.2: JarSift evaluation results.

Configuration Threshold Precision Recall F1 Score

Minimize JAR: disabled, Relocation: disabled

0.50 0.312 0.951 0.451
0.75 0.453 0.950 0.597
0.90 0.608 0.950 0.727
0.95 0.684 0.949 0.782
0.99 0.777 0.948 0.839
1.00 0.809 0.946 0.857

Minimize JAR: disabled, Relocation: enabled

0.50 0.312 0.950 0.451
0.75 0.453 0.949 0.596
0.90 0.608 0.948 0.726
0.95 0.685 0.947 0.781
0.99 0.777 0.942 0.837
1.00 0.808 0.936 0.852

Minimize JAR: enabled, Relocation: disabled

0.50 0.430 0.602 0.337
0.75 0.564 0.570 0.398
0.90 0.708 0.554 0.444
0.95 0.772 0.527 0.453
0.99 0.834 0.516 0.468
1.00 0.850 0.515 0.477

Minimize JAR: enabled, Relocation: enabled

0.50 0.430 0.601 0.336
0.75 0.564 0.569 0.399
0.90 0.708 0.542 0.444
0.95 0.772 0.525 0.452
0.99 0.834 0.512 0.466
1.00 0.850 0.509 0.474

parameter, which skips all class files in the final Uber JAR that are not used or needed for
the Uber JAR to work. Considering the fact that in our Uber JAR generation pipeline, we
explicitly use only one class file from a given dependency, the resulting Uber JAR, more of-
ten than not, will contain a small percentage of the class files from the original embeddable
library. This leads our tool to detect a minimal inclusion ratio for many of the expected
embedded libraries, thus preventing them from passing the threshold value.

Minimize JAR Enabled with Relocation Disabled

The results of this configuration are almost identical to the ones from the configuration with
both Minimize JAR and Relocation Enabled. Most probably, the minimal improvement in
results stems from one of our tool’s limitations, designed to support name extraction irrel-
evant to their package name. However, these heuristics were engineered based on the Java
bytecode features and combinations that we encountered during our design and implemen-
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tation phase. Although we attempted to cover as many as possible, given the variety of
the JVM ecosystem, we could not anticipate all the possible bytecode situations that would
require extending our heuristics. The slight improvement in the evaluation results for this
configuration stems from the lack of relocation, allowing our tool to almost always correctly
extract class names and feature names.

Minimize JAR Disabled with Relocation Enabled

Disabling the Minimize JAR setting significantly impacts the tool’s recall, especially at
lower thresholds, indicating that the presence of additional, non-minimized library files in
the Uber JAR increases the chances of detecting embedded libraries. Notably, the recall
at a 0.50 threshold under these conditions is exceptionally high (over 0.950), pointing at
JarSift’s robustness in non-minimized Uber JARs.

Minimize JAR and Relocation Disabled

Disabling both the Minimize JAR setting and not using any relocations yield the best evalu-
ation results for JarSift. This configuration enables our tool to achieve the best precision and
recall scores, indicating the ease with which it identifies embedded libraries when the cre-
ation of an Uber JAR involves no complicated manipulations and obfuscation techniques.
Given the robustness of JarSift irrelevant of relocations, the results are not significantly
better than in the case with Minimize JAR disabled and relocation enabled.

Overall

The results underscore a clear influence of JarSift’s effectiveness on the configuration of
the Uber JAR creation process, particularly the “Minimize JAR” and “Relocation” options.
Higher thresholds tend to favor precision, while lower thresholds benefit recall, highlighting
the trade-off between these metrics. This trade-off suggests that optimal use of JarSift
requires balancing these metrics based on the specific needs and tolerance for false positives
or negatives of the analysis task at hand. Moreover, once the minimization removes classes,
JarSift has less information to identify the classes, and therefore, the recall is dropping. The
relocation has minimal effect on most metrics since our tool is resilient to such changes.
Furthermore, as revealed in the following research question, only 0.22% of all POM files
equivalent to 20,485.00 artifacts use the “Minimize JAR” option. This highlights that
most artifacts encountered in the ecosystem will not be affected by a low detection accuracy,
given their rarity.

In contexts where the objective is to prioritize comprehensive detection coverage, po-
tentially at the expense of encountering false positives, the adoption of a lower threshold
is recommended. This strategy would facilitate a more inclusive approach, capturing a
broader range of libraries, including those that may require manual verification to rule out
inaccuracies. Such an approach is particularly beneficial in scenarios where minimizing the
risk of overlooking embedded libraries (false negatives) is essential, and manual oversight
is feasible to confirm the findings.
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On the other hand, when the analysis requires high confidence in detection accuracy,
setting a higher threshold is advisable. This ensures that the tool reports only those embed-
ded libraries it identifies with a high degree of certainty. This approach is suited to situations
where the primary concern is to avoid wasting resources on validating false positives, pri-
oritizing precision over an exhaustive detection result.

Several factors contribute to JarSift not achieving 100% precision, with a significant
factor being the structure of some artifacts on Maven Central. These artifacts, the so-called
“all” identifier, contain a variety of libraries under the same namespace. For example, let us
consider a hypothetical “variety-all” package under “com.example”, containing class files
from “variety-sql”, “variety-xml”, “variety-yaml”, and “variety-json” among many others.
If such a composite library is selected as a dependency in our Uber JAR generation pipeline,
our ground truth will contain only the composite dependency, as opposed to its submodules
or subdependencies of which it is actually made, especially if these are not explicitly or
correctly declared in its “pom.xml” file. As a consequence, JarSift might identify these
individual libraries as separate entities rather than detecting them under “variety-all”.

Moreover, our corpus dataset intentionally omits Uber JARs, focusing instead on detect-
ing the contents within these Uber JARs. We chose this approach to ensure the granularity
of our analysis, enabling us to detect the composed structure of Uber JARs and identify the
specific libraries these contain. This methodology makes sure that we do not just detect the
presence of an Uber JAR but rather into its contents, which provides a more detailed and
accurate embedded library detection mechanism.

A case of this scenario can be found with the “groovy-all” library within the org.ap
ache.groovy group ID. Despite the Uber JAR artifact containing numerous child artifacts
from the same namespace, as shown in fig. 5.1, JarSift detects each artifact separately in-
stead of identifying “grovy-all” as one entity. The pie chart in fig. 5.1 depicts the compo-
sition of the “groovy-all” Uber JAR, showing that it is mainly composed by the “groovy”
core library. However, a substantial “other” category encompasses 48.6%, reflecting the
complexity of such Uber JARs on Maven Central.

Despite achieving an F1 score of around 0.850 with Minimize JAR disabled and Reloca-
tion either enabled or disabled, this study acknowledges certain limitations. The evaluation
focuses on a controlled set of configurations. It does not account for all possible Uber JAR
creation methods, such as manual packaging or the use of alternative tools and configuration
parameters. Moreover, the specific challenge of detecting libraries with missing signatures
(Unknown cases in our confusion matrix) highlights an area for future improvement in sig-
nature corpus completeness.

Moreover, this study does not enforce a deterministic inclusion ratio when using “Min-
imize JAR”, which leads to the number of class files embedded in the artificially created
Uber JARs to vary. The study could extend to deterministically ensure that an exact number
of class files enter the final Uber JAR.
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Figure 5.1: Distribution of component artifacts within the “groovy-all” Uber JAR.

Answer to RQ1. How efficient is JarSift to detect embedded dependencies? The
effectiveness of JarSift in detecting embedded dependencies has been evaluated using pre-
cision, recall, and the F1 score. The F1 score varies between 0.474 and 0.857 depending on
the inclusion ratio threshold and Uber JAR generation configuration parameters. We deter-
mined that a threshold of 1.00 reaches the best balance between minimizing false positives
and maximizing true positive detection, resulting in the best F1 score of 0.857. Overall,
we consider that the precision, recall, and F1 scores indicate that JarSift performs reliably
for this task. Future potential improvements are presented in the discussion section.

5.2 RQ2: How many Uber JARs are present in our dataset?

Now that we can detect embedded dependencies in JAR files. We want to study the predom-
inance of Uber JARs inside the Maven Ecosystem. The purpose is to understand if deeper
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considerations need to be made to manage those specific JARs.

5.2.1 Methodology

To address this research question, our methodology involves the following steps: packag-
ing analysis - we begin by performing a packaging analysis to identify the most commonly
used Uber JAR packaging plugins within our dataset. This step enables us to categorize
Uber JARs based on the techniques used for their creation, helping us to have a more pre-
cise analysis of these files. We specifically analyze the JAR manipulation techniques used
during the Uber JAR creation process to understand how these files are changed. This in-
cludes examining methods such as embedding libraries and shading, which are essential
to understand how Uber JARs are structured; trend analysis - lastly, we look at the adop-
tion trends of Uber JARs within the dataset. This includes analyzing the data over time to
determine whether the usage of Uber JARs is increasing, stable, or declining, which is im-
portant for predicting future patterns and for various considerations to manage Uber JARs
effectively in the future.

The “maven-shade-plugin” and “maven-assembly-plugin” are specifically focused on
because they are the most prevalent tools used for creating Uber JARs, as identified by
our preliminary dataset analysis. We analyzed all the POM files present in our dataset and
extracted the presence of two plugins, the “maven-shade-plugin” and the “maven-assembly-
plugin”. Moreover, we extracted the configuration parameters of these two to study the
prevalence of parameters and possible configurations encountered on Maven Central and
other repositories storing the frequency and contexts of their usage. For POM files with
parent POM files, we try to resolve those parameters and apply them to children’s POM files.
Still, we take into account the fact that children’s configuration parameters override those of
their parents. This data collection pipeline, combined with our MariaDB persistence layer,
allows us to infer common usage patterns and trends when it comes to the aforementioned
plugins.

5.2.2 Dataset

The dataset for this research question consists of over 9 million POM files. These files were
collected using the same methodology as the JAR files in the previous research question,
using the Maven Explorer project4. Like the JAR files, the POM files are attached to the
artifacts from Maven Central, which were included in the earlier research corpus. However,
the release dates for many artifacts are unreliable, both in the Maven Central Index database
and in the metadata of these POM files. To ensure that the release date we have for each
artifact is accurate, during the corpus creation, JarSift also extracts the creation time of
either the archive or the META-INF folder within each JAR file during corpus creation and
stores this information in the database. The creation date is then used when our analysis
scripts cannot reliably determine the release dates of artifacts.

4https://github.com/cops-lab/maven-explorer/
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5.2.3 Results

In addressing our second research question, we performed an in-depth analysis to deter-
mine the prevalence of Uber JARs within the Maven ecosystem. By examining over 9
million POM files, our investigation aimed to identify the use of key plugins - “maven-
shade-plugin” and “maven-assembly-plugin” - which play an important role in creating
Uber JARs. This analysis provides insights into the usage patterns of these plugins and the
configurations and techniques most frequently employed for JAR file manipulations. We
present the findings of our study in table 5.3.

Table 5.3: Overview of POM files analysis. The percentages in parentheses indicate the
proportion of total POM files; percentages in brackets represent the proportion of “maven-
shade-plugin” occurrences, directly or with inheritance, respectively.

Metric Direct inclusion With inheritance

Total POM Files Analyzed 9,232,456 -
POM files using the Maven Assembly Plugin 307,454 (3.33%) 601,414 (6.51%)
POM files using the Maven Shade Plugin 187,692 (2.03%) 313,675 (3.97%)
POM files with dependency reduced POM 50,782 (0.55%)[27.05%1] 69,652 (0.75%)[22.20%2]
POM files with minimized JAR 20,485 (0.22%)[10.91%1] 27,831 (0.30%)[8.87%2]
POM files with relocations 56,074 (0.60%)[29.87%1] 58,216 (0.63%)[18.55%2]
POM files with filters 51,074 (0.61%)[29.87%1] 91,258 (0.98%)[29.09%2]
POM files with transformers 67,388 (0.72%)[35.90%1] 69,654 (0.93%)[27.65%2]

Figure 5.2 illustrates the usage percentages of different configurations within the shade
plugin ecosystem from 2009 to 2023, showing the contribution of each configuration rela-
tive to the overall utilization of the shade plugin. The fluctuations and rough transitions are
most skewed by the number of packages collected in our dataset.

Overview of POM files analysis

Our dataset, containing more than 9 million POM files, serves as a robust basis for this anal-
ysis. The analysis reveals that a significant portion of these files use the “maven-assembly-
plugin” and “maven-shade-plugin”, with occurrences found in 3.33% and 2.03% of the files,
respectively, when considering direct inclusions. When inheritance is accounted for, these
figures rise to 6.51% for the “maven-assembly-plugin” and 3.97% for the “maven-shade-
plugin”, underscoring the importance of dependency hierarchies within Maven projects and
modules.

Dependency-reduced POMs

The practice of utilizing dependency-reduced POMs while streamlining Uber JARs by elim-
inating extra dependency information poses a significant challenge for SCA tools that rely
on POM metadata to deduce the correct dependencies and embedded libraries within a Uber

1Percentage of total “maven-shade-plugin” direct occurrences using the specific setting.
2Percentage of total “maven-shade-plugin” occurrences with inheritance using the specific setting.
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Figure 5.2: Trends in Apache Maven Shade plugin configuration usage over time.

JAR. When this data is absent, such a tool fails to accurately identify the components that
constitute the Uber JAR, potentially overlooking embedded libraries or misinterpreting the
Uber JAR’s contents.

Minimize JAR impact

Employing the “Minimize JAR” option impacts the detection of class files within Uber
JARs, influencing the inference accuracy of SCA tools that do binary analysis, including
ours, which operate based on an inclusion threshold ratio. When “Minimize JAR” is applied,
the resultant Uber JAR contains a minimal set of class files, directly affecting the tool’s
ability to affirm the presence of specific libraries, especially under high inclusion threshold
settings. This scenario can lead to underreporting embedded libraries, underscoring the
need for careful threshold management.

Effects of relocations

The application of relocations, or shading, entails the renaming and modification of Fully
Qualified Names (FQNs), which directly challenges SCA and binary analysis tools that
depend on package names and paths to infer Uber JAR contents. However, despite these
changes, JarSift is designed to be resilient against such alterations and obfuscations, main-
taining its efficacy in detecting embedded libraries.

Implications of filters

The use of filters introduces a high degree of unpredictability into the composition of Uber
JARs. Filters can selectively include or exclude a wide range of elements - from entire class
paths and specific class files to metadata and license files - rendering the final Uber JAR
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a “wildcard” in terms of its contents. This variability significantly complicates the task of
accurately analyzing or predicting the components of a Uber JAR, presenting a substantial
challenge for both manual inspection and automated tools.

Role of transformers with “maven-shade-plugin”

Transformers play an important role when used in conjunction with the “maven-shade-
plugin”, offering a mechanism to manage resource overlaps and merge content from multi-
ple artifacts into a single Uber JAR. They provide a suite of functionalities, from preventing
license duplication to aggregating components and merging resources, which are crucial
for creating functional Uber JARs. The diverse range of transformers available addresses
specific needs, such as merging components, managing MANIFEST entries, and relocating
class names in “META-INF/services” resources, among others.

These aspects underscore the complex nature of Uber JAR creation and manipulation
within the Maven ecosystem, highlighting the challenges posed to SCA tools and the neces-
sity for advanced tools like JarSift that can overcome these complexities.

Answer to RQ2. How many Uber JARs are present in our dataset? Based on the
assumption that all artifacts created with the Maven Assembly and Maven Shade Plugins
are Uber JARs, they constitute 6.51% and 3.97% of the JARs in our dataset. These percent-
ages are significant given the total number of POM files, which stands at 9,232,456. This
highlights the importance of an in-depth analysis of Uber JARs within the Maven Cen-
tral ecosystem and their implications. Approximately one-fifth of all the POM files using
the Maven Shade Plugin also use configurations like the dependency-reduced POM, min-
imized JAR, and relocations parameter. These configurations suggest that most Software
Composition Analysis (SCA) tools may struggle to effectively and accurately detect the
contents of the resulting JAR files. Recommendations for addressing the impact of these
complications are discussed in subsequent sections.

5.3 RQ3: How many Uber JARs on Maven have known
undetected vulnerabilities?

We have shown in the previous research question that Uber JARs are relatively frequent in
the Maven ecosystem. As discussed in the background section, Uber JARs introduce some
security considerations, particularly if the embedded dependencies are vulnerable. JarSift
allows scanning the JARs in the Maven ecosystem to detect the embedded libraries and, as
such, can also see which ones are known to be vulnerable. Moreover, given the fact that we
have the signatures of a significant number of libraries, we can also see if the vulnerable
libraries are present in other libraries that are not known to be vulnerable by checking if
they share the same signatures.

The goal of this research question is to establish how many existing artifacts in our
subset of Maven Central contain known vulnerable code. By identifying the prevalence of
vulnerabilities within Uber JARs, this research hopes to highlight potential security risks
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and dormant, unknown attack vectors that could impact a variety of applications depending
on these libraries.

This section of our research project is divided into two main parts. The first part focuses
on collecting existing (Uber) JARs from the Maven Central repository and scanning them
for vulnerabilities. The second part broadens the scope by compiling a list of artifacts in our
corpus known to be vulnerable and then determining if these can be found in other libraries
within our corpus that are identified as non-vulnerable.

5.3.1 Scanning JARs for vulnerabilities

Methodology

In this part, we collect a set of the most used Maven Central libraries to see whether these
contain undetected vulnerabilities. We have targeted probable Uber JARs that contain terms
such as “shaded”, “uber”, “fat”, or “all” in their group ID or artifact identifier. Based on
our preliminary analysis of the ecosystem, these terms are the ones that are commonly used
when developers publish Uber JARs on the Maven Central repository. For each identified
Uber JAR, we do the following: First, we use JarSift to infer and compile a list of embedded
libraries within each Uber JAR. Then, we examine each of these embedded libraries for
vulnerabilities, leveraging a reliable third-party API. If we detect any vulnerabilities in the
embedded libraries, the parent Uber JAR is categorized as containing vulnerable code.

Dataset

We have collected the top 100 most used libraries on Maven Central, both the most used
known vulnerable version and the most used non-vulnerable version. Moreover, we col-
lected every artifact on Maven Central that has the “shaded”, “uber”, and “fat” in their
name, mainly in their artifact ID. We ended up collecting over 1755 artifacts that match
these conditions.

Results

After running the detection algorithm on them, we found 337 (17.13%) of them have un-
known vulnerabilities. This significant proportion underscores a notable security concern
within the Maven ecosystem, highlighting the presence of vulnerabilities even in widely
used libraries.

Our discovery shows that a substantial percentage of Uber JARs contain embedded
libraries with known vulnerabilities, which points to a critical challenge in dependency
management and security within the Maven ecosystem. This situation is aggravated by the
practice of shading, which, while offering benefits in namespace management and conflict
resolution, may obscure the provenance of embedded libraries, complicating vulnerability
detection and remediation efforts.

Our findings raise important considerations for the development and maintenance of
Uber JARs. We argue that the presence of vulnerabilities within embedded libraries of Uber
JARs poses a significant risk, potentially exposing applications to exploits that compromise
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their integrity and the data they manage. The risk is increased by the fact that vulnerabilities
within Uber JARs can remain undetected or unaddressed due to the obfuscation of their em-
bedded dependencies. Authors of such Uber JARs may not even be aware of vulnerabilities
within their Java artifacts due to the lack of proper communication channels and lack of
proper tooling for mitigating such issues. Moreover, the use of shading in Uber JARs, while
offering technical advantages, introduces challenges in accurately assessing and tracking
the security of these artifacts.

The initial phase of our investigation into the vulnerability ecosystem of Uber JARs on
Maven Central reveals a concerning prevalence of known vulnerabilities within these ar-
tifacts. This insight not only highlights the security challenges associated with the use of
Uber JARs but also emphasizes the need for careful management and remediation of vul-
nerabilities within the Maven ecosystem. As we proceed to the second part of this research
question, our focus will broaden to explore the implications of these findings on the wider
corpus of libraries.

5.3.2 Scanning the corpus for vulnerabilities

Methodology

The goal of scanning the corpus for vulnerabilities was to determine how many artifacts
in our dataset contain signatures identical to those of known vulnerable artifacts in our
signature corpus. The inputs for this stage are the signatures of known vulnerable artifacts,
which we filtered based on their presence in our corpus. As output, we provide information
about the non-vulnerable artifacts, whose signatures are in the corpus and contain 100% of
the signatures of vulnerable artifacts.

Our approach in this segment is based on a three-step process:

1. Identification of vulnerable artifacts: The initial step involves selecting artifacts
from the Maven ecosystem known to contain vulnerabilities. This selection is based
on a comprehensive vulnerability database that contains data from reputable sources,
ensuring a broad and accurate representation of known vulnerabilities.

2. Corpus dataset filtering: Following the identification of known vulnerable artifacts,
we refine our focus to those present within our corpus dataset. This filtration step is
needed to limit our analysis to the artifacts most relevant to our research scope.

3. Signature analysis: The final analytical step includes examining the signatures of
these filtered libraries to identify other libraries within our corpus that contain iden-
tical signatures, excluding those with matching group IDs and artifact IDs to avoid
different versions of the same input vulnerable library.

Dataset

In this part, other than the signature corpus, we made use of the Open Source Vulnerabil-
ities database, which collects vulnerability data from a multitude of sources, such as the
GitHub Advisory Database, the MITRE CVE database, and others. As of October 2023,
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this database contained 3,935.00 unique known vulnerabilities for the Maven ecosys-
tem. These vulnerabilities cover 1,838.00 unique Maven artifacts, containing a total
of 248,407.00 vulnerable versions. We filtered this list to retain only artifacts that are
contained in our corpus database, which brought the total count to 189,777.00 unique,
vulnerable versions, accounting for 76.39% of all known vulnerable libraries.

The next step was to collect all the signatures of these libraries and see which other
libraries contained them. Here, it was important to ignore libraries with the same group ID
and artifact ID since it was likely that different versions of the same library would contain
the same signatures. However, in some cases, as mentioned in one of the previous sec-
tions, there are no significant or discernable bytecode changes between different versions
of the same artifacts, which may lead to multiple versions of the same artifact containing
vulnerable bytecode of other artifacts.

Results

In our analysis, we found that 31,763.00 libraries in our corpus, or 0.58% of the to-
tal, contain signatures matching those of known vulnerable libraries. It is important to
note that this figure represents a full match with the signatures of 76.39% of the known
vulnerable artifacts that we have identified in our dataset, which totals 5,443,022.00
JAR artifacts and their signatures. The libraries most affected include popular ones such
as “org.neo4j:neo4j”, “com.google.protobuf:protobuf-java”, “io.grpc:grpc-protobuf”, “ju-
nit:junit”, “io.netty:netty-codec-http”, “com.amazon:aws-java-sdk-s3”, and others, indicat-
ing a significant impact across various widely used libraries.
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Figure 5.3: Distribution of non-reported vulnerable artifacts by release date, highlighting
the prevalence of recent vulnerabilities.

The histogram in fig. 5.3 illustrates the number of non-reported artifacts that contain
vulnerable code based on their release date on Maven Central. The concentration of vul-
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nerabilities in newer artifacts may suggest that the integration of vulnerable libraries into
software projects remains a challenge. The trend points to the importance of incorporating
a tool such as JarSift in deployment pipelines to detect these vulnerable artifacts early on.

Our findings reveal a significant challenge within the Maven ecosystem: the widespread
presence of known vulnerabilities across numerous Uber JARs. Most of those Uber JARs
are not flagged by existing tools; therefore, users of those libraries are unaware that they are
using vulnerable software. Future work based on this part of our research should consider
varying the inclusion threshold for vulnerable libraries rather than their full inclusion.

This issue underlines the urgent need for better tools to detect vulnerabilities, such as
JarSift, which can identify problematic signatures throughout the Maven ecosystem more
accurately. These tools should go beyond conventional dependency analysis by considering
the deeper, transitive relationships between artifacts. The presence of vulnerabilities across
many libraries demonstrates the importance of new approaches that are able to manage and
fix those Uber JARs, ensuring the security of artifacts in the Maven ecosystem.

Answer to RQ3. How many Uber JARs on Maven have known undetected vulnera-
bilities? Our study reveals a notable security concern: approximately 17.13% of the small
dataset of probable Uber JARs we analyzed contain undisclosed vulnerabilities. Addition-
ally, our analysis of the signature corpus identified 31,763 (0.63%) libraries that fully con-
tain all the signatures of known vulnerable libraries. These findings point to a significant
and concerning issue with the prevalence of vulnerabilities within Uber JARs, indicating
problems in managing and detecting secure dependencies in the Maven ecosystem. In the
following section, we discuss recommendations for addressing these vulnerabilities and
enhancing security practices within Maven.
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Chapter 6

Discussion

6.1 Significance of JarSift

The introduction of JarSift is a significant advancement in overcoming the limitation of
existing Software Composition Analysis (SCA) tools, particularly in their ability to accu-
rately detect the contents and existing vulnerabilities within Uber JARs. Traditional SCA
tools frequently fail when faced with obfuscation techniques such as shading or metadata
removal, which obscure the true contents of Uber JARs. JarSift’s approach, based on an-
alyzing bytecode signatures, offers a robust solution to this challenge. By tackling these
obfuscation layers accordingly, JarSift provides an accurate assessment of Uber JAR con-
tents, significantly improving the detection of embedded vulnerabilities. This capability is
crucial for improving software deployment processes, ensuring that developers and security
analysts have a clear understanding of the security state of the components they integrate
and deploy in their projects.

We argue that a potential and probable reason that Uber JARs are not properly managed,
supported, and detected by most existing SCA tools is the lack of academic and industry
focus on the predominance of Uber JARs in the ecosystem. Consequently, their importance
has never been considered in developing features and tools supporting them. Moreover,
our analysis reveals that Uber JARs are quite common, suggesting that the findings of this
study could serve as a motivation to support the development of improved methods for the
analysis and detection of embedded dependencies.

6.2 Prevalence and risks of Uber JARs

Our investigation of the Maven Central Repository has shown an increasing trend in the
use of Uber JARs, raising potential security concerns due to the lack of transparency re-
garding their contents. The findings reveal that many of these artifacts contain embedded
libraries with known vulnerabilities, creating potentially hidden attack vectors. This situ-
ation is worsened when Uber JARs do not use shading and conflict with a user’s primary
dependencies. In such cases, vulnerabilities persist even if the user declares a more up-to-
date dependency as a requirement, leading to security risks. The discovery of a significant
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level of duplication within the Maven ecosystem further complicates this issue. Numer-
ous instances of libraries, unique by group ID and artifact ID, show no substantive changes
across versions. Furthermore, the presence of libraries that are essentially clones of popular
libraries, with only minor modifications such as group ID and artifact ID changes, compli-
cates dependency management. Such practices not only introduce unnecessary complexity
but also complicate the effective management of dependencies, particularly for large-scale
projects with complex dependency relations.

6.3 Report detected as new CVE?

During our study phase, we attempted to contact CVE Name Authorities (CNA) to ob-
tain more details about the correct procedure for reporting vulnerabilities when an existing
artifact contains vulnerable code directly rather than depending on it via a resolution mech-
anism such as Maven. Unfortunately, none of our inquiries were responded to, leading to
a dead end. According to the official CNA rules 1, if a CVE is assigned to a software ar-
tifact, the CNA must notify the maintainer of that code about the vulnerability, provided
that the vulnerable embedded dependency has not been modified. If it has been modified,
a new vulnerability must be reported. This raises a question: Is shading considered a mod-
ification? Shading can be described as simply reusing the same library without altering its
functionality or code. Thus, under some circumstances, shaded libraries can be treated as
unmodified, complicating the reporting and management of vulnerabilities related to them.

JarSift would be the perfect tool to identify vulnerabilities contained in Uber JARs,
which, paired with a manual check, could be a straightforward mechanism for collecting
evidence and relevant information about unknown vulnerabilities detected in existing soft-
ware artifacts.

6.4 Future research directions

Considering the discoveries and challenges identified through our study, multiple directions
for future research have become apparent:

Dynamic analysis integration

Extending JarSift’s static analysis capabilities with dynamic analysis techniques could offer
a more comprehensive understanding of vulnerabilities within Uber JARs. Specifically, this
extension would determine whether vulnerable code paths are actively utilized, providing a
deeper evaluation of the true security risks involved.

Broadening the research scope

Expanding the scope to include other JVM languages and software ecosystems beyond
Maven Central could yield valuable insights into the challenges and practices associated

1http://cve.mitre.org/cve/cna/rules.html
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with Uber JARs in various development contexts. Moreover, our signature extraction method-
ology could be used for other compiled languages for binary fingerprinting and matching.

Corpus expansion

Extending the corpus with a broader selection of artifacts from Maven Central and other
repositories such as Atlassian2 and Hortonworks3 would enhance the applicability of our
study’s findings. By doing so, JarSift would be able to detect libraries that are exclusively
released on those repositories.

Refinement of false positive heuristics

Improving the heuristics for filtering false positives would increase JarSift’s precision, mak-
ing it an indispensable tool for developers and security analysts. Enhancements could in-
clude better detection of packages that contain many artifacts by collecting their signatures,
as well as a smarter evaluation of whether two different package names are related or origi-
nate from distinct packages. Considering how important minimizing false positives is when
it comes to such sensitive aspects of software development and deployment.

Code duplication and license misuse detection

The core functionality provided by JarSift allows finding code duplication among JAR files.
The extensive scale of this study allows for a comprehensive code duplication analysis,
providing deeper insights into the ecosystem’s condition. By applying appropriate heuris-
tics and matching algorithms to the corpus database, JarSift could accurately identify both
potentially insecure bytecode snippets and instances of code duplication.

The same principle can be utilized to detect misuse of existing open-source code in
other projects, ensuring compliance with licensing terms and avoiding license mix-ups.

CI/CD integration

Integrating JarSift within Continuous Integration/Continuous Deployment (CI/CD) pipelines
could significantly enhance the security of software delivery processes. Connecting JarSift’s
analysis capabilities directly into these pipelines can detect and address vulnerabilities early
in the development process, minimizing the risk of deploying compromised software. Jar-
Sift could continuously scan all downloaded JARs within the development pipeline, flagging
dependencies and notifying the relevant parties about issues.

Future research could explore further optimizations of JarSift’s heuristics and analysis
pipeline to minimize the impact on deployment speed while maximizing true positives and
accuracy, thus facilitating a quicker and fitting resolution of security-related issues.

2https://packages.atlassian.com/mvn/maven-external/
3https://repo.hortonworks.com/content/repositories/releases/
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Automatic scan for new libraries and new CVEs

Extending JarSift to support a continuously automatic extension of the signatures database
and new Common Vulnerabilities and Exposures (CVEs) would be a great addition to the
toolset of a developer or DevOps Engineer. This would provide instant alerts to developers
about the need to update or patch their dependencies in case they are using Uber JARs or
similar deployment methods. This could be especially important for projects where depen-
dencies might not be frequently reviewed or scrutinized within a timely manner, especially
for long-term support projects.

SBOM based on JarSift

Given the functionality that JarSift provides, it could easily be adapted into a tool that cre-
ates Software Bill of Materials (SBOM) for Java-based projects. It would only necessitate
implementing the functionality that exports the detected libraries in a project or at a given
path. This future development relates to the CI/CD pipeline integration because the au-
tomatic creation and updating of the SBOM of a project can be set up together with the
vulnerability notification system. This would once again optimize the development process
and facilitate better visibility and ease of use for engineers and security analysts involved in
a project.
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Chapter 7

Threats to validity

In this chapter, we discuss potential threats to the validity of our research findings.

7.1 Internal Threats to Validity

7.1.1 False Positives in Signature Detection

The signature used by JarSift for vulnerability detection may introduce false positives.
While our results demonstrate that the incidence of false positives is minimal, it is still
possible that specific signatures may lead to inaccurate detections. Further refinement and
evaluation of the signature set are necessary to minimize false positives and enhance the
tool’s precision.

7.1.2 Potential JarSift Bugs

Despite our efforts to develop a reliable tool, we cannot completely rule out the possibil-
ity of bugs or errors in JarSift. We plan on making the JarSift open-source, allowing other
researchers to inspect and verify its implementation. Collaboration and community involve-
ment are encouraged to identify and rectify any potential issues.

7.1.3 Lack of Obfuscation Support

One threat to the validity of our study is the lack of support for obfuscated code. Our tool,
JarSift, does not currently handle obfuscation techniques, which may limit the generalis-
ability of our findings to software systems that employ obfuscation. Future work should
consider extending the tool’s capabilities to address this limitation.

7.1.4 Signature’s imperfect entropy

Our signature creation workflow has certain limitations that prevent us from retaining mi-
nor changes in every class file. Specifically, our tool fails to accurately capture features
of the Java language that are uncommonly used or obscure, resulting in inaccuracies in a
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class’s Java bytecode. However, we are constantly improving and extending our signature
extraction to account for these features.

7.2 External Threats to Validity

7.2.1 Non-determinism in Maven’s resolution mechanism

During our experiments, we noticed an inconsistency in Maven’s dependency management.
Although Maven reports a list of dependencies with their respective versions required to
compile a JAR, it sometimes embeds a different version in the final Uber JAR. We had to
account for this, and during the evaluation of JarSift, we had to check the end Uber JAR for
the real embedded versions.

7.2.2 Code duplication

Based on our data exploration, we noticed that there are hundreds of thousands of duplicated
versions in the Maven Central Repository realm. There are two main reasons why this
usually occurs. First, some of the releases are related to external changes, such as test
classes or configuration files, which lead to a new release but no discernible change in the
class files included in a JAR file. Next, for big projects, whenever a new version of the
parent package is released, all the subsequent child packages get a new release with the
same new version, leading to an enormous amount of duplication on Maven Central. In
some cases, there may be dozens of versions in a row with no change in the signature of the
JAR file.

This results in our tool’s inability to differentiate between versions as it selects the first
version in lexicographic sorting. However, we retain alternative versions in our matching
sequence. To put it simply, we compare the class file signatures of different versions of a
library. This way, we can identify true positives in the evaluation of our tool by marking a
result as such if one of the inferred versions matches the expected version. By retaining this
information, we can evaluate our tool’s performance accurately.

7.2.3 Incomplete Dataset

Our dataset does not encompass the complete Maven Central repository. Although it covers
a substantial portion of it and includes the most recent releases, the exclusion of certain
projects or versions may introduce limitations to the generalizability of our findings. Future
work should consider expanding the dataset to include a more comprehensive representation
of software projects.

7.2.4 Uber JAR creation method trends

Given the fact that we are only studying the trends regarding the usage of the maven-s
hade-plugin method for creating Uber JARs, we are most certainly missing other more
obscure or less popular methods of creating these. In the past, before the Maven Shade
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Plugin became the most commonly used one, manual creation, Eclipse IDE tools, and Ant
scripts, among others, were also used to create Uber JARs.
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Chapter 8

Conclusion

In this chapter, we reflect on the results and draw conclusions from our research.
This project had the goal of improving the understanding and management of Uber JARs

within the Maven ecosystem by developing JarSift, a tool designed to detect embedded
libraries and identify potential vulnerabilities. Our investigation has not only underlined the
prevalence of Uber JARs but also revealed their often missed vulnerabilities, which pose
significant security risks.

The evaluation of JarSift demonstrates its efficiency in detecting embedded dependen-
cies, which is supported by precision, recall, and F1 scores, with the latter ranging from
0.474 to 0.857, depending on the Uber JAR creation configuration. This highlights JarSift’s
potential as a tool for dependency management and detection within the Maven ecosystem,
capable of addressing issues and security risks associated with Uber JARs. Our findings
show that Uber JARs are not only prevalent but also frequently contain undetected vulner-
abilities, with approximately 17.13% of the Uber JARs in our small dataset of 1,755.00
artifacts containing undisclosed security vulnerabilities.

Furthermore, 6.51% and 3.97% of the JARs created were identified to be using the
Maven Assembly and Maven Shade Plugins. Given the total of 9,232,456.00 POM
files analyzed, these percentages underline the extensive impact Uber JARs have on depen-
dency management and artifacts released on the Maven Central repository. Approximately
one-fifth of the POM files using the Maven Shade Plugin also use configurations such as
dependency-reduced POM, minimizing JAR, and relocations, which often hinder the effec-
tiveness of existing Software Composition Analysis (SCA) tools. These configurations are
precisely what JarSift is designed to mitigate.

This research underlines the need for improved practices in analyzing Uber JARs to
prevent security vulnerabilities and enhance traceability within the Maven ecosystem. We
recommend the adoption of tools like JarSift, which can significantly improve dependency
management and vulnerability detection in Maven projects by carefully examining the con-
tents of used JARs. It is crucial to implement best practices in managing dependencies and
safeguarding against security threats. Furthermore, we encourage ongoing research and the
development of tools and methodologies aimed at addressing the challenges posed by Uber
JARs.

Finally, the findings and insights gathered from this study not only validate the effec-
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tiveness of JarSift and our methodology but also point towards an expected path for contin-
uous improvement in dependency management and security assessment within the Maven
ecosystem.
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Appendix A

Nomenclature

In this appendix we give an overview of frequently used terms and abbreviations.

GAV: groupId, artifactId, version

JAR: Java Archive

WAR: Web Application Resource or Web application Archive

CVE: Common Vulnerabilities and Exposures

SCA: Software Composition Analysis

SBOM: Software Bill of Materials

JVM: Java Virtual Machine

POM: Project Object Model

CNA: CVE Naming Authority

FQN: Fully Qualified Name
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Appendix B

Signature information

Caption: List of features that are part of the signature. Elements in this list marked with
a [] at the end imply that there can be 0 or more elements of this sort. Moreover, elements
marked in bold may and typically do contain a fully qualified name.

• major version

• access modifier

• name

• extends type

• interfaces[]

• fields[]

– name

– type

• methods[]

– access modifier

– name

– type

– exceptions[]

– instructions[]

* opcode

* operand

– argument types

– return type

• constructors[]
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– name

– type

– exceptions[]

• inner classes[]

– name

– outer name

– inner name

– access modifier

– type

• annotations[]

– annotation arguments[]

* type

– array arguments[]

– arguments[]
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