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Bombay, Mumbai, India; bDepartment of Agronomy, Kansas State University, Manhattan, Kansas, USA; 
cDepartment of Water Resources, Delft University of Technology, Delft, The Netherlands; dOttawa Research 
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ABSTRACT
Using the cross-validation approach, strategies for estimating bio-
physical parameters are still pre-operational with synthetic aperture 
radar (SAR) data. In this regard, the Joint Experiment for Crop 
Assessment and Monitoring (JECAM) SAR inter-comparison experi-
ments provide an opportunity for the potential implementation of 
cross-validation strategies for biophysical parameters retrieval uti-
lizing the next-generation compact polarimetric (CP) modes avail-
able from the RADARSAT Constellation Mission (RCM). This work 
first uses the conventional semi-empirical Water Cloud Model 
(WCM) modified by exploiting the scattering power decomposi-
tions of CP measurements to estimate the Plant Area Index (PAI) 
for rice. The modified WCM (MWCM) is then inverted using the 
scattering power components from the iS � Ω decomposition. We 
compare the PAI estimates using MWCM-iS � Ω between the esti-
mates obtained from (1) the conventional WCM using the RH and 
RV backscatter intensities and (2) MWCM-m � χ decomposition 
scattering powers. We exploit a time series of simulated compact- 
pol SAR data over the JECAM test site in Vijayawada, India, through-
out 2018 and 2019. We use the C-band RADARSAT-2 full-pol data to 
simulate the RADARSAT Constellation Mission (RCM) compact-pol 
mode data. Utilizing the advantage of systematically collected 
multi-year SAR data and in-situ measurements, the present research 
also assesses the calibrated model transferability performances to 
another data set and cross-validation of a model in a multi-year 
experiment setting. The comparative analysis indicates potential 
improvements in PAI estimation with MWCM-iS � Ω scattering 
powers. A high range of correlation coefficient (r ¼ 0:84� 0:06) 
between the estimated and observed PAI is observed with good 
Root Mean Square Error (RMSE) of 0:778� 0:107 m2 m−2, and Mean 
Absolute Error (MAE) of 0:601� 0:103 m2 m−2.
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1. Introduction

Active research is being pursued to evaluate the potential of the hybrid polarimetric 
architecture proposed by Raney (2007). Many are interested in using Compact 
Polarimetric Synthetic Aperture Radar (CP SAR) data for Earth observation monitoring. A 
hybrid-pol SAR system transmits either in a right circular (R) or a left circular (L) polariza-
tion and receives two coherent orthogonal linear polarizations, horizontal (H) and vertical 
(V). This mode is often termed as the Circular Transmit and Linear Receive (CTLR) (Raney 
2007). CP SAR has an advantage over full-pol SAR systems in terms of a larger swath width 
but at the expense of added rich polarimetric information as compared to conventional 
dual-pol (Raney 2016; Touzi and Charbonneau 2014).

Several studies with CP SAR systems, e.g. RISAT-1 (Misra et al. 2013) and ALOS PALSAR- 
2 (Yokota et al. 2015), as well as simulated CP data from full-pol observations, have drawn 
considerable attention to the utility of CP data for earth observation applications. The 
Canadian RADARSAT Constellation Mission (RCM) provides data in CP mode (Thompson 
2015). The RCM is a constellation of three identical C-band SAR satellites, which provide 
improved revisit opportunities. The performance of CP SAR data has been explored, 
comparing the information provided by this mode against that of dual and full polari-
metric SAR data for different land features (Ainsworth, Kelly, and Lee 2009; Brisco et al. 
2013; Charbonneau et al. 2010; Nord et al. 2009; Xie et al. Xie, et al., 2015; Raney 2016; Ohki 
and Shimada 2018; Kumar et al. 2019; Mahdianpari et al. 2019). In particular, the potential 
of CP SAR data has been assessed for agricultural applications, including crop growth 
monitoring (Ballester-Berman and Lopez-Sanchez 2012; Shang et al. 2012; Lopez-Sanchez 
et al. 2014; Yang et al. 2014; Venkata et al. 2017; Kumar et al. 2017; McNairn et al. 2017; 
Homayouni et al. 2019), biophysical parameter retrieval (Yang, et al., 2016a; Zhang et al. 
2017; Dave et al. 2017; Chauhan, Srivastava, and Patel 2018; Mandal et al. 2020) and soil 
moisture retrieval (Truong-Loi et al. 2009; Ouellette et al. 2014; Ponnurangam et al. 2016; 
Merzouki et al. 2019) using real as well as simulated CP SAR data.

In the context of crop biophysical parameter estimation, the semi-empirical Water 
Cloud Model (WCM) has been widely used due to its simplicity as well as effectiveness 
(Wigneron et al. 1999; Graham and Harris 2003). The WCM simulates SAR backscatter 
intensities in linear co- and cross-pol channels (i.e. in H-V basis) from a vegetation layer. 
This model has received significant attention for biophysical parameter estimation 
(Prevot, Champion, and Guyot 1993; De Roo et al. 2001; Inoue et al. 2002; Dabrowska- 
Zielinska et al. 2007; Kweon and Yisok 2015; Hosseini et al. 2015; Hosseini and McNairn 
2017; Mandal et al. 2019c; Hosseini et al. 2021). However, limited studies have attempted 
the estimation of crop biophysical parameters with simulated compact-pol SAR data (Xie 
et al. 2015b; Zhang et al. 2017; Chauhan, Srivastava, and Patel 2018; Guo et al. 2018). 
Chauhan, Srivastava, and Patel (2018) used RISAT-1 hybrid-pol RH-RV intensities to 
estimate wheat leaf area index (LAI), plant water content (PWC), leaf water area index 
(LWAI) and interaction factor (IF) with high accuracy.

Among these crop descriptors, the LAI is the most commonly used crop growth 
monitoring using indirect measurement techniques, where it is not easy to distinguish 
between green and non-green elements, such as stems, shoots, and flowers (Jonckheere 
et al. 2004). Hence, an important source of error in indirect measurements comes from 
woody parts (e.g. branches and stems) that might be considered green vegetative 
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elements (Weiss et al. 2004). Therefore, alternative terms have been proposed in the 
literature, such as the ‘Plant area index’ (Neumann, Den Hartog, and Shaw 1989; Breda 
2003). In plant physiology, PAI is expressed as a square metre of plant area per square 
metre ground. In the radar signal context, it is assumed that the scattering of EM waves is 
due to the interaction of all the vegetative parts of a crop canopy with radar signal. Hence, 
PAI is appropriate for SAR data analysis. However, LAI is defined as the one-sided leaf area 
per unit ground surface area. Thus, LAI, in general, is unable to compensate for the other 
canopy elements.

In the studies related to biophysical parameters with simulated compact-pol SAR, the 
conventional formulation of WCM is utilized, which accounts for the backscatter inten-
sities in the linear-polarization (H-V) basis. However, the backscatter intensities are 
expressed in a circular basis, i.e. σ�RH and σ�RV. It is to be noted that in the CTLR mode, 
the backscatter coefficients, σ�RH and σ�RV are proportional to HHþ VHj j

2 and HVþ VVj j
2, in 

which the co- and cross-polarized terms cannot be explicitly separated (Raney 2016). This 
impending characteristic compromises these experiments with the CTLR mode while 
adopting the conventional formulation of WCM. Although a statistical transfer function 
derived between σ�RH and σ�HH, or σ�RV and σ�VV intensities could be an optimistic approach 
(Merzouki et al. 2019), indeed the cross-pol (σ�HV or σ�VH) component would increase errors 
for land targets where multiple or diffuse scattering contributes significantly to total 
scattering (Raney 2019; Lopez-Sanchez et al. 2014; Dey et al. 2020).

Apart from the backscatter intensity-based inversion approach, one may utilize a 
modified version of the WCM (Ulaby et al. 1984; Ulaby and Long 2015) to simulate 
scattering power components from vegetation canopy. Guo et al. (2018) utilized a 
modified WCM proposed by Yang et al. (2016b) to retrieve rice biophysical parameters 
from simulated CP SAR data. The modified WCM (MWCM) simulates scattering powers 
from distinct components of the vegetation-soil system. These scattering components are 
then associated with the three primary scattering power components obtained from the 
m � χ or the m � δ decompositions. The odd-bounce Ps, even-bounce Pd and diffuse Pv 

scattering power components from the m � χ and the m � δ decomposition represent 
the observed parameters. Crop parameters (e.g. Leaf Area Index – LAI, plant height, 
vegetation water content–VWC) are used as the target parameter in a genetic algorithm 
for MWCM inversion. The validation results reported a R2 value of 0.64 and 0.70 and RMSE 
of 0.62 and 0.48 m2 m−2 for m � χ and m � δ decompositions, respectively. These 
decompositions provide reasonable estimates for these crop biophysical parameters, 
where the scattering power components are derived only from the received backscat-
tered information. The introduction of the polarized power fraction Ω (Bhattacharya et al. 
2015) provides a wider degree of freedom by including transmit polarization information. 
This aspect helps accommodate a range of scattering mechanisms that are not exhibited 
in the existing decomposition techniques.

Hence, utilizing this polarization fraction parameter, Kumar et al. (2020) proposed an 
improvement in the scattering power components from the existing S � Ω decomposi-
tion (Bhattacharya et al. 2015). The improved S � Ω decomposition (called iS � Ω) suitably 
takes care of the diffuse scattering powers, often overestimated by the m � χ and m � δ 
decompositions. The degree of dominance in the scattering-type from targets is attrib-
uted in iS � Ω to improve the scattering powers necessary for complete target 
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characterization. The new decomposition scattering power components may also 
improve the inversion accuracies of biophysical parameter estimation while utilizing 
them to relate with different scattering components of the vegetation-soil system in 
MWCM.

Despite these modelling approaches and their competitiveness, biophysical parameter 
retrieval with CP SAR using the WCM and its variants offers an opportunity to explore 
potential strategies with acceptable inversion accuracies. Moreover, the temporal robust-
ness of model calibration and validation approaches are seldom investigated beyond 
specific calibration data sets. A framework for assessing cross-calibration and validation of 
different techniques with temporally rich data sets has not been fully explored (Beriaux et 
al. 2013; Hajj, Mohammad, and Zribi 2019). Such studies have been limited by the lack of 
large and diverse in-situ measurements collected coincident with SAR image acquisitions 
across diverse agro-ecosystems over multiple seasons (Beriaux et al. 2013). The JECAM 
SAR Inter-Comparison Experiment was designed to acquire such data sets over various 
global test sites (Dingle Robertson et al. 2017; Davidson et al. 2017; Hosseini et al. 2021). 
The JECAM SAR Inter-Comparison Experiment offers a platform to compare several 
inversion methodologies and conduct cross-validation experiments by ensuring consis-
tency across the data sets. For these semi-empirical model-based inversion approaches, 
the framework for cross-calibration and validation requires a systematic investigation.

In this paper, the present research presents the following proposals:
• We propose to develop the best layout for model inversion while utilizing the 

backscatter coefficients in circular polarization RH-RV and scattering power components 
from decomposition techniques: m � χ or iS � Ω to retrieve the biophysical parameter of 
rice.

• We perform the model calibration and sensitivity analysis for a single season crop 
data.

• We assess the performances of the calibrated model transferability to other data sets while 
cross-validating a model in multi-year experiment settings.

2. Study area and data set

The test site is located in Vijayawada, India, as shown in Figure 1. This is the JECAM SAR 
test site in India (Mandal et al. 2017). The Vijayawada JECAM site covers the Krishna and 
Guntur districts in the state of Andhra Pradesh, India. The test site covers an area of 
approximately 50� 25 km2 where rice is one of the major crops. Here, rice is grown in two 
distinct seasons: monsoon or kharif (June–November) and winter or rabi (December– 
March). A detailed description of the test site is provided in Mandal et al. (2019a).

2.1. In-situ measurements

We conducted the in-situ measurements during the Kharif season for two consecutive 
years: 2018 and 2019. In-situ measurements were available from the first week of June 
until November for both seasons, with approximately a revisit duration of 22 days. During 
the field campaigns, soil and crop information was collected over 75 agricultural fields, 
with a nominal size ranging from 60 m � 60 m to 100 m � 100 m. In each sampling field, 
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soil and crop measurements were recorded at two sampling locations, arranged in two 
parallel transects, as shown in Figure 1. We took soil moisture measurements at each 
sampling location using a theta-probe at 5 cm depth.

In each field, we conducted vegetation measurements at two points co-located with 
the soil sampling locations. It includes the measurement of plant area index (PAI) and 
phenology stages. During field sampling, we took 10 photographs along two transects 
separated by 2 m at each sampling point, using a wide-angle lens mounted on a digital 

Figure 1. The JECAM-Vijayawada, India test site with a σ�RH product simulated from RADARSAT-2 data 
of 29 July 2018. Locations of sampling sites are shown with red points. A layout of a sampling unit is 
also provided. Circles with a black cross inside refer to measurement points within each sampling field.
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camera. All these images were post-processed using the CanEYE software (INRA 2017) to 
estimate PAI (Jonckheere et al. 2004; Weiss et al. 2004). Besides, we also measured wet 
biomass during the 2019 campaign by cutting rice plants above ground level. We utilized 
the biomass measurements and plant spacing information to derive the wet biomass per 
unit square metre area. The detailed description of vegetation and soil measurement 
strategies is documented in the field campaign report (Mandal et al. 2019a).

2.2. SAR dataset and preprocessing

During the Kharif season of each year, seven RADARSAT-2 images were acquired in Fine 
Quad Wide mode (FQW) over the test site, as given in Table 1. All acquisitions were in 
ascending orbit mode for 2018 and 2019 data sets with a scene centre incidence angle of 
35.2 �.

Several polarization combinations at varying spatial resolutions and noise floors (ran-
ging from −25 dB to −17 dB) are available from RADARSAT Constellation Mission 
(Thompson 2015). Among these polarimetric products of RCM, the compact-pol (i.e. RH- 
RV) mode is of particular interest for land applications due to its large-scale attributes 
(Raney et al. 2021). In this present study, the CP datasets are simulated from full-pol 
RADARSAT-2 data (Table 1) using the compact-pol simulator in Sentinel-1 Toolbox 8.0 
(ESA 2019) provided by SNAP with −24 dB of noise equivalent sigma zero (NESZ). The 2 �
2 covariance matrix C2 is generated for individual acquisitions. These C2 matrix elements 
are despeckled with the 3 � 3 refined Lee filter.

These multi-temporal images (elements of the C2) are then co-registered. Backscatter 
intensities σ�RH and σ�RV are first derived from the elements of the C2 matrix for individual 
dates followed by a geometric correction. The in-situ measurement points are then 

Table 1. Specification of C-band full-pol RADARSAT-2 acquisitions over the test site during the field 
campaign. Field campaign windows for synchronous in-situ measurements are also included for 
reference.

Year
Acquisition 

date
Beam 
mode

Incidence angle range 
(deg.) Orbit In-situ measurements

Rice growth 
stages

2019 30 Jun FQ15W 33.7–36.7 Ascending 29 June 1930 Jun, 01 
Jul

Bare soil

24 Jul FQ15W 33.7–36.7 Ascending 23 July 2024 Jul, 25 
Jul

Leaf 
development

17 Aug FQ15W 33.7–36.7 Ascending 16 August 2017 Aug Early tillering
10 Sep FQ15W 33.7–36.7 Ascending 9 September 2010 

Sep
Advanced 

tillering
04 Oct FQ15W 33.7–36.7 Ascending 3 October 2004 Oct Booting
28 Oct FQ15W 33.7–36.7 Ascending 24 October 2025 Oct Flowering
21 Nov FQ15W 33.7–36.7 Ascending 20 November 2021 

Nov
Early to late 

dough
2018 05 Jul FQ15W 33.7–36.7 Ascending 4 July 2005 Jul Ploughed field

29 Jul FQ15W 33.7–36.7 Ascending 1 August 2002 Aug Early tillering
22 Aug FQ15W 33.7–36.7 Ascending 22 August 2023 Aug Advanced 

tillering
15 Sep FQ15W 33.7–36.7 Ascending 14 September 2015 

Sep
Booting

09 Oct FQ15W 33.7–36.7 Ascending 8 October 2009 Oct Flowering
02 Nov FQ15W 33.7–36.7 Ascending 2 November 2003 Nov Early dough
26 Nov FQ15W 33.7–36.7 Ascending 25 November 2026 

Nov
Maturity
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overlayed on these σ�RH and σ�RV images. The backscattering intensities for each sampling 
location are calculated as the average over a 3 � 3 window centred on each site. 
Similarly, the polarimetric decomposition parameters are generated using the C2 ele-
ments, as described in Sec. 3.2.

3. Methodology

3.1. Vegetation modelling

In SAR theory, models to characterize vegetation canopy have evolved from classical 
physics-driven functions to semi-empirical forms to describe volume scattering from a 
continuous canopy layer (Graham and Harris 2003; Steele-Dunne et al. 2017). Simpler 
formulations of semi-empirical models, derived from the concept of the physics of 
scattering, have been extensively reviewed in the literature. Amongst these models, the 
Water Cloud Model (WCM) (Attema and Ulaby 1978) is widely used for the realization of 
scattering phenomena from a vegetation canopy. Attema and Ulaby (1978) originally 
formulated the model to characterize the total backscatter intensity (σ0) in linear (H-V) 
polarization basis as, 

σ0 ¼ AVE
1 cos θ 1 � exp �

2BVF
2

cos θ

� �� �

þ C0 � 10DMv
� �

� exp �
2BVF

2

cos θ

� �

(1) 

where A, B, C0, D, E, and F are the model coefficients and θ is the radar incidence angle. 
Mv represents the volumetric soil moisture. V1 and V2 are the plant canopy descriptors. In 
literature, different canopy descriptors are proposed to realize the vegetation canopy in 
WCM (Ulaby et al. 1984; Prevot, Champion, and Guyot 1993; Lievens and Verhoest 2011; 
Hosseini et al. 2015; Mandal et al. 2019c). In this study, we assess V1 ¼ L, V2 ¼ L, and 
L ¼ PAI. It is important to note that in the case of rice cultivation, the underlying soil 
contains standing water or it close to saturation. Hence, the term DMv can be suitably 
neglected. Subsequently, Eq. (2) is obtained from Eq. (1) as, 

σ0 ¼ ALE cos θ 1 � exp �
2BLF

cos θ

� �� �

þ C � exp �
2BLF

cos θ

� �

(2) 

These models were initially developed to characterize radar intensities in linear polar-
ization (H-V basis). However, more often, the expressions are directly adopted for the CTLR 
mode without any proper modification (Chauhan, Srivastava, and Patel 2017, 2018; Guo et 
al. 2018). It is to be noted that the backscatter intensities, σ�RH and σ�RV for CTLR mode are 
proportional to HHþ VHj j

2 and HVþ VVj j
2, in which the co- and cross-polarized terms 

cannot be explicitly separated (Raney 2016). However, in the present study, we utilize the 
original expression of WCM with σ�RH and σ�RV to compare it against a modified version of 
WCM, as addressed in the subsequent paragraphs.

Since the WCM is a semi-empirical model, it must be initially parameterized (i.e. 
calibrated) with in-situ measurements and corresponding backscatter intensities. The 
calibration step includes the estimation of model parameters (A, B, C, E and F) as 
expressed in Eq. (2). The model parameters are derived using the non-linear least square 
Levenberg-Marquardt algorithm (Moré 1978). The in-situ measured PAI and backscatter 
intensities (RH and RV) are then used to calibrate.
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Subsequently, several modifications in the original form of WCM have been adapted to 
realize scattering phenomena from a vegetation canopy. They are generically referred to 
as the Modified Water Cloud Model (MWCM) in literature (;Yang et al. 2016b; Xing et al. 
2019). In the modified Water Cloud Model, the scattering powers are modelled within the 
crop canopy utilizing diverse scattering contributions from different layers (Ulaby et al. 
1984; Yang et al. 2016b; Ulaby and Long 2015). Five scattering components are consid-
ered in this model, which includes:

• volume scattering from the rice tillers (Vfr),
• odd-bounce scattering from the leaf layer (St),
• odd-bounce scattering from the underlying standing water (Sgt),
• even-bounce scattering between tillers and underlying water surface (Dtg), and
• even-bounce scattering between the underlying water surface and tillers (Dgt).
The analytical expressions and their rationale can be obtained from (Ulaby et al. 1984; 

Ulaby and Long 2015; Yang et al. 2016b). These components are expressed as (3)–(7). 

Vfr ¼ ð1 � FÞ � Af 1 � ð1 � expð� Bf 1LÞÞ cos θ� ð1 � τ2
frðθÞÞ; (3) 

St ¼ ð1 � FÞ � At1W � τ2
frðθÞ; (4) 

Sgt ¼ ð1 � FÞ � Cg1ðθÞMv � τ2
frðθÞτ

2
t ðθÞ; (5) 

Dtg ¼ Af 2 � ð1 � expð� Bf 2LÞÞ � F � Cg2ðθÞMv � τ2
frðθÞ; (6) 

Dgt ¼ F � Cg2ðθÞMv � At2W � τ2
frðθÞ; (7) 

where, L, W, and Mv are Plant Area Index (PAI), wet biomass, and volumetric soil 
moisture, respectively, and θ is the radar incident angle. The attenuation factors are 
expressed as: 

τ2
frðθÞ ¼ expð� 2αf L sec θÞ; (8) 

τ2
t ðθÞ ¼ expð� 2αtW sec θÞ: (9) 

The parameters Af 1, Bf 1, At1, Cg1ðθÞ, Bf 2, Cg1ðθÞ, and At2, αf , αt along with F are 
characterized as model coefficients. Here, it is important to note that due to the presence 
of standing water in rice fields, the volumetric soil moisture, Mv , is omitted while replacing 
it with the Fresnel coefficient of water ( � 1:0). Here, one can note that rice fields during 
the maturation stages are generally not flooded, and the senescence of plants starts from 
the bottom to the top. Hence, the contribution from the soil moisture cannot be 
neglected a priori. However, the field conditions and precipitation events during the 
maturity stages over the JECAM-India test site reasonably allows us to consider a priori 
elimination of the soil contribution. Under such fields conditions (i.e. fields fully saturated 
due to heavy rain), the contribution from the matured rice canopy (although dried as 
senescence started but vegetation water content is potentially increased due to rain 
events) is much more significant than the soil. Nevertheless, one cannot guarantee that 
such conditions are always full-filled for other test sites. Hence, caution should be 
exercised while considering such a priori information.
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In this study, the wet biomass measurements are only available for 2019 data sets. 
Hence, a regression model between PAI and wet biomass (Appendix A), which is derived 
from 2019 data sets, is utilized for data sets from 2018 as a proxy to wet biomass.

We obtain the model coefficients by fitting both the in-situ measurements from the 
canopy and SAR observables. Instead of the backscatter intensities (σ�RH and σ�RV), the 
scattering power components (i.e. Pv , Ps, and Pd) from rice canopy are utilized in this study 
(Yang et al. 2016b): 

Pv
Ps
Pd

2

4

3

5 ¼

Vfr
St þ Sgt

Dtg þ Dgt

2

4

3

5 (10) 

A detailed description of these scattering powers derived for CP SAR data is provided in 
Sec. 3.2.

3.2. Scattering power decomposition

In general, scattering power decompositions for CP SAR data are expressed in terms of the 
even-bounce, odd-bounce, and diffuse scattering power components (Raney 2007; Keith 
et al. 2012; Cloude, Goodenough, and Chen 2012). For the CTLR mode, the received signal 
can be presented in terms of four real elements of the Stokes vector (Sr0, Sr1, Sr2, Sr3). This 
Stokes vector is formed from the 2 � 2 covariance C2 matrix as (11): 

Sr0
Sr1
Sr2
Sr3

2

6
6
4

3

7
7
5 ¼

C11 þ C22
C11 � C22

C12 þ C�12
�jðC12 � C�12Þ

2

6
6
4

3

7
7
5 (11) 

Scattering phenomena in compact-pol SAR mode are usually characterized by the 
secondary/child Stokes parameters, such as the degree of polarization (m), and the 
received ellipticity (χ) or the degree of circularity ( sin 2χ). These parameters are derived 
from the Stokes vector as given in (12) and (13): 

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

r1 þ S2
r2 þ S2

r3

p

Sr0
; 0 � m � 1; (12) 

χ ¼
1
2

sin� 1 �
Sr3

mSr0

� �

; � 45� � χ � þ45�: (13) 

These parameters form the basis of the m � χ scattering power decomposition in CP 
SAR theory (Keith et al. 2012). The degree of polarization, m, is an essential parameter 
characterizing partially polarized electromagnetic waves and is closely related to entropy 
(Aiello and Woerdman 2005). The sign of χ indicates the handedness of the received 
polarization ellipse. A target decomposition technique essentially divides the total back-
scattering power (Sr0) into three primary constituents: odd-bounce (i.e. Bragg and spec-
ular) Ps, even-bounce (i.e. dihedrals and diplanes) Pd , and diffuse (randomly polarized) Pv . 
The m � χ decomposition characterizes the scattering power distribution from a target as 
expressed in (14). 
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Pd

2

4

3

5

m� χ

¼

Sr0ð1 � mÞ
mSr0ð1þ sin 2χÞ=2
mSr0ð1 � sin 2χÞ=2

2

4

3

5 (14) 

The m � χ decomposition considers two among the three primary components (m, χ, 
ψ) that are required to describe the polarized part of the quasi-monochromatic partially 
polarized wave. Among these three parameters, ψ indicates the orientation of the 
polarization ellipse in the backscattered field (Raney 2016).

In a recent study, Kumar et al. (2020) improved the scattering power components 
utilizing the proposed iS � Ω decomposition. It uses the ratio of the power received in the 
same-sense circular (SC ¼ ðSr0 � Sr3Þ=2) and opposite-sense circular (OC ¼ ðSr0 þ Sr3Þ=2) 
polarization echo (SC/OC) as a criterion for scattering dominance in iS � Ω. The iS � Ω 
decomposition suitably redistributes the scattering powers in odd and even-bounce 
components depending on the CPR and utilizes the polarized power fraction (Ω) and SC 
and/or OC for power estimates.

For SC/OC < 1, i.e. the odd-bounce (Ps) scattering power component is dominant, 
while the even-bounce (Pd) scattering power component is non-dominant. Consequently, 
from the total polarized power, ΩSr0, the non-dominant scattering power is first obtained 
by suppressing the SC power component with the unpolarized power fraction (1 � Ω). 
This component is then modulated with Ω to obtain the even-bounce scattering power, i. 
e. Pd ¼ Ωð1 � ΩÞSC. Therefore, the residual power corresponds to the dominant odd- 
bounce scattering power component. It is obtained by subtracting the Pd power from the 
total polarized power, i.e. Ps ¼ ΩSr0 � Ωð1 � ΩÞSC. Similarly, a vice-versa approach is 
applied when considering SC/OC > 1, i.e. calculating the dominant even-bounce scatter-
ing power. The diffuse scattering power, Pv is obtained by multiplying Sr0 with the 
unpolarized power fraction ð1 � ΩÞ.

3.3. Experiment design for PAI estimation

In this research, we focus on the retrieval of PAI of rice using the Modified WCM. We invert 
the MWCM utilizing the observed scattering powers from the iS � Ω decomposition to 
estimate the biophysical parameters. Besides, we compare the proposed method for PAI 
estimation with the existing workflow to invert the WCM utilizing the backscatter inten-
sities (σ�RH and σ�RV) as given in (2). We parametrize the models (viz., WCM, and MWCM) 
with the same calibration dataset, primarily as a fundamental first step. We formulate the 
MWCM with scattering powers obtained from 1) m � χ and 2) iS � Ω decompositions. For 
rice biophysical parameter estimation, the five scattering components in the formulation 
of the MWCM are equated with scattering power components of iS � Ω and m � χ, as Eq. 
(15) and (16). We divide the sample data in a 60:40 ratio for calibration and validation 
purposes. A schematic workflow of this experiment is shown in Figure 2. 

Pv

Ps
Pd
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3

5

m� χ

¼

Vfr
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Dtg þ Dgt

2

4

3

5 (15) 
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¼
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5 (16) 

We first compare the calibration results with the observed SAR responses to evaluate 
the suitability of these vegetation models. We use the correlation coefficient (r) between 
the observed and estimated parameters as a metric to assess the performance of these 
models. We evaluate the accuracies between the observed and the estimated radar 
parameters for the calibration dataset with the RMSE.

Given the multi-year cross-calibration study, we split the data sets from 2019 and 2018 
to generate several subsets. The data subsets are generated based on several criteria 
imposed on PAI ranges and rainfall events, as presented in Table 2.

Figure 2. Schematic workflow of the experiment settings for cross-validation strategies to estimate 
PAI using WCM and MWCM.

9500 D. MANDAL ET AL.



It is important to note that the estimation of PAI from these semi-empirical models 
(WCM and MWCM) is often recognized as an ill-posed inversion problem (Bériaux et al. 
2015; Mandal et al. 2019b). The ill-posed inversion problems of PAI retrieval are achieved 
using the Look-up Table (LUT) search approach. In this process, first, we simulate the 
backscatter intensities in both polarizations (i.e. RH and RV) for the forward modelling of 
the WCM for a combination of vegetation parameters from the calibration data. Similarly, 
we simulate the scattering powers from the m � χ and iS � Ω decompositions with the 
calibration dataset to form the LUT.

We use the validation dataset to estimate the PAI by searching this LUT. For a given set 
of backscatter intensities (e.g. values at RH and RV polarization), the inverse problem seeks 
to find the crop parameters. To select the solution of the inverse problem, the LUT is 
sorted according to a cost function (e.g. root mean square error; RMSE). The error function 
with the backscatter intensity values at each polarization (RH and RV) are calculated as 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σobserved
RH � σLUT

RH Þ
2
þ ðσobserved

RV � σLUT
RV

� �2
� �s

(17) 

The solution is considered at the configuration, which provides the minimum RMSE 
value (Mandal, Bhattacharya, and Rao 2021). A similar approach is considered for decom-
position power-based approaches.

Finally, we compare the PAI inversion results with these three test cases, i.e. WCM, 
MWCM with m � χ, and MWCM with iS � Ω. The retrieval accuracies are compared in 
terms of correlation coefficient (r), RMSE, and Mean Absolute Error (MAE) between the 
observed and estimated PAI using the validation dataset. We also analyse the temporal 
robustness of the model calibration and validation by considering several calibration data 
subsets while validating the PAI retrieval results with all the other cases.

4. Results and discussion

In this study, we perform six different calibrations by splitting the data set according to all 
possible combinations of observation data from 2018 and 2019 and specific criteria (Table 
2). These six different data sets are used to calibrate both the WCM and MWCM. 
Subsequently, we perform cross-validation experiments for single and multi-year cases. 
For the ease of understanding for the readers, we discuss the single-year and multi-year 
cross-validation results separately in Sec. 4.1, 4.2, 4.3.

4.1. Analysis of 2019 data set

4.1.1. Model sensitivity analysis
Here, we have performed the parameterization of the WCM and MWCMs using the 
calibration data sets. Moreover, we assess the use of σ�RH and σ�RV in the WCM, which is 
often ambiguously adopted in several studies (Chauhan, Srivastava, and Patel 2017, 2018). 
These studies utilize the conventional formulation of WCM, which was originally devel-
oped to account for the backscatter intensities in the linear-polarization (H-V) basis, i.e. 
HH, VV, and HV or VH. However, these expressions have been directly adopted for the 
CTLR mode without any modifications. There is no physical basis for adopting such a 
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Table 2. Specification of data subsets for CAL/VAL cross-validation experiments using 2019 and 2018 
data sets.

Experiment Year Criteria for data subset

Calibration Validation
Single year 
experiments:

CAL19-1/ 
VAL19-1

CAL19-1: 
2019

All data having full range of PAI between [0, 8] All data having full range of PAI 
between [0, 8]

VAL19-1: 
2019

CAL19-1/ 
VAL19-2

CAL19-1: 
2019

All data having full range of PAI between [0, 8] All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL19-2: 
2019

CAL19-2/ 
VAL19-2

CAL19-2: 
2019

All data having range of PAI between [0, 4.5] All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL19-2: 
2019

CAL19-3/ 
VAL19-2

CAL19-3: 
2019

All data having range of PAI between [0, 4.5] & 
exclude data from precipitation events

All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL19-2: 
2019

CAL18-1/ 
VAL18-1

CAL18-1: 
2018

All data having full range of PAI between [0, 8] All data having full range of PAI 
between [0, 8]

VAL18-1: 
2018

CAL18-1/ 
VAL18-2

CAL18-1: 
2018

All data having full range of PAI between [0, 8] All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL18-2: 
2018

CAL18-2/ 
VAL18-2

CAL18-2: 
2018

All data having range of PAI between [0, 4.5] All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL18-2: 
2018

Multi-year experiments:
CAL18-2/ 

VAL19-2
CAL18-2: 

2018
All data having range of PAI between [0, 4.5] All data having range of PAI 

between [0, 4.5], 
PAI>4.5 = = NaN

VAL19-2: 
2019

CAL19-2/ 
VAL18-2

CAL19-2: 
2019

All data having range of PAI between [0, 4.5] All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL18-2: 
2018

CAL19-3/ 
VAL18-2

CAL19-3: 
2019

All data having range of PAI between [0, 4.5] & 
exclude data from precipitation events

All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL18-2: 
2018

CAL1918/ 
VAL18-2

CAL1918: 
2019 & 

2018

All data having range of PAI between [0, 4.5] & 
exclude data from precipitation events

All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL18-2: 
2018

CAL1918/ 
VAL19-2

CAL1918: 
2019 & 

2018

All data having range of PAI between [0, 4.5] & 
exclude data from precipitation events

All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

(Continued)
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linear basis WCM model for CTLR mode. In these studies, the WCM is also initially 
parameterized independently for both RH and RV backscatter intensities. Besides, we 
evaluate the accuracies of the calibrated WCMs by comparing the observed and simulated 
backscatter intensities. The results are evaluated in terms of the correlation coefficient (r), 
the Root Mean Square Error (RMSE), as given in Table 3. It is important to note that the 
backscatter intensities are utilized in a linear scale for WCM parameterization. However, 
we assess the accuracies of the calibrated WCMs by comparing the observed and 
simulated backscatter intensities in the decibel (dB) scale.

The correlation coefficients (r) between the observed and simulated backscatter inten-
sities are 0.63 (RH) and 0.62 (RV), considering the full range of PAI in the calibration data 
set (CAL19-1) with an RMSE of � 1:69dB. However, we notice improvements in accuracy 
while using scattering power decomposition elements in the MWCMs. The accuracies of 
the calibrated MWCMs are evaluated between the observed and simulated scattering 
powers (Pv , Ps, and Pd) for both m � χ and iS � Ω decomposition. For the m � χ decom-
position, the correlation coefficients (r) between the observed and estimated scattering 
powers are 0.73 (Pv), 0.70 (Ps), and 0.70 (Pd). The RMSE is lowest for Pv (1.41 dB) as 
compared to Ps, and Pd powers (1.45 and 1.47 dB, respectively). The Pv power is sensitive 
to canopy growth due to diffuse scattering within the plant canopy. The depolarization of 
the electromagnetic wave is apparent due to multiple scattering events, which reduces 
the degree of polarization (m). Moreover, the simulated even-bounce scattering power, 
Pd, corresponds well with the observed data. In this case, the interaction of the incident 
wave with the vertical stems, erectophile leaves, and the underlying standing water leads 
to the dominance of the even-bounce scattering mechanism (Wang et al. 2009; Le Toan et 
al. 1997).

The simulated iS � Ω decomposition parameters from the MWCM better correlate with 
the observed scattering powers when compared to the results from m � χ, in the case of 
CAL19-1. Incorporating the degree of dominance in the scattering mechanism (i.e. using 
the circular polarization ratio (CPR) as a criterion for scattering dominance) in the iS � Ω 
decomposition improve the scattering powers decomposition. For the iS � Ω decomposi-
tion parameters, the correlation coefficients (r) between the observed and estimated 
scattering powers are 0.75 (Pv), 0.73 (Ps), and 0.71 (Pd). The RMSE is lowest (1.36 dB) for 
Pv as compared to Ps, and Pd (1.40 dB and 1.41 dB, respectively).

Table 2. (Continued).

Experiment Year Criteria for data subset

Calibration Validation
Single year 
experiments:

VAL19-2: 
2019

CAL1918/ 
VAL1918

CAL1918: 
2019 & 

2018

All data having range of PAI between [0, 4.5] & 
exclude data from precipitation events

All data having range of PAI 
between [0, 4.5], 
PAI>4.5 = = NaN

VAL1918: 
2019 & 

2018
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It is interesting to note that the error estimates decrease for CAL19-2 and CAL19-3 
irrespective of vegetation models (Table 3). Considering the saturation of radar response 
at C-band and high vegetation cover (PAI > 4.5 m2 m−2), exclusion of high PAI values in 
the calibration data provided a better fit to model (CAL19-2). Indeed, the calibration data, 
excluding SAR observations during rainfall events (CAL19-3), provided the best fit to WCM 
and MWCM in terms of r and RMSE values. For a better understanding of these results for 
several calibration models of 2019, we present sensitivity plots in Figure 3. These plots 
provide the simulated backscatter intensities and scattering powers as a function of PAI 
for saturated soil conditions. The incidence angles considered in each simulation, as 
shown in Figure 3 are equal to the mean incidence angle of the RADARSAT-2 data 
acquired over the region.

For WCM simulations, the green lines represent vegetation backscatter coefficient 
(σ�veg), while the brown lines represent the backscattering coefficient from the soil atte-
nuated by the vegetation (τ2σ�soil). The black lines represent the total backscatter coeffi-
cient (σ�total) for the soil-vegetation system with saturated soils. On the other hand, for 
MWCM simulations, blue, red, and light-green lines represent Ps, Pd, and Pv scattering 
powers, respectively.

Simulated results from CAL19-1 and CAL19-2 models indicate the differential sensitivity 
of all components in the WCM and MWCM, which arises principally considering the full 
range of PAI values during model calibrations. While considering the full range of PAI (0–8 
m2 m−2) data sets (CAL19-1) during model calibration, the radar observables at higher PAI 
values ( > 4.5 m2 m−2) are likely to be affected by saturation of the radar signal while being 
insensitive to changes in PAI. These data sets affect the curve fitting results during 
calibration of the WCM and MWCM.

For the σ�RH model in CAL19-1, the attenuated soil component contributes more 
significantly to total backscatter than vegetation with a range between −15 dB to 
−11 dB for PAI < 4.5 m2 m−2. Vegetation contribution is considerably lower within a 
range of −40 dB to −20 dB. The σ�RH is mostly affected by the underlying soil surface 

Table 3. Error estimates of the WCM (RH and RV) and the MWCM (m � χ and iS � Ω scattering powers) 
using different calibration data sets from multi-year observations.

Year Calibration data set Statistics WCM MWCM: m � χ MWCM: iS � Ω

RH RV Pv Ps Pd Pv Ps Pd
2019 CAL19-1 r 0.63 0.62 0.73 0.70 0.70 0.75 0.73 0.71

(n1= 50) RMSE2 1.69 1.70 1.41 1.45 1.47 1.36 1.40 1.41
CAL19-2 r 0.66 0.68 0.75 0.74 0.71 0.78 0.75 0.74
(n = 42) RMSE 1.52 1.50 1.36 1.43 1.48 1.29 1.36 1.43
CAL19-3 r 0.68 0.70 0.76 0.74 0.75 0.80 0.76 0.76
(n = 36) RMSE 1.48 1.46 1.31 1.35 1.42 1.20 1.31 1.40

2018 CAL18-1 r 0.65 0.61 0.71 0.68 0.64 0.75 0.73 0.71
(n = 150) RMSE 1.68 1.78 1.50 1.53 1.58 1.35 1.37 1.46
CAL18-2 r 0.65 0.66 0.78 0.72 0.73 0.82 0.80 0.78

(n = 144) RMSE 1.56 1.52 1.41 1.46 1.50 1.21 1.26 1.35
2019 & CAL1918 r 0.64 0.68 0.75 0.72 0.76 0.83 0.82 0.81
2018 (n = 180) RMSE 1.60 1.58 1.37 1.48 1.55 1.22 1.31 1.36

1n is number of observations points. 
2The RMSE of the calibrated WCM and MWCMs are assessed by comparing the observed and simulated backscattered 

powers in the decibel (dB) scale.
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(Kumar et al. 2017). Although at higher PAI values, the σ�veg contribution is larger than 

τ2σ�soil. The τ2σ�soil contribution reduced in a nonlinear decay rate. On the contrary, the 
variation in τ2σ�soil changes almost linearly in the CAL19-2 model of σ�RH.

We observe a differential sensitivity of σ�total in σ�RH, when the WCM is calibrated with 
CAL19-1 and CAL19-2 data sets. As compared to σ�RH, the differential sensitivity between 
CAL19-1 and CAL19-2 is less pronounced in the case of σ�RV, except for a change in the 
steepness of the σ�veg curves within the PAI ranges. The differential behaviour of RH and RV 
is apparent due to the dominant vertical structure of the rice stem and the erectrophile 
leaf distribution. This sensitivity can be related to the geometry of the crop. Rice having an 
erectophile canopy, the scattered H signal is primarily affected due to the underlying soil 
surface rather than the plant. Indeed, the scattered H wave is attenuated by the vegeta-
tion. On the other hand, the V signal is mainly affected due to the interaction of the 
vertically polarized wave with the vertical plant components (Lopez-Sanchez et al. 2014). 
It is important to note here that the saturation of σ�total in RV at higher PAI values is likely 
due to the attenuation of the C-band signal within the rice canopy.

Figure 3. Simulations of backscatter powers with varying PAI ranges for WCM (σ�RH and σ�RV) and 
MWCMs (m � χ and iS � Ω decomposition powers) parameterized with different calibration data 
subsets pooled from observations of 2019. Simulated parameters for (a-d) CAL19-1, (e-h) CAL19-2, and 
(i-l) CAL19-3 data subsets.
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We observe differences in power values with changes in PAI for the CAL19-1 and 
CAL19-2 model while considering the MWCM model parameters in m � χ and iS � Ω. At 
low PAI values ( < 1.5 m2 m−2), the dominance of odd-bounce (Ps) scattering is apparent 
from both the decomposition techniques (m � χ and iS � Ω) irrespective of CAL19-1 and 
CAL19-2 data sets. When we compare the decomposition methods, an increase of 11% is 
observed in the Ps power for iS � Ω compared to the m � χ decomposition. On the 
contrary, the diffuse scattering power reduces by � 12% for the iS � Ω decomposition. 
Overestimation of the diffused scattering power in m � χ decomposition was also 
reported by Kumar et al. (2020) with an experiment over corner reflectors.

With increased PAI at advanced tillering stages, the even-bounce scattering increased 
significantly in the case of iS � Ω. This behaviour is likely due to the interaction of the EM 
wave with the vertical stems, erectophile leaves, and the flooded surface condition, 
leading to an even-bounce scattering mechanism (Wang et al. 2009; Le Toan et al. 
1997). During the tillering stage of rice, the dominance of even-bounce scattering was 
also reported with simulated compact-pol data from C-band RADARSAT-2 observations 
(Lopez-Sanchez et al. 2014). With a subsequent increase in PAI, the contribution from 
even-bounce power reduces with the increase in the diffuse scattering power. However, 
the dynamic ranges of scattering powers are different in m � χ and iS � Ω irrespective of 
the calibration models.

The iS � Ω suitably redistributes the scattering powers in odd and even bounce 
components depending on the circular polarization ratio (CPR = SC/OC). The hierarchical 
nature of the iS � Ω decomposition introduces a measure of dominancy via the CPR 
parameter wherein the non-dominant scattering power is suppressed by the unpolarized 
fraction (1 � Ω). The dominant power is then calculated by differencing the non-domi-
nant component from the polarized part of the total power (Ω� Sr0). For SC=OC < 1, i.e. 
the dominant part is the odd bounce scattering, and the non-dominant part is the even 
bounce scattering. From the total polarized power (Ω� Sr0), the non-dominant scattering 
power is obtained first by suppressing the SC power with the unpolarized factor (1 � Ω) 
and then modulating it with Ω to get Pd ¼ Ω� SC � ð1 � ΩÞ. The resultant remaining 
power corresponds to the dominant power, i.e. the odd bounce scattering and is obtained 
by subtracting the Pd power from the total polarized power as Ps ¼ Ω� Sr0 � ðΩ� SC �
ð1 � ΩÞÞ or simplified as Ps ¼ Ω� ðSr0 � SC � ð1 � ΩÞÞ. A similar vice-versa approach is 
applied when SC=OC > 1, i.e. to calculate the dominant even bounce scattering power. 
However, in the existing compact-pol decompositions such as m � χ, the unpolarized 
part, ð1 � mÞ of the received wave, is considered volume scattering. In contrast, the odd 
and the even bounce scattering is formulated by geometric factors ð1� sin 2χ to mod-
ulate half of the total polarized power (mS0=2). In an experiment with pure or elementary 
targets (trihedral and dihedral corner reflectors), Kumar et al. (2020) showed that m � χ 
suppresses the double bounce. The portion of it shifts to the volume component. 
However, iS � Ω indeed indicated a better estimate of the double-bounce power. So, 
during crop growth stages, iS � Ω powers are more reliable than m � χ.

Here, it is important to note that the measured backscatter intensities and the scatter-
ing powers at some pixels are close to the NESZ (the NESZ of the simulated RCM products 
is � -24 dB, much higher than the −35 dB of full-pol RADARSAT-2 in Fine-Quad mode). 
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Consequently, the estimation of these polarimetric observables would be affected by 
noise. Hence, the interpretation of scattering powers below −24 dB would be 
compromised.

It is interesting to observe the effect of rain events on model calibration. The CAL19-3 
data set excludes the acquisition from rainfall events. These data sets have different 
distributions of SAR observables, and thereby their sensitivity is different relative to 
CAL19-2 for all cases of the WCM and MWCM (Figure 3). The error estimates indicate 
that CAL19-3 has the lowest RMSE and would significantly impact the validation process. 
It is well understood that rain influences SAR signal transmission and the backscatter 
response. Thus, we exclude data acquired during a rainfall event in several experiments. 
Typically, we include SAR data obtained during rainfall in some calibration models to 
measure the significance of its impact.

4.1.2. Validation of PAI estimates
We perform cross-validation with the calibration models and validation data sets for 
retrieval of PAI. The calibrated model (WCM and MWCM) is first used to generate LUT 
by a forward modelling approach followed by PAI estimation with in-situ validation data 
sets. Hence, each CAL/VAL data combination is used for cross-validation, as shown in 
Figure 4. We compare the estimated PAI with the in-situ measurements on a 1:1 plot to 
assess the retrieval performance of each model (WCM and MWCM) using the validation 
data. We perform comparisons using the correlation coefficient (r), RMSE, and mean 
absolute error (MAE). The validation of PAI estimates for each case (CAL/VAL) is conducted 
for the inversion based on three models: 1) WCM based on σ�RH and σ�RV, 2) MWCM based 
on m � χ scattering power decomposition, and 3) MWCM based on iS � Ω scattering 
power decomposition.

The cross-validation experiment sets with 2019 data provide promising results for PAI 
estimates with RMSE varying from 0.672 to 1.031 m2 m−2 and MAE varying from 0.515 to 
0.765 m2 m−2. Among these four CAL/VAL experiments, highest error rates are observed 
when we have utilized the full range of PAI for calibration and validation (CAL19-1/VAL19- 
1) for three estimation options (σ�RH � σ�RV, m � χ, and iS � Ω). The correlations between 
observed and estimated PAI values are improved when PAI ranges are restricted between 
0 and 4.5 m2 m−2 in the validation data (VAL19-2). It also reduced the error estimates by 5– 
13% for the σ�RH � σ�RV, m � χ, and iS � Ω based retrievals.

When we limited the range of PAI between 0 and 4.5 m2 m−2 for both the calibration 
and validation data (CAL19-2/VAL19-2), the error rates got further reduced significantly. 
The correlation between the observed and estimated PAI values also got improved for all 
three cases with r of 0.67 (σ�RH � σ�RV), 0.79 (m � χ), and 0.82 (iS � Ω). Comparing the PAI 
retrieval options, we find that the highest errors are reported for RH-RV with RMSE = 0.894 
m2 m−2, and MAE = 0.634 m2 m−2 . Moreover, the estimation errors are comparatively 
lower when we use the decomposition parameters. For m � χ, the RMSE = 0.736 m2 m−2, 
and MAE = 0.524 m2 m−2 . In comparison, the errors associated with estimates of PAI are 
lower using the iS � Ω scattering powers with CAL19-2/VAL19-2. We observe a higher 
dispersion of PAI estimates with RH-RV throughout the entire range of PAI. Besides, this 
estimation error with PAI might have likely propagated from the calibration phase of 
the WCM.

INTERNATIONAL JOURNAL OF REMOTE SENSING 9507



Figure 4. Cross-validation of PAI estimates with different calibration and validation data subsets 
pooled from observations of 2019. Scatter plots between observed and estimated PAI are grouped 
based on associated model (a-d) WCM σ�RH and σ�RV, (e-h) MWCM m � χ, and (i-l) MWCM iS � Ω.
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Considering the effect of rainfall in the calibration model for validation accuracy, the 
differences between CAL19-2/VAL19-2 and CAL19-3/VAL19-2 are not significant for these 
data sets. The error and correlation coefficients are similar, considering data sets from 
2019. However, we can observe different validation results while transferring CAL19-2 and 
CAL19-3 to the 2018 validation cases for multi-year analysis (Sec. 4.3).

We note some interesting observations while restricting our analysis of PAI estimates 
from different growth stages and different PAI ranges. At the early stage of tillering with 
PAI < 1.0 m2 m−2, we observe an overestimation of PAI values for all the three models 
(RH-RV, m � χ, and iS � Ω). This condition is likely due to the backscatter response that is 
dominated by the underlying soil condition and standing water (Ulaby et al. 1984). As the 
plants grow, the PAI estimates closely follow the 1:1 line with the iS � Ω powers. This state 
is apparent during the advanced stages when rice plants are at tillering to booting stages. 
An improvement in PAI estimates during the heading to dough stage is noticeable for 
iS � Ω compared to the other two models.

Notably, we observe a higher variance in the case of RH-RV. The backscatter intensities 
are more sensitive to crop geometry and rice heads than changes in PAI or vegetation 
water content during these stages of rice development. However, when a scattering 
power decomposition is applied, it can better characterize the scattering phenomena 
than the direct use of backscatter intensities. In a separate experiment with full-pol SAR 
observations, Yang et al. (2016b) reported that the relative errors in LAI estimation from 
WCM and MWCM models are high ( � 6-10%) for rice. Also, during rice vegetative 
growth, the MWCM showed improved estimation accuracy of LAI with full-pol scattering 
power decompositions.

4.2. Analysis of 2018 data set

4.2.1. Model sensitivity analysis
Similar to the 2019 calibration results, the calibration accuracies for the 2018 data follow a 
similar response to the calibration data sets generated based on specific criteria, as 
presented in Table 3.

Considering a full range of PAI in the calibration data set (CAL18-1), the correlation 
coefficients (r) between the observed and simulated backscatter intensities are 0.65 (RH) 
and 0.61 (RV) for the calibration data, with a RMSE of � 1:68dB and 1.78 dB. 
Improvements in accuracy are reported when scattering power decomposition elements 
are used in the MWCMs. For the m � χ decomposition, the correlation coefficients (r) 
between the observed and estimated scattering powers are 0.71 (Pv), 0.68 (Ps), and 0.64 
(Pd). The RMSE is lowest for Pv (1.50 dB) as compared to Ps, and Pd (1.53 and 1.58, 
respectively). Similar to CAL19-1 results, the simulated iS � Ω decomposition parameters 
from the MWCM are better correlated with the observed scattering powers when com-
pared to results from m � χ for CAL18-1. The RMSE is lowest (1.35 dB) for Pv as compared 
to Ps, and Pd (1.37 dB and 1.46 dB, respectively) for the iS � Ω decomposition parameters. 
It is also interesting to note that the error estimates decrease irrespective of vegetation 
models that are calibrated with datasets (CAL18-2) having a limited range of PAI between 
0 and 4.5 m2.m−2 (Table 3). Amongst other models, iS � Ω scattering powers deliver the 
lowest RMSE values (1.21, 1.26, and 1.35 dB for Pv , Ps, and Pd , respectively) and high 
correlations with observed powers.
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Unlike the 2019 data, there were no significant rainfall events during the acquisition 
dates of the SAR data in 2018. Hence, we have not analysed the impact of rainfall on the 
estimates for the 2018 data. Sensitivity plots are presented in Figure 5 to assist in 
evaluating the results for several calibration models for 2018. Similar to 2019, these 
plots for 2018 display the simulated backscattered intensities and scattering powers as 
a function of PAI for saturated soil conditions. The values of incidence angles considered 
in each simulation in Figure 5 are equal to the mean incidence angle of the RADARSAT-2 
data acquired over the region.

Simulated results from CAL18-1 and CAL18-2 models indicate differential sensitivity of 
all components in the WCM and MWCM, arising mainly due to different ranges of PAI 
values during model calibrations. While considering a full range of PAI (½0; 8�) data sets 
(CAL18-1) during model calibration, the radar observables at higher PAI values 
( > 4:5m2m� 2) are likely to be affected by saturation of the radar signal, which subse-
quently reduces sensitivity to changes in PAI. For the σ�RH model in CAL18-1, the attenu-
ated soil component contributes significantly to total backscatter with a range between 
−16 dB to −7.5 dB at PAI < 4:5m2m� 2. This dynamic range of τ2σ�soil is comparatively 
higher than CAL19-1 of the 2019 data set. However, the vegetation contribution is 
considerably lower within a range of −40 dB to −15.5 dB. The σ�RH is affected by the 
underlying soil surface to a greater extent than by the vegetation. However, for higher PAI 
values, the σ�veg contribution is larger than τ2σ�soil. The τ2σ�soil contribution decreased with a 

nonlinear rate. On the contrary, the variation in τ2σ�soil varied almost linearly in the CAL18- 
2 model of σ�RH.

We observe a differential sensitivity of σ�total in σ�RH, when we calibrate the WCM with 
the CAL18-1 and CAL18-2 data sets. As compared to σ�RH, differential sensitivity between 
CAL18-1 and CAL18-2 is less pronounced in the case of σ�RV. We observe the saturation of 
σ�total in RV at higher PAI values, which is likely due to attenuation of C-band signal within 
rice canopy. Considering the MWCM model elements in m � χ and iS � Ω, we observe 
differences in power values with changes in PAI for CAL18-1 and CAL18-2 models. Similar 
to the 2019 data sets, at low PAI values ( < 1.5 m2 m−2), the dominance of odd-bounce (Ps) 
scattering is apparent from both the decomposition techniques (m � χ and iS � Ω) 
irrespective of CAL18-1 and CAL18-2 data sets. When we compared the decomposition 
methods, a 4% decrease in the Ps power is seen for the iS � Ω compared to the m � χ 
decomposition. In contrast, the diffuse scattering power is reduced by � 10% for the 
iS � Ω decompositions.

4.2.2. Validation of PAI estimates
We have analysed cross-validation performance with the calibration models and valida-
tion data sets from 2018 for retrieval of PAI. Each combination of CAL/VAL data is used for 
cross-validation, as shown in Figure 6. We compared the estimated PAI with the in-situ 
measurements on a 1:1 plot to assess the retrieval performance of each model (WCM and 
MWCM) using the validation dataset.

The cross-validation experiment sets with 2018 data provide similar results to the 2019 
data for PAI estimates, with RMSE varying from 0.743 to 1.123 m2 m−2 and MAE varying 
from 0.579 to 0.867 m2 m−2 . Among these three CAL/VAL experiments, we observe the 
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highest error rates while utilizing the full range of PAI that was used for calibration and 
validation (CAL19-1/VAL19-1) for the three estimation options: σ�RH � σ�RV, m � χ, 
and iS � Ω.

The correlations between observed and estimated PAI values are highest (r ¼ 0:90) for 
iS � Ω based retrievals, with RMSE and MAE of 0.763 m2 m−2 and 0.590 m2 m−2, respec-
tively. While comparing calibration models, we found that the errors of estimation were 
relatively low when we used a restricted range of PAI in both the calibration and 
validation (CAL18-2/VAL18-2). For this particular combination, we observe the 
RMSE = 0.743 m2 m−2, and MAE = 0.579 m2 m−2 for the iS � Ω decomposition. Contrary 
to the 2019 analysis, variations in error rates for 2018 are less pronounced while switching 
calibration models in the CAL/VAL experiment.

Figure 5. Simulations of backscatter powers with varying PAI ranges for WCM (σ�RH and σ�RV) and 
MWCMs (m � χ and iS � Ω decomposition powers) parameterized with different calibration data 
subsets pooled from observations of 2018. For CAL1918 models, data sets are pooled from both the 
2019 and 2018 to include a largest ranges of backscatter powers values in calibration. Simulated 
parameters for (a-d) CAL18-1, (e-h) CAL18-2, and (i-l) CAL1918 data subsets.
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4.3. Multi-year cross-validation

We analyse the temporal robustness of model calibration and validation by considering 
different criteria by selecting calibration data sets for each case and validating PAI 
retrieval for all other cases. Calibration model sensitivity plots are shown in Figures 3 
and 5. We observe similar performances from the sensitivity plots for both 2018 and 2019 
data, even though they have different distributions of values in the calibration data sets. 
To accommodate a broad range of backscatter power values in calibration, we combined 
CAL19-3 and CAL18-2 data sets from 2019 and 2018, respectively, to create a new data set, 
CAL1918.

The calibration results show that a broad range of SAR observables in the calibration 
data set enables good correlation and error estimates, as shown in Table 3. Individual 
results from 2019 and 2018 data sets show that the simulated iS � Ω decomposition 

Figure 6. Cross-validation of PAI estimates with different calibration and validation data subsets 
pooled from observations of 2018. Scatter plots between observed and estimated PAI are grouped 
based on associated model (a-c) WCM σ�RH and σ�RV, (d-f) MWCM m � χ, and (g-i) MWCM iS � Ω.
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parameters from the MWCM are better correlated with the observed scattering powers 
when compared to results from m � χ for CAL1918. The RMSE values are lowest (1.22 dB, 
1.31 dB, and 1.36 dB) for Pv , Ps, and Pd of the iS � Ω decomposition. The CAL1918 model 
sensitivity plots are also indicative of similar performances of SAR observables with 
changes in PAI values (Figure 5). In the multi-year CAL/VAL analysis, unlike single-year 
calibration/validation, we apply a calibration model developed for a single year and 
evaluated its performance in estimating PAI for the alternate year. The validation plots 
are shown in Figure 7. We report the highest accuracy for the iS � Ω based inversion while 
applying the 2018 calibration model to 2019 and validating the PAI estimates with 2019 
in-situ data (CAL18-2/VAL19-2). The correlation coefficient, r between observed and 
estimated PAI is 0.76 with the lowest error (RMSE = 0.950 m2 m−2 and MAE = 0.769 m2 

m−2). These results are similar to the validation error estimates using both CAL and VAL 
data from 2018 (Figure 6).

The iS � Ω based inversion shows the highest accuracy while applying the 2019 
calibration model to 2018 and validating it with 2018 PAI measurements (CAL19-2/ 
VAL18-2). The correlation coefficient, r between observed and estimated PAI is 0.86 
with lower error (RMSE = 0.951 m2 m−2 and MAE = 0.804 m2 m−2) relative to RH-RV and 
m � χ based inversion. These results are similar to the validation error estimates using 
both CAL and VAL data from 2019 data sets (Figure 4).

It is also interesting to note that the validation results improved when selecting 2019 
calibration data sets with no rainfall events (CAL19-3). The CAL19-3/VAL18-2 experiment 
indicated the highest accuracies for RH-RV, m � χ, and iS � Ω based inversion approaches. 
Hence, caution should be taken while transferring calibration models from 1 year to 
another, especially if one data set is affected by rainfall or other precipitation events. 
Conventionally, we calibrate and validate the WCM using same year data. However, this 
study demonstrates the capability of transferring a model calibrated from 1 year to 
another with consistent performance.

In another set of experiments, we combined data from multiple years to create a 
calibration data set. In this case, we observe a comparatively lower error in PAI estimates 
relative to the use of a model calibrated with a single year of data (Figure 8). Here, we use 
the CAL1918 data to calibrate the WCM and MWCM, then validate PAI estimates with a 
single year (VAL18-2 and VAL19-2) and multi-year data (VAL1918). For the CAL1918/ 
VAL18-2 experiment, we observed the highest correlation (r=0.93) between observed 
and estimated PAI with lowest errors values (RMSE = 0.645 m2 m−2 and MAE = 0.482 m2 

m−2) using inversion from iS � Ω.
In contrast, the RH-RV and m � χ based inversions provided RMSE and MAE > 0.90 m2 

m−2 and > 0.740 m2 m−2 respectively. We also observe the efficacy of iS � Ω based 
inversion for CAL6/VAL19-2 experiments. However, the error rates are marginally better in 
these experiments. These experiments indicate that cross-validation performance 
improves using a sizable number of observations to calibrate the model (either WCM or 
MWCMs). It makes the model more suited for independent data sets. Such an approach 
provides a wider range of realizations in the calibration data set (i.e. a combination of 
multiple-year data sets).

The multi-year validation data also provided reasonable accuracy, as shown by 
CAL1918/VAL1918 results (Figure 8). When comparing the inversion approaches, the 
validation error exhibits improvements using the iS � Ω based method. This scenario 
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delivers the highest correlation (r=0.90) along with the lowest RMSE and MAE error of 
0.666 m2 m−2 and 0.486 m2 m−2, respectively. We also observe a higher dispersion of PAI 
estimates with RH-RV throughout the entire range of PAI. This estimation error with PAI 
may have propagated from the calibration phase of the WCM.

5. Conclusion

In this multi-year experiment, we compared the retrieval of the Plant Area Index (PAI) 
using three options:

• σ�RH and σ�RV based Water Cloud Model (WCM) inversion
• m � χ scattering powers based Modified WCM (MWCM)
• iS � Ω scattering powers based MWCM

Figure 7. Cross-validation of PAI estimates with different calibration and validation data subsets 
pooled from observations of 2019 and 2018. In this strategy, the calibration model developed for a 
year and then transferred it to another year followed by validating PAI estimate with the another year 
data. Scatter plots between observed and estimated PAI are grouped based on associated model (a-c) 
WCM σ�RH and σ�RV, (d-f) MWCM m � χ, and (g-i) MWCM iS � Ω.
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Model calibration and validation (both in single and multi-year analysis) provided high 
correlation coefficients and low estimation errors for MWCM simulations and PAI esti-
mates. The use of scattering power components, i.e.: odd-bounce (Ps), even-bounce (Pd), 
and diffuse power (Pv) from the compact-pol SAR (CP SAR) power decomposition (m � χ 
or iS � Ω) improves the PAI estimates from the MWCM when compared with estimates 
from RH-RV backscatter intensities and the WCM. The validation accuracy indicates a 
lower correlation between the observed and estimated PAI and higher error for σ�RH-σ�RV 
based WCM inversion approach.

We achieved a significant improvement in PAI retrieval in terms of lower retrieval errors 
using the proposed iS � Ω decomposition compared to other decomposition methods (i. 
e. Root Mean Square Error (RMSE) of approximately 0.586 m2 m−2, and Mean Absolute 
Error (MAE) of 0.443 m2 m−2). Hence, to estimate crop biophysical parameters such as PAI, 

Figure 8. Cross-validation of PAI estimates with different calibration and validation data subsets 
pooled from observations of 2019 and 2018. In this strategy, we combined data from multiple years in 
calibration data sets. Scatter plots between observed and estimated PAI are grouped based on 
associated model (a-c) WCM σ�RH and σ�RV, (d-f) MWCM m � χ, and (g-i) MWCM iS � Ω.
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this study recommends using scattering power from the iS � Ω decomposition and the 
MWCM for biophysical parameter retrieval for compact-pol Circular Transmit-Linear 
Receive (CTLR) observations.

The multi-year cross-validation results suggest that the utility of calibration data 
transfer from one experimental data set to another, even when acquired in different 
years, is possible. The iS � Ω based inversion produced the highest accuracy when the 
2019 calibration model was applied to estimate PAI with 2018 data (CAL19-2/VAL18-2). 
The r between observed and estimated PAI is 0.86 with low errors (RMSE = 0.951 and 
MAE = 0.804). Thus confirming the better performance of the iS � Ω scattering powers 
relative to approaches using the RH-RV and m � χ based inversions. These results are 
similar to the validation errors using both calibration and validation data from a single 
year. Validation results improved when we selected calibration data sets where we 
excluded rainfall events. While in most cases, the WCM and MWCMs are calibrated and 
validated on the data subsets of single seasons. In this regard, our results confirm the 
capability of transferring a model calibrated from 1 year to another with consistent 
performance.

The proposed inversion of the MWCM with the scattering powers derived from CP SAR 
data will be of significant interest from an operational perspective for the RADARSAT 
Constellation Mission (RCM) and upcoming CP enabled missions RISAT-1A and NISAR. In 
particular, the RCM is capable of acquiring CP data at swaths of up to 500 km with 
different noise equivalent sigma zero (NESZ) values. Given these promising results, 
implementing compact-pol data from these missions, in terms of transmitted circularity 
and NESZ, requires further exploration. In this current study, the analysis is limited to a 
single test site, and as such, local adjustments of the model might be required for other 
sites. Hence, the robustness of these inversion strategies should be tested over other 
agricultural regions and cropping systems within a cross-site experiment framework.
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Appendix Relationship between PAI and wet biomass

We fit the regression models between PAI and wet biomass of rice to find the best relationship 
among them. The power trend line is best fitted to the 2019 data sets with a correlation of 
determination (R2) of 0.75, as shown in Figure A. The associated distribution of PAI and wet biomass 
values throughout several phenological stages is also highlighted next to the x- and y-axis.

Figure A. Relationship between in-situ measured PAI (m2 m−2) and wet biomass (kg.m−2) of rice for 
2019 data sets.
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