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Abstract 

Free-floating bike sharing is an innovative and sustainable travel mode, where 
shared bikes can be picked up and returned at any proper place on the streets and not 
just at docking stations. Nevertheless, in these systems, two major problems arise. One 
is the imbalance of free-floating shared bikes (FFSB) between zones due to one-way 
trips, the other is the damaged bikes that must be brought for repair. In this study, a 
modeling framework for dynamic relocating operational and damaged bikes is 
proposed that starts with predicting the number and location of shared bikes using deep 
learning algorithms. The demand forecasting model adopts the Encoder-Decoder 
architecture embedded with the attention mechanism to further enhance the model’s 
prediction ability and flexibility. Then, a data-driven optimization model for FFSB 
relocations is presented, where the multi-period optimization is applied to dynamically 
plan the relocation activities throughout the day. A new hybrid metaheuristic algorithm 
that incorporates variable neighborhood search (VNS) and enhanced simulated 
annealing (ESA) algorithm is developed for solving the relocating problem, in which 
satisfactory performance is observed from the numerical example. We test the proposed 
framework with the real-world FFSB data from Beijing, China. The results show that 
relocating both operational and damaged bikes timely decreases the probability of users 
finding damaged bikes in the system, but leads to higher relocation costs. For peak-
hours, considering only the operational bikes for relocation is the most effective 
strategy given the limited relocation resources. It is urgent at those times of the day to 
focus on providing bikes to clients where they are undersupplied. 

Keywords: free-floating bike-sharing; demand forecasting; bike relocation; multi-
period optimization; damaged bikes’ collection. 
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1. Introduction  

Bike-sharing systems provide a mobility service where available bikes are adopted 
for shared use in a short time. Traditional station-based shared bikes should be parked 
at fixed docking stations and kiosk machines, which usually lead to complaints for 
being far away from the destination, or having no free parking spaces. Free-floating 
shared bike (FFSB) is an emerging travel mode in which shared bikes are approved to 
park almost everywhere in the street network. With the dramatic expansion of FFSBs, 
the crowded streets and insufficient public transit system can be relieved by offering a 
more flexible travel mode choice (Li et al., 2019; Ma et al., 2020). The door-to-door 
travel capability allows shared bikes to substitute cars on short-distance trips or to cover 
the last mile from the public transport stations to the final destination. Besides, FFSB 
is an environmentally-friendly transport mode, which produces no pollution during 
travel and makes contributions to the transition into a low-carbon and green society 
(Lin et al., 2018). The new generation of FFSB relies on mobile Internet and Global 
Positioning System (GPS), enabling bike use, payment, and data transmission at any 
time, from anywhere. Bike-sharing systems are popular in many cities around the world. 
For example, there were about 2.2 million bikes in the streets of Beijing, China in 
February 2018 (Sina, 2018), from which 62.90% of the customers were typically using 
shared bikes as a last-mile connection of public transport trips. Currently, the use of 
shared bikes soared in Beijing after the city lifted a lockdown due to the COVID-19 
pandemic. Shared bikes provide a safe way to travel amid the epidemic because they 
pose a low risk of people getting infected with the virus compared to mass public 
transport such as the metro (China daily, 2020).  

FFSBs provide seamless connections between various transportation modes (Ma 
et al., 2019). Nevertheless, some problems have arisen with the bike-sharing boom, 
such as a high number of damaged bikes and the crowded parking areas, sometimes 
leaving little space available for pedestrians to walk. In station-based bike-sharing 
systems, stations can have a deficit or surplus of bikes, or on few occasions being self-
balanced. In the free-floating bike-sharing system, users have no need to worry about 
the problems of full stations since they can park anywhere. However, the spatial and 
temporal distribution of shared bikes can still be imbalanced, and it may be difficult to 
find available FFSBs near the trip origin during peak hours (Du et al., 2019). 
Furthermore, as FFSBs are scattered in different places and their positions may change 
among different zones at different time of day, the rebalancing operations can even be 
more challenging than that of the traditional station-based bike-sharing system 
(Caggiani et al., 2018). Besides, with the rapid growth of bike-sharing systems, vast 
piles of damaged bikes have been abandoned in the streets because of inadequate 
regulations and recycling plans. For example, the height of the seat may not be 
adjustable anymore, or the brakes may be malfunctioning, which greatly affects the user 
experience and adds a safety risk to the usage of such systems (Lu et al., 2019). 
Therefore, integrating the recycling of damaged bikes into the efficient relocation 
strategies of free-floating bike-sharing systems should be studied.  

Essentially, there are two strategies for shared bike rebalancing (Laporte et al., 
2018; Shui and Szeto, 2020). The first is a user-based rebalancing method (Pfrommer 
et al., 2014; Heitz, et al., 2018; Pan et al., 2019). In this strategy, users are encouraged 
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to pick up or return the shared bikes at feasible locations to balance the distribution in 
local areas. Pfrommer et al. (2014) designed a dynamically varying reward mechanism 
to encourage customers to park the shared bikes at nearby underused stations, thus 
reducing the expected costs of redistribution using dedicated staff. Pan et al. (2019) 
modeled the rebalancing problem in the dockless bike-sharing system in a Markov 
decision process. They developed a deep reinforcement learning algorithm to 
incentivize users to help rebalance the whole system. Results show that the proposed 
framework performs close to the 24-timeslot look-ahead optimization. The second is 
the operator-based rebalancing method in which the repositioning process is 
accomplished by employing relocation staff and vehicles to collect bikes from 
redundant stations and deliver them to stations with too few bikes. In real scenarios, 
ignoring the existing damaged bikes will affect the travel demand forecasting and 
rebalancing optimization (Alvarez-Valdes et al., 2016; Wang and Szeto, 2018; Du et al., 
2020). If the damaged shared bikes stay in one zone without being collected, the staff 
may mistake them as operational shared bikes therefore no new bikes will be allocated 
to that zone. From the point of view of the users, after they scan the QR code to unlock 
a bike, they may find that it is unusable which delays their trips. The damaged bike not 
only affects the user's travel experience but also adds a safety problem that may only 
be identified later during the trip. Therefore, in the process of FFSB relocation, the 
damaged shared bikes should be collected and moved back to the depot directly for 
repair, while the operational bikes should be redistributed to the needed places.  

The dynamic relocation of the FFSB should consider the three challenges: users’ 
demand forecasting, loading quantity determination, and vehicle routing (Regue and 
Recker, 2014; Zhang et al., 2017; Legros, 2019). The fluctuating spatial and temporal 
travel demand of FFSBs can be considerable, which will potentially exacerbate the 
imbalance between supply and demand in the absence of timely relocation strategies. 
For this reason, accurately predicting the usage of FFSBs provides useful information 
for rebalancing and improves the operational efficiency of the bike-sharing systems 
(Caggiani, et al., 2018; Xu et al. 2018). In recent years, deep learning has developed 
rapidly for more complex predicting tasks. Artificial intelligence (AI) algorithms have 
been adopted for travel demand forecasting such as Recurrent Neural Network (RNN) 
and Long Short-Term Memory (LSTM) network. Thus, the spatiotemporal 
characteristics of bike-sharing demand can potentially be captured to improve 
prediction accuracy (Liu et al., 2019; Hao et al., 2019). The data-driven method 
integrates data collection, analysis, and modeling in a whole continuous process. The 
decisions are made based on the insights derived from actual data rather than intuition 
or apriori normative concepts of optimality. The data-driven modeling makes no strict 
assumptions on the structure of the data (Solomatine and Ostfeld, 2008; Huo et al., 
2020). Through continuous data collection and updating of shared bike travel records, 
useful information for dynamic relocation can be derived. Data-driven modeling helps 
to use historical information to predict the future demand and assign relocation tasks 
using the forecasted demand, which avoids performing on false assumptions and biases.   

This paper proposes a comprehensive data-driven bike relocation optimization 
method with both operational and damaged FFSB. The whole method contains three 
parts: FFSB travel demand prediction, the relocation needs determination, and the data-
driven relocation. To summarize, the main contributions of this paper are the following: 



 
 We establish a novel attention-based passenger flow (ATTPF) predicting model to 

forecast the short-term inflow and outflow of FFSB, which adopts the Encoder-
Decoder architecture embedded with the attention mechanism to enhance the 
model’s prediction ability and flexibility. 

 Based on the predicted demand gap, we propose a data-driven optimization model 
for bike-sharing relocation that considers the damaged bikes’ collection. The multi-
period optimization is applied to handle the time-varying relocation demand. The 
number of damaged shared bikes is detected based on the users’ travel behavior 
using the historical travel records data. 

 We develop a new hybrid metaheuristic algorithm that incorporates variable 
neighborhood search (VNS) and the enhanced simulated annealing (ESA) 
algorithm to solve the large-scale real-word FFSB system in Beijing, China. 
 
The remainder of this paper is organized as follows. Section 2 reviews the 

literature regarding short-term bike demand prediction and bike-sharing relocation. 
Section 3 describes the whole framework and the methodology behind each model. 
Section 4 provides the data description and analysis. We evaluate our method with real-
world cases and discuss the results in Section 5. Finally, conclusions are drawn in 
Section 6. 

 

2. Literature review 

2.1.  Studies regarding short-term bike demand prediction 

Bike-sharing systems suffer from the effects of fluctuating spatiotemporal travel 
demand that leads to inefficient relocation service and high operating costs. On the one 
hand, the shortage of shared bikes contributes to hinder the usage of bikes. On the other 
hand, if there are too many bikes in the system, the unused bikes may occupy a lot of 
public space and increase the costs for the bike company unnecessarily. Therefore, 
dynamic bike-sharing rebalancing contributes to the management of these systems, 
where accurately forecasting the demand is the fundamental component (Sohrabi et al., 
2020; Shui and Szeto, 2020; Chang et al., 2021).  

In the previous literature, the short-term demand prediction for bikes is based on 
classic statistical methods, including Autoregressive Integrated Moving Average 
(ARIMA) and its variants (Yoon et al., 2012). In recent years, thanks to massive travel 
mobility data and higher computing power, it is possible to uncover the dynamic 
characteristics in the transportation system with more data-driven advanced techniques. 
Some machine learning models, including Random Forest (RF), Support Vector 
Machine (SVM), and neural network models have been widely used in shared bike 
travel demand forecasting (Ashqar et al., 2017; Fournier et al., 2017; Wang and Kim, 
2018). Ashqar et al. (2017) modeled the available shared bikes at stations using Random 
Forest (RF) and Least-Squares Boosting (LSBoost) algorithms in San Francisco. 
Results showed that spatially correlated stations and the prediction horizon time were 
significant predictors. Fournier et al. (2017) estimated the seasonal bike usage patterns 
with a sinusoidal model, which was able to capture average daily travel demand on the 



monthly and annual scale. Although machine learning models can efficiently identify 
temporal trends and patterns for short-term passenger flow prediction, these models 
lack the interpretation of predicting results due to their “black-box” nature. 

Deep learning methods have also been introduced for bike-sharing travel demand 
prediction. Different deep neural network structures can effectively extract the spatial 
and temporal features of travel needs and improve prediction accuracy. Xu et al. (2018) 
forecasted the dynamic FFSB demand with the deep learning algorithms, where LSTM 
was used to predict the short-term trip production and attraction at different traffic 
analysis zones. Lin et al. (2018) predicted hourly demand in a dock-based bike-sharing 
network based on the graph convolutional network (GCN), which can effectively learn 
hidden correlations between stations. In the neural network training process, the model 
may fail to memorize all the input features, which will degrade its performance. The 
intervention of an attention mechanism enables the model to pay particular attention to 
specific parts of the relevant input variables while ignoring others in deep neural 
networks. He et al. (2020) studied the flow prediction for bike-sharing stations using 
graph attention convolutional neural networks. The syncretic attention mechanisms 
captured and differentiated station-to-station correlations, and thus improved the 
model’s accuracy and robustness. 

2.2.  Studies regarding operator-based bike-sharing relocations  

In operator-based bike-sharing relocations, the operators drive the relocation 
vehicles to rebalance shared bikes across different stations to satisfy the users’ demand. 
Laporte et al. (2018) surveyed the main operational research issues arising in shared 
mobility systems, including the station location problem, the station inventory problem, 
and the vehicle repositioning problem. Shui and Szeto (2020) reviewed the papers on 
bicycle-sharing service planning problems. They emphasized that the users’ demand 
forecasting, loading determination, and vehicle routing should be considered in a 
dynamic bicycle repositioning operation. In Table 1, we summarize the scientific 
publications regarding operator-based bike-sharing relocation according to the 
relocation demand determination, objectives, solution algorithms, and whether the 
damaged bikes are considered or not. 

The FFSB rebalancing problem can be modeled in a static or a dynamic approach. 
The static rebalancing is performed with a predetermined schedule by staff, while users 
cannot act on the bikes during the rebalancing task. This process is usually carried out 
during the night when the number of users is lower. Liu et al. (2018) studied the bike-
sharing rebalancing problem with heterogeneous vehicle fleets, where the relocation 
vehicles were allowed to visit the stations multiple times. Usama et al. (2020) 
formulated the static bike-sharing rebalancing operation while simultaneously 
considering faulty bikes. Numeric examples show that with the increase of faulty bikes 
in the network, the rebalancing trucks have to travel longer paths and make more space 
for the faulty bikes. Dynamic rebalancing occurs during daytime taking into account 
what is happening in real-time with the demand changes. Zhang et al. (2017) formulated 
the dynamic repositioning of shared bikes as a time-space network flow model, where 
the user dissatisfaction forecasting, the vehicle routing, and the bicycle repositioning 
are considered. Caggiani et al. (2018) forecasted the trend on available bikes in each 
spatio-temporal zone and then presented a decision support system for the dynamic 



real-time bike redistribution. To handle the time-varying demand, Shui and Szeto (2018) 
proposed a framework for the dynamic green bike repositioning, where the dynamic 
problem is decomposed into several static sub-problems by the rolling horizon 
approach. 

In the previous bike-sharing rebalancing research, the objective functions include: 
minimizing total travel cost (Dell’Amico et al., 2014), minimizing the total travel 
duration (Angeloudis et al., 2014), minimizing the total demand dissatisfaction (Szeto 
and Shui, 2018), etc. Wang and Szeto et al. (2018) relocated both operational and 
broken bikes in a bike-sharing network to achieve a perfect balance between bike 
demand and supply with the object of minimizing the total CO2 emissions of all the 
vehicles. Multi-objective models have also been proposed in bike-sharing rebalancing 
studies focusing on real-world problems. Usama et al. (2019b) built a mixed-integer 
linear program to minimize the user’s dissatisfaction, the vehicle routing cost, and the 
vehicle waiting time simultaneously. For large-scale bike-sharing programs, different 
algorithms are adopted to obtain both effective and efficient solutions, such as an 
iterated tabu search (Ho and Szeto, 2014), a branch-and-bound algorithm (Kadri et al., 
2016), a large neighborhood search method (Ho and Szeto, 2017; Pal et al., 2017), an 
enhanced chemical reaction optimization (Szeto et al., 2016; Liu et al., 2018), an 
enhanced artificial bee colony algorithm (Shui and Szeto, 2018) and a greedy-genetic 
heuristic (Du et al., 2020), etc. 

So far, it is possible to say that there have been several breakthroughs and 
innovations in the methods for solving the bike-sharing rebalancing problem. However, 
some issues remain. Firstly, most of the studies are based on station-based bike-sharing 
systems. But emerging FFSBs are developing rapidly and massive data can be recorded 
by built-in GPS to reflect the user’s travel mobility patterns. Besides, modeling in a 
data-driven approach considers the time-dependent demand, where the updated data 
from the current period will join the historical dataset to derive new statistics. Secondly, 
it is necessary to consider the damaged bikes during the dynamic relocating process 
since this is a phenomenon that decreases the quality of service and overall experience 
in using bike-sharing schemes. Without effective relocation operations, the damaged 
shared bikes are abandoned on the streets and lead to more traffic congestion, which is 
a huge waste of resources. Besides, riding potentially damaged bikes is unsafe, and all 
these hazards can cause crashes. Operational bikes are needed to be redistributed among 
zones to satisfy the users’ travel demand while the damaged bikes should be collected 
and carried back to the depot for repair. Thirdly, the dynamic rebalancing problem 
depends highly on the accurate prediction of the usage of the system (Caggiani et al., 
2018). New forecasting algorithms in deep learning can capture the fluctuating spatial 
and temporal characteristics of travel demand, which provides useful information for 
rebalancing the system, therefore, improving users’ experience and allowing better 
management of the system.  



Table 1. Research on the operator-based bike-sharing relocation problem in the literature. 

a SBSB: station-based shared bikes; FFSB: free-floating shared bikes. 

References Bike 
type a 

Relocation 
Pattern Relocation demand Objective Damaged 

bikes Solution method 

Dell’Amico et 
al.(2014) SBSB Static Given Minimize total travel cost No Branch-and-cut algorithm 

Alvarez-Valdes et 
al. (2016) SBSB Static A decision variable Minimize the weighted sum of the total unsatisfied 

demand and the number of relocated vehicle Yes A heuristic algorithm based on minimum cost flow 
problem and an insertion algorithm 

Szeto et al. (2016) SBSB Static Given Minimize the weighted sum of unmet demand and 
vehicle’s operational time  No Enhanced chemical reaction optimization 

Ho and Szeto et al. 
(2017) SBSB Static A decision variable Minimize total penalty cost and the weighted total 

travel time No A hybrid large neighborhood search 

Wang and Szeto et 
al. (2018) SBSB Static A decision variable Minimize the total CO2 emissions of all the vehicles Yes The clustering method and CPLEX 

Regue et al. (2014) SBSB Dynamic 
Predicted by 

gradient boosting 
machines 

Maximize the weighted sum of utility gained No Traditional commercial solvers 

Zhang et al. (2017) SBSB Dynamic Predicted by continuous-
time Markov chain Minimize the total expected user dissatisfaction No A heuristic algorithm based on the column generation 

Shui and Szeto 
(2018) SBSB Dynamic Given in a rolling horizon 

approach 
Minimize the total unmet demand and the fuel and 
CO2 emission cost of the repositioning vehicle No An enhanced artificial bee colony algorithm 

Pal et al. (2017) FFSB Static Given Minimize the make-span of the rebalancing fleet No Large neighborhood search 

Liu et al. (2018) FFSB Static A decision variable Minimize the weighted sum of the inconvenience 
level No Enhanced chemical reaction optimization 

Sun et al. (2019)  FFSB Static Given Maximize the user satisfied demand No The clustering algorithm and Branch-and-cut algorithm 
Usama et al. 
(2019a) FFSB Static Given Minimize the total cost of vehicle routing Yes Branch-and-cut algorithm 

Usama et al. 
(2019b) FFSB Static Given Minimize the user’s dissatisfaction, the vehicle 

routing cost, and the vehicle waiting time Yes Branch-and-cut algorithm 

Du et al. (2020) FFSB Static Given Minimize the total repositioning time Yes Greedy-genetic heuristic 

Usama et al. (2020) FFSB Static Given Minimize the user dissatisfaction, rebalancing 
routing cost and handling length of faulty bikes Yes Branch-and-cut algorithm 

Caggiani et al. 
(2018) FFSB Dynamic Predicted by 

artificial neural networks Minimize the total travel time No Spatio-temporal clustering based algorithm 

Zhai et al. (2019) FFSB Dynamic Markov chain process Minimize the rebalancing cost No Branch-and-cut algorithm 
Barabonkov et al. 
(2020) FFSB Dynamic Poisson process Minimize the lost demand No Branch-and-cut algorithm 

This paper  FFSB Dynamic Predicted by 
ATTPF model Minimize the total relocation cost Yes 

A hybrid metaheuristic algorithm with variable 
neighborhood search and enhanced simulated 
annealing  



3. Methodology 

In this paper, we propose a new comprehensive data-driven bike relocation 
framework with both operational and damaged FFSBs in Fig.1. The whole framework 
includes the FFSB travel demand prediction, the relocation needs determination, and 
the data-driven relocation. The framework starts with the prediction of the number and 
position of shared bikes over a system operating area and ends with the relocation route 
decision. The multi-period optimization approach is applied to dynamically plan the 
relocation activities.  

 

Fig.1. Architecture of the whole framework. 

3.1. Attention-based FFSB travel demand prediction  

3.1.1 Long Short-Term Memory network 

Time series models are widely applied to the short-term demand forecasting of 
FFSBs as it varies with time during the day. In deep learning theory, Recurrent Neural 
Network (RNN) and Long Short-Term Memory (LSTM) network are developed for 
time series modeling. These neural networks consider both the current state and the 
continuous feedback between time steps to make the predictions. LSTM is developed 
to avoid the vanishing gradient and exploding gradient problem that can be encountered 
in training the traditional RNN by introducing a memory cell 𝑐𝑐𝑡𝑡  and three gates 
including an input gate 𝑖𝑖𝑡𝑡, a forget gate 𝑓𝑓𝑡𝑡, and an output gate 𝑜𝑜𝑡𝑡, as shown in Fig. 
2(a).    



   
(a)                         (b) 

Fig. 2. Architecture of (a) LSTM and (b) Bi-directional LSTM. 

Input gate:   
 𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠(𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
Forget gate:   
 𝑓𝑓𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠(𝑊𝑊𝑓𝑓𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
Output gate:    
 𝑜𝑜𝑡𝑡 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠(𝑊𝑊𝑜𝑜𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (3) 
Cell state:   
 𝑐𝑐𝑡𝑡′ = tanh (𝑊𝑊𝑐𝑐𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑐𝑐ℎℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∘ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∘ 𝑐𝑐𝑡𝑡′ (5) 
Hidden output:   
  ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∘ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑐𝑐𝑡𝑡) (6) 
Activation function:   
 

                   𝑡𝑡𝑡𝑡𝑡𝑡 ℎ(𝑥𝑥) =
𝑒𝑒𝑖𝑖 − 𝑒𝑒−𝑖𝑖

𝑒𝑒𝑖𝑖 + 𝑒𝑒−𝑖𝑖
 

(7) 

                   𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑠𝑠(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑖𝑖
 (8) 

 
In equations (1) - (6), 𝑥𝑥𝑡𝑡 is the input vector to the LSTM unit at time 𝑡𝑡, and ℎ𝑡𝑡−1 

is the hidden state vector at time 𝑡𝑡 − 1. 𝑊𝑊𝑖𝑖𝑖𝑖,𝑊𝑊𝑖𝑖ℎ,𝑊𝑊𝑓𝑓𝑖𝑖,𝑊𝑊𝑓𝑓ℎ,𝑊𝑊𝑜𝑜𝑖𝑖,𝑊𝑊𝑜𝑜ℎ,𝑊𝑊𝑐𝑐𝑖𝑖 and  𝑊𝑊𝑐𝑐ℎ 
are the weight matrices of the three gates, while 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐 are the corresponding 
bias vectors. The results of the input gate 𝑖𝑖𝑡𝑡  and forget gate 𝑓𝑓𝑡𝑡  are then used to 
calculate the current cell state 𝑐𝑐𝑡𝑡 in Eq. (5), ensuring that the cell state is controlled by 
the current cell state and long-term memory. The operator ∘ refers to the Hadamard 
product, which is the scalar product of two vectors (Xu. et al, 2018; Ma. et al, 2018).  

However, simply stacking multiple layers of LSTM units fails to model the 
characteristics of the whole input sequence when making predictions (Hao et al., 2019). 
Besides, the prediction accuracy of the LSTM structure would also decrease to some 
extent when the input sequence becomes longer, especially the unidirectional LSTM. 
The idea of bi-directional LSTM (Bi-LSTM) comes from bi-directional RNN (Schuster 
and Paliwal, 1997). The unidirectional LSTM only preserves the information of the past, 
therefore only information flows from backward to forward. However, in bi-directional 
LSTM architecture, the information can not only flow backward to forward but also 
from forward to backward with two separate hidden layers in Fig. 2(b). Similarly, 



parameters of the forward and backward layers are updated with equations (1) - (6). It 
has been proved that the bi-directional networks are substantially better than 
unidirectional ones in short-term passenger flow prediction (Ma et al., 2018).  

3.1.2 Attention-based predicting framework 

The encoder-decoder architecture provides a standard approach using deep neural 
networks to deal with sequence-to-sequence prediction problems. The encoder process 
encodes the whole sequence into a fixed-length context vector through the input time 
steps. The decoder process then decodes this vector and makes predictions. A potential 
limitation of this model is that it needs to compress all the necessary information of the 
input sequence into a fixed-length vector, which fails to model the long-input time 
series data. The attention mechanism frees the fixed-length internal representation by 
providing a richer context 𝑐𝑐𝑢𝑢 in the encoder-decoder architecture in Fig. 3. It helps 
neural networks to identify which time steps of the input are more relevant thus 
allowing the decoder to pay special attention, which in general speeds up the learning 
and lifts the skill of the model prediction (Bahdanau et al., 2014).  

 

Fig. 3. Encoder-Decoder architecture with the attention mechanism. 

In the attention-based architecture, the bi-directional LSTM network is selected to 
build the encoder network, and the LSTM network is chosen as the decoder network in 
Fig. 3 (Hao et al., 2019). When making the predictions for output 𝑦𝑦𝑢𝑢, the attention 
score 𝑡𝑡𝑢𝑢𝑢𝑢 specifies how much encoder hidden state ℎ𝑢𝑢 should be paid attention to the 
decoder for making predictions in Eq. (9) - (11). Eq. (10) is a Softmax function for 
normalizing the attention scores. 𝑘𝑘  is the length of the input sequence and 𝐹𝐹𝐹𝐹 
represents the fully-connected neural network to calculate the attention scores in the 
encoder network in Eq. (11).  

 𝑐𝑐𝑢𝑢 = �𝑡𝑡𝑢𝑢𝑢𝑢

𝑘𝑘

𝑢𝑢=1

ℎ𝑢𝑢 (9) 

 𝑡𝑡𝑢𝑢𝑢𝑢 =
𝑒𝑒𝑥𝑥𝑒𝑒 (𝑒𝑒𝑢𝑢𝑢𝑢)

∑ 𝑒𝑒𝑥𝑥𝑒𝑒 (𝑒𝑒𝑢𝑢𝑢𝑢)𝑘𝑘
𝑢𝑢=1

 (10) 

 𝑒𝑒𝑢𝑢𝑢𝑢 = 𝐹𝐹𝐹𝐹(𝑠𝑠𝑢𝑢−1,ℎ𝑢𝑢) (11) 
 
By integrating the context vector 𝑐𝑐𝑢𝑢, the LSTM hidden state 𝑠𝑠𝑢𝑢 is computed in 



Eq. (12), which will be then used to predict the target 𝑦𝑦𝑢𝑢. 
 𝑠𝑠𝑢𝑢 = 𝑓𝑓(𝑠𝑠𝑢𝑢−1,𝑦𝑦𝑢𝑢−1, 𝑐𝑐𝑢𝑢) (12) 

 
Historical data contains valuable information for forecasting future travel demand. 

Nevertheless, when dealing with time-series data, different historical time steps are 
required with different attention. In this study, we propose a novel attention-based 
passenger flow (ATTPF) prediction model, which adopts the Encoder-Decoder 
architecture embedded with the attention mechanism to further enhance the model’s 
prediction ability and flexibility. Besides, since bike-sharing is an outdoor travel mode, 
the travel demand is more susceptible to some external features, such as the day-of-
week, hour-of-day, weather data (Temperature, Wind Speed), and air quality data (AQI). 
Multi-source data are collected dynamically and input into the ATTPF model. In detail, 
the historical bike-sharing travel demand is extracted by the encoder bi-directional 
LSTM. The external variables are fed into a full-connected neural network for feature 
representation learning, where the categorical variables are first converted into one-hot 
encoding form. A concatenate layer is used to merge the multi-source data. The fused 
representations are used to generate the richer context vectors, and then decode by the 
LSTM network to make predictions at each time step. The complete structure of the 
model is shown in Fig. 4. 

 

Fig. 4. Structure of the ATTPF prediction model. 

3.2. A data-driven bike-sharing relocation model  

3.2.1. Problem description 

The operator-based FFSB relocating can be regarded as a pickup-and-delivery 
problem. Suppose that the bike rebalancing network is a complete directed graph 𝐺𝐺 =
(𝑉𝑉,𝐴𝐴), and the vertex set  𝑉𝑉 = {1, … ,𝑡𝑡} is split into non-zero imbalance zones. Due 



to the fluctuating travel demand in different zones, each zone has several requests at 
period t, denoted as 𝑞𝑞𝑖𝑖𝑡𝑡, 𝑖𝑖 ∈ {1, … ,𝑡𝑡}. The operational shared bikes collected from the 
pickup zones can be transferred to the delivery zones or returned to the depot by the 
relocation staff.  

In the real-world bike-sharing relocation process, several constraints need to be 
considered: (1) Multiple vehicles are deployed from the depot to fulfill the relocation 
demand of each zone; (2) Two types of shared bikes are involved. Operational bikes are 
redistributed between different zones to satisfy the travel demand, while the damaged 
bikes should be collected and sent back to the depot for repair, therefore they cannot be 
relocated to other zones. Naturally, some new bikes will also be put into service at the 
depot and assigned to the needed zones by the relocation vehicles, which ensures the 
normal running of the free-floating bike-sharing system. 

3.2.2. Determining the needed bike relocations 

In this paper, the relocation of shared bikes is of two types: the operational bikes, 
and the damaged bikes. The developed ATTPF model predicts the short-term inflow 
and outflow of the FFSBs in each zone of a city. For the dynamic FFSB relocation, the 
day is separated into 𝑇𝑇 periods, 𝑡𝑡 ∈ {0,1, … , 𝑡𝑡, … ,𝑇𝑇}. For zone 𝑖𝑖, the short-term pick-
up demand (outflow) and drop-off demand (inflow) at a given period 𝑡𝑡 are denoted as 
𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡 and 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡. Moreover, the number of available operational bikes (overstocked bikes) 
𝑡𝑡𝑖𝑖𝑡𝑡 and the number of damaged shared bikes 𝑏𝑏𝑖𝑖𝑡𝑡, are retrieved from the historical data. 
We denote 𝑠𝑠𝑖𝑖𝑡𝑡 as the net flow of FFSB at zone 𝑖𝑖 at period  𝑡𝑡, which is defined as the 
difference between the forecasted inflow 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡  and outflow 𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡  in Eq. 13. The 
number of FFSBs needed for relocation 𝑞𝑞𝑖𝑖𝑡𝑡 derives from the number of overstocked 
bikes at the beginning of the period 𝑡𝑡𝑖𝑖𝑡𝑡 , plus the difference between the forecasted 
vehicle arrivals 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 and bikes that were taken by clients 𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡 in Eq.14 (Santos and 
Correia, 2019). Here, a safety stock of shared bikes 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 for each zone is considered.  

 𝑠𝑠𝑖𝑖𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 − 𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡, 𝑡𝑡 ∈ {0, 1, … , 𝑡𝑡, … ,𝑇𝑇} (13) 
 𝑞𝑞𝑖𝑖𝑡𝑡 = 𝑡𝑡𝑖𝑖𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 − 𝑒𝑒𝑠𝑠𝑖𝑖𝑡𝑡, 𝑡𝑡𝑖𝑖𝑡𝑡 > 0 (14) 

The positive value of 𝑞𝑞𝑖𝑖𝑡𝑡  implies that zone 𝑖𝑖  is a pickup zone, in which the 
number of 𝑞𝑞𝑖𝑖𝑡𝑡  bikes should be removed. On the opposite, the negative value of 𝑞𝑞𝑖𝑖𝑡𝑡 
denotes that zone 𝑖𝑖 is a delivery zone, where 𝑞𝑞𝑖𝑖𝑡𝑡 bikes should be supplied.  

The damaged FFSBs not only affect the user’s experience but also undermine the 
demand forecasting and relocation tasks. Therefore, it is necessary to consider both 
operational and damaged shared bikes relocation in the bike-sharing system. In general, 
when finding the nearby bikes, users unlock the FFSBs by scanning the QR code with 
their smartphone and start their ride. Afterward, when arriving at their destination they 
lock the shared bike and walk. Once the user unlocks a damaged bike, they may find 
this problem after riding. When this happens, the user will stop riding this bike 
immediately and unlock a new bike nearby. It should be noted that the users have 
different travel behavior when meeting the operational and damaged shared bikes. 
Therefore, we design an effective algorithm to discover the damaged FFSBs based on 
the users’ travel behavior. Supposing that the same user unlocks two shared bikes in a 



short time interval (e.g. less than 3 min) continuously, and the first trip distance is short 
(e.g., less than 200 m), we consider that the first unlocked shared bike is damaged or 
limited in its usage thus requiring repair. The detailed process for detecting damaged 
FFSBs from the historical travel records is presented in Algorithm 1.  

Algorithm 1: Detection of damaged bikes in a free-floating bike-sharing system 
Input: FFSB historical travel records 
Initialize the parameters: pre-defined time threshold 𝐾𝐾𝑡𝑡 , pre-defined distance 
threshold 𝐾𝐾𝑑𝑑; 
Obtain the unique user ID from historical travel records 𝑈𝑈 = [𝑢𝑢1, 𝑢𝑢2, … ,𝑢𝑢𝑀𝑀] 
for each user ID 𝑢𝑢𝑖𝑖 in 𝑈𝑈: 

Obtain the trip chain 𝑇𝑇𝐹𝐹𝑖𝑖 of 𝑢𝑢𝑖𝑖 from the historical travel records 
𝑇𝑇𝐹𝐹𝑖𝑖 = [𝑇𝑇𝑇𝑇𝑖𝑖,1,𝑇𝑇𝑇𝑇𝑖𝑖,2, … ,𝑇𝑇𝑇𝑇𝑖𝑖,𝑁𝑁]; 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ travel records of 𝑢𝑢𝑖𝑖 
for 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗 in trip chain 𝑇𝑇𝐹𝐹𝑖𝑖: 

Calculate the time interval between the successive two trips 
𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑖𝑖,𝑗𝑗 − 𝑇𝑇𝑖𝑖,𝑗𝑗−1; 𝑇𝑇𝑖𝑖,𝑗𝑗 is the start time of 𝑗𝑗𝑡𝑡ℎ travel records of 𝑢𝑢𝑖𝑖. 
Calculate the travel distance of the successive two trips 𝑠𝑠𝑖𝑖,𝑗𝑗−1 and 𝑠𝑠𝑖𝑖,𝑗𝑗 
if the time interval 𝑡𝑡𝑖𝑖,𝑗𝑗 < 𝐾𝐾𝑡𝑡 and 𝑠𝑠𝑖𝑖,𝑗𝑗−1 < 𝐾𝐾𝑑𝑑 then 

Record the bike ID of 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗−1, location of longitude and latitude 
       end if 
   end for 
end for  
Output: the damaged bikes ID and current locations 

 

3.2.3. Formulation of the relocation model  

In this section, we propose a multi-period relocation model considering the 
collection of damaged bikes. The notations are listed in Table 2. 

Table 2. Notation in the free-floating bike-sharing relocation model 

Parameters 
T Set of periods, 𝑡𝑡 ∈ {0,1, … , 𝑡𝑡, . . ,𝑇𝑇} 
𝑉𝑉𝑡𝑡 Set of zones that need bikes or can supply bikes for relocation in period 𝑡𝑡 
𝐷𝐷𝑡𝑡 The departure depot set of period 𝑡𝑡 
𝐷𝐷𝑡𝑡′ The ending depot set of period 𝑡𝑡 
𝐴𝐴𝑡𝑡 Set of arcs between the zones of period 𝑡𝑡 
𝑄𝑄 Capacity in the number of bikes of each relocation vehicle 
𝐿𝐿 The unit service time for loading or unloading a bike 
𝑠𝑠𝑖𝑖𝑗𝑗 Dispatching distance of the relocation vehicle between zones i and j 
𝑠𝑠𝑖𝑖
𝑡𝑡 Number of relocation vehicles in the depot i at beginning of period 𝑡𝑡 

𝑏𝑏𝑖𝑖𝑡𝑡 Number of damaged bikes at zone 𝑖𝑖 at beginning of period t, where 𝑏𝑏𝑖𝑖𝑡𝑡 ≥ 0 
𝑞𝑞𝑖𝑖𝑡𝑡 Number of relocated operational bikes at zone 𝑖𝑖 at the beginning of period t 

𝜉𝜉𝑖𝑖𝑡𝑡 
Number of bikes carried in (out) from the relocation vehicle at zone 𝑖𝑖 in period 
t, where 𝜉𝜉𝑖𝑖𝑡𝑡 = 𝑏𝑏𝑖𝑖𝑡𝑡 + |𝑞𝑞𝑖𝑖𝑡𝑡| 



𝑠𝑠𝑖𝑖𝑡𝑡 Service time in zone i in period t, where 𝑠𝑠𝑖𝑖𝑡𝑡 = 𝜉𝜉𝑖𝑖𝑡𝑡 ∙ 𝐿𝐿 
𝐸𝐸𝑇𝑇𝑖𝑖𝑡𝑡 The earliest service time of zone i in period t 
𝐿𝐿𝑇𝑇𝑖𝑖𝑡𝑡 The latest service time of zone i in period t 
𝐹𝐹𝑑𝑑 Dispatching cost per kilometer of the relocation vehicle 
𝐹𝐹𝑠𝑠 Service cost of staff by carrying one bike in (out) from the relocation vehicle 
𝐹𝐹𝑝𝑝 Penalty for not fulfilling or delaying one relocation request 
𝑣𝑣 The travel speed of the relocation vehicle (km/h) 
𝑀𝑀 A large constant 

Decision variables 

𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡  a binary variable, taking value 1 if a relocation vehicle is moved between 
zones i and j in period t, 0 otherwise 

𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡  an integer variable, the operational bike load on the relocation vehicle traveling 
between zones i and j in period t  

𝑙𝑙𝑖𝑖𝑗𝑗𝑡𝑡  an integer variable, the damaged bike load on the relocation vehicle traveling 
between zones i and j in period t 

𝑦𝑦𝑖𝑖𝑡𝑡 a binary variable, taking value 1 if zone i is visited in period t 
𝜏𝜏𝑖𝑖𝑡𝑡 the service start time of zone i in period t 

The FFSB relocation problem can be mathematically formulated as follows: 

Objective function 

𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑖𝑖𝑀𝑀𝑒𝑒    𝐹𝐹𝑑𝑑 ∙ � 𝑠𝑠𝑖𝑖𝑗𝑗 ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡

+ 𝐹𝐹𝑠𝑠 ∙ � 𝜉𝜉𝑖𝑖𝑡𝑡 ∙ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑖𝑖 ∈𝑉𝑉𝑡𝑡

+  𝐹𝐹𝑝𝑝 ∙ � 𝜉𝜉𝑖𝑖𝑡𝑡 ∙ (1 − 𝑦𝑦𝑖𝑖𝑡𝑡)
𝑖𝑖 ∈𝑉𝑉𝑡𝑡

 (15) 

Subject to: 

�𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

≤ 𝑠𝑠𝑖𝑖
𝑡𝑡, 𝑖𝑖 ∈ 𝐷𝐷𝑡𝑡 (16) 

� �𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡  𝑖𝑖∈𝐷𝐷𝑡𝑡

= � �𝑥𝑥𝑗𝑗𝑖𝑖𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡  𝑖𝑖∈𝐷𝐷𝑡𝑡′
 (17) 

�𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

− � 𝑥𝑥𝑗𝑗𝑖𝑖𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

= 0, 𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (18) 

�𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

− � 𝑓𝑓𝑗𝑗𝑖𝑖𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

= 𝑞𝑞𝑖𝑖𝑡𝑡 ∙ 𝑦𝑦𝑖𝑖𝑡𝑡, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (19) 

�𝑙𝑙𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

− � 𝑙𝑙𝑗𝑗𝑖𝑖𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

= 𝑏𝑏𝑖𝑖𝑡𝑡 ∙ 𝑦𝑦𝑖𝑖𝑡𝑡, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (20) 

�𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡

𝑗𝑗∈𝑉𝑉𝑡𝑡

− 𝑦𝑦𝑖𝑖𝑡𝑡 = 0, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (21) 

𝑠𝑠𝑡𝑡𝑥𝑥�0, 𝑞𝑞𝑖𝑖𝑡𝑡,−𝑞𝑞𝑗𝑗𝑡𝑡� ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑠𝑠𝑖𝑖𝑡𝑡  �𝑄𝑄,𝑄𝑄 + 𝑞𝑞𝑖𝑖𝑡𝑡,𝑄𝑄 − 𝑞𝑞𝑗𝑗𝑡𝑡� ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 (22) 

𝑏𝑏𝑖𝑖𝑡𝑡 ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑙𝑙𝑖𝑖𝑗𝑗𝑡𝑡 ≤ (𝑄𝑄 − 𝑏𝑏𝑗𝑗𝑡𝑡) ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 (23) 



𝑙𝑙𝑖𝑖𝑗𝑗𝑡𝑡 + 𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑄𝑄 ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 (24) 

𝜉𝜉𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑏𝑏𝑖𝑖𝑡𝑡 + |𝑞𝑞𝑖𝑖𝑡𝑡|, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (25) 

𝑠𝑠𝑖𝑖𝑡𝑡 = 𝜉𝜉𝑖𝑖𝑡𝑡 ∙ 𝐿𝐿, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (26) 

𝜏𝜏𝑖𝑖𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑡𝑡 + 𝑠𝑠𝑖𝑖𝑡𝑡 +
𝑠𝑠𝑖𝑖𝑗𝑗
𝑣𝑣
≤ 𝑀𝑀 ∙ �1 − 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 �,    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 , 𝑖𝑖 ≠ 𝑗𝑗 (27) 

𝐸𝐸𝑇𝑇𝑖𝑖𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖𝑡𝑡 ≤  𝐿𝐿𝑇𝑇𝑖𝑖𝑡𝑡, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (28) 

𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡 ∈ {0,1}, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 (29) 

𝑦𝑦𝑖𝑖𝑡𝑡 ∈ {0,1}, ∀𝑖𝑖 ∈ 𝑉𝑉𝑡𝑡 (30) 
 
The objective function (15) minimizes the generalized cost function for this 

particular period 𝑡𝑡  which includes: the cost of relocation vehicles dispatching, the 
service cost of the staff by moving the FFSBs in (out) from the relocation vehicles, and 
penalty for not fulfilling relocation requests. Constraints (16) restrict the number of 
relocation vehicles leaving depot i at the beginning of period 𝑡𝑡 up to the available 
relocation vehicles. Constraints (17) impose all used vehicles return to the depot (or 
dummy depot) after completing their route at the end of period 𝑡𝑡. Constraints (18) 
ensure the vehicle balance restrictions. Constraints (19)-(20) ensure the operational and 
damaged FFSBs flow balance restrictions, respectively. In the real-world shared bikes 
relocation, some zones may be visited multiple times in one period. In our model, 
constraints (21) make some simplifications and ensure that each zone served at most 
once during each period. Constraints (22) impose lower and upper bounds on the 
operational FFSB flows on each arc by considering whether or not an arc is traveled by 
a relocation vehicle. For the lower bound, if the vehicle travels between zones i and j at 
period t, then 𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡  should be at least greater than 𝑞𝑞𝑖𝑖𝑡𝑡 if 𝑞𝑞𝑖𝑖𝑡𝑡 > 0 (because the number of 
operational FFSBs 𝑞𝑞𝑖𝑖𝑡𝑡 has just been collected at zone i) or greater than −𝑞𝑞𝑗𝑗𝑡𝑡 if 𝑞𝑞𝑖𝑖𝑡𝑡 <
0 (because the number of operational FFSBs 𝑞𝑞𝑗𝑗𝑡𝑡 would be supplied to the next zone). 
Similar considerations apply to the upper bound. Constraints (23) impose lower and 
upper bounds on the damaged FFSB flows, which is positive bike flow value on the arc. 
Constraints (24) are the vehicle capacity constraints on each arc. In constraints (25), 𝜉𝜉𝑖𝑖𝑡𝑡 
is the number of shared bikes carried in (out) from the relocation vehicle at zone 𝑖𝑖 at 
period t. The damaged FFSBs can only be collected and moved into the relocation 
vehicle. The service time 𝑠𝑠𝑖𝑖𝑡𝑡  in zone i in period t is obtained in constraints (26). 
Constraints (27) and (28) guarantee the schedule feasibility of the relocation vehicles 
with respect to time considerations when visiting the zones. Constraints (29)-(30) 
impose binary conditions on the variables 𝑥𝑥𝑖𝑖𝑗𝑗𝑡𝑡  and  𝑦𝑦𝑖𝑖𝑡𝑡. 

 The dynamic relocation is implemented throughout the daytime and takes the 
real-time usage of FFSBs into account. In this paper, we adopt a multi-period 
optimization to handle the time-varying demand, which decomposes the dynamic 
process for the whole service time into well-connected static problems with a fixed 
duration. As shown in Fig. 5, we determine the relocation demand of each zone based 
on the predicted demand gap and the detected number of damaged FFSBs in each period. 



The relocation problem over each period is a static problem being solved through the 
proposed hybrid metaheuristic algorithm. At the end of each period (except the last 
period), the relocation vehicles will stay at the last served zones waiting for the updated 
relocation routes for the next period. Both the operational bikes to be relocated as well 
as the damaged bikes to be collected at each zone are updated in the next period and 
used to determine a new routing strategy. The detailed process is as follows. 

 
1. In the first period, the relocation vehicles depart from the depot to perform the 

relocation tasks. A dummy depot is created with a distance of 0 from other zones, 
which is the ending depot of this period. The relocation model imposes all used 
vehicles return to the dummy depot, but actually the vehicles would stay at the last 
served zones. The location of each vehicle, the load of operational and damaged 
bikes are stored, which are the inputs passed to the next planning period for the 
route decision-making.  

2. In the next period, the relocated zone set 𝑉𝑉𝑡𝑡 and the departure depot set 𝐷𝐷𝑡𝑡 are 
dynamically updated to determine the new relocation routes. The starting positions 
of the routes are the last visiting zones with corresponding loads on each vehicle. 
Besides, the relocation vehicles will also depart from the depot if they are available. 
Some vehicles may not perform the relocation tasks during this period, and they 
will stay in the last served zones and wait for the relocation activities in the 
following periods. At the end of the period (except the last period), all used vehicles 
return to the dummy depot. This procedure is repeated until the end of the modeling 
horizon.  

3. In the last period, the relocation vehicles should end at the depot. Considering that 
a certain number of damaged bikes are collected in the relocation vehicles in the 
previous periods, they need to be unloaded in the depot. On the one hand, the 
damaged bikes can be timely sent back to the depot for maintenance. On the other 
hand, the damaged bikes can be unloaded to avoid taking up too much space for the 
relocation of operational bikes. 
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Fig. 5. Multi-period optimization approach to dynamically update data. 

 



3.3. A hybrid metaheuristic solution approach 

For the relocation route determination in each period, we propose a new hybrid 
metaheuristic algorithm that incorporates variable neighborhood search (VNS) and 
enhanced simulated annealing (ESA) algorithm to satisfy the above constraints. 
Variable neighborhood search (VNS) is a metaheuristic method for solving a set of 
combinatorial optimization and global optimization problems (Hansen, et al., 2010; 
Ranjbar and Saber, 2020). The proposed VNS-ESA solution approach is based on the 
VNS framework for the neighborhood searching phase. In Algorithm 2, the VNS-ESA 
approach starts with an initial solution generated by using the Clarke-Wright algorithm 
(Altinel and Oncan, 2005). Then, a set of neighborhood structures is generated by the 
shaking procedure. We develop an ESA algorithm with a modified acceptance 
probability for local search based on the best neighborhood from the VNS. These two 
algorithms are performed iteratively until reaching the determined iterative step. The 
role of the shaking procedure allows the algorithm to escape from the local minimum 
and to efficiently explore the search space. The ESA for local search is used to intensify 
exploration of neighborhoods around promising solutions and prevents solutions to be 
trapped in the local optimum. 

Algorithm 2. The VNS-ESA algorithm 
Input: a set of neighborhood structures 𝑁𝑁𝑘𝑘 for 𝑘𝑘 = 1, … ,𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖 for shaking. 
Generate an initial solution by using the Clarke-Wright algorithm, 𝑠𝑠 = 𝑠𝑠0; 𝑓𝑓 is the 
objective function. 
for 𝑘𝑘 = 1 to 𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖 do 

Shaking procedure: pick the solution 𝑠𝑠′ from the 𝑘𝑘𝑡𝑡ℎ neighborhood 𝑁𝑁𝑘𝑘(𝑠𝑠); 
Local search by ESA algorithm; Find the best neighbor 𝑠𝑠′′ of 𝑠𝑠′; 
if local optimum 𝑠𝑠′′ is better than 𝑠𝑠 then 
  𝑠𝑠 = 𝑠𝑠′′; 𝑘𝑘 = 1; 
 otherwise 𝑘𝑘 = 𝑘𝑘 + 1; 

until stopping criteria 
Output: The best found solution 𝑠𝑠. 

With the shaking procedure, several new neighborhood structures are generated 
(Hemmelmayr et al., 2009). Two exchange operators are introduced in the shaking 
procedure, the Cross-exchange and the iCross-exchange in Fig. 6. We use these 
operators to exchange nodes on the two routes in the current solution to generate the 
new neighborhood structures. For each shaking execution, the probability of the Cross-
exchange operator being selected is larger than that of the iCross-exchange operator 
because the route solution is directional. The original direction of the route should be 
kept as much as possible during the path exchange process to increase the possibility 
of obtaining a feasible solution. 



 

Fig. 6. The Cross-exchange and the iCross-exchange operators. 

The ESA algorithm is proposed to search for the best route possible in each 
iteration. Simulated annealing (SA) is a probabilistic algorithm for approximating the 
global optimum (Kirkpatrick et al., 1983; Wei et al., 2018). SA is based on the idea of 
accepting the worst solutions occasionally in the hope of escaping the current local 
optimal solutions. Specifically, once a better neighborhood solution is identified in the 
search process, this movement will be accepted and the current solution will be replaced. 
Besides, a worse neighborhood solution would be accepted in SA with a certain 
probability 𝑃𝑃  in Eq. (31) to avoid obtaining a local optimum. The acceptance 
probability consists of two parameters, 𝑇𝑇, and 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡.  𝑇𝑇 is called the temperature, 
which gradually reduces in the search process. 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡  is the difference in fitness 
between the new solution and the current solution. The SA algorithm will stop until an 
adequate final temperature has been reached. In the ESA algorithm, a modified 
acceptance probability is proposed in Eq. (32) to prevent solutions to be trapped in local 
optimal solutions more effectively. Specifically, the acceptance of a new 
solution considers not only the gap to the current solution, 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡, but also the gap to 
the optimal solution that has been reached, 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡′.  

𝑃𝑃 = 𝑒𝑒−𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡/𝑇𝑇 (31) 

 𝑃𝑃(𝑙𝑙𝑠𝑠, 𝑙𝑙𝑠𝑠′, 𝑙𝑙𝑠𝑠𝑏𝑏 ,𝑇𝑇) =
𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡/𝑇𝑇)
𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡′/𝑇𝑇) 

 (32) 

where 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 = 𝑓𝑓( 𝑙𝑙𝑠𝑠′) − 𝑓𝑓(𝑙𝑙𝑠𝑠) ;  𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡′ = 𝑓𝑓(𝑙𝑙𝑠𝑠𝑏𝑏) − 𝑓𝑓(𝑙𝑙𝑠𝑠′) ; 𝑙𝑙𝑠𝑠  is the current 
solution;  𝑙𝑙𝑠𝑠′  is the neighbor solution; 𝑙𝑙𝑠𝑠𝑏𝑏  is the current best solution; 𝑓𝑓()  is the 
objective function in Eq. (15). The procedure of the ESA algorithm is summarized in 
Algorithm 3.  

In the ESA algorithm, a new feasible solution 𝑙𝑙𝑠𝑠′ is generated through the local 
search operators, which is used to intensify exploration of neighborhoods around 
promising solutions. The 2-exchange operator is executed by exchanging the positions 
of the two visited zones in the initial tour, in Fig. 7 (a) (Hernando et al., 2011). The 2-
opt method is designed to find a route that crosses over itself and reorders it, which 
includes eliminating and reconnecting two edges in a different way to obtain a new 
feasible route, as is shown in Fig. 7(b) (Muren et al., 2019). In addition, not all zones 
can be served within a period, so we remove some zones in the current routes and add 
the unserved zones with a certain probability. For each iteration of the local search 
process, we randomly choose one operator, which can fully utilize the operators’ search 



capabilities and expand the search space to some extent. The present VNS-ESA 
algorithm is numerically compared with the high-performance commercial solver 
(CPLEX 12.10) and other heuristics with small-scale examples in Appendix A. Results 
show that the VNS-ESA algorithm can obtain better solutions compared with the SA 
and VNS algorithm in a reasonable time. 

Algorithm 3: The ESA algorithm 
Initialize the ESA control parameter: initial temperature 𝑇𝑇0 , cooling rate 𝜆𝜆 , the 
initial solution 𝑠𝑠′ with the neighborhood 𝑁𝑁𝑘𝑘(𝑠𝑠) from the VNS. 
Set 𝑇𝑇 = 𝑇𝑇0; 𝑙𝑙𝑠𝑠 = 𝑠𝑠′; 𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 = 𝑓𝑓(𝑙𝑙𝑠𝑠); 𝑓𝑓(𝑙𝑙𝑠𝑠𝑏𝑏) = 𝑓𝑓(𝑠𝑠′); 𝑓𝑓 is the objective function. 
while termination criterion is not satisfied do 

for number of new solutions: 
Select a feasible solution 𝑙𝑙𝑠𝑠′ with the Local Search operator 
𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 = 𝑓𝑓(𝑙𝑙𝑠𝑠′) − 𝑓𝑓(𝑙𝑙𝑠𝑠) 

if 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 < 0 then  
𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛=𝑓𝑓( 𝑙𝑙𝑠𝑠′); 𝑙𝑙𝑠𝑠 =  𝑙𝑙𝑠𝑠′ 
if 𝑓𝑓( 𝑙𝑙𝑠𝑠′) < 𝑓𝑓(𝑙𝑙𝑠𝑠𝑏𝑏) then 

   𝑓𝑓(𝑙𝑙𝑠𝑠𝑏𝑏)=𝑓𝑓( 𝑙𝑙𝑠𝑠′); 𝑙𝑙𝑠𝑠𝑏𝑏 = 𝑙𝑙𝑠𝑠′ 
end if 

else 
 𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡′ = 𝑓𝑓(𝑙𝑙𝑠𝑠𝑏𝑏)− 𝑓𝑓( 𝑙𝑙𝑠𝑠′) 

𝑒𝑒 =
𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡/𝑇𝑇)
𝑒𝑒𝑥𝑥𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡′/𝑇𝑇) 

 

generate a random number, 𝛿𝛿 ∈ (0,1) 
if 𝛿𝛿 < 𝑒𝑒 then 

𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛= 𝑓𝑓(𝑙𝑙𝑠𝑠′); 𝑙𝑙𝑠𝑠 =  𝑙𝑙𝑠𝑠′ 
else 

𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛= 𝑓𝑓(𝑙𝑙𝑠𝑠) 
end if 

end if 
𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡 = 𝑐𝑐𝑜𝑜𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 
Decrease the temperature periodically: 𝑇𝑇 = 𝜆𝜆 × 𝑇𝑇 

end for 
end while 
Set  𝑠𝑠′′ = 𝑙𝑙𝑠𝑠 
Output: the optimized route in the local search process 𝑠𝑠′′ 

 

 
    



   

    (a)                              (b) 

Fig. 7. The schematic diagram of (a) 2-exchange operator and (b) 2-opt operator. 

4. Case-study application to real-world FFSBs 

4.1. Free-floating bike-sharing data 

This study analyzes the FFSB data collected by Mobike in Beijing. A total of 
992,183 travel records are recorded from May 10th to May 24th, 2017, each of which 
contains the bike ID, user ID, travel time, longitude, and latitude. The study area is 
located within the 3rd ring road of Beijing. Due to the characteristic that FFSBs are 
scattered across the city without docking stations, the research area is partitioned into 
729 grids (basic research zones) with a grid-size of 500 m in Fig. 10. We assume that 
the time for users to find FFSBs in the basic research zones can be ignored. To make 
the users find the FFSBs within a short distance and efficiently rebalance the FFSBs 
among different zones, it is necessary to control the size of the grids.  

4.2. Spatial and temporal trip patterns 

We aggregate the FFSB trips by hours of the week to analyze the temporal usage 
patterns in Fig. 8. Overall, the larger bike-sharing trip volume appears on weekdays 
than on weekends (Du et al., 2019; Chang et al., 2020). The travel demand on weekdays 
demonstrates a triple-peak nature related to commuting trips. However, on weekends, 
the FFSB travel demand is reduced to a large extent, and the rush hours become less 
pronounced.  
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Fig. 8. FFSB travel demand aggregated to hours of the week. 

The spatial trip volume distribution of FFSB on weekdays is shown in Fig. 9. In 
the morning, a large amount of FFSB travel demand emerges at the edge of the 3rd ring 
road, which is mostly around the residential communities. Later, a lot of trips aggregate 
in restaurants and shopping malls in the downtown area at noon. In the evening, people 



travel by FFSBs from the companies in the city center to the residential areas in the city 
fringe. As a whole, fluctuating spatial and temporal travel demand of FFSBs exists 
among different areas of the city during the day.      

     
(a)                          (b)    

      
(c)                         (d) 

Fig. 9. The spatial and temporal distribution of FFSBs on weekdays: (a) 
6:00-7:00; (b) 8:00-9:00; (c) 12:00-13:00; and (d) 18:00-19:00. 

Fig. 10 shows the net flow volume of FFSBs in the selected 729 grids based on 
Eq. (13). It can be seen that the net flow distribution fluctuates during the daytime. In 
peak hours, a large demand gap exists in different regions. The role of each grid (pickup 
zone or delivery zone) varies with time. For example, in zone A, more outflow trips 
appear in the morning peak hours in Fig.10 (a). Therefore, there is a need to transfer 
FFSBs to this zone. However, in the evening peak in Fig.10 (c), the inflow trips are 
larger than the outflow trips, and overstock FFSBs exist during this period, where some 
shared bikes need to be moved to other zones. Besides, the relocation needs are varying 
in other zones such as zone B and C. To better satisfy the users’ needs, considerable 
efforts should be carried out properly for dynamic rebalancing the shared bikes. 

    
(a)                    (b)                    (c)    

Fig.10. Net flow distribution of FFSB trips on weekdays: (a) 8:00-9:00; (b) 12:00-
13:00; and (c) 18:00-19:00. 



4.3. The damaged FFSB distributions 

Adopting algorithm 1 in section 3.2.2, we detect the potentially damaged FFSBs 
in the free-floating bike-sharing system. According to a survey near the Hujialou 
subway station in Beijing (Beijing Youth Daily news, 2017), fifty shared bikes are 
randomly selected to test the damaged bike rate of FFSBs. Among them, there were 
three FFSBs that had different types of problems and could not be used for a ride. 
Therefore, the damaged bike rate in this survey is calculated as 6.00%. In our 
experiment, the value of 𝐾𝐾𝑡𝑡 and 𝐾𝐾𝑑𝑑 are set as 5 minutes and 200 meters respectively, 
which means that the same user unlocks two different shared bikes in 5 minutes 
continuously, and the first trip distance is less than 200 meters. Thus we can get the 
distribution of damaged FFSBs in Fig.11. The number of discovered damaged FFSBs 
is 830, and a total of 14,446 FFSBs have been used in the study area according to the 
historical travel records. Therefore, the calculated damaged bike rate is 5.75%. We then 
map the discovered damaged shared bikes to the corresponding zones according to their 
locations. Notably, we cannot guarantee that each discovered bike is damaged, but there 
is a high probability that they are unusable. Therefore, these potentially damaged bikes 
are worthy of being collected and moved to the depot for further examination and repair. 
To obtain more effective parameter settings, we can conduct more practical surveys for 
the damaged bike rate. The smaller the values of 𝐾𝐾𝑡𝑡 and 𝐾𝐾𝑑𝑑 are set, the greater the 
probability that the detected FFSBs are damaged. These parameters can be determined 
according to actual needs. 

     
(a)                     (b) 

Fig. 11. The distribution of damaged shared bikes on (a) weekday and (b) weekend 
discovered from the historical travel records. 

5. Method application 

5.1. Predictive performance of the proposed ATTPF model 

The proposed ATTPF model is applied for short-term FFSB inflow and outflow 
prediction in the selected 749 zones. Besides, 80% of the data is used as the training set 
and the remaining 20% is used as the test set. The input historical inflow and outflow 
data are normalized to the interval [0, 1]. For categorical variables such as the time-of-
day and day-of-week, we convert them into the one-hot encoding form in the data 
processing stage.  

Five baseline methods are used to test the predictive performance of the ATTPF 
model, including historical average (HA), autoregressive integrated moving average 
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(ARIMA), support vector regress (SVR), gated recurrent unit (GRU), and LSTM. The 
HA and ARIMA (Ahmed and Cook, 1979) are the widely-used statistical methods. The 
SVR (Jiang et al., 2014), GRU (Ji and Hou, 2017), and LSTM are the recently 
developed artificial intelligence algorithms. Root mean squared error (RMSE) and 
mean absolute error (MAE) are selected as the measurement metrics in Eq. (33) and 
(34). 𝑦𝑦(𝑖𝑖) and 𝑦𝑦(𝚤𝚤)�  are the true and predicted inflow/outflow in the 𝑖𝑖th time interval. 
𝑡𝑡 is the size of the test set. 

RMSE = �
1
𝑡𝑡

 �(𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝚤𝚤)� )2
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(33) 

MAE =  
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(34) 

Table 3 shows the performance comparison of the proposed ATTPF model and 
other baseline methods for inflow and outflow prediction. It can be seen that the ATTPF 
model obtains the best prediction performance under almost all evaluation metrics. For 
the 1-hour outflow forecasting task, compared with the ARIMA, SVR, GRU, and 
LSTM models, the RMSE of the ATTPF model is reduced by 40.86%, 17.74%, 32.21%, 
and 22.37% respectively. The computation time of the different models is compared. 
Although the HA model can make predictions in a short time, the forecast error is large. 
The proposed ATTPF model requires a longer training time than LSTM and GRU 
models due to the encoding and decoding process and the attention mechanism. In 
general, the proposed ATTPF model can be trained within a reasonable time, and 
effectively achieve the short-term prediction task. 
Table 3. Predictive performance comparison on different time intervals. 

Model 
1-hour 2-hour 3-hour 

RMSE MAE Time (s) RMSE MAE Time (s) RMSE MAE Time (s) 

(a) inflow prediction 
HA 7.73 4.74 0.11 10.86 7.68 0.10 11.52 7.74 0.06 

ARIMA 5.10 3.76 204.26 10.06 7.28 99.79 12.39 8.21 39.37 

SVR 4.79 2.96 20.32 6.11 4.50 10.02 7.79 6.86 7.88 

GRU 6.51 3.88 363.45 7.89 5.47 172.71 10.44 7.81 117.73 

LSTM 4.49 3.15 325.34 5.83 4.10 196.54 6.78 6.20 135.20 

ATTPF 3.65 2.46 396.484 4.98 3.82 234.17 5.87 4.56 162.01 

(b) outflow prediction 

HA 6.95 4.59 0.12 9.02 6.65 0.10 11.77 7.79 0.08 

ARIMA 6.51 4.53 197.70 11.41 8.5 117.50 16.11 9.38 41.46 

SVR 4.68 2.71 19.88 5.63 4.00 10.63 6.97 5.07 8.67 

GRU 5.68 3.43 369.06 7.65 5.23 186.47 9.68 7.17 108.09 

LSTM 4.96 3.20 346.69 5.47 4.13 191.52 6.91 6.28 138.18 

ATTPF 3.85 2.63 423.21 4.86 3.66 227.37 5.62 4.43 150.13 

 



The ablation studies are performed on 1-hour time interval with the inflow and 
outflow datasets in Table 4. We compare the predictive performance of the ATTPF 
framework with multi-source data. The ATTPF-T only uses the historical trip data. 
Based on the ATTPF-T model, the ATTPF-TW, ATTPF-TA, and ATTPF-TE further fuse 
the weather variables (Weather state, Temperature, Wind Speed), air quality data (AQI), 
external variables (day-of-week, hour-of-day) respectively. As expected, the ATTPF-
ALL model combines all the above components and variables, which leads to 
considerable improvement in prediction accuracy. Therefore, all these variables 
contribute to improving the prediction accuracy of FFSB travel demand. We choose 
two typical zones A and B to show the predicted values and actual values in Fig. 12, 
where their geographical locations can be found in Fig. 10. 

Table 4. Ablation studies of the proposed ATTPF model on the 1-hour time interval. 

Model 
inflow prediction  outflow prediction 

RMSE MAE  RMSE MAE 

LSTM 4.49 3.15  4.96 3.20 

ATTPF-T (with trip data) 4.32 3.01  4.72 3.04 

ATTPF-TW (with trip and weather data) 4.05 2.82  4.02 2.74 

ATTPF-TA (with trip and air quality data) 4.28 2.98  4.56 3.01 

ATTPF-TE (with trip and external data) 4.23 2.95  4.39 2.88 

ATTPF-ALL (with full data) 3.65 2.46  3.85 2.63 
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Fig. 12. The visualization results for 1-hour prediction of the inflow and outflow: (a) 

zone A; (b) zone B. 
 

5.2. Real-world relocation optimization 

For the real-world case study of bike relocation in Beijing, the whole city is divided 
into different areas. Each area is equipped with a depot, which stocks many operational 
shared bikes used for relocation tasks. The relocation vehicles and staff start from the 
depot at the beginning of the day to perform the assigned tasks. Considering the 
practical factors, e.g. the size of the divided zone and the speed of the relocation 
vehicles, the surrounding zones have been arranged to be relocated by the 
corresponding depot. In this paper, the research area within the 3rd ring road in Beijing 
is partitioned into 729 zones with a grid-size of 500 m. In the divided zones, we assume 
that there are 4 shared bike depots, which are located in the center of each service area 
in Fig.13. For example, depot 1 is responsible for the shared bike relocation tasks in the 
green zones. Besides, the detected damaged bikes are assigned to the corresponding 
zones before the dynamic relocation process. 

 

Fig. 13. The location of the zones and depots in the study area. 

The operators drive vehicles for FFSBs relocation during the daytime (i.e., 8:00 - 
18:00). The time interval for dynamic relocation can be 1 hour, 2 hours, 3 hours, etc., 
which divides the day into several periods. In this paper, we set the length of each period 
to 1 hour in Table 5. In the first period, multiple relocation vehicles depart from the 



depot to perform the relocation tasks. At the end of the period (except the last period), 
the relocation vehicles will stay at the last served zones waiting for the updated 
relocation routes, and then start to perform the relocation tasks in the next period. In 
the last period, all relocation vehicles should end at the depot. Considering that the 
damaged bikes are collected in the relocation vehicles in the previous periods, they need 
to be timely unloaded in the depot. Thus, we set the relocation vehicles should return 
to the depot at end of period 5 and period 10. The dispatching cost of the relocation 
vehicle is 𝐹𝐹𝑑𝑑 = 0.7 $/𝑘𝑘𝑠𝑠. We suppose the service cost is 𝐹𝐹𝑠𝑠 = 0.05 $ for the staff 
moving one bike in (out) from the relocation vehicle and the unit service time is 𝐿𝐿 =
2 𝑠𝑠. The load capacity 𝑄𝑄 of the relocation vehicle is set as 100. The travel distance 
between the centroids of each zone can be calculated according to their actual locations. 
The travel speed of the relocation vehicle is 𝑣𝑣 = 35 𝑘𝑘𝑠𝑠/ℎ, referring to the average 
vehicle speed of Beijing in 2017 (Sohu News, 2018). The penalty for not fulfilling or 
delaying one relocation request 𝐹𝐹𝑝𝑝 is set to 3. At the beginning of the day, we assume 
that there are 4 vehicles in each depot that can be used for relocation. 

Table 5 presents the detailed optimized relocation results in different periods on 
the weekday (May 15, 2017), which includes the number of relocated zones, the number 
of relocation vehicles used, the relocation distance cost, the total staff service cost, the 
penalty cost, and the service rate. The service rate refers to the ratio of the FFSBs that 
have been served to the FFSBs that need to be served. Note that we do not consider the 
zones where the total relocation demand is less than 5 in our case study because the 
limited relocation resources (vehicles and staff) should be assigned to zones in urgent 
need of relocation. The models are solved by the hybrid metaheuristic algorithm VNS-
ESA. In the morning, noon, and evening peak hours, the relocation demand is higher 
than that in other periods. More vehicles and staff need to be arranged for these 
relocation tasks, which leads to the increased expenses for both distance costs and staff 
service costs. For example, in Area 2, 64 zones are in urgent need of relocation in period 
1 starting from the depot, while there are only 35 zones that should be served in period 
3. Among the four service areas, more zones in Area 3 need to be served on weekdays 
with higher relocation needs, especially on morning and evening peak hours. Besides, 
some zones cannot be served with the initial 4 vehicles in each depot. For example, the 
service rate of Area 3 is 0.83 in period 5 and is 0.76 in period 10. On the one hand, 
some zones are with the high relocation demand. On the other hand, the collection of 
damaged FFSBs occupy the capacity of the relocation vehicle. Thus, these vehicles 
should return to the depot after a few periods. 

Table 5. Performance indicators in four selected areas for different periods. 

Period 
1  

(8:00-
9:00) 

2 

(9:00-
10:00) 

3 

(10:00-
11:00) 

4 

(11:00-
12:00) 

5 

(12:00-
13:00) 

6 

(13:00-
14:00) 

7 

(14:00-
15:00) 

8 

(15:00-
16:00) 

9 

(16:00-
17:00) 

10 

(17:00-
18:00) 

(a) Area 1 

Number of relocated 
zones 53 26 32 65 59 41 30 47 42 75 

Number of relocated 
damaged bikes 5 3 7 11 7 3 2 5 3 4 

Number of relocation 
vehicles 4 4 4 4 4 4 4 4 4 4 

Distance cost ($) 59.48 26.18 32.66 43.93 36.71 45.80 38.10 45.33 47.20 43.26 



Staff service cost ($) 34.55 6.90 8.75 15.00 12.35 11.75 7.55 12.20 13.30 22.90 

Penalty cost ($) 0 0 0 219 255 0 0 0 0 513 

Service rate 1 1 1 0.87 0.84 1 1 1 1 0.74 
           
(b) Area 2 

Number of relocated 
zones 64 40 35 64 52 34 36 32 43 64 

Number of relocated 
damaged bikes 11 4 2 3 2 6 2 1 4 6 

Number of relocation 
vehicles 3 4 4 4 4 3 4 4 4 4 

Distance cost ($) 57.06 39.41 37.33 60.16 46.85 40.60 34.52 33.26 44.70 40.67 

Staff service cost ($) 39.65 17.05 9.45 16.95 15.60 11.15 12.95 9.80 14.55 24.50 

Penalty cost ($) 0 0 0 294 0 0 0 0 0 393 

Service rate 1 1 1 0.84 1 1 1 1 1 0.85 
           
(c) Area 3 

Number of relocated 
zones 83 47 23 55 62 51 39 42 55 77 

Number of relocated 
damaged bikes 8 8 2 5 4 4 6 1 2 6 

Number of relocation 
vehicles 4 4 4 4 4 3 4 4 4 4 

Distance cost ($) 55.53 47.99 20.96 49.19 33.69 50.78 40.99 43.25 50.85 45.81 

Staff service cost ($) 44.20 15.70 5.70 22.70 17.85 19.35 13.40 12.55 21.30 21.90 

Penalty cost ($) 585 0 0 0 330 0 0 0 0 501 

Service rate 0.81 1 1 1 0.83 1 1 1 1 0.76 
           
(d) Area 4 

Number of relocated 
zones 78 53 25 33 40 36 21 31 47 58 

Number of relocated 
damaged bikes 9 2 3 3 0 3 2 1 4 5 

Number of relocation 
vehicles 4 4 4 4 4 3 4 4 4 4 

Distance cost ($) 57.95 49.46 28.47 35.62 34.67 40.54 18.26 32.47 43.82 39.27 

Staff service cost ($) 29.55 23.40 7.45 10.45 12.35 13.45 5.40 8.80 17.05 14.80 

Penalty cost ($) 240 0 0 51 105 0 0 0 0 276 

Service rate 0.88 1 1 0.97 0.95 1 1 1 1 0.84 

Fig.14 compares the relocation result of Area 2 in different periods on weekdays 
(May 15, 2017) and weekends (May 21, 2017). The total relocation cost on weekends 
is less than that on weekdays. For example, during the day, the total relocation cost of 
Area 2 is 606.21 $ on weekdays that contains 434.56 $ for the distance cost and 171.65 
$ for the staff service cost, while it reduces to 494.44 $ on weekends. During the three 
high-demand peaks of the working day, staff service cost accounts for a larger 
proportion of the total relocation cost, e.g., 40.99% during 8:00-9:00 and 37.59% during 
17:00-18:00 in Fig.14 (a), because more relocation tasks need to be completed at this 
time interval. On weekends, the proportion of staff service cost is reduced and does not 
fluctuate much at different periods of the day in Fig.14 (d). There are fewer zones that 
need relocation and lower relocation demand due to the decreasing commuting trips. 
Therefore, the total relocation distance and the vehicle used for relocation are less than 
that on weekdays. Besides, higher relocation demand appears on weekend afternoons. 
For example, 42 zones need to be relocated during 15:00-16:00 in Fig.14 (e), while only 
32 zones should be visited during the same period on weekdays in Fig.14 (b). 

   



   

(a)                  (b)                  (c)  

     
(d)                  (e)                  (f) 

Fig. 14. The relocation result of Area 2 on weekdays and weekends: (a) Relocation cost, 
weekday; (b) Number of relocated zones, weekday; (c) Total relocation distance, 
weekday; (d) Relocation cost, weekend; (e) Number of relocated zones, weekend; (f) 
Total relocation distance, weekend. 

In the daily FFSB relocation process, the companies should have different 
strategies to deal with various conditions. For example, if high relocation demand 
appears in the morning peak hours, the relocation vehicle may only consider the 
operational shared bikes relocation to alleviate the imbalance that has occurred instead 
of collecting damaged bikes. It is urgent at those times of the day to focus on providing 
bikes to clients where they are undersupplied. Table 6 presents the detailed optimized 
relocation results in Area 2 on weekends (May 21, 2017) with two strategies (Strategy 
1: relocated operational and damaged FFSBs; Strategy 2: only relocated operational 
FFSBs). For different relocation strategies, it could be observed that considering the 
operational bike and damaged bike relocation increases the value of the daily relocation 
costs, including both the travel distance cost and the staff service cost. In detail, only 
relocating the operational bikes in special time periods, the total relocation cost and 
staff service cost can be reduced. For example, in Table 6, if both the operational bikes 
and damaged bikes are relocated in period 1 (Strategy 1), the distance cost is 45.66 $. 
However, only considering the operational bike relocation (Strategy 2), the distance 
cost is reduced to 39.45 $. Since in some zones, there are only relocation needs for 
damaged bikes. Strategy 2 can be adopted with urgent relocation of operational bikes, 
which can be effective for relocating in peak hours. Moreover, the damaged bikes can 
be optionally collected when the relocation tasks are not heavy. During non-peak hours, 
few relocation tasks exist with adequate relocation resources, e.g, in period 3 and period 
7. At this time, the collection of damaged bikes should be considered without increasing 
much of the relocation cost, which will enhance the service level of the bike-sharing 



system and timely decrease the probability of users finding damaged bikes in the system. 

Table 6. Performance indicators for different relocation strategies in Area 2. 

Period 
1  

(8:00-
9:00) 

2 

(9:00-
10:00) 

3 

(10:00-
11:00) 

4 

(11:00-
12:00) 

5 

(12:00-
13:00) 

6 

(13:00-
14:00) 

7 

(14:00-
15:00) 

8 

(15:00-
16:00) 

9 

(16:00-
17:00) 

10 

(17:00-
18:00) 

(a) Strategy 1: relocated operational and damaged FFSBs 

Number of relocated 
operational bikes 361 243 200 212 150 155 213 206 282 275 

Number of relocated 
damaged bikes 

15 10 8 14 8 8 10 11 8 21 

Number of relocated 
zones 

45 39 36 38 32 24 36 42 42 49 

Distance cost ($) 45.66 39.79 36.35 36.45 33.20 31.43 34.42 40.65 36.64 41.15 
Staff service cost ($) 18.80 12.65 10.40 11.30 7.90 8.15 11.15 10.85 14.50 14.80 
           

(b) Strategy 2: only relocated operational FFSBs 

Number of relocated 
operational bikes 361 243 200 212 150 155 213 206 282 275 

Number of relocated 
damaged bikes 0 0 0 0 0 0 0 0 0 0 

Number of relocated 
zones 35 32 36 28 25 24 36 33 42 39 

Distance cost ($) 39.45 35.19 36.26 31.35 26.75 31.43 34.42 35.10 36.45 35.31 
Staff service cost ($) 18.05 12.15 10.00 10.60 7.50 7.75 10.65 10.30 14.10 13.75 
           

6. Conclusions 

In the emerging free-floating bike-sharing system, shared bikes are permitted to 
be parked at any proper positions without the capacity problem of docking stations. 
However, free-floating shared bikes (FFSB) are unevenly distributed in different city 
regions, and the damaged bikes tend to be abandoned casually in the street, which 
occupies public space. Therefore, in addition to rebalancing operational bikes among 
different zones by multiple relocation vehicles to satisfy the users’ fluctuant travel 
demand, there is the need to collect the damaged bikes to the depots. 

This paper proposes a data-driven modeling framework for dynamic relocation in 
the free-floating bike-sharing system considering the collection of the damaged bikes. 
First of all, we investigate the spatiotemporal mobility patterns of the FFSB at a 
citywide scale and analyze the travel demand fluctuations that lead to the imbalance 
between FFSBs demand and supply. Secondly, the ATTPF model utilizing deep 
learning algorithms is established to forecast the short-term inflow and outflow of 
shared bikes in the different zones, which adopts the Encoder-Decoder architecture 
embedded with the attention mechanism to further enhance the model’s prediction 
ability and flexibility. To handle the dynamic nature of the FFSB relocation, the multi-
period optimization approach breaks down the dynamic process into a set of periods 
with a fixed duration. For each period, the relocation demand of operational bikes is 
determined and the damaged bikes are detected according to a method based on users’ 
travel behavior. Then, a data-driven optimization model is proposed to formulate the 
problem of relocating both the operational and damaged bikes simultaneously. The new 
hybrid metaheuristic algorithm that incorporates enhanced simulated annealing (ESA) 
algorithm and variable neighborhood search (VNS) is used for route design 
optimization.  



Small-scale numerical examples indicate that the VNS-ESA algorithm 
outperforms the benchmark algorithms to generate high-quality solutions within 
reasonable computing times. A series of real-world cases are conducted based on the 
Beijing FFSB data for the large-scale relocation optimization. Relocating both 
operational and damaged bikes will lead to higher relocation costs. It is effective to only 
relocate the operational bikes during peak hours with limited relocation resources. 
Future studies should integrate the dynamic FFSB repositioning models with multiple 
depots, multiple visits, and multi-objective functions, considering user satisfaction and 
company revenues. Moreover, more effective algorithms in reinforcement learning 
should be developed for the large-scale real-world relocation to improve the service 
level in the free-floating bike-sharing system. 

 
Appendix A. Illustrative numerical examples 

In this section, we compare the proposed hybrid metaheuristic VNS-ESA 
algorithm with a high-performance commercial solver, i.e., CPLEX (12.10 Academic 
Version) and other heuristics with the designed illustrative numerical examples. The 
experiments have been conducted on a PC with an Intel Core i7, 2.8 GHz CPU, and 8 
GB RAM. 

The experiments with different parameters are designed in Table A.1. The instance 
index, i.e., Z-O-D, denotes the total numbers of zones, the number of operational FFSBs 
needed for relocation, and the number of discovered damaged bikes respectively. The 
operational FFSBs demand and damaged bikes are randomly distributed in different 
numerical examples. The dispatching cost of the relocation vehicle is 𝐹𝐹𝑑𝑑 = 0.7 $/𝑘𝑘𝑠𝑠. 
We suppose the service cost is 𝐹𝐹𝑠𝑠 = 0.05 $ for the staff moving one bike in (out) from 
the relocation vehicle. The load capacity 𝑄𝑄 of the relocation vehicle is set as 30. The 
travel speed of the relocation vehicle is 𝑣𝑣 = 35 𝑘𝑘𝑠𝑠/ℎ. The parameters of SA and ESA 
algorithms are set as follows. In these experiments, the algorithms use an initial 
temperature 𝑇𝑇0 = 104 , and a cooling rate of 𝑐𝑐𝑟𝑟 = 0.005 . Table A.1 presents the 
comparison of the result among CPLEX, SA, VNS, ESA, and the proposed hybrid 
metaheuristic algorithm VNS-ESA. The option parameters of the CPLEX solver are set 
to default values, and the maximum time for solving the model is limited to 3000 
seconds in the examples. For the heuristic methods, each instance runs 10 times to 
compute the average objective value, the best objective value within the same CPU 
time. We use the improvement of the average objective value produced by the VNS-
ESA algorithm against the other three heuristic methods in percentage. 

When dealing with small-scale instances, such as 5-20-5 and 10-40-10, SA, VNS, 
and the VNS-ESA algorithm can obtain the best possible route. With the expansion of 
instance scale, e.g., more zones and FFSBs needed to be relocated, it takes a longer 
time to get the optimal solutions. By enhancing the acceptance probability, the proposed 
ESA algorithm provides high-quality solutions compared with the basic SA for all 
instances. The shaking operation in VNS-ESA generates more neighborhood structures 
for diversification of the search, and thus obtains better solutions than the ESA 
algorithm. We can see that for all 14 instances, the VNS-ESA algorithm can yield high-
quality solutions, which perform better than the CPLEX and other heuristics, especially 
for large-scale instances. 

 



 
Table A.1. Comparison of the results of the CPLEX, SA, VNS, ESA, and the VNS-ESA algorithm. 

Instance 

Z-O-D 
CPU/s 

 SA  VNS  ESA  VNS-ESA  CPLEX 
 VNS-ESA  

vs SA 
 VNS-ESA  

vs VNS 

 VNS-ESA   

vs ESA 

 Mean Best  Mean Best  Mean Best  Mean Best  Best CPU/s  Improvement  Improvement  Improvement 

5-10-0 5  16.21 16.21  16.21 16.21  16.21 16.21  16.21 16.21  16.21 0.10  0  0  0 

5-20-5   17.21 17.21  17.21 17.21  17.21 17.21  17.21 17.21  17.21 0.32  0  0  0 

10-20-5 8  25.43 24.99  26.57 24.99  25.32 24.99  24.99 24.99  24.99 0.48  1.73%  5.95%  1.30% 

10-40-10   26.96 26.25  27.66 26.25  26.56 26.25  26.25 26.25  26.25 0.61  2.63%  5.10%  1.17% 

20-40-10 30  38.27 36.90  38.08 37.11  38.15 36.71  36.07 35.70  35.70 6.85  5.75%  5.28%  5.45% 

20-60-15   40.55 38.63  39.41 38.27  39.00 37.75  37.21 36.95  36.95 18.16  8.24%  4.69%  4.59% 

30-60-15 80  48.14 47.48  51.26 47.81  47.23 45.43  44.62 44.38  44.38 39.55  7.31%  12.95%  5.53% 

30-80-20   60.22 59.67  65.39 61.19  56.54 51.82  51.89 47.80  47.80 42.77  13.83%  20.65%  8.22% 

40-80-20 150  58.10 55.70  65.32 63.07  55.34 54.87  53.32 52.11  52.11 113.18  8.23%  18.37%  3.65% 

40-100-25   60.94 59.86  73.08 67.84  58.21 55.41  56.57 55.16  55.16 156.83  7.17%  22.59%  2.82% 

50-100-25 190  61.33 59.42  81.33 79.31  59.08 56.72  57.53 56.01  55.87 1434.70  6.20%  29.26%  2.62% 

50-120-30   64.61 62.57  91.28 87.35  60.86 60.07  57.59 57.23  56.96 1623.05  10.87%  36.91%  5.37% 

60-120-30 280  77.20 74.72  115.36 108.76  72.28 70.25  70.36 70.25  - >3000  8.86%  39.01%  2.66% 

60-140-35   81.80 76.62  119.69 115.30  76.17 74.75  72.30 72.18  - >3000  11.61%  39.59%  5.08% 

 



We define the service rate as the ratio of the FFSBs that have been served to the 
FFSBs that need to be served. Fig. A.1 (a) and (b) show the changes of generalized cost 
and service rate with different settings of penalty cost 𝐹𝐹𝑝𝑝  for not fulfilling one 
relocation request in the example of 40 zones. The service rate gradually increases with 
the larger penalty cost 𝐹𝐹𝑝𝑝 . When there is only one relocation vehicle, due to the 
limitation of the vehicle capacity, the maximum service rate can only reach 0.3 in Fig. 
A.1 (a), so the penalty cost for not fulfilling the relocation request is larger, which leads 
to the higher generalized cost. The service rate gradually increases with more relocation 
vehicles. When there are 4 vehicles available for relocation, all the relocation needs can 
be satisfied. At this time, the generalized cost is mainly the cost for relocation vehicles 
dispatching between zones and the service cost of the staff by moving the FFSBs in 
(out) from the relocation vehicles at different zones. In addition, with 4 relocation 
vehicles available for relocation, not all the relocation needs will be met when the 
penalty cost 𝐹𝐹𝑝𝑝 is set to a small value. In some zones with small relocation needs but 
long relocation distance, the distance cost is much greater than the penalty cost, and 
thus the relocation vehicles will not choose to serve those zones, resulting in a low 
service rate. However, when the penalty cost 𝐹𝐹𝑝𝑝 is set to a larger value, the vehicles 
will visit more zones to meet the relocation needs as much as possible.  
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Fig. A.1. The changes of service rate and generalized cost under different settings of 
penalty cost. 

Fig. A.2 shows the changes of generalized cost and service rate with different 
numbers of zones and vehicles when the penalty cost is set to 3. In Fig. A.2 (a), we 
assume that there are 2 relocation vehicles available. With the increased number of 
zones, the service rate gradually decreases, and the generalized cost continues to 
increase, where the penalty cost accounts for a large part. Fig. A.2 (b) shows the changes 
of service rate and generalized cost with the different number of vehicles in the example 
of 40 zones. The service rate gradually increases with sufficient relocation vehicles. 
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Fig. A.2. The changes of service rate and generalized cost under different settings of 
parameters. (a) Number of zones; (b) Number of relocation vehicles. 

 
The multi-period optimization approach is adopted to divide the dynamic FFSB 

relocation into well-connected static problems. The day is separated into 𝑇𝑇 periods, 
𝑡𝑡 ∈ {0, 1, … , 𝑡𝑡, … ,𝑇𝑇} , and the model is solved for 𝑇𝑇 times to dynamically plan the 
relocation activities throughout the day. At the beginning of each period 𝑡𝑡, we update 
the number of vehicles available in the depot, the locations and the remaining capacity 
of the vehicles, the number of operational and damaged bikes that need to be relocated 
(in section 3.2.2). Based on this information, the model is solved with the commercial 
solver (e.g., CPLEX) or heuristic algorithm (e.g., VNS-ESA) to determine the vehicle 
relocation routes in period 𝑡𝑡. The optimal solution for period 𝑡𝑡 is passed for the next 
period planning. 
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