
CI Lab
CE Lab
CE Lab
|CE Lab|
C≡ Lab
CE Lab

Computer
Engineering
Laboratory

Delft
University of
Technology

Delft
University of
Technology

Computer
Engineering
Laboratory

Computer
Engineer ing
Laboratory

D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

A Hardware/Software Co-designed Partitioning
Algorithm of Sparse Matrix Vector Multiplication into
Multiple Independent Streams for Parallel Processing
Björn Logi Sigurbergsson CE-MS-2018-29

Abstract

The trend of computing faster and more efficiently has been a driver for the computing industry
since its beginning. However, it is increasingly difficult to continue this trend because current
CMOS technology cannot be down-scaled anymore due to physical restrictions. Consequently,
to obtain the next major performance improvement, the focus is shifting from a technology-only
optimization effort towards a system-level hardware-software co-design optimization strategy. In
recent years, the move to heterogeneous computing has gained enormous traction with all the big
names such as Intel, IBM, and NVIDIA investing heavily in this approach. This paradigm shift is
characterized by traditional general-purpose processors offloading data to hardware accelerators,
which are capable of exploiting parallelism to a significantly higher degree. An accelerator which
has existed for decades but has recently risen to greater prominence is the field-programmable
gate array (FPGA). The scientific computing community is also experiencing the need for higher
computational power as their problem sizes increase. FPGAs make a promising candidate for
their ability to tailor complex algorithms to specialized hardware circuits. A key algorithm to ac-
celerate in this domain is the Sparse Matrix Vector Multiplication (SpMV). There do not exist
many HLS (High-Level Synthesis) designs for this kernel, and the one designed using Vivado
HLS exhibits significantly lower performance than the state-of-the-art. We argue that the most
effective way to achieve speedup is by implementing multiple parallel pipelines so that multiple
result values are produced in each cycle. Consequently, we develop an implementation agnostic
partitioning algorithm for SpMV that splits the problem into independent streams. The HLS kernel
performs well as a standalone unit, offering a speedup of up to 150x compared to the ARM co-
processor on the ZYNQ system and up to 4.6x to state-of-the-art Vivado HLS-based solutions.
Our estimations show that the solution scales with an increasing number of resources.

A Hardware/Software Co-Designed Partitioning
Algorithm of Sparse Matrix Vector Multiplication

into Multiple Independent Streams for Parallel
Processing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Björn Logi Sigurbergsson
born in Reykjavík, Iceland

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

A Hardware/Software Co-Designed Partitioning Algorithm
of Sparse Matrix Vector Multiplication into Multiple

Independent Streams for Parallel Processing

by Björn Logi Sigurbergsson

Abstract

The trend of computing faster and more efficiently has been a driver for the computing industry
since its beginning. However, it is increasingly difficult to continue this trend because current CMOS
technology cannot be down-scaled anymore due to physical restrictions. Consequently, to obtain the
next major performance improvement, the focus is shifting from a technology-only optimization effort
towards a system-level hardware-software co-design optimization strategy. In recent years, the move to
heterogeneous computing has gained enormous traction with all the big names such as Intel, IBM, and
NVIDIA investing heavily in this approach. This paradigm shift is characterized by traditional general-
purpose processors offloading data to hardware accelerators, which are capable of exploiting parallelism
to a significantly higher degree. An accelerator which has existed for decades but has recently risen to
greater prominence is the field-programmable gate array (FPGA). The scientific computing community is
also experiencing the need for higher computational power as their problem sizes increase. FPGAs make
a promising candidate for their ability to tailor complex algorithms to specialized hardware circuits. A
key algorithm to accelerate in this domain is the Sparse Matrix Vector Multiplication (SpMV). There do
not exist many HLS (High-Level Synthesis) designs for this kernel, and the one designed using Vivado
HLS exhibits significantly lower performance than the state-of-the-art. We argue that the most effective
way to achieve speedup is by implementing multiple parallel pipelines so that multiple result values are
produced in each cycle. Consequently, we develop an implementation agnostic partitioning algorithm for
SpMV that splits the problem into independent streams. The HLS kernel performs well as a standalone
unit, offering a speedup of up to 150x compared to the ARM co-processor on the ZYNQ system and up to
4.6x to state-of-the-art Vivado HLS-based solutions. Our estimations show that the solution scales with
an increasing number of resources.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-29

Committee Members :

Advisor: Prof. dr. ir. Koen Bertels, CE, TU Delft

Chairperson: Prof. dr. ir. Koen Bertels, CE, TU Delft

Member: Dr. ir. Zaid Al-Ars, CE, TU Delft

Member: Dr. ir. Matthias Möller, DIAM, TU Delft

Member: Dr. ir. Razvan Nane, CE, TU Delft

i

ii

Dedicated to my parents and my beautiful girlfriend Sonja

iii

iv

Contents

List of Figures x

List of Tables xi

List of Acronyms xiii

Acknowledgements xv

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Statement and Goals . 3
1.3 Thesis outline . 3

2 Background 7
2.1 Simulating Physical Systems . 7

2.1.1 Motivation . 7
2.1.2 Iterative Solvers . 7

2.2 Sparse Matrix Vector Multiplication (SpMV) 8
2.2.1 Compression Encoding . 8
2.2.2 Properties . 9
2.2.3 Computational Intensity . 9

2.3 FPGA . 10
2.3.1 ZYNQ . 11
2.3.2 High Level Synthesis . 12
2.3.3 FPGA Acceleration of SpMV . 14

2.4 Conclusion . 16

3 Partitioning SpMV 17
3.1 Naive Partitioning Schemes . 17

3.1.1 Column-wise Partitioning . 17
3.1.2 Row-wise Partitioning . 18

3.2 Sparstitioning . 19
3.2.1 The Concept . 19
3.2.2 Exposing Paralellism and Task-level Pipelining 20
3.2.3 Potential for General Improvement . 21

3.3 SpMV with Big Data Frameworks . 22
3.3.1 Cluster Schema . 23
3.3.2 Sequence Analysis of the Cluster Tasks 23

3.4 Related Works . 25
3.4.1 CASK . 25

v

3.4.2 Partitioning Solutions . 26
3.5 Conclusion . 27

4 The Sparstitioner Design 29
4.1 Overview . 29

4.1.1 Definitions . 29
4.1.2 Design Goal and Requirements . 29
4.1.3 Algorithm Parameters . 30

4.2 Algorithm Design . 30
4.2.1 Multiple Partitioning . 32

4.3 Load Balancing . 34
4.3.1 Modelling Execution Times with Weights 34
4.3.2 Coarse vs. Fine-Grained Load Balancing 34

4.4 Conclusion . 35

5 HLS Design 37
5.1 Design Goal and Requirements . 37

5.1.1 Kernel Parameters . 37
5.2 ZYNQ Design . 38
5.3 HLS Design . 38

5.3.1 Hardware Modules . 38
5.3.2 Compiler Directives . 41
5.3.3 Kernel Configuration . 41
5.3.4 Design Analysis and Limitations . 42

5.4 Conclusion . 43

6 Hardware/Software Co-design Implementation 45
6.1 Sparstitioner . 45

6.1.1 Data Structures . 45
6.1.2 Analysis of the Sparstitioning Algorithm 46
6.1.3 Managing Output Files . 49
6.1.4 Functional Verification . 50

6.2 Host . 50
6.2.1 Reading from SD Card . 50
6.2.2 Building x Partitions from Index Maps 51
6.2.3 Running SpMV and Functional Verification 52

6.3 Kernel . 53
6.3.1 Reading and Writing with AXI Streams 53
6.3.2 Functional Verification . 54

6.4 Conclusion . 54

7 Experimental Results 57
7.1 Experimental Setup . 57

7.1.1 Platform . 57
7.1.2 Maximum Vector Size . 59
7.1.3 Benchmarks . 60

vi

7.2 HLS Performance . 60
7.2.1 Resource Utilization . 60
7.2.2 Results for Benchmarks . 61
7.2.3 Bandwidth Scalability . 61
7.2.4 Comparison with State-of-the-Art HLS 62

7.3 Sparstition Performance . 62
7.3.1 Cost of Each Implementation . 63
7.3.2 Compressing Index Maps . 63
7.3.3 Total Execution Time . 65

7.4 Sparstitioned SpMV . 66
7.4.1 Pipelined Execution . 67
7.4.2 Isolated Execution . 69
7.4.3 Peak Performance . 73
7.4.4 Comparison with State-of-the-Art . 74

7.5 Load Balancing . 76
7.5.1 Verification of the Weights Model . 76
7.5.2 Load Balancing the Execution of Multiple Pipelines 76

7.6 Conclusion . 78

8 Conclusion and Future Work 79
8.1 Summary . 79
8.2 Contributions . 80
8.3 Future Work . 80

List of Definitions 87

A Sparsity Pattern of Benchmarks 89

vii

viii

List of Figures

1.1 The big picture of this work and how it connects to the overall flow. 5

2.1 CSR and CSC encodings side-by-side. 8
2.2 Interconnection diagram of the ZYNQ architecture. 11
2.3 Instruction level pipelining [1]. 13
2.4 High level concept of how HLS design can be made more scalable with band-

width. 15

3.1 The two major steps of the sparstition algorithm which will be introduced in
tihs chapter. 17

3.2 Left image shows the partitioned matrix with the chosen cutting point. Middle
image is SpMV performed on each partition with smaller ~xp’s. Left image
shows the merging necessary to obtain~y in the post-processing stage. 18

3.3 Row-wise partitioning computes the SpMV in parallel but requires that the
entire~x is stored in cache. 18

3.4 The concept of the partitioning algorithm. The columns of the Ap’s are shuffled
according to the order in which they appear. 19

3.5 Sequence diagram when optimized for parallelism and task-level pipelining on
a single machine. This example results in 8 partitions. 20

3.6 Figure that shows slicing of values and col_ptrs arrays by accumulating
row sizes before sparstition takes place. 21

3.7 Proposal how sparstition may accelerate the state-of-the-art by encasing their
implementations in computational units (CU) and multiplying them. It is pos-
sible in theory to only distribute needful~x values to each CU to save bandwidth. 22

3.8 Schema of cluster execution of a solver with SpMV distributed to multiple
nodes. Colors of tasks correspond to Figure 3.9 and the sparstition images are
found in more detail in Figure 3.4. 24

3.9 Sequence diagram of tasks running in a cluster environment. Labels in legend
refer to Figure 3.8. 25

4.1 Splitting up A to A0 and A1, each with no_rows amount of rows. 30
4.2 The partition compression process . 31
4.3 The result after 1 (left) and 3 (right) sparstition operations after recursively

searching for a solution to CACHE_SIZE constraint. Note that the leaves are
kept in sequential order from left to right. 33

4.4 The tree resulting from meeting the NO_PARTITIONS constraint. 33
4.5 The sparsity pattern of Hamrle3. 35
4.6 A high-level figure of the design developed in this chapter. 35

5.1 High level block design as a 2-stage process. The DMA channels are config-
ured to either 32 or 64 bits. 38

5.2 The circuit generated by the HLS synthesizer. It iterates between reading from
x and x2. 39

ix

5.3 When rows have an odd number of non-zeros. Blue squares represent an arbi-
trary row and the red squares a subsequent one. 41

5.4 Waveform capturing the blocking effect of setting parameters on the kernel. . 42
5.5 Part of the waveform from the beginning of execution, with the region within

the white rectangles magnified in the second subfigure. 43
5.6 A schema of the HLS processing 4 partitions in a pipeline. 44

6.1 The binary tree structure mapped onto the 1D array of pointers to xi’s. Red
points to memory location that has been freed. 46

6.2 The actual sequence diagram of the tasks of the algorithm for 8 partitions. The
tasks are not drawn in scale as the execution times depend on many factors
such as the available bandwidth. 49

6.3 Index Map before and after compression. 51
6.4 The co-design from a high-level. 54

7.1 The goal of this chapter, namely to evaluate when it is optimal to compute
SpMV by taking path 3 compared to paths 1 and 2. 57

7.2 The experimental setup with the workstation and the Zedboard. 58
7.3 Small, medium and large test cases for all implementations. The bars depict

the boolean maps, bitmaps and setting Index Maps to -1 in the order from left
to right. The x-axis is on a logarithmic scale. 64

7.4 Small, medium and large test cases for all implementations including CIM time. 66
7.5 . 67
7.6 The change in performance of the smallest 3 benchmarks as NP increases. . . 68
7.7 The pipelined execution times for all benchmarks including those that could

not be computed on hardware due to size constraints. 69
7.8 NI relative to non-partitioned HLS (TR1) for all implementations. 71
7.9 Bar chart of NI needed surpass the I7 execution times for the bitmap imple-

mentation. 72
7.10 Theoretical speedups against non-partitioned HLS kernel and software execu-

tion on I7 with NI∗ iterations. 73
7.11 The performance scalability of performing multiple partitioned SpMVfor two

benchmarks. 75
7.12 The yellow curves are execution times in cycles and correspond with the right

axis. The blue and red curves are the weight formulas and correspond with the
left axis. 76

7.13 Figure comparing the sparsity pattern of Hamrle and the uneven execution
times for NP = 1024. 77

7.14 The two distribution schemes, grouping adjacent partitions together versus
identifying groups and subdividing them. 77

7.15 Load balanced execution times versus normal execution times for each accel-
erator . 77

x

List of Tables

2.1 Comparison of SpMV Works . 15

3.1 Comparison between CASK [2] and sparstition. 26
3.2 Comparison of two standard partitioning schemes with the work of this thesis. 27

6.1 Summary of the relative cost of initializing and updating Index Maps 47

7.1 Benchmarks used to verify the sparstition algorithm and the HLS kernel.
Starred benchmarks must be partitioned to be performed on the Zedboard. . . 60

7.2 The resource utilization of the design . 60
7.3 Performance of the HLS kernel for the smallest benchmarks compared with

the performance of Intel-I7 and ARM. 61
7.4 The theoratical peak performance PPEAK of the HLS kernel when scaled for

bandwidth. 62
7.5 Comparsion of this work with [3] for their benchmarks in double precision.

Largest row is analogous to pipeline depth. The bandwidth refers to this work
as [3] reports performance in simulation. 62

7.6 Table summarizing the cost in time of performing the compression of Index
Maps for bitmaps and the other (boolean maps and setting to -1) implemen-
tations. The result from adding the bold numbers with the CIM (compressed
Index Map) build time is lower than the build time with the sparse Index
Maps . All times are in milliseconds. 65

7.7 Results from the larger half of the benchmarks. These performance values are
derived and are theoratically achievable with a larger cache size. 69

7.8 Table summarizing total execution times for epb1. Only the bitmaps imple-
mentation is considered in this table for simplicity. NP HLS stands for non-
partitioned HLS. All times are in milliseconds. 70

7.9 NI obtained from running Bi-CGSTAB on each of the benchmarks for a single
test case. 72

7.10 Theoretical SpMV performance and speedup after 100 and 2000 iterations for
all benchmarks. The performance used as the HLS reference for starred (*)
matrices was derived using the formula in Section 7.4.1. 74

7.11 This work compared with the state-of-the-art SpMV kernels on FPGAs. Our
results are obtained from running 100 iterations. 75

xi

xii

List of Acronyms

SpMV Sparse Matrix Vector Multiplication

HLS High Level Synthesis

FPGA Field-Programmable Gate Array

MAC Multiply-Accumulate

NNZ Number of Non-Zeros

CU Computational Unit

FLOPS Floating Point Operations per Second

MFLOPS Mega FLOPS

GFLOPS Giga FLOPS

B/s Bytes per Second

PL Programmable Logic

PS Processing System

CG Conjugate Gradient

Bi-CGSTAB Biconjugate Gradient Stabilized Method

DMA Direct Memory Access

HDL Hardware Description Language

I/O Input/Output

SD Card Secure Digital Card

GPU Graphics Processing Unit

CPU Central Processing Unit

RAM Random Access Memory

BRAM Block RAM

DRAM Dynamic RAM

xiii

xiv

Acknowledgements

The long MSc. journey at TU Delft is finally coming to an end. This has been a very challenging
couple of years, full of uncertainties and long working hours but also one of the most rewarding
experiences of my life. I want to thank my girlfriend Sonja for her patience and unfailing support.
Also thanks to my parents who inspire me constantly with their incredible perseverance.

Many thanks to Razvan for all the patience while this thesis was shaping up, and for being
a great guide whose attention to detail kept me on my toes. Thanks to Koen for helping me
develop this work from a high-level and for pointing out all the gaps in my explanations. I would
also like to thank Tom for all the help and discussions.

I would also like to thank the Skarlet co-founders Saever and Bjarki, as well as Haji and all
the hammerboys. My stay here in Delft would not have been the same without the all good times
we had!

Björn Logi Sigurbergsson
Delft, The Netherlands
November 5, 2018

xv

xvi

Introduction 1
The work presented in this thesis proposes a solution to a computational difficulty in a wide range
of application domains. We begin by recounting the rise in prominence of Big Data applications
and the rise of heterogeneous computing as a result of Moore’s Law prediction approaching
fruition. The focus narrows down to scientific computing applications, which currently drive
most advanced computer simulations, and their scalability issue. We then define the problem
statement and set goals for this thesis to address it. Finally, we present the outline of this thesis
and our problem-solving approach by illustrating the relationship between the chapters.

1.1 Context and Motivation

In the age of Big Data, many application domains are seeing an exponential increase in the
amount of information to be processed. This is seen in a wide variety of domains such as image
processing, DNA sequencing, scientific computing, and machine learning. Furthermore, Big
Data Analytics has become a field of its own, which for example enables businesses to do some-
thing meaningful with untapped data that collected over the years. The paradigm of computing
faster and more efficiently has ruled computing since its conception but is now reaching a satu-
ration point. This was famously predicted by Gordon Moore who made the observation that the
computational power cannot continue the trend of doubling every 18 months indefinitely. This
is due to physical limits to how small transistors can be made as they approach the size of atoms,
thus imposing a bound to the transistor count per integrated circuit. As a result, the effort has
shifted towards breaking the workload into independent chunks and processing them in parallel,
thereby speeding up computations by a factor of the available computational units (CU).

The move to heterogeneous computing has gained a tremendous traction in recent years.
The paradigm shift is characterized by hosts, typically traditional processors, offloading data
to powerful heterogeneous systems that act as accelerators by performing in parallel a gigantic
number of relatively simple calculations which would take traditional processors unjustifiably
long time to compute. The shift is also taking place at an unprecedented rate as is witnessed by
the largest names in the computing industry. In 2015, Intel acquired Altera, which along with
Xilinx make up the world’s largest FPGA (Field-Programmable Gate Array) vendor, for almost
$17 billion [4]. NVIDIA and IBM are actively collaborating on the OpenPOWER foundation
[5]. Furthermore, large-scale computing is not only limited to wealthy companies after Amazon
started the AWS (Amazon web services) initiative. This service enables the public to rent con-
figurable computational power from servers that run GPUs (Graphical Processing Unit), FPGAs
and multiple CPUs (Central Processing Unit).

There exist various types of accelerators and the most suitable choice depends on the type
of task at hand and the size of the problem. GPUs have become popular in image processing
and video gaming as a huge amount of operations on independent pixels are readily mapped to
its multiple cores. FPGAs are promising in scientific computing applications as they execute

1

2 CHAPTER 1. INTRODUCTION

circuitry tailored to the algorithm, enabling deep task-level pipelines. Finally, clusters consist of
multiple machines and are suitable to process data in terms of terabytes and beyond, sometimes
in real-time.

The domain of scientific computing is the driver for many applications including simulators
which model physical systems both large, such as oil reservoirs [6], and small like cloth simula-
tions [7]. The core of simulators is solving systems of linear equations, which in mathematical
terms is to solve for ~x in ~x = A−1~b. The system A is generally very sparse, i.e. the density of
non-zero values can be as low as a fraction of a percent, especially if it models a physical envi-
ronment. As a result, the inverse cannot be directly computed efficiently, if at all. Instead, solver
algorithms iteratively guess the solution and adjust the result accordingly until it is satisfactory.
The computation that dominates the solver algorithm is the multiplication of the matrix with a
vector, and the fact that the system is sparse causes a transformation to a new algorithm known
as Sparse Matrix Vector Multiplication (SpMV). This algorithm has notoriously low temporal
locality of data, making it bound to memory bandwidth. It also has low spatial locality of data so
when faced with the task of splitting SpMV for parallel computation, either an expensive merg-
ing in the post-processing stage is required or the cache of each accelerator must be as large as
the dimension of the problem.

We design a kernel in this thesis which accelerates SpMV on an FPGA, more specifically the
ZYNQ-7020 chip from Xilinx integrated on Zedboard. The drawback of developing for FPGAs
is that it requires knowledge of hardware design which is a completely separate discipline from
computer programming. The designs are described manually in hardware description languages
(HDL) and implementing efficient solutions typically takes time in terms of months, even for
experienced hardware architects. To alleviate this, FPGA vendors developed HLS (High Level
Synthesis) which synthesizes hardware circuits from algorithmic descriptions in imperative lan-
guages such as C++. The work presented in this thesis uses HLS to generate the hardware
design.

A number of drawbacks of HLS make it a difficult tool to efficiently implement SpMV as
noted in [8]. One of which is static scheduling which makes loops with a variable amount of
iterations impossible to pipeline with current commercial tools. This is problematic for SpMV
because it contains such a loop to process rows with a varying amount of non-zeros. There is
ample active research to address this issue [9][10][3] however HLS performance is still likely to
remain significantly lower than the state of the art [11][12].

The most efficient solutions exploit parallelism between rows and produce multiple values of
the result vector per cycle [11][2]. This is also where current HLS designs fall short due to many
intricacies in managing multiple pipelines. In other words, consider the case where a kernel is
connected to a high bandwidth bus that delivers multiple rows some cycles, while others only a
single row and a part of another row. This dependency for control at run-time arises is the same
issue as we described in the previous paragraph. As a result, the kernel can only start processing
a single row per cycle, thus the bandwidth can only scale to the size of the row. Currently, there
are no SpMV HLS designs that achieve this feat to our knowledge which must be fixed to catch
up with their manual counterparts.

Instead of exploring the possibility of maintaining multiple pipelines within a single kernel
in HLS, we develop in this thesis a partitioning algorithm which we call sparstition for SpMV
which splits the problem into disjoint streams. Each stream can be assigned to different CUs
on the same fabric, or even different accelerators. Therefore the bandwidth scalability barrier

1.2. PROBLEM STATEMENT AND GOALS 3

imposed by HLS can be sidestepped by involving multiple kernels where each one is supplied
at most a row each cycle. Naturally, there is extra work involved in the pre-processing stage, but
since SpMV appears in iterative algorithms the extra cost is acceptable if it leads to better overall
performance. Furthermore, the sparstition algorithm is implementation agnostic so it works as
an addition to any SpMV architecture that exists.

1.2 Problem Statement and Goals

The HLS designs for SpMV are lagging behind those that are described manually in HDLs due
to poor bandwidth scalability as row-level parallelism is not exploited. The difficulty arises in
managing multiple pipelines as the bandwidth increases to the point where multiple rows are
transferred each cycle. This motivates us to ask the following research question.

Can a partitioning algorithm be developed which splits SpMV into multiple independent
streams, and show promise in achieving speedup in HLS designs within a reasonable amount of

iterations?

To answer this question we set ourselves the following goals:

• Develop a parameterized partitioning algorithm which must only run once in the pre-
processing stage.

• Develop a SpMV kernel in HLS which makes use of as much bandwidth as possible, and
is capable of processing multiple partitions.

• Co-design the previous two points such that the output from the partitioning algorithm
feeds the parameterized kernel, requiring minimal user interference.

• Show that speedup is achievable with a reasonable amount of iterations (i.e. within the
number of iterations it takes a decent solver to converge) when all temporal cost has been
factored in.

1.3 Thesis outline

The remainder of the thesis is outlined as follows:

• Chapter 2 delves into what computational modelling is and highlights its importance
in various domains. Then it gives details on the SpMV and describes what makes it a
formidable algorithm to accelerate. Then we discuss the technology of FPGAs and their
role as an accelerator. Finally, we discuss the state of the art designs for the SpMV kernel
and how HLS compares with them.

• Chapter 3 defines the problem with partitioning sparse matrices in order to compute
SpMV in parallel. The sparstition algorithm is introduced on a conceptual level as a
solution. We then introduce the concept of executing sparstitioned SpMV in a cluster
environment.

4 CHAPTER 1. INTRODUCTION

• Chapter 4 describes the design of sparstition algorithm which partitions SpMV accord-
ing to user defined parameters (cache size, number of partitions, etc.). Furthermore, it
illustrates the possibility of distributing in a cluster.

• Chapter 5 describes the architecture of the parameterized HLS kernel. This chapter in-
cludes the design both on the block- and code-level. Finally, the task-level pipeline is
explained.

• Chapter 6 implements the designs presented in Chapter 4 and 5, and applies the co-design
strategy.

• Chapter 7 presents the experimental results of the HLS kernel and the sparstition algo-
rithm.

• Chapter 8 summarizes the thesis and highlights the future work.

A high-level schema of the organization of this thesis and the relationship between the chap-
ters is presented in Figure 7.1.

1.3. THESIS OUTLINE 5

Fi
gu

re
1.

1:
T

he
bi

g
pi

ct
ur

e
of

th
is

w
or

k
an

d
ho

w
it

co
nn

ec
ts

to
th

e
ov

er
al

lfl
ow

.

6 CHAPTER 1. INTRODUCTION

Background 2
This chapter discusses the motivation for simulating physical systems and how this is achieved
with scientific computing. The bottleneck in these simulations is most notably the SpMV and
the properties which make it a key algorithm to accelerate are explained. Finally, we discuss the
technology of reconfigurable computing, specifically FPGA (Field-Programmable Gate Array),
and describe what makes it a strong candidate for acceleration.

2.1 Simulating Physical Systems

2.1.1 Motivation

Simulation replaces physical experimentation by the use of mathematical modelling of a system.
The state of the virtual system is defined as variables and the relationships between them, then
the model computes the effect on the system when it is subjected to certain conditions. This
approach can be very cost effective, for example it would be very expensive to manufacture
and test every single variation of an airplane wing to optimize the amount of generated lift.
Additionally simulations may speed up the passage of time by predicting the erosion of different
materials in water pipes without having to test it for years. Finally simulations help find the
effect on systems that are irreversible, for example when finding the optimum drill point in oil
reservoirs.

2.1.2 Iterative Solvers

Given a system of linear equations A which is subjected to conditions defined by vector~b, the
aim is to compute the resulting vector ~x such that x = A−1b. However, in physical systems A
is very large and sparse so the direct computation of its inverse is not computationally efficient
and possibly not even feasible. Instead the solution is approximated with iterative algorithms
that essentially guess the solution ~x(i). Adjustments are made based on the result and another,
updated guess is attempted. A fitting analogy for this class of algorithms is when a target is shot
at with a crooked gun. The location of the bullet is recorded, the aim is adjusted accordingly and
another attempt is made. This process is repeated until the result is satisfactory.

A popular iterative solver is the CG (conjugate gradient) method and its many variants, the
most efficient and verstaile one arguably being the Bi-CGSTAB (Biconjugate gradient stablized
method). The linear system might be characterized by large extremes which translates to large
iteration counts in the search for solution. To alleviate this, a preconditioner is applied to the
system, which is often a costly operation in terms of computation and difficult to optimize, but
can pay off by saving a significant number of iterations.

A key property of iterative algorithms is that the sparse matrix does not change. We will
exploit this when we consider distributing the workload to multiple computational units. Each

7

8 CHAPTER 2. BACKGROUND

one can keep its own segment of the sparse matrix throughout the duration of the solver without
needing to share memory.

The CG methods consist of relatively unintensive tasks such as computing vector norms
and dot products, but also the SpMV (Sparse matrix vector multiplication) which dominates the
computation time therefore making it the bottleneck. This algorithm is computationally ineffi-
cient due to poor temporal and spatial data locality, resulting in a memory-bound kernel which
is difficult to parallelize. The application of a preconditioner does indeed become the bottleneck
on the micro-level, however on the macro-level it accelerates the algorithm and therefore is not
considered an actual bottleneck.

The SpMV is discussed in more detail in the section that follows.

2.2 Sparse Matrix Vector Multiplication (SpMV)

SpMV is a variant of normal matrix-vector multiplication which arrives at the same result. As the
name suggests, a sparse matrix contains a very low density of non-zero values, typically less than
1% and even steeping down to just a fraction of a percent. The sparse matrix is compressed in the
pre-procesing stage and the algorithm reads the encoding used to avoid redundant calculations.
There are many ways to perform the compression, each one requiring a corresponding tweak to
the algorithm.

2.2.1 Compression Encoding

In order to avoid performing a huge amount of redundant calculations, pointers to the non-zero
values of the sparse matrix are stored. A good measure as to when a matrix is sparse, is when
less memory is needed to store these extra arrays than the standard matrix.

The most common (and generic) ones are CSR (Compressed Sparse Row) and CSC (Com-
pressed Sparse Column). There is a wide variety of different compression formats, usually
CSR/CSC variants tweaked to exploit sparsity patterns, summarized in a number of other works
[13][14][15]. The compression performed by CSR/CSC are depicted in Figures 2.1a and 2.1b
respectively.

(a) CSR. (b) CSC.

Figure 2.1: CSR and CSC encodings side-by-side.

2.2. SPARSE MATRIX VECTOR MULTIPLICATION (SPMV) 9

Consider a matrix of size N×N with NNZ (Number of Non-Zeros) non-zeros and a vector
of size N . The vals array is of size NNZ and contains the value of each non-zero in the order
that they appear. There is also an array of pointers to either the row (CSC) or column (CSR) of
each value. In CSR it acts as an index to ~x whereas in CSC it is an index to the result vector
~y. The fundamental difference between the two formats is therefore whether the random access
is performed on ~x or ~y. The rows (CSR) and cols (CSC) arrays are of size N and convey the
information how many elements are in each row/column. SpMV algorithm with CSR encoding
is shown in Algorithm 1 and the CSC can be obtained by retrieving the index for the vals array
instead.

for i← 0 to N do
acc := 0;
for j← ROW_PT RS[i] to ROW_PT RS[i+1] do

acc += x[COLS[j]] × VAL[j];
end
Y[i] = accum;

end
Algorithm 1: SpMV algorithm with CSR encoding

The rows array of CSR is commonly modified to rather store the number of non-zeros of
each row. This modification is performed by subtracting two consecutive values and therefore
the size of rows decreases from N + 1 to N. From Figure 2.1a, rows_sizes is [2,1,3,1,1...2]
because the first row has 2 non-zeros, the second row 1 non-zero, etc..

The compression encoding chosen for this thesis is CSR because it is more memory efficient
since intermediate results must be stored when using CSC. Therefore SpMV will only be in
terms of CSR for the remainder of this thesis.

2.2.2 Properties

The SpMV algorithm has low temporal data locality because each value in the two largest arrays,
vals and cols are used once. The benefit is that these arrays can be streamed, but in turn, makes
the application severely memory-bound as the performance depends on how many bytes we can
supply the kernel with each cycle.

Furthermore, the algorithm has low spatial data locality as well due to the random access to
~x. This property is the source of cache misses if only a part of it can be stored in the cache.

The rows do not have an equal number of non-zeroes so the inner loop has an unpredictable
iteration count. This is an issue for tools that perform static scheduling as we will see in the next
section when we discuss HLS (High-Level Synthesis).

Furthermore, there is a high number of memory accesses in SpMV relative to the number of
operations which we will discuss in the following section.

2.2.3 Computational Intensity

Computational intensity (CI) is a metric for the performance of applications. CI is defined as
the number of operations performed on each byte of data fetched from slow memory and the

10 CHAPTER 2. BACKGROUND

unit is typically FLOPS1/Byte. An application that has high CI performs more computations on
every byte fetched and is therefore limited by the availability of computational units. Such an
application is computationally bound and under these circumstances, the peak performance of
the processor is more or less reached. An increase in the computational power of the system
results in higher throughput.

On the other hand, an application is memory-bound when it performs a low number of op-
erations per byte. If a powerful system has a low supply of bytes, i.e. low bandwidth, then its
computational units will be subject to more idle time. In this case, increasing or saturating the
bandwidth results in higher throughput.

BLAS (Basic Linear Algebra Subprograms) is a collection of standard matrix-vector oper-
ations and is classified into 3 levels according to the CI of the application. The highest level
BLAS3 contains for example matrix-matrix multiplication which performs O(N3) operations to
O(N2) amount of data. The data reuse is high as each row of the first matrix is multiplied with
each of the columns of the second.

Next collection is BLAS2 which includes matrix-vector multiplication (MVM) and performs
O(N2) operations to O(N2) amount of data. There is much less data reuse in MVM as each row
of the matrix is now only used once instead of N times. On the other hand, the matrix can be
streamed to the kernel during the computation and only the vector needs to be stored in memory.

Lastly BLAS1, which includes vector-vector multiplication, performs O(N) operations on
only O(N) amount of data. At most, only the partial sums need to be stored for these routines.

SpMV lies somewhere between BLAS1 and BLAS2, with the amount of data usually leaning
more towards that of BLAS1. It is therefore memory bound and also inherits the undesirable trait
of BLAS2 to have to store the x-vector in local memory due to random access. The rest of the
data can be streamed during the computation of the algorithm.

2.3 FPGA

The process of hardware design has made significant progress since its conception when every
transistor was wired manually. As the number of transistors rapidly grew, hardware designers
became more dependent on automated tools which enabled them to work at a higher level of
abstraction [16]. As the tools developed, the world of hardware design became more accessible.
Consequently, specialized sophisticated circuitry can nowadays be generated and synthesized
by amateurs and professionals alike with technology such as FPGAs (Field-Programmable Gate
Array).

FPGAs contain a vast number of programmable logic blocks which form fundamental com-
putational units such as AND and OR gates, or more complex ones such as combinational func-
tions. The logic blocks are implemented as look-up tables with Flip Flops (FF) as basic memory
units and in combination map the input signals to the memorized output signals. These units,
which reach millions in large FPGAs, are combined with programmable interconnects which
together are capable of forming complex circuitries. This concept is also referred to as pro-
grammable logic (PL)

Nowadays complex I/O elements can be integrated into the PL for performance such as DMA
(Direct Memory Access) and other memory controllers, digital-to-analog controllers etc.. There

1Floating-Point Operations

2.3. FPGA 11

are two specialized components that are close to the PL and connected with high speed intercon-
nects, one is for performing arithmetic operations, DSP48 blocks, and the other is block RAM
(BRAM). Although arithmetic operations can be performed with logic blocks, it is much more
efficient to use DSP48 for more complicated procedures such as floating point MAC (Multiply-
Accumulate). Likewise, there is significant overhead in forming a lot of memory using only FF,
and the BRAMs have the flexibility to coalesce.

2.3.1 ZYNQ

ZYNQ is a small-scale chip developed by Xilinx and is found on some of their development
boards, such as Zedboard and PYNQ. ZYNQ consists of a processing system (PS), containing
an ARM Cortex-A9 CPU, and programmable logic (PL). On the PS side, all pre/post-processing
is executed and data is offloaded to the PL for acceleration, allowing developers to place their
own specialized IP cores. The high-level architecture of the chip is depicted in Figure 2.2.

Figure 2.2: Interconnection diagram of the ZYNQ architecture.

There are four different ports on the PS/PL interface. Note that there is only one arrow
entering/exiting each interface type for simplification. Each port has its own channel so there
should be e.g. four arrows entering/exiting the HP ports box.

• S_GP: General Purpose 32-bit wide ports which are slave to the PL. Used to transfer data
from PL.

• M_GP: Same as S_GP, but are used to transfer data or give instructions to the PL.

• HP: High Performance ports, either 32- or 64-bits. Similar to S_GP.

12 CHAPTER 2. BACKGROUND

• ACP: A single 64-bit port which connects to the L2 cache of the processor, through the
Snoop Control Unit (SCU) which is a cache coherency controller for L1 and L2.

The HP ports have a 1KB FIFO to mediate concurrent read/write requests. The theoretical
bandwidth of these ports at 150MHz are 1200MB/s and 600MB/s for 64- and 32-bits respec-
tively. Additionally, two HP ports connect to the same channel of the DRAM controller as seen
in the diagram. The GP0 port is used by the PS to communicate instructions on which data to
access.

A naive way to transfer data to the PL is to write to the memory location (obtained from the
block design in Vivado) of the IP block’s registers which have been allocated to store the input
to the kernel. This approach is useful in testing but is extremely inefficient due to latency in the
AXI bus.

The other approach is to use DMA (Direct Memory Access) which provides memory access
to AXI-stream peripherals independent of the ARM processor. The DMA is an IP block and
can be configured to operate in burst mode to a maximum of 256 data pulses, which blocks the
CPU from using the memory bus during the transaction. Alternatively in the transparent mode,
data is only transferred when the CPU executes tasks which do not require access to the memory
bus. More generally, the DMA converts Memory Mapped data (AXI4) from the DDR to AXI4-
Stream (MM2S) and back (S2MM). Essentially AXI4-Stream is for peripherals that typically
focus on a data-centric and data-flow paradigm where the concept of an address is not present
or not required [17].

There are two Data Movers (DM) to consider for the DMA, Scatter-Gather (SG) and Sim-
ple. SG mode does not require the memory to be physically contiguous and can transfer larger
sizes (≥8MB) at the cost of more latency and hardware resources. This mode also allows the
transfer of input sources to multiple output destinations (i.e. buffering). The simple mode on the
other hand requires the data to be physically contiguous and only allows the transfer to a single
destination.

2.3.2 High Level Synthesis

One of the major barriers for FPGA’s to enter the mainstream is the development time. It can
take seasoned hardware designers months to develop efficient architectures as there are many
nuances which are difficult to account for. Finally, once a design is running as intended in
simulation, it may fail to synthesize or not meet timing requirements. This is the impetus for the
development of HLS (High Level Synthesis) which is becoming increasingly popular. HLS is
one level higher in abstraction from writing hardware designs in HDLs (Hardware Description
Language) where the user is not concerned with the design on the register-transfer level (RTL).
This has opened the gates for groups of people not familiar with hardware design to synthesize
circuits from algorithmic description. They are written in a familiar language such as C++, is
translated to the RTL equivalent enabling more focus on the architectural aspect of the problem.
There exist a number of advanced HLS tools but in this work Vivado HLS is used.

2.3.2.1 Design Optimizations

The HLS tool may not be able to find the most efficient implementation as it depends on many
factors such as the goal of the user. It is also a difficult problem for tools to find certain ex-

2.3. FPGA 13

ploitable characteristics within the code such as parallelism. The user may direct the tool in the
design space according to the goals of the project by the use of #pragmas. They are lines of
code inserted where the desired effect on the design should take place and may help with any-
thing from optimize loops to the organization of the BRAMs. Below is a brief description of the
most widely used pragmas.

A process can be pipelined when it consists of instructions or tasks which can be processed
in parallel. For example, addition may be divided into three main stages: reading the input,
calculation, writing the result. Therefore it is possible to pipeline for example three additions
by reading in new input while the second addition is being computed and the third one being
written. This concept is illustrated in Figure 2.3, where the non-pipelined instruction execution
is demonstrated to take more cycles than if independent operations were overlapped

Figure 2.3: Instruction level pipelining [1].

This optimization is applied to loops with the pragma #pragma HLS PIPELINE II=x,
where II stands for iteration interval. In the example in Figure 2.3, II = 1 because new inputs are
accepted every cycle. The pragma is only effective when the loop has a determinate amount of
iterations, because the HLS tool must perform scheduling of operations in the circuit.

Pipelining is not limited to instructions but can also be put into effect on the task-level via
the use of #pragma HLS dataflow. Function calls which follow this pragma are executed in a
pipeline given some constraints such as no conditional execution of tasks, no loops with multiple
exit conditions etc..

Some loops do not carry dependencies between iterations such as adding together two arrays
and writing the result to a third one. These loops can be optimized with a directive known as
loop unrolling and is effectuated with the pragma #pragma HLS unroll factor=x. The variable
x determines whether the the loop is to be fully or partially unrolled. When a loop is fully
unrolled, every operation is done in parallel and optimum performance is achieved, however this
becomes expensive in terms of resources very quickly.

To achieve parallelism, it is important to consider the number of possible reads every cycle
which is determined by the number of ports. For this reason Vivado HLS offers #pragma HLS
array_partition which gives control to the user how data is organized in memory. Some of the
possibilities with this pragma include writing to two BRAMs in blocks or cyclically, or storing
each value in a register.

14 CHAPTER 2. BACKGROUND

2.3.2.2 Static Scheduling

Current HLS tools perform static scheduling of every operation that is to take place within the
generated circuitry. In other word, every arithmetic operation and memory access is given a
fixed time slot in synthesis. This does not pose problems for regular algorithms such as standard
matrix-vector multiplication. However, SpMV consists of rows that have a varying number of
non-zeros which manifests as the inner loop of varying number of iterations in Algorithm 1. The
naive solution is to zero-pad each row to the same size, however this issue is currently under
active research, as we will see in Section 2.3.3.

2.3.2.3 Development Cycle

The first step when developing HLS kernels is the functional verification, which compiles the
code and executes the binary like with normal C code to ensure that that the logic works as
intended. Then synthesis is performed which does not always succeed in which case adjustments
need to be made to the design. If it does succeed, then statistics such as resource usage and clock
period, are available which may trigger the designer to do some further optimizations. At this
stage, control diagrams are also available which reveal which tasks are performed in parallel or
not. The final step offered by Vivado HLS and also the most time consuming one is the C/RTL
co-simulation. This step takes the functional verification in C a step further by also running it
using the generated hardware description code. Once this is completed, a waveform diagram is
available to the user and if the tests succeed, then the design is functionally sound.

The RTL is exported to an IP (Intellectual Property) and added to the next tool, Vivado.
With this tool, the design of the programmable logic takes place which is ultimately used to
generate the bitstream. The kernel IP is connected to the processing system via interconnects
and/or memory controllers such as the DMA. Once the bitstream has been generated, the ultimate
resource usage of the design is available along with other statistics such as power usage and
whether the design meets the timing requirements.

2.3.3 FPGA Acceleration of SpMV

There exists a great deal of FPGA designs which target the SpMV. As we see from Table 2.1,
the performance is directly related to how much bandwidth is available. This observation aligns
with our earlier statement that the algorithm is severely memory-bound. Therefore much of
the novelty that drives the state of the art forwards is better utilization of bandwidth. A recent
novelty [18] proposed exploiting parallelism across rows by introducing multiple pipelines, or
channels. An impressive property of this design is that it scales with bandwidth as multiple rows
can arrive to the kernel each cycle and start processing without much overhead. It is estimated
that even GPUs are outperformed given their bandwidth tier of almost 200GB/s. Other designs
have followed suit such as [11][2], all of which are capable of sustaining enormous amount of
bandwidth for FPGAs. The efficiency of these designs boils down to producing multiple values
for the output vector per cycle.

The state of the art is primarily manual designs except for [2] but it is implemented specifi-
cally for Maxeler dataflow engines and will be discussed in more detail in Section 3.4. The only
Vivado HLS design [3] for SpMV that we found exhibits performance that is significantly worse
than their manual counterparts. Much of the research effort which deals with SpMV-specific

2.3. FPGA 15

Table 2.1: Comparison of SpMV Works

Works Device
Benchmark

Performance
(GFLOPs)

Bandwidth
(GB/s)

Name Dim Nnz (%) Single Double Single Double

[19]
Virtex-II Pro
XC2VP100

bcsstk06 420 4.45 1.1997 0.9934
5.6 7.8mcfe 765 4.12 0.9187 0.7607

af23560 23560 0.087 0.8786 0.7275

[2] Stratix V
raefsky1 3242 2.80 3.99 38.4

epb1 14734 0.044 0.69 19.2
scircuit 170998 0.0033 0.08 19.2

[20] Virtex-5 SX95T
FEM/spheres 6.01m 0.087

17.64 35.74Wind Tunnel 11.52m 0.024
Economics 1.27m 0.0030

[11] Convey HC-2x
raefsky1 0.55*3.32

80epb1 0.41*2.50
scircuit 0.36*2.20

[18] (estimated) Altera Stratix V D5
dw8192 8192 0.062 2.27

80
epb1 2.45

[3] (HLS) Virtex-7
bcsstm25 15439 0.0065 0.011

Simulationpoli3 0.014
dw8192 0.024

problems is focused on dynamic scheduling to efficiently pipeline the inner loop of Algorithm 1
[9][10] and managing off-chip memory accesses [21][22] when~x is primarily stored in DRAM.
There seems to be little to no investment in developing HLS to receive more bandwidth and
producing results from multiple rows through multiple channels each cycle. A part of the reason
is that managing multiple pipelines to run in parallel in Vivado HLS is a task with no straight-
forward solution, if even possible. A naive solution is to assign a port to each pipeline, but the
problem with our platform is that each port is 64-bits wide at most. Also to have a port for each
pipeline does not scale well.

Figure 2.4: High level concept of how HLS design can be made more scalable with bandwidth.

In this work we exploit parallelism across rows thereby activating multiple pipelines in par-
allel. We do not make any tweaks to the HLS design itself but rather, we partition the problem
and distribute the workload to multiple kernels, in theory on the same fabric or even across mul-
tiple chips/devices/fabrics etc.. Since this is not a direct improvement to HLS, this concept can
be applied to any architecture including the ones in Table 2.1. A high-level illustration of this
concept is seen in Figure 2.4 and a more detailed discussion is found in Section 3.2.3.

16 CHAPTER 2. BACKGROUND

2.4 Conclusion

In this chapter, we covered all the key concepts behind this thesis. First, we explored the motiva-
tion behind simulating physical environments and how scientific computing is the driving force
behind them. Then we narrowed the focus to cover SpMV, a recurring bottleneck within that
domain. The following section delved into FPGAs and gave details of the ZYNQ architecture
which is used to develop the SpMV kernel in this work. Furthermore, we described the main
concepts and limitations of HLS. Finally, we discussed the related work on SpMV kernels de-
veloped for FPGAs and argued that principle of maintaining multiple parallel pipelines is key to
optimum performance.

The chapter which follows dives into a novel partitioning scheme for the SpMV problem,
and how that may help boost the performance of not just HLS kernels, but any implementation.

Partitioning SpMV 3
In the previous chapter, we described the context of this work and the technology used. We also
introduced SpMV which in this chapter we explain what makes it a challenging algorithm to
partition in order to distribute the workload. First, we discuss two naive solutions and point out
the difficulties that arise with each one. We then introduce a solution which attempts to alleviate
the downfalls of the aforementioned naive approaches which we call sparstition. This algorithm
basically consists of grouping together adjacent rows and compressing out unused columns. A
high-level example with a concrete matrix, namely NORNE, is depicted in Figure 3.1.

Figure 3.1: The two major steps of the sparstition algorithm which will be introduced in tihs
chapter.

IM’s stand for Index Maps and they store the information from the mapping procedure.
They will be further explained in Chapter 4. This use case will be a recurrent theme throughout
this thesis.

3.1 Naive Partitioning Schemes

This section describes two significant issues with partitioning that arise when naive schemes are
applied. First, we describe the merging problem from column-wise partitioning then the issue
with row-wise partitioning.

3.1.1 Column-wise Partitioning

Column-wise partitioning cuts ~x at some point k and which corresponds to a vertical cut in the
sparse matrix. Consider Figure 3.2, where ~x is cut in half so k = N

2 where N is the dimension
of ~x. This produces two smaller vectors ~x1 and ~x2 each of dimension N

2 (±1 depending if N is
odd) and the matrix is split so that A1 contains the first half of the columns while A2 the second
half. The two A partitions are then multiplied with their corresponding ~xp which produces two
intermediate result vectors, both of size N since each partition still has N rows.

17

18 CHAPTER 3. PARTITIONING SPMV

Figure 3.2: Left image shows the partitioned matrix with the chosen cutting point. Middle image
is SpMV performed on each partition with smaller ~xp’s. Left image shows the merging necessary
to obtain~y in the post-processing stage.

The benefit of this approach is that the size of the ~x is surgically cut so the ~xp’s can be
tailored to fit the available on-chip memory. However, this approach produces partial result
vectors y1andy2 which must be merged to obtain the final result. This extra step is expensive in
terms of hardware and carries communication overhead in a cluster-environment. Alternatively,
the reduction may be performed in software by the host, but that is a costly operation especially
as the number of partitions grows. Another downfall is that the partitioning produces zero-rows,
shown by the empty area of A0, which need to be efficiently processed in the communication
with the HLS kernel presented in Chapter 5.

3.1.2 Row-wise Partitioning

Consider the alternative case where instead of cutting ~x we cut the sparse matrix horizontally.
Figure 3.3 shows an example where the halfway point is chosen, so again k = N

2 . Since each
matrix partition Ap contains N number of rows, the entire~x is needed to compute every ~yp.

Figure 3.3: Row-wise partitioning computes the SpMV in parallel but requires that the entire ~x
is stored in cache.

This is a problem if the aim of the algorithm is to fit large vectors in small caches, but the

3.2. SPARSTITIONING 19

benefit is that no merging operation is required. We see this in the figure where ~y0 and ~y1 are
both of size k±1 and each consist of a complete segment of the final result.

3.2 Sparstitioning

3.2.1 The Concept

A key property of row-wise partitioning is that it does not require the expensive merging step
in post-processing. Note that when we split the matrix in this fashion in Figure 3.3, that there
is a presence of zero-columns in each partition. This gives rise to the speculation whether it is
efficient to iterate through each non-zero of each partition and shuffle the columns in the order
that they appear. This is the core of the sparstition algorithm which we define formally in the
following chapter. Consider again a matrix A, vector~x and k determining the number of rows in
each partition, as presented in Figure 3.4a.

(a) The sparse matrix and vector to be multiplied. k marks the point where the cut
will take effect. The ~y0 and ~y1 labels refer to Figure 3.4b below.

(b) A after the split contains zero-columns which are compressed out by traversing
the non-zeros and assigning them new local columns as they appear.

Figure 3.4: The concept of the partitioning algorithm. The columns of the Ap’s are shuffled
according to the order in which they appear.

To compute the first value of the result vector, ~y0, we need to calculate a00× x0 + a05×
x5, similarly to normal matrix-vector multiplication. Therefore we must keep track of which
columns appear in each partition as they correspond to which ~x values are required. This is
handled with Index Maps in the design which are responsible to keep global to local index
mappings.

20 CHAPTER 3. PARTITIONING SPMV

Once k has been determined, in this case, it is the half-way point, notice in the middle
diagram that both partitions have two zero columns each, namely 3 and 4, and 0 and 2. This
means that ~x[3] and ~x[4] are not needed to compute the upper partition and can be compressed
out.

The compression consists of traversing the designated rows of each partition, and to shuffle
the columns in the order they appear in. For example, the first column of A0 is the same A. The
next column, however, is column 5 of A, which is reshuffled to the second column of A0. The
zero columns never occur and therefore do not appear in the resulting~x partitions, ~xp’s.

A quick sanity check, facilitated by the left image, will reveal that the first half of the result
vector~y=A×x will be equal to ~y0 =A0×x0 and the second half equal to ~y1 =A1×x1. Therefore,
the algorithm has effectively avoided the reduction step.

The characteristics of the algorithm are that each partition may map ~x indices (globa) to
different ~xp (local) indices, depending on the order in which they appear. For example, ~x[5]→
~x0[1] but ~x[5]→ ~x1[4]. Also, the compression results in smaller ~xp’s, which may enable SpMV
to be computed with N that normally does not fit in the cache of an accelerator. Also, the order
of the summation changes occasionally. For example when computing row 2 of A,~y[2] = a22×
~x[2]+ a25×~x[5] but ~y1[2] = a25×~x[5]+ a22×~x[2]. Finally, the size of ~x0 is rarely equal to the
size of ~x1.

The algorithm creates disjoint sets of A partitions, each with a new, compressed ~xp. The
SpMV can now be computed in parallel, or be made to fit on small on-chip caches. These sets
can be thought of independent streams which can be solved in parallel. The algorithm is also
implementation agnostic, and therefore one half of the matrix could be solved with an FPGA
while the other with a GPU.

3.2.2 Exposing Paralellism and Task-level Pipelining

In this section the potential for parallelism and task-level is exposed. The concept is illustrated
with a sequence diagram in Figure 3.5 but its implementation belongs to future work. In this
thesis, the sparstition algorithms partitions sequentially as shown in Figure 6.2. In this exam-
ple, two unpartitioned reference runs are computed sequentially to demonstrate that the cost of
sparstition is ideally covered in subsequent iterations.

Figure 3.5: Sequence diagram when optimized for parallelism and task-level pipelining on a
single machine. This example results in 8 partitions.

We can see in Figure 3.4b that the sparstition operation for each partition is independent from
each other and thus can be performed in parallel. However in order to unlock this parallelism

3.2. SPARSTITIONING 21

we must first slice the matrix data arrays (values, col_ptrs, and row_sizes). The row_sizes
sizes array corresponds directly to the partitioning point we have chosen, but to slice the other
arrays requires us to accumulate each sliced row_sizes sub-array. The accumulated results of
previous slices is refered to as pre_nnzsp. This concept is illustrated in Figure 3.6.

Figure 3.6: Figure that shows slicing of values and col_ptrs arrays by accumulating row sizes
before sparstition takes place.

The pointer for the first partition pre_nnzs0 is trivial because it starts the values and
col_ptrs arrays and is thus always 0. The sparstition can therefore start for P0 as soon as
the matrix data has been loaded to memory. The accumulation step can be optimized by using a
binary tree, at the cost of more resources. Furthermore, row_sizes is an array of integers which
is relatively cheap and fast to reduce.

Once the non-zeros for each partition is available, the rest of the sparstition tasks can take
place, all in parallel. The sparstition is a one-time cost in the pre-processing stage, afterwards
only building of ~xp’s is required which is relatively cheaper and parallelizable to boot. This is
clarified further in the following section.

3.2.3 Potential for General Improvement

Although sparstition is used to improve HLS performance in this work, an important property
which is not exploited is that it can be used in combination with any design. In other words, it is
implementation agnostic. Once the sparse matrix has been partitioned, all that needs to be done
is to build each ~xp and how each SpMV is computed makes no difference. Thus, one partition of
the matrix could be computed with GPUs while another with FPGAs, or state-of-the-art kernels
could be deployed on multiple machines, each computing in parallel. This concept is illustrated
in Figure 3.7.

Figure 3.7a illustrates the standard single accelerator approach where the entire A matrix is
computed. The accompanying Figure 3.7b shows the sparstition step which groups and com-
presses adjacent rows and keeps this information in Index Maps (IM). IMs are a vital component
of the design which will be discussed in the next chapter. The duos (Ap and IMp) are distributed
to whatever disjoint available computational units (CU), different kernels on the same fabric or
even machines in a cluster, where they are stored through the duration of the solver. Recall that
an iterative algorithm does not update the input sparse matrix.

22 CHAPTER 3. PARTITIONING SPMV

(a) A single CU from a high perspective.

(b) Multiple CUs which may consist of different types of accelerators.

Figure 3.7: Proposal how sparstition may accelerate the state-of-the-art by encasing their imple-
mentations in computational units (CU) and multiplying them. It is possible in theory to only
distribute needful~x values to each CU to save bandwidth.

Each time the solver needs to compute SpMV,~x is distributed, or broadcast, to each machine
where ~xp is built. There is potentially room for optimization in this step, as the building of ~xp is
fully parallelizable. Ideally, only the required values are distributed to each accelerator to save
bandwidth and this is possible with empty_regions (ER). ERs are produced when compress-
ing Index Maps and contain information on where the non-zero columns are located. More
information on ERs is found in Section 6.2.2.

There are indeed many new tasks introduced involved in transferring data to and from each
CU in a cluster environment. We aim to address these new challenges by exposing where the
parallelism lies in the following section.

3.3 SpMV with Big Data Frameworks

There is no upper limit on how large a sparse matrix may grow, especially now in the era of Big
Data. Solutions need to be found to linear systems which are growing in size due to, for example,
higher resolution instruments. The computation of such a large-scale problem is a daunting
task for a single machine as its limit will always eventually be surpassed. This motivates the

3.3. SPMV WITH BIG DATA FRAMEWORKS 23

partitioning of the problem into disjoint streams as discussed in previous section, and assign
each stream to a dedicated node in a cluster. The implementation of such a cluster solution is
out of the scope of this thesis, but a potential schema will be discussed in this chapter for future
work.

3.3.1 Cluster Schema

There are two types of nodes in the schema under consideration, the driver node and the worker
nodes. Usually a master node is included which manages the shared storage but for this explana-
tion it has been left out. The entire process in a cluster environment is illustrated in Figure 3.8.

The initialization is shown separately but in iterative algorithms it is reasonable to assume
that the time it takes will be masked by the speedup gained from the partitioned problem. It is
divided into 4 tasks, the first one (1.1) loads the data into program memory, task (1.2) then uses
the rows array to compute the pointers labeled as ptri but in the implementation the identifier
used is pre_nnzs. These pointers are computed by adding up the sizes of the rows belonging to
the partition. This is necessary in order to find out where a partition begins in the values and
column pointer arrays. Once the number of non-zeros for each partition has been computed, the
array can be sliced and sparstition performed in parallel. Next step (1.3) is then to transfer the
sliced matrix data arrays to its designated node where sparstition (1.4) is performed. The global
column pointers do not need to be stored intermediately, but if the implementation requires it,
they can be adjusted in-place. The output Index Maps are cached on each node.

Once initialization is completed the computation of the solver can start, which may be ac-
celerated even though it is not included in the schema. When SpMV is encountered, the vector
is streamed/broadcast to the worker nodes (2.2). The simplest solution is to transfer the entire
vector but optimally only the desired values. This may be possible in some Big Data frameworks
by making use of the empty_regions introduced into Section 6.2.2 since the vector values are
needed in sequential order, but that needs to be researched further. Finally each node builds its xp

and computes SpMV which it streams back to the driver that continues its computation. Recall
that the sparstition algorithm is implementation agnostic so each node may compute its part of
the result using different architectures or accelerators. Optimally, the driver pipelines the SpMV
computation with the rest of the solver algorithm.

3.3.2 Sequence Analysis of the Cluster Tasks

To understand which tasks can be run in parallel and where the pipeline potential lies, consider
Figure 3.9 which is an extension of Figure 3.5 for cluster.

The main difference is that now reading of the matrix data and the transfer tasks to and from
worker nodes is accounted for. The first set of sparstition takes place shortly after the transfer of
matrix data has started, between Stage 1 and 2, as it is assumed that these tasks can be pipelined
in Big Data frameworks. As before, the first node can begin sparstition first due to not needing
pointers from task (1.2). In Stage 3 the first Worker Node is ready to accept jobs and the transfer
of~x begins. In Stage 4 the rest of the Worker Nodes are ready and in Stage 5 the first iteration is
complete enabling the next iteration to begin.

Deploying the solution to a cluster is an expensive and time-consuming task, especially
if all the parallelism is to be exploited. Before that step is taken, the concept is first tested

24 CHAPTER 3. PARTITIONING SPMV

Figure 3.8: Schema of cluster execution of a solver with SpMV distributed to multiple nodes.
Colors of tasks correspond to Figure 3.9 and the sparstition images are found in more detail in
Figure 3.4.

3.4. RELATED WORKS 25

Figure 3.9: Sequence diagram of tasks running in a cluster environment. Labels in legend refer
to Figure 3.8.

on a Zedboard to verify that there is a speed-up when pre-processing time is factored in. We
execute each partition in isolation and take the longest partition to mean the total run time of
the application. Then we compute the total execution time from the start of sparstition until the
result vector has been streamed back to the DRAM. None of the exposed parallelism is exploited
in the sparstition algorithm so there is much room for improvement in the future.

3.4 Related Works

We discuss in this section firstly CASK which is a promising solutions which achieves multiple
pipelines within a single kernel and we compare it with our solution. Then we recount some of
the more interesting partitioning solutions that have currently been published.

3.4.1 CASK

We stretched the importance of multiple parallel pipelines in Section 2.3.3. Additionally, we
claimed that HLS will continue to lag behind solutions that are designed manually in HDLs
(Hardware Description Language) until this feat is achieved.

CASK (Custom Architectures for Sparse Kernels) [2] is very promising but it is implemented

26 CHAPTER 3. PARTITIONING SPMV

on Maxeler dataflow engines and is not shown to be realizable with standard HLS tools. The pre-
processing stage shares similarities with sparstition as it performs partitioning by first grouping
adjacent rows together but the fundamental difference lies in the columns processing. Instead of
shuffling columns like in the sparstition algorithm, independent sets of columns are formed with
an operation named blocking. This step guarantees linear access to the ~x and therefore shares
similarities with CSC (Compressed Sparse Column), although the matrix is indeed encoded in
CSR. The intermediate results of every row in the partition must therefore be stored to be reduced
in the following stage with the so-called inter-block reduction unit. Thus blocking combines ele-
ments of CSC in a clever way which has the advantage of linear access of~x, but requires storing
and reducing intermediate values. This issue is avoided by column shuffling, but each ~xp must
be built before computation starts. Lastly, CASK is not implementation agnostic as its efficiency
is only available to designs that access~x linearly. On the other hand, sparstition enables multiple
dataflow engines running CASK to solve a large-scale SpMV problem in parallel. Table 3.1
summarizes the above comparison.

Table 3.1: Comparison between CASK [2] and sparstition.

CASK sparstition
Groups adjacent rows

Supports Multiple Streams
CSC-esque processing of~x Shuffling of columns

Merging of intermediate results necessary
Requires building of
~xp each iteration

Implementations processing~x sequentially Implementation agnostic

3.4.2 Partitioning Solutions

One of the most popular ways to perform partitioning in SpMV is to transform the matrix A
into a graph GA. Each vertex represents a row and an edge is drawn between them if they have
a column index in common. The goal is to find a partition which minimizes the number of
edge cuts, because when connected vertices belong to two different partitions, the corresponding
~x-value must be transferred twice which which means communication time is higher.

In [23], the authors develop a multi-level partitioning scheme which basically coarsens the
graph so that it shrinks to a few hundred vertices and bisection is computed. Then the bisected,
smaller graph is uncoarsened, with each step further refining the partition, and eventually the
result is projected on the original graph. The partitioning time is relatively long compared with
expected run-time of SpMV on the original matrix. For example, to perform a 256-way parti-
tioning on ADD32, a matrix of 23884 non-zeros, just over a second is required which is still a
significant improvement over the compared works in the paper. The benefit is, however, that
the resulting partitions have similar number of non-zeros. This case was not considered for this
thesis since the HLS kernel treats every row as if they were the same size. As a result, partitions
with the same amount of rows have effectively equal amount of non-zeros. This is discussed in
more detail in Section 5.3.

This partitioning scheme is used within AmgX, a library for NVIDIA’s CUDA framework
which accelerates methods in finding a solution to sparse linear systems [24]. Once the matrix

3.5. CONCLUSION 27

has been partitioned, the diagonal blocks are shifted to the left by changing the column indices,
resulting in the blocks to be stacked in a vertical line. This is similar to the sparstition algorithm,
however the matrix has been partitioned into blocks, so column-wise and row-wise, in [24] which
gives rise to a new classification of rows and vector elements. Rows are classified into interior,
boundary and halo rows where interior rows fit entirely within the diagonal block, boundary rows
have columns outside the block as well and halo rows are entirely without. In a similar fashion,
~x is classified into local (boundary and interior) and halo elements, with the local elements
appearing first in the~x followed by the halo values appended to the end.

The SpMV takes part in two stages. The first one computes the interior rows and overlaps it
with the communication of the halo elements of ~x. In the second stage, the remaining compu-
tation for the boundary elements takes place. The merging of intermediate result vectors is not
required in this library similar to sparstition.

3.5 Conclusion

In this chapter we began describing two naive partitioning schemes and pointed out the problems
with each one. We then described our leverage of them with the sparstition algorithm in terms of
avoiding expensive post-processing and exceeding caches smaller than N, the dimension of the
problem. This is summarized in Table 3.2.

Table 3.2: Comparison of two standard partitioning schemes with the work of this thesis.

Partitioning Scheme Size of Cache (SC) Required
for Each Partition Merging Necessary

Column-wise N
NP

X
Row-wise N 7

sparstition N
NP
≤ SC ≤ N 7

We then exposed parallelism in the sparstition algorithm to be exploited in future work, but
essentially each partition can be sparstitioned in parallel once the matrix arrays have been sliced.
We finally transferred our findings to a hypothetical cluster environment where an attempt was
made to identify tasks that must take place on a conceptual level. Lastly, we finished the chapter
with related work. Special attention was given to CASK which generates multiple streams within
a single kernel, and pointed out the differences to sparstition. We then briefly explained the state
of the art partitioning schemes which aim to balance out the number of non-zeros with advanced
graph partitioning techniques.

The following chapter outlines the design of the sparstition concept introduced in this chap-
ter. The chapter describes

28 CHAPTER 3. PARTITIONING SPMV

The Sparstitioner Design 4
We introduced the concept behind sparstition in the previous chapter and exposed the parallelism
which can be exploited for future implementation. In this chapter, we look at the solution more
concretely and present the design of the Sparstitioner, the framework which encases the
algorithm. The framework consists mainly of the sparstition algorithm and the management of
the partitions. The main feature is that the framework is parameterizable, so that, for example,
the partitions can be made fit in the cache of the target accelerator. Finally, we look into load-
balancing and we explain that there are two ways to perform it.

4.1 Overview

4.1.1 Definitions

We define the following terms for this thesis that arise in this chapter.

• sparstition is the novelty of this thesis and the term is derived from the combination of the
words sparse and partition. It is an algorithmic step which consists of grouping together
adjacent rows and compressing out zero-columns which appear as a result of the first
step. The compression is performed by column-shuffling. The resulting compressed
partitions are sparstitioned.

• Index Map is a data structure which exists for each sparstition and holds mappings from
global column pointers (pre-sparstition) to local column pointers.

• Sparstitioner is the framework which consists of two functions. Namely performing
sparstition and processing Index Maps. It is also capable of meta-functions, such as
writing results to files.

4.1.2 Design Goal and Requirements

The goal of sparstition is to split the SpMV computations into disjoint sets with no expensive
operations in the post-processing stage. This enables parallel computation between computa-
tional units (CU) that do not necessarily share memory, and with each one computing a set of
rows. There are two main reasons to perform partitioning, one is to distribute the workload to
multiple CUs for speedup, and the other to split a large~x so that each segment fits in the available
cache of a separate accelerator. In the latter case, a single sparstition may not suffice which will
require sparstition to take place recursively until constraints are met.

To summarize, the goal of the sparstition algorithm is the following:

• Split the problem into disjoint streams, taking into account the problem characteristics
(e.g., input array sizes) and hardware constraints.

29

30 CHAPTER 4. THE SPARSTITIONER DESIGN

• Recursively split the problem until it meets the constraints.

• Functionally verify the correctness of the partitioning.

• Apply safeguards to handle cases when an ineligible matrix is to be processed.

4.1.3 Algorithm Parameters

The parameters are as follows:

• Floating point precision (single/double).

• Maximum size of each ~xp.

• Number of partitions (NP)

Enable GREEDY (see Section 4.2.1).

• An identifier of the target matrix.

• Write results to external files enabled.

Output location of results.

Zero-pad to the bandwidth (see Section 5.3).

• Method of processing Index Maps (see Section 6.1.2.

4.2 Algorithm Design

Given a sparse matrix A that we want to partition, the first thing to consider is where is the
optimum point so that the result is as balanced as possible. This is important especially in cluster
environments where the total execution time of the application is determined by the machine of
the longest duration. However, for this work it will not make much difference as long as the
number of rows is kept equal for reasons clarified in Chapter 5. Therefore each time sparstition
is performed, the numbers of rows is split evenly.

Let us expand the concept presented in the previous chapter in Figure 3.4 with a more con-
crete example. Figure 4.1 splits the matrix A in half as in the previous example.

Figure 4.1: Splitting up A to A0 and A1, each with no_rows amount of rows.

With the new Ap partitions, we notice again the presence of zero columns, for example A0
has zero-columns 6-8 and 11. If we perform a compression by creating a mapping without them,

4.2. ALGORITHM DESIGN 31

then we have effectively created smaller ~x segments, or ~xp’s. Let us define an Index Map from
the global~x indices to local ~xp indices, for each partition. Each map is made by iterating through
the columns pointers of the non-zero values and sequentially assigning them new pointers as new
columns occur, as seen in Figure 4.2a. In other words, the matrix data is split and compressed
which results in~x being transformed into smaller ~xp’s as seen in Figure 4.2b. This combination
of tasks is the sparstition algorithm.

(a) Constructing Index Maps which map ~x indices to xp ones, for every partition.
The matrix is parsed row-by-row, from left to right, and when a "new" column is
encountered (shown as blue squares), a new mapping is created. Yellow squares are
initialized and red ones are uninitialized thus denoting a zero column.

(b) The compressed partitions. The zero-columns have been removed

Figure 4.2: The partition compression process

There exist three different implementations to keep track of which mappings have been made
which are discussed in detail in Section 6.1.2. For now, assume that each Index Map has every
value initialized to -1 to indicate empty mapping. Once the initialization is complete, the rows
array is sliced into two parts and the column pointers which belong to those rows are parsed.
When a new column pointer is encountered, a new mapping is made in the Index Map and the
original column pointer is adjusted. So in the example of IM1 in Figure 4.2a, the col_ptrs
array is [6,6,7,8,...]. The counter of the new ~x1 starts at 0, which is assigned the first column
encountered, namely column 6. Column 6 appears again but since Index Map [6] 6= −1, a
new mapping is not made but only the column pointer is updated. Then column 7 is parsed
which creates a new mapping with the subsequent value 1. Finally, the col_ptrs array becomes
[0,0,1,2,2,3,4...]. Note that the Index Maps only need to be constructed once, and can be used

32 CHAPTER 4. THE SPARSTITIONER DESIGN

to split any~x. This is an important property of sparstition as it can be regarded as one-off cost.
We will make extensive use of this property in the implementation.

At this point a couple of metrics are at our disposal. The obvious one is the no_rows, which
is under complete control in this partitioning scheme. The second metric is nnzs which is the
number of non-zeros in each partition, in the example above nnzs[0] is 13 and nnzs[1] is 14.
These metrics are obviously not affected by sparstition and are used to slice col_ptrs and
values array back in Figure 3.6. Finally there is the number of non-zero columns, in other
words the size of the resulting ~xp’s or new_x_size. As can be seen, this metric is determined
by the nature of the rows within the partition. If a resulting ~xp still does not meet the memory
constraints, i.e. there are too many non-zero columns in the partition, then another sparstition
needs to be performed.

4.2.1 Multiple Partitioning

In order to design a scalable solution, the sparstition algorithm must be able to partition the
SpMV multiple times resulting in a corresponding number of partitions (NP). Two cases give
rise to this need, namely:

1. The problem must fit on a single accelerator with limited amount of cache.

2. There are multiple accelerator and each one should process at least one partition.

To accommodate the first case, the parameter CACHE_SIZE is exposed to the user which,
along with the floating point precision, determines the maximum size of each ~xp. The bene-
fit of performing bi-partitioning is that there is only one degree of freedom. If more degrees
of freedoms were added, such as in tri-partitioning and beyond, then the complexity increases
polynomially. This approach is practiced commonly [23].

The parameter NO_PARTITIONS is exposed for the second case and does not necessarily
have to equal the number of accelerators. The two parameters may work together in case
NO_PARTITIONS for the given CACHE_SIZE constraint.

4.2.1.1 Meeting the CACHE_SIZE constraint

The optimal solution to the first case is found recursively as seen in Figure 4.3. This is also
defined as recursive bi-partite partitioning. The algorithm starts with a single sparstition and
since the example matrix has halves of different densities, ~x1, which corresponds with the lower
half, consequently does not meet the constraints. This triggers sparstition operations until each
~xp is small enough for the available cache.

The recursive partitioning is formulated with a binary tree where the root represents~x, and
the leaves ~xp’s. The node is a representation of which rows have been assigned to which partition.
The red nodes convey that partitioning has been performed on that segment of the matrix, and
all of its associated memory can be freed. The labelling of the white nodes indicates where the
rows have been assigned. So in Figure 4.3 to the right, the first half of the rows are to be found
in the node labelled 1. The rows that start where node 1 ends are to be found in 2, and so forth.

When sparstition is performed on a partition, such as A0 in Figure 4.2b, notice that new
zero-columns are produced, namely columns 5-7. Thus it is possible to construct the new Index

4.2. ALGORITHM DESIGN 33

Figure 4.3: The result after 1 (left) and 3 (right) sparstition operations after recursively searching
for a solution to CACHE_SIZE constraint. Note that the leaves are kept in sequential order from
left to right.

Maps using either col_ptrs from A or A0. Recall that each sparstition operation produces an
Index Map to link the previous partition with the new one, and is used build ~xp’s from ~x. The
latter is preferable as otherwise all Index Maps from the leaf to the root are needed in order to
build ~xp, costing much more time and memory.

4.2.1.2 Meeting the NO_PARTITIONS constraint

The second case results in at least NP partitions, defined by the user via the parameter. It is
unnecessary to execute the relatively expensive sparstition recursively as was done in the previ-
ous case, especially if performance is a concern. Rather, the rows array is sliced straight away
into NO_PARTITIONS partitions recursively, which results in NP slices of the row arrays each of
roughly equal length. The limitation is that NP must be a power of 2, so perhaps this will need
to be addressed in the future.

Figure 4.4: The tree resulting from meeting the NO_PARTITIONS constraint.

The tree shown in Figure 4.4 is the result. Notice that it is more balanced than the tree in
Figure 4.3. The sparstition algorithm is only performed on nodes 4-7 and the white nodes are the
final partitions. The number of rows is equal for every white node but the number of non-zeros
and the size of ~xp depends on the sparsity pattern. We will argue in the following section that
keeping the number of rows equal has the largest effect to balance the partitions.

4.2.1.3 Interplay of CACHE_SIZE and NO_PARTITIONS

The two parameters are not mutually exclusive. The user might request NP that is too small given
the input matrix and the configured CACHE_SIZE. When this is the case there are two options

34 CHAPTER 4. THE SPARSTITIONER DESIGN

available, to recursively find a solution like in the first case, or to maintain the load-balanced
structure of the tree. The former option is potentially cheaper as it requires less sparstition
operations but the latter keeps the number of rows between partitions equal. This is up to the
user to decide so a parameter is exposed under the name GREEDY. If GREEDY is activated, then a
solution is found recursively.

4.3 Load Balancing

4.3.1 Modelling Execution Times with Weights

An important observation before developing a model to predict the execution times of the parti-
tions is that every row is effectively the same size in the HLS architecture due to zero padding.
However, before computation can begin ~xp must be transferred to the kernel as we will see in
Section 5.3. The two most important components which determine the execution time are there-
fore the size of ~xp and the number of rows.

Obviously each row is more expensive to transfer than a single ~xp-value. Once ~xp ends and
the computation of SpMV begins, it takes one cycle to fetch the size of the row. Under these
assumptions we define the weight of each partition as the number of rows multiplied with the
maximum NNZs per row plus one for the integer indicating the number of non-zeros, and the size
of ~xp.

weight = (MAX_NNZs_PER_ROW +1)×NO_ROWS+ sizeo f (xp) (4.1)

We now have a formula which can help us find the execution time relative to other partitions
during run-time of sparstition . Although this is not made use of currently for reasons explained
in the following section, it does offer the potential for load-balancing in the future. This model
is verified in Section 7.5.1.

4.3.2 Coarse vs. Fine-Grained Load Balancing

There are two types of load balancing (LB) which can take place. The fine-grained LB takes
place if each partition was not always split in half such as in Figure 4.1, but instead a parameter
k is defined which stands for the partitioning point. Then we must somehow find the k where the
weights are equal for the two partitions.

However, it is difficult to predict the rate of change in the sizes of the resulting ~xp’s. One
way is to perform two sparstition operations, and assume linear growth of the ~xp’s. Then line
equations are computed and the intersection is found, i.e. where the two partitions have equal
weights. However, that is not compatible with every sparsity pattern as it is not guaranteed that
the size of ~x grows linearly. Furthermore, the computation time doubles as a result of the extra
sparstition operation, which the resulting improvement from the load balancing must justify.

Even if the execution times were adjusted, it does not guarantee that subsequent sparstition
will have equal weights. Consider two partitions, P1 and P2 that have equal weights, i.e. w(P1) =
w(P2). Let us perform sparstition on them both which result in P11, P12,P21 and P22 for P1 and P2
respectively. Even if w(P11) = w(P12) and w(P21) = w(P22), it is not guaranteed that w(P11) =
w(P21) and so forth. This becomes the case for matrices that have irregular density of non-zero
columns such as with Hamrle3 in Figure 4.5.

4.4. CONCLUSION 35

Figure 4.5: The sparsity pattern of Hamrle3.

When it is split in half, then the two ~xp’s are of the same size (DIM) (recall that the size
is determined by the density of non-zero columns). However, when each of the partitions are
partitioned resulting in NP = 4, then the load balancing done previously becomes useless as the
sparsity pattern in the upper half is vastly different from the lower half.

In coarse-grained LB, the weights of each partition are computed during sparstition and
used right before the kernel is called. The partitions can be grouped according their weights and
distributed evenly to accelerators. There is considerable flexibility in this LB technique as we
will see in Section 7.5.2.

4.4 Conclusion

We defined the requirements for the Sparstitioner and have tailored our design to meet them.
The result is a parameterizable framework which can partition a matrix using the sparstition
algorithm until the memory constraint is met. We argued that the need for fine-grained load
balancing was unnecessary for the target platform, and thus we always split rows into groups of
equal sizes. The design is, however, capable of being extended with this feature in the future due
to its bipartite nature. Figure 4.6 gives a high-level diagram of the work that we presented in this
chapter.

Figure 4.6: A high-level figure of the design developed in this chapter.

In the next chapter, we will look into the other component of the co-design, namely the HLS
kernel. It will be designed with the goal of processing multiple partitions in an efficient pipeline.

36 CHAPTER 4. THE SPARSTITIONER DESIGN

HLS Design 5
In the previous chapter we looked into the design of the Sparstitioner which makes up the
other component of the co-design. We will now present the design of the HLS kernel in this
chapter which, together with the Sparstitioner, will perform partitioned SpMV. We first de-
fine the goals of the design and the kernel parameters. Then we present a high-level design of
the fabric where the kernel is connected to the DRAM via DMAs. Finally, we present the HLS
design and analyze the waveform to make some further optimizations.

5.1 Design Goal and Requirements

The goal of the design is to perform a number of SpMV ’s as a pipelined process. This means that
if a matrix is partitioned into multiple parts, each with a unique ~xp, the transfer of the following
~xp is overlapped with the computation. This reduces the computation time by the amount of time
it takes to transfer the ~xp’s. It follows that the first ~xp must first be transferred completely before
computation begins, due to the random access to it.

Secondly, the kernel must be parameterized. It would be very time-consuming to have to
re-synthesize the design each time a new partitioning parameters are to be tested. However, the
parameter

Finally, the design must use as much bandwidth as possible. This is because SpMV is
severely memory-bound and the performance is strongly dependent on the amount of bytes de-
livered to the kernel each cycle.

• Pipelined design. Overlap computation with the transfer of the following vector segment.

Transfer the first ~xp before computation begins.

• Parameterized to allow for any partitioning without needing to re-synthesize the design.

• Use as much of the available bandwidth as possible

5.1.1 Kernel Parameters

The following are the parameters that must be configured before running SpMV on the kernel.

• Number of partitions

• Number of rows per partition

• Size of ~xp per partition

The last two parameters are arrays of size that must be known at compile-time by the HLS
compiler, and therefore a constant MAX_PARTITIONS is defined. This constant is accessible by
the host and should be a power of two for reasons explained in Section 4.2.1.

37

38 CHAPTER 5. HLS DESIGN

5.2 ZYNQ Design

In order to use as much bandwidth as possible, each array of the SpMV algorithm is assigned to
a dedicated port. Before the algorithm can begin, the first ~xp must be cached on the FPGA. Once
completed, the second stage starts which consists of both computation and the memory transfer
of the following ~xp’s. The ports that stream~x, val and col values are configured to 64 bits which
translates to two single-precision floating points per cycle. The row size values are not required
as frequently. In fact, a new (integer) value is only needed every MAX_ROW_SIZE

2 cycles due to the
zero-padding clarified in Section 5.3. The design of assigning each array to a dedicated port has
been implemented before for a manually designed SpMV kernel [25].

The system is summarized in Figure 5.1.

Figure 5.1: High level block design as a 2-stage process. The DMA channels are configured to
either 32 or 64 bits.

Each port is connected with a DMA in simple mode which is faster than scatter-gather but
has a limit of 2’000’000 single-precision (SP) floats. The total bandwidth is taken to be data
delivered via the vals, cols and rows ports. The design is configured to run at 100MHz, vals
and cols deliver 64 bits per cycle while rows 32-bits. The maximum theoretical bandwidth of
the 64-bit ports at 100MHz is 800MB/s and 400MB/s for the 32-bit port. The total bandwidth is
therefore 2GB/s.

5.3 HLS Design

The details of the HLS design will be the topic of this section. First the modulues are explained
which enable the task-level pipelining of transferring subsequent ~xp with the SpMV computa-
tion. Then the various directives used to optimize the design are listed and their purpose briefly
explained.

5.3.1 Hardware Modules

Vivado HLS allows functions to overlap to achieve task-level pipelining. Two tasks that have
been identified is the caching of the subsequent ~xp and the computation of SpMV, in the case
when multiple ~xp’s are to be cached. The functions, or modules, are therefore generated as
independent components and can be executed in parallel.

5.3. HLS DESIGN 39

5.3.1.1 The cache_x Module

The cache_x module is relatively simple but it simply pops two floating points from the DMA
stream and caches them in one of the ping-pong buffers. If there is another x_p to be cached, it
will then start caching to x2, then x again, and so forth. The arrays are stored in a true dual port
RAM so both floats are cached each cycle.

5.3.1.2 The compute Module

The compute module performs the actual SpMV computation in a pipeline. It reads from the
buffer written to by the cache_x module. The design of this module is presented in Figure 5.2.

Figure 5.2: The circuit generated by the HLS synthesizer. It iterates between reading from x
and x2.

In order to pipeline the compute module in , the synthesizer must be able to perform static
scheduling of operations. Thus loops with an indeterminate amount of iterations are impossible
to pipeline.

Recall the SpMV algorithm with CSR encoding in Algorithm 1 in Section 2.2.1, where the
inner for-loop introduces the problem due to random row sizes. To solve this, the number of
iterations is made constant by finding the maximum number of row elements, and zero-padding

40 CHAPTER 5. HLS DESIGN

rows smaller than the largest one. This modification results in Algorithm 2.

for i← 0 to N do
row_nnzs := row_sizes[i];
max_row_size := 8;
acc := 0;
for j← 0 to max_row_size do

if j < row_nnzs then
val := val[j];
x_val := x[cols[j]];

else
val := 0;

end
acc += val × x_val;

end
Y[i] = accum;

end
As seen from Section 5.2, the kernel must be designed so that two floating points per cycle

are processed. The inner loop changes to the one in Algorithm 3 as a result.

for j← 0 to max_row_size do
if j < row_nnzs then

val := val[0][j];
x_val := x[cols[0][j]];
val2 := val[1][j];
x_val2 := x[cols[1][j]];

else
val := 0;
val2 := 0;

end
acc += val × x_val;
acc += val2 × x_val2;

end
Note in the last two statements the accumulation has been kept separate. This is because if

the statements were combined, the order of operations is changed which may result in a rounding
error. Although this is generally not a serious issue, it makes the functional verification neater
and the synthesis report reveals no significant penalty.

Now an issue arises, namely in the case of rows with an odd number of non-zeros, or more
generally non-zeros that are not a multiple of the bandwidth. A dependency between iterations
is created which impacts the performance significantly, i.e. clock period and latency more than
doubles. This is depicted figuratively in Figure 5.3.

This is most easily solved by making every row-size a multiple of the bandwidth. This is
actually handled by the Partitioner which already has the arrays in program memory, and can
easily write new files which have zero-padded odd rows.

Only the cache_x module runs when the kernel is first started. when the first ~xp is streamed
to the kernel. Once that task is completed, the compute module starts computing by accessing
the filled x while cache_x continues with caching the stream to x2. This continues until the last

5.3. HLS DESIGN 41

Figure 5.3: When rows have an odd number of non-zeros. Blue squares represent an arbitrary
row and the red squares a subsequent one.

~xp

5.3.2 Compiler Directives

In order to optimize the design, the HLS compiler offers the programmer a set of pragma’s
which direct the synthesizer in the design space. Following is a discussion of the most common
directives and an justification on why or why not they were chosen for this design.

HLS PIPELINEThis is arguably the most important pragma in the design, and the reason
why the problematic road of zero-padding was chosen. The outer for-loop of SpMV is assigned
with this pragma.

HLS UNROLL: This one is not present explicitly, but due to the outer loop being pipelined,
the inner loop is unrolled.

HLS DATAFLOW: This pragma cannot be used due to conditional execution of tasks which
rises with the parameterized nature of the kernel.

HLS ARRAY PARTITION: Only ~x is stored in the kernel memory, and all the available
BRAMs are used to store it. Since the ping pong buffers are stored in separate arrays, the
only possibility for this pragma to be effective is if each value was stored in a register. This is
extremely time-consuming to synthesize due to the required wiring and also completely unnec-
essary. There are at most two accesses to the memory each cycle, and True dual port BRAMs
meet this demand.

HLS RESOURCE core=RAM_T2P_BRAM: True dual port BRAMs for reasons explained
above.

5.3.3 Kernel Configuration

As the number of partitions increases, the more parameters must be passed to the kernel. Recall
that for every partition, the size of each ~xp and the number of rows is required. Therefore a
scalable way of passing those parameters must be found to minimize the impact on performance
with a growing number of partitions.

The standard way to pass parameters is to add them to the control bus bundle via the AXI4-
Lite bus. This is a straightforward approach but the passing of parameters can not be done in
parallel with the execution of the modules, so the kernel must halt until the transfer is complete.

42 CHAPTER 5. HLS DESIGN

This is not a problem when there are not many parameters to pass, but it must be addressed for
the sake of scalability. Figure 5.4 is of waveform which demonstrates the blocking effect of
passing the parameters.

Figure 5.4: Waveform capturing the blocking effect of setting parameters on the kernel.

Recall that there are 4 ports connected to the kernels, and only one is used during the caching
of the first ~xp. However, the size of said ~xp is still needed but instead of passing every single
value, only the first one needs to be passed via the AXI4-lite bus. The rest can be streamed on
the other two (otherwise idle) 64-bit ports parallel to the caching module.

5.3.4 Design Analysis and Limitations

It is necessary to ensure that the kernel runs according to expectations and to also identify any
unforeseen shortcomings. Figure 5.5

The Figure 5.5a has been labelled with the most significant stages which will be explained
in order.

1. The transfer of parameters is complete while the transfer of ~xp is still ongoing.

2. The transfer is complete and the second buffer is immediately written to. The first SpMV
computation begins which is marked by the resuming of reading from the values and
columns ports.

3. The transfer of the second vector segment completes. The first buffer is still in use so the
transfer halts.

4. First SpMV computation finishes. The first buffer frees up and transfer resumes for a
relatively short time.

5. Second SpMV computation finishes so the second buffer frees up. Previous step is re-
peated.

Notice the presence of white rectangles in steps 4 and 5 where there is a "buffer switch".
These regions are magnified in the lower sub-figure which reveal some overhead in switching
from one buffer to the other. This is due to the computation module having to finish its compu-
tation before the next one may begin. There is no obvious way to smoothen this transition, and
it may be one of the shortcomings with the current state of HLS. However for a small number of
partitions the effect is relatively small, out of the 74us between steps 4 and 5, only 420ns or 0.5%

5.4. CONCLUSION 43

(a) Waveform of the kernel from the beginning of execution. Significant stages have been labelled and
the regions enclosed within the white rectangles are magnified in Figure 5.5b below.

(b) The magnified region within the white rectangles above. The image shows the overhead in switching
between ping-pong buffers.

Figure 5.5: Part of the waveform from the beginning of execution, with the region within the
white rectangles magnified in the second subfigure.

are spent on the buffer switch. However, as the number of partitions increase, more transitions
will take place and the overhead will rise proportionally.

One of the limits of the HLS tool is the difficulty or even impossibility to achieve multiple
pipelines. As a result, it is only possible to process one row at a time which imposes limits to
the bandwidth scalability of the kernel.

5.4 Conclusion

In this chapter the design of the SpMV kernel was designed from the requirements stated at the
beginning. The design is divided into two levels, one is the kernel hardware and the other is the
integration to the PL fabric. The fabric design assigned a dedicated DMA controller to each port
in order to maximize bandwidth. Furthermore, three out of four ports were made 64 bit wide in
order to supply to single precision floating points per cycle.

The design of the kernel was made as efficient as possible by exploiting task-level paral-

44 CHAPTER 5. HLS DESIGN

lelism wherever possible and by selecting the most effective pragmas. Some shortcomings were
addressed and solutions proposed such as the inability to have rows with odd number of non-
zeros. The chapter concluded with a waveform analysis to verify that all the design decisions
took effect.

Finally, we conclude this chapter with a schema in Figure 5.6 of the design which reveals
the communication/computation pipeline which we discussed.

Figure 5.6: A schema of the HLS processing 4 partitions in a pipeline.

The following chapter will combine the design discussed in this chapter with the
Sparstitioner from the previous chapter in a co-designed implementation.

Hardware/Software Co-design
Implementation 6
In this chapter, the implementation details and analysis of the Sparstitioner algorithm are
presented. Sparstitioner will be implemented on a regular workstation separated from the
SoC in order to facilitate debugging and to keep it independent from the accelerating frame-
work. The user may wish to port the code to the SoC, which may be very minimalistic, that
is without an operating system and executing applications bare-metal. For this reason C++ is
chosen, but conforming to C coding standards 1 The reason for not choosing C is so that the
project can eventually move towards Object-Orientation, and to use some libraries such as the
high_resolution_clock.

There are also subchapters devoted to the host and kernel of the Zedboard, which deal with
some of the challenges were overcome during development. The host code is written in C and
runs as a bare-metal application, i.e. there is no operating system involved. The kernel code is
in C++ as that is the Vivado HLS standard.

6.1 Sparstitioner

6.1.1 Data Structures

The data structure for the nodes is a 1D array with a pointer to the end of the array. When a
node is partitioned, the resulting two nodes are placed at the end of the array. A separate 2D
array, called binary_tree_map keeps track of the location of each node in the binary tree. The
top level, which should hold~x, is not part of this structure as the algorithm does not run if~x will
not be partitioned, and is therefore trivial. The binary_tree_map grows dynamically during the
execution of the algorithm, and memory for a new level is only allocated when it is needed. The
two arrays are depicted in Figure 6.1.

In the example shown in Figure 6.1, we are interested in accessing nodes x3,x4,x5,x7,x8
in that order. To achieve this, the array belonging to the highest level, that is level 3, of
binary_tree_map is read two values at a time (since each node can either have none or ex-
actly two values). Since binary_tree_map[3][0] = binary_tree_map[3][1] = -1, the search
is moved down a level by subtracting one from the level and halving the index, to access
binary_tree_map[3-1][0/2]. This time we come across 3, which is the location of the first
partition. Once there is such a hit, the search is moved again to the top level of the tree, but
the pointer has moved to binary_tree_map[3][2], where we have the same story. The exit
condition for the search is when the pointer has reached the end of the top level.

Each node is implemented as a struct that contains all data necessary to perform the parti-
tioning.

1 typedef struct partitioning_data{

1https://www.gnu.org/prep/standards/html_node/Writing-C.html

45

https://www.gnu.org/prep/standards/html_node/Writing-C.html

46 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

Figure 6.1: The binary tree structure mapped onto the 1D array of pointers to xi’s. Red points to
memory location that has been freed.

2 int *index_map, *im_mapped;
3 int nnzs, no_rows, x_size, odd_rows;
4 int pre_rows,pre_nnzs;
5 } node;

The Index Map was described in detail in the design chapter and in summary keeps track of
all~x→ ~xp mappings. It is possible to either initialize it to -1 for non-existent mappings or to use
a dedicated array im_mapped, discussed further in the following section.

The integer variables nnzs, no_rows, x_size, and odd_rows keep track of meta-data
as suggested by their identifiers, but the variable odd_rows is only needed when zero-padding
has been requested. The variables pre_rows and pre_nnzs are pointers to the location where
each partition begins in the col_ptrs, rows and values arrays.

6.1.2 Analysis of the Sparstitioning Algorithm

6.1.2.1 Timing Complexity

The timing complexity of the algorithm is:

O(DC× k× (NNZ + c1)+(NP +NL)× c2) (6.1)

DC is the density of non-zero columns across all partitions. That is, there are is an extra
instruction in creating a mapping in the Index Maps instead of retrieving a value from a mapping
that exists as we see in the if-statement of Listing 6.1. Therefore, the algorithm is faster if the
partition has low non-zero column density which translates to fewer mappings that need to be
made. Recall that the number of non-zero columns of a partition p is analogous to the size of ~xp

so we can formulate

DC =

NP
∑

p=0
sizeo f (xp)

NP
.

k is always 1 if the memory constraint (CACHE_SIZE) is satisfied because with larger number
of partitions, the sparstition function in Listing 6.1 is called more often, but with proportionally
smaller number of rows each time. However, when the memory constraint is not met, the parti-
tion has too many non-zero columns so it must be re-sparstitioned as we saw in Section 4.2.1. If

6.1. SPARSTITIONER 47

Option Extra memory
(bytes)

Relative
Performance
c1 c2

Set IM’s to -1 0 + 1
Use boolean flags N ++ 1

4
Use bit flags N

8 +++ 1
32

Table 6.1: Summary of the relative cost of initializing and updating Index Maps

said partition contains 25% percent of all non-zeros, then k accumulates to 1+0.25 = 1.25. NP

is the number of partitions, and the ci’s are the accessing (c1) and initialization (c2) times of the
Index Maps. NL stands for partitions that did not meet the memory constraint.

Listing 6.1: Code of the sparstition function.
1

2 sparstition(int *cols, const int *rows, const int *read_cols, node *nodes) {
3 for(int p = 0; p < 2; p++) {
4 node &pd = pds[p];
5 for (int r = 0; r < pd.no_rows; r++) {
6 int nnzs = rows[r + row_counter];
7 for(int nz = 0; nz < nnzs; nz++){
8 int col = read_cols[nz + seen];
9 bool used = pd.im_mapped[col]; //or pd.im[col]==-1

10 if(!used){
11 new_col = x_size++;
12 pd.im[col] = new_col;
13 pd.im_mapped[col] = 1;
14 } else {
15 new_col = im[col];
16 }
17 cols[nz + seen] = new_col;
18 }
19 seen += nnzs;
20 }
21 }

There are three options, summarized in Table 6.1, to choose from when it comes to keeping
track of which mappings have been made in the Index Map’s, and this choice affects the ci’s.
The first option is to initialize the Index Maps with -1’s immediately after its memory has been
allocated. The advantage of this approach is that no extra amount of memory is needed, and
the look-up to determine if a mapping exists requires no additional logic, resulting in a small
c1. However, when N grows large the time it takes to set every single value becomes very time-
consuming, and this needs to be done for every single partition so NP×c2 will quickly dominate
the execution time of the algorithm.

The other option is to make use of im_mapped, mentioned in the previous Section, of type
bool, which is a single byte and is therefore faster to initialize than an array of int’s. This array
is then set separately from the Index Maps and should in theory reduce c2 by a fourth, but the

48 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

extra operation that sets the flag in line 13 of Listing 6.1 influences c1 slightly.
The third and final option is to assign a bit to each mapping. The aforementioned im_mapped

is changed to type char with each entry storing 8 mappings. Since N mappings need to be
tracked,

⌈
N
8

⌉
char’s are required which in theory results in 32x faster initialization compared to

the first option and 8x speedup compared to the second. To retrieve each bit, first the correspond-
ing byte is found by accessing the byte stored in col/8. Then a bit-wise shift operation is applied
by modulo 8 which moves the target bit to the right-most position. Finally the shifted byte is
masked with 1 which allows us to retrieve the desired bit. To set the bit, 1 is shifted leftwards to
its position using module 8 again, and the byte stored in memory is operated with a bitwise-or.
The extra bit-wise operations are performed for every non-zero and shift the weight from c2 to
c1. These operations are shown in Listing 6.2.

Listing 6.2: Retrieving and setting a bit. b-and and b-or refer to bit-wise conjunction and
disjunction. This code fits in from line 9 of Listing 6.1.

1 int byte = im_mapped[col / 8];
2 bool used = (byte >> (col%8)) b-and 1; //retrieving bit
3 if (!used) {
4
5 //set relevant bit to 1 and store result
6 im_mapped[col/8] = 1 << (col%8) b-or byte;
7 }

A study of the practical performance is the subject of Section 7.3.1.

6.1.2.2 Memory Complexity

The memory required by the Sparstitioner will be at the very least the matrix data, i.e.,
the values, rows, and columns, and the Index Maps. There will be NP Index Maps and each
will require N values. The shuffling of column pointers can be done in-place and therefore
spare memory. However, it is better to keep a copy of the original pointers in case the memory
constraint is no met. Recall in Section 4.2.1 that when the CACHE_SIZE is not met, a solution
is sought recursively. There it was also explained that it is efficient to always shuffle the original
column pointers.

Therefore, the memory complexity of the algorithm can be at best O(2×NNZ +N× (1+
NP)) if the column pointers are shuffled in-place. However, in the current implementation this is
not done, so the complexity is actually O(3×NNZ +N× (1+NP)).

6.1.2.3 Sequence Diagram of the Implementation

The Sparstitioner is executed sequentially on a CPU, but much potential in speeding up the
execution time with hardware acceleration is demonstrated in Figure 3.5. The current implemen-
tation is depicted in Figure 6.2.

In the implementation, none of the potential parallelism is exploited. However, there will still
be a speedup in theory after some number of iterations due to the caching of the Index Maps
and the reduced computation time of each smaller SpMV stream. Note that the computation of
number of non-zeros is missing from this diagram, as it is not needed if the sparstition tasks are
executed in sequence.

6.1. SPARSTITIONER 49

Figure 6.2: The actual sequence diagram of the tasks of the algorithm for 8 partitions. The
tasks are not drawn in scale as the execution times depend on many factors such as the available
bandwidth.

6.1.3 Managing Output Files

The application is run as bare-metal so simple tasks under an operating system, such as reading
large files to program memory, becomes problematic. The files are kept in an SD Card which
is formatted with the FAT file-system (FATFS). FATFS comes with an IO buffer of a size which
must be known at compile time, and can be 256KB, 512KB and upto 4096KB. Thus there is
a size limit which will eventually be surpassed when hundreds of thousands of floating points
need to be stored in characters.

The Sparstitioner offers the user to split the result into multiple smaller files, whose size
is determined by a parameter. The size of each file is tracked by accumulating the output of
fprintf, which is the number of bytes of each line. Once the limit is reached, the file is closed
and a new one is opened and written to.

Listing 6.3: Directory structure for FATFS in bare-metal applications. Directories are in bold.
1 -MATRIX_ID/
2 -2/
3 -cols_adj/ -v0im/ -v1im/
4 -0.ltx 1.ltx ... -0.ltx 1.ltx ... -0.ltx 1.ltx ...
5 -4/
6 -cols_adj/ -v0im/ ... -v3im/
7 -0.ltx 1.ltx ... -0.ltx 1.ltx -0.ltx 1.ltx ...
8 -vals_zp/ -y_gold/ -rows/ -cols/
9 -0.ltx ... -0.ltx ... -0.ltx ... -0.ltx ...

At the top of the output directory hierarchy is the name of the matrix. This directory contains
the output from a number of partitioning runs each one with NP as an identifier. The other sub-
directories are the split, and optionally zero-padded, matrix data as well as a golden~y for SpMV
performed on~x = [0,1,2...N -1].

In the NP-labeled directories, cols_adj and a sub-directory for each Index Map is present.
Finally each sub-directory contains the .ltx files which have been labeled in an ascending order.

50 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

The directory structure is displayed in Listing 6.3.

6.1.4 Functional Verification

The Sparstitioner performs verification by computing SpMV with the normal data arrays and
compares it with the sparstitioned results.

First, the Index Map is used to build ~xp (see Section 6.2.2). Then the pre_rows and
pre_nnzs are used as pointers to the start of the relevant partition in each matrix array. The
results are then compared with a pre-computed golden result vector.

Listing 6.4: The code on the host side which builds ~xp and performs partitioned SpMV. The
result is then compared with a golden vector.

1 spmv(vals, rows, cols, x, res_g);
2 for (int p = 0; p < no_partitions; p++) {
3 node &n = nodes[p];
4

5 build_x(x, x_p, n.index_map, n.im_mapped);
6

7 spmv(&vals[n.pre_nnzs], &rows[n.pre_rows],
8 &shuffled_cols[n.pre_nnzs], x_p, y_partial[p]);
9

10 for (int i = 0; (i < n.no_rows && !err); i++) {
11 if (y_partial[p][i] != res_g[n.pre_rows + i]){
12 return 1;
13 }
14 }
15 }

6.2 Host

6.2.1 Reading from SD Card

Before the SD card can be read, the xilffs library for the FAT FS must be included in the BSP
(Board Support Package) settings. Also standard pin mapping must be done in the ZYNQ IP of
the block diagram in Vivado.

The reading from the SD card to program memory is divided into 3 stages. First stage queries
the number of files in the directory to be read from, as they may have been split up as described
in the previous section. The f_readdir function is called until the end of directory is reached,
and a counter is incremented if the pointer is on a file.

Then files are accessed following the structure in Listing 6.3 and the bytes are read into a
buffer with f_read. The buffer is then translated into primitive types by reading bytes into a
line buffer until the new-line character is read. Then the bytes of that line is cast and stored in a
values array. One trick to speed up the reading of the bytes, especially for floats, is to find the
shortest line. This is typically around 30 characters for double-precision, and so when a new
line is being read into the line buffer the program may skip said number of bytes with a memcpy,
thereby avoiding the conditional statement. See Listing 6.5 for pseudo-code.

6.2. HOST 51

Listing 6.5: Pseudo-code of bytes from the SD card cast to floats.
1 while (i < total_byte_size_of_file){
2 c = (char)bytes_from_sd[i++];
3 if (c != ’\n’) //traverse
4 line_buffer[j++] = c;
5 else { //cast and reset
6 sscanf(line_buffer, "%d %g", &index, &values[k++]);
7 j = min_bytes_per_line;
8 memset(line_buffer, 0, sizeof(line_buffer));
9 memcpy(line_buffer, &bytes_from_sd[i], min_line_bytes);

10 i+=min_bytes_per_line;
11 }
12 }

6.2.2 Building x Partitions from Index Maps

It is undesirable to do the partitioning over and over again, especially since SpMV appears in
iterative algorithms such as the Conjugate Gradient, and may need to be performed hundreds
of times, each time on a new vector. The matrix data always remains unchanged so it is not
necessary to adjust the column pointers again, but we want to regenerate the ~xp’s with new
values.

All the necessary information is kept in the Index Maps of each partition. Recall from
Section 4.2 that Index Maps map an index from ~x to ~xp and that there is one for every leaf of
the partition tree. Before the data is written to the files, (or passed to the next stage if later the
Sparstitioner is executed on the host), the Index Maps are compressed, such that adjacent
zero-columns, or -1’s, are replaced by their number. This is illustrated in Figure 6.3.

Figure 6.3: Index Map before and after compression.

Note that the indices are preserved and that the group of zero columns have been transformed
into empty regions. In the implementation, an empty region is a struct with two pointers, the
starting index and the length. Therefore the empty regions parsed out of this segment are {3,4}
and {9, 2}. When the file is being parsed, each time an empty region is encountered delimited
by a negative index, an empty region is created and placed in an array.

The compressed Index Maps are cached intermediately in files whose first line is a header
which starts with a "%" symbol, and the body where every line is for a mapping. The header
file consists of meta-data relative to the partition such as number of non-zeros and rows of the
partition, the size of the x-vector and lastly the number of empty regions.

The advantage of compressing the Index Maps and keeping the empty regions in a separate
struct is that the complexity of building ~xp is only O(sizeo f (xp)), and there are no condi-
tional statements present in the code shown in Listing 6.6. Note that the code is embarrassingly

52 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

parallelizable2.

Listing 6.6: Building of ~xp from Index Maps

1 int x_ptr = 0, start = 0, x_new_ptr = 0;
2 for (int i = 0; i < x_map.no_empty_regions; i++){
3 empty_region_t er = x_map.empty_regions[i];
4

5 for (int j = start; j < er.start; j++){
6 int x_p_index = index_map[x_new_ptr++];
7 x_p[x_p_index] = x[x_ptr++];
8 }
9 x_ptr += er.length;

10 start = er.length + er.start;
11 }

6.2.3 Running SpMV and Functional Verification

First all the matrix data must be fetched except for the columns values, unless the programmer
wants to perform SpMV on the host (recall that for the functional verification, the programmer
may also use the y_golden.ltx file). This is because with each number of partitions in the
MATRIX_ID immediate subdirectories, there is a dedicated adjusted_cols directory. As a
result, the host code offers the possibility of running multiple partitioning trials in a single
execution. Along with the columns, the Index Maps for the ~xp are obtained each time a new
partitioning is fetched. Before starting the communication with the kernel, one last sanity check
takes place during development, namely to add up the row sizes for the partition and compare
it with the nnzs value from the corresponding Index Map file. If these values are not the same,
then there was an error somewhere along the line and the DMA’s will hang infinitely. This check
is not needed once the programmer is confident that the Sparstitioner is stable.

Listing 6.7: Pseudo-code from the communication with the kernel from the host-side.
1 get_matrix_data(matrix_dir, vals, rows, y_golden);
2

3 for (no_partitions = 2; no_partitions < 64; no_partitions *= 2){
4

5 get_adjusted_columns(matrix_dir, cols, no_partitions);
6 get_ims(index_maps_data, no_partitions);
7 sparstition_with_im_cache(x, index_maps_data, no_partitions, N, x_partitions);
8

9 for (p=0; p<no_partitions && err == 0; p++){
10

11 x_vec_map_t x_map = index_maps_data[p]; //all meta-data from IM files
12

13 Start_HW_Accelerator(x_maps); //set params
14

15 Run_HW_Accelerator(x_partitions[p], &vals[x_map.pre_nnzs],
&cols[x_map.pre_nnzs], &rows[x_map.pre_rows], &res_hw[x_map.pre_rows]);

2https://en.wikipedia.org/wiki/Embarrassingly_parallel

https://en.wikipedia.org/wiki/Embarrassingly_parallel

6.3. KERNEL 53

16

17 }
18

19 for (i = 0; i < N && !err; i++)
20 if (y_golden[i] != res_hw[i])
21 err = 1;
22

23 free(cols);
24 free(index_maps_data);
25 }

Next step is to pass the parameters to the kernel via the AXI-LITE interface and send the start
signal to the kernel, using libraries provided by the BSP. Recall that there are three parameters
to the kernel, two of which are arrays namely the sizes of the ~xp’s and number of rows and
the number of partitions. The functions to the arrays have an extra parameter for the length
and have the word WRITE in the identifier and are named XHls_accel_Write_X_SIZE_Words
and XHls_accel_Write_NO_ROWS_Words. The function for setting the number of partitions
has the word SET and has the name XHls_accel_Set_NO_PARTITIONS. The XHls_accel in the
identifiers refers to the top-level function specified in Vivado HLS. The values for all parameters
are obtained from the Index Map files.

Finally the kernel is called with pointers to the appropriate location within the matrix arrays
and the result vector. The result is checked with the golden after all partitions have finished
executing.

6.3 Kernel

6.3.1 Reading and Writing with AXI Streams

As was shown in the Design chapter, each array has a dedicated port and DMA engine, which
supply data to the kernel concurrently. The AXI streams are represented in the kernel with the
object hls::stream<AXI_VAL>, that is a stream of AXI_VAL which are obtained by invoking
the object with a pop() call. The AXI_VAL type is a struct from the HLS libraries and it is
implemented with a C++ template of 4 integers. These integers specify the number of bits for
various signals used by the DMA, but the most important one is the one for data, which when
set to 32 is wide enough to receive one single-precision float per cycle.

The kernel code is interfaced with the DMA’s in the HLS with a top-level function, which
takes as an argument all data, including parameters, that is to be expected from the host. The
signature of the function is the following:

1 void HLS_accel (stream<AXI_VAL> &INPUT_STREAM, stream<AXI_VAL>
&INPUT_STREAM_COLS, stream<AXI_VAL> &INPUT_STREAM_ROWS, stream<AXI_VAL>
&INPUT_STREAM_VEC, stream<AXI_VAL> &OUTPUT_STREAM, int NO_PARTITIONS, int
X_SIZE[MAX_PARTITIONS], int NO_ROWS[MAX_PARTITIONS]);

The size of the parameter arrays must be known by the synthesizer, so the constant
MAX_PARTITIONS is defined. The synthesizer must also know in order to generate the inter-
face that the parameters are coming from the AXI_LITE port and that the streams are in axis

54 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

mode. This is directed using the pragma HLS INTERFACE.
The top-level function then calls the software wrapper which is a template with a few param-

eters. The most important one is the maximum size of ~xp that the available resources allow. Note
that this number must then be halved due to the ping-pong buffer. For the Zedboard this is only
about 45’000 single precision floats. The wrapper then caches ~x0 and once that is done, starts the
computation while streaming the ~xi, until it has streamed as many ~xp as specified by the number
of partitions parameter. The values of ~y are streamed out as soon as the results are available,
therefore the intermediate result is only stored in registers for the multiply-accumulation oper-
ations. The result is streamed out by invoking the write() method of the hls::stream object,
after having wrapped the result up in an AXI_VAL struct.
Doubling bandwidth

To make the most of the available bandwidth, the HP ports can be configured to supply 64
bits of data per cycle. Since some of the ports are still configured to 32 bits as per the design, two
separate types are defined from AXI_VAL, identified obviously as AXI_VAL32 and AXI_VAL64. In
order to retreive the two values from the 64-bit stream, the bits are cast to a struct of two floats.

Finally, changes must be made to the block diagram in Vivado. First the appropriate HP
ports are configured by opening up the ZYNQ IP block. Then the configuration of the DMA’s
must also be changed. If either is missing then the stream will be serialized at the neglected
component into a stream of 32 bits, resulting in no bandwidth increase.

6.3.2 Functional Verification

In order to test the design it is not necessary to go through all the steps until the design can be
tested in hardware. Instead, the streams can be mocked by invoking the write method of the
hls::stream, and followed by a call to the top-level function. As a result, the waveform can be
generated and analyzed.

6.4 Conclusion

Figure 6.4: The co-design from a high-level.

In this chapter the implementation details of Sparstitioner were explored and an analysis
of the algorithm’s complexity developed. Two of the bottlenecks were the sparstitioning, but

6.4. CONCLUSION 55

also the initialization of the Index Map arrays. To address that, three solutions were presented
and proposed which will undergo practical evaluation in the following section.

The code for ZYNQ, both host and kernel, was also explained and solutions to, for example,
large file sizes and doubling the bandwidth were presented.

Now we have presented the implementation of the two components that make up this work.
Their interplay is shown in Figure 6.4.

The matrix is first run through the Sparstitioner which produces Index Maps and matrix
data partitions. These are written to .ltx files which are placed on an SD card. The SD card is
read by the ARM processor which then executes the partitions located therein with minimal user
interference.

This co-design will be evaluated extensively in the next chapter. First the focus will be
on the HLS kernel as a standalone component. Then we move into the sparstition algorithm
and evaluate the three implementation identified in this chapter. Finally, we evaluate the whole
system as a whole and compare it with the state-of-the-art.

56 CHAPTER 6. HARDWARE/SOFTWARE CO-DESIGN IMPLEMENTATION

Experimental Results 7
This chapter presents the results from the testing of the co-designed implementation and how
these results were obtained. The goal of this chapter is depicted in Figure 7.1.

Figure 7.1: The goal of this chapter, namely to evaluate when it is optimal to compute SpMV by
taking path 3 compared to paths 1 and 2.

The matrix data is first loaded into program memory and then there are three ways to compute
SpMV. Once the experimental setup has been explained and the benchmarks introduced, we
explore the performance of running the algorithm in software (1) and on the HLS kernel (2)
without performing the sparstition step. The performance of the HLS kernel is also compared
with the current state-of-the-art.

Then we evaluate the cost of sparstition in detail which only needs to be performed once but
enables the computation of SpMV in parallel. The partitions are then executed in a pipeline and
in isolation which mocks parallel computation in environments where multiple accelerators are
available. The number of iterations are computed in order to find the point where the sparstition
cost is covered, and whether it is a reasonable number compared with numbers obtained from
running Bi-CGSTAB , an advanced solver. We then briefly explore the flexibility of the solution
with a discussion of load balancing when the number of partitions (NP) is greater than the number
of accelerators (NA).

Finally, this chapter closes with a discussion of the limiting effect of the bandwidth and the
current state of HLS.

7.1 Experimental Setup

7.1.1 Platform

The sparstition algorithm runs on a workstation and the resulting files are uploaded to an SD
card. The ARM reads these files and uses them to communicate with the FPGA kernel. As such,

57

58 CHAPTER 7. EXPERIMENTAL RESULTS

two different platforms deliver the final result of the co-design as shown in Figure 7.2.

Figure 7.2: The experimental setup with the workstation and the Zedboard.

The first one is a Windows 10 workstation running with an Intel I7-8550U processor with
a base frequency of 1.8GHz and 16GBs of RAM. The workstation times the algorithm with
the high_resolution_clock from the chrono library, where the timer measurements are ob-
tained right before and after the execution of the target function. The timing for sparstition
is reported as an average of 1000 runs for the smaller benchmarks and 100 runs for the larger
benchmarks. The reason is that when large benchmarks were averaged for 1000 runs, the results
varied dramatically when reproduced due to noise from the operating system. Running a fewer
number of tests gave much more consistent results between runs. The sparstition algorithm ex-
hibits much potential for parallel execution and immediate speedup should be achievable with
OpenMP. However the partitioned SpMV algorithm is run sequentially in this thesis due to us
only having one FPGA at our disposal and the goal of this thesis to develop a proof-of-concept.

The Zedboard encases the ZYNQ-7020 chip that is made up of an ARM Cortex-A9 micro-
processor and Xilinx Series 7 FPGA fabric. The ARM processor runs traditional C binaries and
controls the FPGA fabric via the interconnect discussed in Section 2.3.1. The application runs
bare-metal, in other words no Operating System is deployed, which makes the user responsible
for memory management. Also some functionality such as reading from files, is made more
difficult as discussed in Section 6.1.3. However, bare-metal applications are faster to deploy and
no overhead is caused by an operating system. The ARM processor has a frequency of 667MHz
and the FPGA fabric is configured to run at 100MHz for our experiments.

7.1. EXPERIMENTAL SETUP 59

Listing 7.1: Timing on the ARM processor within the ZYNQ chip.
1 XTmrCtr_Reset(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
2 init_time = XTmrCtr_GetValue(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
3 curr_time = XTmrCtr_GetValue(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
4 calibration = curr_time - init_time;
5

6 XTmrCtr_Reset(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
7 begin_time = XTmrCtr_GetValue(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
8 for (i = 0; i < NUM_TESTS; i++) {
9 //run either hw or sw function here

10 }
11 end_time = XTmrCtr_GetValue(&timer_dev, XPAR_AXI_TIMER_DEVICE_ID);
12 run_time_hw = (end_time - begin_time - calibration)/NUM_TESTS;

There is a dedicated IP module to perform timing measurements in AXI, namely the AXI
Timer. This module keeps a value internally which is incremented each cycle. The difference
in this value before and after the execution of the function therefore gives the execution time as
a number of cycles. Since the fabric clock runs at 100MHz, the cycle count converts to seconds
when multiplied by 1× 10−8. The timer should always be reset first to avoid overflow of the
counter, and calibrated by measuring the cycle counts involved in obtaining the values. Func-
tions that run either in hardware or software make use of this method of timing measurements.
Therefore, the SpMV running on ARM and the building of ~xp’s is also timed in this fashion.
Listing 7.1 shows the code involved in timing within the ZYNQ chip. When the SpMV results
on hardware are presented in this chapter, they always include the transfer time involved in
streaming data to and from the kernel.

Timing measurements from both the ARM and the workstation of building the ~xps are in-
cluded, even though technically it should only be performed on the host communicating with the
kernel. The ARM microprocessor is extremely weak in performing multiple memory operations
as will also be highlighted in its performance of the SpMV and therefore gives disappointing
results and even becomes the bottleneck.

FLOPS (Floating Point Operations per Second) are taken to equal 2 × NNZ in this
work. Lastly, bandwidth is measured by removing the caching of ~x and the MAC (Multiply-
Accumulate) module in Section 5.3.1 is transformed to a copy-loop, i.e. the input is connected
directly to the output. The number of bytes in the matrix data arrays is then divided by the
execution time. The theoretical maximum bandwidth in our design is 2GB/s as discussed in
Section 5.2.

7.1.2 Maximum Vector Size

There are 280x18Kbit BRAMs available on the ZYNQ chip. This translates to 630KBytes which
can store 160’000 single precision floating points. Since we divide this number in two for the
ping-pong buffer which we discuss in Section 5.3.1, the theoretical maximum ~xp size is 80’000.
However, the maximum size is 32’000 in practice once the kernel is parameterized. Since the
kernel design synthesizes in Vivado HLS but not during the synthesis of the block level design.
The cause is unknown but memory may be needed for the FIFOs of the DMAs.

60 CHAPTER 7. EXPERIMENTAL RESULTS

7.1.3 Benchmarks

All of the chosen benchmarks except for NORNE and Hummocky are taken from the University
of Florida Sparse Matrix Collection[26]. The benchmarks chosen to test the co-design come
from a wide variety of domains. Furthermore, they are divided into two categories depending on
whether the~x fits in cache or not (recall that the matrix data is streamed and only the vector must
be stored).

Table 7.1: Benchmarks used to verify the sparstition algorithm and the HLS kernel. Starred
benchmarks must be partitioned to be performed on the Zedboard.

Matrix N NNZ Largest Row Size of N Relative to Cache Minimum NP Application Domain

Hummocky 12,380 120,058 11 0.077 2 Oil Reservoir
epb1 14,734 95,053 7 0.092 2 Thermal Dynamics

wathen100 30,401 471,601 21 0.19 2 Random 2d/3d problem
dixmaanl 60,000 299,998 6 0.38 8 Optimization Problem

epb3 84,617 463,625 6 0.53 4 Thermal Dynamics
NORNE* 133,293 2,776,851 57 0.83 16 Oil Reservoir

Lin* 256,000 1,766,400 7 1.6 16 Eigenvalue problem
parabolic_fem* 525,825 3,674,625 7 3.29 128 Fluid Dynamics

roadNet-PA* 1,090,920 3,083,796 9 6.8 64 Road Network
Hamrle3* 1,447,360 5,514,242 6 34.46 512 Circuit Simulation

The largest row is an important metric for HLS to determine the depth of the pipeline during
scheduling of operations. The rows that are smaller are zero-padded , which is a requirement
of HLS to create pipelined circuits. Note that this is at the same time also a drawback of HLS.
The NP is determined by size of the largest ~xp as they must all fit within the available cache of
the ZYNQ. Due to the effect of parameterizing the design on the memory available discussed in
the previous section, some matrices such as epb3 which fit in the cache, cannot be performed for
NP = 2. The column with the relative size values is computed with the largest theoretical~x size,
namely 160’000 single precision floating points.

7.2 HLS Performance

7.2.1 Resource Utilization

Table 7.2 sums up the total resource usage of the design.

Table 7.2: The resource utilization of the design

Number Used Percentage Used
BRAM 132 47
DSP48 10 4

Flip Flops 13215 12
LUTs 9605 18

We attempt to allocate as much memory as possible for the ping-pong buffers which explains
their high usage. Ideally, would therefore prefer 100% and Vivado HLS allows us to allocate
more BRAMs. However, in Vivado when the entire design is synthesized we run into problems.

7.2. HLS PERFORMANCE 61

We assume that buffers need to be allocated for DMAs which use FIFOs to interface with the
kernel. The Vivado HLS tool reports that 2 DSP48s are used to implement an adder, and 3 are
used to implement a multiplier. This corresponds directly with our design in Figure 5.2 as it has
two adders and two multipliers, which results in 10 DSP48 blocks.

7.2.2 Results for Benchmarks

The kernel achieves performance between 266 and 309 MFLOPS for the small benchmarks that
can fit in the cache of the FPGA. This translates to a speedup of 109x - 150x compared to
the ARM processor and 0.52x - 0.67x compared to Intel I7. These results are summarized in
Table 7.3.

Table 7.3: Performance of the HLS kernel for the smallest benchmarks compared with the per-
formance of Intel-I7 and ARM.

Matrix Performance
(MFLOPS)

Bandwidth
(GB/s)

Speedup
ARM Intel I7

Hummocky 287.09 1.31 119.64 0.52
EPB1 273.61 1.32 117.56 0.53

wathen100 266.06 1.15 109.83 0.46
dixmaanl 281.2 1.44 135.82 0.57

epb3 309.7 1.57 150.51 0.67

7.2.3 Bandwidth Scalability

The performance scales with bandwidth until the maximum row size is delivered each cycle.
The maximum row size of each benchmark is in the Largest Row column of Table 7.1. In the
current design, at most 2 values and column pointers are delivered to the kernel each cycle. The
kernel scales with bandwidth up until the point where it can deliver a row of the maximum size
each cycle. Beyond that, the issue of maintaining multiple parallel pipelines becomes an issue
which we assume is not currently possible. We also assume that only a single row is delivered
each cycle at most, and not a part of the following row as well. This is due to the issue discussed
in Section 5.3.1.2.

Consider dixmaanl that contains at most 6 non-zeros per row. Currently, a row is received
every 6

2 = 3 cycles, and it would achieve maximum speedup with the current design if the band-
width increased 3-fold. Therefore, the maximum achievable performance with the current de-
sign, when scaled for bandwidth, is 281.2×3= 843.6MFLOPS. Table 7.4 completes the results.

Of course, the PPEAK becomes more unrealistic as the Largest Row increases. An additional
issue that we have not dealt with, due to BRAMs having 2 True Dual ports, is the limited number
of ports for memory access. The data would need to be organized in the BRAMs in such a way
that not more than two from each are needed each cycle. Recall that the ZYNQ chip contains
multiple BRAMs and it is possible to organize how the data is spread across them. This may be
a significant challenge.

62 CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.4: The theoratical peak performance PPEAK of the HLS kernel when scaled for band-
width.

Benchmark PPEAK

(MFLOPS) Largest Row

Hummocky 1579.00 11
epb1 957.64 7

wathen100 2793.00 21
dixmaanl 843.60 6

epb3 929.10 6

7.2.4 Comparison with State-of-the-Art HLS

The kernel is compared with the HLS design in [3] by running the same benchmarks with dou-
ble precision floating point. These are the only results that are in double precision but the ker-
nel functionality is still essentially the same, except a single double precision floating point is
streamed each cycle instead of two single precision floating points in the values and vector ports.
Furthermore, the results from the work are from simulation only whereas ours are actual hard-
ware results including transfers. The result from this comparison is summarized in Table 7.5.

Table 7.5: Comparsion of this work with [3] for their benchmarks in double precision. Largest
row is analogous to pipeline depth. The bandwidth refers to this work as [3] reports performance
in simulation.

Matrix Execution Time
(ms)

Name Largest row [3] This work Bandwidth
(GB/s) Speedup

bcsstm25 6 2.8 2.15 0.29 1.3
dw8192 8 3.5 0.77 1.02 4.6
bcsstk12 27 1.0 0.46 0.68 2.2

ex7 75 3.0 1.29 0.70 2.3
poli3 336 5.5 N/A N/A N/A

Unfortunately the workstation does not have enough RAM to synthesize the design necessary
for the poli3 benchmark. This is due to the vast amount of scheduling required in order to have
a pipeline of the required depth.

7.3 Sparstition Performance

The sparstition algorithm can be broken down into 2 major steps, initializing the Index Maps
and the sparstition function itself. Section 6.1.2 discusses three implementations of the former
step and the trade-offs associated with them. This section demonstrates these trade-offs for a
small, a medium, and a large benchmark. These three implementations are referred to as:

• Index Map implementation.

7.3. SPARSTITION PERFORMANCE 63

• Boolean map implementation.

• Bitmap implementation.

One consideration that is not to our advantage is that the sparstition algorithm is run sequen-
tially as noted in Figure 6.2. However, with multiple nodes it becomes possible to parallelize
sparstition as noted in Figure 3.8. The results presented in this chapter thus have a great potential
for improvement.

The cost of compressing Index Maps is finally explored and it is factored in to the total cost
of the algorithm. Even though it costs extra time to perform this action, the speed-up gained in
building the ~xp’s quickly pays off.

7.3.1 Cost of Each Implementation

Recall that we derived the time complexity of the algorithm in Section 6.1.2 to be as follows:

O(DC× k× (NNZ + c1)+(NP +NL)× c2).

Where DC is the density of non-zero columns across all partitions, k is a factor for how many
non-zeros have been mapped, NP is the number of partitions, the ci’s are the accessing (c1) and
initialization (c2) times of the Index Maps and finally NL stands for partitions that did not meet
the memory constraint. For our experiments, k = 1 since the memory constraint is never violated
so each non-zero is mapped only once. Consequently, NL is always 0.

To briefly summarize, the fewest amount of instructions are executed when the Index Maps
are initialized to -1, but this does not scale because N integers must be set for every partition.
Boolean maps have only a single extra instruction when it sets the value but have N Booleans to
set for every partition. Finally, bitmaps initialize the lowest number of values, or N bits for every
partition, but in turn requires the largest number of instructions.

Notice in Figure 7.3 that for all matrices, the sparstition remains constant independent to
the number of partitions. The Index Map implementation is competitive for small number of
partitions but grows at the fastest rate as per the prediction. bitmaps grows at the slowest pace
and is the least affected by the size of the matrix. However, the sparstition takes more time so for
smaller number of partitions, the boolean maps are usually faster. Once compressing the Index
Maps is factored in, the bitmaps start dominating again as will be demonstrated in the following
section.

7.3.2 Compressing Index Maps

As the number of partitions increases, the Index Maps become more and more sparse. Without
compression, the algorithm must iterate through N elements which will increasingly consist of
empty mappings as the number of partitions increases. The compression basically takes adjacent
empty mappings and replaces them with a single number indicating how many they were which
are referred to as empty_regions in Section 6.2.2.

There is added cost to perform the compression of Index Maps so there must be speedup
gained when building ~xp. Recall that building of ~xp occurs multiple times in iterative algorithms.
The cost for the three benchmarks are summarized in Table 7.6.

64 CHAPTER 7. EXPERIMENTAL RESULTS

(a) Hummocky (small) (b) NORNE (medium)

(c) Hamrle3 (large) with column clusters 1-6 magnified.

Figure 7.3: Small, medium and large test cases for all implementations. The bars depict the
boolean maps, bitmaps and setting Index Maps to -1 in the order from left to right. The x-axis
is on a logarithmic scale.

The bitmap implementation offers a faster way to perform the compression. Recall that each
bitmap is an array of chars, so instead of checking if every single bit is set to 0, a faster way is
to check if the whole char is set to 0. If so, the algorithm jumps over 8 bits but otherwise checks
each one. The code is shown in Listing 7.2. The building of ~xps with the CIMs is the same for all
implementations.

7.3. SPARSTITION PERFORMANCE 65

Table 7.6: Table summarizing the cost in time of performing the compression of Index Maps for
bitmaps and the other (boolean maps and setting to -1) implementations. The result from adding
the bold numbers with the CIM (compressed Index Map) build time is lower than the build time
with the sparse Index Maps . All times are in milliseconds.

Number
of Partitions

(log)

Hummocky Norne Hamrle3

Build xp

w/ sparse IM

Compressing IMs Build xp

w/ sparse IM

Compressing IMs Build xp

w/ sparse IM

Compressing IMs
Compression Build xp with

CIMs
Compression Build xp with

CIMs
Compression Build xp with

CIMsBitmaps Other Bitmaps Other Bitmaps Other
1 0.10 0.11 0.09 0.05 1.11 1.14 1.23 0.54 14.28 17.87 14.22 16.61
2 0.15 0.13 0.16 0.05 1.66 1.53 2.16 0.44 21.42 22.80 26.65 17.25
3 0.29 0.16 0.27 0.06 3.19 2.26 3.76 0.58 34.36 25.39 56.89 17.07
4 0.54 0.22 0.49 0.07 6.29 3.77 6.67 0.88 65.11 31.54 104.30 17.98
5 1.08 0.46 1.14 0.08 12.18 5.55 12.16 1.06 122.47 40.61 204.24 16.85

Listing 7.2: A property of bitmaps allows for faster compression.
1 char byte = pd.im_mapped[i / 8];
2 while (byte == 0){
3 i += 8;
4 byte = pd.im_mapped[i / 8];
5 }

The speedup gained from building ~xp’s with CIMs justifies the compression time for all cases
especially in iterative algorithms where the step must be executed multiple times. Bitmaps also
prove to be much more scalable in performing the compression for all benchmarks. Only CIMs
will be tested for the remainder of this chapter since the compression results in much faster build
times.

7.3.3 Total Execution Time

To summarize, the total execution time consists of these three steps:

1. Initializing the Index Maps or supplementary arrays (boolean or bits).

2. The sparstition algorithm.

3. Compressing the resulting Index Maps (CIM).

Building of the ~xps is not included here because it takes place during the computation on the
host machine. The three steps and their relation to one another is illustrated in Figure 7.4 for the
three benchmarks.

It is clear from the bar chart in Figure 7.4 that the compression dominates the total execution
time. But as we have seen in the previous section, it quickly results in faster build times of
~xp’s especially when iterative methods are considered. When a larger number of partitions is
required, bitmaps is clearly the best choice as seen by the middle bar in each cluster. In the
case of a small number of partitions, the best choice depends on the matrix at hand. Figure 7.5
contains three graphs, each showing the total execution time with a varying number of partitions.

For all graphs, the intersection with bitmaps (blue curve) marks the point where the slower
sparstition time has been compensated by the faster initialization time. Where this intersection
takes place varies with each benchmark but factors such as the density of Index Maps could be
investigated in order to build a model. Unfortunately, this is not explored in this thesis.

66 CHAPTER 7. EXPERIMENTAL RESULTS

(a) Hummocky (small) (b) NORNE (medium)

(c) Hamrle3 (large)

Figure 7.4: Small, medium and large test cases for all implementations including CIM time.

The graph in Figure 7.5a shows a narrow gap in performance between the Index Map and
boolean map implementations. The Index Map implementation is faster with the smallest num-
ber of partitions by a small margin, and the margin remains narrow after the intersection between
23 and 24. For NORNE in Figure 7.5b, the Index Map implementation is considerably faster for
the first few number of partitions but is eventually overtaken by boolean maps and finally the
bitmaps. In the last Figure which depicts Hamrle3, the Index Map implementation never results
in the fastest execution time. The gap between the Index Map and boolean map implementation
is larger than in Figure 7.5a and stays relatively constant.

7.4 Sparstitioned SpMV

In this section, the results from the sparstition algorithm are combined with the execution times
for partitioned SpMV .

7.4. SPARSTITIONED SPMV 67

(a) Hummocky (small) (b) NORNE (medium)

(c) Hamrle3 (large)

Figure 7.5

First, we will explore the effect on performance as an increasing number of partitions are
pipelined on a single accelerator. This is first performed on the smallest benchmarks, which
fit entirely in the available cache. Subsequently, we construct a model in order to estimate the
performance of the matrices that need to be partitioned more than once in order to fit.

Second, we emulate the situation where we have multiple accelerators by computing each
partition in isolation. We claim that by taking the largest execution time will provide an adequate
estimate of running the partitions on multiple machines.

Finally, we emulate the situation where multiple partitions are assigned to an array of accel-
erators. This is ensued by a demonstration of the platform’s potential for load balancing.

7.4.1 Pipelined Execution

The sparstition algorithm can be used when a single accelerator is available but the matrix is too
large to fit in the cache. The pipelined design masks transfer of the multiple ~xp’s by perform-

68 CHAPTER 7. EXPERIMENTAL RESULTS

ing the computation of SpMV in parallel as discussed in the HLS Design chapter. Figure 7.6
illustrates the effect on performance as the number of partitions increases for the three smallest
benchmarks.

Figure 7.6: The change in performance of the smallest 3 benchmarks as NP increases.

Notice that there is initially an increase in performance relative to the non-partitioned case.
This is due to the pipelining which masks the transfer of the second half of the vector and
therefore the effect is most noticeable for epb1 which is a pure bandwidth matrix, i.e. non-
zeros are only near the diagonal. The performance then levels off and then rapidly degrades to
almost negligible performance. This is due to the overhead in switching between the ping-pong
buffers identified in Figure 5.5. As the number of partitions increases, the number of switching
between buffers increases proportionally and the overhead quickly multiplies. Since the number
of partitions doubles every iteration in our testbench, the overhead doubles as well.

The Minimum NP column of Table 7.1 indicates the minimum NP in order to compute each
benchmark on the ZYNQ. The predictable overhead discussed in the previous paragraph and in
Section 5.3.4, permits us to derive the estimated performance for the missing partitions for the
larger benchmarks by halving the difference between two pipelined executions that exist. So for
example, consider a benchmark takes 1’000’000 cycles with NP = 32 and 1’500’000 cycles with
NP = 64. The difference of 500’000 cycles halves, in theory, when moving from NP = 32 to
NP = 16. Therefore, we estimate that it takes 1’000’000-250’000 = 750’000 cycles to compute
a pipelined execution of 16 partitions for this particular benchmark. This theory is tested against
actual execution times of the smaller matrices in Figure 7.7a. The actual effect on performance
is in the accompying Figure 7.7b.

Table 7.7 sums up the rest of the benchmarks missing from Table 7.3 by using the model to
derive theoretical performance values for 2 partitions.

The maximum amount of data that can be transfered via DMA configured in simple mode
is 8MBs. This translates to 2’000’000 SP floating points which is an issue for most benchmarks
presented in Table 7.7. Recall that~x is not stored in bandwidth measurements but the values and
column pointers still had to be streamed. The solution was to split the arrays into batches and
stream them in isolation. The time was accumulated and used to represent as if the whole data
arrays had been streamed in one transfer.

7.4. SPARSTITIONED SPMV 69

(a) The difference in measured execution times be-
tween batches of different number of partitions. The
theoretical curve assumes that the difference dou-
bles.

(b) The effect on performance for all benchmarks
including those derived from the model in Fig-
ure 7.7a.

Figure 7.7: The pipelined execution times for all benchmarks including those that could not be
computed on hardware due to size constraints.

Table 7.7: Results from the larger half of the benchmarks. These performance values are derived
and are theoratically achievable with a larger cache size.

Matrix Performance
(MFLOPS)

Bandwidth
(GB/s)

Speedup
ARM Intel I7

NORNE 143.04 0.59 54.52 0.24
Lin 338.14 1.47 142.90 0.62

parabolic_fem 344.08 1.49 148.54 0.63
roadNet-PA 112.33 0.53 58.35 0.39

Hamrle3 66.09 1.14 98.06 0.50

7.4.2 Isolated Execution

Isolated execution means that the pipelined functionality of the kernel is not activated, so instead
the time to compute is measured for each partition individually. This method emulates environ-
ments were multiple accelerators are present, which requires us to define assumptions as we do
not possess all the required information to make an accurate model.

The cost of performing the sparstition and CIM was covered in detail in the previous section,
and thankfully it is a one-time cost. The advantage is that the SpMV has been split into inde-
pendent streams which can be computed in parallel in shorter time but it may take a number of
iterations (NI) before speed-up is achieved. This is illustrated in Figure 7.1.

In this sub-chapter, we will explore how large NI must be until the sparstition cost is justified.
We then compare this number to an actual iteration count obtained from running Bi-CGSTAB to
compute the theoretical speedup.

7.4.2.1 Assumptions

The first assumption is that the partition that takes the longest to compute is the total execution
time of the cluster. This is because all partitions are assumed to run in parallel and the total
time of the cluster therefore depends on the accelerator that finishes last. The computation

70 CHAPTER 7. EXPERIMENTAL RESULTS

time includes both the building of ~xp and the SpMV execution itself. The largest NP in our
experiments is 1024 and it is unrealistic to expect such a number of accelerators to execute all
partitions in parallel. However, the point is to show the scalability of the solution, and as we will
see in the subsequent section, it is possible to group partitions together and assign each group to
an accelerator.

The second assumption is that~x arrives at each accelerator at exactly the same time. This
requires the driver node to have high bandwidth in order to stream the vector simultaneously to
a number of nodes, and again becomes more unrealistic with an increasing number of partitions.

The third assumption is that there is no overhead in the iterative algorithms to commence
parallel SpMV . This overhead is minimized with a deep task-level pipeline of the iterative
algorithm and therefore is most viable if it is implemented on FPGAs. It depends on the imple-
mentation and the platform how efficient this pipeline is.

7.4.2.2 Computing Iterations until Speedup

Once all times have been added up, it is usually the case that a speed-up is not observed. How-
ever, as has been noted on multiple occasion, the SpMV has no practical value when performed
by itself but is a vital step in many iterative algorithms. Recall from Figure 7.1 that it is in
our interest to calculate how many iterations are necessary until speedup is observed. Table 7.8
summarizes how the number of iterations are computed for epb1 as an example case.

Table 7.8: Table summarizing total execution times for epb1. Only the bitmaps implementation
is considered in this table for simplicity. NP HLS stands for non-partitioned HLS. All times are
in milliseconds.

Iterations until Speedup AgainstRef. Execution Times Build ~xp TR1 TR2
I7,
TR1

NP HLS,
TR2

No. of Partitions
(log)

Total Sparstition
Time,

TS
I7,
TBi

ARM,
TBa

Partitoned
SpMV,

TPS
Build ~xp on ARM,

TIHa

Build ~xp on I7,
TIHi

Build ~xp on ARM,
TIIa

Build ~xp on I7,
TIIi

0.37 0.69 1 0.66 0.02 5.91 0.36 x x x 3
2 0.68 0.01 3.17 0.20 x 5 x 2
3 0.71 0.01 1.72 0.11 x 3 x 2
4 0.78 0.01 0.99 0.07 x 3 x 2
5 0.90 0.004 0.65 0.05 x 3 x 2
6 1.11 0.004 0.46 0.04 x 4 6 2
7 1.48 0.002 0.32 0.04 116 5 5 3
8 2.10 0.002 0.17 0.03 13 7 5 4
9 3.44 0.002 0.09 0.03 14 11 7 6

10 6.48 0.001 0.05 0.03 23 20 11 10

Notice that building ~xp’s is a very time consuming step on the ARM processor (TBa) whereas
it is almost negligible on the I7 (TBi). The ARM processor is 6.67× 108Hz while I7 has the
slightly higher base frequency of 1.8× 109. The disproportional increase is most likely due to
the high number of memory accesses needed to build ~xp, each time requiring memory access to
the DRAM via the high latency AXI bus. The I7 case will thus also be presented as a theoretical
case alongside the ARM, since large scale systems will probably not have a microprocessor
communicating with the accelerator.

Recall from Figure 7.1 that there are two reference cases against which speedup is achieved,
namely path 1 where the SpMV computed on I7 and path 2 where SpMV is computed with the
HLS kernel non-partitioned. The duration of these paths are referred to as TR1 and TR2. Since
some benchmarks could not be computed non-partitioned, the derived execution times for 2
partitions from Figure 7.7b are used instead.

7.4. SPARSTITIONED SPMV 71

The sparstition time (TS) includes the compression of the Index Maps and is only per-
formed once whereas TBx (where x = i or a), and TPS are performed until speedup is achieved,
or NI times. To compute the NI against reference time TRy (where y = 1 or 2), we compute how
many times TRy must be computed so that the one-time TS cost is paid off. Each time we perform
TRy we also perform the partitioned SpMV which consists of TBx and TPS. The formula is derived
in Equation 7.1.

TRy×NI = TS +Ttx×NI

where Ttx = TBx +TPS

NI =
Ts

TRy−Ttx

(7.1)

From this equation it is clear that speedup can never be achieved when the time it takes to
build ~xp and perform the partitioned SpMV (Ttx) is larger than the reference time (TRx. These
scenarios are marked with red (comparing with both TR1 and TR2) and pink (comparing only with
TR2) x in the table. Figure 7.8 depicts the number of iterations until speedup is achieved for most
benchmarks.

(a) Index Maps to -1 (b) Boolean maps

(c) Bitmaps

Figure 7.8: NI relative to non-partitioned HLS (TR1) for all implementations.

The margin is very narrow for Np in the range from 21 to 24, in fact it is so narrow that it does

72 CHAPTER 7. EXPERIMENTAL RESULTS

not warrant further analysis of these implementations. Therefore, the focus will only rest on the
bitmap implementation for the remainder of this chapter as it is the most scalable and efficient
one.

Finally, we present the minimum NI for speedup when compared with software execution on
I7. We saw in Tables 7.3 and 7.7 that the software performance of I7 beats the non-partitioned
HLS for all benchmarks, so naturally we expect larger NI’s. The results are summarized in
Figure 7.9.

Figure 7.9: Bar chart of NI needed surpass the I7 execution times for the bitmap implementation.

Notice that for 2 (21) partitions, none of the benchmarks are able surpass the I7. That is,
the execution time of heavier partition is still longer than that of running the benchmark non-
partitioned on the I7. Similar to Figure 7.8c, we note that the NI stays relatively constant for
the first few NP but then starts to rise rapidly. This is in tune with the increase in the cost of
initializing and compressing Index Map’s, which increases proportionally with NP. Since NP

doubles each interval, so too does the overhead.

7.4.2.3 Theoretical Speedup of Bi-CGSTAB

To give an idea on how many iterations are needed to solve a linear system represented by
each benchmark, we use Bi-CGSTAB as an example solver with ILU(0) pre-conditioner, and
gather the number of iterations it needs to solve our benchmarks. Out of 10 benchmarks, only
8 can be solved. This is because the two largest benchmarks have many zero-values on the
diagonal, which is not compatible with our pre-conditioner. The iteration counts are summarized
in Table 7.9. Note that the iteration count can vary significantly depending on the initial guess
and the vector being solved for. These values may be smaller or larger using other vectors.

Table 7.9: NI obtained from running Bi-CGSTAB on each of the benchmarks for a single test
case.

Matrix Hummocky epb1 wathen100 dixmaanl epb3 NORNE Lin parabolic_fem roadNet-PA Hamrle3
Iterations (NI∗) 98 74 7 12 98 84 1419 830 N/A N/A

These reference numbers are used to calculate the theoretical speedup in a cluster environ-
ment shown for both non-partitioned SpMV and I7 (TR1 and TR2) in Figure 7.10. The speedup is

7.4. SPARSTITIONED SPMV 73

calculated with the following formula:

speedup =
TRy×NI∗

TS +(TBi +TPS)×NI∗
(7.2)

where Ty is the reference time for I7 (y = 1) or non-partitioned SpMV (y = 2), NI∗ is the number of
iterations obtained from Table 7.9, TS is the sparstition time, TBi the build time on I7 and TPS the
execution time of the longest partition. Note that Bi-CGSTAB and other CG (conjugate gradient)
variants perform two SpMV per iteration but the speedup numbers are obtained by considering
only one per iteration. Figure 7.10 shows the speedup when NI∗ iterations are executed for their
respective benchmarks with a varying NP, both relative to I7 (7.10a) and non-partitioned SpMV
(7.10b).

(a) Speedup relative to (non-partitioned) SpMV in
software on I7.

(b) Speedup relative to SpMV on HLS kernel with-
out partitioning.

Figure 7.10: Theoretical speedups against non-partitioned HLS kernel and software execution
on I7 with NI∗ iterations.

The speedup gained is understandably proportional to NI∗ as observed with Wathen100 re-
sulting in the least speedup while Lin the most. For all benchmarks there is a sweet point where
the maximum speedup is achieved followed by a drop. This is the point where the proportion-
ally increasing cost of processing Index Maps begins to outweigh the benefit of partitioning,
and thus parallelizing, the problem further. Recall from Section 3.2.2 that the processing of
Index Maps is parallelizable as each Index Map is independent from one another. Therefore
the peak of the curve can be extended along the x-axis if the task of sparstition is distributed
over multiple machines.

7.4.3 Peak Performance

Now that we have found the NI required to gain speedup and computed theoretical speedup for
Bi-CGSTAB with NI∗ , we will now explore how the speedup scales. We do this by calculating

74 CHAPTER 7. EXPERIMENTAL RESULTS

the average time it takes to perform partitioned SpMV, with the sparstition (TS) cost factored in.

Pits =
FLOPS

Tavg

where Tavg =
TS +Nits×TPS

Nits
=

TS

Nits
+TPS

(7.3)

Since TPS, the combined time of building ~xp and performing partitioned SpMV, is constant,
TS decreases by a factor of the number of iterations (Nits). Let us say that Nits = 2, that it takes
1ms to do sparstition and performing partitioned SpMV (including building of ~xp) takes 0.20ms.
Then the average time it took to perform partitioned SpMV is 1+0.20

2 = 0.60ms. Table 7.10
presents the theoretical results obtained from running 100 and 2000 iterations.

Table 7.10: Theoretical SpMV performance and speedup after 100 and 2000 iterations for all
benchmarks. The performance used as the HLS reference for starred (*) matrices was derived
using the formula in Section 7.4.1.

P100 (GFLOPS) P2000 (GFLOPS) Np = 1 * Performance
(GFLOPS)

Maximum Speedup
with Np = 1 *

Benchmark
No. of Partitions 2 4 8 16 32 64 128 256 512 1024 2 4 8 16 32 64 128 256 512 1024 100 2000

HLS I7 HLS I7 HLS I7
Hummocky 0.51 0.87 1.37 2.21 3.15 3.92 4.31 4.13 3.39 2.38 0.52 0.90 1.45 2.44 3.71 5.04 6.18 6.87 7.02 6.91 0.287 0.557 14.83 4.28 24.15 12.41

epb1 0.48 0.89 1.50 2.21 2.97 3.35 3.68 3.43 2.80 1.97 0.49 0.92 1.59 2.42 3.42 4.11 5.05 5.35 5.41 5.43 0.274 0.514 13.44 3.83 19.85 10.57
wathen100 0.52 1.01 1.94 3.60 6.23 9.82 12.87 15.53 17.63 16.74 0.52 1.01 1.94 3.60 6.23 9.82 12.87 15.53 17.63 16.74 0.266 0.593 28.31 6.72 64.98 28.22
dixmaanl 1.27 2.18 3.41 4.52 5.03 4.55 3.67 2.54 1.36 2.46 4.26 6.52 8.61 9.75 10.22 10.78 0.281 0.526 16.83 4.83 36.05 20.47

epb3 0.31 0.58 1.12 2.01 3.36 4.81 5.88 7.27 5.10 0.31 0.59 1.13 2.06 3.51 5.25 7.05 11.52 18.76 0.310 0.509 21.32 10.01 55.03 36.81
NORNE* 1.91 3.37 5.56 7.96 9.37 8.18 5.53 2.09 4.02 7.71 14.39 24.84 34.72 39.14 0.143 0.586 65.50 9.44 273.62 66.74

Lin* 3.04 4.27 5.89 6.75 5.83 4.15 2.40 3.83 5.88 10.28 18.09 23.47 33.96 28.28 0.338 0.549 19.98 4.38 100.44 51.47
parabolic_fem* 5.98 5.78 4.52 2.74 13.90 22.15 31.43 23.73 0.344 0.548 17.38 4.99 91.35 43.27

roadNet-PA* 4.18 3.21 1.48 1.15 13.23 18.85 17.52 15.63 0.112 0.291 37.23 3.94 167.83 53.72
Hamrle3* 2.64 2.05 31.33 27.96 0.066 0.132 39.98 15.46 474.05 211.03

We repeat that running a high number (> 32) of partitions in parallel is unrealistic due to
the amount of hardware and bandwidth needed. Also 2000 is a high number of iterations but it
demonstrates the saturation point for the smaller matrices. Generally, as NP increases so does the
performance. This is due to TS gradually becoming a non-factor and thus leaving the execution
time of the longest SpMV partition as the only performance factor.

There is significant speedup for all benchmarks after 100 iterations which is a promising
sign. Running more iteration does not affect the performance for a low number of partitions as
the relatively low sparstition cost is quickly covered by the faster parallel execution times. It
naturally takes the larger matrices many more iterations to saturate.

We note in Figure 7.11a that a performance saturation point (SatP), i.e. the point where TS

becomes a non-factor, is reached much quicker for smaller NP due to smaller TS cost. The reason
we sometimes observe lower performance for NP = 1024 compared with NP = 512 is that it takes
more than 2000 iterations to reach the SatP. We observe in Figure 7.11b that there is eventually
an intersection point.

Naturally, it takes more iterations to saturate Hamrle3 in Figure 7.11 due to larger TS. How-
ever, once the SatP is reached, the performance increase is much higher than that of the smaller
matrices. It is, on the other hand, quite unlikely to ever be saturated in practice as it requires
almost 20000 iterations. Not to mention the cost of 512 to 1024 accelerators.

7.4.4 Comparison with State-of-the-Art

We are now ready to compare our results with two state-of-the-art designs. Table 7.11 presents
our next to [2] and [11].

7.4. SPARSTITIONED SPMV 75

(a) The scalability of Hummocky performance with
an increasing number of iterations.

(b) The scalability of Hamrle3 performance with an
increasing number of iterations.

Figure 7.11: The performance scalability of performing multiple partitioned SpMVfor two
benchmarks.

Table 7.11: This work compared with the state-of-the-art SpMV kernels on FPGAs. Our results
are obtained from running 100 iterations.

Works Device
Benchmark

Performance
(GFLOPs)

Bandwidth
(GB/s)

Name Dim Nnz (%) Single Double Single Double

[2] Stratix V
raefsky1 3242 2.80 3.99 38.4

epb1 14734 0.044 0.69 19.2
scircuit 170998 0.0033 0.08 19.2

[11] Convey HC-2x
raefsky1 3242 2.80 1.83

80epb1 14734 0.044 1.03
scircuit 170998 0.0033 0.792

This work (estimated) ZYNQ-7000
Hummocky 12380 0.08 3.15* 1.58**

64* 64*epb1 14734 0.044 2.97* 1.49**
Lin 256000 0.003 4.27* 2.14**

We obtain the starred (*) results with the Equation 7.3 from the previous section for 100
iterations. We then choose 32 partitions and emulate an environment where each one is executed
in isolation. We choose 32 partitions because each HLS kernel is assumed to have bandwidth of
2GB/s as was the case for our design. The total bandwidth of the system theb becomes 64GB/s
which is between the 80G/s reported by [11] and the maximum of 38.4 GB/s reported by [2].
However, all of our results are single-precision so we make the assumption that halving the
performance is identical to the double precision performance (**).

The only shared benchmark is epb1, which our design might scale to outperform. The other
benchmarks are unfortunately not included in our set.

76 CHAPTER 7. EXPERIMENTAL RESULTS

7.5 Load Balancing

7.5.1 Verification of the Weights Model

We defined a formula to predict the execution time of the partitions during run-time of sparstition
in Section 4.3. To put it to the test, we varied the partitioning point for NORNE. Therefore NP

is equal to 2 and we measured the effect it had on each partition. Then we plotted the weight
formula against the results and adjusted the curves. Recall that the weight formula is meant to
give relative execution times. The result is summarized in Figure 7.12.

Figure 7.12: The yellow curves are execution times in cycles and correspond with the right axis.
The blue and red curves are the weight formulas and correspond with the left axis.

As we can see, the weights formula fits very well with the actual execution times.

7.5.2 Load Balancing the Execution of Multiple Pipelines

So far we have only explored the case of a single pipeline as the isolated execution did not use
the pipelined functionality of the kernel. There is no upper limit for NP, but as it rises it be-
comes increasingly difficult to execute each partition in isolation due to the need for a dedicated
accelerator. That is, the number of accelerators (NA) does not scale in practical systems. The
subsequent discussion focuses on the case where NA < NP which requires us to group partitions
together and assign said groups to the smaller number of accelerators. In the example that fol-
lows, Hamrle3 depicted in Figure 7.13a, is split into 1024 partitions and an environment of 32
accelerators is emulated. Therefore each accelerator is assigned 1024/32 = 32 partitions each
which are executed in a pipeline.

The isolated execution exposes highly irregular execution times resulting from the sparsity
pattern, which is characterized by the sparse upper half and dense lower half. For the following
example, NA = 32 and the task is to assign these partitions to the available accelerators. The most
simple approach is to simply group adjacent partitions together, which results in the assignment
depicted in Figure 7.14a.

However, this results in significant variance between the groups. Another approach is to
split the partitions into three major groups characterized by the length of execution time. Each
major group is further divided into 32 sub-groups, one for each accelerator as shown in Fig-
ure 7.14b. Finally, each accelerator is assigned one sub-group from every major group. The
resulting execution times of these two schemes is presented in Figure 7.15.

The extremes are noticeably filtered out, but the change in execution times is not significant
in this case due to the small accelerator cache and the efficient pipelining. This is a potential

7.5. LOAD BALANCING 77

(a) The sparsity pattern of Hamrle3.
(b) The execution times Hamrle3 partitions for NP
= 1024.

Figure 7.13: Figure comparing the sparsity pattern of Hamrle and the uneven execution times
for NP = 1024.

(a) The 1024 partitions assigned to 32 groups where
each color corresponds to an accelerator.

(b) The 3 major groups identified for even distribu-
tion.

Figure 7.14: The two distribution schemes, grouping adjacent partitions together versus identi-
fying groups and subdividing them.

Figure 7.15: Load balanced execution times versus normal execution times for each accelerator

78 CHAPTER 7. EXPERIMENTAL RESULTS

topic for future research where the platforms have larger caches and load balancing becomes
more vital. The identification of the three groups was done manually for this example but some
advanced technologies such as machine learning might assist with this task in the future.

7.6 Conclusion

We can now conclude that the co-design presented in this thesis shows promise once all costs
have been factored in. The design works as intended, which enabled us to compute SpMV with
benchmarks that have ~x that are up to 34 times larger than the available cache. The kernel by
itself proved to be relatively efficient despite many shortcomings of HLS by utilizing as much
of the available bandwidth as possible. It was compared with the current state-of-the-art which
also tested its capability of computing double precision floating points. Additionally it achieved
up to 150x speedup against the ARM microprocessor while performing slightly worse against
Intel I7 processor.

We evaluated the cost of sparstition and its three implementations in detail. We eventually
found out that due to the proportional increase in cost of processing Index Maps that using
bitmaps was the most efficient due to its scalability. However, if the sparstition is split and
computed in parallel on multiple machine, the other implementations are strong candidates.

The sparstition and partitioned SpMV were computed together in order to find NI presented
in Figure 7.1 at the beginning of the chapter. The numbers proved to be reasonable when com-
pared with the computation of Bi-CGSTAB solver preconditioned with ILU(0). The theoretical
speedups in iterative algorithms reached 70x when compared with SpMV without partitioning
on the kernel, and 50x compared with the software execution on I7. We also explored how the
speedup scales in terms of performance in FLOPS as the sparstition cost is gradually factored
out. Every benchmark was evaluated with a special attention given to the smallest (Hummocky)
and the largest (Hamrle3). We saw that performance saturates as the number of iterations in-
creases. Finally, we explored the case when the number of partitions exceeds the number of
accelerators. We accomplished this by emulating an environment with multiple pipelined HLS
kernels, and showcased that the platform can perform (coarse-grained) scheduling with ease.

In the following chapter, we will conclude this work with a brief summary of what has been
discussed. The work that may ensue in the future is also listed.

Conclusion and Future Work 8
In the previous chapter, we evaluated every major aspect of our design, the sparstition algorithm,
the HLS kernel and their interplay. We conclude our work in this thesis with a brief summary
of the key points starting from the problem statement formulated in the introduction chapter.
Subsequently, we state the contributions from this thesis and highlight future work.

8.1 Summary

We have now presented a solution to the problem that we introduced in the first chapter of this
thesis. We identified the problem that HLS kernels were not performing on par with their man-
ually designed counterparts, mainly due to difficulties in managing multiple parallel pipelines.
Instead of suggesting improvements to the HLS compiler itself, we approached the problem from
a higher level and formulated the following problem statement:

Can a partitioning algorithm be developed which splits SpMV into multiple independent
streams, and show promise in achieving speedup in HLS designs within a reasonable amount of

iterations?

So essentially we wanted to find out, whether it is possible to efficiently partition SpMV
in such a way that multiple pipelines running on separate computational units can execute in
parallel. In order for the solution to be efficient, the cost of performing the partitioning should
be quickly be repaid so that the benefits of the parallel execution can be reaped.

In order to address this problem statement, we first designed an HLS kernel that was efficient
in computing multiple partitions by overlapping communication with computation. We evalu-
ated the performance of the kernel as a standalone unit to obtain reference times to compare
against. We also compared with current state-of-the-art design using the benchmarks presented
in the respective work. Our results achieved speedup, even though the other work was performed
in simulation. For the larger benchmarks that we could not execute non-partitioned, we derived
the estimated performance if two partitions were executed in a pipeline. We found this to be rea-
sonably close to non-partitioned execution times for the smaller benchmarks. We also computed
a naive implementation of SpMV in software using a state-of-the-art processor.

Then we evaluated the Sparstitioner , which consists of initializing and compressing
Index Maps and the sparstition algorithm. We created three different implementations and after
extensive evaluation, it was concluded that bitmaps scaled the best. Our findings were then
used to finally compute theoretical number of iterations required until speedup is achieved (NI)
in Section 7.4.2.2, which proved reasonable compared with reference runs of the Bi-CGSTAB
solver, summarized in Table 7.9. The NI was demonstrated to depend on the time it takes to
perform the pre-processing, and the speedup gained from the parallel execution of SpMV .

As an extra step, we investigated how the performance scaled with 2000 iterations, which
is a significant number but the shows that the platform scales well for larger benchmarks in

79

80 CHAPTER 8. CONCLUSION AND FUTURE WORK

the future. However, we found out that the performance reached a saturation point which is
where the cost of sparstition was fully covered by the speedup of parallel SpMV. This occurred
faster for smaller benchmarks as the pre-processing time was much smaller for them as seen in
Figure 7.3.

The problem statement was successfully addressed but the work is far from complete. We
only showed our results in emulated environments and we are yet to prove that the speedup is
realizable in practice. The next section presents the contributions made by this thesis.

8.2 Contributions

The contributions of this work are the following.

• The design and implementation of an HLS kernel that improves the state-of-the-art HLS
SpMV designs. We achieved this by making use of as much bandwidth as possible within
the ZYNQ platform. In addition, the kernel features an efficient pipeline so that communi-
cation can be transferred with computation when multiple SpMV partitions are computed.

• An efficient and parameterized partitioning algorithm that does not require expensive post-
processing. The algorithm worked well with the HLS kernel and can, in theory, be used to
improve any implementation.

8.3 Future Work

The work presented in this thesis is far from being complete as only a proof-of-concept was
presented and evaluated. The following is a non-exhaustive list of work that may ensue.

Handling Dense Rows: If a matrix contains a dense row, which has more non-zero columns
than can fit into the available memory specified by the user, the algorithm cannot find a solution
and exits. It is unclear how this problem can be approached, as one of the characteristics of
the sparstition is that no reduction is required. But unfortunately, that is not possible with all
sparsity patterns.

Parallelizing the Sparstitioner: We exposed that the Sparstitioner is highly paralleliz-
able in Figure 3.5 as each partition can be processed independently. The performance would
improve substantially as a result, because the workload of the two largest bottlenecks, namely
sparstition and the Index Maps processing, would be distributed over different computational
units. The implementations that were promising for a small number of partitions, namely
Boolean maps and setting Index Maps to -1, might turn out to be more scalable.

Executing SpMV in parallel: We only emulated environments that had multiple compu-
tational units in this work. A logical next step is therefore to actually perform the SpMV in
parallel with the sparstitioned partitions. As we noted, the design of sparstition is implementa-
tion agnostic and thus we are not limited to the HLS kernel. We could, for example, continue
with GPUs (Graphical Processing Unit) or multi-core CPUs (Central Processing Unit).

Speeding Up Solver Algorithms: We obtained reference numbers from running Bi-
CGSTAB to verify that the number of iterations until speedup was reasonable for our bench-
marks. Indeed, we obtained theoretical speedup for every benchmark that converged thus demon-
strating the promise of this work. However, there are significant challenges in integrating our

8.3. FUTURE WORK 81

solution to the solver algorithm which must be addressed. The step before SpMV in Bi-CGSTAB
is the pre-conditioning which is usually highly sequential. To maximize the benefits of SpMV
, the streaming to the computational units would need to begin as the pre-conditioned vector
becomes available. Therefore, FPGAs show the most promise in running the host-code as they
are capable of achieving task-level pipelines. The next challenge is receiving the result from the
cluster, which could be relatively simple if a dot product is to be computed as the operations
are associative. However, perhaps multiple dot-products need to be computed following SpMV
which are also applied with the pre-conditioner, as is the case with the second SpMV of the
Bi-CGSTAB method.

Porting the Solver to a Cluster: If the solver algorithm discussed previously shows promise
and significant speedup is achieved, then we can look into porting the solution to a cluster as we
illustrated in Figure 3.8. There are significant challenges involved in streaming data to and from
the worker nodes so the the implementation must be made as efficient as possible. Preferably,
the solver runs on an FPGA so that the communication overhead is masked by the computation.

82 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[1] Xilinx, Inc., Vivado HLS Optimization Methodology Guide, 2017.

[2] P. Grigoras, P. Burovskiy, and W. Luk, “Cask: Open-source custom architectures for
sparse kernels,” in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016,
pp. 179–184. [Online]. Available: http://doi.acm.org/10.1145/2847263.2847338

[3] R. Garibotti, B. Reagen, Y. S. Shao, G. Wei, and D. Brooks, “Assisting high-level synthesis
improve spmv benchmark through dynamic dependence analysis,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1440–1444, Oct 2018.

[4] “Altera gives intel a hot hand in programmable chips.” [Online]. Available: http:
//fortune.com/2015/12/28/intel-completes-altera-acquisition/

[5] “Ibm and nvidia present the nvlink server you’ve been waiting
for,” Oct 2018. [Online]. Available: https://www.ibm.com/blogs/systems/
ibm-nvidia-present-nvlink-server-youve-waiting/

[6] H. Liu, L. Shen, Y. Chen, K. Wang, B. Yang, and Z. Chen, “A parallel simulator
for massive reservoir models utilizing distributed-memory parallel systems,” CoRR, vol.
abs/1701.06254, 2017. [Online]. Available: http://arxiv.org/abs/1701.06254

[7] U. M. Ascher and E. Boxerman, “On the modified conjugate gradient method in cloth
simulation,” Vis. Comput., vol. 19, no. 7-8, pp. 526–531, Dec. 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00371-003-0220-4

[8] S. Skalicky, C. Wood, M. Lukowiak, and M. Ryan, “High level synthesis: Where are we? a
case study on matrix multiplication,” in 2013 International Conference on Reconfigurable
Computing and FPGAs (ReConFig), Dec 2013, pp. 1–7.

[9] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “Elasticflow: A complexity-effective ap-
proach for pipelining irregular loop nests,” in 2015 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Nov 2015, pp. 78–85.

[10] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-level synthesis,” in
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’18. New York, NY, USA: ACM, 2018, pp. 127–136. [Online].
Available: http://doi.acm.org/10.1145/3174243.3174264

[11] R. J. Halstead and W. Najjar, “Compiled multithreaded data paths on fpgas
for dynamic workloads,” in Proceedings of the 2013 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, ser. CASES
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 3:1–3:10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2555729.2555732

83

http://doi.acm.org/10.1145/2847263.2847338
http://fortune.com/2015/12/28/intel-completes-altera-acquisition/
http://fortune.com/2015/12/28/intel-completes-altera-acquisition/
https://www.ibm.com/blogs/systems/ibm-nvidia-present-nvlink-server-youve-waiting/
https://www.ibm.com/blogs/systems/ibm-nvidia-present-nvlink-server-youve-waiting/
http://arxiv.org/abs/1701.06254
http://dx.doi.org/10.1007/s00371-003-0220-4
http://doi.acm.org/10.1145/3174243.3174264
http://dl.acm.org/citation.cfm?id=2555729.2555732

84 CHAPTER 8. CONCLUSION AND FUTURE WORK

[12] K. Townsend and J. Zambreno, “Reduce, reuse, recycle (r3): A design methodology for
sparse matrix vector multiplication on reconfigurable platforms,” in 2013 IEEE 24th Inter-
national Conference on Application-Specific Systems, Architectures and Processors, June
2013, pp. 185–191.

[13] M. Taouil, “A hardware accelerator for the openfoam sparse matrix-vector product,” 2009,
uuid:ce583533-45ea-4237-b18d-fe31272ea1ee.

[14] J. Pinhao, “Fpga multi-processor for sparse matrix applications,” 2015.

[15] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,” Ph.D. dissertation,
2003, aAI3121741.

[16] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Programming for FPGAs,” ArXiv e-
prints, May 2018.

[17] Xilinx, Inc., AXI Reference Guide - UG761, 2011.

[18] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A high memory bandwidth
fpga accelerator for sparse matrix-vector multiplication,” in 2014 IEEE 22nd Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines, May 2014,
pp. 36–43.

[19] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on fpgas,” in Proceedings
of the 2005 ACM/SIGDA 13th International Symposium on Field-programmable Gate
Arrays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 63–74. [Online].
Available: http://doi.acm.org/10.1145/1046192.1046202

[20] R. Dorrance, F. Ren, and D. Marković, “A scalable sparse matrix-vector multiplication
kernel for energy-efficient sparse-blas on fpgas,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate Arrays, ser.
FPGA ’14. New York, NY, USA: ACM, 2014, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554785

[21] S. Cheng and J. Wawrzynek, “Architectural synthesis of computational pipelines with de-
coupled memory access,” in 2014 International Conference on Field-Programmable Tech-
nology (FPT), Dec 2014, pp. 83–90.

[22] S. T. Fleming and D. B. Thomas, “Using runahead execution to hide memory latency
in high level synthesis,” in 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2017, pp. 109–116.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 359–392,
1998. [Online]. Available: https://doi.org/10.1137/S1064827595287997

[24] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka, “Amgx: A
library for gpu accelerated algebraic multigrid and preconditioned iterative methods,”

http://doi.acm.org/10.1145/1046192.1046202
http://doi.acm.org/10.1145/2554688.2554785
https://doi.org/10.1137/S1064827595287997

8.3. FUTURE WORK 85

SIAM Journal on Scientific Computing, vol. 37, no. 5, pp. S602–S626, 2015. [Online].
Available: https://doi.org/10.1137/140980260

[25] J. Pinhao, W. Jose, H. Neto, and M. Vestias, “Sparse matrix multiplication on a reconfig-
urable many-core architecture,” in 2015 Euromicro Conference on Digital System Design,
Aug 2015, pp. 330–336.

[26] “The university of florida sparse matrix collection.” [Online]. Available: www.sparse.
tamu.edu/

https://doi.org/10.1137/140980260
www.sparse.tamu.edu/
www.sparse.tamu.edu/

86 CHAPTER 8. CONCLUSION AND FUTURE WORK

List of definitions

.. ...

87

88 LIST OF DEFINITIONS

Sparsity Pattern of
Benchmarks A

89

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context and Motivation
	Problem Statement and Goals
	Thesis outline

	Background
	Simulating Physical Systems
	Motivation
	Iterative Solvers

	Sparse Matrix Vector Multiplication (SpMV)
	Compression Encoding
	Properties
	Computational Intensity

	FPGA
	ZYNQ
	High Level Synthesis
	FPGA Acceleration of SpMV

	Conclusion

	Partitioning SpMV
	Naive Partitioning Schemes
	Column-wise Partitioning
	Row-wise Partitioning

	Sparstitioning
	The Concept
	Exposing Paralellism and Task-level Pipelining
	Potential for General Improvement

	SpMV with Big Data Frameworks
	Cluster Schema
	Sequence Analysis of the Cluster Tasks

	Related Works
	CASK
	Partitioning Solutions

	Conclusion

	The Sparstitioner Design
	Overview
	Definitions
	Design Goal and Requirements
	Algorithm Parameters

	Algorithm Design
	Multiple Partitioning

	Load Balancing
	Modelling Execution Times with Weights
	Coarse vs. Fine-Grained Load Balancing

	Conclusion

	HLS Design
	Design Goal and Requirements
	Kernel Parameters

	ZYNQ Design
	HLS Design
	Hardware Modules
	Compiler Directives
	Kernel Configuration
	Design Analysis and Limitations

	Conclusion

	Hardware/Software Co-design Implementation
	Sparstitioner
	Data Structures
	Analysis of the Sparstitioning Algorithm
	Managing Output Files
	Functional Verification

	Host
	Reading from SD Card
	Building x Partitions from Index Maps
	Running SpMV and Functional Verification

	Kernel
	Reading and Writing with AXI Streams
	Functional Verification

	Conclusion

	Experimental Results
	Experimental Setup
	Platform
	Maximum Vector Size
	Benchmarks

	HLS Performance
	Resource Utilization
	Results for Benchmarks
	Bandwidth Scalability
	Comparison with State-of-the-Art HLS

	Sparstition Performance
	Cost of Each Implementation
	Compressing Index Maps
	Total Execution Time

	Sparstitioned SpMV
	Pipelined Execution
	Isolated Execution
	Peak Performance
	Comparison with State-of-the-Art

	Load Balancing
	Verification of the Weights Model
	Load Balancing the Execution of Multiple Pipelines

	Conclusion

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	List of Definitions
	Sparsity Pattern of Benchmarks

