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Abstract 

A global and industry wide dataset was data mined for determinants of recovery efficiency. 

Understanding of the factors that are driving variance in reservoir performance is essential for 

benchmarking current performance and for the screening of new opportunities. The following 

insights in the origin of variance in reservoir performance could be extracted from this analysis. 

Global trends for recovery factor with drive mechanism, reservoir type, geological age, lithology and 

depositional environment were extracted through subgroup analysis. Other property trends, such as 

porosity with depth and geological age, were found to be basin specific.  

The internal structure of the database and correlations was revealed through principal component 

analysis. Relative importance of the predictor variables was determined using automatic multivariate 

linear regression. It was found that the predominant variables include: API gravity, permeability and 

reservoir temperature. 

Additional data was identified through combination of literature review, dimensional- and statistical 

analysis.  The following variables are suggested: dip angle, flow rate, fractional water cut, and 

pressure drop. Furthermore continuous scales for heterogeneity and fracture intensity, especially for 

carbonate reservoirs are suggested. To express the confidence level for each reservoir in the 

database, categorical variables for maturity and data quality are proposed. This research forms the 

basis for future data mining of the dataset and further improvement of the TQ EUR TOOL in 

which the data is stored. In a wider context this report presents a high level overview of 

observations on reservoir performance based on actual reservoirs worldwide rather than laboratory 

data or theory. 
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1. Introduction 

Traditionally, one of the most fundamental tasks of the reservoir engineer has been to predict the 

reservoir‟s performance. Reservoir simulation is a very powerful tool to predict recovery of a single 

field for numerous of development options. But, for decision taking and portfolio management 

these numbers need to be put into perspective. To benchmark current performance and for the 

screening of new opportunities analogues databases are employed. However, benchmarking 

recovery factor is only useful if we understand the factors that are driving variance in reservoir 

performance. Only a handful of studies paid attention to determinants for recovery factor and their 

datasets are geographically limited. This study aims to put reservoir performance in a global context 

using a massive industry wide reservoir engineering database. The research was structured along 

three lines, namely; Statistical analysis, Reservoir Engineering principles and Additional data. 

This three-way approach is also reflected in the structure of this report. In the introduction both the 

previous statistical studies on reservoir engineering datasets, chapter 2 „ Literature review‟,  and the 

reservoir engineering background, chapter 3 „Theory- Reservoir Engineering Principles‟,  will be 

discussed. The middle part consists of the results from the statistical analysis of the database. The 

results are discussed through reservoir engineering principles. The most important findings of the 

analysis are summarized in the conclusion in chapter 7 „Conclusion and Recommendations‟ 

paragraph 7.1. Readers particularly interested in the suggested improvements to the TQ EUR 

TOOL will find a detailed discussion of recommended additional data in chapter 6 „Additional data‟. 

A summary of the suggested additional data and proposed futher research is presented in chapter 7 

„Conclusion and Recommendations‟ paragraph 7.2 „Recommendations‟. 
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2. Literature review 

A thorough literature review has been conducted in order to get a better view on the current status 

of research related to TQEUR and to help define the project direction. The prime source of 

information was the online paper database onepetro.org. Via this website several studies published 

by the Society of Petroleum Engineers (SPE) and the American Petroleum Institute (API) have been 

obtained. After a short introduction to the different approaches for predicting reservoir 

performance, a discussion of previous statistical studies of reservoir engineering databases will be 

presented. Finally, the key learning points are summarized in the conclusion. 

2.1. Prediction of recovery factor 

When studying the literature it is striking that a lot of papers describing reservoir behavior appeared 

around 1940‟s. Wyckhoff, 1940, explains that before this time, tasks of the petroleum engineer were 

more focused on optimizing drilling and production. With a growing understanding of the reservoir, 

one of the most important tasks of the reservoir engineer became to predict the reservoir‟s 

performance. The earliest approach to tackle this problem was to classify the reservoir according to 

its properties and compare it to analogs. This method remains popular because it is easy, quick and 

can be done even with very limited data. Nevertheless, quantifying the accuracy and the validity of 

the analog is problematic and varies from case to case. Analog data is therefore almost always used 

in addition to more sophisticated methods. 

In addition to the analog studies, empirical relationships were formulated and used for estimations 

and predictions. Many empirical relationships turned out to be fairly good approximations of the 

reality and are still broadly used throughout the industry. However, driven by advancements in 

technology with time the emphasis shifted towards the development of more complex theoretical 

and analytical solutions to describe the underlying physical phenomena mathematically. Analytical 

methods often incorporate a lot of assumptions and therefore miss out on essential details. A well 

known example is the material balance method, which neglects the reservoir‟s heterogeneity. As a 

result, the oil-in-place estimates for heterogeneous reservoirs are invariably too low (van 

Everdingen, 1980).  

Some of the concerns related with the analytical solutions could be overcome by numerically 

modeling of the reservoir. Due to increasing computer capacity reservoir simulators became very 

popular from the 1980s onwards. Whereas, the use of analytical methods remains of interest not 

only in the academic world but is commonly used for pre-screening in the industry too. 

In the 1970s, the first major Enhanced Oil Recovery (EOR) projects were launched and in the early 

80s the earliest field results from EOR pilots became available. This is reflected in literature by a 
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renewed interest to determine parameters that influence recovery efficiency with special focus on 

those playing a key role in EOR.  

Nowadays planning of the EOR development programs relies heavily on reservoir simulators and 

simulation plays a great role in the development of new fields and re-development of mature assets. 

Despite the ever increasing computing power, robust and reliable reservoir modeling remains an 

expensive and time-consuming exercise. Additionally, reservoir simulation requires many input 

parameters and the accuracy of simulation results are limited by uncertainties in the input data. 

Continuous technical improvement of the measurements devices increased the quality of the input 

data. In spite of that, sometimes there is not enough data available for example in the exploratory 

state of the field life or when an oil property is sold from one company to another. In those cases, 

quick screening of opportunities based on very limited data is required. Hence the industries need 

for and renewed interest in methods that allow fast screening without reservoir modeling. For this 

reason and also due to the increased capacity that allows keeping large databases there is a diversion 

to the use of data mining techniques in reservoir engineering. It is most likely that in the end a 

combination of all these methods and the comparison between them may yield the best results in 

the prediction of recovery factors. 

2.2. Statistical Analysis 

2.2.1. Statistical studies 

One of the aims of this thesis is to find determinants for recovery efficiency by applying statistical 

analysis to the database. Few studies like this have been carried out for the reason that this type of 

study consumes a lot of time and thorough data mining requires an extensive and reliable database 

which are commonly not available to the public. Most of the studies focus on a specific rational 

subgroup for which they determine what the controlling factors are. Rational subgroups represent 

variation that is inherent to the process, which makes it easier to distinguish special-cause variation. 

Furthermore, the subgroups are very useful for benchmarking, one of the aims of the TQ EUR 

Tool database. 

On the other hand, when the chosen subgroups are too specific one is left with too few samples to 

draw statistically significant conclusions on observed trends. On top of that, little attention appears 

to be given to prove whether the reasonable subgroups are indeed (statistically) different. This leaves 

an interesting opportunity for this study: to test the validity of the subgroups from literature on the 

TQ EUR database and determine the importance of certain groups in the portfolio. Themes of 

subgroups encountered are: drive mechanisms, lithology and fluid type. Additionally, we will search 

for unknown/unexpected subgroups through the process of data clustering. 
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2.2.2. Well spacing 

Craze and Buckley, 1945, were the first to analyze an API reservoir engineering database containing 

approximately 100 reservoirs and their respective parameters. More specifically the objective of their 

research was to study the effect of well spacing on the recovery factor. A relationship like this is very 

valuable, as it can be used as an argument to justify infill drilling. However, they have not found 

evidence to support a correlation between well spacing and recovery efficiency and based on the 

results of their studies they propose that there might not be such a relationship. Furthermore, they 

concluded that the following factors are predominant in determining the oil recoveries; oil viscosity, 

reservoir pressure decline (%) and formation permeability. The effects of porosity, connate water 

saturation and shrinkage were eliminated from the analysis. Since the data points of reservoirs still 

show some scatter after evaluation and elimination of the effects of oil viscosity, reservoir pressure 

decline and formation permeability it is assumed that there are more factors that exert influence on 

the recovery efficiency.  

In the discussion of this paper it is noted that even though the data does not support a correlation 

between well spacing and recovery efficiency, the outcomes of the study are not sufficient to entirely 

rule out the possibility either. Other critics include that the approach is not satisfying to detect the 

impact of well spacing if this effect would be minor. The author believes that the research of Craze 

and Buckley was too much focused on either proving or rejecting the hypothetical relationship 

between well spacing and recovery efficiency. The resulting biased approach is not useful for 

drawing firm conclusions about the impact and importance of other parameters on the recovery 

factor.  

Also the study of Vietti, 1945, tried to obtain a relation between well spacing and recovery and 

similarly failed in finding one. In their opinion using intra-field parameters to obtain a relation for 

total field recovery yields erroneous results. Van Everdingen, 1980, presented another study of the 

correlation between well spacing and recovery factor as motivation for infill drilling and combined 

water flooding/infill drilling programs. Based on the results of his study he too concluded that it was 

impossible to find such a relationship. He suggests that the failure of his and previous attempts 

might be caused by disregarding reservoir heterogeneity. His study reveals that water flooding is 

recommended to maintain the pressure above bubble point in depletion type reservoirs, but that 

with low well densities water flooding becomes highly ineffective. 

The question whether well spacing has an influence on the ultimate recovery remains unsolved as 

none of the studies succeeded in finding a relationship and none of them found strong enough 

evidence to reject the hypothesis entirely either. A different dimension is added to the discussion by 

including horizontal wells, since they allow completely different drainage patterns.  



 - 5 -  
 

2.2.3. Equations for predicting recovery efficiency 

Guthrie and Greenberger, 1955, studied 73 water drive reservoirs from the same list published by 

Craze and Buckley. For their analysis they selected ten parameters and constructed what is called a 

correlation matrix. A correlation matrix determines the correlation coefficients of the variables and 

is used to calculate the weights used for a linear regression model. The advantage of this method is 

that it is purely mathematical and there is no bias towards any of the selected parameters. On the 

other hand, selecting the right parameters for the analysis is therefore essential to the success of the 

outcome. Based on their research they proposed the following equation. 

 Guthrie and Greenberger, 1955, equation for the recovery factor of water drive reservoirs: 

  Equation 1 

Where,  
k  = Permeability, md 
Swc = Connate water saturation 
µoi = Initial oil viscosity, cp 
Ф = Porosity 
h  = Net-pay thickness, ft 
 

In addition they proved that many parameters are inter-dependent and that there is a high 

correlation between depth and formation volume factor, followed by correlations between 

formation volume factor and log oil viscosity and between porosity and permeability. Guthrie & 

Greenberger recommend using the average of all log permeabilities instead of the logarithm of the 

average permeability. Because the impact of permeability on the recovery factor is so large, this will 

improve the accuracy of the correlation significantly. For future research they suggest to include a 

measure for shale content of the sand, net-pay thickness of the reservoir, porosity and connate water 

saturation. 

The API Bulletin D14: “A Statistical Study of Recovery Efficiency” presents another statistical 

analysis of determinants for ultimate recovery carried out by a subcommittee of the API under 

supervision of J.J. Arps in 1967. The committee concluded that water drive and solution gas drive 

are fundamentally different and therefore came up with two equations. For water drive reservoirs 

the following equation was established.  
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 Arps, 1967, equation for the recovery factor of water drive reservoirs: 

     Equation 2 

Where, 
Ф = Porosity 
Swc = Connate water saturation 
Boi = Initial formation volume factor 
k  = Permeability, md 
µwi = Initial water viscosity, cp  
µoi = Initial oil viscosity, cp 
Pi  = Initial pressure, psia 
Pa = Abandonment pressure, psia 
 

The data set of 70 water drive reservoirs only included sands and sandstones. Another equation was 

derived for solution-gas-drive reservoirs below the bubble point. The data set of 80 reservoirs 

included both sandstones and carbonates. 

 Arps, 1967, equation for the recovery factor of solution gas drive reservoirs: 

  Equation 3 

 

Where, 
Pb = Bubble point pressure, psia 
Bob = Formation volume factor at Pb 
µob = Oil viscosity at Pb, cp 
 

When we compare the equations of Arps to that of Guthrie & Greenberger the observation can be 

made that both equations depend on the same parameters, though with different weights. This could 

either mean that the controlling variables for both mechanisms are indeed the same or that there 

was a bias in selecting parameters for the analysis. We also note that where Guthrie & Greenberger, 

1955, included net pay thickness in the equation, Arps, 1967, left it out and instead added pressure 

drop. The differences in the weights of the parameters are the effect of biases in the input data 

which makes it hard to transfer the equations from one data set to another. This was also shown by 

Sharma, 2010. Hence, the value of these studies is that they show which parameters are the most 

influencial rather than that they present a universal equation to predict recovery efficiency. 

A key difference is that the signs for water saturation (Swc)  and porosity (φ) differ. The signs in the 

equation of Guthrie & Greenberger are counter intuitive. This is most likely the effect of the 

interrelationship between the independent variables that multi linear regression does not account 

for. Therefore, the weight that a variable gets does not represent a physical relation anymore but 
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rather a correction to the weights of related variables. In this case the water saturation can be a 

correction to the weights of porosity.  Because Guthrie & Greenberger took a more mathematical 

approach, their correlation yielded a good fit for their data set but seems unphysical. This highlights 

the need for integrating both statistical analysis and reservoir engineering principles to obtain 

meaningful results. 

An unsuccessful attempt to develop an equation for recovery factor was carried out by Gulstad, 

1995. His work explains that statistical methods might be inadequate for describing the complex 

nature of oilfield characteristics; additionally he argues that uncertainties in the input data could 

mask the underlying relationships. Gulstad agrees with van Everdingen, 1980, that neglecting the 

heterogeneous nature of the reservoirs might be responsible for the fact no valid correlation could 

be obtained. It is interesting to notice that reservoir heterogeneity was also not accounted for by the 

work of Craze & Buckley, Guthrie & Greenberger and Arps.  

2.2.4. C&C database 

The C&C Reservoirs‟ database is a commercial digital analog system containing approximately 

thousand producing reservoirs worldwide. Qing Sun, 2003, limited his study to 250 carbonate 

reservoirs of the C&C database. It is interesting to note that this research is aiming to classify 

reservoirs according to their characteristics rather than to build a statistical model for the prediction 

of recovery factors. Qing Sun concludes that the factors influencing the recovery factor in order of 

importance are as follows: fluid type, pore/fracture network, reservoir heterogeneity, drive 

mechanism and wettability. Whether carbonate reservoirs behave like conventional reservoirs is 

strongly dependent on these factors. 

The influence of fractures on the recovery efficiency is also highlighted by the research of Allan, 

2003. Based on the study of 100 fractured fields within the C&C database, Allan proposes to further 

divide fractured reservoirs in four groups that differ in the sense whether storage and flow paths are 

provided by the matrix, by the fractures or by a combination of both. In reservoirs where the matrix 

porosity is low, the fracture network has a great influence on the recovery efficiency. Due to the fact 

that many fractures extent into the aquifer, the strength of the aquifer is a critical factor for the 

reservoir‟s performance. In fractured reservoirs with higher porosities, fluid and reservoir properties 

such as API gravity and matrix permeability are also strong determinants for recovery efficiency. 

None of these types of reservoirs have been produced to final depletion without application of EOR 

techniques. 
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2.2.5. TORIS and GASIS databases 

In Sharma, 2010, two datasets were used for the classification and estimation of ultimate recovery: 

the Tertiary Oil Recovery Information System (TORIS) for oil reservoirs and the Gas Information 

System (GASIS) for gas reservoirs.  In the study the correlations of Guthrie & Greenberger, 1955, 

and Arps et al., 1967, were applied to 24 reservoirs from the TORIS database. However, both 

correlations turned out to be incapable of accurate prediction of the recovery factor for the tested oil 

reservoirs. One can argue whether or not this sample size is large enough to draw statistically 

significant conclusions. 

In addition, Sharma proposed an alternative approach to formulate new regression models for both 

oil- and gas reservoirs. In case of the oil reservoirs, cluster and principal component analysis was 

needed to introduce orthogonality to the dataset and improve the accuracy of the multivariate linear 

regression model. Introduction of orthogonality also allowed the use of the naïve Bayesian approach 

to construct likelihood functions. A linear regression model was fit on the data for gas reservoirs and 

the model was successfully tested for robustness on tight gas reservoirs within the dataset. Based on 

the fact that it was easier to obtain a good fit for gas reservoirs than for oil reservoirs the assumption 

was made that behavior of gas reservoirs is generally less complex. Besides the conclusions based on 

the data sets studies, the paper also provides a general work flow for data mining. The 

recommended approach includes data preprocessing.   

2.2.6. Sample size 

It is vital to understand that because of outlier removal and segregation in subgroups the size of the 

used data sets is often significantly reduced. When statistically analyzing data it is essential to have 

enough data points, since the larger the dataset the better the correlation will be. Guthrie & 

Greenberger mentioned that for the method that involves a correlation matrix the more factors are 

included in the correlation, the larger the sample size to test it on should be. A great advantage of 

the TQ EUR TOOL is therefore its size. The database includes a total of 1193 reservoirs and 

contains a variety of drive mechanisms and rock types. Also the TORIS and GASIS datasets have a 

large size, respectively 1381 oil reservoirs and 19.220 gas reservoirs. However, they are 

geographically concentrated as all of these reservoirs are located in the U.S. In the study of Sharma, 

2010, only 95 reservoirs of the TORIS data set were selected for further investigation because the 

data fields of the other reservoirs were incomplete.  
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Table 2.1: Summary of determinants fo recovery factor according to literature. 

Study Craze& 
Buckley 
(1945) 

Guthrie& 
Greenberger 

(1955) 

Arps  
(1967) 

Arps 
(1967) 

Sharma 
(2010) 

Sharma 
(2010) 

Subgroup Gas solution 
drive and water 

drive sands 
and sandstones 

Water drive, 
Sands and 
sandstones 

Solution gas 
drive, 

All rock types 

Water drive, 
Sands and 
sandstones 

Oil reservoirs 
TORIS 
database 

Gas reservoirs 
GASIS 

database 

Uncontrollable parameters 
Oil viscosity * * * * *  
Water viscosity    *   
Permeability * * * * *  
Porosity  * * * * * 
Water saturation  * * * * * 
Oil saturation     *  
Initial reservoir pressure    * * * 
Bubble point pressure   *    
Net-pay thickness  *   * * 
Oil formation volume factor   * * *  
API gravity     * * 
Reservoir heterogeneity      *  
Depositional environment     *  
Structural 
compartimentalization 

    *  

Dip angle     *  
Depth     * * 
Water depth      * 
Temperature      * 
Gas-In-Place      * 

Controllable parameters 
Pressure decline *      
Abandonment pressure   * *   
No injectors     *  
No producers     *  
Well spacing     *  
Well density     *  
Production rate     *  
Cumulative Gas Production      * 
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2.3. Conclusion 

To date, few studies that have used a statistical approach have resulted in a successful regression 

model for the prediction of recovery efficiency. Generally such studies apply to a specific subset of 

reservoirs and/or locations. Qing Sun 2003 and Allen 2003, for example only provided a hierarchical 

ranking indicating which of the reservoir rock and fluid properties exert the largest influence on 

recovery efficiency.  

Literature reveals that important predictors for recovery efficiency are as follows: oil viscosity, 

permeability, porosity, (connate) water saturation, (initial) reservoir pressure, thickness, oil formation 

volume factor, water viscosity. See Table 2.1. It is interesting to note that all studies that included 

permeability also described oil viscosity, together forming the mobility factor, as determinants for 

recovery factor. The same observation can be made for porosity and water saturation. 

Guthrie & Greenberger, 1955, and Arps, 1967, presented a statistically derived equation to calculate 

recovery factor. However, Sharma recently showed that applying the correlation to a database other 

than the one it was designed for yields poor results. Sharma proposed a new correlation and hereby 

used cluster- and principal component analysis. Where it was hard to obtain a solid correlation for 

oil recovery a good fit was reached for gas reservoirs. 

Moreover, Sharma showed that both well spacing and reservoir heterogeneity play a role in the 

ultimate recovery of oil reservoirs. Reservoir heterogeneity was neglected by most of the previous 

studies, but is assumed to be predominant in determining the recovery factor.  It is proposed that 

disregarding the heterogeneous nature of reservoirs might misleadingly have led to the conclusions 

that well density has no influence on the recovery factor. Finding a correlation between well spacing 

and recovery efficiency has been of interest for a long time as such a relationship would provide a 

great motivation for infill drilling.  

Sofar, combining the statistical analysis with reservoir engineering principles has been restricted to 

parameter selection. It is assumed that including more sophisticated reservoir engineering knowledge 

and reasonable subgroups in the statistical analysis can lead to less variance of the predictor variables 

and therefore possibly to better correlations. 
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3. Theory- Reservoir engineering principles 

The previous chapter, literature research, discussed statistical studies of recovery factor. Now we will 

focus on the background theory. Understanding the reservoir engineering principles will help to 

identify what the determinants for recovery factor are. In this chapter we first discuss the different 

type of drive mechanisms and their main production characteristics. Subsequently a more detailed 

explanation of the displacement process will be given. Finally, EOR methods will be discussed in the 

light of the discussed reservoir engineering principles.  

3.1. Drive mechanisms 

The energy that allows for oil production namely; a pressure gradient under which oil flows from the 

reservoir rock to the well bore is provided by what is called the reservoir drive mechanism. Six types 

of primary production drive mechanisms have been identified: 1) water drive, 2) gas cap drive, 3) 

dissolved-gas drive, 4) gravity drainage, 5) compaction drive and 6) combination drive. Early 

identification of the drive mechanism is essential to optimize field development and ensure high 

recovery efficiency. In this report we will focus on the three main primary recovery mechanisms: 

water drive, gas cap drive and solution gas drive which together account for 65% of the reservoirs. 

Additionally, we will discuss the reservoirs on water injection (25.5%), gas injection (2%) and other 

enhanced oil recovery methods (7%). 

3.1.1.  Water drive 

Water drive is the most abundant and most efficient natural drive mechanism in oil reservoirs. The 

production is characterized by the maintenance of constant reservoir pressure, retention of well 

productivity and low gas oil ratios. Recovery factor ranges from 35 up to 75 (Ahmed, 2010). 

Conditions that promote high recoveries from water drive reservoirs are thick oil columns, good 

communication with the aquifer, high permeabilities, uniform and continuous sands, fairly low oil 

viscosities (favorable mobility ratio).  

Water drive reservoirs can be further subdivided into bottom water and edge water reservoirs. Edge 

water drive is mainly horizontal parallel to the bedding and bottom water drive vertical. A key 

challenge for most edge water drive reservoirs is the risk of gravity tonguing. As the water tongue 

under runs the oil, early water break through occurs while parts of the reservoir remain unswept. 

Although the displacement can be stable in some cases, if the advancement angle is large with a 

maximum of 90 degrees. Most reservoirs are operated at a rate of fluid withdrawal which is too high 

for stable displacement as economic considerations demand high production rates. Hence, there is 

often a risk of water coning especially when perforations are placed too close to the oil-water-

contact. The efficiency of bottom water drive is mainly a function of vertical permeability. Since 
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vertical permeability is usually less than the permeability parallel to the bedding, the permeability (in 

the direction of the flow) of bottom water drive reservoirs is on average lower compared to that of 

edge water reservoirs. 

3.1.2. Gas cap drive 

In gas cap drive reservoirs the energy is provided by the expansion of free gas that is accumulated in 

the gas cap. Reservoir pressure slightly declines upon production and wells can produce at a more or 

less steady rate. The gas-oil-ratio will be increasing slightly but remains low, except for the wells 

close to the gas-oil-contact. For this reason, the wells should be perforated as far from the gas oil 

contact as possible to avoid high gas production. Also, oil withdrawal should be restricted as 

preservation of gas cap should be insured. When managed properly, gas cap drive reservoirs can be 

very efficient and ultimate recovery ranges from 20 up to 40% (Ahmed, 2010). Segregation is one of 

the main factors influencing the recovery efficiency. Ineffective segregation will lead to a hybrid 

form of dissolved gas and gas-cap drive and yields higher GOR than normal gas cap drive. Causes 

for ineffective segregation are flat structures, low permeabilities or re-pressurization through gas 

injection in oil zones.  

3.1.3. Solution gas drive 

The principle behind solution gas drive is that a reduction in reservoir pressure leads to the 

liberation of associated gas from the oil which in turn provides pressure support. The depletion is 

characterized by a rapid drop in both reservoir pressure and well potential, whilst gas-oil ratio 

initially rises and then steadily declines. Characteristic conditions for this type of drive are: flat 

structures, absence of gas cap or aquifer and high production rates. Because of the large viscosity 

difference between oil and gas, the gas is far more mobile and will be depleted before the oil. Hence, 

the risk that the drive energy available from the release and expansion dissolved gas might be 

exhausted before all oil is produced. As a result the expected recovery factor is relatively low and 

ranges from as low as 5 to as high as 30 % (Ahmed, 2010). 

3.1.4. Secondary recovery 

When natural drive mechanisms are not sufficient to drive the oil to the wellbore, external fluids 

either water or gas can be brought into the reservoir to maintain pressure and displace the oil. The 

most common secondary recovery method is water flooding, which besides the purpose of 

enhancing production can be an elegant solution to dispose undesired production water. The limit 

of secondary recovery efficiencies is determined by quantities of injection fluid that are being 

produced and the operational costs. 
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3.2. Fluid displacement 

Displacement of oil is controlled by the interaction between three fundamental forces, namely 

viscous-, capillary- and gravity forces. For higher flow rates it is assumed that the displacement 

process is mainly dominated by viscous forces and is proportional to permeability. For lower flow 

rates capillary- and gravity forces will become more important.  

3.2.1. Displacement efficiency 

In the fluid displacement process the overall recovery efficiency is a product of macroscopic 

displacement efficiency and microscopic displacement efficiency. Microscopic displacement is a 

measure for the reduction of oil saturation in the parts of the reservoir that have been swept. The 

efficiency of the microscopic displacement process is influenced by wettability and interfacial 

tension.  

Macroscopic displacement or volumetric sweep efficiency describes how well the displacement fluid 

is in contact with oil bearing parts. Macroscopic displacement is affected by the density difference of 

the fluids, heterogeneities of rock matrix and mobility-ratio of the displacement fluid over  the 

displaced fluid.  

Macroscopic displacement itself can be divided into vertical and areal sweep efficiency. Vertical 

sweep is dominated by permeability heterogeneity in the vertical direction. At the locations of the 

wells, good data on the vertical sweep efficiency is available. Areal heterogeneity is determined by 

more factors then permeability such as the areal distribution of reservoir thickness, porosity, fluid 

saturations, fractures and faults. Variation in permeability of the layers that is continuous over a 

significant distance (from injector to producer) will promote early breakthrough in high permeable 

streaks leading to more water required to sweep the low permeability layers.  

Methods for prediction of the water/oil displacement efficiencies have been developed. A good 

overview of methods for performance prediction of waterflooding is given by (Thomas, 2007). 

However, most of the fundamental methods are based on mathematical analysis of linear segments 

of stratified reservoirs and homogeneous distribution of the reservoir properties. In reality, geology 

and injector/producer patterns are more complex.  

3.2.2. Mobility 

Displacement efficiency is strongly affected by the viscosity and relative permeabilities of the rock to 

the fluids. For single phase flow permeability is a property of the rock irrespectively of the fluid. On 

the other hand, in two phase flow the relative permeability of the rock with respect to a particular 

fluid is dependent on the saturation of this fluid. Below the residual-oil saturation, Sor, it becomes 
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impossible to mobilize the remaining oil and reduce the saturation any further because the relative 

permeability will be zero. 

Mobility (λ) is the ratio of the effective permeability of a fluid to the fluid viscosity. Hence we 

define: 
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Equation 6 

Defined as such, the both the fluid mobility and the mobility ratio is a strong function fluid 

saturation. The mobility ratio (M) is defined as the ratio of the mobility of the displacing fluid over 

that of the displaced fluid. A mobility ratio larger than one implicates that the displacement fluid is 

more mobile than the oil and this is unfavorable. In a heterogenous porous medium frontal 

instabilities may lead to viscous fingering and leaving parts of the reservoir unswept. Different 

definitions of mobility ratio appear in the literature, the most commonly used definition uses 

endpoint relative permeabilities and is defined as: 

 

End-point mobility ratio  Equation 7 

 

However, Hagoort, 1974 found that this definition was over estimating the risk of unfavorable 

displacement and proposed the use of the shock front mobility ratio. The shock front mobility 

ration is always smaller than the end-point mobility ratio and is defined as: 

 

 

Shock front mobility ratio Equation 8 

 

 

For a wider discussion on which of the definitions for mobility ratio should be favoured under 

certain conditions, readers are referred to Kumar, 2008. 
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3.3. EOR – mobilizing residual oil 

Enhanced oil recovery (EOR) aims to improve ultimate recovery by either increasing the stability of 

the macroscopic displacement process or increasing the microscopic sweep efficiency by reduction 

of the residual oil saturation. Based on the approach to reach this goal, the different methods can be 

divided into three categories: thermal recovery, chemical flooding ad miscible gas injection. 

3.3.1. Thermal recovery 

Thermal recovery factor is a large contributor to the production of heavy oil and enables to produce 

from fields that would otherwise be unproducible. In thermal recovery steam is injected in the 

reservoir to heat up the oil.. The production is improved by viscosity reduction of heavy oil 

components and vaporizing light components and the steam also displaces the oil towards the 

production wells.  A disadvantage is that the process of steam injection is highly water and energy 

intensive. Because of wellbore heat losses, steam flooding is more cost efficient in shallow 

reservoirs. 

3.3.2. Chemical flooding 

In chemical EOR, surface active agents are used to improve recovery efficiency. The following 

chemicals can be added to the injection water: 

 Polymers that increase the injection water viscosity 

 Surfactants that reduce the interfacial tension and 

 Alkaline salts that alter the reservoir rock wettability, reduce adsorption of surfactants and 

produce soap from crude 

Success or failure is strongly dependent on selection of the appropriate chemicals and the optimal 

concentration, which has to be determined on a case by case basis. A key challenge is to control the 

loss of the chemicals, as they are being adsorbed at the reservoir rock‟s surface. Additionally, 

research is directed towards finding chemicals that are both environmentally friendly and cost 

efficient.  

Recently, the industry has also shown interest in low salinity (less than 1,000 ppm TDS) 

waterflooding. Core flooding experiments and early results from pilot tests are encouraging and 

demonstrated possibilities to recover more oil from both carbonates and clastics.  The exact 

mechanism of this method is not yet fully understood, however it appears that water-wetness is 

increased which promotes higher oil recovery (Morrow, 2011; Nasralla, 2011).  
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3.3.3. Miscible gas injection 

For light type oil reservoirs injection of miscible gas injection is the most appropriate EOR 

method. The three most common injection gases are CO2, N2 and CH4. Although all of them 

have specific pressures at which miscibility is achieved, ranges overlap and at greater depths the 

choice of the gas usually depends on local availability. CO2 is the most common and most 

effective injection gas. N2 is most inert, but requires the highest pressures. (Taber et al., 1997) 

3.3.4. Outlook 

Currently the industry average (estimated) ultimate recovery of oil fields is about 34% (Schulte, 

2005), meaning that two third of the oil-in-place is left behind in the reservoir after abandonment. 

With enhanced oil recovery methods, the recovery factor could be raised to 60% or more (Falcone 

et al., 2007). Raising the recovery factor of existing fields has an advantage that there are no 

exploration costs and existing infrastructure can be used. Meanwhile, high oil prices and the 

continuously growing energy demand help to make EOR economically feasible. 

However, offshore EOR applications are limited as these locations remain economically and 

environmentally challenging. Furthermore, the large well spacing offshore introduces more 

uncertainty in reservoir quality and a longer time lag between injection and results. On the other 

hand, a number of miscible gas projects in the North Sea have proved to be successful (Lake, 2008). 
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4. Methods 

The statistical part of this thesis involves a series of data mining techniques in order to extract 

meaningful information from the data. The process steps of data mining and the hereby involved 

methods are the subject of this chapter. Firstly, this chapter will discuss the input data followed by 

the adopted workflow. Additionally, a more detailed description of the used data mining techniques 

of the preprocessing and analyzing phase will be presented.  

4.1. Input data 

The data analyzed in this project is sourced from a static reservoir engineering database stored in the 

TQ EUR TOOL. The TOOL is designed to compare the complexity and recovery factor of 

reservoirs worldwide. The TQ EUR TOOL is used as a tool to search for analogues and to 

benchmark reservoir performance. The data set consists of 1964 data objects (oil- and gas 

reservoirs) and more than hundred features (geological-, reservoir engineering- and economic 

parameters) describing each object.  

4.1.1. Economic bias 

It is of vital importnace to realize that there is a strong economic filter over the data set. Only the 

reservoirs that are of economic significance could be brought to production. This is reflected as a 

bias to reservoirs with good qualities. An indication is the amount of oil reservoirs, 54%, that were 

deposited in a coastal environment. This depositional setting is known for its good reservoir 

properties: good sorting and rounding of the grains homogeneity, and lateral extent of the sand 

bodies. On the other hand, fluvial reservoirs that are generally more complex only account for 16% 

of the reservoirs. We can also observe that the reservoir rocks of younger age are relatively more 

common. Assuming that the younger the reservoir rock, the better the reservoir properties this is 

again an example of the economic bias. See Figure 4.1. 

In economically complex locations such as deepwater only the best reservoirs could be developed. 

Consequently, we find some positive correlations between reservoir quality and depth. This should 

not be mistakenly interpreted as a causal relationship between the both of them. In fact, some 

properties such as porosity actually deteriorate with depth. See Figure 4.2. Besides the trend we can 

observe an economic cut-off porosity that increases with depth. As a consequence the sample group 

of deep reservoirs is smaller than that of shallow reservoirs. A bias is also present when we look at 

the reservoirs subjected to EOR methods. Due to screening criteria, the bandwidth of property 

ranges is much smaller than that of the primary recovery data set.   
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Figure 4.1: Number of oil reservoirs per era. Note that the younger reservoirs are relatively more 

common. However, the distribution of oil reservoirs over geologic time is not the same 

for all the regions. 

 

 

Figure 4.2: Porosity versus depth trend per location.  
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4.1.2. Data uncertainty 

When considering the input data, the uncertainty should be acknowledged. There are a variety of 

sources for uncertainty in reservoir engineering data sets. According to Rijnders, 1974 these can be 

classified as: random error, systematic error, interpretational uncertainties and limited areal influence 

of data points. Rijnders, 1974 stretches that limited areal influence of the data points is possibly the 

greatest source of uncertainty in reservoir engineering. This might be even more so in our case as 

there is only one dimension for each parameter. For example, the permeability of the entire reservoir 

is represented by only one value. In most cases this is the average matrix permeability measured 

through core analysis, which in heterogeneous reservoirs may strongly differ from the field scale 

permeability.  

It is also important to realize that the data that is stored in the TQ EUR Tool results from a 

combination of many different measuring methods. See Table 4.1. All of these methods introduce 

different boundary conditions, flow geometries, scales of accuracy and potential biases. The data 

sources are not always clear and can differ for a certain variable from one reservoir to another. 

Hence, the introduction of a parameter that represents the uncertainties for a reservoir is suggested. 

See also chapter 6 paragraph 6.3 „Statistical Analysis‟. 

 

Table 4.1: Different measurement methods encountered in the tool. 

Method Parameter Scale 

Seismic Reservoir area 

Gross thickness 

Reservoir scale 

Well logs Porosity 

Initial water saturation 

Net to gross ratio 

Vertically: >0.5 m. 

Limited areal influence 

Fluid samples API gravity 

Oil viscosity 

Initial gas oil ratio 

Bubble point pressure 

Oil formation volume factor 

Matrix scale: core diameter 

between 6 cm-10cm,  

Direct measurement 

Core and rock samples Porosity  

Permeability   

Irreducible oil saturation 

Matrix scale: core diameter 

between 6 cm-10cm,  

Direct measurement 

Well tests Permeability Reservoir scale  
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4.1.3. Calculated variables 

In addition to the recorded data, there are a number of variables that were calculated within the 

dataset. The data points for the calculated are internally consistent with the contributing 

components. As a consequence, one wrong entry in any of the components will lead to an erroneous 

calculated variable. 

 Ultimate Recovery Factor 

In the TQ EUR TOOL the ultimate recovery factor is calculated automatically using Equation 9.  

 

     Equation 9 

 

In which: PROD is cumulative production in mln bbl, EXP is expected oil in mln bbl (proven and 

probable), SFR is scope for recovery resources in mln bbl (possible) and EXP.STOIIP is expected 

stock tank oil initially in place in mln bbl (P50).  It should be noted that the expected oil and scope 

for recovery can include recovery from secondary and enhanced methods. This is the case if such 

methods are part of the field development plan even for reservoirs that are currently in the primary 

recovery phase. Unfortunately, there is no variable that measures the expected oil recovery from 

primary recovery only.  

 Current Recovery Factor 

In addition to ultimate recovery factor, we calculate current recovery.  

 

      Equation 10 

 

In which: PROD is cumulative production in mln bbl and EXP.STOIIP is expected stock tank oil 

initially in place in mln bbl (P50). Since the current recovery factor does not include planned 

improved recovery methods, this is a better measure to compare the effectiveness of the natural 

drive mechanisms. On the other hand, this variable is strongly affected by the maturity of the 

reservoir. 
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 Sweep efficiency 

Recovery efficiency can be split into microscopic- (equation 11) and macroscopic sweep efficiency 

(equation 12). 

 

  Equation 11 

 

In which: Soi is initial oil saturation and  Sor is irreducible oil saturation. Initial oil saturation is 

mostly measured through well logging and represents the in situ conditions in the vicinity of the 

wellbore.   

  

 Equation 12 

 

In the paper of Tyler and Finley, 1991 unrecovered mobile oil was introduced to express the 

opposite of sweep efficiency on the reservoir scale. 

 

  Equation 13 
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4.2. Workflow 

The first step is inspection and understanding of the data through analysis of the statistical 

properties of the raw data set. As part of the raw data exploration phase, basic statistics were 

calculated using the „descriptive statistics‟ tool in EXCEL. Secondly, preprocessing of the raw data is 

necessary to ensure the data quality which has a large impact on the quality of the statistical analysis. 

After, the data is ready to be analyzed. The outputs of the data mining process are the patterns that 

after interpretation reveal information present in the data. See Figure 4.3. 

 

 

Figure 4.3: Workflow showing the sequential steps of the data mining process and the resulting 

output for each step. Modified after (Sharma, 2010). 

 

The workflow presented in Figure 4.3 should be considered as an iterative process in which each 

data mining cycle provides new information and improves quality of the data set. The output of the 

first cycle is the preliminary result of visual inspection of univariate and bivariate plots. Based on 

which the features are selected that are subjected to pattern recognition techniques. Observed 

patterns can be either interpreted directly if meaningful information is obtained. Alternatively, when 

further refinement is needed they are again fed into the data preparation.  

Reservoir Engineering principles are applied during the entire process. More specifically in the 

following steps: 

 Data preparation:    Parameter selection 

 Data preparation:    Identification of extreme values 

 Analyzing:     Forming of rational subgroups 

 Interpretation of results:  Conclusions and recommendations 
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4.3. Preprocessing 

The preprocessing phase of the data mining process has three main objectives: reduction of 

dimensionality of the data set, improving of data quality through removal of erroneous data points 

and identifying and correcting missing features. 

4.3.1. Feature selection 

The TQ EUR TOOL is a data set which contains a large amount of features and is therefore high 

dimensional. In most of the data mining methods, especially those involving matrix operations, 

dealing with high dimensional data can become extremely difficult. Additionally, if a high number of 

dimensions is involved the amount of data objects required to guarantee accuracy will increase 

significantly. In order to overcome the issues arising from a large number of features the 

dimensionality can be reduced. The goal of reducing the data dimensions is to end up with about ten 

to fifteen features or less without losing significant information. A traditional technique to reduce 

data dimensionality is through principal component analysis (PCA). However, analysis of principal 

components is also a powerful tool in analyzing correlation and variation patterns and was used for 

more purposes than just reducing the number of features. Therefore, the first selection of suitable 

parameters relevant to the problem is based on theoretical background and literature study. Further 

quantitative selection of the relevant features through PCA will be done in the analysis phase. 

4.3.2. Data quality 

The data set contains such a large amount of information that it is almost inevitable that the data 

also contains errors. Data errors can have known or unknown causes and they can be detected or 

remain undetected.  Examples of data errors are typing errors (e.g. Jurrassic instead of Jurassic) or 

use of a different scale (e.g. porosity in % instead of fractions). Additionally data errors can produce 

outliers, which are extreme values compared to the entire variable distribution. Especially in 

regression analysis, outliers can have a large influence on the parameters and hence removal of these 

extreme values is required. Fortunately, outliers are relatively easy to identify using visual aids such 

as a frequency distributions, box and whiskers-plots and cross plots. Model-based methods to 

remove outliers such as Grubbs‟ test assume normal distribution. Not all variables are normally 

distributed and even the variables that are approximately normally distributed can deviate 

significantly around the tails. Therefore, it was opted not to use an outliers removing routine but 

instead to remove outliers based on visual inspection only.  
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Figure 4.4: Number of missing values (blue) and zeroes (red) per variable. Exp. STOIIP, 

Ultimate Recovery Factor, Permeability and Initial oil saturation have values for all 

1203 reservoirs. 

 

Figure 4.4 shows that there are a considerable number of blank entries. Like data errors, blank data 

entries can cause problems in the analysis of the data. A potential solution is to assign a value, for 

example the mean value, to the blank entries. The disadvantage of this solution is that it will reduce 

the variability and therefore gives a false impression of accuracy. Therefore it was opted to remove 

the blank data entries rather than assign a value to them. Removing all reservoirs that contain one or 

more blank entries would drastically reduce the sample number and is in most cases unnecessary as 

not all features are required for analysis. For example, the low and high estimates for STOIIP and 

GIIP are poorly reported but they are not critical as they exert no physical influence on other 

parameters. For each individual test and analysis it was ascertained that no blank values were taken 

into account. 

In addition to missing values it sometimes happens that the desired data features itself are missing. 

In those cases it was tried to capture the missing dimensions using a combination of features. An 

example of a data feature that is not recorded in the TQ EUR TOOL is the year of production or 

production time, which was why the time could only be expressed in dimensionless production time 

(cumulative production over expected hydrocarbons in place). More missing and desired data 

features will be dealt with in chapter 6 „Additional data‟. 
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The analysis of the data is directed towards an evaluation of oil reservoirs. Including gas reservoirs 

would have required a similar but completely separate analysis. The main reason to focus on oil was 

that gas recovery factors are usually higher and less variable. Additionally, the success of gas assets is 

assumed to depent more on economic factors rather than physical parameters. 

The filter criteria that were applied to the TQ EUR database are: 

 All oil reservoirs with zero or no value for Expected STOIIP 

 All oil reservoirs with zero or no value for Oil Recovery Factor 

The resulting data set consists of 1203 oil reservoirs. The univariate calculations are based on this 

screened data set unless noted otherwise. Principal component analysis and multivariate linear 

regression were applied to a subset of 916 reservoirs without any zeroes for all relevant variables.  It 

should be noted that the reservoirs with low current recoveries (<5%) have a larger uncertainty due 

to scarcity of production data. 
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4.4. Analyzing 

In the analyzing phase the pre processed data set is subjected to data mining techniques in order to 

extract patterns and obtain potentially useful information from the database. Pattern recognition is 

followed by identifying the nature of variation patterns in order to gain insight in the phenomena 

causing the variation.  

4.4.1. Univariate analysis 

Descriptive statistics are calculated values that describe the population such as mean, median, 

standard deviation, variance, skewness, and kurtosis. Most of the statistical tests used in the analysis 

are based on the concept of hypothesis testing. In hypothesis testing there are always two 

hypotheses, the null hypothesis H0 and an alternative hypothesis Ha. The null hypothesis is a 

contradiction to what you want to prove. The aim of the test is to accept one of the hypotheses and 

reject the other one. 

Since most of the statistical methods require that the variables are normally distributed it was 

verified whether and to what extent the distribution of selected features could be approximated by a 

normal distribution. The SPSS software package offers two of the most common tests for normality: 

the Shapiro-Wilk test and the Kolmogorov-Smirnov test. 

4.4.2. Subgroup analysis 

The data set is characterized by a large variance in recovery factors. This makes it difficult to identify 

trends that are statistically significant. Especially in the univariate analysis there is a risk that 

fundamental trends are obscured by other effects. Causes for the variance in the data set are:  

 Large amount of independent variables affecting recovery factor 

 Wide ranges for independent variables 

 Different data sources for same variable  

(See chapter 4 paragraph 4.1.2 ‘Data uncertainty’) 

 Uncertainties in the measurements of independent variables and recovery factor 

In order to reduce the impact of variance on the analysis reasonable subgroups were formed. The 

aim was to create groups with lower variance within the groups and maximum differences between 

the groups. The lower variance within the groups makes it possible to obtain better results. Such 

groups could also be found through cluster analysis, but with reasonable subgroups we have a better 

understanding of the differences between the groups that can explain differences in performance.  

A statistical method to compare groups based on the mean value is one-way ANOVA. In one-way 

ANOVA similarity of variance between the groups that are compared is assumed. To test this 
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assumption Levene‟s test of Homogeneity of Variances is used. When the significance value for this 

test is higher than 0.05 the assumption is met. Even when the assumption of homogeneity of 

variances is violated, we can still analyses the difference between groups based on their mean values. 

In this case robust tests of equality of means are applied like Welch and Brown-Forsythe. See Figure 

4.5. 

 

 

 
 

Figure 4.5: Analysis of Variance (ANOVA) flowchart. 

 

When more than two groups are compared, the above discussed tests only test whether there is a 

significant difference between the groups but does not give information on which groups deviate. 

Therefore post-hoc tests have to be done. 

4.4.3. Regression 

The purpose of regression techniques is to extract a correlation that can be used for prediction. 

Regression techniques used in this research are linear regression and multi linear regression. 

Linear regression aims to find linear equations of one or more dependent variable(s) to predict or 

estimate the dependent interest response. Linear regression is therefore different from correlation 

which investigates the association between variables but does not make an a priori assumption of 

the causation between predictor and response. In simple linear regression only one predictor 

variable is used and the resulting regression line is mathematically described by Equation 14.  
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Y = c + a x Equation 14 

In which, y is the dependent variable or response, c is a constant, a describes the slope of the line and 

x is the independent variable or predictor. Constant c is also called the intercept as this is the point 

where the regression line intercepts with the y-axis.  

Aiming to find an equation to predict recovery efficiency and learn relationships between features in 

order to formulate rules, simple linear regression was applied to all independent variables that 

potentially exert influence on the recovery factor. However, previous studies already showed that 

recovery factor does not show a strong correlation with any of the single predictors but rather that 

the response is a result of the combined influence of various variables. To allow for a regression 

based on the combined effect of independent variables on the response, Multiple Linear Regression 

(MLR) analysis was used. Equation 14 is expanded to Equation 15 that describes the result of MLR. 

 

Y = c + a1 x1 +a2 x2 + … Equation 15 

 

The constants ai are called regression parameters and their absolute value shows the degree of 

dependence. Estimation of regression parameters is based on mean square error minimization. 

4.4.4. Principal component analysis 

A prediction model resulting from regression analysis neglects the interaction between parameters. 

Since we know that some of the parameters influencing oil production, for example porosity and 

permeability, are interrelated this may lead to erroneous results. For this reason we will now consider 

a technique called principal component analysis, which does take the interrelationships into account. 

The first step is to subtract the mean from the data points in each dimension. The result of this 

operation is a dataset with an average of zero. This adjusted dataset can be used to construct a 

covariance matrix. Formula to calculate covariance: 

   Equation 16 

  

Covariance matrix of 2 dimensional data: 

 Equation 17

  

    

We can calculate the eigenvectors and eigenvalues of the resulting symmetric square matrix. The 

eigenvalues is the amount of variance captured by the eigenvectors. The eigenvectors with the 
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highest eigenvalue are the principal components of the dataset. Now the data can be reduced, by 

removing the eigenvectors with lower eigenvalues.  

Principal components analysis is a technique used for pattern recognition in high dimensional 

datasets. It also reduces the number of features and is therefore also considered a data reduction 

technique. Firstly, it expresses the in components. Secondly, the process gives information on the 

relative importance of the input variables. To identify parameters that only share variance with 

another variable and not with the rests of the variables Kaiser‟s Measure of sampling adequacy 

(MSA) can be used. Those parameters should be removed or new parameters that are believed to 

correlate with them should be included. According to Kaiser (Kaiser, 1970) MSA values below .5 are 

unacceptable. 

The number of components generated is equal to the amount of variables, but after inspection only 

components that account for a significant amount of the variance are kept. There are several ways to 

select the number of components. One can opt to keep the components with eigenvalues higher 

than one, which means the variance they describe is greater than that of a single variable. A visual 

method to extract the amount of components by inspecting is the so called „screeplot‟. The screeplot 

shows how much of the variance in the data is captured by the principal component. The screeplot 

is named after scree, which is the geologic term for rubble at the bottom of a sloping cliff.  

 

 

Figure 4.6: ‘Scree’, derived from the Old Norwegian word: ‘skriða’, is the term for the rock debris 

covering a sloping cliff. Source: 

http://en.wikipedia.org/wiki/File:Yamnuska_bottom_cliff.jpg  

http://en.wikipedia.org/wiki/File:Yamnuska_bottom_cliff.jpg
http://en.wikipedia.org/wiki/File:Yamnuska_bottom_cliff.jpg
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5. Results and Discussion 

The previous chapters provided an introduction to the dataset and described the data mining 

approach. This chapter will now presents and discusses the results of the analysis. Firstly, we will 

shortly discuss the statistics of the dataset that were obtained in the exploratory phase of the data 

mining. Secondly, we will deal with univariate trends that were revealed mainly through subgroup 

analysis. The final part will explain the structure of the dataset that was revealed through multivariate 

linear regression and principal component analysis. 

5.1. Statistical overview of the data 

The statistics of the selected reservoir engineering parameters are listed in Table 5.1. Frequency 

distribution diagrams are included in Appendix I. The Shapiro-Wilk and Kolmogorov-Smirnov 

numerical tests showed that none of the independent variables are normally distributed. Average 

well density, initial oil saturation, bubble point pressure, API gravity, reservoir- temperature and 

pressure are positively skewed. Initial oil saturation, porosity and net to gross ratio exhibit a negative 

skew. This can be explained by the economic bias, which introduces a cut-off for unfavorable values 

for most of the reservoir properties. Through visual inspection of the frequency distributions and 

Q-Q plots we could confirm that porosity and net to gross ratio are approximately normally 

distributed. Permeability, net thickness and expected STOIIP are approximately log normally 

distributed.  

5.1.1. Recovery efficiency 

Both visual inspection and numerical tests show that estimated ultimate recovery (Oil RF%) is non-

normally distributed. See Figure 5.1. As many statistical tests assume normally distributed variables, 

the non normality can become problematic later on. Fortunately, from the visual inspection we can 

conclude that although the oil recovery is not normally distributed deviation from normal behavior 

is not large. We observe that the distribution of oil recovery has too many low values and is 

positively skewed. Compared to the TORIS data (Sharma, 2010) with an median Oil RF% of 38%, 

our Oil RF% of 34.4% is significantly lower. Differences in maturity of the reservoirs in the dataset 

was identified as the main cause for this observation. The reservoirs in early stages of development 

have relatively lower estimated recoveries. We find that for our data the median Oil RF% of the 

producing fields (cum. Prod > 0) is significantly higher than that of non producing fields (cum. Prod 

= 0) with respectively 37% versus 28%. This phenomena is refered to as „reserve appreciation‟ in 

literature. Some papers (Laherrère, 2007; Watkins, 2002) claim that this is the result of pessimistic in-

place estimates. Unfortunately, there was not enough data (in-place versus time or maturity) 

available to test this hypothesis on our dataset. 



 - 31 -  
 

Table 5.1: Ranges of independent variables. The first three columns give the minimum, median 

and maximum for the all reservoirs. The ranges are also presented for clastic and 

carbonate reservoirs separately. Please note that there are (current and ultimate) 

recovery factors higher than 1. This is the effect of pessimistic estimates of in-place 

volumes.  

  TOTAL Clastics Carbonates 

Variables Unit minimum median maximum minimum median maximum minimum median maximum 

Rock properties 

Permeability mD 0.02 502 10000 0.02 643 10000 0.1 10 535 

Porosity - 0.042 0.24 0.38 0.07 0.24 0.38 0.042 0.18 0.35 

 

Initial oil saturation - 0.25 0.72 0.95 0.25 0.72 0.94 0.26 0.73 0.95 

Net to gross ratio - 0.025 0.77 1 0.03 0.76 1 0.025 0.945 1 

Net thickness m 1.2 29.7 560 1.2 26.8 475 1.3 50.0 560 

Column height m 2.1 52.7 3000 2.1 52.0 3000 5 59 800 

EXP. STOIIP mln. bbl 0.67 53.8 25000 0.67 48 25000 0.69 222.26 21013 

Fluid properties 

API gravity Deg. 8.0 33.2 115.4 8.0 33.0 115.4 13.0 36.9 51.0 

Oil viscosity cP 0.11 0.96 150000 0.11 0.96 150000 0.17 0.875 3000 

Oil formation  
volume factor 

rb/stb 1 1.253 131 1 1.246 131 1 1.3285 2.9 

Bubble point pressure psi 10 2760 10400 10 2900 10400 72 2001 8172 

Initial GOR scf/b 0.5 477 5500 0.5 477 5500 8.0 466.5 4300 

Reservoir environment 

Reservoir temperature degC 10 78 305 10 77 305 22 80 236 

Reservoir pressure psi 145 3578 16910 145 3578 16883 377 3376 16910 

 

Datum depth m 120 2380 7163 120 2387 7163 200 1999 5000 

Water depth m 0 0 2134 0 0 2134 0 0 83.8 

Average well density w/km2 0 1 1500 0 1 1500 0 0.55 500 

Recovery 

Current Recovery Factor - 0 0.147 1.02 0 .1676 1.02 0 0.0228 0.57 

Ultimate Recovery Factor - 0.006 0.344 1.297 0.006 0.351 1.297 0.006 0.2865 0.68 

Final oil saturation - 0.01 0.20 0.59 0.05 0.20 0.59 0.01 0.19 0.40 
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Figure 5.1: Top: Frequency distribution of oil recovery factor. Normal distribution is fitted over 

the distribution. Bottom: Normal Q-Q plot of the oil recovery factor. The straight line 

indicates a normal distribution and the dots represent the data. Both plots indicate 

that there are more reservoirs with low recovery factors than if it would be a normal 

distribution. 
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5.2. Subgroup analysis 

This chapter presents and discusses the results of the subgroup analysis. Subgroups were chosen 

based on reservoir engineering principles and geologic concepts. The statistical significance of the 

subgroups was tested using ANOVA.   

5.2.1. Drive mechanisms 

Figure 5.2 shows the current primary recovery factor for different drive mechanisms. All 

distributions are skewed to the right. Again, this is effect of the reservoirs that are in early stages of 

the development. The spread of the gas cap reservoirs is somewhat smaller than that of the others 

because the sample size of this group is smaller. The average recovery factor ranges from 40% for 

edge water drive reservoirs to below 25% for gas cap reservoirs. Generally, the water drive reservoirs 

are performing better than the gas drive reservoirs. However, if we look at the ultimate recovery 

factor which includes expected oil production and scope for recovery we find that only gas cap 

reservoirs show significantly lower recovery whereas the solution gas reservoirs score as well as the 

water drives. See Figure 5.3. 

Recall from chapter 4 „Methods‟ paragraph 4.1.3 „Calculated variables‟ that ultimate recovery factor 

can include secondary and enhanced recovery. Most likely, a relatively large percentage of the 

solution gas reservoirs will be subjected to secondary recovery applications. This is reflected in a 

distinct difference between ultimate recovery factor and current recovery factor for solution gas 

drive reservoirs. In support of this claim, Table 5.2 shows that most reservoirs that are currently on 

water flooding have solution gas drive as primary recovery mechanism. This can explain why gas 

reservoirs seem to perform as good as the other natural drive mechanisms. However, it does not 

explain why the gas cap reservoirs show such low recoveries. A possible explanation was found 

through multivariate analysis. See chapter 5, paragraph 5.4.5 „Performance of gas cap reservoirs‟ 

There is no significant difference in lithology distribution over the different drive mechanisms. 

Although the solution gas drive has a slightly larger percentage of carbonate reservoirs than water 

drive reservoirs the proportion is similar to that of gas cap reservoirs.  
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Figure 5.2: Box plot of Current Recovery Efficiency versus drive mechanisms.  Five basic 

statistics can be obtained from the box plot: the median, represented by the bar 

inside the box, the upper quartile and the lower quartile, represented by respectively 

the upper and lower outline of the box, the minimum and the maximum value. 

Between 1.5 and 3 times the box length we find the outliers that are represented by 

the circles. Not present in this plot are values further than three box lengths away 

which would be flagged as extreme values and represented by asterisks. 
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Figure 5.3: Ultimate Recovery Efficiency versus drive mechanisms. 

Table 5.2: Natural drive mechanism versus secondary recovery method. 

 

 

 

 

Figure 5.4: Microscopic Sweep Efficiency versus Natural Drive mechanism. The microscopic 

sweep efficiency is significantly lower for solution gas drive reservoirs. This is caused 

by the fact that this group is characterized by higher residual oil saturations. 
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Drive mechanisms affect the recovery efficiency both on the microscopic as well as on the 

macroscopic scale. See Figure 5.4. shows the average microscopic sweep efficiency versus drive 

mechanism under primary recovery. Edge water-, Bottom water- and Gas Cap drive show similar 

microscopic sweep efficiencies of 70 percent of the oil in place, however that of solution gas drive is 

with an average of 63 percent significantly lower due to higher residual oil saturations. Theoretically, 

the microscopic sweep should be better for gas drive reservoirs than for water drive reservoirs due 

to lower irreducible oil saturation. However, this could not be retrieved from the data. Most likely 

due to the fact that the recorded „final oil‟ does not in all cases represent irreducible oil saturation 

obtained from special core analysis (SCAL). Instead final oil seems to be the remaining oil that is left 

after the energy of the drive mechanism is exhausted. This explains high „final oil‟ saturations for 

solution gas drive reservoirs as those types of reservoirs often run out of energy before the 

irreducible saturation is reached. On the other hand, it could be that the low microscopic sweep 

efficiency for solution gas reservoirs would be an artifact of the SCAL measurements that is not 

representative for the actual field conditions. In that case that would mean that the macroscopic 

sweep efficiency for solution gas reservoirs will be overestimated in most cases. This is important as 

we stated earlier a large part of the reserves from solution gas drive reservoirs comes from the 

expected oil obtained through water flooding.  

Figure 5.5 shows the calculated macroscopic sweep for the different drive mechanisms. Maximizing 

the ultimate recovery from gas cap reservoirs seems most challenging. While the edge water drives 

have both high microscopic- and macroscopic sweep efficiency, the performance of the gas cap 

reservoirs is dominated by the poor macroscopic sweep. According to (Ahmed, 2010), conservation 

of energy stored in the compression of the gas is a key determinant for the performance of gas cap 

reservoirs. 

Less intuitive might be the result that bottom water drive reservoirs have an ultimate recovery 

efficiency that is significantly lower than that of edge water drive reservoirs.  Although the 

displacement process in bottom water drive is assumed to be more stable because of the high gravity 

number (L.P. Dake, 1994. p.343), often the gravity component is small compared to the viscous 

component and water coning may become a problem. Additionally, in our dataset the permeability 

and oil column height are higher in edge water reservoirs. This has a positive influence on the 

reservoir performance.  
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Figure 5.5: Macroscopic Sweep Efficiency versus Natural Drive Mechanism. 
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5.2.2. Lithology 

Lithology is a key determinant for recovery efficiency. Carbonates are notorious for highly variable 

and on average lower recovery factors.  Differences between carbonates and clastics in macroscopic 

sweep are mainly contributed to fractures and reservoir heterogeneity. On the microscopic scale 

carbonates are often more oil wet than sandstones. Shales differentiate from the sandstones by 

having low permeabilities and some clay minerals tend to be oil wet. 

Figure 5.6 shows the initial oil saturation for different lithology. Initial oil saturation is not 

significantly different between sandstone and carbonates. However, a significant difference between 

carbonates and sandstones on the one hand and shaly sandstones and shales on the other hand can 

be observed. In the latter high connate water saturations are the result of low permeability and 

porosity. As pores and pore throats are smaller it is harder to push the fossil water out and replace it 

with oil.  

Secondly, even though for carbonates matrix- permeability and porosity are low, we find high initial 

oil saturations. This can be explained by the fact that most carbonates are oil-wet and hence the 

preferential displacement of water by oil has led to higher oil saturations. However, this is in 

contrast with the idea that wettability does not play a considerable role in the initial water saturation. 

(Zinszner, 2007)  

In contrast, irreducible oil saturation is believed to depend on wettability which explains the findings 

that carbonates have significantly higher irreducible oil saturations. No statistic difference was 

observed for the clastic rocks. See Figure 5.7. 

Another major difference between clastics and carbonates in the dataset is the percentage of 

reservoirs that is subjected to secondary and enhanced recovery methods. Currently there are 46% 

percent of the carbonate and only 23% of the sandstone reservoirs on water flooding and 

respectively 10% versus 1% on gas injection. Also the application of enhanced methods is larger in 

carbonates than in clastics. So the effect of secondary recovery or EOR programs on the ultimate 

recovery factor is stronger for carbonates than sandstones. This is reflected in the ratio of current 

recovery factor over ultimate recovery factor, where the former includes only primary recovery 

whereas the latter includes secondary and enhanced recovery. The resulting ratios are 36.9/21.3= 

1.732 for clastics and 30.2/8.0= 3.775 for carbonates.  
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Figure 5.6: Initial oil saturation versus lithology. 

 

 

Figure 5.7: Final oil saturation versus lithology. 
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5.2.3. Aquifer strength, lithology and fracture intensity 

Figure 5.8 and Figure 5.9 show the effect of the aquifer strength on the ultimate recovery efficiency.  

For sandstone reservoirs we find a positive correlation between aquifer strength and both current 

primary recovery and ultimate recovery efficiency.  The explanation for this observation is that an 

active aquifer accommodates good pressure maintenance.  

A reason that a strong aquifer drive can also have a negative effect on recovery efficiency is that it 

can cause early breakthrough. This risk becomes larger when the reservoir heterogeneity increases. 

Besides their heterogeneity carbonate reservoirs are generally more fractured than clastics. Qing Sun, 

2003, differentiated brittle rocks in which fractures extent into the aquifer from the ductile rocks 

such as chalks and chalky limestones. In the cases where the fracture networks connect to the 

aquifer, we can expect that the fracture intensity plays a large role in the way aquifer strength affects 

recovery efficiency.  

Figure 5.10 and Figure 5.11 show the effect of aquifer strength on average recovery efficiency for 

different fracture intensities. The measure for fracture density used in the TQ EUR TOOL is a 

nominal scale ranging from 1 to 5. See table 2. We find that only the highly fractured carbonates 

have a decreasing reservoir performance with increasing aquifer strength. Highly fractured carbonate 

reservoirs therefore require extra careful reservoir management to prevent early water breakthrough. 

Additional data to monitor and optimize reservoir performance would be production and injection 

rate and water cut. 

Table 5.3: Relative measure of fracture intensity in the TQ EUR TOOL. 

1 
No fractures/High perm streaks or fracture conductivity and connectivity and conductivity is 

very favorable to reservoir recovery 

2 
Low fracture density or degree of high perm streaks and/or degree of connectivity and 

conductivity favorable to reservoir recovery 

3 
Moderate fracture density or degree of high perm streaks and/or degree of connectivity and 

conductivity has little effect on reservoir recovery 

4 
High fracture density or degree of high perm streaks and/or degree of connectivity and 

conductivity is unfavorable to reservoir recovery 

5 
Intensely fractured or degree of high perm streaks and/or degree of connectivity and 

conductivity is very unfavorable to reservoir recovery 
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Figure 5.8: Ultimate recovery factor for clastic reservoirs as a function of aquifer strength. 

 

 

Figure 5.9: Ultimate recovery factor for carbonate reservoirs as a function of aquifer strength. 
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Figure 5.10: Ultimate recovery efficiency for carbonate reservoirs with no fractures and low 

fracture intensity. The plot shows that for these reservoirs the aquifer strength has a 

positive influence on recovery efficiency. 

 

 

Figure 5.11: Ultimate recovery efficiency for carbonate reservoirs with high fracture intensity. For 

highly fracture reservoirs the aquifer strength has a negative impact on th recovery 

efficiency. 
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5.2.4. Depositional environment 

Tyler and Finley, 1991, proposed a classification of reservoirs in terms of heterogeneity based on 

geological environment of deposition.  

In our data we find a trend between oil recovery efficiency that is consistent with the net to gross 

ratio per depositional environment. See Figure 5.12.  To verify whether this observation is indeed 

related to the impact of reservoir heterogeneity on macroscopic sweep efficiency the unrecovered 

mobile oil was plotted. See Figure 5.13. The groups of reservoirs with low heterogeneity and high 

recovery efficiency also have the highest EUR per well. See Figure 5.14. 

Exceptions are the reservoir formations deposited in a deep marine setting. This group is dominated 

by Miocene sandstones which allows for a high microscopic sweep and high recovery efficiencies 

compared to other reservoirs in the dataset. However, most of the deep marine reservoirs are found 

in present day offshore and deepwater locations. The number of wells in such locations is constraint 

by economic limits which results in lower recovery factors. Most likely, reduction of the well costs 

would lead to additional recovery from those types of reservoirs. 

Drilling more wells will increase the recovery of mobile oil by reducing the amount of unconnected 

oil. When we compare the well density we find that deltaic, shallow marine and fluvial reservoirs 

have similar ranges. We can conclude that this might identify infill drilling opportunities for the 

fluvial reservoirs which have significantly lower recoveries. Generally, the most successful infill wells 

are the ones that tap into undrained areas. Identifying such targets in complex geological settings as 

fluvial environments requires a very good understanding of the geology and high level reservoir 

modeling. The technology of 4D seismic has proven to be successful in providing this kind of 

improved understanding of the reservoir drainage performance. 

According to Tyler and Finley, 1991, the unrecovered mobile oil can be divided into oil that is 

bypassed and oil that is unconnected to the well. The amount of bypassed oil relates to vertical 

heterogeneity whereas the oil that is not connected is a function of lateral heterogeneity. An 

additional parameter that would be interesting to differentiate unconnected oil from bypassed oil is 

water cut. High water cut with low recovery would indicate early breakthrough and mean bypassed 

rather than unconnected. In that case EOR methods such as polymer flooding would be more 

appropriate than infill drilling. 
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Figure 5.12: Net to gross ratio versus depositional environment. 

 

Figure 5.13: Unrecoverd mobile oil versus depositional environment. Note that the 

unrecovered mobile becomes negative in some cases. This is unphysical and is 

caused by either too low estimates of microscopic sweep efficiency, which is a 

common problem in the dataset due to uncertainties around the origin of the 

‘Final So’ value. See chapter 5, paragraph 5.2.1 ‘Drive mechanisms. It could 

also be the result of too high estimates of ultimate recovery, caused by 

pessimistic in-place estimates. 
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Figure 5.14: EUR per well versus depositional environment. There appears to be a relation 

between reservoir heterogeneity and EUR per well. Only Deep Marine reservoirs 

have a significantly higher EUR per well. This is due to the fact that all Deep Marine 

reservoirs are located in current day deepwater. The economic bias allows only for 

reservoirs with high EUR in this economically difficult location.  
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5.2.5. Sedimentary basins, geological age and depth 

The stratigraphic record of sedimentary basins reflects both local conditions as well as global scale 

events such as tectonic activity, climate change and eustatic sea-level change. (Hancock, 2000). Due 

to variable local conditions the correspondence between reservoirs is strongest within individual 

basins.  

Additionally, we may expect that geological units from a certain time period show some degree of 

similarity as they were deposited in the same worldwide climate. Moreover, in clastic rocks porosity 

reduces upon burial due to rearrangement of the grains under increased stress of overburden and 

cementation. The older the rocks, the longer they could have been exposed to diagenesis. In reality 

the result may not be as simple as burial histories are basin specific and could vary greatly. Another 

(imperfect) proxy to quantify diagenesis is depth of the reservoir.  Processes that can cause 

differences in diagenesis for similar age or depths are basin inversion, regional volcanic activity and 

early migration of hydrocarbons. 

The above suggests a possible trend between geological age of rocks and rock properties that 

influence the reservoir performance such as mineral composition, porosity and permeability. A link 

between fluid properties and age of the reservoir is less obvious. Oil properties are mainly 

determined by the type of source rock, maturation and migration path. It is not necessary that the 

age of the source rock is related to that of the reservoir. Even though younger sediments are 

originally deposited on top of older (law of superposition) certain structural settings allow reservoirs 

to be charged by younger source rocks. Unfortunately, source rock data itself is scarce and for many 

hydrocarbon accumulations the source is unknown. During deposition pore spaces are filled with 

water which varies from low salinity in fluvial and lacustrine settings to seawater for marine 

environments. Over time the formation water salinity is altered due to chemical interactions with the 

rocks upon diagenesis. As water chemistry influences fluid-rock interactions (wettability) it has direct 

influence on the microscopic sweep efficiency. Additionally water viscosity is a function of water 

salinity, but the ranges of water viscosity are narrow compared to that of oil. 

Figure 5.15 shows porosity categorized by geological age. Carbonates were excluded from the 

analysis because they are more abundant in certain time periods. Besides, the porosity alteration of 

carbonates upon diagenesis deviates strongly from that of clastics. Insufficient data was available to 

make a similar analysis for carbonates only. 

A potential global trend of decreasing porosity with increasing age is broken by the reservoirs from 

the Paleozoic. However, closer investigation of those particular reservoirs revealed that all of them 

are in the same country and the same basin. The same holds for the Jurassic reservoirs of which all 
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but one field are located in the same basin. Reservoir rocks from the other time periods are more 

equally spread around the world. Figure 5.16 shows a plot of porosities for sandstone reservoirs in 

the North Sea Basin. Caution must be taken in the interpretation of this plot as the amount of data 

points is limited. A similar but weaker global trend could be obtained for ultimate recovery 

efficiency. It is to be expected that better correlations could be obtained when the analysis is 

confined to a specific basin.  

No correlation between age of reservoir rocks and fluid properties or macroscopic sweep was 

found. The relationship between geological age or depth on one hand and rock properties and 

reservoir performance on the other hand is weak. The dataset contains too few samples to test the 

statistical significance of trends per basin. Furthermore, classification of the data based on geologic 

age is not ideal as reservoirs are not equally distributed throughout time. The dataset is dominated 

by reservoirs that were deposited during the Neogene period (Miocene sandstones). Table 5.4 and 

Table 5.5 show the number of reservoirs in a cross table of geological age versus depositional 

environment. 

 

 

 

Figure 5.15: Porosity versus geological age. A potential trend of decreasing porosity with age 

seems to be violated by Paleozoic reservoirs. More detailed inspection of the data 

revealed that most of those reservoirs are located in the same basin. Also, the Jurassic 

and Devonian reservoirs are restricted to the North Sea basin. 
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Figure 5.16: Porosity versus Geological Age for reservoirs in the North Sea Basin. 

 

 

Figure 5.17: Porosity versus depth trend per region. Note that no trend for the Americas region 

could be obtained. This is because the reservoirs in the Gulf of Mexico follow a 

different trend then the other reservoirs. 
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Table 5.4: Clastic reservoirs in the dataset per geological age versus depositional environment. 

 Aeolian Coastal Deep Marine Delta Fluvial Glacial Lacustrine Total 

Cambrian 3 0 2 0 14 0 3 22 

Devonian 0 0 0 0 6 0 0 6 

Carboniferous 0 0 0 0 3 6 0 9 

Permian 0 8 0 2 77 24 1 112 

Triassic 1 0 0 2 17 0 0 20 

Jurassic 1 33 4 31 21 0 0 90 

Cretaceous 1 83 5 3 24 0 2 118 

Paleogene 0 25 33 38 3 0 0 99 

Neogene 0 424 82 75 3 0 3 587 

Quarternary 0 0 2 0 1 0 0 3 

Total 6 573 128 151 169 30 9 1066 

 

Table 5.5: Carbonate reservoirs in the dataset per geological age versus depositional 

environment. 

 Coastal Fore slope/Basin High-Energy Carbonate 

Sand 

Low-Energy Carbonate 

Mud 

Organic 

Buildup 

Total 

Cambrian 0 0 0 21 0 21 

Devonian 0 0 0 1 1 2 

Carboniferous 0 0 0 0 1 1 

Permian 0 0 2 2 1 5 

Triassic 0 0 0 1 0 1 

Jurassic 1 0 1 4 0 6 

Cretaceous 6 1 37 47 3 94 

Paleogene 0 1 0 1 1 3 

Neogene 0 0 0 2 1 3 

Quarternary 0 0 0 0 0 0 

Total 7 2 40 79 8 136 
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5.3. Multivariate analysis results 

Hydrocarbon production is by nature a multivariate process. Therefore reservoir performance can 

only be adequately described by considering not solely the individual variables but also and possibly 

more importantly their correlation. The main technique used to discover and extract the patterns of 

correlations is principal component analysis (PCA). To reveal the most important predictors, 

multivariate linear regression was used.  

5.4. Principal component analysis 

5.4.1. Correlations 

The first result we obtain from the principal component analysis is a correlation matrix of all the 

independent variables that influence the recovery factor. Removed from the analysis are the 

parameters rock compressibility and reservoir area because they have a low correlation with RF and 

the other variables. Rock compressibility only plays a key role in reservoirs with high rock 

compressibility where compaction is a major contribution to the drive such as chalk reservoirs. 

However, such reservoirs only make up a small amount of the entire dataset.  Water depth was 

included as a proxy for installation and operating costs. 

In describing the strength of relationships we will distinguish between strong (0.6 and higher), 

moderate (0.3-0.6) and low (0.3 or less) correlations. Initially, using all reservoirs except those with 

missing values or zeroes resulted in poor correlations. Therefore, variables which are 

(approximately) log normally distributed were transformed before the analysis. This resulted in 

better differentiate strong and weak correlations. See Table 5.6. 

 

Table 5.6: Correlation matrix. The darker the cell, the stronger the correlation. 

logP logD Pb logGOR logT logOFVF Soi logWell Porosity Final So logPerm NTG% logNET logHc API logSTOIIP Water D logmu

logP 1,000 0,830 0,668 0,703 0,974 0,625 0,035 -0,582 -0,848 0,105 -0,410 -0,451 0,033 0,539 0,608 -0,090 -0,175 -0,668

logD 0,830 1,000 0,728 0,600 0,692 0,529 0,053 -0,297 -0,536 0,171 -0,063 -0,232 -0,163 0,712 0,274 0,227 0,365 -0,524

Pb 0,668 0,728 1,000 0,874 0,641 0,801 0,132 -0,459 -0,591 0,132 -0,027 -0,287 0,232 0,407 0,391 -0,288 -0,021 -0,677

logGOR 0,703 0,600 0,874 1,000 0,720 0,927 -0,108 -0,660 -0,656 0,398 -0,322 -0,359 0,188 0,213 0,759 -0,453 -0,176 -0,941

logT 0,974 0,692 0,641 0,720 1,000 0,645 0,034 -0,654 -0,913 0,077 -0,505 -0,522 0,133 0,420 0,675 -0,257 -0,390 -0,680

logOFVF 0,625 0,529 0,801 0,927 0,645 1,000 -0,203 -0,586 -0,596 0,217 -0,305 -0,208 -0,025 -0,063 0,765 -0,426 -0,185 -0,886

Soi 0,035 0,053 0,132 -0,108 0,034 -0,203 1,000 -0,148 -0,008 -0,397 0,631 0,241 0,501 0,268 -0,289 0,384 -0,073 0,260

logWell -0,582 -0,297 -0,459 -0,660 -0,654 -0,586 -0,148 1,000 0,777 -0,230 0,309 0,073 -0,506 -0,144 -0,699 0,159 0,439 0,674

Porosity -0,848 -0,536 -0,591 -0,656 -0,913 -0,596 -0,008 0,777 1,000 -0,053 0,577 0,475 -0,299 -0,347 -0,586 0,336 0,524 0,580

Final So 0,105 0,171 0,132 0,398 0,077 0,217 -0,397 -0,230 -0,053 1,000 -0,418 -0,422 -0,134 0,252 0,319 -0,210 0,261 -0,517

logPerm -0,410 -0,063 -0,027 -0,322 -0,505 -0,305 0,631 0,309 0,577 -0,418 1,000 0,713 0,182 0,034 -0,533 0,622 0,472 0,423

NTG% -0,451 -0,232 -0,287 -0,359 -0,522 -0,208 0,241 0,073 0,475 -0,422 0,713 1,000 0,086 -0,313 -0,215 0,635 0,361 0,293

logNET 0,033 -0,163 0,232 0,188 0,133 -0,025 0,501 -0,506 -0,299 -0,134 0,182 0,086 1,000 0,206 0,068 -0,187 -0,469 -0,058

logHc 0,539 0,712 0,407 0,213 0,420 -0,063 0,268 -0,144 -0,347 0,252 0,034 -0,313 0,206 1,000 -0,144 0,309 0,352 -0,108

API 0,608 0,274 0,391 0,759 0,675 0,765 -0,289 -0,699 -0,586 0,319 -0,533 -0,215 0,068 -0,144 1,000 -0,409 -0,397 -0,898

logSTOIIP -0,090 0,227 -0,288 -0,453 -0,257 -0,426 0,384 0,159 0,336 -0,210 0,622 0,635 -0,187 0,309 -0,409 1,000 0,662 0,385

Water D -0,175 0,365 -0,021 -0,176 -0,390 -0,185 -0,073 0,439 0,524 0,261 0,472 0,361 -0,469 0,352 -0,397 0,662 1,000 0,133

logmu -0,668 -0,524 -0,677 -0,941 -0,680 -0,886 0,260 0,674 0,580 -0,517 0,423 0,293 -0,058 -0,108 -0,898 0,385 0,133 1,000  
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Expected relationships with a physical explanation such as correlations between API-viscosity, 

STOIIP- Net thickness and porosity-permeability could be confirmed.  The relation between 

porosity and permeability is weaker than one might expect, but bear in mind that there are many 

different rock types in the dataset. Strong are the positive correlations in the upper left corner of the 

matrix between pressure (logP), depth (logD), bubble point pressure (Pb), Gas-Oil-Ratio (logGOR), 

temperature (logT), oil formation volume factor (logOFVF) and API gravity. These correlations can 

be explained as the change of fluid properties as a function of depth controlled independent 

variables pressure and temperature. Negative correlations are present between the previous variables 

and viscosity (logmu), well density (logWell) and porosity. The two latter don‟t represent a causal 

relationship but a bias effect on the selection of reservoirs. It seems that for lighter reservoir fluids 

lower porosities and lower well density are acceptable. Overall, the reservoir fluid properties seem to 

correlate better with each other than the reservoir rock properties. This indicates that there is more 

variance in the reservoir rock properties which might not be adequately described by the variables 

included in the analysis. 

5.4.2. Components 

From inspection of the correlation matrix we can already conclude that there are some high 

correlations between the independent variables. Now, we wish to express our dataset in principal 

components to describe the variance in recovery efficiency. The scree plot helps in identifying how 

many components should be considered. In our case we analyzed three principal components. 

However, further analysis of plots with principal component 1 against principal component 3 did 

not result in interpretable results. This is due to the fact that the amount of variance explained by 

component 3 is already very low (<15%). 

5.4.3. Loadings and principal scores 

The loadings represents the relative importance of each variable on a component.  The loadings 

were rotated to increase orthogonality of the solution. The rotation method VARIMAX was used, 

which maximizes the high loadings and minimizes the low loadings. The original and rotated 

solution is shown in Table 5.7.  The first component has heavy loadings on variables that describe 

PVT data and fluid properties. The second component has heavy loadings on rock properties such 

as permeability but also on water depth. 
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Figure 5.18: Scree plot.  This plot can be used to determine the required amount of components 

by determining the ‘elbow’ of the graph, here at the elbow sits at 5 components. 

Alternatively, one can select the number of components by selecting ones with the 

eigenvalues of each component. In this case 4 have eigenvalues greater than 1. If the 

eigenvalue is less than 1, a component does not explain more variance than a single 

variable itself would.  

Table 5.7: Left: Loadings of input variables on the components. Right: Loadings on the rotated 

solution. Rotation VARIMAX maximizes high loadings and minimizes low loadings 

per component. 
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We can plot the first two components on a so called loadings plot. Additionally, we can calculate 

and plot the principal scores of all reservoirs on the rotated component space. See Figure 5.19. 

None of the reservoirs are located in the lower left corner which is the effect of the economic bias 

of our dataset. We can also observe that there are two clusters of data points and most of the data is 

accumulated in the left cluster. The group of reservoirs on the right could be identified as the 

deepwater reservoirs. See Figure 5.20.  

 

 

 

Figure 5.19: Combined loadings (black) and principal scores (red) plot for all reservoirs. The first 

principal component has heavy loadings on fluid properties. Reservoirs scoring high 

on this component are light type oils. The second component has heavy loadings on 

rock properties but also on water depth. Reservoirs scoring high on this component 

form a distinct cluster and could be identified as deepwater reservoirs.  
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Figure 5.20: Principal scores of reservoirs with markers indicating: location, geological age, 

lithology and drive mechanism. The principal components represent the same 

variables as shown in Figure 5.19. 
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5.4.4. Deepwater reservoirs 

In our dataset „deepwater‟ refers to reservoirs located in areas with water depths exceeding 200 

metres. Reservoirs consisting of sediments deposited in a deepwater environment are referred to as 

„deep marine‟. Through both the subgroup- and the principal component analysis we find that 

deepwater reservoirs are significantly different from the other reservoirs. This is again the effect of 

an economic bias, which seems to apply to reservoir rock properties and not so much to reservoir 

fluid properties. Because deepwater drilling is costly and risky, only the reservoirs with the best 

reservoir properties could be economically developed. Hence the resulting average well density is 

much lower for deepwater reservoirs while the porosity and permeability are much higher. See Table 

5.8.  Also, it is the explanation for why no statistically different estimated ultimate recovery was 

found by dividing per location: the most difficult location deepwater compensates by having better 

reservoir rock properties.  

 

Table 5.8: Comparison of mean values of key parameters for deepwater, offshore and onshore 

fields in our dataset. The deepwater reservoirs are characterized by low average well 

densities but high porosity and permeability. 

 Well density 

 

[wells/km2] 

Exp.STOIIP 

 

[mln. bbl] 

Net to Gross 

 

[frac] 

Porosity 

 

[frac] 

Perm 

 

[mDarcy] 

Deepwater 2.68 1067 68 0.27 956 

Offshore 3.56 1024 68 0.23 687 

Onshore 5.08 860 73 0.23 736 

 

 

In our dataset, most of the deepwater reservoirs are submarine fans deposited during the Miocene in 

a deep marine environment. Deep marine reservoirs have potentially large lateral extents, good 

connectivity and excellent sand quality. Due to their young age and rapid deposition by turbidity 

currents, the reservoirs have maintained high porosities and permeabilities. A key risks for such 

reservoir types is reservoir compaction (Ostermeier, 2001). According to Ostermeier, 2001, 

compaction can cause three major issues, namely: subsidence affecting the integrity of the structure, 

stresses damaging and affecting the integretiy of the casing and reduction of porosity and 

permeability affecting the production performance. 
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Analysis of the reservoirs excluding deepwater reservoirs resulted in two new components. The first 

component represents the porosity-depth relationship that was also found through univariate 

analysis. This relationship is over shadowed by the economic bias when the entire dataset is 

considered. The second component is again a measure of the fluid properties, which was found as 

component one in analysis of all the reservoirs. Further analysis of the results did not reveal any 

distinct subgroups such as the deepwater reservoirs. 

 

 

 

 

 

Figure 5.21: Combined loadings (black) and principal scores (red) plot for all Non-Deepwater 

reservoirs. 
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5.4.5. Performance of gas cap reservoirs 

Recall from Chapter 4 „Methods‟, paragraph 4.4.2 „Subgroup analysis‟ that bottom water drive 

reservoirs and gas cap drive reservoirs in the dataset are performing less than respectively edge 

water- and solution gas reservoirs. From Figure 5.22 it can be seen that the edge and solution gas 

have a considerable amount of reservoirs which score high on the second component. In other 

words, they seem to have slightly better rock properties than which can explain the difference in 

performance. This corresponds with the fact that permeability is higher in edge water drive 

reservoirs. For gas cap reservoirs such results could not be obtained from univariate analysis, as for 

the distributions of independent parameters did not show statistically different results. This results 

highlights the importance of multivariate statistical analysis in reservoir engineering. As hydrocarbon 

production is in essence a multivariate process, interaction between predictor variables has to be 

taken into account.  

 

 

 

Figure 5.22: Principal scores plot with markers indicating reservoir type. The principal 

components represent the same variables as shown in Figure 5.19. To increase 

visibility, the axes are cut at PC scores of 3. Note that the heavy oils form a coherent 

group at the bottom left of the cloud. Under saturated reservoirs plot over the entire 

range, even outside the plotted are. 
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5.4.6. EOR methods 

Figure 5.23 shows that the first principal component, representing fluid properties, is most 

critical in determining which method is applied. This is not a suprising result as depth  and the 

corresponding API gravity are the main screening criteria for EOR methods. Generally, steam 

injection is applied to heavy oil reservoirs at shallow depths to minimize wellbore heat losses. 

Miscible gas injection on the other hand is often applied to light type oils at great depths and high 

pressures to achieve miscibility. (Taber et al., 1997). We also find that the second principal 

component, representing rock properties, does not seem to affect the choice of EOR method. 

For reservoirs on tertiary recovery principal component analysis does not give a lot more 

information. Simple crossplots of for example depth versus API gravity yield similar result that 

are easier to interpret. 

 

 

 

 

Figure 5.23: Principal scores with markers indicating EOR method. The principal components 

represent the same variables as shown in Figure 5.19. The plot shows that the first 

principal component, representing fluid properties, is most important in determining 

which method is applied. Also note that in this plot we can recognize the heavy oils 

from Figure 5.22 as reservoirs on steam flooding. 
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5.5. Multi linear regression 

The structure of the dataset has been identified in terms of two principal components (fluid- and 

rock properties).  Now we would like to know which of the independent are the most important for 

the prediction of recovery efficiency. Therefore multivariate linear regression technique has been 

applied.  

5.5.1. Subgroups and sample size 

Univariate and subgroup analysis showed that a lot of variance in the reservoir performance can be 

explained by discrete variables such as basin, depositional environment and drive mechanism. When 

we analyze the entire dataset as a whole this variance will be unaccounted for. This results in only 

low to moderate fits for multi linear equations. However, if we apply the same analysis to subgroups 

of the data the correlations we can extract are become more apparent. For this reason the analysis 

was applied to a subgroup with the largest amount of cases: primary RF coastal sandstone reservoirs 

of Miocene age. The advantage of analyzing this subgroup is that while we have reduced the 

variance significantly we are still left with a large amount of reservoirs. On the other hand, we are 

not using the full range of our dataset and findings are hard to expand to other subgroups. 

Therefore, we also consider a random training sample of approximately 5% of the entire dataset. 

This random sample was used to check whether the findings from the defined subgroup could be 

expanded to the entire dataset. Initially, the results which were obtained using the random sample 

are presented. Later, paragraph 5.5.3 „Expansian to the dataset‟ will discuss how well these results 

relate to the entire dataset. 

5.5.2. Most important variables 

Multivariate linear regression was used to extract the most important predictor variables from the 

first two principal components that were obtained through principal component analysis. The 

variables with the highest correlation coefficients are also the most significant according to t-test. 

This is because the spread of the distributions is in the same order of magnitude. The most 

important variable for is reservoir temperature which has loadings on the first principal component. 

Secondly, we find permeability which has loadings on the second principal component. The third 

important parameter is API gravity. It reflects the fluid composition on which other fluid properties 

depend. The other extracted parameters are not statistically significant in the prediction equations 

for recovery factor using t-test criteria of 0.1 (10%). However, it should be noted that the R2 values 

of the resulting equations were low. Beware that unlike the principal component analysis the multi 

linear regression does not account for correlation between the independent variables. 
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Figure 5.24: Standardized weights for predictors of recovery efficiency. In red, the significant 

variables according to t-test with tolerance level of 0.10. 

 

5.5.3. Expansion to entire dataset 

The R2 values of the obtained multivariate equations for recovery factor are low and the results are 

therefore not appropriate for prediction purposes. We may conclude that it is not possible to obtain 

useful correlation from a reservoir engineering dataset with so many different reservoirs. This is in 

contrast to previous studies that successfully obtained correlations for much smaller sample groups. 

Hence if the objective of a study is to formulate such equations, one should focus on a subgroup to 

reduce the variance. Considering the observations of the univariate analysis, it is suggested that 

limiting such research to a specific basin would be a good place to start. Nevertheless, the 

multivariate regression highlighted the most important predictor variables. Moreover, they seem to 

be consistent if we expand the analysis to the entire dataset. See Table 5.9. 

Table 5.9: Percentage of variance in oil recovery factor accounted for by the two most important 

variables of component 1. Note the change of order for all the reservoirs. 

 Reservoir temperature API gravity 

Random sample 17.5% 6% 

Defined subgroup 6% 4% 

All oil reservoirs 3.6% 6.7% 
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5.5.4. Predict missing variables 

Because some variables share a lot of variance with other variables it is in theory not necessary to 

know all properties. This is especially useful in a large but inhomogeneous (many missing values and 

zeroes) dataset such as the TQ EUR tool.  Also it reduces the dimensionality of the problem. We 

have derived the following linear regression models to predict the most important variables: 

temperature, permeability and API gravity. 

 

Reservoir temperature 

     Equation 18 

R2=0.825 

 

The positive correlation between temperature and oil viscosity is unphysical. This term seems to 

appear as a correction on the term of API. Removal leads to a much lower value of R2 (0.310) of the 

model. 

 

Permeability 

          Equation 19 

R2=0.317 

 

It appears to be hard to use other variables for the prediction of permeability. The reason is that the 

dataset contains a wide variety of rock types. This provides also an explanation for why permeability 

is a dominant predictor for recovery efficiency. It describes variance in the dataset that is unique and 

not shared with other variables. Fortunately, permeability is a well recorded variable, all cases in the 

dataset report a non-zero value for permeability. Recall Figure 4.4 from Chapter 4 „Methods‟, 

paragraph 4.3.2 „Data quality‟. 

 

API gravity 

  Equation 20 

R2=0.867 

 

Additionally, we would like to know if we can use parameters that we can measure in the field such 

as reservoir pressure, reservoir temperature and API gravity to adequately estimate fluid properties 
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required in reservoir studies (bubble point pressure, solution gas oil ratio, and oil formation volume 

factor and oil viscosity).  

 

Solution gas oil ratio 

 Equation 21 

R2=0.357 

 

Bubble point pressure 

    Equation 22 

R2=0.389 

 

Oil formation volume factor 

     Equation 23 

R2=0.288 

 

Oil viscosity 

      Equation 24 

R2=0.824 

 

The equation for prediction of oil viscosity is the only one with high R2 values. Again we find a 

positive correlation between oil viscosity and reservoir temperature. Removal of temperature did 

strongly reduce the R2 value of the model. It appears that is a correction for the way that pressure 

influences recovery factor. 

The obtained models are used to demonstrate that in some cases missing values can be substituted 

by using other variables to predict them. However, the insights in the correlations are more valuable 

than the obtained mathematical expressions themself. The models were generated using the full 

range of data. Moreover, the models are the result of linear regression. Non linear regression could 

lead to better results.  
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6. Additional data 

One of the objectives of this study was to investigate what key parameters are currently not reported 

in the tool. Based on both the literature study, dimensional analysis and the results of the statistical 

analysis additional data that should be included was identified.  

6.1. Literature study 

Based on the literature study a summary of the key determinants for recovery efficiency was made. 

See chapter 2 „Literature Review‟, Table 2.1. The parameters used in different literature studies were 

then compared to the parameters stored in the TQ EUR Tool. This comparison results in the 

recommendation to include the following variables: dip angle, flow rate, fractional water cut, and 

pressure drop. These parameters will provide more information on the operating strategy and the 

control we have of the reservoir. This information is currently missing but is expected to have a 

large influence on recovery efficiency, especially for difficult reservoir such as gas cap reservoirs or 

highly fractured carbonates. The parameters are also necessary when secondary and tertiary recovery 

methods are applied. 

6.2. Dimensional analysis 

Besides statistical analysis another approach to determine which variables are fundamental 

predictors for recovery factor is via dimensional analysis. The dimensionless groups become 

increasingly more important when secondary and tertiary recovery methods. 

The advantages of using dimensionless groups are: 

 the reduction of the number of variables 

 making the system independent of units 

 deduction important drive mechanisms 

 prediction of effect changing one parameter by testing effect of this parameter on 

dimensionless group. 

Dimensional analysis and statistical analysis are similar in the sense that all relevant parameters 

should be included in order to obtain meaningful results.  

Geerstma, 1956 derived dimensionless groups from relevant basic reservoir engineering equations 

for cold water-, hot-water- and solvent flooding reservoirs. According to Geertsma, 1956, 

dimensionless groups are very useful for the appropriate scaling of model experiments. 

However, because of the complexity of reservoir engineering problems, dimensional analysis often 

results in a large number of dimensionless parameters which makes it almost impossible to take all 

of them into account as scaling parameters. Bai, 2005, therefore states the need to focus on the 
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essential dimensionless groups only. His study comprised of a numerical approach to analyze the 

sensitivity of the dimensionless parameters in order to rank them in order of importance. The results 

of this study show that the following dimensionless groups are the key (scaling) parameters for 

water-flooding reservoirs. 

 

The ratio of the oil permeability under the condition of the irreducible water saturation to the water 

permeability under the condition of the irreducible oil saturation, the dimensionless permeability of 

oil and water, the density and viscosity ratios between water and oil and the reduced initial water 

saturation. Relative permeability ratios are important determinants for recovery efficiency, especially 

for secondary and tertiary recovery methods. Currently, relative permeability data is not recorded in 

the tool. However, there are separate datasets from which this data can be obtained. Despite the 

importance of relative permabilities it is not recommended to include them in our dataset due to the 

structure of the TQ EUR Tool. 

6.3. Statistical analysis 

In chapter 5, paragraph 5.2.3 „Aquifer strength, lithology and fracture intensity‟ the influence of 

fracture intensity on recovery efficiency was highlighted. However, farcture intensity is currently 

reported with a subjective ordinal scale. See Table 5.3. Therefore the use of an objective continuous 

variable for fracture intensity is proposed. The same holds for vertical and lateral heterogeneity. 

Chapter 4, paragraph 4.1.3 mentions that Estimated Ultimate Recovery (OilRF%) in some cases 

includes production from secondary and tertiary methods if those are part of the field development 

plan. As we do not know exactly when those methods are included in this value it becomes hard to 

compare reservoirs. Therefore it is suggested to split the OilRF% in: primary-, secondary- and 

tertiary recovery factor. This will of special interest when futher research would be directed towards 

an assessment of the effectiveness of IOR and EOR methods. 

In the analysis all the reservoirs were treated equally. Alternatively, we could have assigned weights 

to each reservoir or even to each individual parameter describing every reservoir. Reasons for doing 

so are for example the fact that maturity has a distinct effect on estimated ultimate recovery factor. 

However, a good measure for maturity that could be used to assign such weights is currently not 

available. Including the origin of measurements for all data would be a massive if not impossible 

exercise, increases the dimensionality of the problem and probably not worth the effort. As an 

alternative a variable to specify the level of confidence of all values attached to one reservoir could 

be included. Additionally, it could be considered to include the measurement method only for 
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parameters that are essential. Especially when large differences depending on the measure method 

are to be expected. In our dataset that are: „Final So‟ and „Permeability‟. 

Chapter 5, paragraph 5.1.1 „Recovery Efficiency‟ discusses the effect of maturity on the distribution 

of Estimated Ultimate Recovery.  As there is a direct relationship between the stage of development 

and the reliability of the ultimate recovery estimate, this should be accounted for in the analysis. 

Therefore, the use of a categorical variable with the following categories „Exploration‟, „Appraisal‟, 

„Development‟, „Production‟ and „Abandonment‟ is proposed. 

6.4. Formation water properties 

When we inspect the dimensionless groups we find that most of the dimensonless number include a 

ratio of oil and water properties. Historically reservoir engineers have not focussed on the properties 

of formation water. Formation water- salinity, density and viscosity are industry wide poorly 

reported parameters. Also the TQ EUR Tool does not include any formation water properties. The 

C&C dataset on the other hand records water salinity from which the viscosity and density could be 

estimated. In this estimation the brine composition is oversimplified and represented as an NaCl 

solution. Error in the estimations of viscosity and density from salinity are 5% (Craft & Hawkins, 

1981; McCain, 1990).  The average brine salinity of the reservoirs in the C&C data is 4.2%. This 

average was used to estimate the water viscosity and density using reservoir temperature and 

pressure for the reservoirs in the TQ EUR TOOL. The estimation is based on the assumption that 

the average water salinity for both datasets would be the same. The same procedure was applied to 

the C&C data and cross checked with viscosity approximations using individual salinity values. The 

average error introduced by using average salinity instead of individual values was 14%.  

Water viscosity varies from 0.3 to 1.4 cP, depending  on the composition and concentration of salts. 

Sensitivity analysis showed that it is not necessary to include the missing water properties. Like oil 

properties strongly correlated with reservoir- temperature and pressure. Moreover, their variance is 

even less than that of oil. 

However, salinity is of importance for secondary and enhanced oil recovery methods as a high 

salinity contrast between injection fluid and formation water affects the injectivity. Furthermore, in 

high saline water the viscosifying effect of polymers is strongly reduced. So in the case of screening 

for EOR opportunities water salinity is a required variable. 
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7. Conclusions and Recommendations 

7.1. Conclusions 

The global and industry wide dataset stored in the so called TQ EUR TOOL was subjected to data 

mining. The following insights in the origin of variance in reservoir performance could be extracted 

from this analysis: 

 There is a strong economic filter resulting in a bias towards reservoir with good rock and fluid 

properties. As a result of the economic bias we find positive correlations between reservoir 

properties and economic complexity of the reservoirs. Available proxies for economic 

complexity and development costs are location, water depth and reservoir depth. Especially 

in the assessment of the relationship between well spacing and recovery factor economic 

overprint plays a key role.  

 The spread of recovery factors is rather wide. Despite the variance some global trends could 

be distilled. We find that the oil recovery factor decreases with increasing heterogeneity of 

the depositional environment. Exceptions are the fluvial reservoirs which have low well 

densities with respect to their heterogeneity and recovery factors indicating potential infill 

drilling opportunities.   

 Basin specific analysis yielded good correlation between rock- and fluid properties versus 

depth. Recovery factor versus depth correlations were not found, probably due to the 

economic bias. If the objective is to produce correlations that can be used for accurate 

predictions, they should be restricted to basins. 

 Using ANOVA the following statistically different subgroups were identified: drive 

mechanism, reservoir type, depositional environment, lithology and region. Division by fiscal 

regime and location (deepwater/offshore/onshore) did not lead to statistically different 

subgroups with respect to recovery factor. Use of reasonable subgroups proved to be 

successful in reducing variance of ultimate recovery factor. Now further statistical analysis of 

the dataset is suggested to focus on cluster analysis to discover unknown groups and hidden 

structures in the dataset.  

 Principal component analysis was used to reveal the structure of the dataset. The analysis 

showed that most of the variance in recovery factor can be contributed to fluid properties 

and rock properties. The volumetric parameters reservoir area, gross thickness and expected 

STOIIP don‟t show significant influence on Recovery Factor. However, the variance in 

recovery factor is much larger for smaller fields. The variance seems to originate from the 

possibility of success per well and decreases with an increasing number of wells. 
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 In addition, automatic multivariate linear regression was applied to extract the most important 

variables: API gravity, permeability and reservoir temperature. These findings suggest that in 

using analogues for benchmarking special attention should be given to those parameters.  

7.2. Recommendations 

Future research is suggested to be directed towards effectiveness of IOR/EOR projects and 

reservoir control. These topics could not be adequately addressed in this analysis due to the absence 

of key parameters. To improve the overall structure of the TQ EUR tool and the following are 

suggested: 

 In chapter 6 „Additional data‟ the necessity to include additional parameters in the database is 

discussed. Especially in the performance prediction of secondary and tertiary recovery 

methods more variables are required. Based on dimensional analysis and literature review it 

is recommended to include the following variables: dip angle, flow rate, fractional water cut, 

and pressure drop. The suggested parameters are also of use when making an assessment of 

the operating strategy and control of the reservoir. 

 In addition to data gathering, some of the current variables should be improved. Firstly, it is 

suggested to separate the Estimated Ultimate Recovery in: primary recovery, secondary and 

tertiary recovery factor. This would also allow for a better to benchmark secondary and 

tertiary methods against conventional field development. 

 Furthermore, heterogeneity and fracture intensity are represented by ordinal variables. As a 

consequence these parameters could not be included in the multivariate analysis. From the 

analysis it follows that both have a strong impact on oil recovery factor. Therefore it is 

justified to record both factors as continuous variables.  

 The dataset does not record any formation water properties such as water salinity, viscosity or 

density. For enhanced recovery methods the water salinity is critical as it affects both the 

injectivity as well as the effect of polymers on the mobility ratio. 

 To improve the quality of further analysis weighing of reservoirs based on the uncertainties of 

the recorded variables is recommended. A categorical variable to express the data quality and 

confidence level for each reservoir is suggested.  

 Acknowledging the effect of maturity on the distribution of estimated ultimate recovery factor 

it is recommended to record the stage of development.  
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