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Summary 
 
The traditional joint migration inversion (JMI) technology faces the amplitude-versus-offset (AVO) 
challenge, which has been demonstrated before. We now apply JMI to 1.5-dimensional (1.5D) media, 

and use a velocity model and a density model to parameterize its solution space. As physically correct 

one-way propagation, reflection and transmission operators can be analytically formulated in 1.5D 
JMI, the AVO challenge is thus resolved. In this paper, we derive the complete theory behind the 

gradient calculation in 1.5D JMI, and further use a 1.5D synthetic example to demonstrate its 

correctness. This work is an important component of the 1.5D JMI theory, which will have 

applications in (locally) horizontally layered media containing strong multiple generators. 
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On the gradient calculation in 1.5-dimensional joint migration inversion 

Introduction 

Joint migration inversion (JMI) is a recently proposed technology that explicitly uses multiples in 
seismic data for simultaneous velocity estimation and seismic migration (Berkhout, 2014b). JMI 
belongs to the school of full-waveform inversion, and it aims at minimizing the mismatch between 
simulated data and measurements. The inversion engine of JMI is gradient-based (Sun et al., 2019), 
and the modeling engine is based on one-way operators (Berkhout, 2014a; Sun et al., 2018a). Because 
of practical challenges, the state-of-the-art JMI adopts angle-independent operators (Sun et al., 2018b) 
in its implementation. As a consequence, the amplitude-versus-offset (AVO) effect in measured data 
cannot be corrected addressed by JMI (Sun et al., 2020). 

One way to partially mitigate this AVO challenge faced by JMI is by using a different definition for 
the cost function (Qu et al., 2018), but the result quality is case dependent. We propose to apply JMI 
to 1.5-dimensional (1.5D) media, and use a velocity model and a density model to parameterize the 
solution space. In 1.5D JMI, the AVO challenge is thus correctly resolved because one-way 
propagation, reflection and transmission operators can be analytically defined in this situation. For 
1.5D JMI, the gradient calculation is still the pillar of its inversion engine. In this paper, we formulate 
the complete theory behind the gradient calculation in 1.5D JMI, and further use a 1.5D synthetic 
example to demonstrate its correctness. 

Gradient calculation in 1.5D JMI 

Due to space limitation, we cannot show the theory behind the modeling engine and the ‘inverse 
propagation’ concept in 1.5D JMI in this paper. This detailed theory can be found in Sun and 
Verschuur (2021). Moreover, below we only list key results while leaving out concrete derivations to 
save space. 

Figure 1 The fundamental wavefield-propagation model in 1.5D JMI. 

Figure 1 shows the fundamental wavefield-propagation model in 1.5D JMI, where + or – represents 
the down-going or the up-going direction, 𝑧𝑚 is the depth of the mth interface in the z direction, 𝑝 is an 
incoming wavefield, 𝑞 is an outgoing wavefield, 𝑡 or 𝑟 is a transmission or reflection coefficient, 𝑤 is 
a one-way propagator, and 𝜌𝑚 and 𝑐𝑚 are medium density and velocity of the layer between 𝑧 = 𝑧𝑚 
and 𝑧 = 𝑧𝑚+1. 1.5D JMI works in the temporal frequency – spatial wavenumber (FK) domain, so all 
the wavefield-related symbols on Figure 1 correspond to a certain combination of 𝑘𝑥 and 𝜔. For 
example, 𝑞+(𝑧𝑚) there actually represents 𝑞+(𝑧𝑚;𝑘𝑥 ,𝜔). The detailed mathematical definitions for 
all these symbols have been presented in Sun and Verschuur (2021). 
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Similar to the cost functions defined in the traditional JMI (Sun et al., 2019), we also define four cost 
functions at every subsurface depth level for 1.5D JMI using symbols mentioned above: 

𝐽1(𝑧𝑚) = 1
2
�𝑑𝑞−(𝑧𝑚)− 𝑞𝑛−(𝑧𝑚)�2 ,  (1) 

𝐽2(𝑧𝑚) = 1
2
�𝑑𝑞+(𝑧𝑚)− 𝑞𝑛+(𝑧𝑚)�2 , (2) 

𝐽3(𝑧𝑚) = 1
2
�𝑑𝑝−(𝑧𝑚)− 𝑝𝑛−(𝑧𝑚)�2 , (3) 

𝐽4(𝑧𝑚) = 1
2
�𝑑𝑝+(𝑧𝑚)− 𝑝𝑛+(𝑧𝑚)�2 , (4) 

where 𝑑𝑞±(𝑧𝑚) and 𝑑𝑝±(𝑧𝑚) are our inversely propagated down-going (or up-going) outgoing (or 
incoming) wavefields from the measured surface wavefield 𝑝𝑛−(𝑧0), 𝑞𝑛±(𝑧𝑚) and 𝑝𝑛±(𝑧𝑚) are our 
simulated down-going (or up-going) outgoing (or incoming) wavefields. Note that all the symbols in 
equations (1) through (4) also correspond to a certain combination of 𝑘𝑥 and 𝜔. As mentioned above, 
different from the traditional JMI, we now treat medium parameters 𝜌 and 𝑐, rather than imaging 
parameters 𝑡±, 𝑟± and 𝑤, as unknowns (Santosa and Symes, 1985) in 1.5D JMI. 

Equations (1) through (4) are highly non-linear, and hence we have to adopt a linearization 
approximation: only one-way propagation, reflection and transmission operators 𝑤, 𝑟± and 𝑡± are 
functions of medium parameters 𝜌 and 𝑐, while wavefields 𝑞𝑛±(𝑧𝑚) and 𝑝𝑛±(𝑧𝑚) are not. Please note 
that 𝐽1(𝑧𝑚) and 𝐽2(𝑧𝑚) are functions of both 𝜌 and 𝑐 per definitions of 𝑞𝑛±(𝑧𝑚), while 𝐽3(𝑧𝑚) and 
𝐽4(𝑧𝑚) are functions of 𝑐 alone per definitions of 𝑝𝑛±(𝑧𝑚) (Sun and Verschuur, 2021). 

All gradients derived from equations (1) through (4) are shown as follows: 
𝜕𝐽1(𝑧𝑚)
𝜕𝜌𝑚

= 𝑅𝑒{�𝑞𝑛−(𝑧𝑚)− 𝑑𝑞−(𝑧𝑚)�∗ ∙ 𝜕𝑞𝑛
−(𝑧𝑚)
𝜕𝜌𝑚

} ,        (5) 
𝜕𝑞𝑛−(𝑧𝑚)
𝜕𝜌𝑚

= −2𝜌𝑚+1∙𝑘𝑧,𝑚∙𝑘𝑧,𝑚+1

�𝜌𝑚+1∙𝑘𝑧,𝑚+𝜌𝑚∙𝑘𝑧,𝑚+1�
2 ∙ [𝑝𝑛+(𝑧𝑚)− 𝑝𝑛−(𝑧𝑚)] ,  (6) 

𝑘𝑧,𝑚 =

⎩
⎪
⎨

⎪
⎧�𝜔2−𝑘𝑥2∙𝑐𝑚2

𝑐𝑚
 ,    𝑖𝑓   𝑘𝑚2 ≥ 𝑘𝑥2 

−𝑖 ∙
�𝑘𝑥2∙𝑐𝑚2 −𝜔2

𝑐𝑚
 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 ,  (7) 

𝜕𝐽1(𝑧𝑚)
𝜕𝑐𝑚

= 𝑅𝑒{�𝑞𝑛−(𝑧𝑚)− 𝑑𝑞−(𝑧𝑚)�∗ ∙ 𝜕𝑞𝑛
−(𝑧𝑚)
𝜕𝑐𝑚

} ,      (8) 
𝜕𝑞𝑛−(𝑧𝑚)
𝜕𝑐𝑚

= 2∙𝜌𝑚+1∙𝜌𝑚∙𝑘𝑧,𝑚+1

�𝜌𝑚+1∙𝑘𝑧,𝑚+𝜌𝑚∙𝑘𝑧,𝑚+1�
2 ∙ [𝑝𝑛+(𝑧𝑚)− 𝑝𝑛−(𝑧𝑚)] ∙ ∂𝑘𝑧,𝑚

∂𝑐𝑚
 ,  (9) 

𝜕𝑘𝑧,𝑚
𝜕𝑐𝑚

=

⎩
⎪
⎨

⎪
⎧−

𝜔2

𝑐𝑚2 �𝜔2−𝑘𝑥2∙𝑐𝑚2
 ,    𝑖𝑓   𝑘𝑚2 ≥ 𝑘𝑥2 

−𝑖 𝜔2

𝑐𝑚2 �𝑘𝑥2∙𝑐𝑚2 −𝜔2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 ,       (10) 

𝜕𝐽2(𝑧𝑚)
𝜕𝜌𝑚

= 𝑅𝑒{�𝑞𝑛+(𝑧𝑚)− 𝑑𝑞+(𝑧𝑚)�∗ ∙ 𝜕𝑞𝑛
+(𝑧𝑚)
𝜕𝜌𝑚

} ,       (11) 
𝜕𝑞𝑛+(𝑧𝑚)
𝜕𝜌𝑚

= −2∙𝑘𝑧,𝑚+1∙𝑘𝑧,𝑚∙𝜌𝑚+1

�𝜌𝑚+1∙𝑘𝑧,𝑚+𝜌𝑚∙𝑘𝑧,𝑚+1�
2 ∙ [𝑝𝑛+(𝑧𝑚)− 𝑝𝑛−1− (𝑧𝑚)] ,  (12) 

𝜕𝐽2(𝑧𝑚)
𝜕𝑐𝑚

= 𝑅𝑒{�𝑞𝑛+(𝑧𝑚)− 𝑑𝑞+(𝑧𝑚)�∗ ∙ 𝜕𝑞𝑛
+(𝑧𝑚)
𝜕𝑐𝑚

} ,  (13) 
𝜕𝑞𝑛+(𝑧𝑚)
𝜕𝑐𝑚

= 2∙𝜌𝑚+1∙𝜌𝑚∙𝑘𝑧,𝑚+1

�𝜌𝑚+1∙𝑘𝑧,𝑚+𝜌𝑚∙𝑘𝑧,𝑚+1�
2 ∙ [𝑝𝑛+(𝑧𝑚)− 𝑝𝑛−1− (𝑧𝑚)] ∙ 𝜕𝑘𝑧,𝑚

𝜕𝑐𝑚
 ,   (14) 

𝜕𝐽3(𝑧𝑚)
𝜕𝑐𝑚+1

= 𝑅𝑒{�𝑞𝑛−(𝑧𝑚+1)∗ ∙ 𝑞𝑛−(𝑧𝑚+1) ∙ 𝑤(𝑧𝑚, 𝑧𝑚+1) − 𝑑𝑝−(𝑧𝑚) ∙ 𝑞𝑛−(𝑧𝑚+1)∗�∗ ∙ 𝜕𝑤(𝑧𝑚,𝑧𝑚+1)
𝜕𝑐𝑚+1

} ,    (15) 
𝜕𝑤(𝑧𝑚,𝑧𝑚+1)

𝜕𝑐𝑚+1
= −𝑖 ∙ |𝑧𝑚+1 − 𝑧𝑚| ∙ exp�−𝑖 ∙ 𝑘𝑧,𝑚+1 ∙ |𝑧𝑚+1 − 𝑧𝑚|� ∙ 𝜕𝑘𝑧,𝑚+1

𝜕𝑐𝑚+1
 ,  (16) 

𝜕𝐽4(𝑧𝑚)
𝜕𝑐𝑚

= 𝑅𝑒{�𝑤(𝑧𝑚, 𝑧𝑚−1) ∙ 𝑞𝑛+(𝑧𝑚−1) ∙ 𝑞𝑛+(𝑧𝑚−1)∗ − 𝑑𝑝+(𝑧𝑚) ∙ 𝑞𝑛+(𝑧𝑚−1)∗�∗ ∙ 𝜕𝑤(𝑧𝑚,𝑧𝑚−1)
𝜕𝑐𝑚

} .    (17) 
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Note that equations (5) through (17) also correspond to a certain combination of 𝑘𝑥 and 𝜔. Following 
conventions used in the traditional JMI (Sun et al., 2019), we group contributions to the same medium 
parameter from different cost functions and different combinations of 𝑘𝑥 and 𝜔 together to formulate 
the final gradients for 𝜌𝑚 and 𝑐𝑚: 

𝐺(𝜌𝑚) = ∑ ∑ [𝜕𝐽1(𝑧𝑚)
𝜕𝜌𝑚

+ 𝜕𝐽2(𝑧𝑚)
𝜕𝜌𝑚

]𝑘𝑥𝜔  ,  (18) 

𝐺(𝑐𝑚) = ∑ ∑ [𝜕𝐽1(𝑧𝑚)
𝜕𝑐𝑚

+ 𝜕𝐽2(𝑧𝑚)
𝜕𝑐𝑚

+ 𝜕𝐽3(𝑧𝑚)
𝜕𝑐𝑚

+ 𝜕𝐽4(𝑧𝑚)
𝜕𝑐𝑚

]𝑘𝑥𝜔  .  (19) 

Example 

We use a 1.5D synthetic model to demonstrate our derived gradients for 1.5D JMI. The correct 
amplitude spectrum of the source wavefield in our example is shown in Figure 2(a). As our purpose 
here is to demonstrate the correctness of our derived gradients, we take the true source wavefield as 
the a-priori information in our example. The true model is shown in Figure 2(b) in blue, and the data 
simulation plan is as follows: both the initial frequency and the frequency step are 0.2 Hz, and the 
maximum frequency is 30 Hz; the maximum source-receiver offset is 5 km, and the receiver spacing 
is 25 m; the grid size in the z direction is 5 m; we only consider internal multiples in this example, and 
we set the total iteration number to 10, meaning our surface wavefield contains primaries and 9 orders 
of internal multiples. We introduce a 1% perturbation to the thick layer between z=100 m and z=150 
m to generate the wrong model for this example, as shown in Figure 2(b) in red. The surface receiver 
wavefields modeled using the true model and the wrong model are shown in Figures 2(c) and 2(d). 
When we use the true model as the input model for the gradient calculations, we expect gradients 
calculated by equations (18) and (19) to be 0s everywhere in our model space, and this is indeed the 
case shown in Figure 2(e). When we use the wrong model as the input model, equations (18) and (19) 
yield very clear gradients corresponding to the perturbed area in the true model, as shown in Figure 
2(f). 

Conclusions 

In this paper, we formulate the complete theory for the gradient calculation in 1.5D JMI. Different 
from the traditional JMI, 1.5D JMI uses medium parameters as unknowns. We use a 1.5D synthetic 
example, with primaries and 9 orders of internal multiples accounted for, to demonstrate its 
correctness, and results are impressive. This work is an important component of  the 1.5D JMI, and it 
paves a solid way to further develop the 1.5D JMI theory. 
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(a) (b) 

(c) (d) 

(e) (f)

Figure 2 (a) The amplitude spectrum of our source wavefield. (b) The true 1.5D model (blue) and a 
wrong model (red). (c) and (d) show the surface receiver wavefields from the true model and the 
wrong model shown in (b), including primaries and 9 orders of internal multiples. (e) and (f) show the 
gradients of the model when the input model is the true model or the wrong model shown in (b). 


