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F
rom a functional standpoint, classic robots 
are not at all similar to biological systems. 
If compared with rigid robots, animals’ 
bodies look overly redundant, imprecise, 
and weak. Nevertheless, animals can still 

perform a vast range of activities with unmatched 
effectiveness. Many studies in biomechanics have 
pointed to the elastic and compliant nature of the 
musculoskeletal system as a fundamental ingredient 
explaining this gap. Thus, to reach performance compa-
rable to nature, elastic elements have been introduced in 
rigid-bodied robots, leading to articulated soft robotics [1] 
(see “Summary”). In continuum soft robotics, this concept 
is brought to an extreme. Here, softness is not concentrated 
at the joint level but instead distributed across the whole 
structure. As a result, soft robots (henceforth, omitting the 
adjective continuum) are entirely made of continuously de-
formable elements. This design solution aims to bring ro-
bots closer to invertebrate animals and the soft appendices 
of vertebrate animals (for example, an elephant’s trunk and 
the tail of a monkey). Several soft robotic hardware plat-
forms have been proposed with increasingly higher reli-
ability and functionalities. In this process, considerable at-
tention has been devoted to the technological side of the 
problem, leading to a large assortment of hardware solu-
tions. In turn, this abundance opened up the challenge of 
developing effective control strategies that can manage the 
soft body and exploit its embodied intelligence.

Historically and across many application domains, model-
based techniques are the first advanced control algorithms 
to appear and substitute heuristic rules. Data-driven and 
machine learning approaches usually come later when moving 
to more extreme control scenarios. This has also been the 
case for standard robotics, whose history proceeded parallel 

to the development of control theory: from the frequency 
domain to linear state-space control, to the fully nonlinear 
domain, and, only recently, to machine learning. Vice versa, 
the development of control algorithms in soft robotics has fol-
lowed a reversed path. In the early days, machine learning 
strategies were the way to control soft robots except for the 
quasi-static and purely kinematic scenarios. Indeed, it has 
long been believed that model-based strategies were unfea-
sible for the soft robotic application, due to the large vari-
ability of technological solutions and the overwhelming 
complexity of the modeling task.

Over the past few years, two main factors have been chal-
lenging this view. First, theoretical and experimental investiga-
tions have shown that feedback schemes are robust to rough 
approximations of the soft robot dynamics. Interestingly, even 
vastly simplified descriptions already provide enough infor-
mation to improve the performance significantly compared 
to the model-free baseline. Second, a new wave of finite-
dimensional modeling techniques tailored to soft robots has 
appeared in the literature, methods that are simultaneously 
accurate, manageable, and interpretable. Even if a complete 
application to closed-loop control has yet to come for some of 
these models, these theoretical works identify an underlying 
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Summary

The field of soft robotics control is fascinating and full of 

potential, but it can be daunting to navigate. Soft robot-

ics sits at the intersection of various disciplines, including 

material science, biology, continuum mechanics, and ro-

botics, as well as distinct sub-fields within each of these 

areas. Each of these fields comes with its unique literature, 

unwritten hypotheses, notations, and terminology. On top 

of that, talking about control requires first agreeing on the 

dynamic equations that model soft robots, which is itself an 

open research topic currently being investigated by differ-

ent communities.

Nonetheless, the challenge of controlling soft robots is 

particularly interesting because it combines fundamental 

questions with practical applications. Soft robots are inher-

ently underactuated, highly nonlinear mechanical systems 

that are always immersed in an elastic potential field and 

subject to dissipation forces that serve as stabilizing ac-

tions. It is the task of the control engineer to harness these 

effects to generate precise motions with the few actuation 

sources available and execute controlled interactions with 

an external environment or store energy during dynamic 

movements.

This article aims to make the field of soft robotics more 

accessible to control theory researchers by providing a 

comprehensive introduction to the soft robotics control 

challenge through model-based control lenses. We start by 

presenting a unified formulation for the dynamics of a soft 

robot that is modeling technique independent. From there, 

we introduce shape control and tracking problems before 

exploring open challenges in the field, such as underactua-

tion, environmental interactions, actuator dynamics, task 

space control, and using data in a model-based framework. 

Along the way, we survey the literature on soft robotics and 

propose several new results that leverage established tech-

niques for controlling rigid robots.

mathematical structure in soft 
robotics. Therefore, they lay 
a solid ground on which to 
study the control problem.

This article aims to in  -
troduce the control theorist 
perspective to this novel 
development in robotics 
(see “Summary). We aim to 

remove the barriers to entry 
into this field by presenting 

existing results and future chal-
lenges, using a unified language 

and within a coherent frame-
work. In  deed, the main diffi-
culty in entering this field is 
the wide variability of termi-
nology and scientific back-
grounds, making it quite 
hard to acquire a compre-
hensive view on the topic. 
Another limiting factor is 
that it is not obvious where 

to draw a clear line between 
the limitations imposed by the 

technology not being mature yet 
and the challenges intrinsic to this 

class of robots. In this work, we con-
sider intrinsic the continuum, or multi-

body, dynamics; the presence of a nonnegligible 
elastic potential field; and the variability in sens-

ing and actuation strategies. The hysteresis and nonideal 
behaviors affecting sensors, actuators, and the main body are 
considered relevant but not intrinsic since we believe that with 
the advance of the technology, these aspects should be over-
come. Of the many review articles about soft robotics [1], [2], 
[3], [4], [5], [6], [7], [8], [9], [10], only [11] is focused on the con-
trol challenge, which does not follow a model-based approach.

FINITE-DIMENSIONAL MODELS FOR CONTROL PURPOSES
In their exact formulation, continuum soft robots belong to 
the domain of continuum mechanics. Thus, their dynamics 
are formulated as an infinite-dimensional system, that is, 
via partial differential equations (PDEs). Yet, recent work 
has clearly shown that finite-dimensional approximations 
of the robot’s dynamics can be formulated that assume the 
form of standard ordinary differential equations (ODEs). 
These formulations are tractable and precise enough to 
describe the soft robot behavior with the necessary preci-
sion. Contrary to the rigid case, developing models is an 
integral part of the control design process in soft robotics. 
Commonly used models of rigid robots can be used for 
simulating and controlling these systems. Instead, with 
soft robots, models used for simulation and control design 
come from different assumptions and approximations. The 

former must be accurate, possibly at the cost of computa-
tional efficiency and simplicity of interpretation. In con-
trast, the latter must be low dimensional and capture only 
the essential features of the dynamic behavior, possibly 
neglecting the finer details. Moreover, control-oriented 
models must lend themselves to formally assess the robot’s 
structural properties and the closed-loop behavior.

We review the main modeling strategies in the follow-
ing, focusing primarily on aspects relevant to model-based 
control. Thus, some approximations will be made and 
details omitted when possible. The reader interested in know-
ing more about the modeling of soft robots can refer to the 
recent survey article by Armanini et al. [12]. Conversely, the 
reader interested in jumping directly to the control part is 
advised to first read the sections “Finite-Dimensional 
Approximations” and “Existence of Equilibria.”
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When the Rigid Part Is Dominant
It is not uncommon to find full-fledged soft robotic technolo-
gies integrated into essentially rigid structures. This is the 
case for the soft neck of a rigid humanoid robot discussed in 
[13] and [14] and the soft muscles actuating rigid links [15], 
[16], [17]. In all these cases, the dynamics of the rigid part are 
essentially dominant with respect to the soft continuum part. 
Thus, the system model can be obtained with a good level of 
approximation by applying standard multibody dynamics 
machinery to the rigid portion and accounting for the soft 
part through a nonlinear lumped impedance.

Rod Models
Many soft robots have one physical dimension that is longer 
than the other two, such as the tentacle-like system shown 
by Figure 1(a). Their whole configuration can be effectively 
approximated by neglecting volumetric deformations and 
focusing on the behavior of their central axis. This assump-
tion works well in practice and allows for relying on well-
established theories in continuum mechanics of rods.

Consider a continuum and infinitely thin element (called  
a rod, from now on) of length L, as in the one in Figure 1. Its 
posture in space can be completely described by the spatial 

Better Than Rigid Robots: Exploiting Softness in Model-Based Control

Anatural way of understanding physical intelligence gener-

ated by a soft body within a model-based setting is to look 

at the impedance ( ) ( )K q D q q+ o  in (2) as a low-level feedback 

action. One obvious advantage of implementing such an ac-

tion physically rather than digitally is that it does not require 

any additional sensors and actuators. Another important fea-

ture is that it acts simultaneously and in a decentralized man-

ner along the whole infinite-dimensional structure. In other 

words, /K q2 2  and D are always full rank almost everywhere, 

no matter the level of discretization. The number of indepen-

dent directions in which standard control can be produced is 

limited, as concisely represented by the fact that the number 

of columns m of the matrix A(q) in (2) is independent from the 

size n of the configuration space q. The consequence in terms 

of self-stabilization of the robot and control simplification are 

extensively discussed in the main body of the article.

Physical elasticity can also be used to better the execu-

tion of dynamic tasks. For example, [S1] and [S2] prove that 

lumped join-spring-link systems admit optimal control ac-

tions that maximize velocity and forces beyond what can be 

achieved by a rigid robot of equivalent inertia. During these 

tasks, the potential ( )U qK  serves as a tank in which energy can 

be stored and released when necessary. Thanks to multista-

bilities and bucklings, continuum structures can lead to even 

more extreme behaviors concerning pick performances, which 

have been thoroughly investigated in a model-based fashion 

[S3], [S4], [S5]. However, the proposed descriptions are gener-

ally not in the language of dynamical systems, and thus, using 

them for control purposes is still an open challenge. Another 

benefit of physical elasticity is to endow the robot with the ca-

pability of performing regular oscillations [S6], which can be 

excited by means of model-based control [S7], [S8], [S9]. This 

is especially useful in efficient and robust locomotion [7], [S10], 

[S11]. It is worth noting that all these capabilities are implicitly 

exploited by the vast range of approaches using numerical op-

timization for controlling soft robots [S12], [S13], [118], [162], 

[163], [164].

For an in-depth analysis on how the body of a soft robot 

can generate intelligent behaviors, refer to another article 

within the same special issue discussing embodied intelli-

gence [S14].
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curve : [ , ] ( ).x SE0 1 3R "#  The domain [ , ]0 1  is the normal-
ized arc length of the rod, and SE(3) is the special Euclidean 
group of dimension three. The element x(s, t) is the full pos-
ture at time t of the infinitesimal element of the rod that 
is at a distance sL  from the robot’s base. So, x(0, t)  
is the configuration of the base, x(1, t) of the tip, ( / , )x t1 2  of 
the middle point, and so on. To each point s along the rod 
associate a mass density ( ) ,m s R! +  an external load in 
the form of a generic wrench ( , ) ,f s t R6!  and a velocity 

( , ) .x s t R6!o  The total mass of the segment is ( ) .m s ds
0

1#
It is worth stressing that despite the formulation refer-

ring to an infinitely thin structure (the rod), these models 
can be and commonly are applied every time a central 
axis can be identified. In this case, the curve x is referred 
to as the backbone of the soft robot. The use of framed 
curves as backbones for robots originated in the field of 
hyperredundant robots [18], [19]. Here, the rod serves as a 
continuum approximation of the discrete system [20]. The 
method was later adopted by continuum (stiff and soft) 
robots. Under the assumption that the cross sections of 
the soft robot change negligibly during deformations, the 
contribution of their area can be included by associat-
ing an infinitesimal rotational inertia ( )s RJ 3 3! #  to each 
point along the rod.

The rod shape ( , )x t$  can, in principle, serve as the con-
figuration of the robot at time t. An alternative that is gain-
ing increasing popularity in soft robotics is to use the local 
strains to represent the robot’s configuration: curvature, 
twist, elongation, and shear. These are the variations of x 
for infinitesimal variations of s. Hence, they are a function 

: [ , ]0 1 R6"p  or to a smaller space in case some of the 
deformations are not considered. Visualizations of pure 
strains are provided in Figure 2. Note that, contrary to x, 
the codomain of p  is the Euclidean space .R6  This avoids 
the need for introducing parameterizations of SE(3). Fur-
thermore, strains are a more direct extension of the joint 
variables commonly used as the configuration of classic 
articulated robots. For these reasons, we mainly focus on 
strain representations in this short review of modeling 
techniques despite shape-based ones being wildly popular 
in the literature. The rod posture x can always be recovered 
from the strains p  by integration. The result is a continuous 
version of what in classic robotics would be regarded as the 
forward kinematics of the robot.

At this point, the main ingredients necessary to 
describe a soft robot within the rod modeling framework 
have been laid down. The following sections focus on 
reviewing solutions for formulating the dynamics of these 
systems. We start from exact infinite-dimensional formu-
lations, then quickly move to survey the various existing 
alternatives to introducing expert intuitions into the 
problem and getting to a finite-dimensional model of the 
robot that can be used for control purposes. We often 
refer to piecewise constant curvature (PCC) models when 
providing examples. This is done for simplicity and 

because most of the properties of more complex models 
are already present in this more straightforward and 
widespread solution.

Infinite-Dimensional Models
The Kirchhoff-Clebsch-Love and Cosserat rod theories 
lead to exact descriptions of the dynamics of rod-like 
structures [21], [22], [23], [24]. Leveraging these frame-
works, the statics and dynamics of tendon-actuated con-
tinuum and soft robots are derived and experimentally 
validated in [25], [26], and [27], respectively. Multiple 
Cosserat rod models can be combined together through 
coupled boundary conditions to describe the kinematics 
of parallel soft robots [28], [29]. A tutorial on the dynamic 
Cosserat model for tendon-driven continuum robots is 
provided in [30]. These models have infinite-dimensional 
states, and thus, they are formulated as PDEs. This makes 
it hard to use them directly for control (see “Infinite-
Dimensional Control” for more details). Nonetheless, they 
can be profitably used to extract steady-state solutions. 
The use of the Magnus expansion to solve the kinematics 
of Cosserat rods is discussed in [31] and [32]. Also, the 
direct application to simulation is arduous but not impos-
sible. For example, [33] performs a time discretization that 
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Central Axis
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Tn1
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FIGURE 1 (a) A soft robot as described within rod theories. The 
central axis, or backbone, is a spatial curve that can deform. Cross 
sections are assumed to be undeformable, and they are rigidly 
connected to the curve. Some examples of disk-like cross sec-
tions are highlighted in the figure. To each point is also attached a 
reference frame ,Ss" ,  where s is the normalized arc length. (b) 
Piecewise constant strain models with three segments. First, four 
nodes along the backbone are identified ( , , , ) .0 1n n1 2  Then, the 
associated transformation matrices ( , , )T T T0

1n
n
n

n
1

1
2

2  are parameter-
ized by a finite set of variables. The robot configuration q is defined 
as the collection of these variables. In piecewise constant curva-
ture models, two subsequent nodes are always connected by an 
arc of a circle.
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transforms the PDE into an ODE in the s variable only. 
The latter is then solved at every time step to find the 
robot’s shape. Nonlinear observers can be used to speed 
up the convergence [34].

Finite-Dimensional Approximations
The alternative to PDE formulations is to restrict the range 
of possible shapes x or strains p  to a finite-dimensional 
functional space. For the sake of simplicity, from now on, 
we consider strain-based parameterizations when not dif-
ferently specified.

Two classes of strategies exist to achieve this goal: 
piecewise constant strain models and funct ional 

parameterizations. Both of them are discussed in detail 
in the following. At the current stage, what is essential 
to keep in mind is that using these techniques, the 
strain p  can be approximated as a function of the vector 
q Rn!  that serves as the configuration of the soft robot. 
This critical step enables the recasting of concepts from 
classic discrete robotics to the new continuum context. 
To start, the kinematics of a soft robot can now be 
defined as

 ( , ( )) ( , ( )) ( ), ( , )
( , )

x s q t J s q t q t J s q q
h s q
2

2
= =o o  (1)

Infinite-Dimensional Control

The question of whether infinite-dimensional models should 

be directly used in the design of feedback controllers is a 

long-lasting one, which extends far beyond the soft robotics field 

[S15], [S16]. Indeed, working with a finite-dimensional approxi-

mation of the dynamics substantially simplifies the control design 

and already takes into account some important features of the 

robot’s dynamics to any desired level of precision. From a practi-

cal standpoint, having results that can be proved for any level of 

discretization ( )n1 S 311 1  is de facto equivalent to dealing 

with the continuum case ( ).nS " 3  Even if appealing, it must be 

stressed that this approach is not mathematically accurate since 

it disregards important issues connected to convergence and 

well definiteness. Also, for this line of reasoning to hold, the level 

of discretization of the controller must be kept constant while 

increasing the discretization of the model. As a simple example, 

consider the feedforward controller (15). Different levels of dis-

cretization, in general, imply that the feedforward action does 

not perfectly match the exact one; that is, ( ) ( ),G q K qx = +t r t r  with 

G G K K 1 d- + -t t  for some .0 31 1d  As a result, a dif-

ferent equilibrium qrt  is attained, which is close to qr  if d  is small 

enough compared to the Lipschitz constants of A, K, and G. The 

robot’s configuration converges locally to qrt  if a version of (22) 

centered around the new equilibrium is verified. This analysis 

becomes more and more complex as soon as nontrivial feed-

back actions are involved [72], [135].

On the other hand, even if it requires an arguably substan-

tially more complex formalism, altogether avoiding state-space 

discretizations can have two major benefits. First, it is the only 

way to exclude that the controller will generate control spillover 

[S17], [S18]. This is a degradation of performance that can even-

tually bring instability due to the excitation of high-order and oth-

erwise stable dynamics operated by controllers designed using 

finite-dimensional approximations. Second, infinite-dimensional 

analysis can result in more compact and interpretable solutions 

compared to the ones based on high-dimensional ordinary dif-

ferential equations. However, the classic theory of partial differ-

ential equation (PDE) control has been mostly focused on linear 

systems [S19], [S20], [S21], with extensions to the fully nonlinear 

case being a topic that is currently actively researched [S22], 

[S23]. Consequently, the large majority of applications of PDE 

control to continuum mechanics [S24, Secs. 4 and 5] deal with 

systems that, for our goals, could be considered a small dis-

placement approximation of the nonlinear rod dynamics [S25]: 

Euler-Bernoulli and Timoshenko-Ehrenfest beams. These theo-

ries study continuum elements undergoing small planar defor-

mations as a result of an external load. Under these assump-

tions, their configuration is described as displacement from 

a neutral configuration, and their dynamics are described by 

linear PDEs. The suppression of vibrations in a Euler-Bernoulli 

beam subject to boundary actuation can be achieved using lo-

cal linear feedback [S26], [S27]. This strategy can be extended 

to simultaneously verifying constraints in the output by means 

of barrier Lyapunov function theory [S28] and to deal with dis-

turbances and input constraints using adaptive iterative learning 

control [S29]. Similarly, linear damping injection can be used to 

absorb vibrations in a Timoshenko beam subject to boundary 

[S30] and point-wise [S31] actuation. Damping injection can be 

combined with energy shaping for configuration control [S32]. 

The contact force regulation of a Timoshenko actuated at the 

base is discussed in [S33], under the hypothesis that the envi-

ronment provides dissipative damping forces.

Even if the vast majority of works deal with linear beam 

models, attention has also been devoted to nonlinear cases. 

In [S34], a numerical approximation of an optimal passivity-

based control is used to stabilize a Euler-Bernoulli beam 

undergoing deformations comparable to the ones of a soft 

robot. A practically stable boundary regulator for a nonlin-

ear Timoshenko beam with large deformations is proposed 

in [S35]. A boundary feedback control was proposed in [S36] 

for a beam undergoing large deflections and rotations as well 

as small strains, relying on the fact that this system can be 

mapped to a 1D first-order semilinear hyperbolic system. Mov-

ing a further step toward the soft robot case are works dealing 

with Kirchhoff rods: [S37] discusses the open-loop stability 
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where ( , )h s q R6!  is the map, called forward kinematics, 
connecting the configuration q(t) to the posture x(s, t) for 
each point s along the backbone. The matrix-valued func-
tion J is the Jacobian of h. The following set of ODEs can be 
directly derived from (1) via standard Lagrangian mechan-
ics machinery:

 

( ) ( , ) ( ) ( ) ( )

( )

M q q C q q q G q D q q K q

A q
Multibody dynamics Elastic and dissipative forces

Model of underactuation

x

+ + + +

=

p o o o
1 2 3444444 444444 1 2 3444 444

>
 

(2)

where ( , )q qo  forms the robot state.

The inertia matrix ( )M q Rn n! #  is evaluated as

 ( ) ( , )
( )

( ) ( , )M q J q s
m s I

s J q s s0
0

0d
J0

1
(= < ; E#  (3)

where m(s) and ( )sJ  are the mass and inertia distributions, 
respectively. Note that M(q) may become singular in some 
configurations. However, this can always be avoided by 
properly parameterizing the configurations space. As for a 
rigid robot, the inertia matrix verifies

 ( )M q c c q 2
m m# + l  (4)

of some configurations, [S38] proposes a purely experimen-

tal validation of a kinematic controller, and [S39] proposes a 

quasi-static manipulation strategy for soft objects by proving 

that the set of equilibria corresponding to changes in bound-

ary position and orientation constraints is a smooth manifold 

parameterizable with a single chart. Finally, [S40] and [S41] 

use energy shaping and damping injection for posture regula-

tion of soft robots modeled through Cosserat theory and with 

infinite-dimensional input space. Convergence is discussed 

under finite-element approximation.
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where ,c cm ml  are two positive scalars. If the elongation is 
considered negligible, then .c 0=ml  Coriolis and centrifugal 
forces ( , )C q q q Rn!o o  can be evaluated using the standard 
mathematical machinery (for example, Christoffel sym-
bols). Elastic ( )K q Rn!  and gravitational ( )G q Rn!  actions 
are defined as

 ( ) , ( )K q q
U G q q

UK G

2
2

2
2

= =  (5)

where the scalar-valued functions UK  and UG  are the asso-
ciated potential energies. They are obtained as integration 
along the spatial coordinate of the energetic contributions 
of each infinitesimal elements. The elastic force field is usu-
ally positive definite, and thus the stiffness matrix

 
( )

.q
K q

0
2

2
(  (6)

In some cases (for example, floating base and hybrid 
rigid-soft), this matrix may be positive semidefinite instead. 
Gravitational forces are bounded as

 ( )G q c c qg g# + l  (7)

where ,c cg gl  are two positive scalars, with the latter being 
equal to zero if no elongation is present. The friction losses 
are usually modeled as a possibly nonlinear damping 
action ( ) ,D q qo  with .D 0(  The input field ( )A q Rn m! #  is 
the transpose of the Jacobian mapping the m n#  actuation 
forces from their point of application to the configuration 
space. Indeed, control actions are often not directly colo-
cated on the states [35]. Without loss of generality, assume 
A to be full-rank columns. Some representative examples of 
actuation matrices are provided in Figure 3.

Piecewise Constant Strain Approximations
This family of discretization methods works by assuming 
that the strain p  is piecewise constant in s, with disconti-
nuities happening at fixed points along the rod, called 
nodes. Figure 1(b) gives an example of one such a model. 
The most straightforward implementation of this principle 
is planar PCC models. Here, all strains but one curvature 

{Ss}

{Ss}

{Ss}

{Ss}

{Ss}

{Ss + P}

{Ss + P}

{Ss + P}

{Ss + P}

{Ss + P}

Not Deformed

Elongation

Torsion

Shear Strain

Curvature

FIGURE 2 The six pure strains corresponding to a ( )s R6!p  with all elements but one equal to zero. Each one is associated with either a 
pure translation or rotation along with one of the three local axes of the reference frame .Ss  Infinitesimal translations are referred to as 
elongation when occurring along the axis tangent to the backbone and as shear strain if happening along with the directions orthogonal 
to the backbone (only one is shown). Similarly, infinitesimal rotations are referred to as torsion when happening along the axis tangent 
to the backbone and as curvature if occurring in the direction of the two orthogonal directions (only one is shown). 
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are neglected. The curvature itself is assumed to be piece-
wise constant. The resulting shape is a sequence of arcs 
connected in such a way that x is everywhere differentia-
ble, as shown in Figure 1. The vector q Rn!  collecting all 
the local curvatures (one per CC segment) is the finite-
dimensional configuration of a PCC robot. Thus, a PCC 
robot has as many degrees of freedom n as the number of 
considered segments .nS  Soft robots under PCC approxi-
mation can be seen as a direct extension of serial manipu-
lators with revolute joints to the continuum domain. 
Instead of being localized to one point (the joint), the 
change in angle here is homogeneously distributed along 
the segment. Note, indeed, that the curvature is equivalent 

to the angle subtended by the CC arc—also called the 
bending angle—since it is defined with respect to a nor-
malized arc length. The kinematics and dynamics of a 
single CC segment are analyzed in “Dynamics of a Con-
stant Curvature Segment.”

The kinematic description (1) of PCC robots has been 
intensively used for more than a decade in continuum 
robotics, as proved by the seminal review article [36], pub-
lished in 2010. The simplicity of the kinematics has played 
a major role in fostering this success, together with the 
effectiveness in describing real systems. Note, indeed, that 
a PCC is the exact steady-state solution of the infinite-
dimensional model when only pure torques are applied 

Generalized Force

qi–1

qi–1

qi–1

qi

qi

qi

j

j

j
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0

0
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1

0

0

i – 1

i
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0
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0
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^
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^
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0

FIGURE 3 Actuation patterns resulting in different elements of the matrix A(q). The examples are focused on how a generalized force jx  
that is applied to the ith segment is mapped in the configuration space. CC discretization is used for illustrative purposes. One actuated 
segment is represented with one or two CC segments: (a) coarse internal discretization and (b) finer internal discretization. The actuator 
produces an internal pair of opposite torques. This is the case of a pair of pressurized chambers and of a tendon-driven system with 
motors placed at the base of the segment. (c) jx  is a force applied tangentially to the tip of the ith segment. Here, J ,k 1  is the kth element 
of the Jacobian mapping qo  in the first linear velocity of the tip of segment i.
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Dynamics of a Constant Curvature Segment

The goal of this sidebar is to help a novice in soft robotics be-

come familiar with the topic by concisely presenting the deri-

vation of the main ingredients of what is arguably the simplest 

soft robot: a constant curvature (CC) segment. Regardless of its 

simplicity, this case already allows for many intuitions that can 

be directly transferred to more complex and general cases. Con-

sider a single planar segment, as in Figure S1, which is an arc 

with fixed length L and curvature possibly varying in time. The 

scalar curvature q R!  is sufficient to describe its full configura-

tion. Note that since the curvature is defined here with respect to 

the normalized arc length, q is the angle subtended by the arc, 

which is also called the bending angle. The two concepts are 

used interchangeably in this article. As a comparison, Figure S1 

also reports the noncontinuum element of which a CC segment 

can be considered the direct extension: a revolute joint connect-

ing two rigid links of length L/2. This can be seen as a rigid link 

lumped approximation of the CC segment.

The shape x(s, t) of the soft robot can be expressed by col-

lecting the position and orientation of all the reference frames Ss  

connected to the coordinate [ , ].s 0 1!  These quantities can be 

retrieved via simple geometrical arguments, as visually illustrated 

by Figure S1. The result is

 ( , ) ( , ( )) ( )
( )

( )
( )

( ) .
sin cos

x s t h s q t L q t
sq t

q t
sq t

L
s q t

1
= =

- <

; E  (S1)

Thus, q can also be defined as the angle between the 

base frame and tip frame. Note that x(s, t) has no singularity 

point since its limit in the straight configuration ( )q 0=  is well 

defined and equal to [ ] .L 0 0 <  However, the division by zero 

can generate numerical instabilities in practice. Figure S2 

compares how the shape of a CC segment changes com-

pared to that of its lumped discrete approximation. The two 

models get progressively more different with the increase 

of ,q  with one reason being that the length arc to which 

both links of the rigid model are tangent shrinks by a factor 

( / ) ( / ).cotq q2 2

According to (1), the Jacobian matrix mapping the time de-

rivative of the curvature ( )q t R!o  to ( , )x s t R3!o  is

 

( , )

.

cos sin

cos sin

J s q L
q

sq sq sq

q
sq sq sq

L
s1

2

2

=
-

- +
<^ ^

^ ^

^h

h

h

h

h

=

G
 

(S2)

This kinematic description is sufficient to express the iner-

tia according to (3). If a uniform distribution of mass [m(s) = m] 

and a very thin rod ( )0J -  are assumed, then the configura-

tion-dependent inertia is

 ( ) .
sin cos

M q mL
q

q q q q q
20 3

20 6 12 6
0

lim

2

5

3

1
q 0

2=
+ - +

)=
"

e ^ ^h h o
1 2 344444444444 44444444444

 (S3)

Note that similar closed-form solutions for M can be found for 

different mass distributions and nonnull inertia. These assump-

tions are introduced here for the sake of conciseness. Figure S3 

shows a plot of M(q) for all the curvatures in [ , ].2 2r r-  The iner-

tia decreases with the increase of ,q  following a bell curve that 

{S0} {S0}

{S1}
{S1}

{Ss}

q

q

L /2

L /2

sq
q

L

q

(a) (b)

FIGURE S1 A CC segment together with a lumped rigid link model serving as its first-order approximation. The two resulting 
dynamics have equivalent structural properties but are described by substantially different dynamic equations. (a) R-PEA. (b) CC 
segment.  
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goes to zero when .q " 3  This is because changes in q are re-

flected in progressively smaller changes in the shape of the soft 

robot when the curvature is larger; that is, ( , ) ( , )x s q x s qq 2
2

d+ -  

decreases with the increase of q  for all fixed .0q 2d  It is also 

worth noticing that the inertia of the lumped model with a homo-

geneous distribution of mass is ( / ) ( / ) / / ,m L mL2 2 3 242 2=  which is 

smaller than M(0) despite the two systems being perfectly super-

imposed in the straight configuration. This can be explained by 

considering that the rigid model neglects the motion of the lower 

half of the robot, so an actuation torque sees only the inertia pro-

duced by half of the robot’s body.

Since M is not constant, this formulation of the CC segment 

dynamics is affected by the following centrifugal force:

 
( , )

.
sin sin cos

C q q q t
M q

mL
q

q q q q q q q
q

2
1

3
12 30 3 18

d
d

2

6

2 3
2

=

=-
- + + +

o o o

o
^ ^ ^h h h  

 
(S4)

Note that we could evaluate C by direct differentiation of M 

since both are scalar. Figure S3 reports the evolution of this 

force when q changes. As expected from a centrifugal action, 

( , )C q q q- o o  tends to increase with q  for all .q 0!o

Consider the base of the robot being oriented with a ge-

neric angle z  with respect to a gravity acceleration of intensity 

g. The gravity potential can be calculated by summing the con-

tributions of each infinitesimal element:

 ( , ) ( , ) ( , )
( )
( )

cos
sinU q mg x s x s q s0

0
d

s

0

1
G

Infinitesimal contribution of element 

z

z

z= - <^ h > H
1 2 344444444 44444444

#  (S5)

which is the variation of the center of mass location with re-

spect to the straight configuration, projected to the direction 

of the gravity acceleration and multiplied for mg. According to 

(5), direct differentiation of the associated potential yields the 

gravitational torque

( , ) ( , )
( )
( )

.

cos
sin

cos cos sin sin

G q m g J s q s

m gL
q

q
q

q
0

2

d
0

1

3 2
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z

z

z z z z

=-

=-
- -

+
- -

<

c

e ^ ^ ^ ^

m

h h h h o

> H#

 

(S6)

Figure S3 depicts the case of ,0z =  corresponding to a 

gravity field aligned with the straight configuration of the ro-

bot (pointing downward in Figure S2). Two relevant symme-

tries that may help with thinking about how G changes with 

z  are ( , ) ( , )G q G qz z r=- +  and ( , ) ( , ).G q G qz z=- - -  The 

flexural rigidity can be modeled as a torque proportional to the 

local bending of the robot, which is the curvature q. Thus, the 

elastic force is

 ( ) ( ) ( )K q q k s q s k s s q2
1 d d

( )U q

2

0

1

0

1

Infinitesimal contribution Average stiffness

K

2
2= = c m
6 7 8444444 444444

1 2 344 44 1 2 3444 444
# #  (S7)
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FIGURE S2 The geometrical characterization of (a) a rigid robot with a single revolute joint and (b) a CC robot. The behaviors are 
similar to the straight configuration, but they strongly depart from one another when the angle q; ; increases. The configurations 
corresponding to { , / , , / , }q 2 3 2 3 2 2f! r r r r- -  are shown with thin gray lines. The corresponding centers of mass are also 
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where ( )k s R!  is the local stiffness in s, which is assumed to 

be almost constant for the CC assumption to hold. Similarly, the 

damping torque can be evaluated by assuming local dissipation 

proportional to the variation of curvature. The torque then needs 

to be mapped in q, leveraging the kinetostatic duality:

 ( ) ( , )
( )

( )D q q J s q
d s q

s sd s s q
0
0 d d

0

1

0

1

Infinitesimal contribution
Equivalent damping

= =<o

o
c m> H

1 2 34444 4444
1 2 3444 444

# #  (S8)

where ( )d s R!  is the local damping in s. Thus, both the elastic 

and damping forces are linear under the discussed assump-

tions. Equivalent results are also obtained when infinitesimal 

springs and dampers proportional to the elongation are as-

sumed to be distributed along the thickness of the robot [48]. 

Finally, consider the robot to be actuated with a pure torque 

applied at the tip, resulting in

 ( ) ( , ) .A q J q1
0
0x

x

x= =< > H  (S9)

Dynamics of a Constant Curvature Segment (Continued )
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FIGURE S3 The evolutions of (a) (S3), (b) (S4), and (c) (S6), all 
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FIGURE S4 The evolution of a CC segment and its lumped rigid 
link approximation with parallel springs (R-PEA) and without par-
allel springs (R). The CC dynamics are described by (S3)–(S9). 
The parameters considered here are . , . ,m L0 5 0 25Kg m= =   

. , . ,k sd0 05 0 01N m N ms
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$ $= =# #  and ( ( ), ( )) ( / , ).q q0 0 3 0r=o  

The three plots show the evolutions for ( , )x z  equal to (a) 
( , ), ( ) ( . , ),0 0 0 3 0N m b N m$ $-  and (c) ( , / ).0 2N m$ r-  In all the 
three cases, CC and R-PEA are qualitatively similar and both 
different from R.
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along the structure of a homogeneous planar soft element. 
When moving to a 3D space, the geometrical characteriza-
tion of a PCC robot as a sequence of arcs remains unvaried, 
but the plane of bending can change. This effectively intro-
duces two degrees of freedom per segment; that is, .n n2 S=  
The usual way in which this motion is represented in the 
literature is by including in q the orientation of the n rela-
tive orientations of the planes of bending. Although intui-
tive, this representation introduces singularities and 
discontinuities [37], which can be avoided with alternative 
parameterizations [38], [39], [40], [41]. Occasionally, piece-
wise constant elongation is also considered, with disconti-
nuity points coincident to the curvature ones, thus leading 
to n n2 S=  for the planar case and n n3 S=  for the 3D one. 
An extension of the PCC framework to include deformable 
cross sections is proposed in [42].

As discussed for the general case, the dynamic model (2) 
of a PCC robot is obtained by combining (1) with the physi-
cal characteristics of the system through standard Lagrang-
ian formalism [43]. Yet, deriving closed-form expressions of 
M and G is unpractical when considering multiple seg-
ments without relying on recursive formulations. Approxi-
mations of the mass distribution are thus often imposed to 
simplify the model derivations. Models having the mass of 
each segment lumped into a single point along the rod are 
discussed in [44] and [45]. Alternatively, a lumped mass 
and inertia can be placed at the center of mass [46], [47], 
therefore neglecting only the change in rotational inertia. 
Under this hypothesis, the soft robot can be represented 
through an augmented rigid robot model, therefore 
enabling the use of standard tools for calculating the 
expression of dynamic forces [48], [49].

A simpler alternative to PCC that can be used to model 
robots bending and elongating are rigid link approxima-
tions [50], [51]. The rod here is approximated through a 
sequence of links connected with standard independent 
joints. This is equivalent to considering a p  that is null 
everywhere except for a finite set of points where it assumes 
the value of a Dirac’s delta. Lumped springs are added in 
parallel to each joint to describe the robot’s impedance. The 
resulting structure is a standard rigid robot with parallel 
elasticity, and it is therefore described by a set of ODEs as 
(2). Kinematic models of parallel soft manipulators based 
on these strategies are discussed in [52], [53], and [54].

PCC models can be extended further by also adding 
piecewise constant shear deformation and twist. This is 
done by the piecewise constant strain models proposed in 

[55] and [56], which define procedures for extracting 
models in the form of (2), where .q R n6 s!  The inertia matrix 
M(q) implements a full dynamic coupling within the six 
strains. On the contrary, the elastic part of the potential 
forces K(q) is usually either diagonal or block diagonal. 
Thanks to their capability of describing complex strain con-
ditions naturally arising in closed kinematic chains, these 
models can be used to describe soft parallel structures [57].

How Fine Should the Discretization Be?
For a given soft robot to be modeled under a piecewise con-
stant strain approximation, the number of segments ns  to be 
considered is up to the designer of the model to decide as a 
result of application-specific considerations. First, the 
mechanics of the robot impose a lower bound in case the 
robot is obtained as a sequence of actuated modules since 
considering fewer than one constant strain segment for each 
actuated one would generate incoherent behaviors (for 
example, actuating one segment would result in a motion in 
the following one). Also, it is, in general, inconvenient to 
have constant strain segments shared among more than one 
actuated segment. If the robot is used for simulation, then a 
tradeoff between accuracy and simplicity must be estab-
lished. For ,ns " 3  the model converges to the exact con-
tinuum representation, but the computational cost for the 
simulation will increase as ( )O ns

2  at best [58]. In case the 
model is used for control design, then the number and the 
location of the segments may change the structural proper-
ties of (2). It is common to place segments in such a way that 
the resulting model is fully actuated; that is, A(q) is square 
and full rank. For planar PCC models, if x  are torques 
applied at the tip of each CC segment, then A(q) = I, therefore 
further strengthening the parallelism with standard serial 
rigid robots. Most of existing actuation technologies will 
satisfy this hypothesis (for example, tendons and fluids).

Functional Parameterizations
Instead of discretizing along the arc length, the finite-
dimensional parameterization can happen by projecting 
onto a low-dimensional functional subspace. In the case of 
strain parameterizations, this is done as follows:

 ( , ) ( ) ( )s t s q ti
i

n

i
1

p r=
=

/  (8)

where { ( ), , ( )}s sn1 fr r  is a base of the subspace and the 
weights ( )q ti  can be taken as the configuration of the robot.

Equations (S3)–(S9) can be combined using (2), yield-

ing a scalar second-order dynamic for q that has the same 

structure and structural properties of a lumped joint model 

with parallel impedance but with different and more complex 

expressions. Examples of the resulting evolutions are shown 

in Figure S4.

Dynamics of a Constant Curvature Segment (Continued )

Authorized licensed use limited to: TU Delft Library. Downloaded on June 20,2023 at 07:23:04 UTC from IEEE Xplore.  Restrictions apply. 



42 IEEE CONTROL SYSTEMS » JUNE 2023

One simple way of selecting : [ , ]0 1 Ri
6"r  is to truncate 

an infinite-dimensional basis of a regular enough func-
tional space. This choice ensures that the approximation 
converges to the exact model for .n " 3  It is also conve-
nient to include constant functions so that the model is a 
proper extension of the CC or constant strain one. For 
example, in the case of inextensible planar soft robots (that 
is, p  contains only the curvature), polynomials ( )s si

i 1r = -  
are a basis that satisfies both conditions.

Functional parameterizations are widely used in model-
ing flexible link robots [59] to represent infinitesimal vibra-
tions of the link from its nominal configuration and not 
strains. In this context, the base functions ( )sir  are usually 
selected as the n slowest modes of the Euler-Bernoulli beam 
modeling the link [60], [61]. Early works in hyperredundant 
robotics [62] pioneered the application of functional expan-
sion to the large deformations of rod-like structures that 
are now being proposed for soft robotics. The latter include 
projections in polynomial spaces [63], [64] and on a base 
derived as the truncated Taylor expansion of the forward 
kinematics [65], [66]. This strategy is also investigated in 
[67], [68], and [69] when modeling deformable objects. 
Functional expansions are also used in continuum mechan-
ics to approximate the equilibria of rods and beams [70], 
[71]. Note that, contrary to (8), all these works focus on 
functional expansions of the shape expressed as the Carte-
sian configurations (·, ).x t

The use of the strain-level expansions (8) is a more 
recent result. The dynamics of planar soft robots with 
polynomial curvature are discussed in [72] and [73]. A 
general formulation for a generic choice of ir  is proposed 
in [31] and [74], and its application to parallel structures is 

discussed in [75]. Note that this framework naturally 
includes rigid link and piecewise constant strain approxi-
mations when considering Dirac’s deltas and rectangular 
functions as .ir  No matter the choice of ,ir  the robot’s 
dynamics can still be formulated as (2). However, a full 
dynamic and potential coupling among all the degrees of 
freedom exists in general, even when relying on a strain-
based parameterization.

Volumetric Models
Despite also applying to the discretization of rods, finite-
element models (FEMs) are the way to go when it comes 
to modeling nonslender robots. In FEMs (also called 
finite-element methods) of deformable solids [76], the 
geometric shape is described by identifying a mesh, 
which is a set of nodes together with the information 
about neighboring nodes (Figure 4). If the position of the 
nodes is known, an approximation of the entire volume 
results from interpolation. FEM is, therefore, the pre-
ferred solution whenever the changes in the 3D struc-
ture of the robot are not negligible compared to the 
structure’s virtual backbone. In their general definition, 
FEMs are formulated as ways of approximating solu-
tions of PDEs. Thus, FEMs can be used to discretize rod 
models of soft robots [56]. Furthermore, this framework 
naturally extends to modeling systems encompassing 
multiple continuous behaviors, for example, magnetic, 
thermal, and fluid [77].

The discussed space interpolation naturally leads to a 
kinematic description in the form of (1). The configura-
tion q Rn!  is the collection of the nodes’ location in the 
space. So, n is, in general, three times the number of 
nodes. Since the full volume is explicitly considered, the 
forward kinematics h(s, q) are to be parameterized with 
s R3!  rather than a scalar. Similar to rod models, FEMs 
have the advantageous property of converging to the 
exact model when n tends to infinity. Using several thou-
sand nodes, in general, produces a very accurate model 
at the cost of a quite large configuration space. Note, 
however, that measuring and observing the whole state 
of a FEM model are not always needed when implement-
ing closed-loop controls. Dynamic equations in the form 
of (2) result from the application of Lagrangian machin-
ery to (1) in a similar fashion as the rod case. The dis-
cretizations in strain space p  discussed in the previous 
sections usually result in a linear K(q) and constant 
D(q) at the cost of a configuration-dependent inertia 
matrix M(q). On the contrary, FEM analysis resulting 
in the following simplifications is introduced when-
ever the mass is assumed to be concentrated to the nodes: 

( )/ , ( , ) ,M q q C q q0 02 2 = =o  and ( )/ .G q q 02 2 =  Thus, the mul-
tibody dynamic part of (2) simplifies into .Mq G+p  Fur-
thermore, M is sparse if q represents the nodes’ configuration 
in the space. On the downside, K(q) is usually nonlinear, 
and D(q) and A(q) are rarely constant.

Mesh

Element Node

Equivalent
Point Mass

(qi, qi+1)

FIGURE 4 The dynamics of the planar portion of a soft robot are 
approximated using FEMs as a network interconnection of trian-
gular elements. A mesh defines the topology of this interconnec-
tion. The mechanical properties (stiffness, damping, and mass) 
are computed on elements based on the constitutive law of the 
material. These properties are then assembled in large vectors 
and sparse matrices, using the connectivity of the mesh. The con-
figuration q of the robot is defined as the collection of the Carte-
sian positions of the mesh nodes. Dissipative elements are not 
shown for the sake of space. 
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Model Order Reduction
The high-dimensional configuration space of a FEM model 
can be compressed by selecting a set of n nr 11  directions 
of interest [78]. In practice, nr  is usually on the order of a 
few dozens, and thus, / .n n 102

r L  The reduced order con-
figuration is defined as ,q qr U=  where, for simplicity, it is 
assumed that the configuration q is defined such that q 0=  
is the system equilibrium for .0x =  This projection is con-
ceptually similar to the functional parameterizations dis-
cussed in the preceding for rod dynamics. The resulting 
dynamics in qr  space are

 ( ) ( ) ( )M q G D q q K q A qr r r r r xU U U U U U U U U U+ + + =< < < << p o^ ^h h
 (9)

which is again in the general form of (2). Note that 
MU U<  is diagonal if M is diagonal and if U  is orthogo-

nal. The matrix U  should be selected in such a way that 
the solution of (9) is representative of the evolution of 
(2) for the full FEM model as soon as the initial condi-
tion satisfies ( ( ), ( )) ( ( ), ( )) .q q q q0 0 0 0r r U U=o o  Modal analy-
sis is a well-known tool in FEM theory to achieve this 
goal [78, Ch. 12]. The linear modes of the linearized 
system about the equilibrium configuration are calcu-
lated. The eigenvectors associated with the smallest 
eigenvalues (slowest modes) are used to build .U  The 
value of nR  can be defined according to the frequency 
range of vibrations that the designer is interested in 
capturing. This procedure implicitly operates a regu-
larization of the FEM model, getting rid of many 
numerical vibrations happening at high frequency, 
which can be assimilated to numerical noise. Alterna-
tively, the columns of U  can be evaluated from the sin-
gular value decomposition of a dataset of representative 
evolutions of the system [79]. Following a similar phi-
losophy as the functional expansions discussed for rod 
models, model order reduction of FEMs can also be 
extended to nonlinear deformations [80], [81], [82]. 
Primitives that are intrinsically volume preserving are 
proposed in [83]. The extension to the modeling of soft 
robots with self-contact forces is discussed in [84]. One 
reason for n to reach high values—up to hundreds of 
thousands—is that the robot geometry has many details 
(thinned areas, holes, and small grooves). This issue 
can be tamed through several methods, as, for example, 
extended FEM [85], [86], which does not radically reduce 
the size of the models. Condensation is another widely 
used approach. It operates model reduction by parti-
tioning the configuration space in loaded—directly 
actuated—and unloaded variables. The loading condi-
tions are modeled as holonomic constraints and solved 
with Lagrangian multipliers [78], [87], [88]. Condensa-
tion has also been used to connect FEM and rod models 
in [89]. A recent review article on model reduction tech-
niques is also available [90].

Existence of Equilibria
The equilibrium configurations of (2) associated with a 
control input xr  are all the q Rn!r  such that

 ( ) ( ) ( ) .K q G q A q x+ =r r r r  (10)

Due to the many nonlinearities involved, the solutions 
of (10) cannot be expressed in closed form, in general. An 
exception is when K + G is monotone (for example, high 
enough stiffness) and the input field A is configuration 
independent. In this case, the solution of (10) is

 ( ) ( ) .q K G A1 x= + -r r  (11)

A single equilibrium always exists for any choice of actua-
tion. If K + G is not monotone or the actuation field A is con-
figuration dependent, the existence of at least one equilibrium 
for any given xr  is to be expected if K(q) is radially unbounded 
(that is, the stiffness is not vanishing). Several solutions to this 
equation may, in general, exist. Consider, for example, the case 
of n 1=  and .c A ca a1 1- +  Thus, if K(q) is radially unbounded 
and G(q) is limited, then K/A and G/A are also. Thus, 
( )/K G A+  is radially unbounded even if, in general, not 
monotonic. It is also a continuous function. As a consequence, 
there is always at least one equilibrium configuration, that is, 
a configuration qr  that verifies ( ( ) ( ))/ ( ) .K q G q A q x+ =r r r  This 
sketch of proof is represented by Figure 5. The existence of 
at least one equilibrium for any constant actuation is in 
sharp contrast with classic rigid robots, for which a con-
stant actuation can never result in an equilibrium con-
figuration unless gravity is involved.

Actuators Dynamics
A wide variety of strategies can serve as actuation sources 
for soft robots, including pneumatic actuation, tendon-
driven systems, and electroactive materials [1]. Yet, relatively 

K (q )

K (q ) + G (q )

A (q )

A (q )

qK (q ) + cg

ca

K (q ) – cg

ca
+

FIGURE 5 In the scalar case, (10) always has at least one solution 
for unbounded K and bounded A and G. This figure reports a rep-
resentation of the reasoning behind the proof of this statement.
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little attention has been devoted, so far, to incorporating the 
dynamics of actuators (for example, pistons, valves, and 
motors) in dynamic models used for control. Nonetheless, 
we can still provide a model based on similar formulations 
from classic robotics [91], [92], which holds for actuation 
strategies where the main function components of the actu-
ators are themselves mechanical (for example, tendons 
actuated through electric motors and fluids pressurized 
through pistons):

 ( ) ( , ) ( ) ( ) ( ) ( , )M q q C q q q D q q K q G q q
U q 0c

2
2

h+ + + + + =p o o o  (12)

 ( ) ( , ) ( , )B H U qc

2
2

h h h h h
h

h x+ + =p o o  (13)

where we do not include dissipation in the actuation and 
transmission systems for the sake of simplicity. Here, (12) is 
a modified version of (2), thus describing the soft robot’s 
dynamics. Instead of assuming that the control input can 
be directly exerted on the robot, we introduce (13) govern-
ing the actuators’ dynamics. The configuration of all the 
actuators is collected in Rm!h  as, for example, motor 
angles and piston motions. Here, ,B H Rm m! #  are the asso-
ciated inertia and Coriolis matrices. The former is usually 
diagonal and configuration independent, and, in turn, 

.H 0=  This is, however, not always the case, an exception 
being magnetically actuated soft robots with magnets 
moved by a rigid robot [93]. In this case, h  are the joint con-
figurations of the rigid robot.

The coupling between the dynamics (12) and (13) is 
purely mediated by the potential field ,Uc  which models 
elasticity of tendons, molecular interactions in compress-
ible fluids, and electromagnetic fields, just to cite a few. 
Thus, through this formulation, we render explicit that the 
control action Rm!x  influences the behavior of the actua-
tors (13), which, in turn, modifies the behavior of the robot 
(12) via the coupling / .U qc2 2

One way to connect (12) to the original (2) is to consider 
the case in which the dynamics of h  are fast compared to q 
as well as globally stable. Then, (13) can be approximated 
by its steady-state behavior ( , ) .q-h h xr  In this case, 

( , ( , ))/U q q qc2 2h x- r  serves as a generalization of the input 
field ( )A q x  appearing in (2). Alternatively, singular pertur-
bation theory can be used to separate the fast actuator 
dynamics from the slow soft robot one without applying 
quasi-static approximations [94].

Simulators
A bottleneck to entering the field of soft robots control has 
been the need to implement the simulator of the soft robot. 
This is especially troublesome when considering that the 
models used for simulation are typically more sophisti-
cated than the ones used for control. Luckily, several simu-
lators are being developed, of which many are already 
available as open source projects: SOFA [95], [96], DiffAqua 

[97], and ChainQueen [98] use velumetric FEM techniques, 
while Elastica [99], TMTDyn [100], SimSOFT [56], Viper 
[101], and SoRoSim [102] implement discretizations of rod 
models. More details on simulators for soft robots can be 
found in [103, Sec. VII]. Still, selecting the right model 
among all the available ones is a task with no clear solution. 
Experimental comparisons, such as the ones provided in 
[104] and [105], can be a useful tool in this context.

SHAPE CONTROL IN THE FULLY ACTUATED 
APPROXIMATION
The primary task of control architectures in classic robot-
ics is to accurately manage the posture of the robot, that 
is, configuration space control. In the case of soft robots, 
this translates into devising strategies to control the 
whole shape of the system, that is, controlling q (see 
“Model-Based Perception of Shape and Forces”). Depend-
ing on the model used for control design, this task may 
translate into different goals—for example, curvature, 
strain, and volume control—that share a set of character-
istics. The importance of carefully selecting the model 
used for control design therefore becomes apparent. 
Indeed, applying the same control solution with different 
models will produce substantially different closed-loop 
behaviors, both in terms of the transient and steady states. 
We start in this section with robots that can be effectively 
modeled as fully actuated; that is, ,m n=  and, without 
loss of generality, ( ) .A q I=  It is shown how this approxi-
mation allows for acquiring important insight on the 
behavior of soft robots.

Posture Regulation
Posture regulation is defined as follows. Given a desired 
constant configuration ,q Rn!r  find a control action Rm!x  
such that the configuration of the soft robot q Rn!  eventu-
ally converges to the desired one; that is,

 ( ) .lim q t q
t

=
"3

r  (14)

As discussed in the previous section, an equilibrium is 
always associated to any constant control input, as exem-
plified by (11). This equilibrium is also asymptotically 
stable under opportune conditions on the mechanical 
impedance of the robot. Consider the following purely 
feedforward controller (see Figure 6):

 ( ) ( ) ( )q K q G qx = +r r r  (15)

where K and G are the elastic and gravitational fields with 
potentials UK  and ,UG  respectively, as defined in (5). Sub-
stituting (15) in (2) and rearranging terms yields

( ) ( , ) ( ( ) ( )) ( ( ) ( )) ( ) ( )M q q C q q q K q G q K q G q D q q
Physical P loop Physical D loop

+ = + - + + -p o o r r o
1 2 344444444 44444444 1 2 344 44

 
 

(16)

Authorized licensed use limited to: TU Delft Library. Downloaded on June 20,2023 at 07:23:04 UTC from IEEE Xplore.  Restrictions apply. 



JUNE 2023  « IEEE CONTROL SYSTEMS 45

where we can recognize the same mathematical structure 
of a classic robot (the left-hand side) controlled through 
a nonlinear proportional derivative (PD) regulator (the 
right-hand side). Note that the reference is constant, and 
thus, .q 0=ro  It is worth stressing that the physical system 
is excited with a simple feedforward at this stage, which 
behaves as a PD regulator only when combined with part 
of the robot’s dynamics.

The control community has devoted much attention to 
(nonlinear) PD controllers [106], which has produced a 
thriving literature that soft roboticists can borrow from 

[107], [108], [109] by relying on (16), as done in the follow-
ing theorem.

Theorem 1
The state ( , )q 0 R n2!r  is an asymptotically stable equilibrium of 
system (2) subject to the constant control action (15) if an open 
neighborhood ( )q RN n3r  of qr  exists such that ( )/{ }:q q qN6 ! r r

 
( ) ( ) ( ) ( )

( ) ( ) ( )

U q U q U q U q

q U q U q q q
q q

G K G K

G K2
2

2+ +

+ + -
<

=

r r

r
r

^ ^
c ^

h h
hm  (17)

Model-Based Perception of Shape and Forces

Despite the many advances in designing and fabricating 

soft sensors [9], the perception problem remains an open 

one in soft robotics. The use of models can help connect a 

finite number of sensor measurements to the virtually infinite 

degrees of freedom. Yet, for most existing models, there ex-

ists no sensor capable of directly measuring the configuration 

space q. At best, a nonlinear combination of the state vari-

ables h(q) can be measured, where h is the forward kinemat-

ics of the sensor location. This is the dual to the colocation 

problem in control. Indeed, retrieving a configuration q com-

patible with the measurements ( )x h q=r  is formally equivalent 

to the task space regulation (34), and thus, it can be solved 

by using (35). Alternative kinematic inversion solutions can 

also be used. For example, constant curvature models admit 

closed-form inverse kinematics [S42]. Nonlinear constrained 

optimization is used in [S43] for soft robots with lumped joints. 

Knowledge of the robot dynamics can also be taken into ac-

count when using nonlinear observers, as in the extended 

Kalman filter [S44], [S45].

The persistence of the potential field ( ) ( )K q G q+  connects 

forces and configurations, especially at the steady state, as 

described by (10). The static inversion of a rigid link approxima-

tion of a soft rod is used in [S46] to extract posture information 

from a six-axis force/torque sensor plate placed at its base. 

Yet, this relationship is most often used in the other direction: 

from posture measurements to force sensing. Static models 

can be used to regress an equivalent wrench applied at the 

end effector from posture information [S47], [S48] under the 

hypothesis that the robot is lightweight. Disturbance observers 

can be used to detect interactions when the robot mass is not 

negligible [S49]. The location and intensity of the external force 

can be simultaneously regressed when enough information on 

the current shape of the robot is available. This is achieved in 

[S50] by using a piecewise constant curvature model and in 

[S51] through modal expansion. Numerical inversion of a static 

Cosserat model can provide an estimation of the whole force 

distribution through functional expansion of the force profile 

[S52]. Static finite-element model inversion is used in [S53] 

to detect and characterize contacts integrating capacitive and 

pneumatic sensing. The method can also be applied to soft 

surfaces. Tip forces and a robot’s shape can also be estimated 

simultaneously by integrating measurements of the base load 

with a static Cosserat model [S54].
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and

 ( ) ( ) ( ) ( ) .G q K q G q K q!+ +r r  (18)

Proof
Consider as a Lyapunov candidate the following general-
ization of the energy of the robot:

 

( , ) ( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( ) .

V q q q M q q U q U q U q U q

G q K q q q

2
1

Kinetic energy

G G K K

Centered potential energy

Correction term

= + - + -

+ + -<

<o o o r r

r r r

1 2 3444 444

1 2 344444 44444

1 2 344444444 44444444
 

(19)

The kinetic energy is always strictly positive definite 
in qo  since .M 0(  Thus, a necessary and suff ic ient 
condition for V to be positive definite in ( , )q qo  is that 

( ) /V q M q q 2- <o o  is positive definite in q, which is equiva-
lent to (17). The next step is to study the sign of the time 
derivative of (19), which is

 

( , ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

( , ) ( ) ( ) ( )

( )

V q q q M q q q M q q

q K q G q K q G q

q C q q q q D q q q M q q

q D q q

2
1

2
1

= +

- + - +

=- + - +

=-

<

<

< < <

<

<o o o p o o o

o r r

o o o o o o o o

o o

^ h
 

(20)

where the first step exploits (16) to express Mqp  and the second 
step exploits the passivity of the system ( ( ) ( , )) .q M q C q q q2 0- =<o o o o  
Equation (20) is only positive semidefinite despite D(q) being a 
strictly positive matrix since ( , )V q 0 0=o  for all q. Thanks to 
LaSalle’s principle, the system converges to the set of ( , )q 0  such 
that .q 0=p  Thus, we can prove the asymptotic stability of ( , )q 0r  

by showing that the desired equilibrium configuration qr  is the 
only configuration in ( )qN r  such that q 0=p  for .q 0=o  Combin-
ing these conditions with (2) results in

 ( ) ( )G q K q ! x+ r  (21)

for all ( ) .q qN! r  Plugging the xr  from (15) into (21) yields 
hypothesis (18), thus concluding the proof. 

If the level curves of the potential energy ( ) ( )U q U qG K+  
are closed in ( ),qN 0  then we can rely on the proof of Theo-
rem 1 to introduce a lower bound for the region of asymp-
totic stability associated to qr  as the set ( , )S q q R n2!= o"

( , ) ,V q q cs.t. 1o ,  with c being the maximum value such that 
( ) .S q RN n

0 #3

Equation (17) is a convexity condition on the total poten-
tial energy ( ) ( ) .U q U qG K+  Thus, it can be locally checked 
by looking at the sign of the Hessian matrix. This results in 
the condition

 
( ) ( )
q

K q
q

G q
0

q q
2

2

2

2
(+

= r

e o  (22)

which means that the force field linearized at the desired 
equilibrium is attractive. In turn, this also implies that the 
potential force field is locally not constant, therefore also 
implying that hypothesis (18) is true at least in an infini-
tesimal neighborhood of .qr  Additionally, (22) becomes a 
necessary condition for (17) when *  is used instead of .(  
The two terms in (22) are the stiffness matrices associated 
with elastic and potential fields. While the first is always 
positive definite [see (6)], the second is not definite in sign. 
Gravity may serve either as a destabilizing ( ( )/ )G q q 02 2 )  
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or as stabilizing force ( ( )/ ) .G q q 02 2 *  For the CC segment 
described in “Dynamics of a Constant Curvature Seg-
ment,” these two conditions correspond, respectively, to 
the robot pointing upward ( )z r=  or downward ( )0z =  
when in a straight configuration ( ) .q 0=

Thus, as already pointed out for the analysis of equilib-
ria, the presence of an elastic field makes the control prob-
lem simpler to solve compared to the standard rigid case. 
This can be regarded as an instance of the so-called self-
stabilization property of soft robots, which has been recog-
nized by several works in the literature [110], [111]. However, 
even if a feedforward action has proved to be sufficient for 
stiff enough systems, it is still interesting to consider what 
happens when a further feedback loop is introduced. This 
may serve several purposes: enlarge the basin of attraction, 
shape the transient, and reject disturbances. In the latter 
case, stability can still be verified in a similar fashion pro-
vided that some conditions on the disturbance are met (for 
example, boundedness).

Further following the analogy with nonlinear PDs, (15) 
can be extended as follows for the fully actuated case 
(Figure 6):

 ( , , ) ( ) ( ) ( ) .q q q K q G q q q q
Feedforward PD

x a b= + + - -r o r r r o
1 2 3444 444 1 2 3444 444

 (23)

Here, , Rn n!a b #  are two gain matrices weighting the 
proportional and derivative actions, respectively.

Corollary 1
The state ( , )q 0 R n2!r  is an asymptotically stable equi-
librium of the closed loop (2)–(23) if ( )D q ( b-  and an 
open neighborhood ( )q RN n3r  of qr  exists such that 

( )/{ }:q q qN6 ! r r

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

U q U q q q q q

U q U q q U q U q q q

2
1

q q

G K

G K G K2
22

a+ + - -

+ + + -
<

<

=

r r

r r r
r

^

^ c ^

h

h hm
 

(24)

and

 ( ) ( ) ( ) ( ) ( ) .G q K q q q G q K q!a+ + - +r r r  (25)

Proof
The closed-loop dynamics are ( ) ( , ) ( ( )M q q C q q q K q+ =p o o r  

( ) ( ( ) ( )) ( ) ( ( ) ) .)K q G q G q q q D q qa b- + - + - - +r r o  The previ-
ously discussed proof generalizes to this case by adding 
( ) ( )/q q q q 2a- -<r r  to (19). The time derivative of this new 
Lyapunov candidate is ( ) ,V q D q qb=- +<o o o^ h  which is semi-
negative definite if ( ) .D q 0(b+  Thus, any 0*b  imple-
ments a damping injection that does not destabilize the 
closed loop. The rest of the proof follows as in the feedfor-
ward case. 

Similar considerations on the region of asymptotic sta-
bility to the ones made for Theorem 1 apply here. The suf-
ficient condition for local asymptotic stability is

 
( ) ( )
q

K q
q

G q
0

q q
2

2

2

2
(a+ +

= r

e o  (26)

which becomes necessary when only semipositiveness is 
required. Note that (26) can always be fulfilled through a 
large enough proportional gain .a  Yet, large gains may 
result in a stiffening of the soft robot [112] and amplifica-
tion of the noise and excitation of neglected dynamics.

Figure 7 provides a comparison of (15) and (23) in regulating 
the shape of a fully actuated model of a soft robot. The desired 
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FIGURE 7 The pure feedforward controller (15) and the PD with 
feedforward controller (23), regulating the shape of a planar soft 
robot. (a) The evolution of configurations in time. (b) The evolution 
of the tip in space. The robot shape is described by three CC seg-
ments, each independently actuated (that is, A =  I). The segments 
are 0.33 m long and 0.33 Kg heavy. Gravity is aligned with the 
base, and it points downward. The elastic forces and dissipative 
forces are K(q)  =  q and D(q)  =  q/3. The initial condition is 

( ) ( / , / , / )q 0 3 3 3r r r=  and .q 0=o  The desired configuration is 
( , / , / ) .q 0 2 2r r= - -r  Both corresponding shapes in the bottom plot 

are shown as solid black lines. The initial shape also has red dots 
marking each segment’s beginning and end. The control gains are 

Ia =  and / .I 2b =
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configuration is already stable in the open loop, with the eigen-
values of the right-hand side of (22) being approximately 
( . , . , . ) .1 01 2 96 3 19  Note that a softer robot requiring a feedback 
to converge as ( )/G q q2 2  has two negative eigenvalues in .qr  
Nonetheless, the feedback action also proves beneficial in this 
case in speeding up the convergence.

Possibly nonlinear integral actions can also be added to 
(23) for compensating steady-state errors and achieving global 
stabilization, as discussed in [109]. In this case, we can drop 
the model-based component ( ) ( )K q G q+r r  and entirely rely on 
the integral action to compensate for it. The result is a model-
free version of (23), extensively tested experimentally in [113]. 
A bilinear extension has been proposed and tested in [114].

Trajectory Tracking
In trajectory tracking, the desired behavior is specified as 
an evolution of the full robot shape in time. Consider a 
twice-differentiable function of time : .q R Rn"r  Then, the 
control goal is to find a control strategy x  such that

 ( ( ), ( )) ( ( ), ( )) .lim q t q t q t q t 0
t

- =
"3

o r ro  (27)

Usually, the reference is considered bounded in norm 
( ( ), ( ))q t q t ct1< <r ro  for some positive .ct  In theory, under the 

fully actuated approximation ,n m=  (2) can be completely 

feedback linearized with a computed torque scheme. How-
ever, such a strategy would be hardly applicable on a real 
system. This section focuses on controllers achieving the 
trajectory tracking goal by relying minimally on direct 
model cancellations. For the sake of space, proof of conver-
gence is not provided. All the controllers can be obtained 
by adapting proofs from the nonlinear PD literature to 
work for a system such as (16), as in Theorem 1.

If the reference trajectory is slowly varying (that is, q< <ro  is 
small enough), then (15) and (23) can still be applied as they 
are, possibly with the inclusion of damping feedforward 
compensation terms, that is, ( )D q qr ro  and ( ( ) ) ,D q qb+r ro  respec-
tively. The state will not converge to ( , )q qr ro  at the steady state 
but to a neighborhood of it [115], [116]. The higher the gains 
and the slower the reference, the smaller the neighborhood.

Explicit compensation of dynamic forces is needed to 
achieve null steady-state error. Again, this can happen by 
largely relying on feedforward actions (Figure 6):
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(28)

By adapting the results in [117], we can prove that (28) 
leads to local exponential stabilization of the desired 

Robust Control

Models for soft robots always come with some degree of 

uncertainty. The nature of the materials used and the 

manufacturing process are such that the mechanical char-

acteristics of soft systems can vary dramatically, even when 

starting from a similar original design. Moreover, the state dis-

cretization that is at the base of all the discussed control strate-

gies implies that part of the dynamics is ignored. Both sources 

of uncertainty will likely be mitigated by advancements in mate-

rial science and modeling. Yet, these improvements will hardly 

be sufficient to completely eliminate the issue, which must be 

taken into account while devising model-based strategies. One 

way of achieving this goal is to integrate learning loops into the 

controller. Alternatively, control loops can be devised in such 

a way that they are intrinsically robust to uncertainties. This 

is often done implicitly in soft robotics by avoiding strong reli-

ance on feedback model cancellations and high gains. These 

are indeed characteristics shared by almost all the techniques 

discussed in this article. Alternatively, robustness to uncer-

tainties can be implemented by explicitly relying on robust 

control design [S55]. For example, linear robust H3  control is 

used in [S56], [S57], and [S58] for controlling a soft actuator, a 

single segment, and a planar soft robot, respectively. Interval 

arithmetic is used in [S59] to design a nonlinear model-based 

controller that can achieve prescribed tracking performance in 

the presence of uncertainties. Robust sliding mode control is 

considered in [S60], [121], and [181]. Fractional order control is 

used in [14] and [S62]. The latter is discussed in detail by [S62], 

part of the same special issue.
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trajectory if /K q2 2a+  and Db+  are larger than two 
bounds that increase with the increase of / , ,qG q2 2< < < <ro  
and .q< <rp  Purely feedforward dynamic controllers for soft 
robots are experimentally validated in [118] and [119]. Thus, 
if the reference is slowly varying or the natural impedance is 
high enough, then the feedback gains ,a  b can be selected 
null, and the controller is once more purely feedforward. For 
generic trajectories, the discussed condition will be hardly 
verified by the physical properties, and the extra feedback will 
be necessary. As an alternative to high gains, (28) can be fur-
ther evolved into a partially nonlinear closed loop (Figure 6). 
This is done by evaluating M, C, and G on the measured state 
( , )q qo  rather than on the reference ( , ) .q qr ro  This produces a closed 
loop that is equivalent to a rigid robot controlled through a 

PD+ controller [120], where the plus refers to the mixed 
feedforward-feedback compensation of dynamic forces. In 
this case, we can achieve perfect tracking even when 0a =  
and .0b =  This control strategy is discussed and experi-
mentally validated on a soft robotic platform in [48]. A ver-
sion of this controller that is robust to system uncertainties 
and does not require direct measurement of qo  is proposed 
and tested in [121], which is close to the robust PD control-
ler proposed in [122]. Thanks to (16), the latest advance-
ments in PD control of mechanical systems [123], [124], [125] 
can also be adapted to further improve performances and 
robustness to uncertainties (see “Robust Control”).

Figure 8 compares the performance of three of the con-
trollers introduced in the preceding in tracking a sinusoidal 
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evolution of curvature. Tracking performance increases 
with the complexity of the controller. However, when apply-
ing these controllers to physical systems, it should be kept in 
mind that more complex controllers can result in less robust 
performance when the model is inaccurate.

Several other works in the soft robotics literature deal with 
the trajectory tracking challenge by relying on fully actuated 
approximations. A computed torque controller built on a 
planar PCC model and sliding mode variation is experimen-
tally tested in [126]. A model-based decentralized controller is 
proposed in [127] and applied to a fully actuated discretiza-
tion of the Cosserat model. Finally, [128] derives model-based 
controllers under a first-order approximation, that is, when 

( ) ( ) ( , ) .D q q M q q C q q q22< < < <+o p o o  This is the case for light-
weight soft robots moving in viscous fluids [129].

ADVANCED CONTROL CHALLENGES: 
UNDERACTUATION, ACTUATORS DYNAMICS,  
AND TASK EXECUTION
This section discusses challenges that are largely unexplored 
and still in need of general solutions and formulations.

Dealing With Underactuation in Shape Control
Fully actuated approximations have proved to be effective 
in practice despite being a clear oversimplification of the 
control problem. By bringing underactuation into the pic-
ture, the degrees of freedom not directly affected by the 
control action can be analyzed and potentially used in the 
design of the controller toward solutions with improved 
performance and certifiable reliability. Indeed, using a 
rough approximation during control design may often lead 
to performance degradation (see Figure 9) and even insta-
bility. Thus, consider a nonsquare actuation matrix A(q), 

with .m n1  The first difficulty that arises is that the desired 
shape qr  may not be an attainable equilibrium of the system; 
that is, ( ) ( ) Span ( ) .( )K q G q qA"+r r r  In other terms, there does 
not necessarily exist a control action xr  that renders a 
generic given shape qr  an equilibrium. Similarly, a control 
input evolution ( )tx  may not exist such that a generic state 

,( )q qr ro  can be reached from any initial condition. The authors 
of [130] discuss how different actuation patterns may affect 
the accessible set [131] of a soft robot.

Assume that the equilibrium qr  is attainable with the 
given underactuation matrix A(q). Under this assumption, 
(15) can be generalized in (see Figure 6)

 ( ) ( )( ) ( )q K q G qALx = +r r r  (29)

with AL  the left inverse of A, as in the Moore-Penrose 
pseudoinverse .( )A A A1 << -  If A is configuration indepen-
dent, this leads to the same closed loop (16). Thus, the 
physical impedance acts as a stabilizing action not only 
on the colocated part but also on the variables that are not 
directly reached by the actuation. If A is configuration 
dependent, then its local changes may have destabilizing 
effects that must be considered in a modified (22), as 
discussed in [132, Appendix]. When dealing with slowly 
varying trajectories, similar considerations can be applied 
to the trajectory tracking problem. However, extending the 
results involving feedback actions, as, for example, (28), is 
a substantially more complex challenge that is still to be 
addressed. Relying on linearized models can be a practi-
cally effective alternative, either when linearizing around 
the equilibrium [133] or around the desired trajectory [134].

Control design and analysis get substantially more 
complex when it comes to stabilizing unstable equilibria of 
underactuated models. In this case, (22) is not verified, and 
feedback actions must be involved. Discussion and experi-
mental validation of combining local linear control, 
an accurate FEM model, and a Luenberger observer for 
designing a damping injection loop are provided in [135] 
and [136]. A FEM-based gain scheduling controller is used 
in [137] to cover the state space of the robot with linear 
setpoint regulators, including integral actions. Moving a 
step toward the nonlinear domain, the simple controller 
(23) can be extended to  the following PD+FF (Figure 6)

 ( , , ) ( ( ) ( )) ( )q q q A K q G q A q q A qLx a b= + + - - <<r o r r r o  (30)

which is a generalization of (23) to the underactuated 
domain. Note that the two gains ,a  b  are still elements of 

,Rm m#  and thus, they weight the involvement of the actua-
tors into the control loop.

Corollary 2
The thesis of Corollary 1 is verified for the closed loop (2)–(30), 
with constant A, under the same set of hypotheses when 
switching a  and b with A Aa <  and ,A Ab <  respectively, and if
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 ( ) ( ( ) ( )) .I AA K q G q 0L- + =r r  (31)

Proof
Under hypothesis (31), the following holds: ( ( ) ( ))AA K q G qL + =r r  

( ) ( ).K q G q+r r  The closed-loop dynamics are thus structurally 

equivalent to those one in Corollary 1; that is, ( ) ( , )M q q C q q q+ =p o o  
( ( ) ( )) ( ( ) ( )) ( ) ( ( ) ) .K q K q G q G q A A q q D q A A qa b- + - + - - + <<r r r o  
Thus, the rest of the proof follows as in the fully actu ated case. 

Per the fully actuated case, an integral action could be 
incorporated in (30), possibly dropping the feedforward 
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FIGURE 10 Examples of (33) controlling a slender planar soft segment actuated through a torque at its tip. The robot is modeled with four 
CC segments (n =  4) of equal mass ( . ),m 0 25 Kg=  length ( . ),L 0 25 m=  and homogeneous impedance ( ( ) ,K q q4=  ( ) . ).q qD q 1 2=o o  Grav-
ity is pointing downward ( ) .z r=  We aim for stabilizing the robot’s straight configuration [ , , , ] rad.q 0 0 0 0= <r  (a) Changing the gain a  and 
the stiffness K affects the stability, measured as the minimum eigenvalue of (32). The red dashed line highlights the threshold above 
which the robot is locally stable. Closed-loop evolutions appear in (b)–(f). (b) The evolution of A q<  for different choices of a  and 

( ) .1 N ms/rad$b =  The gains are ( , ) ( ( / ), ( / ))0 1N m rad N ms rad$ $a b =  in (c) and (e) and ( , ) ( ( / ), ( / ))0 1N m rad N ms rad$ $a b =  in (d) and (f). The 
robot starts at rest from the configuration ( ) , / , / , //q 0 4 4 44 rad.r r r r= <6 @  (c) and (d) The evolution in time of the four curvatures. (e) and 
(f) The evolution of the robot’s shape. The initial condition is a black dashed line, the final condition is a black solid line, and the ends of 
the segments are highlighted with red dots. 
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compensation of potential forces. However, the preceding 
proof of stability does not trivially extend to cover this control-
ler variation.

The sufficient convergence condition (26) for the local 
convexity of the modified potential becomes

 
( ) ( )
q

K q
q

G q
A A 0

q q
2

2

2

2
(a+ + <

= r

e o  (32)

where if ,0(a  then A A 0*a <  but .( )A A m nRank 1#a <  
Thus, the equilibrium qr  can be stabilized using (30) only if 
the actuation is colocated on the directions in which the 
effective stiffness loses rank. This can be interpreted as the 
controller working to stabilize the actuated coordinates 
A q<  while relying on the soft robot’s physical elasticity K(q) 
to stabilize the unactuated coordinates.

To get a better sense of how this controller is acting, 
consider the example of a planar inextensible soft robot 
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FIGURE 11 Examples of (33) controlling a slender planar soft segment actuated through a torque at its tip. Everything is as in Figure 10 except 
for the initial and desired configurations, which are ( ) / , / , / , /q 0 4 4 4 4 radr r r r= - - - - <6 @  and . , . , . .q 0 4413 0 2720 0 0872 0 0179 rad,= - <r 6 @  
respectively. The latter is such that ./q 4i i rR =r  Note that even if 0a =  results in local asymptotic stability of qr  [see (a)], it is not sufficient 
to enlarge the region of asymptotic stability enough to include q(0). 
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actuated with a pure torque at its tip that we model as a 
sequence of n CC segments, not necessarily of the same 
length. The actuation matrix of this system is .A 1 1f= <6 @  
Thus, (30) becomes

( ) ( )

n

K q G q
q q q

i i
i

n

i
i

n

i
i

n

i
i

n
1

1 1 1
Average potential force Error on tip Tip’s angular 

velocity
’s orientation

x a b=

+

+ - -=

= = =

r r

r o

^
c c c

h
m m m; E

1 2 344444 44444 1 2 34444 4444 >

/
/ / /  (33)

where we used the Moore-Penrose pseudoinverse as the 
left inverse of A, with Ki  and Gi  being the ith elements of 
K and G. The feedback action is translated into a PD of the 
angular component of the tip configuration x(1, t). The 
interpretation of the actuated variables A q<  as portions 
of x(s, t) always holds whenever A is constant because this 
matrix is the transpose Jacobian of the coordinates on 
which the generalized forces are applied. Instead, the 
feedforward action being the average of the local potential 
forces is peculiar to this actuation modality. Finally, A Aa <  
in (32) is an n n#  matrix, with each element being .a  Fig-
ures 10(a) and 11(a) outline how the smallest eigenvalue of 
the left-hand side of (32) changes with the robot’s stiffness 
and the proportional gain .a  For large stiffnesses, the 
equilibrium is always stable; for small stiffnesses, the 
equilibrium is always unstable; and in between, it depends 
on the value of .a  Note that this is quite different from the 
result we would have obtained with a CC approximation 
of the segment ( ),n 1=  for which an a  large enough always 
exists such that (26) holds. Figures 10(b)–(f) and 11(b)–(f) 
report the closed-loop behavior.

Some recent works deal with the regulation of equi-
libria under similar colocated conditions. In [138], an 
energy shaping controller is proposed for setpoint 
posture regulation of a planar segment modeled as a 
sequence of rigid links, with the same torque applied to 
all links. The authors extend the strategy by including 
an integral action in [139] to compensate for time-vary-
ing external disturbances. Moving to more general 
systems, [74] tests, in simulation, the use of computed 
torque plus zero-dynamics damping injection in a geo-
metrical exact discrete Cosserat model. This technique 
was already used for controlling an eel-like hyperre-
dundant robot in [140]. No proof of convergence is 
provided, but the simulations show good perfor-
mance. Finally, [141] generalizes (30) to nonlinear pro-
portional and derivative actions and provides a proof of 
convergence by relying on potential energy shaping 
control and damping injection.

If (32) and its nonlocal version cannot be verified for 
any ,a  then the potential field ( ) ( )K q G q+  is repulsive in 
one or more of the directions orthogonal to .A<  This is an 
essentially more challenging scenario compared to the 
elastically dominated alternative, and it can happen when 
the robot is very soft compared to its weight. Recently, 

[142] showed that adding online gravity compensation to 
(30) is enough to tackle this challenge whenever actuated 
and unactuated variables are not elastically coupled. In 
the preceding n–CC example, this happens if the stiffness 
distribution is homogenous: ( ( ) ( ), , ) .K q K q i j n1i j 6 f!= " ,  
An alternative is to focus on specific systems. For example, 
[73] and [143] propose two inverted pendula (the former 
continuum, the latter hybrid) as soft extensions of the acro-
bot [144]. Both works discuss analytically the stabilization 
of an unstable equilibrium. Interestingly, [73] shows that a 
range of low stiffnesses exists for which the robot can be 
stabilized only by means of noncolocated feedback.

Finally, tracking control in the underactuated case has 
received minimal attention. One interesting example is 
[145], which derives a nominal tracking controller under a 
linear approximation and uses a disturbance observer to 
compensate for mismatches.

Actuators Dynamics and Constraints
Actuators dynamics plays an important role in shaping 
the soft robot behavior, especially if compared to classic 
rigid robots. Nonetheless, few works have explicitly taken 
into account a dynamics formulation, such as (13), in the 
design of the controller. Some actuation technologies 
require accurately considering the control problem for a 
single isolated actuator. This is the case for electrother-
mally active materials [114], [146], [147], [148] and mag-
netic actuation of micro- and nanorobots [149], [150]. 
An extensive comparison of feedback control strategies 
applied to a pneumatically actuated soft segment is 
available in [151].

If a clear separation exists between the response time 
of actuators (13) and the robot (12), then a singular pertur-
bation approach [152] could be used to improve the per-
formance of the model-based controllers introduced in 
the preceding. Alternatively, a backstepping design 
achieves the same goal without any assumption on the 
relative timescales [153], at the cost of a more complex 
control architecture. Both techniques have been exten-
sively used to control flexible robots actuated with sim-
ilar modalities as typically found in soft robotics as 
tendon driven [154], pistons [155], and artificial muscles 
[156], [157]. Only recently have works in soft robotics 
investigated the application of backstepping techniques 
[158], [159], [160], focusing exclusively on pneumatically 
actuated robots. A linear model of the robot and the air-
flow is considered in [158], while [159] and [160] tackle 
the nonlinear case. We are not aware of any examples of 
the application of singular perturbation in soft robotics.

In soft robotic actuation, it is often the case that the input 
space can take values only in a subset of .Rm  This may be 
due to upper bounds to the maximum force and unilateral 
constraints induced by tendons that can only pull and pres-
sure chambers that can only push. These constraints are 
usually addressed by heuristics that mask their existence to 
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controllers carefully tuned to not exceed the limits of actua-
tion. As an alternative to heuristics, the masking can also 
be devised through model-based techniques, such as the 
c losed-form solut ion of opt imal control a l locat ion 
problems [161]. Alternatively, model predictive controllers 
(MPCs) can generate control actions that inherently verify 
the constraints. In [162], a linear MPC is used to control a 
pneumatically actuated humanoid robot with joint-like 
localized bending and under a decentralized approxima-
tion. In [163], the strategy is extended to a nonlinear MPC, 
and evolutionary algorithms are used to solve the nonlin-
ear optimization. In [164], nonlinear order reduction tech-
niques are used to generate accurate relaxations of a 
nonlinear finite-horizon optimal control problem (includ-
ing state and input constraints) and formulated on nonlin-
ear FEM models.

Task Space Regulation and Tracking
The task space of a robot is usually identified with the con-
figuration of its end effector. In soft robots, this corresponds 
to the configuration of the tip ( , ) ( , ( )).x t h q t1 1=  For sim-
plicity of notation, we drop the s coordinate in this section. 
This emphasizes that the results discussed in the following 
are general for any s and any smooth function h of the con-
figuration q. Examples are the potential energy and the dis-
tance of the soft robot from an obstacle. Thus, a task is 
fulfilled if

 ( ( )) ( )lim h q t x t 0
t

- =
"3

r  (34)

where the desired task coordinates xr  can be either a con-
stant value (regulation) or a function of time (tracking).

A substantial body of literature [36], [165], [166], [167], 
[168], [169], [170] deals with the problem under the kine-
matic approximation. For a fully actuated model, this 
means assuming that the robot evolution is described by 
(1), with qo  being the control input. This is a well-known 
problem in robotics [171], [172], [173], which can be solved 
with the control loop

 ( ) ( )q J q K x h q xe= - ++o r ro^ ^ h h (35)

with J+  being the Moore-Penrose pseudoinverse of J. 
Indeed, combining (1) and (35) yields the closed-loop dy -
namics ( )/ ( )x x t K x xd d e- = -r r  that fulfill (34) exponen-
tially fast for all .K 0e (  Note that for ,x 0=ro  the time 
discretization [174], [175] of (35) is equivalent to applying 
the Newton-Raphson method to solve the following qua-
dratic programming problem:

 ( ) .min h q x
q 2

2

Rn
-

!
r  (36)

Soft and hard constraints can be explicitly included in 
(36) and possibly reflected in (35), using multitask prioriti-
zation. In practice, (35) is integrated numerically, and the 
result serves as reference qr  for a low-level controller that 
regulates q. This can happen entirely in feedforward or as a 
high-level feedback loop. In the latter case, q and h(q) are 
directly measured. Alternatively, the kinematic behavior 

Soft
Robot

(a)

(b) (c) (d)

+ +

−1

(J (q (·))Jη(·))+K
x

x

x

h (q (·))

Soft
Robot

PM,A (·)

Task-Space
Controller f

q

x

J(q)

Jη(η)
A(q )PM,A(q)

f

Actuators
Dynamics

Low Level
Controller

η
.

η

q, q
.

η, η
.

x
.

x
.

x
..

x
.

q
.

η
.

q
.

x
.

x
.
 
.

q
.
 
.

x = J(q, q)q
.
 
.

+ J(q)q
.
 
.

. . .

FIGURE 12 Task space controllers in the underactuated case. (a) The standard approach (37), which deals with the problem under quasi-
static and actuator dominance approximations. (b) A theoretically attractive but potentially not robust alternative, which acts directly in 
task space (39). Both solutions deal with configuration space underactuation by constructing control spaces that are at least as large as 
the output but, in general, smaller than the configuration. These are (c) actuator-side velocities ho  for the first strategy and (d) task-level 
forces f for the second.
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can be forced on the system using model based cancella-
tions [176]. Therefore, the use of a kinematic controller 
implicitly lies on the assumption that all configurations q 
are attainable through a low-level controller, such as the 
ones discussed in previous sections.

To extend (35) to the underactuated case, one has to intro-
duce extra assumptions. First, it must be assumed that a low-
level feedback loop ( , , , , )q qx h h hr o o  is available such that if 
applied to (13), then h  converges to hr  fast enough. Under this 
assumption, h  and hr  can be used interchangeably. This is 
a strong assumption, in general. However, if the robot 
dynamics are negligible compared to the actuators one—
for example, a lightweight robot with strongly reduced 
ac tuation—standard actuator-side regulation ( , , )x h h hr o  is 
sufficient. This is the case for lightweight continuum medi-
cal devices [177], [178]. Second, it has to be assumed that the 
robot is drawn to a stable equilibrium qr  whenever a constant 
hr  is imposed. More precisely, qr  is defined as one of the pos-
sibly many solutions of the equilibrium equation of (12) for a 
fixed actuator’s state; that is, ( , )/ ( ) ( ) .U q q K q G qc2 2h- = +r r r r  
This equilibrium configuration is not necessarily attractive. 
However, this condition can be checked by seeing whether 
the feedforward action (29) generates an asymptotically 
stable equilibrium. See the “Dealing With Underactuation in 
Shape Control” section and Corollary 2 therein for more dis-
cussion on the topic. Third, a function :q R Rm n"  must exist 
and map every hr  to a unique equilibrium .qr  We define ( )J hh  
as the Jacobian of this map.

If these three hypotheses are simultaneously verified, 
then a differential kinematic model can be constructed, 
which goes directly from actuators space h  to task space x:

 ( ( )) ( ) .x J q J
q

En -to-end Jacobiand

h h h= ho o
o

6 7 8444 444
>  (37)

This is formally equivalent to (1) from a mathematical 
standpoint. Thus, a kinematic controller can be constructed 
by following the same line of reasoning of (35), resulting in 
the control action [Figure 12(a)]

 ( ( ( )) ( )) ( ( )) .J q J K x h q xeh h h h= - +h
+o r ro^ ^ h h  (38)

This formulation is quite powerful since ( ( )) ( )J q Jh hh  is, 
in general, full rows rank as soon as the dimension of x is 
smaller than or equal to m. This property holds even if the 
soft robot’s model is strongly underactuated ( ) .n m22  
This condition is visually represented by Figure 12(c). Con-
sider, as an example, the case of a long soft tentacle, as in 
Figure 1, being actuated with three tendons and controlled 
to reach a goal location with the tip. A tentacle that is 
very soft or long can arguably require n to be much larger 
than three to be modeled correctly. Thus, in this example, 

( )J Rn 3!h #  and ( ( ))J q R n3!h #
h  are strongly higher and 

lower rectangular matrices, respectively. Nevertheless, the 
end-to-end Jacobian in (37) is a 3 3#  matrix, no matter the 

level of discretization n. Finally, it is worth noting that sim-
ilar steps can be followed by bypassing the model of the 
actuator and directly reasoning on (2). This can be achieved 
by focusing on x  rather than on .h  In this case, Ja  can be 
derived from (11). A similar loop as (38) can thus be used to 
evaluate the control action in (29).

Several variations on the kinematic inversion strategies 
have been proposed in the literature. The Cosserat kine-
matic model is combined with linearized task space control 
in [179] and with sliding mode control in [180] and [181]. A 
visual servoing-based kinematic PCC model, where the 
camera looks at the robot, is used to devise the closed loop 
[182]. The inverse kinematics problem is tackled for parallel 
soft robots by relying on rigid link discretization in [52], on 
FEM models in [183], and on Cosserat parallel kinematics in 
[29] and [184].

As an alternative to the many assumptions required by 
the kinematic approximation, task space control of under-
actuated dynamic models can be directly embedded in the 
dynamic controller by relying on the operational space for-
mulation [132], [185]. For classic rigid robots, this can be 
done by differentiating, one more time, (35) and combining 
the result with (16). Algebraic manipulations yield the op -
erational, or task space, dynamics:

( ) ( , ) ( ) ( ( ) ( ) ( ) ) ( ) ( )q x q q J q G q K q D q q J q A qM M

Terms commonly found in rigid robots

h xK + + + + =< <+ +p o o
1 2 344444444 44444444

 (39)

where the inertia matrix in the task space is ( )JM J1 1 !K = <- -  
,Rm m#  Coriolis and centrifugal terms are collected in 

( , ) ( ) ,q q JM C J q1h K= --o o o  and J M J RM
n m1 !K= #<+ -  is the 

dynamically consistent pseudoinverse. Equation (39) re -
sembles the task space dynamics of a rigid robot, with two 
differences: the robot’s impedance ( ) ( )K q D q q+ o  and the 
task space input field ( ) ( ).J q A qM

<+  The former does not 
introduce major differences since, in any case, the integra-
bility of the potential field is lost in task coordinates. The 
latter can be solved in general since it admits the right-
hand-side inverse

 ( ) ( ) ( ) ( ) ( ) ( )P q J q M q A q J q M q1 1 1
M,A = - - -^ h  (40)

for all configurations q such that ( ) ( ) ( )J q M q A q1-  is full rank 
[132]. As a result, ( ) ( )P q J q fM,Ax = <  generates fully actuated 
task space dynamics. Thus, direct extensions of standard 
operational space controllers [186] can be used to ensure that 
(34) holds for the full dynamic model (2) and possibly in the 
presence of strong underactuation ( ) .m n11  This control 
strategy is depicted in Figure 12(b) and (d). Note, however, 
that this is not sufficient to ensure that the full state ( , )q qo  
converges to a steady state. How to design a provably 
stable task space dynamic controller in the presence of 
underaction remains an open problem. This is also a 
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challenge that is far from being solved for classic articu-
lated robots [187].

Interaction With the Environment
Due to their inherent compliance, soft robots promise to 
revolutionize how robotic systems interact with the envi-
ronment by bringing into the picture a new level of safety 
and robustness to unmodeled interactions when com-
pared to standard rigid robots. Yet, most of the works on 
soft robot control deal with soft robots moving in free 
space. Moreover, planning algorithms are usually devised 
to explicitly avoid any interaction with the environment 
[51], [161], [188], [189], [190]. In practice, the controllers 
discussed in the preceding appear to work well when 
interactions with a passive environment occur. Yet, the lit-
erature analyzing interactions between the robot and an 
unstructured environment from a model-based perspec-
tive is limited.

Assume that the soft robot is interacting with the envi-
ronment through a contact area, as in Figure 13. Then, a 
single point c can be identified as the contact centroid [191] 
such that the net effect of the contact pressure distribu-
tions is an equivalent wrench ,f R3

ext ext !x  in c. This can be 
included in (2) as

( ) ( , ) ( ) ( ) ( ) ( ) ( )M q q C q q q G q D q q K q A q J q fc ext

ext

x

x

+ + + + = <p o o o 6 >@ H
 (41)

where ( )J q R n6
c ! #  is the Jacobian mapping qo  to the li -

near and angular velocities of the robot in c. A way of 
characterizing interactions is to look at the Cartesian 

stiffness matrix, which quantifies the change of reac-
tion forces as a result of a perturbation of the contact 
location. In unloaded conditions [192], [193], the physi-
cal Cartesian stiffness generated by the robot’s soft-
ness is

 ( ) ( )
( ) ( )

( )K q J q q
K q

q
G q

J q R1
1

6 6
x c

Inverse of stiffness in 
configuration space

c2

2

2

2
!= + #<-

-

e o
1 2 344444 44444

 (42)

with assumed constant A and constant .x  Note that (26) 
requires that the stiffness in q space is as high as possible 
for maximum open-loop stability. On the contrary, (42) 
requires the stiffness to remain small if the robot is 
required to behave compliantly in interactions with the 
environment. There is, therefore, a tradeoff between 
softness and stability that must be carefully considered 
during the robot’s design phase. One way to resolve it is 
to consider ways of changing joint stiffness in time. Con-
figuration space stiffness can be varied actively by rely-
ing on feedback control [112], [194] and passively by 
changing physical properties of the system [195], [196], 
[197]. The inversion of (42) is investigated in [198], [199], 
and [200]. The first two discuss how to prescribe stiff-
ness in configuration space to achieve a desired Carte-
sian stiffness, while the third is the configuration q to be 
optimized. Direct Cartesian impedance control schemes 
have been proposed and experimentally validated by 
relying on the kinematic approximation (38) in [201] and 
the task space dynamic formulation (39) in [48]. An in-
depth introduction to Cartesian impedance control for 
flexible systems is provided in [202]. As an alternative, 
the wrench ,fext  extx  can be directly regulated using Car-
tesian force control loops. This is achieved in [203] and 
[204] under the kinematic approximation (38). In [205], 
control inputs are numerically evaluated as the ones 
minimizing a weighted sum of interaction forces and 
error at the end effector and relying on a quasi-static 
FEM model. A similar strategy has been used to imple-
ment whole body manipulation [206] when a model of 
the environment is available.

Contrary to standard robots, soft robots may need 
to actively seek interactions with the environment 
(Figure 13). Indeed, external wrenches may be seen as an 
extra actuation source, as appears evident from (41). Thus, 
interactions can be used to overcome the limitations 
imposed by underactuation )( )A(Span Rn1  and input 
saturations ( ) .c1x x  The use of external wrenches to 
sustain the robot’s body is called bracing [207], and it is 
demonstrated with a soft robot in [118]. Alternatively, 
environmental interactions can be used to enlarge the 
accessible space. A planning method for vine robots that 
finds the sequence of interactions necessary to reach the 
desired locations is discussed in [208].

Contact
Area

Same Task,
No Interaction

Segment 1

Environment

fext

g

Chamber A

Chamber B

FIGURE 13 A soft robot composed of three pneumatically actuated seg-
ments and its relation with a simplified environment. The robot can 
achieve its tip positioning goal in two ways (the desired configuration is 
shown in red). It can plan its actions to avoid the environment alto-
gether, or it can exploit the environment. In the latter case, the control 
design is more complex since it deals with parallel and possibly hybrid 
dynamics. On the other hand, the force fext  exerted by the environment 
at the centroid of contact (shown as a yellow circle) relieves chambers 
A and B from the burden of sustaining the robot against gravity. If the 
contact is correctly preserved, it will also increase the stability margins 
of the system.
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WHEN FIRST PRINCIPLE MODELS ALONE ARE 
NOT ENOUGH: LEVERAGING DATA AND MACHINE 
LEARNING IN MODEL-BASED CONTROL
As mentioned in the introduction, machine learning has 
been intensively used in the control of soft robots. Although 
many advancements have been made in model-based for-
mulations, the importance of integrating data into a model-
based perspective cannot be understated, especially in the 
soft robotics context. At this point of the survey, it will 
probably not come as a surprise that the main reasons 
are 1) difficulties in obtaining a complete model (for 
example, the actuators cannot be modeled from first 
principles, an accurate discretization would be too com-
putationally expensive, and the environment cannot be 
known in advance) and 2) uncertainties are inherent in 
any soft robotic application (for example, unreliability of 
sensors and actuators as well as changes of physical 
parameters over time and over several iterations of the 
same device).

This section focuses on how learning can be integrated 
into a model-based framework to tackle the control of soft 
robots. Combining models with data is quite an active topic 
in the control community, and many solutions are cur-
rently being developed that will most likely find useful 
application in the soft robotic field [209], [210], [211], [212], 
[213]. It is beyond the scope of this work to discuss these 
new advancements. More details on the topic can be found 
in another survey article entirely focused on machine 
learning strategies for soft robots [214], which is contained 
in the same special issue of the present work.

Using Models to Drive Learning
The acquisition of new information and its transformation 
into a control action can be driven by the knowledge of (an 
approximation of) the model itself. This can be done while 
learning a feedback control as well as a feedforward action 
and by serving as a source of synthetic data for more stan-
dard machine learning approaches.

Adaptive Control
Adaptive control [Figure 14(a)] is an established technique 
in control theory [215] that augments feedback controllers 
with an online learning loop. The typical structure of an 
adaptive controller is

 ( , , , ), ( , , , , ) .p p q q q q q q qL px x x= =o o r ro rp o  (43)

The uncertainty is represented as a set of unknown 
parameters p Ro!  appearing linearly in (1) or (2). The con-
trol action x  is generated through a model-based controller 

px  parameterized in p. For example, the dynamics of a CC 
segment, as discussed in “Dynamics of a Constant Curva-
ture Segment,” can be linearly parameterized in ,mL2  ,mgL  

( ) ,y s sk d1
0  and y ( ) .d s ss d1

0  These parameters and any of their 
subsets would create the vector p and thus appear in an 

adaptive version of (23). The model structure can guide the 
design of a learning rule L  such that p is moved toward 
values that better explain the data. If L  learns the param-
eters p that describe the real system, then from there, ,p 0=o  
and px  behaves as a standard model-based controller.

Classic results in adaptive PD [216] and PD+ [217] con-
trol can be potentially applied to the soft robotic case by 
leveraging the equivalence exemplified by (16). Yet, the 
transfer is less direct than for the nonadaptive case. An 
adaptive visual servoing scheme is proposed in [218] by 
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FIGURE 14 Three standard integration solutions between model-
based controllers and learning rules. Dashed lines represent a 
transfer of information that happens on a different timescale. (a) 
An adaptive control architecture, where a learning loop L continu-
ously updates a model-based controller. (b) A model is learned 
beforehand. The controller is designed once and for all based on 
the learned model. (c) A standard iterative learning control loop, 
where a feedforward action is updated by iteration. Here, the 
learning rule R itself is designed through model-based techniques. 
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relying on a kinematic PCC approximation. Linear adap-
tive control is used in [219] to control a single bending actu-
ator. A similar strategy is applied to the control of a soft 
hand exoskeleton in [220] and [221], where the parameters 
of the human fingers are learned. An adaptive version of 
the MPC is discussed in [222] and [223] and experimentally 
validated against a nonadaptive MPC. A nonlinear adaptive 
controller originally developed for rigid robots is applied 
to soft robots in [224] and [225] by relying on an augmented 
rigid robot approximation. Adaptive schemes can also 
serve as a way of extending the effectiveness of linear con-
trollers to changes in the operative point, as discussed in 
[14]. Adaptive control can be extended beyond known–
unknowns by including p generic disturbances acting on 
the system. High-gain observers are used in [226] to esti-
mate and compensate for the mismatch between a simpli-
fied linear model of a parallel soft robot and the real system. 
Also, [227] discusses the position regulation in Cartesian 
space for a soft robot with discretized but uncertain kine-
matics, including adaptive compensation of disturbances. 
An adaptive loop that learns the gains of a sliding mode 
controller is proposed in [228]. In classic robotics, this con-
cept has been pushed even further by adding nonlinear 
black-box approximators borrowed from machine learning 
to the original dynamics and including their weights in the 
p vector [229], [230], [231].

Iterative Learning Control
As an alternative to learning the feedback loop, models 
can be used to guide the learning of a feedforward action 
[Figure 14(c)]. This can be done under the hypothesis that a 
same task can be tried out multiple times by the robot 
using iterative learning control (ILC) [232]. Define k N!  as 
the iteration index, which captures how many times the 
robot has attempted the execution of the task. Then, in this 
context, a learning rule R is a way of updating the feedfor-
ward action:

 ( ) ( ([ , ]), ([ , ]))t R t e t0 0k k k1 1f fx x= - -  (44)

where e(t) is a measure of how well the task has been exe-
cuted at time t. Note that the learning rule R can, in general, 
combine information from the whole error and control 
evolution at step .k 1-  The design of R is driven by the 
knowledge of the nominal model, and it is defined in such 
a way that the robot learns a feedforward action ( )tx3  
implementing a perfect execution of the task .e 0=3^ h  
ILC is particularly suited for soft robots since 1) the learn-
ing process is robust to uncertainties in the model, 2) 
purely feedforward actions do not disrupt the physical 
softness of the system [112], and 3) the actions are inher-
ently stable if the robot is not too soft. The actuation pat-
terns necessary to track an optimal trajectory are learned 
using this technique in [118]. Crawling motions of soft 
worms have been improved via ILC in [233] and [234]. A 

linear discrete learning rule is used in [235] and [236] to 
control a soft spherical joint. Nonlinear ILC is used in [237] 
to control a soft finger. ILC is combined with an MPC in 
[238] and used to control a soft bending actuator mounted 
on a human finger. A continuous feedback-feedforward 
rule is proposed in [239] and applied to the swing up of a 
soft inverted pendulum.

Simulators as Virtual Environments
A more indirect way of using models to drive learning is by 
building simulators. Models developed from first princi-
ples can be used to create virtual environments where 
robots can evolve [240], [241] and learn new skills [99], [242], 
[243], [244]. Differentiable simulators are particularly suited 
to be used in this context, as discussed in [245].

Control Loops Based on Learned Models
Directly learning an end-to-end controller using stan-
dard machine learning techniques can present several 
disadvantages, such as limited explainability [246] and 
difficulties in ensuring performance and the stability of 
the closed loop. Moreover, the learning process may be 
ill conditioned due to the highly redundant nature of 
soft robots. An alternative to learning the controller is to 
learn the model and then use it within a model-based 
control framework.

Learning the Model by Using the Model
Approximation of dynamical systems is discussed in [247] 
and [248], and model learning for robot control is surveyed 
in [249]. When using fully black-box approximators, first 
principle models can still be used to generate a warm start 
for the learning process. For example, [250] uses a linear 
model of a pneumatic actuator for pretraining a neural net-
work, which is then fine-tuned with experimental data. A 
nonlinear model of a multisegment soft robot is used in 
[251] to train a recurrent neural network. Even when a good 
model is already available, it can still be the case that learn-
ing strategies are used to better its performance. A method 
for learning only the nonlinear stiffness characteristics of a 
soft robot is discussed in [252]. The acquisition of data is 
driven by a FEM model of the elastic part. An optimal esti-
mation strategy of geometrical quantities describing the 
robot kinematics is discussed in [253].

Closing the Loop
Once learned, the models can be used as a base for model-
based control loops [Figure 14(b)]. In [254], a shallow neural 
network is used to learn the forward kinematics of a soft 
robot. Then, (38) is used to solve the inverse problem. 
Neural networks can be fully differentiable, and their Jaco-
bian can be easily calculated. This is advantageous if com-
pared to directly learning the inverse kinematics since 
(38) resolves automatically those redundancies that would 
make the direct learning of inverse kinematics ill posed. 
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Visual servoing under kinematic approximation for con-
trolling the shape of a soft object is extended in [255] to the 
case where the Jacobian is estimated online. Similar strat-
egies can also be employed in a dynamic setting. When-
ever (22) is verified, learned models can be used to produce 
open-loop control actions that are ineherently stable [110], 
[256], [257]. Learned models can also be used when feed-
back is needed to stabilize the desired behavior. For exam-
ple, a neural network is trained to approximate the update 
function of a soft segment in [258], and its input-output 
gradient is used to run a linear MPC algorithm. A similar 
strategy is used in [250]. However, the neural network is 
directly incorporated into an MPC control loop. Alterna-
tively, Koopman theory enables directly learning linear 
dynamics evolving within a high-dimensional lifted 
space [259], [260], [261]. The resulting model has been used 
as a base for linear quadratic regulator [262] and linear 
MPC [221]. 

CONCLUSIONS
This article has surveyed control strategies for soft robots 
that rely on model-based formulations. Special attention 
has been devoted to organizing this large body of literature 
within a coherent framework and with a common terminol-
ogy inspired by articulated robotics and robot control. 
Thanks to the latter, once the discretization of the infinite-
dimensional space is introduced, the similarities among 
rigid, flexible, and soft robots become apparent. Connec-
tions with existing results developed outside soft robotics 
could therefore be drawn, and controllers could be ported 
from the articulated to the soft continuum world. On the 
other hand, using a common language pinpoints the fun-
damental differences between soft robotics and other 
related fields. The most apparent one is numerous degrees 
of freedom, making soft robots intrinsically underactu-
ated, which makes control much more challenging than in 
other kinds of robotics. On the other hand, the positive 
definite elastic potential and the strictly dissipative force 
field are always present, no matter the level of discretiza-
tion. These two actions behave as a physical control loop 
stabilizing the system and, thus, simplify the control prob-
lem enormously.

Notwithstanding the significant advancements achieved 
so far, the research community has barely scratched the 
model-based view’s surface in soft robotics (see “Better 
Than Rigid Robots: Exploiting Softness in Model-Based 
Control”). Many are the challenges that remain open and 
the questions unanswered. How should underactuation 
be taken into account? To which extent can the nonactu-
ated dynamics be neglected (or not)? Can generic unsta-
ble equilibria be stabilized? How can we implement 
motions that are simultaneously compliant, fast, and 
precise? How can we execute controlled movements in -
volving continuous interactions with an unstructured 
environment? Can a complete integration of embodied 

intelligence and control design be reached within the 
model-based framework?

Finally, it should not be forgotten that soft robotics was 
born as an experimental discipline that aims to revolution-
ize how robots are entering our lives. Thus, all these theo-
retical advancements should contribute to realizing this 
grand vision by endowing real soft robots with unmatched 
motor capabilities.
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I. Mezić, “Prediction of the behavior of a pneumatic soft robot based on koop-
man operator theory,” in Proc. 43rd IEEE Int. Conv. Inf., Commun. Electron. Technol. 
(MIPRO), pp. 1169–1173, doi: 10.23919/MIPRO48935.2020.9245155.
[261] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey, and X. Tan, 
“Control-oriented modeling of soft robotic swimmer with koopman operators,” in 
Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM), 2020, pp. 1679–1685, doi: 
10.1109/AIM43001.2020.9159033.
[262] D. A. Haggerty, M. J. Banks, P. C. Curtis, I. Mezić, and E. W. Hawkes, “Mod-
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