<]
TUDelft

Delft University of Technology

Do You Need a Hand?
a Bimanual Robotic Dressing Assistance Scheme

Zhu, Jihong; Gienger, Michael; Franzese, Giovanni; Kober, Jens

DOI
10.1109/TR0O.2024.3366008

Publication date
2024

Document Version
Final published version

Published in
IEEE Transactions on Robotics

Citation (APA)

Zhu, J., Gienger, M., Franzese, G., & Kober, J. (2024). Do You Need a Hand? a Bimanual Robotic Dressing
Assistance Scheme. |IEEE Transactions on Robotics, 40, 1906-1919.
https://doi.org/10.1109/TR0.2024.3366008

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TRO.2024.3366008
https://doi.org/10.1109/TRO.2024.3366008

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



1906

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Do You Need a Hand? — A Bimanual Robotic
Dressing Assistance Scheme

Jihong Zhu"”, Member, IEEE, Michael Gienger

and Jens Kober

Abstract—Developing physically assistive robots capable of
dressing assistance has the potential to significantly improve the
lives of the elderly and disabled population. However, most robotics
dressing strategies considered a single robot only, which greatly
limited the performance of the dressing assistance. In fact, health-
care professionals perform the task bimanually. Inspired by them,
we propose a bimanual cooperative scheme for robotic dressing
assistance. In the scheme, an interactive robot joins hands with the
human thus supporting/guiding the human in the dressing process
while the dressing robot performs the dressing task. We identify a
key feature: the elbow angle that affects the dressing action and
propose an optimal strategy for the interactive robot using the
feature. A dressing coordinate based on the posture of the arm
is defined to better encode the dressing policy. We validate the
interactive dressing scheme with extensive experiments and also
an ablation study.

Index Terms—Dual arm manipulation, human-centered
robotics, personalized dressing assistance, physically assistive
devices.

I. INTRODUCTION

HE shortage of caregivers is a pressing challenge world-
T wide due to a decrease in birth rates combined with an
increase in life expectancy: According to the WHO, by 2030,
11in 6 people in the world will be aged 60 years or over. By 2050,
the world’s population of people aged 60 years and older will
double [1]. Assistive robots capable of physically aiding humans
are promising to tackle this challenge. Among various tasks that
the caregiver performs on a daily basis, the dressing was reported
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to be the greatest burden while the least automated [2]. In this
article, we tackle the problem of dressing a human arm with a
bimanual robot setup.

Robot-assisted dressing is challenging as it involves direct
physical interaction with flexible clothes and humans. More
specifically, it differs from a conventional human-robot interac-
tion task such as comanipulation or cocarrying [3], [4], [S] where
the object allows immediate force propagation. In the dressing
assistance, the object i.e., the cloth, is soft and deformable; thus,
the interaction force is hard to obtain. Due to the absence of
direct force feedback and heavy occlusion during dressing, arm
movement estimation during dressing is also difficult.

One common assumption to simplify the task is to consider
static arm posture during dressing. Then, the main challenge
becomes adapting the dressing policy to different static postures.
Learning from demonstrations (LfD) is often used in obtaining
a generalized policy [6], [7], [8].

However, a static arm posture is a very strong assumption. To
make the proposed scheme work in practice, we need to consider
dynamic poses during dressing. Since the task largely depends
on postures, arm movement estimation is crucial.

Computer vision is a popular way to track arm postures. It is
also used in the early work in assistive dressing [9] for track-
ing upper limb movement. However, the inevitable occlusions
during dressing render most of the existing vision-based human
posture tracking algorithms fail [10], [11]. Additional sensory
modules such as proximity sensors may be employed for posture
estimation [12].

To overcome the difficulties faced with conventional assistive
dressing strategies, we draw inspiration from human-to-human
dressing assistance from healthcare professionals.! Our pro-
posed framework (hardware setup shown in Fig. 1) resembles
the method adapted by health professionals. It requires two
robots to perform the dressing assistance task. An interactive
robot 7 that reaches out for holding hands with the human then
supports/guides the human to facilitate the dressing process.
The dressing robot D performs the main task, dressing. Hand
holding not only makes the dressing task easier to execute by
supporting/guiding the human arm movement but also results in
the tracking of the arm posture with proprioceptive sensors only.

The main contribution of the article is the proposal of a biman-
ual dressing assistance framework that is inspired by caregivers
doing the dressing assistance task. In the framework, instead of

![Online]. Available: https://youtu.be/Wn1OEfQtOow?t=93
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The dressing robot

hands with
humans

The interactive
robot

Fig. 1. Bimanual robot setup for the cooperative dressing. We employ two
Franka Emika robots. The dressing robot grips the cloth and executes the dressing
policy. The interactive robot is equipped with a SoftHand from gbrobotics that
provides humanlike hand-holding. It guides the human in the dressing process.

considering interaction forces during dressing, which is often
hard to obtain in practice [13], we offer a novel perspective
by analyzing dressing geometrically. Benefiting from this new
insight, we identify a key feature: the elbow angle in the human
posture that affects dressing policy. The feature is then used for
designing an optimal stretch policy for the interactive robot. For
the dressing, in contrast to encoding the movement in Cartesian
space, we define a task coordinate system for flexible policy
encoding from demonstrations.

The rest of the article is organized as follows. In Section II,
we survey the related work in three subcategories, namely:
1) robotic dressing assistance, 2) bimanual manipulation, and
3) arm poster estimation. Section III provides an overview of the
overall framework and the underlying assumptions. Section IV
introduces the feature that affects the dressing strategy and then
designs an optimal strategy for the interactive robot Z based on
the feature. With the information on the hand position given by
T, we can solve the arm posture with proprioceptive sensors
only. Later in Section V, we propose a dressing coordinate de-
pendent on arm postures and then learn the dressing policy from
expert demonstrations in the dressing coordinate. The overall
framework is validated with robotic experiments in Section VI.
Finally, Section VII concludes this article.

II. RELATED WORK

A. Robotic Dressing Assistance

Robotic dressing assistance is a recurrent topic that
broadly covers dressing tops (t-shirts, jackets, etc.) [14], [15],
trousers [16], and even shoes [17], [18]. Since in this article, our
focus is dressing the upper body, we review recent advances,
particularly in this area.

Dressing assistance is a skill mastered by humans. Therefore,
LfD-based approaches are popular in obtaining motor skills in
dressing. Pignat and Calinon [6] learned a hidden semi-Markov
model from human demonstrations to encode the dressing
skills. Hoyos et al. [7] implemented an incremental learning of
task-parameterized Gaussian mixture models (TP-GMM) that
allows the generalization of the dressing task. More recently,
Zhu et al. [8] proposed a method to reduce the number of
demonstrations needed for training the TP-GMM to encode a
dressing policy in different static postures.
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Recent research also explores the interaction between a robot
and a human in the dressing process with reinforcement learning
in a simulation environment [19], [20]. Yu et al. [21] learned
an outcome classifier for dressing tasks with simulated haptic
data. Instead of relying on simulations, data collected in the real
dressing scenarios suggest that the interaction force between the
cloth and the human allows for predicting dressing outcomes
with high accuracy [22]. Later, Erickson et al. [23] conducted
an investigation with physics-based simulation suggesting that
the interaction force can be recovered with only end-effector
measurements.

Further research in this area is concerned with cloth state
modeling [24], safe motion planning [25], [26], grasping point
selection [27], and novel gripper design for dressing assis-
tance [28].

In the aforementioned research, the dressing tasks were
mostly conducted with a single manipulator. The only papers
considering bimanual dressing are [14], [15], and [20]. However,
they consider the bimanual in a completely different setup where
each robot is dressing one human arm. Therefore, they adopt the
one-robot-to-one-arm setup just like the rest of the papers. In
our proposal, we have instead a fwo-robot-to-one-arm setup,
where a robot guides humans to facilitate the dressing task
of the other robot. Zhang and Demiris [29] consider also a
two-robot-to-one-arm setup while dressing the hospital gown
with a mannequin lying on the bed. The task in [29] is in a
completely different setting; thus, the employed framework is
radically different from ours.

B. Bimanual Manipulation

In the proposed framework, we adopt implicit master—slave
coordination between the interactive and the dressing robots.
The dressing policy is dependent on the human arm posture,
which is controlled by the interactive robot from the applied
guidance force on the human hand. Such task setup is referred
to as asymmetrical bimanual manipulation in the bimanual
taxonomy literature [30].

The asymmetrical bimanual task that was investigated in the
previous work includes vegetable peeling [31], cloth manipula-
tion [32], assembly [33], and cooking [34]. These tasks usually
do not require interaction with a human as in the dressing
assistance.

More relevant bimanual assistive tasks: Xu etal. [35] designed
an autonomous wheelchair with two robots to assist humans in
daily tasks. Connan et al. [36] employed a humanoid robot to
perform tasks, such as removing the lid, unscrewing a bottle,
and pouring water. Edsinger and Kemp [37] discussed three
key themes in bimanual manipulation design in assistive tasks:
1) cooperative manipulation, 2) tasks relevant features, and
3) let the body do the thinking and analyzing them in different
assistive scenarios. These key themes remain very relevant to us
in designing the framework for this article.

To date, robotics dressing assistance (specifically dressing
clothes) has rarely been considered a bimanual task that requires
both robots. However, as we argued in Section I, the additional
robot can provide support and guidance to the arm being dressed,
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Fig.2. Schematic diagram of the cooperative dressing framework. The framework contains three blocks: 1) a posture estimation, 2) a dressing motion generator,
and 3) an optimal stretch controller. The posture estimation takes in an initial posture of the human arm and the current hand position and outputs the estimated
current arm posture. The posture is then fed into the dressing motion generator together with the current dressing robot position to derive the next step dressing
policy. The optimal stretch controller takes the initial human arm posture and the current hand posture yields the stretching policy for the interactive robotics arm.

which makes the dressing easier and more comfortable. As the
scheme is employed by caregiving professionals, humans might
feel more contented dressing in such a composition. By adopting
the bimanual setup in dressing, our work is the first of its kind
and represents a paradigm shift in the thinking of the dressing
assistance task.

C. Arm Posture Estimation

The dressing policy is highly dependent on human arm
posture. As the guidance force at hand will change the hu-
man arm posture in our framework, robust arm posture track-
ing/estimation is required for dressing policy generation.

Due to heavy occlusion during dressing, the task is particu-
larly challenging for popular vision-based deep learning posture
tracking algorithms [38], [39], [40], [41].

Human modeling is employed for tracking the human posture
under occlusions. A preliminary study in dressing assistance
considers human modeling combined with visual tracking in
personalized dressing: Gao et al. [9] adopted a mixture of Gaus-
sians for modeling, and later a Gaussian process latent variable
model was employed for posture estimation in [10]. Recently,
Chance et al. [11] tackled the occlusion problem by employing
a recurrent neural network (RNN) trained on human—human
interaction data to predict the elbow position during dressing.
Rather than relying on vision alone, previous works also ex-
plored capacitive proximity sensing [12] for posture tracking.

In this article, we will demonstrate that tracking is made
easy by hand-holding. With the hand position always known,
arm posture tracking can be formulated as an inverse kinematic
problem that has analytical solutions and is solvable in real time
with proprioceptive sensors.

III. FRAMEWORK OVERVIEW

We envision a bimanual dressing assistance system that holds
the following:
1) provides support/guidance to the human arm so as to
facilitate dressing;
2) tracks the arm posture without additional sensors (vi-
sion/force/proximity);

3) can be programmed easily without expert knowledge of

robotics;

4) flexible to arms of different lengths.

Fig. 2 presents the overall cooperative dressing scheme that
fulfills the earlier goals. The framework contains three parts: 1)
an optimal stretch controller, 2) a posture estimation, and 3) a
dressing motion generator.

The optimal stretch controller is designed by analyzing
dressing behaviors under different arm postures to facilitate
dressing. The optimal stretch controller takes in the initial
human arm posture together with the current hand position
and yields the stretching policy for the interactive robot (see
Section IV-B).

Benefiting from the hand holding, the real-time posture track-
ing is done by the posture estimation module, which takes in the
same inputs as the stretch controller and outputs the estimated
current arm posture (see Section IV-C). It relies solely on
proprioceptive sensors.

Using the estimated posture, we define a posture-dependent
dressing coordinate and transform the robot movement in the
Cartesian coordinate to the dressing coordinate for learning the
dressing motion generator from human demonstrations. One
of the benefits of employing LfD is that the motion can be
programmed by nonexpert users [42], [43], [44]. The defined
dressing coordinate enables flexible encoding of the dressing
strategy to adapt to different arm lengths. Inputs to the dressing
motion generator are the estimated posture together with the
current dressing robot position. Using the inputs, it generates
the next step dressing policy (see Section V).

The scheme described earlier is realized with a bimanual
robot setup illustrated in Fig. 1. The dressing robot grips the
cloth and executes the dressing policy. The interactive robot
is equipped with a SoftHand from gbrobotics that provides
humanlike hand-holding. It supports and guides the human in
the dressing process.

In addition, we employ the following assumptions.

1) The human hand is already in the sleeve opening.

2) The starting arm posture is known.

3) The shoulder remains static during dressing.

4) The framework considers dressing one arm only.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 19,2024 at 11:53:39 UTC from IEEE Xplore. Restrictions apply.
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Example paths to
go pass the elbow:
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projected on the arm plane
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Fig. 3. Illustration of the inner and outer path of the armscye. We consider the
arm plane defined by the hand, elbow, and shoulder. The arm plane is divided
into two parts: 1) the inner arm area with an angle less than 7 and 2) the outer
area with an angle more than 7.

IV. INTERACTIVE ROBOT—OPTIMAL STRETCH

In this section, we motivate a key feature in the human arm
posture that affects the dressing policy. Based on this feature,
we design an optimal stretch controller for the interactive robot.
Finally, we present a scheme for the estimation of human arm
posture during dressing.

A. Feature Affects Dressing—Elbow Angle

The dressing gets complicated around the elbow. If we sim-
plify the forearm and the upper arm as two straight lines, then
the discontinuity between these two lines is the linking point
(elbow), which connects both lines. The degree of discontinuity
can be represented by the elbow angle ¢/ < m. The angle # is a
pure geometrical feature that influences the dressing policy.

If we neglect force and only consider geometry, dressing
resembles a hotwire game. The cloth can be simplified into a
ring that represents the armhole (more formally referred to as
the armscye in the textile literature), and the arm is the wire
that the ring needs to pass through. The goal of dressing is to
transport the ring to a position above the shoulder.

However, a major difference that complicates the dressing
task is the nature of the ring. In a hotwire game, the ring is
rigid. All points on the ring move simultaneously with the grasp-
ing/control point on the ring. In dressing, due to the deformation
nature of the armscye, we observe the property of diminishing
rigidity [45] in the armscye—i.e., the effect of gripper motion
along the armscye diminishes as the distance from the gripper
increases. This property will affect our dressing strategy when
the elbow angle is small. We will explain the reason in Fig. 3 in
the following paragraph.

InFig. 3, we define the arm plane: the plane given by shoulder,
elbow, and hand positions. The plane is divided by the arm into
two parts: 1) inner arm area (angle between the forearm and
upper arm less than 7) and 2) outer arm area (angle between
the forearm and upper arm larger than 7). Then, we project the
dressing path onto the arm plane. The path can be divided into
three segments. Two are segments that go past the forearm and
upper arm. Another segment is the elbow segment that goes past
the elbow and connects the forearm and upper-arm paths. We
are interested in the elbow segment of the path, which is shown
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in normal and dashed blue lines in Fig. 3. Using the projected
paths, we distinguish two different strategies.’

1) Inner strategy: The projection of the elbow segment on
the arm plane is within the inner arm area. This strategy
offers a shorter path to go around the elbow.

2) Outer strategy: The projection of the elbow segment on
the arm plane is within the outer arm area. This strategy
offers a longer path to go around the elbow.

When ) is small, taking the inner strategy as shown in blue
lines in Fig. 3, the far end of the armscye where we have very
little control needs to travel much longer to go pass the elbow
(see Fig. 3, the dashed blue lines). There is a high possibility
that it fails and results in the armscye getting stuck. It is more
plausible in this case to take the outer strategy, which travels in
the outer arm area, although travels longer in distance, it makes
sure that the part with the least control is required to move as
little as possible to minimize the chance of getting stuck. When
1) is larger, the distance difference between an inner and outer
strategy diminishes and becomes zero when the arm is fully
stretched: v = .

To conclude, elbow angle v affects the dressing strategy.
When v is large, the degree of discontinuity becomes small (the
arm resembles a straight line), and we are more likely to take the
inner strategy to have a smaller path length. When v is small,
the degree of discontinuity gets large (the arm is more bent), and
we will be more likely to take the outer strategy to avoid getting
stuck. We will show this effect with expert demonstration data
on different static arm postures (with different elbow angles) in
Section VI-A.

B. Optimal Stretch Based on the Elbow Angle

The outer strategy requires a longer dressing trajectory, and
when v is small, there is always the risk of getting stuck even
taking the outer strategy. Thus, the objective of the interactive
robot is to guide the human arm so that ) increases as much as
possible to avoid getting stuck and facilitate dressing.

The interactive robot is holding the human hand. Besides the
singular configuration where the arm is fully stretched, the robot
is able to guide the hand to move in all directions in 3-D, which
is represented by the blue sphere in Fig. 4. In the figure, the
arm posture is given by the shoulder, elbow, and hand joint
positions: P = {ps, pc, pr}. The movement direction dd that
maximizes the increase of the elbow angle, here referred to as
od*, is aligned with the direction of DD Proving the optimal
direction is straightforward, since ¢  |d + dd|, finding éd*
that maximizes v is equivalent to

od* = max |pspn + dd|, ford — 0, andd € O(3).

With the triangle inequality theorem, we have
‘psph + 6d| < |psph| + |5d|
The maximum value for |pspy, + dd|is when the equality holds.

And it only holds when dd and psp;, are in the same direction.

2The trivial case of the shoulder, elbow, and hand is in a line: We cannot define
a plane anymore, yet there is also no difference between an inner and outer arm
area.
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Fig. 4. Optimal direction that maximizes the increase of the elbow angle .
The arm posture is given by the shoulder, elbow, and hand joint positions:
P = {ps,pe,pn}. The optimal direction §d* is aligned with the direction
that connects the hand and the shoulder and marked with a red solid arrow. The
triangle inequality theorem is demonstrated with another random direction d
and the resulting shoulder-to-hand distance is marked with a black dash line.

Therefore, to increase the elbow angle as much as possible,
the guidance force direction from the interactive robot should
always be aligned with the direction that connects the hand and
the shoulder.

Knowing the optimal direction to move, we further implement
the optimal stretch controller with Cartesian impedance control.
The dynamic equation of the robot can be modeled according to

M(q)q + C(Q; q) + G(q) = Tiask T Text (D

where, in order from left to right, there are the mass, the Coriolis,
and the gravitational term that depends on the joint configuration
q and, on the right, the torque for the Cartesian (or task) control
and the externally applied torque.

The input to the low-level controller is the desired Cartesian
position (and orientation) obtained from the dressing policy. A
PD control rule is used to generate the desired control force
in the end effector simulating the impedance behavior. This is
then converted into a control joint torque using the equivalent
principle 7 = J " F gy,

Using the PD control rule and the force/torque equivalence
principle, the task space torque is defined as

Ttask = JT [K(:Ed - 23) + D(wd - w)] + C(qv q) + G(q)

where J is the geometric Jacobian, and the stiffness K and the
damping D give the compliant behavior with a critically damped
response; x4 and a4 are the desired robot Cartesian position
and velocity, respectively;  and @ are the current Cartesian
position and velocity of the manipulator, respectively. Notice
that the gravitational and the Coriolis terms are compensated to
avoid having undesired behaviors on the simulated impedance,
such as having a constant offset in the gravity direction. In our
implementation, we set the desired velocity to zero.

Given a rotation matrix I' of a local stiffness matrix with
respect to the global coordinate, the equivalent stiffness matrix
in global coordinates is

Kglobal = FTKlocaIF (2)

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

where, in our framework, the rotation matrix I" transforms the
x-axis of the global coordinates in the direction of end effector
movements that maximizes the increase of the human elbow
angle v, i.e., m

Additionally, we choose

ke 0 0
K local — 0 0 0
0 0 O

in order to have a nonzero stiffness only in the direction of move-
ment and complete compliance in the other two perpendicular
directions: Such a controller will provide a guiding force in the
optimal direction of hand movement that maximizes the increase
of the elbow angle . At the same time, the human can disagree
and move easily in the plane perpendicular to the force direction.

C. Human Arm Posture Estimation

With the guidance force upon the hand, the human arm posture
changes during dressing. For successfully dressing the human
arm, we propose a real-time vision-free estimation of the human
arm posture.

Consider two coordinate frames O, OF located at the base of
each robot respectively. Any point zZ in OF can be transformed
into OP by

2P = Rz +t (3)

where R is a 3 x3 rotation matrix and ¢ is the translation vector.
We can obtain R and ¢ between two coordinates by calibration.

The human hand is joined by the interactive robot Z. Thus, its
position can be regarded as the same as the end-effector position
of the interactive robot ., . Using (3), we can track the human

hand position in OP given R and ¢
P, = Rtjg o + t. “)

Assuming the initial arm posture in O is known and the
shoulder does not move during the dressing, we can move the
origin of OP to the shoulder by translation, we denote this frame
as shoulder frame. From now on, for simplicity, unless explicitly
denoted with superscript P, all positions are with regard to the
shoulder frame with its origin at the shoulder.

Since the shoulder is assumed static during dressing, the
posture estimation problem boils down to recovering the elbow
position p. given the hand position py. A schematic diagram is
shown in Fig. 5.

The human arm has seven degrees of freedom. Only four out
of seven contribute to the displacement of the hand p; [46].
The four joint angles q = [ 3 ¢~]T are depicted in Fig. 6.
A spherical joint located at the shoulder with two degrees of
freedom (av, ), and another spherical joint at the elbow with
two degrees of freedom (¢, ). The shoulder, elbow, and hand
representation in the shoulder frame can be transformed into
the angle representation and vice versa (given forearm and
upper-arm lengths). The hand position can be expressed as

prn = f(q). 5

Authorized licensed use limited to: TU Delft Library. Downloaded on March 19,2024 at 11:53:39 UTC from IEEE Xplore. Restrictions apply.
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i Ph current hand position
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Fig. 5. Schematic diagram showing the inputs and outputs of the human
posture estimation.

Fig. 6. Schematic representation of the human arm from the shoulder to the
hand joint with four joint angles. A spherical joint located at the shoulder with
two degrees of freedom (cv, 3), and another spherical joint at the elbow with two
degrees of freedom (¢, ).

The hand movement

pn+ Apn = f(g+ Aq) = f(q) + J(q)Aq +hot.  (6)
where

_of

= 9q D € R**4. (7

J(q)
This then leads to

Apy, = J(q)Aq. 8)

For a given Apy,, (8) has infinite solutions of Aqg. We aim to
find Aq from (8) with good accuracy as compared to the human
movement while enabling fast computation to be implemented
in real time. Thus, we define a quadratic optimization with an
analytical solution

min L = Aq” QAq
Agq

s.t. Apy, = J(q)Aq 9

where @ is a diagonal weighting matrix with nonzero diagonal
elements for solving the optimal Aq. Physically, @ indicates
how the hand velocity is distributed on each joint, a larger
element on the diagonal indicates the corresponding joint is less
likely to move during arm movements. We find @ using the
arm movement data recorded during the stretch and the detail is
presented in Section VI-B.

The solution to the optimization problem (9) is (detailed
derivation in the Appendix)

Aq =T Ap, — (" QAgH/n" Qu)

1911

where J T is Moore—Penrose inverse of J and g is the null space
vector of J.*> Current postures in angle representation are then

qr =qr-1 +Aq". (10)

Note that this is a recursive estimation as depicted in Fig. 5. Only
the initial value of q is known such that g, = q¢. The analytical
solution can be computed fast online, which allows us to use the
estimation scheme in real time during dressing.

Finally, the angle representation q is transformed into cur-
rent positions of the shoulder, elbow, and hand {p, p., Py } 1
for deriving the dressing policy. We evaluate the accuracy of the
estimation scheme in Section VI-B.

V. DRESSING ROBOT—DRESSING COORDINATE-BASED
LEARNING

The dressing is highly dependent on the human arm posture.
Previous research explored such dependence in learning the
dressing policy. In [47], Clegg et al. placed in simulation haptic
sensor on each segment of the arm as observation in deep
reinforcement learning. Others define task parameters as local
coordinates at the shoulder, elbow, and hand and then encode
the dressing policy with TP-GMM [6], [7], [8]. Similarly, we
explore such dependencies and define an arm-posture-dependent
coordinate system for encoding the dressing policy with L{D. In
the following sections, we first present the dressing coordinate
then the L{D in the new coordinate system.

A. Dressing Coordinate

The dressing motion follows the arm from the hand to the
elbow and finally reaches the shoulder. The monotonic motion
naturally leads us to introduce a scalar quantity to model the
dressing progress. We denote the progress scalar as s.

The dressing motion is additionally constrained by the size of
the armscye. Thus, we use a polar coordinate around the forearm
and the upper arm for encoding the constraint: [, the distance
to the arm, and 6, the angle around the arm. The formulation
yields two cylinder coordinates on the forearm and the upper
arm. However, the complexity arises from the elbow where we
require a smooth transition from the forearm coordinate to the
upper-arm coordinate [see Fig. 7(a)].

To enable a smooth transition, we use a part of a horn torus (A
torus where the distance from the center of the tube to the center
of the torus equals the radius of the tube) for connecting the
two cylinder coordinates. As a result of the torus defined around
the elbow, the progress curve is divided into three pieces: 1) a
forearm segment, 2) an elbow arc for a smooth transition to the
upper arm, and 3) an upper-arm segment, as shown in Fig. 7(b).

To convert a point on the dressing path € R? in Cartesian
coordinate into the dressing coordinate [s, [, §], we first project
x onto the arm plane given by the shoulder p;, elbow p., and
hand positions py,

(1)

Larm —

3Detail solution can be found in the Appendix.
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Fig. 7. Dressing coordinate is a cylinder coordinate defined around the arm,
with a smoothing transitional corner around the elbow. (a) Full definition of the
coordinate. (b) Progress curve in three segments.
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Fig. 8.  Graphic illustration of finding the corresponding point on the progress
CUrve Zeyrve given arandom point & on the dressing path in Cartesian coordinate.
The point a is first projected onto the arm plane to get &am. Then we determine
which segment @, belongs to on the progress curve. Finally, we find the
corresponding Xcyrve-

where v is the vector perpendicular to the arm plane.

We further find the progress scalar of . on the progress
curve. The progress curve is divided into three segments by two
transitional points: py. (transition from the forearm to elbow)
and p., (transition from elbow to upper arm) as shown by stars
in Fig. 7(b). The distance from pj, to pp, is denoted |d; |, and
from p; to pes is |da].

We need to determine which segments &, belongs to. To do
that, we compute the distance x,, project onto the line defined
by the forearm and upper-arm segments, respectively

(marm - ph) N (pe - ph)

d'orearm -
‘ (e —pn)]
(mafm — ps) ) (pe - ps)
du erarm — . (12)
o |(pe _ps)|

The value of dorearm and dypperarm is then compared against d;
and ds so that

forearm  if dforearm < |d1| and dypperarm > |d2]
upper arm  if dypperarm < |d2| and drorearm > |di |

elbow,

Zarm ON the

otherwise.

Depending on which segment x,, belongs to, we find the
corresponding xyve (pink triangles in Fig. 8) on the progress
curve for x,m,. For the forearm and upper-arm segment, cal-
culating @y is straightforward. For the elbow segment, we
find the line connecting the center of the elbow arc to @,y,. The
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intersection point between the line and the progress curve is
Teurve (see Fig. 8).

We then define s = 0 for @cyye = Pr, s = 1 for Teyrve = Pss
for any Zcyrve, We have

ﬁ‘f’%‘j if T curve is on the forearm
|deurve| ~dupperarm 3¢ : h

5= o] if Zcyrve is ON the upper arm
“i}frw( if Zcurve 1S On the upper arm

where |deyrve| is the full length of the progress curve from py, to
Ps, w is the angle of e on the elbow arc and 7 is the radius
of the elbow segment on the progress curve.

Once we found the projection of the dressing position on the
progress curve Xy and the progress scalar s, we can calculate
the distance to the arm [ and the angle around the arm 6 as
follows.

The length [ of x is

13)

l= |33 - wcurve‘-

We define v as the reference 0° for the angle § computation.
0 is defined as
0 = L(Teurve — T, V). (14)
Note that v has two directions, one pointing toward the human
body and the other pointing outward. We select the former to
avoid flipping angles from 0 to 27 during the dressing motion.
By converting the Cartesian coordinate to the dressing coordi-
nate and obtaining the motion generation model in the dressing
coordinate, we can conclude the following:
1) limit the policy space to be around the arm by imposing
the maximum value for the length [;
2) ensure the motion convergence to the vicinity of the shoul-
der by progress scalar s;
3) transfer the trained motion generation model on one arm
to another as the data are relative to the arm posture.
Note one prerequisite for the last statement is that the ratio
between the forearm and upper arm is similar among people.

B. LfD in Dressing Coordinate

For LfD in dressing coordinate, we employ Gaussian mix-
ture models (GMM) and Gaussian mixture regression (GMR)
for learning and generating the dressing policy [48]. The
GMM/GMR-based imitation learning offers fast movement re-
trieval and versatile inputs/outputs arrangement, which is de-
sirable for our task. Note that the LfD algorithm is not a part
of our contribution and it is possible to use different meth-
ods/formulations for learning the policy in the dressing coor-
dinate.

We first briefly describe GMM/GMR-based LfD then show
how to apply it to learning the dressing policy.

GMM models the joint distribution of the demonstration data.
We denote the demonstrated data &

e=[eme] as)
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with &7 is the input and £ the output. The probability density
function p(&;) is estimated with K Gaussian distributions

K
p(&:) =Y TN (€], )

k=1

where py, and XJj; are mean and variance of the kth Gaussian,
respectively. To determine an optimal number of Gaussian K for
GMM, we make use of the Bayesian information criterion [49]
for balancing the model complexity and representation quality.

Once K is selected, we can initialize the GMM with
K-means clustering and then employ the expectation—
maximization algorithm to iterative compute the model param-
eters {mg, por, T} B,

The resulting K Gaussian parameters can be decomposed as

7 7 210

="kl Ze= |8 T 16
275 [.L(kg ) k > (kg T 2(]3 ( )
Given input data, the output is retrieved using GMR by condi-
tioning the input data [50].

For encoding dressing with GMM/GMR in the dressing
coordinate, we demonstrate the dressing task with static arm
postures, the arm posture, and the dressing path is recorded for
converting the dressing path into the dressing coordinate. We use
the progress scalar s and the elbow angle ¢ as inputs. The outputs
are the differences in the distance to the arm ¢/, and the angle
difference around the arm 6. The differences are computed
with regard to the starting position in the demonstration. For all
demonstrations, we start from above the hand of the human.

VI. EXPERIMENTS

We conduct three different experiments to investigate various
aspects of the proposed framework.

In Section VI-A, we investigate the effect of the elbow angle
on the dressing strategy using expert demonstration data of static
arm postures with different elbow angles. Then, in Section VI-B,
we evaluate the arm posture estimation scheme to show that it
is accurate enough for the dressing task.

Finally, in Section VI-C, we showcase our interactive dressing
framework with real robot experiments. To demonstrate the
flexibility of the defined dressing coordinate, we train the policy
from demonstrations on a mannequin and apply the policy to
human arms with different lengths. We compared our trajectory
encoding method (using dressing coordinates) with TP-GMM-
based methods [6], [7], [8] in terms of dressing success rate.

Furthermore, we conducted an ablation study where we dis-
able the stretch movement and dress with a static human arm.
Additionally, we test the framework under cases where the
human is not fully compliant with the interactive robot and show
that the overall framework still works well.

In these experiments, the robot dresses the human in short-
and long-sleeved shirts with different materials. Note that the
automatic dressing of long-sleeved shirts is unprecedented in
previous research.

1913

~=- elbow angle = 80.48 —== elbow angle = 81.65 ~== elbow angle = 87.49

2 Shoulder ™
Shouiger Shoulder—~=-~ 2
[ Pl

S o4
S 00
S0
T-02

@ (b) (©)

elbow angle = 143.47 ~ =~ elbow angle = 149.3
elbow angle = 106.07

Shoulder ]

Shoulder |

Shoujder H

=00

~-02

~-04

=-06

70.050

"0.025

"0.000

| -0.025 ¢
00 - ~0.050 B - 00
04 7‘0.4 02 00 02 . ~ -02

(d) (e)

Fig. 9. Static arm postures with different elbow angles and the corresponding
expert demonstrations of dressing with these postures.
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Fig. 10.  Projection of the arm postures and the corresponding demonstrated

dressing path on the arm plane. The red dot is a transition point corresponding
to the middle of the elbow arc on the progress curve.

A. Effect of the Elbow Angle on Dressing Strategies

In Section IV-A, we discussed the effect of the elbow angle
on the dressing strategy with diminished rigidity. In this section,
we aim to show this effect with expert demonstration data.

We collect demonstration data through kinesthetic teaching
with a Franka robot under different arm postures. The dressing
paths and arm postures are recorded in the process. In Fig. 9, we
present six postures with different elbow angles. We draw each
posture and dressing path individually. In each figure, the solid
black line is the arm posture where the shoulder positions are
at the top and labeled with “Shoulder.” The dashed line in each
figure is the dressing path that corresponds to the posture.

To validate whether the elbow angle affects the dressing
strategies, we project the dressing paths onto the arm plane
together with the arm postures, as shown in Fig. 10. In the figure,
each subfigure corresponds to a 2-D projection of the posture
and dressing path in Fig. 9. The red dot on each subfigure is a
transition point corresponding to the middle of the elbow arc in
Fig. 7(b) on the progress curve.

In addition, we provide a quantitative result summarized in
Table I. We calculate the distance between the transition point
and the elbow. When the transition point is on the inner arm
plane, the distance is positive, which indicates that the dressing
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TABLE I
ELBOW ANGLE AND CORRESPONDING DISTANCE BETWEEN THE TRANSITION
POINT AND THE ELBOW ON THE ARM PLANE

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE II
ERRORS IN ELBOW ESTIMATION USING OUR SCHEME COMPARED WITH
RESULTS IN THE LITERATURE

Elbow angle (°) | 80.47 | 81.65 | 87.49 | 106.07 | 143.46 | 149.30 Our method RNN [11]
Distance (m) -0.099 | -0.11 -0.10 -0.07 0.107 0.105 Case | Case | Case | Case | Position | With
1 2 3 4 only features
€IT0r'max (IMm) 28 26 32 28 44 25
eITOlaverage (IMM) 17 14 23 15 41 24

employs an inner strategy. When the transition point is on the
outer arm plane, we set the distance negative, which indicates
that the dressing employs an outer strategy (see Section IV-B
and Fig. 3 for the definition of inner/outer strategy).

We can observe both from Fig. 10 and Table I that the outer
dressing strategy is employed when the elbow angle is small,
which justifies our analysis in Section IV-A.

B. Evaluation of the Posture Estimation Scheme

As the dressing path is highly dependent on the arm posture,
posture estimation is crucial to the success of dressing. In this
section, we provide a quantitative evaluation of the posture
estimation scheme. We consider the following.

1) The shoulder is static during dressing.

2) The initial arm posture (in the dressing robot frame O0DP)

is known.

The first assumption is a common assumption in assistive
dressing literature [6], [10]. The initial arm posture in our case
is estimated by setting the dressing arm D in the gravity com-
pensation mode, then putting the end-effector close to the hand,
elbow, and shoulder, and using the reading from the end-effector
positions as the initial hand, elbow, and shoulder positions. In
assistive dressing, the starting posture is easy to obtain. Itis often
estimated via a (depth) camera in the previous literature [6], [10],
[51], [52].

With the previous assumptions and real-time hand posi-
tion recovery from the interactive robot (see Section IV-C),
the only estimated quantity in the full posture description
P = {ps,pe, pr} is the elbow position p..

Thus, in the evaluation, for a series of arm postures during
movements { Py, P1,..., Pr}, we use the maximum error of
the elbow as the performance indicator of our posture estimation
scheme

T . Ao
CITONax = Mmax [Pe (i) — P (7)]

where p, (i) is the estimated elbow position at the th instance.

One tunable parameter that affects the estimation performance
is the diagonal weight matrix @ in (9). We compute Q us-
ing the movement data { P, Py, ..., Pr}. The data are first
transformed to angle representation {qo, q1, ..., qr} (refer to
Section I'V-C and Fig. 5 for the definition of angle representation
and 4 angles q = [a 3 ¢ ] associated). We then compute the
difference between adjacent angles and yield
.y 6qT}

{0q1,0q>, .. (17)

where

5q; = [60i; 6B 66 67" = @i — qi-1. (18)
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Fig. 11.  Ground truth and the estimated elbow position (x, ¥, z) in solid and
dash line, respectively, in test cases. (a) case 1. (b) case 2. (c) case 3. (d) case 4.

The weighting diagonal matrix @ in (9) is calculated as

1 1 1 1
T P T P T P T
D 00f D087 30 007 D107}
We conducted experiments to collect arm movement data with
an XSens motion capture suit. During the data collection phase,
one person is asked to stretch the arm of the other. The posture
data were collected using the XSense suit and regarded as ground
truth. Using one stretch data, we calculate the weight matrix as

(this is the @ value used for the interactive dressing experiments
in Section VI-C)

Q = diag{207.89, 654.28, 99.89, 184.65}.

Q = diag

19)

For the evaluation, we collected four new stretch data from
different starting poses using the XSense suit. The maximum and
average errors with regard to the ground truth in all four cases
are presented in Table II. In the same table, we also include
estimation errors from the work in [11] for comparison.

In [11], Chance et al. employed an RNN that trained on
posture data during dressing for elbow position estimation under
occlusion. In Table I1, we present estimation errors in [11], which
trains on position data only and additionally with engineered fea-
tures. From the table, we observe that our method performs better
than RNN trained with position data only and is comparable to
RNN trained on position and feature data.

Fig. 11 shows the ground truth and the estimated elbow
position (z, y, z) in solid and dash line, respectively, in all four
cases.
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TABLE III
ARM LENGTHS OF THE HUMAN AND THE MANNEQUIN

Hand—elbow (cm) Elbow—shoulder (cm) | ratio
Mannequin 26.4 25.3 1.04
Human 1 30.5 29.6 1.03
Human 2 27.5 26.3 1.04

We observe that, generally, the deviation from ground truth
is larger as the time step increases, this is probably due to
the recursive nature of the estimation scheme. The error may
accumulate with time. Despite this, the maximum error is around
3 cm, which is much smaller than the size of the armscye. The
results are comparable with the results from the work in [11].

The arm posture estimation is an adapted solution to allow
real-time tracking of human postures during dressing with our
proposed bimanual scheme. We are not expecting it to outper-
form the state of the art (SOTA) but a compatible performance in-
dicates that the framework individually is able to work properly.
Later in Section VI-C and also the video (see Supplementary
material available online), we will show that the integrated
framework can dress different humans and clothes, which in
return validates our choice of such an estimation scheme.

C. Interactive Dressing

In this section, we show the experimental results of our
interactive dressing scheme. We present experiments with three
types of clothes: 1) a short and rigid sleeve shirt, 2) a long and
rigid sleeve shirt, and 3) a long and soft sleeve shirt.

To show the flexibility of our framework, our demonstrations
were collected on the mannequin and the learned dressing policy
was executed on the human arm. In demonstrations, we always
start around above the hand and with the same orientation.*
The arm length of the humans and the mannequin is listed in
Table III, although having different lengths, the ratio between

4The orientation can be seen in the start configuration in dressing in Fig. 15.
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Fig. 13.  Expert demonstrations for training the dressing policy in Fig. 12(a)
transformed to dressing coordinate.
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Fig. 14.  Surface plot for GMM with elbow angles ¢/ and progress scalar s as
inputs and outputs changes in the distance to the arm 6 and changes in angles
around the arm 60, respectively. (a) The 3D surface plot of GMM for encoding
41. (b) The 3D surface plot of GMM for encoding §6.

hand—elbow and elbow—shoulder is similar. Encoding the policy
in the dressing coordinate allows it to be adaptive to different
arm lengths.
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Starting and/or end configurations for three different experiments: 1) human passive/compliant, 2) human not fully compliant, and 3) the ablation study

where the human remains static. For experiments where the human is not fully compliant, we also display with high transparency a nominal end configuration
when the human is compliant. The deviation from the nominal end configuration is indicated by a blue arrow.

Fig. 12 shows the demonstration and transformed data in the
dressing coordinate. For the angle around the arm 6 and the
distance to the arm [, we present the changes during dressing 66
and ¢/ instead of the absolute values. The difference is computed
with regard to the starting position, which is around above the
hand. For postures with smaller elbow angles, we can observe a
change in the angles around the arm 6 since it needs to move to
the back of the arm to execute an outer strategy. From Fig. 13,
we observe that the progress scalar s is a monotonic increasing
quantity. Consider a target Sirger, We model s with a dynamical
system with a constant increment ¢ > 0

ST4+1 = ST + min((% (Starget - ST)) (20)

We, respectively, trained two GMM for the changes in angles
around the arm §6 and changes in the distance to the arm 6/ with
inputs progress scalar s and the elbow angle ¢.> We use eight
Gaussians for both 4/ and d6. The resulting mixture models are
presented in 3-D surf plots in Fig. 14. We can observe a smaller
elbow angle displays larger changes in 6, which is a clear
indication of taking the outer strategy. For a large elbow angle,
the 6 change is almost zero, which resembles an inner strategy.
Due to the diminishing rigidity, the end effector rotation has
a very limited effect during dressing. In the experiment, we
consider only the z-axis orientation of the end-effector of the
dressing robot. The z-axis rotation is applied to avoid collision
with the arm during dressing. We can use a constant incremental
rotation with regard to s or a separate GMM with the same
inputs ([s, ¢]) for encoding the difference dz in the z-axis
rotation (the training procedure is the same as §6 and d1).

>Note that other formulations may be also possible, such as to learn the joint
distribution of [s, ¢, I, 0].

We implement the policy with our optimal stretch and posture
estimation scheme. Three types of experiments are conducted,
which are as follows.

1) Human passively follows the interactive robot.

2) Human is not fully compliant with the guiding force and

moves in other directions.

3) Ablation study: Human arm remains static.

We tested in different starting postures and different clothes,
as shown in Fig. 15. In the figure, we present only start-
ing and end configurations, the full dressing sequences are
recorded in the video (see Supplementary material available
online). We tested the dressing while the human passively
followed the guiding force and also moved in other direc-
tions (not fully compliant). When the human is not fully com-
pliant, in the figure, we also display with high transparency
a nominal end configuration when the human is compliant.
The deviation from the nominal end configuration is indicated
by a blue arrow. With these results, we prove that humans
can move in other directions if desired and the framework
is robust against noncompliant behavior and still succeed in
dressing.

In the ablation study, we demonstrate cases where the elbow
angle is small, and the cloth tends to get stuck around the elbow,
thus reiterating the importance of having a bimanual setup for
dressing. However, the result also suggests that if the human
starts in these postures and refuses to move along with the
guiding force, the dressing could fail.

Finally, we compare our dressing coordinate encoding with
TPGMM that was commonly used to encode dressing behavior
from demonstration [6], [7], [8] (while the rest of the framework
stays the same), and present, respectively, the success rates in
dressing while the human is compliant for both methods in
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TABLE IV
COMPARISON BETWEEN DRESSING COORDINATE-BASED APPROACH AND
TPGMM
Methods Number of | Success | Success | Success rate
trials trials rate excl. slipping
Dressing Coord | 12 9 75% 90%
TPGMM 6 3 50% 50%

Table IV. There are three main reasons for failure, which are
as follows.

1) The clothes slip from the gripper.

2) The trajectory collides with humans.

3) Robot stops before reaching the shoulder.

As clothes grasping is not the focus of this article, in Table IV,
we show the overall success rate in the fourth column and the
success rate excluding gripper slip in the fifth column. Our
dressing coordinate approach achieves a higher success rate.

The reasons why TPGMM is more prone to fail compared
with our dressing coordinate approach are as follows.

1) Due to covariance shifts, traditional GMM-based learn-
ing cannot guarantee convergence. Although there exist
methods that combine dynamical systems with GMM to
guarantee convergence [53], such methods do not work
for TPGMM. While using our method to learn in dressing
coordinates, there is one progress scalar that directly en-
codes the progress of the dressing. The scalar is defined
as monotonically increasing, thus the trajectory will con-
verge around the shoulder.

2) TPGMM requires the elbow position to determine the ref-
erence frames for calculating the final motion generation
model; therefore, the error in the elbow estimation will be
directly reflected in the motion generation model.

VII. CONCLUSION

Traditional assistive dressing considers a one-robot-to-one-
arm setup, which holds the following:

1) either assumes static arm posture or requires additional

sensors and algorithms for tracking the arm posture;

2) renders the human arm hanging in the air during the

dressing process, which is often tiring;

3) may fail/get stuck at the elbow for some initial arm pos-

tures.

In the light of the following limitations, and inspired by
strategies taken by caregiving experts, we designed a bimanual
assistive dressing framework with a rwo-robot-to-one-arm setup
that holds the following:

1) allows tracking of arm postures without additional sen-

SOrs;

2) provides support and guiding force for the arm being

dressed;

3) stretches the human arm while compliant to obtain pos-

tures for the ease of dressing.

We approached the design by first analyzing the effect of
elbow angle in dressing. Based on this effect, we proposed
an optimal stretch controller for the interactive robot. As the
interactive robot holds the human hand, the arm posture can be
estimated in real time with inverse kinematics. For the dressing
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robot, we utilized the dependence of the dressing policy on the
arm posture and introduced a dressing coordinate defined by
the arm posture for easy encoding of the dressing policy from
demonstrations.

The adoption of the dressing coordinate greatly enhances the
flexibility of the LfD. The trained policy can adapt to different
arm lengths as long as the forearm-to-upper-arm ratio is similar.
The framework allows dressing different types of clothes, even
long sleeves, which is unprecedented in previous research. The
dressing remains robust even though human is not fully compli-
ant with the guidance from the interactive robot.

Since this is the first time such a bimanual setup was employed
in dressing a human, there are two major limitations of the
proposed framework.

1) The assumption that the shoulder remains static is not

always true, since the interactive robot is stretching the
arm, the shoulder is more likely to move forward. A
forward-moving shoulder will subsequently increase the
length of the arm (as now the hand can reach further when
fully stretched). The increased length may render the arm
posture estimation scheme unsolvable; thus, the overall
scheme will fail.

2) The elbow angle is identified as the crucial parameter that
affects dressing; however, there is no explicit coordination
between the dressing and interactive robot to make sure
that when the dressing robot is going through the elbow,
the interactive robot already makes the elbow angle suffi-
ciently large to avoid getting stuck.

It is difficult to solve the first limitation purely from the
algorithm side, one possibility is to combine inverse kinematics
with vision-based tracking for more accurate posture estimation.
The second limitation is even trickier, to make the coordination
explicit, a thorough analysis of dressing on different elbow
angles needs to be conducted to determine a boundary condition
of the elbow angle, then additionally, an assumption has to be
placed on the human side (passive for instance) to make sure that
the interactive robot will always succeed in bringing the human
arm into favorable postures before dressing arm reach the elbow.

Another possible direction for future work is safety analysis.
We did not explicitly analyze the safety of the overall system.
However, for assistive robots, it is crucial to ensure human safety
during robotic assistance. Inspirations for conducting system-
level safety analysis can be drawn from the work in [54].

Despite the aforementioned limitations, our proposal is the
first that considers interactive dressing assistance with a biman-
ual setup. The setup is inspired by caregiving experts conducting
the task, which makes the scheme receptive to humans. It repre-
sents a paradigm shift in the thinking of the dressing task from
a one-robot-to-one-arm setup to a two-robot-to-one-arm setup.

APPENDIX

In the Appendix, we provide the analytical solution to (9) in
Section IV-C

min L = Aq” QAq
Aq

s.t. Apy, = JAgq.
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Since J € R**4, Ap;, = JAq has a infinite number of solu-

tions
Aq = JV Ap, + A = Aqp + A ©2))

where J T is the Moore—Penrose inverse of J and p is the vector
inthe null space of J (e.g., Jpu = 0),and A € R is a gain. Taking
(22) into L

L= (Agp+2p)"Q(Aqp + )
= (" Qu)A* + 2" QAgyi + Aqf QAgy,

which is quadratic in A.
The original optimization problem can be transformed into

min L = (u" Qu)A* + 21" QAqnh + Aq;, QAgy.  (23)

(22)

Letus denote p” Qu = a, p” QAgy, = b,and Ag} QAq), = ¢
L =a)*+2br+c

b
=a<12+2)\+c)
a

=a (/\+2)2+c—bz 24
The solution that minimize L is
b=l e WTQAG W Q. 25)
Taking (25) into (22), we can obtain the optimal solution
Aq' =T Apy — (" QAqn /" Qu) . (26)

The first term ensures that the constraint is respected; on the
other hand, the second term generates a null-space transition that
minimizes the total weighted joint displacement.
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