<]
TUDelft

Delft University of Technology

Including stochastics in metamodel-based DEM model calibration

Fransen, Marc Patrick; Langelaar, Matthijs; Schott, Dingena L.

DOI
10.1016/j.powtec.2022.117400

Publication date
2022

Document Version
Final published version

Published in
Powder Technology

Citation (APA)
Fransen, M. P., Langelaar, M., & Schott, D. L. (2022). Including stochastics in metamodel-based DEM
model calibration. Powder Technology, 406, Article 117400. https://doi.org/10.1016/j.powtec.2022.117400

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.powtec.2022.117400
https://doi.org/10.1016/j.powtec.2022.117400

Powder Technology 406 (2022) 117400

Contents lists available at ScienceDirect = POWDER
TECHNOLOGY

! & il
o L
]

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Including stochastics in metamodel-based DEM model calibration )

Check for
updates

Marc Patrick Fransen **, Matthijs Langelaar °, Dingena L. Schott

2 Department of Maritime and Transport Technology, TU Delft, The Netherlands
b Department of Precision and Microsystems Engineering, TU Delft

ARTICLE INFO ABSTRACT

Article history:

Received 3 February 2022

Received in revised form 31 March 2022
Accepted 12 April 2022

Available online 22 April 2022

In calibration of model parameters for discrete element method (DEM) based models the focus lies on matching
the mean key performance indicator (KPI) values from laboratory experiments to those from simulation results.
However, due to the stochastic nature of granular processes experimental results can show large variances. To
include stochastic behaviour, interpolation-based and regression-based metamodels are trained with stochastic
data. These metamodels are used in the standard mean calibration approach and newly introduced mean-
variance calibration approach to predict the KPIs mean and variance. In addition, the effect of enriching data
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Stochastic calibration on the calibration is investigated up to 50 repetitions of experiments and simulations. Based on a hopper case
Metamodels study, use of regression-based metamodels trained with KPI data repeated at least 20 times is recommended.

While differences between mean and mean-variance-based metamodels were minor in the considered case
study, regression-based metamodeling clearly showed improved accuracy and stability over interpolation-
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based metamodels.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

To design reliable bulk handling equipment (BHE) engineers and re-
searchers rely on particle-based models to predict the performance of a
new design [16]. The discrete element method (DEM) is used to model
granular materials and analyse a wide range of related applications. Ac-
curate predictions can only be made if the input parameter values such
as friction coefficients and material properties are chosen adequately.
To this end, calibration with experimental findings is typically used.
However, granular processes are stochastic by nature leading to random
results if repeated. This stochastic behaviour is caused by the large vari-
ety of particle shapes, sizes, and particle packing compositions in gran-
ular systems.

In current calibration approaches the DEM parameters are opti-
mized to ensure that the mean values for the performance parameters
are matched to the calibration targets ([6,18,20,24]). However, the
mean calibration approach accounts only marginally for the stochastic
nature of granular processes originating from distributions of particle
shape, size, and microstructural composition. Alternatively, an iterative
Bayesian filtering framework in combination with analysis of stress de-
pendency paths can be used to minimize the variance of the solution
and obtain more accurate calibration results [3,4]. In this study the
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initial packing of the bulk material was known through X-ray tomogra-
phy and exactly represented in the DEM model. In practice, this infor-
mation is usually available which means that we generally assume
random initial packings and repeat experiments to obtain mean and
standard deviation values. Experiments for calibration and validation
are commonly repeated 3-5 times. This number seems arbitrary be-
cause the mean and standard deviations of key performance indicators
(KPI) may not have converged to a stable value with this number of rep-
etitions. Additionally, if mean and standard deviations are used in devel-
oping BHE designs the common approach is to work with confidence
intervals based on standard deviations. For reference, in case of three
repetitions the 95% confidence interval with a t-distribution is equal to
1,837 times the standard deviation which approximately induces a 6,5
times wider confidence interval compared to a factor 0,284 when ex-
periments are repeated 50 times. Even though this number of repeti-
tions is not feasible in practice, this study can be used as a reference
for a suitable number of repetitions.

Moreover, with increasing irregularity of particle shapes and sizes
the variance in experiments increases. Therefore, in experiments with
granular materials it is not uncommon to have relatively high standard
deviations when material becomes more heterogeneous. For the quartz
sand calibration experiments, Derakshani reports standard deviations of
2,64% for the sandglass test with three repetitions [7]. For the gravel cal-
ibration experiments with three repetitions, standard deviations be-
tween 0.5 and 4% of the mean KPI values for the lifting cylinder, shear
box, and drop down test were reported [24]. For wood chips reported
standard deviations range from 3;44% to 6;45% for the Angle of Repose

0032-5910/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and 3;85% to 7;41% for the Angle of Slip [19]. The subsequently tested
wood chip feeding system resulted in a standard deviation of 4,5% for
eight repetitions. In large scale applications like the grab validation
study on spherical iron ore pellets by Lommen resulted in a 2% error
for the payload with three repetitions [13]. Another grab validation
study for cohesive iron ore reported a standard deviation of the average
payload of 5,74% for three repetitions [17]. Combined with the confi-
dence intervals this leads to 95% confidence intervals of up to +/—
10,5% around the mean in the discussed cases. In design of bulk han-
dling equipment, these confidence intervals are generally too high to
obtain reliable designs. Therefore, the effect of repetitions on the reli-
ability of experiments with bulk materials is investigated in this study.

Ideally, the DEM model should exhibit the same stochastic behav-
iour as observed in reality. This requires that the stochastics are in-
cluded throughout the development of the DEM model. To the
author's knowledge, stochastic behaviour of granular processes is rarely
included in calibration except for a recent study using random initial
packing [10]. Therefore, we propose including the stochastic behaviour
in a metamodel which is subsequently used to predict mean and vari-
ance in the calibration. To include the stochastics in a metamodel
there are two options. Firstly, two individual metamodels are trained
for the mean and variance as was demonstrated by [12], here we use a
noiseless Gaussian Process Regression (GPR) metamodel which results
in a metamodel based on exact interpolation. Secondly, a noise included
Gaussian Process Regression metamodel which includes the KPI vari-
ance in the noise term [21]. The GPR model has been previously used
in a DEM calibration context of bulk material [22]. Furthermore, a
mean-variance calibration approach is proposed which includes the
variance of the calibration experiments in the objectives of calibration
procedure. In mean-variance optimization of DEM parameters, the
focus of the optimization algorithm is to find parameter values for
which both mean and variance match those of the experimentally ob-
tained targets. In contrast, mean calibration only focusses on finding pa-
rameter values for the mean of the targets. In this paper, the noiseless
GPR is referred to as the interpolation-based metamodel (IBM) and
the noisy GPR is referred to as the Regression-based metamodel
(RBM). Both these metamodeling approaches are used and compared
for mean and mean-variance calibration of DEM parameters. In addi-
tion, we study the influence of the number of repetitions on the ob-
tained calibration results.

We apply the aforementioned approach to a gravel case study where
three material parameters are calibrated using a pile forming test, ledge
test, and bulk density test. The parameters that are calibrated are the
sliding and rolling coefficient, and the particle density. The calibration
results are applied to a DEM model of a hopper and the resulting dis-
charge rate is compared to the experimental equivalent. This case
study is chosen because of the good measurability of the KPIs and
their frequent use for calibration in this field.

The experimental setups in the case study and analysis are described
in Section 2. The experiments are followed by the development of the
DEM models of the experimental setups in Section 3. Next, Section 4 in-
troduces the metamodeling approaches and the mean and mean-
variance calibration, which are demonstrated with the previously de-
scribed experiments. The results of the calibration and a comparison be-
tween the interpolation-based and regression-based metamodel
calibration and the proposed mean-variance calibration and mean cali-
bration is given in Section 5. Lastly, this work ends with conclusions and
an outline for further work on this topic.

2. Experimental methods and materials

The goal of DEM calibration is to obtain a set of DEM parameters
such as friction coefficients and material properties for which the KPI
obtained from an experiment is matched to the KPI from a DEM
model of the same experiment. In this study, we use the bulk calibration
approach (BCA) in which small scale calibration experiments are used
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to determine the DEM parameters. These calibration experiments pro-
vide well-isolated macro properties of the granular material, the KPIs.
Ideally, for each DEM parameter an calibration experiment with a spe-
cific macro property is desired [1,11,25]. In general, the behaviour of
granular material in calibration experiments is assumed representative
for the behaviour of the material in large-scale bulk handling applica-
tions. In this study three calibration experiments, a pile forming test,
ledge test, and bulk density test are used which are discussed in
Section 2.1. After finding the DEM parameter set these values are ap-
plied to a DEM model of a large-scale hopper model for which the nu-
merical results are compared to the experimental results of the
hopper setup described in Section 2.2. Analysis of the experimental re-
sults to obtain the calibration (pile forming, ledge, and bulk density
test) and validation (hopper) KPIs can be found in Section 2.3. The re-
sults for these experiments are presented in Section 2.4.

In this case study gravel is used which is categorised as dry cohesion-
less bulk material similar to the gravel used in previous studies [22,24].
The particle size distribution (PSD) of this material was found using a
Haver and Boecker sieve shaker tester which resulted in a normally dis-
tributed PSD with an average radius of 5,02mm and a standard deviation
of 1,39mm. The particle density was measured with a submerged mass
density test and averages on 2313,4 % for ten repetitions.

The experimental setups consist of a combination of stainless steel or
acrylic plate material which can have three types of wear. The wall-
particle interaction properties have been measured with an inclined
surface tester for 25 particles on the wall material and their wear
state. These wear states are stainless steel with wear due to sliding,
stainless steel and impact wear, and acrylic with sliding wear. The stain-
less steel with sliding wear is the state of the wall of the bulk density tes-
ter. The stainless steel with impact wear is present in the hopper due to
the pounding of the particles on the walls during filling. The acrylic with
sliding wear is present in the shear box test, pile-forming test, and in the
front and back walls of the hopper. The sliding friction properties have
been shown in Table 1 and shows the mean and variance values for
the experiment. In the DEM models of the experiments the mean
value of the friction coefficient is used.

2.1. Laboratory scale experiments

The calibration experiments are a pile test, ledge test, and bulk den-
sity test as shown in Fig. 1 (a,b,c). The KPIs are the Angle of Repose
(AoR) B, Angle of Movement (AoM) 6, and the bulk density pp
obtained from the pile, ledge, and bulk density test respectively. These
experiments have been selected because they are representative for
different aspects of the final application. The pile-forming test resem-
bles the kinetic behaviour of the material exiting the silo and the forma-
tion of the pile beneath the silo. The ledge test is representative for the
movement of the material along stagnant zones when the hopper is
discharging. The bulk density test is a representative test for the filling
of the hopper.

The pile forming test consists of an elevated structure from which
gravel is dropped in a container enclosed consisting of acrylic plates,
Fig. 1 (a) and Fig. 2 (a). The acrylic plates have a wear profile corre-
sponding Gravel-Acrylic (sliding). The top container is filled up to
110 mm with gravel after which the bottom plate is removed. This starts
the flow of material through the orifice of the top container. Conse-
quently, the material fall on the bottom plate of the lower container

Table 1
Wall Gravel interaction properties.
mean pig var i
Gravel-Stainless steel (impact) 0,523 0,05
Gravel-Stainless steel (sliding) 0,456 0,044
Gravel-Acrylic (sliding) 0,446 0,0965
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Fig. 1. Laboratory scale tests (a) Pile forming test (b) Ledge test (c) Bulk density test.

and a pile starts forming. After the formation of the pile, a camera is used
to photograph the sidewall of the container. This photograph is later
used to determine the angle of repose, 3.

The ledge test is a container with a retractable sidewall, Fig. 1 (b) and
Fig. 2 (b). The container has acrylic walls which have the wear proper-
ties of Gravel-Acrylic (sliding). At the edge, the container has a ridge
of 2 x 20 mm covering the entire trailing edge of the container. This en-
sures that when the sidewall is retracted that there is a stable base of

gravel. The container is filled up to 214 mm with gravel after which
the sidewall is retracted. After retracting the wall, the material starts
to flow which continuous until a stable slope is left in the container.
Of this pile a photograph is taken which is analysed to obtain the
angle of movement, 6.

The bulk density test involves a cylindrical container with a radius of
82 mm and a height of 237 mm, the bulk density cylinder ISO 17828 (EN
15103), Fig. 1 (c) and Fig. 2 (c). It has a volume of 5 | with a 0,2% error.
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Fig. 2. Dimensions of the experimental setups (a) pile forming test, (b) ledge test, (c) bulk density test, with dimensions in millimetres.
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Due to the repetitive use of the container the material has wear proper-
ties corresponding to Gravel-Stainless steel (sliding). First the empty
cylinder's weight is measured with a scale (Kern EMS 12 K.01). Next,
it is filled with gravel until the upper edge of the tester is reached and
weighed again to obtain the mass of the bulk.

2.2. Large scale hopper experiment

The semi-two dimensional hopper setup is shown in Fig. 3. The hop-
per walls are connected to an aluminium frame. The sidewalls of the
hopper have worn due to impact which lead to a pitted surface
(Gravel-Stainless steel (impact)). These sidewalls are enclosed in the
front and back by 5 mm acrylic transparent plates which have been sub-
jected to sliding wear. The angle of the hopper walls is 45° and the size
of the discharge opening is 100 mm. The width of the silo is 602 mm and
the depth is 50 mm. At the bottom of the hopper a steel bar held by elec-
tromagnets closes the orifice of the hopper. To commence discharge of
the hopper the steel bar is released by turning off the magnets using a
switch. To measure the weight of the bulk material in the hopper the en-
tire structure is positioned on load cells (AEB8D Shear Beam Load cell
from AE sensors). The signal of the load cells is sent to a data acquisition
box (Texas Instruments) and processed using Labview to a data file. The
weight data is measured and stored at a frequency of 50 Hz during the
discharge of the hopper. Due to the scale of this setup the number of
repetitions is set to five, this number is sufficient because discharge
rates are time averaged values which lead to more stable results in the
case of a steady-state flow.

2.3. Analysis experimental results

The KPIs of the pile forming and ledge test are determined by analy-
sis of the pictures of the experiments. This analysis follows the same
procedure in both experiments, therefore the analysis is only discussed
for the ledge test. First, the distortion of the pictures is corrected after
which a square grid is layered over the pictures as shown in Fig. 4.
This grid has equal spacing in both directions and is equal to two
times the average particle radius obtained from the PSD. In the squares
along the material edge the particle with the highest location is identi-
fied. This is a manual process which comes with errors because of the
analyst determining the points, by using squares this error is minimized
and the relative distance between points is kept similar. The highest

Powder Technology 406 (2022) 117400

Fig. 4. Image of a ledge test result where the blue crosses are placed on the edge of the pile
and a linear regression (red line) is applied to find the angle of movement. This procedure
is the same for the pile-forming test to determine the angle of repose.

locations are denoted by the blue crosses in Fig. 4 and are used as the
input for a linear regression analysis to find the angle of movement.
Based on the angles from all experiments the mean and variance of
the Angle of Movement are determined.

The bulk density is determined by dividing the bulk mass in the con-
tainer measured with the scale by the volume of the container.

As we have repeated all the laboratory scale experiments 50 times
the distribution of the data can be analysed, especially if the data is nor-
mally distributed. Therefore, the Lilliefors test is used to determine if the
data from the experiments is normally distributed. These tests turned
out to be positive for a 5% significance level which means that the data
from the experiments is normally distributed. Based on these observa-
tions we can proceed with mean and mean-variance based calibration.

Fig. 3. Experimental setup for the large scale hopper.
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Fig. 5. Linear regression fit to the load cell data, the slope of the fit is the discharge rate of
the mass flow in the hopper.

The data obtained from the large-scale hopper experiment is the
evolution of the force exerted on the hopper by the material sampled
at a frequency of 50 Hz. From this data the discharge rate as a function
of time can be determined using linear regression as illustrated in
Fig. 5. Assuming that the constant force fit divided by the gravity con-
stant leads to an average discharge rate in kg/s. For each large scale hop-
per experiment the steady state discharge rate ¢ is calculated. The mean
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discharge rate and its variance are calculated for the five repetitions of
the experiment.

2.4. Experimental results

The experiments for the Angle of Repose, Angle of Movement, and
bulk density have been repeated 50 times. On these datasets, a Lilliefors
test has been applied to determine if these datasets are likely to be nor-
mal with 95% confidence. For all three sets it was found that the data is
normally distributed which justifies including the confidence intervals
in the analysis of the experimental results.

In Fig. 6 (a,b,c) we can see the way the mean value and 95% confi-
dence interval (CI) of the angle of repose, angle of movement, and the
bulk density of the material develops when the number of repetitions
increases. In addition, the +/— 1% boundaries are given which indicate
the relative size of the error in the mean value. As we can see, the mean
stays within the 1% boundaries after the number of repetitions increases
over 29 for the angle of repose. The angle of movement reaches a stable
bandwidth of +/— 1% around the 41.5 degree angle after nine repeti-
tions where it leaves this bandwidth once at 30 repetitions. For the
bulk density we see that the mean is in the 1% bandwidth after three
repetitions. However, the mean stabilises when 20 repetitions are
reached. The 95% CI of the mean is determined using the t-distribution
for a number of repetitions lower than 30 and using the z-distribution
for numbers higher or equal to 30 assuming that the central limit theo-
rem holds. Based on the confidence intervals we can say that at 50 rep-
etitions the true mean of the AoR is within 2,2% of the mean with 95%
certainty. For the AoM this is equal to within 1% and for the bulk density
within 0,2%. In the calibration procedure described in Section 4 we

327 4 44 1510
{ * Mean Mean Mean
30 + +  95% conf mean 95% conf mean 1500 95% conf mean
+ — — ~ 1% mean BW 43 — — 1% mean BW — — 1% mean BW
® 4+ ~ 1490 =~
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- . M — 42 £ 1480
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L— ..'ﬁ.,i —— ¢0990009000000000088%0 < 1470
g ++++H+0WM+ 414 % T T
24 e
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A
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Fig. 6. In figures (a, b, c) the development of the mean value and 95% Cl related to the number of repetitions of the calibration experiment is shown for the Angle of Repose, Angle of Move-
ment, and Bulk density, respectively. Additionally a bandwidth of 1% shown around the mean value for 50 repetitions. Figures (d, e, f) show the development of the standard deviation and

its 95% CL.
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Table 2

Powder Technology 406 (2022) 117400

Calibration targets for the Angle of Repose, Angle of Movement, and bulk density for 50 repetitions and the validation target for the discharge rate for 5 repetitions.

Calibration Targets KPI Number of experiments Mean =+ CI 95% Standard Deviation 4 CI 95%
Pile test Be (%) 50 2543 + 0,58 2,09 £+ (—0,24;+0,48)
Ledge test 0 (°) 50 41,40 4 0,36 1,38 &+ (—0,36;+0,31)
Bulk density test o (L%) 50 1473,1 £3,0 10,94 + (—1,88;+2,52)

e \m
Validation Target
Hopper test be (ng) 5 3,68+ 0,029 0,025 + (—0,011; +0,030)

s

assume that both the calculated mean and standard deviation are the
true values. Therefore, we use these values as the calibration targets.
The Cls are only used to indicate the reliability of the experimental re-
sults.

In Fig. 6 (d, e, f) the standard deviations and their 95% CI are shown
relative to the mean. For the AoR and AoM stabilization of the standard
deviation can be observed after 15 repetitions but for the bulk density it
keeps declining with the number of repetitions. For the CI of the stan-
dard deviation the chi-distribution is used to account for the sample
size. Observing the confidence intervals, it is visible that for low num-
bers of repetitions the confidence intervals for the angle of repose and
bulk density are much wider than for a high number of repetitions.
These observations indicate the necessity of having sufficient repeti-
tions in calibration experiments for irregular shaped and randomly
packed bulk materials.

In this case study the effect of increasing the number of repetitions in
a dataset on the calibration and validation result are evaluated. How-
ever, for conclusions regarding the most accurate calibration approach
the entire dataset of 50 repetitions will be used. In these cases, it is
also important to notice that one can consider the standard deviation
relative to the mean. These calibration targets are shown in Table 2. It
is found the standard deviation is 8,2% for the Angle of Repose, 3,3%
for the Angle of Movement, 0, 74% for the bulk density. These percent-
ages show that the variability of each calibration differs significantly.
This can be explained by the nature of the calibration experiments. In
the bulk density test a container is filled with material which is very
confined and restricts high velocity movement of the particles. Hence
an experiment that will have less variability. In the ledge test a container
is filled as well but when the sidewall is removed the material starts
moving. Moreover, the sliding interface in the ledge test causes higher
variability of the angle due to the changing orientation of the particles
in each repetition of the experiment. In the pile-forming test the mate-
rial falls from the container on a free surface where the orientation and
high velocity of the particles results in a higher variability of the exper-
imental result.

3. DEM models

The DEM models of the hopper and calibration experiments are built
based on the schematics shown in Fig. 2. The model assumptions for the
granular material and material structure interaction are described in
Section 3.1. Next, the procedure for initialisation of the models is de-
scribed in Section 3.2. Finally, the analysis of the simulation results is
discussed in Section 3.3.

3.1. DEM model assumptions and material properties

In general, DEM models of a granular process are simplifications of
the actual process. For reproducibility, the procedures followed and as-
sumptions made in creating the model are as follows. In this study we
use Mercury DPM, an open source discrete element package [26] to
build the three-dimensional DEM models. Although the particle shapes
are irregular they are modelled as spheres. As suggested by Wensrich &
Katterfeld, the irregular shapes of the particles and its behaviour is as-
sumed to be described by the rolling friction coefficient in the contact

model [27]. The size of the spheres follows the experimentally deter-
mined PSD but is truncated between —1,5 STD and + 5 STD around
the particle size mean. Ideally, the particle size distribution in DEM is
identical to the experimentally obtained distribution. However, for rea-
sonable simulation times truncation of the PSD is justified [23].

The contact model used to describe normal, tangential, sliding, and
rolling interaction for particle-particle and particle-wall contact is the
model developed by Luding [15]. This model is suitable for modelling
dry cohesionless granular solids. The contact stiffness k for particle-
particle interaction is determined by using the micro-macro relation
given in the following equation,

KV,
k= (1)

where K is the bulk modulus of the granular material, V}, is the particle
volume of a sphere with the average particle radius from the PSD, C,
is the coordination number, and r is the average particle radius
[14,15]. The bulk modulus K of the material is set to 70 MPa. The
particle contact number, or coordination number, is assumed to be
equal to 4 which corresponds to loose material [29]. The damping
coefficient of the material is assumed to be equal to 0,3 [9]. The
material properties have been tabulated in Table 3 and the contact
properties for the particle-particle contact can be found in column two
of Table 4. Based on these properties the size of the time-step can be de-
termined. For the time-step size we assume that At = % where t, is the
collision time between the particles for the smallest particle size and
was used in previous work [8].

For the interaction between particles and three types of walls sliding
and rolling friction coefficients are defined. The mean values of the mea-
sured sliding friction properties declared in Table 1 are directly included
in the DEM model and are assumed uniform over the wall surface. Here
it is assumed that the walls have uniform properties and are therefore
not spatially dependent. The rolling friction coefficient could not be
measured directly. Therefore the relation . = 21 is adopted which is
common in DEM models for calibration ([5,30]) to ensure sliding is
the dominant mode of motion in the simulation. The contact stiffness
of the walls is also assumed to be twice the size of the contact stiffness
of the particles, k,, = 2k, ([5]). The properties can be found in the
third column of Table 4.

The particle density has been identified experimentally but because
of the assumption of spherical particles adjustments to the particle den-
sity might be needed. Therefore it is decided to use the particle density

Table 3
Material properties gravel.
Bulk K = 70MPa
modulus
Particle Calibration parameter
density
Contact C, =4129]
number
Particle size 5,02 (mm) +/— 1,39 (mm) Sieve test results, in simulation the
particle size is limited to —1,5 and + 5 sigma.
Timestep At = %
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Table 4
Contact Properties.

Stiffness Particle-particle Particle-Walls

Contact B s N ky=2k,
stiffness k kp = 367743 x 10 )

ke 3, s

ks 2k, Sku

Damping ratio

Y 0,3[31] 03

Vs 03 03

Yr 03 03

Friction

s Calibration parameter ~ Experimental sliding friction values
(Table 2)

Uy Calibration parameter  p, = 2

as a calibration parameter. In the particle-particle contact, the sliding
and rolling friction coefficients are parameters that are subject of the
calibration because both these properties cannot be measured directly.

3.2. Initialisation of DEM models and simulations

In Fig. 7 examples of the simulation results for the DEM models of
the calibration experiments for g, ¢ = 0,5 and p, = 2750 kg/m> are
shown. Here it can be seen that pile formation occurs in the pile test
shown in Fig. 7 (a), a slope in the ledge test result (b), and a filled
bulk density container in (c).

To resemble the filling process in the experiments random filling is
used. The procedure is illustrated by the filling procedure for the bulk
density container. For each DEM model a volume is defined in which
the particles will be generated. In the case of the bulk density tester it
is the volume of the test apparatus. A circular generation plane is de-
fined at the bottom of the tester and moves up to fill the tester with a
predefined volume. The first loop is to generate particles in the circular
plane of the bulk density tester. In this loop a random location in the
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plane is chosen by randomly generation of an angle for the angular loca-
tion 0 to 360 degrees on the circle and a radius from 0 to the outer radius
of the tester. At this location, a particle is generated with a radius drawn
from the particle size distribution obtained from the experiments. Be-
fore generating it is checked whether the particle is in contact, if so, it
is not placed, else, it is placed and the next particle can be placed.
With each step in generating a particle, the height of the horizontal gen-
eration plane is increased with a step size of r x 10~ to ensure proper
filling of the volume where the average particle radius is r. After adding
a particle its volume is substracted from the total volume that needs to
be added. When this added volume reaches zero or less the particle gen-
eration stops. With this procedure a volume is filled with particles with-
out contact. After initialisation of the particles, the simulation is started
and particles settle under the influence of gravity.

The procedure for all simulation setups is similar while the shape of
the generation plane is adjusted to the setup. In the DEM models, the
mass of material added to the setup is larger than the amount needed
to fill the setup. Therefore, when the particles have settled, the deletion
boundary that removes excess material above the filling height Hy for
each setup is activated. This activation time is different for each model
but equilibrium is reached before the deletion boundary is activated
(Table 5).

For the hopper simulation material flow starts upon removal of the
bottom of the hopper at t = 1,6s. In the ledge and pile forming test
the sidewall and bottom are removed at 1,65 s, respectively. The stop-
ping criterion for all simulations is when ratio between the elastic and
kinetic energy of the particles in the system becomes lower than 10~°
[8]. The hopper simulation has an additional stopping criterion that en-
sures that the simulation stops when the mass in the hopper is equal to
zero.

The DEM models of the calibration experiments are run on a cluster
which uses 2x Xeon E5-2680 v4, 28 core CPUs. The average CPU time
for the DEM models of the laboratory scale tests is 5 h for the bulk den-
sity test, 7,5 h for the pile forming test, and 12 h for the ledge test. The
simulation time is denoted as an average because the packing, value of
the friction coefficient, and density influences the behaviour of the
model and the simulation time.

f ?I / /
A /'/
av.va

(b)

©) (d)

Fig. 7. Simulation results for the pile (a), ledge (b), and bulk density test (c) for sliding and rolling friction coefficient of 0.5 and a particle density of 2750 kg/m3 and a visualisation of a filled

DEM model of the hopper (d).
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Table 5 To obtain the angle of movement, the first task is to find the particles

Simulation settings. which have the highest z-values at the front of the simulation. Note that
DEM models Filling height Hy Activate deletion boundary this z-value is the sum of the z-value of the centre of the particle and the
Hopper test 0.66 m 155 radius of the partlcle..As YVlth the Angle of Repose, we do thI.S by lopklr}g
Pile test 011m 1555 for the largest combination of z-value of the particle and its radius in
Ledge test 0,218 m 1,555 bins. The left edge of the search area is defined by the adopted friction
Bulk density test 0,236 m 15s

relation, d, = % % 0,06 and the right side of the bin is located

at d,=0,228 m which is 0,01 m from the leading edge of the shear
box. The area between d; and d, is divided into a number of bins. The
number of bins is determined by dividing the distance between dg and
d. by the average particle diameter and rounding up. In this way we
ensure that the particle in each bin is the highest. After a particle is
found in each bin, linear regression is applied to find the angle of
movement 6. This method is identical to the experimental analysis.

The result of the bulk density simulation is a volume filled with par-
ticles as shown in Fig. 8 c. From the data file the volume of each particle
in the container can be calculated, and by multiplying with the particle
density and dividing the total mass by the volume of the container the
bulk density is obtained.

For the analysis of the hopper results the same procedure is followed
as with the experimental hopper results but using the numerical data
instead of the experimental (Section 2.4).

3.3. Analysis simulation results

The DEM simulations provide data files containing the locations and
velocities of the particles. This data is used to determine the KPI values
for each DEM model. In contrast to the experimental analysis the analy-
sis of simulation results is automated. Therefore this method is not
prone to any error from the analyst whereas the experimental analysis
relies on picking data points by hand which can induce errors. For
each repetition and sample point this value is calculated which in turn
is used to determine the mean and variance values. These values are
used as training data for the metamodels used in the calibration proce-
dure (Section 4.3).

To obtain the angle of repose from the pile test simulations a grid
search is performed to find the locations of the largest combination of
particle z-value and its radius in bins. In this search, only the particles lo-

cated at front are considered analogous to the analysis of the experi- 4. Metamodel and calibration methods
mental results where only the visible particles are analysed. The pile
has two slopes as shown in Fig. 8 (a) for which the approach is to deter- Our calibration, verification, and validation procedure is shown in

mine the angles at both sides of the pile. The left edge of the search area Fig. 9. It starts with the calibration experiments shown on the left side
is ds; which is located 0,1 m left of the center of the setup along the x- of the figure. We use the Pile Test, Ledge Test, and the Bulk density
axis. The right edge of the search area for the left angle is located at test with the mean and variance of the Angle of Repose, Angle of Move-
de1 which is located 0,01 m to the left of the setup center on the x- ment, and bulk density as output which is discussed in Section 2. For
axis. This search area is divided into a number of bins based on the each of those experiments a DEM model has been developed as dis-
length of the search area divided by the average particle diameter cussed in Section 3.

rounded up to an integer. In this case study 9 bins are used. For the The first step in the calibration procedure is to define the bounds and
right angle the same procedure is followed. After finding the highest sample the calibration space, described in Section 4.1 and 4.2. The re-
particles in each bin, this data is used to determine the angle of repose sults of the DEM simulations for the sample will be used in the

by linear regression for both the left and right side which are averaged. metamodel training step and are subsequently used for DEM parameter

After the ledge test simulation finished, the bulk material has formed calibration. We use two types of metamodels to describe the relation
a stable slope as shown in Fig. 8 (b) for which the angle can be deter- between calibration parameters and KPIs. The first type is an
mined. However, the calibration parameter values in the sample do af- interpolation-based metamodel that describes the mean and variance

fect the shape of the slope. Increasing the friction values increases the of the KPIs by two separate metamodels. The second type is a
slope of the heap but also forms a horizontal plane at the back of the regression-based metamodel, which is a metamodel that incorporates
shear box after which the slope starts. To obtain the accurate angle of both mean and variance of the KPIs. Details on the models and training
movement the particles lying in this plane should not be considered. procedure are discussed in Section 4.1. For the calibration step, we use

Z-axis

z-axis

5
> <>

(0,0, X-axis
bins .
x-axis
ds1 del ds2 de2 bins
—

(a) (b)

Fig. 8. Visualisation of the analysis of the simulation results where a linear regression is applied to the highest located particles in each bin (a) determination of angle of repose
(b) determination of the angle of movement.
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Define and sample

calibration space
@1 34'2) Resampling
Data generation . DEM model's
Calibration calibration experiments
expfrlments Metamodel training and
Pile test B and o(B) hyper-parameter optimization
(Angle of Repose) (4.3)
]
Ledge test 0 and o(0) L Adjust calibration
(Angle of Movement) Calibration (4.4) settings
]
Bulk density test . .
and o
(Bulk density) P ) Verification (4.5)
<o
yes
DEM model
o ] Validation (4.6) | omvimode
Validation experiments validation experiment

Hopper test ¢ and o(p)

(Discharge rate) error < tol

Calibrated & validated
DEM model

Fig. 9. Overview of steps taken in the calibration approach and the validation.

both the commonly used mean calibration approach and our newly in-
troduced mean-variance calibration approach. The main difference be-
tween these methods is that the latter includes the variance of the KPI
in the calibration in addition to the mean. In both approaches, using
the DEM-based metamodel the DEM parameter values are determined
that provide the best agreement with the experimental KPI data. The
calibration is further discussed in Section 4.4. After this calibration
step, the found optima need to be verified in the verification step as dis-
cussed in Section 4.5. Here the found DEM parameter sets are
reintroduced to the DEM models of the calibration experiments and
the simulation results are compared to the results predicted by the
metamodels. If the verification results are not satisfactory, the sample
of the calibration space can be enriched by adding samples or the opti-
mization settings in the calibration can be adjusted. In this study resam-
pling based on the calibration and verification results is not considered.
After successful verification, the DEM parameter set is used as input to
the validation step by executing simulations with the DEM hopper
model which is described in Section 4.6. The results of these simulations
are compared to the experimental results from the Hopper discharge
experiment. If the error between the experiments and simulations is ac-
ceptable, a validated DEM model of the equipment has been obtained. If
the error is too large revisiting the calibration or sampling step is re-
quired.

In this study we show the effect of the mean and mean-variance cal-
ibration strategy in combination with the interpolation-based and
regression-based metamodels on the evolution of the found DEM pa-
rameter optima when the number of repetitions of the calibration sam-
ple simulations increases. In addition, the quality of these found optima
are evaluated for the calibration and equipment experiments.

4.1. Bounds of the calibration space

Ensuring that there is a solution present in the calibration space that
is used is an essential step in the calibration procedure. In this approach

we define lower and upper bounds for the calibration parameters which
are the sliding friction coefficient, rolling friction coefficient, and particle
density. The lower and upper bound of the friction coefficients has been
set to 0,1 and 0,9 based on common values in literature involving gravel
experiments as well [23,28]. In combination with the measured particle
density pp , the bulk density can be determined by running the bulk
density simulation. To determine the bulk density bounds, this is done
for two situations, the experimental particle density with the highest
friction coefficients and the lowest friction coefficients. Moreover, to
ensure stability of the outcome these two situations have been
repeated 50 times with random material packings to get an accurate
estimate of the average bulk density and its standard deviation. Based
on the results from these simulations, the experimental particle
density, and the experimental bulk density the lower and upper
bound for the particle density can be found by using the following two
equations,

Po,
pPs — ’ pPe (2)
P, (:uslbvuru,'ppe)

Py,
pTJs (usubv /Jr,,,, ’ ppg )

Pp, o = P, 3)

where p,,, is the average experimental bulk density, p,,_ is the aver-
age simulated bulk density which depends on the friction coefficients
and experimental particle density. The average experimental particle
density is denoted by the term p, . The lower and upper bound are de-
noted by Ib and ub. With these lower and upper bounds of the particle
density determined, they can be used in combination with the sliding
and rolling friction coefficient limits to check if the lower and upper
limits of the KPIs of the other calibration models, the shear box and
pile test, stay in their respective bounds.
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After verification of these results the next step is to define the
boundary sample. In this case study we have three parameters which
results in a three-dimensional calibration space with the following
bounds denoted in Table 6.

For these lower and upper bound values we have confirmed that the
lower and upper bounds result in values for the angle of repose 3, angle
of movement 6, and bulk density p, which contain the experimentally
found calibration targets. In Section 3 the model assumptions have
been declared where it is assumed that the material has a contact
number of 4. After the simulations described here the contact number
was found to be ~4,36 with lower limit of 3,6 and an upper limit of 5
depending on high or low friction, respectively. This makes 4 a
reasonable assumption for the contact number.

4.2. Sampling the calibration space

After the feasibility check of the calibration space bounds it can be
sampled. The sample consists of two parts, a sample covering the
edges of the calibration space and a sample covering the internal vol-
ume of the calibration space. Sampling of the edges is essential if
metamodels are used for the calibration because these have poor ex-
trapolation abilities beyond the space covered by the data points. In
this case the boundary sample consists of 27 sample points located at
the corners of the calibration space, at the halfway points between the
corner points, and the centre points in the plane and cube as shown as
purple squares in Fig. 10. To cover the internal space of the calibration
space an internal sample of 100 points based on Latin Hypercube Sam-
pling (LHS) with the maximin criterion is applied to obtain a sample
that covers the calibration space. These sample points are denoted by
blue circles in Fig. 10. The total number of sample points is 127 which
leads to a sampling density of ) = 127" which is equal to 5,02 samples
per unit step in the normalized three dimensional calibration space.

To obtain accurate predictions of the mean and variance of the
KPIs the simulations for the sample points are repeated 50 times
where in each repetition the packing of the particles is randomly
generated. The total number of simulations is equal to 4050 for the

Table 6
Bounds of the calibration space.
Calibration parameter Lower bound Upper bound
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Fig. 10. Three dimensional representation of non-normalized sample.
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boundary sample for the DEM models of the calibration experiments.
For the internal sample, the number of simulations is 15000 which
totals 19050 simulations training the calibration metamodels. In
this study a high number of repetitions is used to find an accurate ref-
erence value. Based on the results, recommendations can be given on
the amount of repetitions that are needed to reach an accurate cali-
bration result.

4.3. Metamodel training

The results from the simulations for the calibration sample are used
to train a Gaussian Process Regression metamodel which will be de-
noted by f;(x) where i is the index of the KPI and ¥ = [u ti, pp] is a
vector containing the calibration parameters as variables for which the
GPR metamodel gives a prediction of the KPI. The mean and standard
deviation values obtained from the DEM simulation results are normal-
ized such that a normalized mean and coefficient of variation can be
used in training the metamodels. As mentioned in the introduction,
two types of metamodels are trained.

1. Separate noiseless GPR models based on interpolation for mean and
variance of the KPI [12]

2. Single noisy GPR model based on regression including both mean
and variance of the KPI [21]

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution [21]. The Gaussian
process GP is an approximation of the real process f;(x) that it intends
to model. The GP consists of a mean function m(x) and a covariance
function k(x,x’).

fi(x) ~ GP(m(x), k(x,¥')) (4)

In building a metamodel with Gaussian Processes the correlation
function between the training points needs to be chosen which forms
the basis of the model. In this case, the correlation function (Eq. (5)) is
chosen as a squared exponential Gaussian in R> with a shape factor I?
and an amplitude factor oy which in this case are both set equal to 1.
To add more flexibility to the correlation function, the contribution of
each design parameter is determined based on the Euclidean distance
and is weighted with a coefficient g; for each calibration parameter
(Eq. (6)). This makes the shape factor I? obsolete and would interfere
in the hyper-parameter optimization process. The factor oy is set equal
to 1 because in the noiseless GPR there is no influence on the solution
and in the noise included GPR a value of 1 is suitable because it pre-
serves the ratio between the normalized mean values and coefficient
of variation. These coefficients are called hyper-parameters which can
be user-defined or optimized. In Gaussian Process Regression it is com-
mon to optimize these hyper-parameters by using type II log-likely-
hood maximization [21]. In this method the negative marginal log-
likely-hood function (Eq. (7)) is minimized to find the hyper-
parameter values. Where K is the covariance matrix, o2 is the coefficient
of variation in the training points, and N is the total number of training
points. In the noiseless GPR the coefficient of variation in the training
points is equal to zero whereas it contains the coefficients of variation
in each datapoint in the noisy GPR.

b(x) = ore " (5)
2 2 2
r= \/a1 (X1 — X1,0)" + A2 (X2 — Xo0)" + a3(X3 — X3¢) (6)
T on—1. 1 5 N
logp (v|X) = —0.5y" (K + 03]) y=3 log | K+ o031 | -5 log(2m) (7)

The maximization problem is solved using a constrained optimiza-
tion solver in [—1,1] R? using the interior point method on which
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theory can be found here [2]. To ensure that the initial guess for this
gradient-based solver does not miss the global optimum we have used
100 random initial guesses to rule out this effect. After solving the max-
imization problem, the found optimum for the hyper-parameters of
each KPI is fixed input in training the calibration metamodels used for
optimization of DEM-parameters.

The metamodel prediction (Eq. (8)) for the mean value consists of
the correlation between the training points and predicted point,
k(x,x™). This is multiplied with the inverse of the summation of the
Gram matrix K(x,x) and the variances o2 and with the reference values
y from the DEM simulation results for the training points in the calibra-
tion space to obtain a prediction of the mean at x *. The variance predic-
tor (Eq. (9)) is a correction based on the prior covariance of the
predicted points k(x *,x ") minus the information the training points
give about the function [21].

Predictor mean

fx)

k(x,x)" (K(x,x) + O02I) ~ 'y

Predictor variance

V(f) = k(x',x") — k(x,x)" (K + 0?I) ~ 1k(x,x*)T 9)
In this case study we defined three KPIs, the angle of repose (3, angle
of movement 6, and the bulk density p, for each of which we have
developed the interpolation-based and regression-based metamodels.
All these calibration metamodels have DEM parameters as their vari-
ables, the sliding friction i, rolling friction ., and the particle density
pp. For the interpolation-based metamodels this results in six
metamodels. A separate mean and variance predictor for each KPI. In
the regression-based metamodel the mean and variance predictor are
included in a single model which results in three metamodels.

4.3.1. Notation

Interpolation-based metamodels are denoted by IBM, regression-
based metamodels by RBM, followed by the abbreviation of the calibra-
tion method. M for the mean calibration and MV for the mean-variance
calibration.

4.4, Calibration of DEM parameters

In the previous section we have described the two types of calibra-
tion metamodels that are developed for the calibration procedure.
Both these models can predict mean and variance values for the KPIs
of the laboratory scale experiments. Next to these two metamodeling
approaches, in the calibration of the design parameters we can choose
between using a mean (M) or mean-variance (MV) calibration ap-
proach. Here, the mean calibration approach focusses on matching the
mean values of the experimental and numerical KPI values. The mean-
variance approach matches both mean and variance values of the exper-
imental and numerical KPI values. As discussed in Section 2, the calibra-
tion targets are the experimentally obtained mean and variance for
which we assume that the found values are the true mean and variance.
This means that in the calibration we do not include the confidence in-
tervals around the found mean and variance values. In this section these
two approaches and the used solver for the optimization problem are
described. The following calibration approaches will be evaluated.

1. Mean calibration with interpolation-based GP model (IBM-M)

2. Mean-Variance calibration with interpolation-based GP model (IBM-
MV)

3. Mean calibration with regression-based GP model (RBM-M)

4. Mean-Variance calibration with regression-based GP model (RBM-
MV)

The two calibration approaches are applied to each of the two cali-
bration metamodels for an increasing number of repetitions. This
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means that calibration metamodels are trained with data for all number
of repetitions individually to see how the optimal solution changes with
increase of the number of repetitions.

To calibrate the DEM-parameters a multi-objective optimization
problem is formulated which is solved using constrained optimization
with the interior-point-method [2]. In order to find a global optimum,
the optimization is run 100 times with different initial guesses in the
calibration space to find the optimum DEM-parameter set.

4.4.1. Mean multi-objective optimization problem

For the mean calibration problem the goal is to match the mean KPI
values from the experiments to those of the simulations. To calibrate the
DEM-parameters the following multi-objective optimization problem is
defined.

min c(x) (10)

Where c(x) is a summation of the objectives for the optimization
problem. The goal of calibration is to find DEM parameter values for
the sliding and rolling friction coefficient for the interaction between
gravel particles and the particle density. For each KPI (Angle of Repose,
Angle of Movement, bulk density) an objective is defined according to
the following equation,

ci(x) = w; <W> 2

(11)

Where K; represents the KPI, w; the weight of the objective, and x is a
vector containing the DEM parameter values. The subscript e for the KPI
denotes that it is the experimental value and the subscript s of the KPI
denotes that it is the numerical or simulation value. The term K;s(x)
provides a prediction of the mean and variance of the KPI by the
metamodel described in Section 4.3. The objective is normalized by
the simulation value of the KPI and squared such that the objective
returns a positive value.

For this case study there are three KPIs resulting in three objectives
which are summed in c(x). Each objective is normalized and is therefore
equally important if the weights are equal to one. For the clarity of this
study the we have decided to keep the weights equal to 1, w =[111].
However, in practical applications these weights can be adjusted if the
engineer or researcher decides that some KPIs are more important
than others.

4.4.2. Mean-variance multi-objective optimization problem

For the mean-variance calibration problem the definition of the op-
timization problem is the same as in Eq. (10). However, in addition to
the mean objectives the relation between the mean and variance is uti-
lized to define six additional objectives. These objectives are the mean
plus and minus the standard deviation, which is the square root of the
variance, of the KPI. The standard deviation of the KPI is used because
it has the same unit as the mean. The upper bound is defined as the
error between the sum of the experimental mean K;, and standard
deviation value oy, and the sum of the numerical prediction for the
mean Kj; and standard deviation Oy;s as described in Eq. (12). The
lower bound is defined as the error between the experimental mean
minus the standard deviation value and the numerical prediction for
the mean minus the standard deviation as described in Eq. (13).

(Kie + 0%, ) ~ (Kis®) + 0%, @)\

G =w, o (12)
(K, = 01, ) = (Ki®) = 0, (%)) ’

Gx) = w, o (13)
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In the mean-variance calibration problem each objective has a
weight. Here, the weights indicate the importance of each part of the
objective function. For the objective of the mean value the same weights
are used as in the mean calibration case. The weights for the mean +
standard deviation objectives is defined by a factor C which scales the
influence of these objectives. The value chosen for C = 0,5 and kept con-
stant in this case study which result in the weight vector
w=[1 CC1 C C1 C C]. We assume that the lower and
upper bound are equally important and that the sum of these should
be equally as important as the mean objective of the specific KPI.

4.5. Verification of DEM parameter sets

For each of the four calibration approaches described in the previous
section, 50 sets of DEM-parameters for metamodels trained with mean
and variance data are obtained. These optimal DEM-parameter sets are
applied to the DEM models of the laboratory scale experiments. The re-
sults are verified by comparing KPIs from the simulation results to the
calibration targets. To reduce the number of simulations, a selection of
obtained DEM-parameter sets will be evaluated. This selection is de-
fined by the DEM-parameter sets corresponding to 1, 2, ..., 10, 15, 20,
30, 40, 50 repetitions. Simulations for these 15 sets are repeated with
the same number of repetitions as the number of repetitions used to
train the metamodels. From these simulations the mean and standard
deviation values for the KPIs are determined. These values are used to
verify the accuracy of the metamodel prediction of the optima of the
KPIs mean and mean =+ standard deviation. Furthermore, the verifica-
tion results are evaluated with respect to the calibration targets to get
insight on the quality of the calibration results.

4.6. Validation of optimal DEM parameter sets for large scale hopper model

In addition to the verification, the DEM parameter sets need to be
applied to the DEM model of the hopper and simulated. The hopper dis-
charge experiments described in Section 2.2 were repeated 5 times so
for the validation the DEM parameter sets from the mean and mean-
variance calibration were repeated 5 times as well. This procedure as
applied to the same solutions as described in the previous section to re-
duce the number of computations. The results from these simulations
are used to determine the error between the experimental results and
numerical results by using the following equation.

Ed):d)s_d)e

x 100% (14)

To determine if the interpolation-based or regression-based
metamodel with the mean or mean-variance calibration results in the
best performing DEM model the results for 50 repetitions are compared
in more detail.

5. Results

In this section the results of this study are presented. Section 5.1
starts with an evaluation of the quality of the interpolation-based and
regression-based metamodels. Next, the calibration results are evalu-
ated in Section 5.2 followed by the verification of these results in
Section 5.3. In this section the quality of metamodel prediction of the
KPIs is verified first followed by a comparison between the predicted
KPIs and the calibration targets. In Section 5.4 the validation results
are presented for the large-scale hopper application.

5.1. Metamodels for calibration
The quality of the metamodel determines the quality of the DEM pa-

rameter set found through optimization. To gain insight on the quality
of the metamodel the training error of the model can be assessed.
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Because this error in training does not give insight in the quality of the
predictions in between training points, in addition the predictions by
the metamodel are compared to a validation set.

5.1.1. Training error

The calibration models have been trained according to the method
described in Section 4.3. For these models, the normalized root mean
squared error (NRMSE) is calculated such that the accuracy in training
of the model can be evaluated and compared for the different KPIs,
(Eq. (15)).

L (fi) - L)
N

NRMSE = *—————— (15)
f

In Fig. 11 the NRMSE for the mean, mean =+ standard deviation for
the interpolation-based and regression-based metamodels are shown.
In Fig. 11 (a) to (c) it can be seen that the error of the interpolation-
based metamodel is close to machine precision which can be regarded
as numerical noise. This can be explained by the fact that the
interpolation-based models are exact in the data-points. In Fig. 11
(d) to (f) the RSE for the stochastic models is shown where errors in
the mean prediction are small but errors in the mean + standard devi-
ation are significant. The trend of the RSE of the Angle of Repose and
Movement indicates that increasing the number of repetitions leads to
a decreasing error up to 20 repetitions after which stabilization occurs.
The NRMSE for the bulk density is below 0,0005 which indicates an ac-
curate metamodel. The majority of the improvement of the regression-
based metamodel accuracy for the Angle of Repose and Movement oc-
curs up to the first 20 repetitions, which is an indication of the impor-
tance of repeating simulations to obtain accurate metamodels. Based
on the training error the RBM of the bulk density is best, followed by
the RBM of the AoM, and lastly the AoR.

5.1.2. Validation error

The results in Fig. 11 show that the interpolation-based metamodels
(IBM) are more accurate in the data-points than the regression-based
metamodels (RBM). However, the accuracy of a metamodel is mainly
determined by its ability to predict KPI values at locations in between
the used training set. To verify this ability a validation strategy such as
validation set approach (VSA), Cross-validation, or leave one out cross
validation (LOOCV) should be used [8]. Therefore, an additional 32
data point sampling set has been simulated for 50 repetitions such
that the 20% validation set approach can be applied. The results in
Fig. 12 show the NRMSE error for the interpolation-based metamodel
in (a-c) and for the regression-based metamodel in (d-f).

For all KPIs and both the IBM and RBM approach it shows that the
addition of repetitions to the dataset leads to a decrease in NRMSE.
The difference between the IBM and RBM approach is that the NRMSE
of the IBM develops less consistent than the error of the RBM. Consider-
ing the mean prediction of the AoR and AoM the NRMSE is 1,5 to 2,5
times lower for the RBM models than for the IBM models. This means
that the RBM models are more reliable in predicting the mean. For the
mean prediction of the bulk density we see that both the IBM and
RBM metamodels lead to similar levels of accuracy. With respect to
the bandwidth of the standard deviation around the mean it is observed
that for the IBM the error is in the same range as the mean error. This
indicates that these models have a small prediction error in the magni-
tude of the standard deviation but that the error of the mean causes a
large shift of the bandwidth. For the RBM of the AoR we see different be-
haviour. In addition to a shift of the bandwidth due to the mean error it
is observed that the mean + standard deviation has a larger error for the
lower limit than for the upper limit. This indicates an additional error in-
troduced by the RBM in the prediction of the variance. This same behav-
iour is also visible for the AoM but has a smaller magnitude compared to
the AoR results. In contrast to the mean + standard deviation of the bulk
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Fig. 11. Normalized Root Mean Squared Error (NRMSE) in the training points for interpolation-based metamodels (a,b,c) and regression-based metamodels (d,e,f) for the Angle of Repose

{3, Angle of Movement 6, and Bulk Density p;, data.

density for the IBM the bandwidth error of the RBM decreases fast in the
first 20 repetitions.

Overall, the regression-based metamodel is more reliable in
predicting the mean value which results in smaller offsets in the loca-
tion of the bandwidth of the standard deviation around the mean. Due
to the error in mean prediction by both metamodel types the standard
deviation bandwidth has an offset. For the IBM the prediction of the
standard deviation is accurate in magnitude but has an offset in location
due to the error of the mean. The RBM has an inaccurate prediction of
the standard deviation magnitude and an induced offset due to the
error in the mean prediction leading to an asymmetric bandwidth of
the standard deviation.

5.2. Calibration results

The resulting DEM parameter values of the mean (M) and mean-
variance (MV) calibration with the interpolation- and regression-
based metamodels (IBM & RBM) are shown in Fig. 13. For all three cal-
ibration parameters it is observed that the calibration with
interpolation-based metamodels results in irregular development of
the parameter values y, ty, and p, with the increase of the number of
repetitions. On the contrary, the regression-based metamodel calibra-
tion presents a relatively smooth and steady parameter evolution for
an increasing number of repetitions. This indicates that the optimal
DEM parameter set is approximately reached at 20 repetitions, which
is useful information if this method is applied in engineering practice.

13

Note also that at a more conventional amount of 3-5 repetitions, the pa-
rameter values have not stabilized for either method.

In Fig. 14 (a-f) the mean and mean =+ standard deviation of the KPI
values are presented corresponding to the optimal DEM parameter
values in Fig. 13. For all four calibration approaches, Fig. 14 (a) and
(b) shows the Angle of Repose as a function of the number of repeti-
tions. Fig. 14 (c) and (d) show the Angle of Movement and (e) and
(f) show the bulk density. Figures (a,c,e) show the results obtained
with the mean and mean-variance calibration approach with the
interpolation-based metamodels, and Figures (b, d, f) show the results
obtained with the regression-based metamodels. With respect to the
IBM and RBM calibration the clear difference is the consistency of the
calibration results obtained with the RBM compared to the IBM calibra-
tion results. As was observed with the validation of the metamodel in
Section 5.1.2 the IBM models are more sensitive to changes in the
dataset than RBM models.

Even though IBM is more sensitive to changes in the dataset, the per-
formance for both mean and mean-variance calibration with the IBM is
good. For the mean calibration, the match of the AoR and AoM is good
over the entire range and the bulk density has a good match after 36
repetitions. The match for mean 4 standard deviation is close for the
AoR, twice the target for the AoM and half of the target for the bulk den-
sity. This is reasonable because the mean + standard deviation is not in-
cluded in mean calibration. For the mean-variance calibration the match
of the mean value of the AoR is good. The match to the mean of the AoM
is quite good but less than for the mean calibration. The mean of the
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pose 3, Angle of Movement 6, and Bulk Density py, data.

bulk density fluctuates considerably before converging to a relatively
good match. The mean =+ standard deviation is included in the mean-
variance calibration approach and shows a slightly better match to the
targets compared to the mean calibration approach.

The performance of the calibration approaches with the RBM models
gives consistent results. However, the error between the calibration
results and the target is significant and is around —5% for the AoR and
+ 5% for the AoM over the entire range of repetitions. For the bulk den-
sity a good fit to the calibration target was found after 10 repetitions.
With respect to the mean + standard deviation values the AoR shows
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that the bandwidth is half of the calibration target. For the AoM the
bandwidth is similar to the target in magnitude and half of the target
for the bulk density. Comparing the mean and mean-variance calibra-

tion approach with the RBM it is observed that there is no significant dif-
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ference between the calibration results apart from a small shift. This
means that in this case there is no added benefit by adding the variance
to the calibration.

At 50 repetitions, the dataset for training the metamodels has the
highest reliability and therefore we assume that the results of the cali-
bration is the most accurate. In Table 7 the DEM parameter values for
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Fig. 13. Development of the DEM parameter values i, i, and p,, resulting from mean (M) and mean-variance (MV) calibration with interpolation- and regression-based metamodels (IBM
& RBM) with increasing number of repetitions.
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metamodel (b,d, f) respectively.

calibration with 50 repetitions are shown. For the IBM calibration it can
be seen that the DEM parameter values are close. The largest difference
can be observed for the particle density. For the RBM calibration we can
see that the DEM parameters are more or less similar for the mean and
mean-variance calibration. Between the interpolation-based and
regression-based metamodel calibration it can be seen that the sliding
friction is slightly higher, the rolling friction is almost 2.5 times higher,
and the particle density is in the same range.

5.3. Verification of laboratory scale simulations and validation with
experimental results

In this section the verification results from the mean (M) and mean-
variance (MV) calibration for the interpolation- and regression-based
metamodels (IBM & RBM) are presented. In Section 5.3.1 the results
from the verification simulations are compared to the KPI values corre-
sponding to the calibration results. This comparison gives an indication
of the quality of the metamodel predictions in the calibration procedure.
In Section 5.3.2 the results from the verification simulations are com-
pared to the calibration targets which gives insight on the quality of

Table 7
DEM parameters after calibration for mean and mean-variance calibration with interpola-
tion-based and regression-based metamodels at 50 repetitions of the sample.

IBM-M IBM-MV RBM-M RBM-MV
s 0,5198 0,5106 0,5513 0,5506
Uy 0,1996 0,2010 0,4885 0,4804
Pp 2767,0 28127 2763,5 2766,2
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calibration results. For the DEM parameter sets of the cases where
[1,.,10, 15, 20, 30, 40, 50] repetitions were used the simulations of the
laboratory scale experiments are verified.

5.3.1. Comparison KPI verification simulations and calibration results

The calibration results are a prediction by the metamodel which can
include errors as shown with the training and validation error evalua-
tion in Section 5.1. In Fig. 15 (a-d) the error percentage between the cal-
ibration and verification results for the mean of each KPI and mean +
standard deviation of each KPI are shown to indicate the magnitude of
this metamodel prediction error. For the IBM-M and IBM-MV results
in Fig. 15 (a) and (b) large errors with respect to the calibration results
is seen for the Angle of Repose 3 and the Angle of Movement 6 when the
number of repetitions is below 10. For the IBM-M calibration results the
error in the Angle of Movement stays large until 30 repetitions and re-
duces for a higher number of repetitions. On the contrary, the Angle of
Repose becomes more accurate after 10 repetitions but becomes inaccu-
rate after 30 repetitions. This might be caused by overfitting which is a
known risk of interpolation-based metamodels. Fig. 15 (b) shows simi-
lar behaviour for the IBM-M and IBM-MV calibration results, however
the point of change is located at 20 repetitions instead of 30. Overall,
the verification results show that for mean and mean-variance calibra-
tion with interpolation-based metamodels large errors can occur even
at higher numbers of repetitions. For the error in the mean &+ standard
deviation bandwidth asymmetry can be observed which is caused by
the inaccurate prediction of the mean. The Angle of Repose exhibits an
error of —10% for the upper limit and — 20% for the lower limit. The
error is within 5% for the Angle of Movement and is below 1% for the
Bulk Density.
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based mean-variance calibration.

In Fig. 15 (c) and (d) the verification error of the regression-based
metamodel calibration results are shown. For the mean prediction by
both mean and mean-variance calibration results large errors are ob-
served up to ten repetitions but the magnitude is smaller than for the
IBM calibration results. The errors for the mean =+ standard deviation
are significant. After 10 repetitions, the verification error is close to
zero for the Angle of Movement and bulk density for both the mean
and mean-variance calibration. For the Angle of Repose the error stays
within a 5% bandwidth when the number of repetitions is increased.
The error in the mean 4+ standard deviation bandwidth is quite sym-
metric because of the accurate prediction of the mean value. However,
the magnitude shows an error of 15% for the Angle of Repose, 7% for
the Angle of movement and below 1% for the Bulk Density. As expected
for both IBM and RBM the error in the Bulk density prediction is small
because the error in the validation of both metamodels was small.
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5.3.2. Comparison KPI verification simulations and calibration targets

The verification simulations show that RBM metamodels give more
reliable calibration results. However, the next step is to look at the qual-
ity of the calibration results compared to the calibration targets. In
Fig. 16 the percentage error between the calibration results and calibra-
tion targets are shown for the mean and mean-variance calibration with
the IBM and RBM metamodels. While the calibration results for the
interpolation-based metamodels showed a good fit to the calibration re-
sults in Fig. 14 it can be seen in Fig. 16 (a) and (b) that the error observed
with the verification leads to errors with the calibration target. This is
especially visible for the Angle of Repose up to 30 repetitions and
Angle of Movement after 30 repetitions. For the IBM calibration it is ob-
served that the calibration results are inconsistent with the increase of
the number of repetitions. The RBM calibration results in Fig. 16
(c) and (d) show more consistency. Especially after 30 repetitions a
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Fig. 16. Error verification results to calibration targets.

balance can be found between the error for the Angle of Repose and
Movement where the percentage error stays the same. The stability
and consistency in these results make the regression-based metamodel
calibration more reliable. There are no significant differences observed
between the mean and mean-variance calibration.

To determine which calibration method performs best the results for
50 repetitions are compared to the experimental results for the calibra-
tion targets. In Table 8 the percentage error between the verification re-
sult and calibration target is shown for 50 repetitions. At 50 repetitions,
the percentage error for the calibration with interpolation-based
metamodels is between 11 and 14% for the Angle of Repose, 1 and
1,5% for the Angle of Movement, and 0,5 to 2,5% for the Bulk Density.
The results for the calibration with regression-based metamodels
shows errors between 5 and 6% for the Angle of Repose, 4,5 and 5,5%
for the Angle of Movement and 0,1% for the Bulk Density. Here it is
clearly visible that even though the errors in matching the calibration
targets is quite large the calibration results with regression-based
metamodels are more balanced than those of the interpolation-based
metamodels. Due to the errors in the mean value of the KPIs the
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bandwidth of the standard deviation will exhibit an asymmetric error
as presented in the bottom section of Table 8. On average, the mean-
calibration with the regression-based metamodels presents the best
match to the experimental calibration targets and gives the most reli-
able DEM parameter set for this case.

Table 8
Percentage error between verification results and experimental calibration target values
where the underlined results show the most accurate result.

IBM mean IBM mean-var RBM mean RBM mean-var
Mean KPI % error
AoR -13,17 -11,19 -5,02 -5,73
AoM 1,34 1,14 5,19 4,87
BD 0,71 2,37 -0,04 0,06
Mean + standard deviation KPI % error
AoR -8,00/-19,28 -6,73 /-16,44 0,05/-11,01 -0,62 /-11,75
AoM 421/-1,73 5,07 /-3,07 10,83 /-0,83 10,36 /-0,99
BD 0,28/1,14 1,84 /2,91 -0,47 /0,38 -0,39/0,52
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Based on these results it can be seen that the predictions by
regression-based metamodels are more reliable which makes these a
better choice for the calibration of the DEM parameters even though
in the final results the predictability of the mean + standard deviation
is poor. The discrepancy in the mean 4+ standard deviation might also
be a result of the modelling assumptions for the DEM models of the lab-
oratory experiments themselves, where the stochastic behaviour as
seen in experiments is captured to a lesser extent. As shown in the re-
sults, there is no significant difference in the outcome of the mean vs.
mean-variance calibration using the regression-based metamodels. In
addition, the calibration procedure using multiple laboratory setups
leads to a multi-objective problem for which it is not certain that
there is an optimal solution matching all the targets perfectly. As de-
cided in Section 4.3 the weight of each objective was kept to one for
the mean and 0,5 for the variance interval. By changing these values ob-
jective weights can be changed, ultimately affecting the outcome of the
calibration. An in-depth investigation of this influence is however out-
side of the scope of this study.

5.4. Validation of hopper DEM model

In this section we present the validation of the DEM model of the
hopper described in Section 3 with the experimental results described
in Section 2. For this model the discharge rate of the hopper during
steady flow is compared for the DEM model of the hopper and the ex-
periments. The calibration of the DEM parameters lead to 4 sets (IBM-
M, IBM-MV, RBM-M, RBM-MV) of DEM parameters for each number
of repetitions that was used in training the metamodels for the calibra-
tion. For the DEM parameter sets of the cases where [1,.,10, 15, 20, 30,
40, 50] repetitions were used the hopper simulations have been carried
out five times, the same as the number of experiments. In Fig. 17 the ob-
tained mean and standard deviations for the discharge rate are shown
for each of the cases. In these results a large difference between the re-
sults obtained with the interpolation-based and regression-based
metamodels can be observed. The interpolation-based metamodel cali-
bration results show for both the mean and mean-variance calibration
that there is much fluctuation in the results. The mean-calibration
mean error follows an irregular path which is close at 30 repetitions
but far from the validation target for the other points. In the mean-
variance case the mean error tends to decrease up to 15 repetitions
after which the error starts increasing continuously. In terms of the
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Table 9
Results for the mean and standard deviation of the discharge rate including the 95% CI of
the mean and standard deviation of the design W, = 100, ov = 45.

Model Percentage error with respect

Discharge rate ¢ (k?g) 3
to the experimental results

mean (95 % CI [LL; UL]) + sigma
(95 % CI'[LL; UL])

3,70 (95 % C1[3,67;3.73]) +

Experimental Reference

results 0,026 (95 % CI[0,014; 0,056])

IBM-M 3,86 (95 % CI[3,77;3,95]) + mean error 4,84 % (mean =+ std)
0,081 (95 % CI[0,036; 0,260]) error (3,33%;6,33%)

IBM-MV 3,98 (95 % CI[3,92;4,04]) + mean error 8,15 % (mean =+ std)
0,052 (95 % C1[0,023; 0,167]) error (7,46%;8,83%)

RBM-M 3,81 (95 % CI[3,76;3,85]) + mean error 3,34 % (mean =+ std)
0,038 (95 % CI[0,017; 0,121])  error (3,01%;3,67%)

RBM-MV 3,76 (95 % CI [3,62;3,80]) + mean error 2,15 % (mean =+ std)

0,037 (95% CI[0,016; 0,118]) error (1,84%;2,46%)

bandwidth of the mean + standard deviation large fluctuations are
present for the mean calibration but less for the mean-variance calibra-
tion. Indicating that including the variance in the calibration has a cer-
tain effect. Compared to the bandwidth of the validation target the
bandwidth in the simulation results is larger. For the regression-based
metamodel calibration the results are closer to the experimental results
for the entire range of repetitions. Both mean and variance calibration
cases show a stable offset which starts decreasing after 15 repetitions.
For the mean + standard deviation it is observed that after 10 repeti-
tions the bandwidth stabilises at a bandwidth that is around two
times the bandwidth of the validation target. From these results it can
be seen that the calibration with the regression-based metamodels
leads to more stable output compared to the calibration with the
interpolation-based metamodels. Mean-variance calibration shows
slightly better performance than the mean calibration but in terms of
confidence intervals with five repetitions this observation is not signif-
icant.

Table 9 shows the mean and the standard deviation of the discharge
rate for the calibration results with 50 repetitions. For both these results
the 95% confidence intervals are also shown based on a t-distribution
where n = 5. For these intervals we applied the same method as de-
scribed in Section 2. In the third column the relative errors to the
mean and the mean plus minus the standard deviation are shown.
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Fig. 17. Results for the validation simulations of the hopper with respect to the number of repetitions.
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The results show that for the discharge rate the mean-variance cali-
bration with the stochastic model gives the most accurate prediction of
the discharge rate (RBM-MV). This model is followed by the mean cali-
bration with the stochastic model (RBM-M), the mean calibration with
the deterministic model (IBM-M), and lastly the mean-variance calibra-
tion with the deterministic model (IBM-MV). Differences of up to a fac-
tor 6 are found in the mean error percentage, while all methods use the
same dataset. This illustrates the importance of using the correct cali-
bration procedure. Overall, it is observed that the variance prediction
shows large errors with respect to values found in the experiments.
This indicates that the results from the DEM model of the hopper with
the optimal DEM parameter sets have a higher variability than those
from the experiments. Reasons for this observation might be the simpli-
fication of particle shape from irregular to spherical and uniformity as-
sumption of material properties and contact parameters in the DEM
model.

6. Conclusions

Experiments with granular materials often exhibit significant varia-
tion, which have to the best of the authors' knowledge not been in-
cluded in calibration approaches. In this paper we investigated the
inclusion of stochastics throughout the development of the DEM
model, in the calibration, verification with lab experiments, and valida-
tion with a hopper application. We used metamodels to predict KPI
values and proposed a mean-variance calibration approach that in-
cludes the variance of the calibration experiments in the objectives of
the calibration procedure. The conclusions of this study are as follows.

* The calibration experiments showed stability for the KPI mean after 5
repetitions for the bulk density, 10 for the Angle of Movement, and 30
for the Angle of Repose. However, in practice 3-5 repetitions is com-
mon which means that increasing the number of repetitions should
be considered for obtaining reliable calibration targets.

Stabilization of experimentally obtained variances occurs at a higher
number of repetitions than stabilization of the mean, which is an ad-
ditional motivation to consider the required number of repetitions.
Based on the verification results in this study, regression-based
metamodels prove to be better at predicting mean KPI values than
interpolation-based metamodels, both in terms of accuracy and num-
ber of required repetitions, and are therefore recommended in
metamodel or surrogate model based calibration.

Both regression-based and interpolation-based metamodels give in-
accurate predictions of the variance for the DEM models of both the
calibration and the validation experiment. The cause of these inaccu-
racies might be related to the modelling assumptions in the DEM
model or to the used number of repetitions in training the metamodel.
Accurate prediction of KPI variances by metamodels proves to be
harder than predicting KPI means. Therefore, further research is
needed on accurately including the variance in DEM model calibra-
tion.

Although this study focused on a particular granular material, DEM
model and application example, it is expected that the observed trends
and the associated conclusions extend to a wide range of use cases, due
to the inherent stochastic nature of granular processes. Therefore, it is
recommended to conduct further research on including and identifica-
tion of stochastic behaviour in granular processes and their implications
on DEM modelling of particulate systems.
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