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1
Introduction

Graph theory provides an abstract model for entities and their relationships in the form
of graphs. Formally, a graph (or network) consists of a set of vertices (entities) and a set
of edges (links that connect vertices). In many fields of science, this system is used to
model information. For example, the Internet is a collection of web pages connected by
hyperlinks. A social network is a graph of people connected by friendship. The brain is
a network of neurons. Transport networks, food webs, metabolic pathways can all be
intuitively mapped to a graph representation.

Recent examples of hot research topics related to graph theory and graph processing
are data mining, machine learning, and pattern recognition [43]. In these domains, one
of the main challenges is the sheer size and velocity of input data. Early in 2011, the num­
ber of active Facebook users was 721 million with 68.7 billion friendship edges between
them [57]. In 2020, the number of active users has grown to 2.6 billion [18]. The largest
publicly available hyperlink graph of the World Wide Web, extracted from a crawl in 2012,
contains over 3.5 billion pages and 128.7 billion links [46].

In computer science, time and space are two dimensions of a fundamental tradeoff;
efficiently processing large quantities of data is an inherently difficult challenge (if data is
stored compressed, it takes less space, but access time increases). One way to efficiently
process the increasingly large datasets, is by distributing work over multiple processing
units. However, this makes the design and implementation of graph­processing systems
much more difficult.

In general, graph computations are data­driven [30, 41, 42]. This, in combination
with the irregular structure of graphs, leads to a poor data locality and a varying degree
of parallelism. While low­level implementations of graph algorithms allow for specific
architectural and algorithmic optimization, they are subject to substantial (repeated)
implementation effort. For example, loading a large graph dataset into memory, se­
lecting optimal data structures, and implementing basic (but efficient) graph iteration
are non­trivial tasks shared by most graph processing implementations. To speed up
processing, it can be interesting to use accelerators in a system or distribute workload
over a cluster. This brings extra challenges regarding synchronization, data consistency,
and reliability. Again, non­trivial effort that would have to be repeated for each low­level
implementation.

General­purpose large­scale batch processing frameworks such as MapReduce [13]
and Spark [64] provide a certain level of abstraction (for fault tolerance, coordination, par­
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2 1. Introduction

allelism, etc.), but are not optimized for working with graph data and graph algorithms.
Representing graphs and graph algorithms still requires a substantial implementation
effort [48], which resulted in specialized graph­processing frameworks built on top of
general­purpose frameworks ([31, 32, 49, 63]). Google, the organization that introduced
MapReduce in 2004, recognized that existing general­purpose systems were ill­suited for
graph processing and introduced Pregel [44] in 2010, a framework for graph processing
that increases performance and usability compared to general systems.

Next to processing large datasets in a distributed environment, accelerating single
node computation performance using heterogeneous platforms is a promising trend.
However, because processing large­scale graphs involves data­driven computations,
performance characteristics differ per system architecture and graph topology. So far,
there has been little effort to model these performance characteristics for graph algo­
rithms on heterogeneous architectures. A lot of (future) graph­processing frameworks
would benefit from relying on such models to improve workload distribution that matches
nodes’ capabilities.

In this work, we present a case study of multiple implementations of one graph algo­
rithm for a variety of architectures, in order to model performance and guide workload
distribution between processors in heterogeneous environments. For this case study,
we have decided to use PageRank [50] as main subject. By its nature, PageRank is a
memory­intensive algorithm, which makes it interesting for investigating the influence of
graph topology on performance.

1.1. Problem Statement
Due to the abundance of present­day graph computing problems and the ever­growing
volume and velocity of data acquisition, academia and industry have committed a sig­
nificant amount of effort into simplifying large­scale graph processing. For an extensive
overview and comparison of over 80 large­scale graph frameworks released in recent
years, we refer the reader to a survey by the authors [14].

The compelling next step, one that few frameworks have made so far, is to efficiently
exploit an environment with heterogeneous processing capabilities. Hardware and mem­
ory topology does not have to be uniform in a cluster; some machines may have a newer
generation of hardware, hardware with different processing capabilities, or some ma­
chines may be better connected than others. For example, Surfer[9] tries to partition
the input graph based on available bandwidth between machines, while TOTEM[23] pro­
cesses high­degree vertices on the CPU and offloads the low­degree vertices to the GPU.

In order to better guide the distribution of tasks and data between workers in a het­
erogeneous environment, more research is needed. Ideally, we would like to be able to
predict the performance of a given workload and select the best computing infrastructure.
However, the data­driven nature of graph computations, and varying topologies of graph
datasets make this a non­trivial problem.

1.2. Research Questions
The main goal of this work is to provide models to support the distribution of a graph­
processing workload in a large­scale heterogeneous system. This thesis proposes a
three­stage research process driven by the following research questions:

RQ1 How to evaluate the graph­processing performance characteristics of a process­
ing unit?
In a heterogeneous environment, it is unclear what would be the best allocation
of resources to optimally process a given graph­processing workload. To this
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end, we need to evaluate the performance characteristics of a processing unit
in order to characterize and compare computing devices. Moreover, we must
understand and characterize the performance impact of dataset properties, in
the context of vertex­centric graph processing, on device performance.

RQ2 How to model the graph­processing performance of a processing unit with re­
spect to dataset topology?
The data­driven aspect of graph computations adds a layer of complexity when
modeling performance in graph­processing systems. Therefore, we must iden­
tify the graph metrics that indicate complexity, and assess to what degree they
correlate to processing performance. Finally, the goal is to model the graph­
processing performance of a processing unit with respect to a dataset topology,
in order to more accurately predict its performance for a given workload.

RQ3 How to take into account the graph­processing performance characteristics of
each processing unit in a heterogeneous system when distributing a workload?
The optimal composition of heterogeneous devices might differ depending on the
graph­processing workload. In some cases, it might even be beneficial to use
a single device over a composition of devices. To maximize performance, we
must understand how to use the graph­processing performance characteristics of
each processing unit in a heterogeneous system to effectively distribute a graph­
processing workload.

1.3. Approach
Addressing RQ1, we outline the general design decisions for graph­processing frame­
works and propose a structural benchmarking method that determines the relative perfor­
mance impact of each decision. Following this approach, we use PageRank as example
algorithm for an in­depth case study of graph­processing performance on the CPU and
the GPU.

Using a mix of real­world and synthetic datasets, we benchmark 20 custom PageR­
ank kernels with gradually varying design decisions to evaluate the impact of each design
decision. Addressing RQ2, we work towards modeling the kernel performance by deter­
mining the main performance indicators and correlating these to topological graphmetrics
of the input dataset.

Finally, addressing RQ3, we benchmark our kernels in a controlled heterogeneous
setting and determine the speedup after expanding system resources. We relate this to
our earlier findings and work towards systematically optimizing a workload distribution
guided by the graph­processing performance characteristics of each processing unit in a
heterogeneous system.

1.4. Main Contributions
The main contributions of this thesis are:

C1. (Conceptual) A structural benchmarking strategy aimed at measuring the impact
of each design decision in a graph­processing framework.

C2. (Experimental) An in­depth evaluation of graph­processing performance charac­
teristics of CPUs and GPUs using a PageRank case­study.

C3. (Experimental) A definition and evaluation of a graph­processing performance
model that takes into account the topological structure of an input dataset.
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C4. (Experimental) An in­depth evaluation of graph processing scalability in a hetero­
geneous environment using a PageRank case­study.

C5. (Software Artifact) 20 PageRank kernels with varying graph processing design
decisions for CPU andGPU devices. 10 additional PageRank kernels specifically
targeting heterogeneous environments.

C6. (Software Artifact) A benchmarking suite that facilitates structurally measuring
the graph­processing performance characteristics of devices in a heterogeneous
environment.

1.5. Document Structure
The remainder of this document is organized as follows. Chapter 2 briefly discusses the
main concepts and related work. We provide a succinct introduction to graph theory and
graph computing and define relevant terminology before discussing how this work relates
to previous work. Chapter 3 addresses RQ1 and proposes a structural benchmarking
method. Using this method, we design multiple PageRank kernels targeting various plat­
forms. Chapters 4 and 5 study the performance of these kernels and address RQ2 and
RQ3 respectively; chapter 4 proposes and evaluates a device performance model, chap­
ter 5 evaluates performance and scalability in a heterogeneous setting. Finally, chapter 6
concludes this thesis and proposes directions for future work.

To readers who are interested in our main performance findings, we recommend read­
ing sections 4.6 and 5.5. An overview of PageRank kernels is available in section 3.5. To
readers who are interested in performancemodeling, we recommend reading sections 4.5
and 5.4. To readers who want to learn more about our benchmarking suite, we recom­
mend reading chapter 3 and sections 4.1 and 4.2.



2
Background and Related Work

In this chapter we introduce the main concepts needed to understand the remainder of
this work. Moreover, we provide a brief overview of related work, specifically focusing on
workload distribution in heterogeneous systems.

2.1. Graph Theory
Graph theory provides an abstract model for entities and their relationships in the form
graphs. Formally, a graph (or network) consists of a set of vertices (entities) and a set of
edges (links that pair vertices). Simply said, graph theory is the study of points and lines.
Figure 2.1 illustrates the common way of visualizing graph data, with letters denoting
vertices.

𝑎 𝑏

𝑐 𝑑

𝑒

(a) Undirected graph

𝑎 𝑏

𝑐 𝑑

𝑒

(b) Directed graph

Figure 2.1: Common way of representing undirected (2.1a) and directed (2.1b) graphs.

Edges may be directed or undirected. Undirected edges indicate a two­way relation­
ship, which means that the edge can be traversed in both directions (e.g., a collaboration
graph). Directed edges represent a one­way relationship and can only be traversed in
one direction (e.g., a citation graph). As undirected graphs can be simply mapped to a di­
rected equivalent (by replacing each undirected edge with two directed edges), working
with directed graphs for algorithms, proofs, and computation frameworks is more com­
mon.

We refer to the number of edges directly connected to a vertex as the vertex degree.
For directed graphs, we can further distinguish between incoming and outgoing degree.
The degree distribution models the probability that a selected vertex has exactly a given
number of edges.
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6 2. Background and Related Work

Graph topology refers to the arrangement of nodes and edges. Some examples of
regular arrangements are: a mesh (every vertex is connected to every other vertex), a
star (every vertex has a single edge towards the center vertex), or a ring (every vertex
has a single edge towards the next vertex). However, most real­world networks do not
follow a regular pattern and have a non­trivial topology, these networks are often referred
to as Complex Networks.

2.2. Complex Networks
This section will briefly introduce complex networks, for a more extensive introduction
the reader is referred to Wang and Chen [59]. In graph theory, a complex network is a
graph with non­trivial topology, often observed in networks and models based on real­
world phenomena. Among mathematicians, a well­known example of such a network
is the Erdős collaboration graph (figure 2.2). It indicates the relation between authors
of mathematical publications and their “collaboration distance” to Paul Erdős [28] (an
influential mathematician who, among a broad number of other fields, contributed to graph
theory).

Figure 2.2: Illustration of a small part of the Erdős collaboration graph. The original dataset tracks over 400,000
authors. Courtesy of Easley and Kleinberg [15].

The Erdős collaboration graph has some properties that are typical of real­world
networks. For example, while the average number of collaborators is 3, there is a small
amount of authors that greatly exceed this number (e.g., Erdős himself has directly
collaborated with over 500 people). The distribution of edges indicates a preferential
attachment towards a small amount of authors. Next to that, the median path length
between any two authors is very short. Even though the dataset consists of over 400,000
authors, the longest path is only 26 hops. These are phenomenons not seen in random
graphs, where each possible edge between any two vertices has the same probability of
existing.

Solé and Valverde [55] present a way of classifying graph topologies based on random­
ness, heterogeneity and modularity (figure 2.3). The authors note that most real­world
complex networks can be characterized as highly heterogeneous, irregular, hierarchical
graphs.



2.2. Complex Networks 7

a b c
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Electronic 

hierarchical modular

Modular ER graph

cortical mapsfood webs

Mutualistic
  webs

circuits

proteome
software graphs

metabolic maps

Internet

Semantic nets

Figure 2.3: Zoo of complex networks. A classification of several graph types based on randomness, hetero­
geneity and modularity. Courtesy of Solé and Valverde [55].

The randomness dimension illustrates how much randomness is involved in modeling
the network. This is done by comparing how similar the graph and its characteristics are to
a uniformly random edge distribution of the same size. The Erdős–Rényi (ER) model [17],
on the end of this axis, is used to model fully random graphs. The model dictates that for
a set of vertices, there exists an edge between any two vertices with a given probability.

Graph heterogeneity distinguishes between degree distributions; a homogeneous
distribution evenly scatters all edges among the vertices (such as with the Erdős–Rényi
model), while in a heterogeneous distribution some vertices have a degree that signif­
icantly differs from the average. For heterogeneous graphs, preferential attachment
causes a few hubs to be connected to most of the edges, which causes a power­law
degree distribution. These networks are called scale­free (SF) networks and can be
recognized by fitting a power­law function (or fitting a linear function on logarithmic axes).

From degree distribution alone, it is difficult to observe graph modularity. Graph modu­
larity refers to the extent to which vertices can be divided into separate clusters (modules),
where connectivity with vertices within the cluster is considerably stronger than to those
in other clusters. The average local clustering coefficient can be used to quantify graph
modularity. For each vertex, this coefficient is given by the proportion of links between the
vertices within its neighborhood divided by the number of links that could possibly exist
between them.

Figure 2.4 compares the degree distribution and clustering coefficient of three graphs
of different heterogeneity and modularity and shows that degree distribution and average
clustering coefficient vary accordingly. The clustering coefficient chart Cc implies that
the low­degree nodes belong to very dense sub­graphs and, combined with chart Cb, we
can observe that those sub­graphs are connected to each other through hubs.

The Erdős collaboration graph is an example of a scale­free real­world complex net­
work. In this graph, most authors are connected via a short path even though no direct
edge exists between the two. It also has a high clustering coefficient (significantly higher
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Figure 2.4: Comparison of (a) topology, (b) degree distribution, and (c) average clustering coefficient for (A)
a random network, (B) a scale­free network, and (C) a hierarchical scale­free network. Note the logarithmic
scales in Bb, Cb, Cc. Courtesy of Barabasi and Oltvai [5].

than its corresponding random graph), which means there is a tendency to form commu­
nities (for example, authors from the same department). Combined, these two character­
istics are referred to as the small­world effect.

Watts and Strogatz [60] show that many real­world graphs exhibit the small­world
effect and that this class of graphs should be classified somewhere between regular and
random. Regular meshes are clustered, but have a high average path length. Random
graphs have a short average path length, but do not show clustering.

The highly heterogeneous, irregular structure of complex networks make them inher­
ently difficult to process efficiently in parallel. As graph algorithms are often data­driven,
a scale­free degree distribution makes load­balancing difficult. On top of that, realizing
a minimum graph cut with equal­sized subsets is an NP­complete problem [21], so parti­
tioning to minimize communication is non­trivial as well.

2.3. PageRank
PageRank [50], named after its author, is a well known graph algorithm and is often used
for demonstrating and testing graph­processing frameworks [14]. Although several accu­
racy and performance improvements have been proposed for the algorithm, we focus on
the original algorithm as we are more concerned with the fundamental graph­processing
challenges it exhibits than the actual output.

Traditionally meant for estimating the relative importance of a web page based on
the number and quality of incoming hyperlinks, PageRank has proven its worth in more
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general settings as well (e.g., researcher impact, spam detection and trust networks [25]).
As computation considers an entire dataset at once, it is a primary example of offline
graph analytics. Contrary to online graph analytics (or graph querying), which desires
fast response times, emphasis lays on high throughput.

Equation (2.1) shows the function for calculating the rank of a single vertex. 𝑉 refers to
the set of vertices, 𝐸𝑖𝑛(𝑥) refers to the set of vertices that have an edge pointed towards
vertex 𝑥, and 𝐷𝑜𝑢𝑡(𝑥) refers to the degree of outgoing edges for vertex 𝑥.

𝑃𝑅(𝑣𝑖 , 𝑠) =
1 − 𝑑
|𝑉| + 𝑑 × ∑

𝑤𝑖∈𝐸𝑖𝑛(𝑣𝑖)

𝑃𝑅(𝑤𝑖 , 𝑠 − 1)
𝐷𝑜𝑢𝑡(𝑤𝑖)

(2.1)

This equation models a random surfer ; a visitor randomly following links on every
visited page. For every page, the resulting rank represents the likelihood that any random
surfer ends up on that particular page. In that sense, PageRank outputs a probability
distribution where a higher value represents a more dominant (important) page. Each
rank will have a value between 0 and 1 and the sum of all ranks equals 1. The damping
factor 𝑑 represents the chance that the random surfer will keep on following links. When
no link is followed, surfing is assumed to continue on any other page.

Although the algorithm is simple in terms of theoretical description, PageRank exhibits
one of the intrinsic challenges of graph processing well: computation is data­driven and
parallelization is non­trivial. A second intrinsic challenge is the recursive nature of the
equation. To practically approximate the result, evaluation ensues in iterations until the
result converges.

We implement and study multiple PageRank implementations in order to gain insight
into the graph­processing performance characteristics of different architectures. By its na­
ture, PageRank is a more memory­intensive than computation­intensive algorithm, which
makes it interesting for investigation of the influence of graph topology on performance. In
essence, it can be regarded as the composition of two graph­processing building blocks:
per vertex iteration over neighboring edges (information propagation) and a global reduc­
tion over all vertices (rank update and stop condition).

2.4. Related Work
With the Bulk Synchronous Parallel (BSP) paradigm, Valiant [58] introduced a simple
model for designing and analyzing parallel systems. Key of the paradigm is that compu­
tation and communication proceed in synchronized iterations, referred to as supersteps.
Cost of a superstep can then be determined using the sum of computation cost, commu­
nication cost, and the cost of a global barrier.

Williams and Parsons [61] recognize that BSP is not sufficient for heterogeneous par­
allel systems since it assumes all components have equal computation and communi­
cation abilities. The authors extend the model and introduce the Heterogeneous Bulk
Synchronous Parallel (HBSP) framework.

HBSP takes into account the relative speed, bandwidth, and latency between all
available components in a system. The concept of supersteps remains similar, but the
cost calculation becomes a little more complex. In essence, it is the cost of the slowest
worker (straggler) that determines the final cost, and the goal is to find a workload
distribution that minimizes the final cost. BSP and HBSP abstractions can be used to
reason about parallel graph­processing systems, but actual performance models will
depend on (and vary between) algorithms and their implementations.
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Using a simple BSP­based performance model for heterogeneous graph processing,
Gharaibeh et al. [22] demonstrate that, theoretically, GPUs can be used to accelerate
parallel graph applications. The relative computing power between processors is ex­
pressed through edges per second and communication is expressed through the number
of partition­crossing edges (assumed to be an upper­bounded percentage of the number
of total edges). In their demonstration, the authors use theoretical bounds of today’s plat­
forms for processing rates, memory space, and communication cost to show offloading
30% of a graph to the GPU can result in a theoretical speedup of up to ∼1.35× for a
reasonably sized dataset.

The authors also introduce a heterogeneous graph­processing framework called
TOTEM that offloads part of the dataset to the GPU. The framework is used to verify
the theoretical performance model (for PageRank and Breadth­First­Search) and demon­
strate the real­world potential of GPUs as accelerators for graph processing. Dataset par­
titioning is done based on vertex degree; the (few) high­degree vertices are processed
on the CPU, while the many low­degree nodes are offloaded to the GPU under the as­
sumption that the GPU can process these more efficiently.

The performance model introduced by Gharaibeh et al. [22] shows potential, but
ignores some graph­processing complexities in exchange for model simplicity. For
example, the model assumes that the processing rate for a processor is constant and
can be determined by a benchmark independent of the graph characteristics of the actual
workload. In this work (inspired by the HBSP abstraction) we generalize and extend
TOTEM’s heterogeneous performance model to take into account the usage of multiple
accelerators, as well as the graph characteristics of the dataset.

With StarPU, Augonnet et al. [1] take a more top­down approach to try and solve the
problem of optimally scheduling tasks inside a heterogeneous system. Instead of working
with performance models designed beforehand for the algorithm and datasets at hand,
the StarPU framework provides a “black­box” task scheduler that uses execution heuris­
tics from previous runs. In some cases, the authors note a speedup in a hybrid system
that exceeds the sum of speed of the individual elements (because of the distribution of
tasks with respect to the strengths of each processing unit). Currently, these scheduling
heuristics are only based on the kernel, execution unit, and task size, which has proven
not to be sufficient for graph processing. Our work focuses on finding better heuristics,
such that future heterogeneous schedulers can also benefit graph algorithms.



3
Design and Implementation

In this chapter, we address RQ1: how to evaluate the graph­processing performance
characteristics of a processing unit? To this end, section 3.1 proposes a novel bench­
marking methodology on the basis of a PageRank case­study. Sections 3.2 and 3.3
discuss the design principles for such a benchmark.

Section 3.4 elaborates on implementation and describes each of our benchmark ker­
nels in detail. Finally, section 3.5 provides an overview and succinctly lists all kernels.

3.1. Methodology
PageRank is a graph algorithm that is composed of two graph­processing building blocks:
per­vertex iteration over neighboring edges (information propagation), and a global reduc­
tion over all vertices (rank update and stop condition). The actual computation is relatively
simple, which makes PageRank well­suited to analyze the influence of graph topology on
performance.

A lot of general­purpose graph­processing frameworks offer users a higher­level pro­
gramming interface to implement graph applications. The “think like a vertex” (TLAV)
paradigm (also referred to as vertex­centric), as introduced with the Pregel framework by
Malewicz et al. [44], limits the scope of computation to a single vertex, thereby allowing
fine­grained parallelization. As shown in the original paper, PageRank is one of the algo­
rithms that maps elegantly to this model (algorithm 1 displays a simplified representation;
note that Pregel does not allow for global gather/scatter operations, so a prefixed number
of iterations coordinates the stop condition).

Algorithm 1 Pseudocode for Pregel’s Vertex­Centric PageRank
function ComputeVertexPageRank(𝑀 ∶ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠)

𝑉𝑒𝑟𝑡𝑒𝑥.𝑉𝑎𝑙𝑢𝑒 ← 1−𝑑
|𝑉| + 𝑑× Sum(𝑀)

if 𝑆𝑢𝑝𝑒𝑟𝑆𝑡𝑒𝑝 < 30 then
for all 𝑤𝑖 ∈ 𝑉𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do

SendMessage(𝑤𝑖 ,
𝑉𝑒𝑟𝑡𝑒𝑥.𝑉𝑎𝑙𝑢𝑒

𝑉𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 )
end for

else
VoteHalt( )

end if
end function

11
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Each iteration and for every vertex, the ComputeVertexPageRank program is
scheduled for execution. Communication between vertices is message­based and
synchronized (i.e., all messages sent at iteration 𝑖 are processed in iteration 𝑖 + 1). This
methodology of a conceptually parallel bulk execution of vertex­programs, followed by
a global synchronization step between iterations (supersteps), derives from the Bulk
Synchronous Parallel (BSP) parallelization pattern [58].

Nguyen et al. [49] show that, even though the higher­level programming interfaces are
similar (i.e., vertex­centric), performance varies greatly between graph­processing frame­
works, and the framework achieving the lowest runtime changes depending on the input
dataset. Moreover, frameworks also diverge in their APIs and optimization strategies: a
more restricted API allows for more lower­level framework optimizations that target data
structures, data transfer, and task scheduling [14]. In order to compare hardware plat­
forms on equal footing and in a structured manner, we propose the use of straightforward
in­house PageRank kernel implementations with gradually varying design decisions. To
allow for a certain extent of generalization, implementations should follow patterns generic
to graph processing. Section 3.2 elaborates on the requirements and design decisions
made regarding this aspect.

Next to “traditional” (multi­core) CPUs, we take GPUs into account. In big­data pro­
cessing applications, GPUs are very often used as platform for offloading computation.
In graph processing, too, the platform has proven its potential ([20, 23, 34, 67]). How­
ever, due to the intrinsic graph­processing challenges, implementing graph algorithms
for the GPU is significantly more challenging. Section 3.3 discusses how the benchmark
kernels should address the traits and implementation objectives per platform, as well as
the challenges of heterogeneous environments, where a set of independent processors
is exploited (e.g., exploiting distributed CPUs in a cluster or exploiting both the CPU and
GPU on a single node).

3.2. Graph­Processing Considerations
McCune et al. [45] define TLAV­frameworks as software that supports iterative execution
of user­defined vertex­programs over vertices of a graph. The authors identify four prin­
ciple design decisions (interdependent pillars) that dictate how programs execute and
utilize the underlying hardware: Timing, Communication, Execution Model, and Partition­
ing. However, the performance implications of different decisions for these components
are unclear.

This section discusses, per graph­processing pillar, the requirements and design de­
cisions (and subsequent implications) for our benchmark kernels. First, section 3.2.1
(Timing Model) elaborates on how vertex calculations are scheduled for execution. Sec­
tion 3.2.2 (Execution Model) explains the decisions made regarding abstraction level and
data flow. Section 3.2.3 (Communication Model) considers how program data is shared
between entities. Finally, section 3.2.4 (Data Partitioning) focuses on the distribution of
input data among workers.

3.2.1. Timing Model
The timing model portrays how vertices are ordered by the scheduler for computation. In
the traditional BSP model, all entities are executed (conceptually, in parallel) in super­
steps with a global synchronization barrier between supersteps. Computation follows a
deterministic pattern, where calculation is performed on data from the previous iteration,
and updates are exchanged between iterations. Per iteration, vertices can be scheduled
in any (random) order, as the execution order does not affect the state of the program.
This is the synchronous timing model.

Alternatively, the asynchronous timing model discards a global iteration barrier, allow­
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ing calculations to be performed on most recent data. In synchronous execution, each
superstep takes as long as the computation time for the slowest vertex (also known as
the straggler problem). For asynchronous execution, vertex execution order can be dy­
namically reorganized by the scheduler, which helps counter the problem of imbalanced
workloads.

Figure 3.1 depicts the difference in execution flow for synchronous (upper part of the
figure) and asynchronous timing models (lower part). Asynchronous execution shows
more fine­grained synchronization without a global barrier. States update immediately
and execution order is not fixed.

sample

graph Worker 1

Worker 2

Worker 1

Worker 2

barrier

batched
new state

new state

SYNC

ASYNC

Figure 3.1: Visualization of the different execution flows for synchronous (upper part of the figure) and asyn­
chronous timing models (lower part). Courtesy of Xie et al. [62].

PageRank is an algorithm with a high communication­to­computation ratio, which
means it can benefit from optimizations to communication [62]. For synchronous im­
plementations, communication patterns are predictable, so throughput can be improved
through batch operations. Next to that, the nondeterministic nature of asynchronous exe­
cution makes performance modeling more difficult, so we restrict to implementing a syn­
chronous timing model. We also assume all vertices to stay active during execution,
as opposed to more intricate techniques that feature early termination for vertices that
remain inactive ([40, 65]).

3.2.2. Execution Model
McCune et al. [45] define a framework’s execution model as the style of algorithm im­
plementation and flow of data. The authors differentiate between models using the num­
ber of distinct computation phases; instead of the single computation function used by
Pregel (algorithm 1), a more general description of PageRank— using the Scatter­Gather
model [52, 53, 56] (two phases) — would be: (1) summation of partial rank based on iter­
ation over edges; (2) vertex rank update based on iteration over vertices.

The flow of data between vertex­programs can be characterized as either push or pull.
In a push style flow, information flows from a vertex to its neighbors (for example, Pregel’s
message­based abstraction naturally maps to a push­based information flow). In a pull
style flow, information flows in the reverse direction: a vertex reads data directly from its
neighbors. Algorithm 2 illustrates a pull­based variant of algorithm 1.

Implementations are markedly different depending on the chosen execution model
(e.g., several typical data structures for topology map to different execution models —
see section 3.4.1). As it is unclear how these decisions impact performance [14, 49],
we have decided to develop multiple benchmark kernels with different model parameters:
both the push and the pull data flows are taken into account.
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Algorithm 2 Pseudocode for pull­based Vertex­Centric PageRank
function ComputeVertexPageRank

if 𝑆𝑢𝑝𝑒𝑟𝑆𝑡𝑒𝑝 < 30 then
𝑠𝑢𝑚 ← 0
for all 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈ 𝑉𝑒𝑟𝑡𝑒𝑥.𝐼𝑛𝐸𝑑𝑔𝑒𝑠 do

𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟.𝑉𝑎𝑙𝑢𝑒
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟.𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒

end for

𝑉𝑒𝑟𝑡𝑒𝑥.𝑉𝑎𝑙𝑢𝑒 ← 1−𝑑
|𝑉| + 𝑑 × 𝑠𝑢𝑚

else
VoteHalt( )

end if
end function

3.2.3. Communication Model
Parallel systems generally distinguish between two models of communication: shared­
memory and message­passing. Although both models can emulate each other, the im­
plemented communication model usually depends on the target platform, which natively
implies a model — i.e., global address space systems rely on shared­memory communi­
cation, while distributed­memory systems rely on message­passing communication. In
our case, we target distributed­memory systems and thus rely on message­passing.

However, in terms of vertex­centric graph processing, the communication model
defines the abstraction method for sharing information between vertex­programs.
Figure 3.2 depicts the communication pattern between two workers for the message­
passing and shared­memory abstractions. The vertices with dashed outline in figure 3.2b
represent so­called ghost­vertices; one worker is assigned ownership of the vertex, while
other workers use replicas that are synchronized after each iteration.

(a) Message­Passing (b) Shared­Memory

Figure 3.2: Comparison of TLAV communication models in
distributed­memory systems for vertices (A–F) partitioned over two
workers (p1–p2). Courtesy of McCune et al. [45].

Figure 3.3: Communication
pattern with vertex­cut [45].

For PageRank, we use a shared­memory abstraction for two reasons. First, because
pull­based information flow is only possible with this model. Second, because it allows for
an optimized push­based information flow: message­passing with sender­side message
aggregation (locally aggregate messages in a ghost­vertex, then globally aggregate the
values of ghost­vertices in their respective origin— resulting in the communication pattern
depicted in figure 3.3).
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3.2.4. Data Partitioning
Partitioning refers to the way in which data is divided between workers. Data volume
is an intrinsic challenge of large­scale graph processing: the data exceeds the capacity
of a single node, so a straightforward solution is to split the input over distributed mem­
ory. Traditionally, a good data distribution optimizes for equal processing time, while
minimizing communication between workers. However, realizing a minimum graph cut
with equal­sized subsets is an NP­complete problem [21]. In practice, with METIS[33]
algorithms being the industrial standard [45], it is common to use pragmatic heuristics for
graph partitioning. We use METIS as one of the methods for data partitioning.

METIS provides edge­cut partitioning, i.e., nearly equal size clusters of disjoint ver­
tices, while minimizing the number of edges that span clusters (see figure 3.2a). For
graphs with a power­law degree distribution, this partitioning might result in unbalanced
workloads due to the imbalance in number of edges between clusters [26]. To counter this,
vertex­cut partitioning balances edges between clusters, while minimizing the number of
vertices that span clusters (figure 3.3). Blocks are balanced based on vertex size.

Partitioning data with METIS is a time­intensive and memory­intensive preprocess­
ing operation. For that reason, we also implement a streaming block­based partitioning
method. Figure 3.4 illustrates the methodology: 3.4a depicts an example graph as adja­
cency matrix where non­empty entries represent edges, 3.4b displays a sample edge­cut
partitioning (vertices 𝐴–𝐶 are placed on worker 𝑝1, 𝐷–𝐹 on 𝑝2), and 3.4c shows a sample
vertex­cut partitioning (non­diagonal blocks work with replicas of vertices).
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(c) Vertex­cut

Figure 3.4: Visualization of block­based edge­cut and vertex­cut partitioning of an adjacency matrix. A dot in
the adjacency matrix represents the existence of edge (𝑟𝑜𝑤 → 𝑐𝑜𝑙). In (b), a hollow dot represents an edge to
another partition. In (c), non­diagonal blocks work with vertex replicas.

Note that this block­based partitioning method is naive, and does not approximate an
optimal vertex­cut; blocks are simply balanced using the number of vertices. However, it
does allow for more structured communication patterns, as the set of ghost­vertices is de­
fined by the row and column of a block, thereby allowing utilization of (possibly optimized)
data­broadcasting operations.

3.3. Platform Considerations
This section elaborates on the design objectives, and the decisions we made, regard­
ing our parallel PageRank implementations for different platforms. As discussed in sec­
tion 3.1, we target (compositions of) CPU and GPU platforms. To take maximum ad­
vantage of a platform, it is important to take its hardware architecture and performance
traits into account. Section 3.3.1 and section 3.3.2 discuss these traits for CPU and GPU,
respectively, and section 3.3.3 considers the heterogeneous aggregation of platforms
where computation or memory access capabilities are unbalanced between processors.
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3.3.1. CPU Traits
The parallelization technique used by multi­core CPU architectures can be classified as
Multiple Instruction, Multiple Data (MIMD) under Flynn’s taxonomy [19]. That is, differ­
ent CPUs (cores) are working independently, and thus typically are executing different
instructions and are accessing different memory locations at any given instant.

At the time of writing, modern commodity multi­core processors have up to 32 cores.
Intel, in their guide to developing multi­threaded applications, recommend not using more
software threads than the number of processing cores in the system [10]. For our appli­
cation, this means that each software thread will execute a batch of vertex programs. To
avoid false sharing, a cache consistency issue where two processors write to the same
cache line, each thread should ideally write to consecutive block(s) of memory.

Nowadays, it is commonplace for multi­core CPUs to support SIMD instructions (Sin­
gle Instruction, Multiple Data) in order to improve throughput for vector operations. Intel’s
Advanced Vector Extensions (AVX) instructions are able to process 256 bit registers. To
benefit from these instructions, operations on consecutive memory are a prerequisite.

To summarize, the primary design objectives for graph processing on CPUs are: limit
the amount of threads and operate on consecutive blocks of memory if possible.

3.3.2. GPU Traits
Contrary to CPUs, which are designed to execute a limited amount of threads at once,
GPUs focus on highly parallel applications by processing thousands of threads concur­
rently. GPUs possess many more execution units than CPUs, but generally operate on
a lower frequency. Execution follows a Single Instruction, Multiple Data (SIMD) pattern:
a group of threads (warp) is physically executed in parallel on cores of a streaming multi­
processor (SMP), one instruction per cycle per warp.

This SIMD model differs from the model offered by the CPU SIMD intrinsics described
in section 3.3.1. NVIDIA labels their parallel programming model for GPUs as Single
Instruction, Multiple Threads (SIMT) [38]. With SIMT, each core is assigned its own thread
with a corresponding context, which means that, although the executed instruction is
similar for all threads in a warp, context may vary (i.e., registers, memory access, or flow
path). This enables parallel processing of constructs that cannot be expressed with CPU
SIMD intrinsics, such as indirect memory access and execution of conditional branches.

Another architectural difference between GPUs and CPUs is the limited implementa­
tion of memory caches onGPUs. CPUs are optimized for minimal latency by utilizing large
caches for, e.g., instruction pre­fetching, out­of­order execution, and operations on mem­
ory. GPUs are optimized for maximal throughput, and try to hide latency through heavy
multi­threading. Whenever a warp is waiting for memory access, the hardware­based
scheduler can switch execution to another warp (time­slicing principle). This encourages
the use of a large number of light­weight threads, preferably a multiple of the number of
cores in an SMP.

Grouping of threads into warps is not only relevant to computation, but also to memory
loads and stores. The SMP is able to coalesce memory requests issued by threads of a
warp into as few transactions as possible. A single memory transaction can address up
to 128 bytes, so threads in a warp should ideally work with neighboring memory in order
to maximize bandwidth efficiency [11].

Exploiting the full capacity of the GPU for parallel PageRank is non­trivial. For vertex­
centric programs, one of the most important performance challenges is keeping all cores
busy as much as possible (i.e., we aim for high core occupancy). Whenever threads in
a warp diverge, for example through conditional branches or loops of unequal number
of iterations, only a subset of the cores is able to execute their instruction. A straightfor­
ward vertex­centric application would map the computation of a single vertex to a single
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thread, but data­driven computation (i.e., edge iteration) in combination with imbalanced
input graphs (many real­world graphs exhibit power­law degree distributions) results in
thread divergence and therefore low occupancy.

To increase (theoretical) occupancy, another way of parallelizing PageRank is to divide
the work of a single vertex program over a full warp, so each core iterates over part of
the vertex edges. As added benefit, this iteration pattern allows for memory coalescing
over edge data as well as vertex data. However, this does add synchronization overhead
and results in low occupancy when the input graph has a lower average degree than the
number of threads in a warp.

Liu and Schmidt [39] propose a lightweight work distribution algorithm in order to
further combat workload imbalance. By atomically increasing a counter, each warp
dynamically determines the vertices to be processed. We implement all three
methods of work distribution.

To summarize, a primary design objective is to operate on consecutive memory
blocks as much as possible. Secondly, work should be split into a large number of
light­weight threads that spread load equally among threads in a warp, in order to keep
core occupancy high and maximize data throughput. Finally, a CPU manages the coor­
dination and invocation of GPU programs (kernels) in a system, but it is idle during kernel
execution. This opens opportunities for sharing the workload between the two devices,
thereby using a heterogeneous computing paradigm.

3.3.3. Heterogeneous Environments
Heterogeneous computing refers to the use of more than one kind of processor in a sys­
tem, with the purpose of increasing performance or energy efficiency. We will refer to
heterogeneous environments as environments with dissimilar processors (i.e., different
clock speed or performance characteristics) or environments that exhibit Non­Uniform
Memory Access (NUMA) characteristics (i.e., distributed CPUs or usage of external mem­
ory, where communication latency and bandwidth depends on location). For the sake of
simplicity, we assume each independent processor to have an independent pool of local
memory, and communication between separate processors to occur through message­
passing.

Balancing workloads in heterogeneous environments is challenging, especially with
data­driven computations such as PageRank and other graph­processing algorithms. In
this regard, it is interesting to know the graph­processing performance characteristics
of different platforms. With the ambition of defining these characteristics, we implement
PageRank targeting only a CPU or a GPU, but also heterogeneous mixes, such as a
cluster of multi­core CPUs and CPU+GPU on a single node.

As inter­worker communication is markedly more expensive than local memory oper­
ations (higher latency / lower bandwidth), a design objective for these implementations
is to optimize communication between workers, for example, by combining messages
and performing batch operations.

3.4. Design and Implementation of Parallel PageRank
Taking into account the design considerations from sections 3.2 and 3.3, this section
will now discuss the design and implementation of our PageRank benchmark kernels.
First, sections 3.4.1 to 3.4.3 explain the design and usage of data structures. Next, sec­
tions 3.4.5 to 3.4.7 explain implementation details for CPU, GPU, and heterogeneous
platforms, respectively.
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3.4.1. Data Representation for Graph Topology
Effectively storing graph topology is one of the most important aspects of high­
performance graph processing. Mapping unique vertex identifiers to ascending indices
allows efficient storage of vertex data in vectors. Edge data, however, is less straightfor­
ward. Adjacency matrices (figure 3.4a) allow for efficient querying of vertex adjacency,
but are memory­inefficient for sparse graphs (i.e., graphs with low average degree). The
number of edges between two vertices is also limited to one per direction.

As real­world graphs are generally sparse, and PageRank performs edge iteration
(rather than edge querying), data storage using adjacency matrices is not a viable op­
tion. Depending on the type of edge iteration, we prefer different data representations
for topology. Following is the list of storage formats we use, with descriptions and use
cases.

(a) Adjacency Matrix — Θ(|𝑉|2)
Edge value is true or false

(b) Adjacency List — Θ(2 × |𝐸|)

(c) Compressed Sparse Row — Θ(|𝑉| + |𝐸|) (d) Compressed Sparse Column — Θ(|𝑉| + |𝐸|)

Figure 3.5: Partial memory layout for different graph topology representations of figure 3.4a with corresponding
storage requirements.

Adjacency List
Storing edges in a list (dubbed adjacency list, figure 3.5b) prevents waste of memory
and enables trivial edge iteration. Contrary to adjacency matrices, where vertex addi­
tion/removal is expensive as it requires a matrix resize, topology modification is relatively
cheap.

However, performing vertex calculations through (the more fine­grained) concurrent
iteration of edges requires synchronization before modifying vertex data (e.g., memory
locks or atomic operations). Secondly, there is no easy way of finding and iterating over
edges belonging to a single vertex without sorting the list first.

For GPUs, which are optimized for fine­grained parallelism, this is a viable representa­
tion of data. Edge vectors will be accessed consecutively, but the potential for coalescing
(atomic) requests to vertex data depends on the ordering of the adjacency list.

Compressed Sparse Row
Sorting and creating an index for one of the two vectors of an adjacency list facilitates
per­vertex edge iteration, and reduces storage requirements further (assuming |𝑉| < |𝐸|).
Creating an index for the to­vertex list corresponds to compressing the adjacency matrix
by storing non­empty cells consecutively in row­major order; hence, this format is referred
to as “Compressed Sparse Row” (CSR, figure 3.5c).

Edge addition/removal is more expensive thanwith previous data structures. For push­
based PageRank, however, an algorithm that works with outgoing edges and does not
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alter graph topology, this is a straightforward approach to storage. Note that push­based
modification of vertex data does require atomic operations.

Compressed Sparse Column
Using Compressed Sparse Column storage (CSC, figure 3.5d) implies creating an index
for the from­vertex vector in an adjacency list. CSC has the same storage requirements
as CSR, but facilitates iteration of reversed edges. For pull­based PageRank, this is the
storage format of choice. Atomic operations are not required, as each vertex­program
propagates read­operations over edges and only modifies values associated to itself.

3.4.2. Data Representation for Computational State
For PageRank, the main computational state is expressed as one floating point value per
vertex. Information flows through the system over graph edges. Because vertex identi­
fiers are mapped to numerical indices, vertex state can be stored as a vector of floating
point numbers. Messages can be trivially combined through mathematical addition, so
we also store message state in a vector with one floating point value per (destination)
vertex. When exclusive data access cannot be guaranteed and messages from multiple
threads target the same vertex, atomic addition is required.

For pull­based PageRank, no (explicit) messages are sent between vertices. How­
ever, to guarantee synchronous execution of the algorithm without executing all vertex
programs concurrently (which is physically impossible), an immutable copy of vertex val­
ues is used as read­only source of data. In practice, this means that the destination vector
of the current iteration becomes the source vector of the next iteration.

3.4.3. Data Partitioning
As described in section 3.2.4, partitioning data over distributed memory is a necessity for
processing large input data. A low­overhead, autonomous, and naive way of partitioning
data is by using a hash function to determine the location of a vertex (edge­cut) or edge
(vertex­cut). This allows graphs to be loaded independently by workers in a single­pass
(streaming) fashion.

Illustrated by figure 3.4, our hash function simply takes a vertex identifier into account
and partitions data in a round­robin fashion. Besides low overhead, this partitioning
enables relatively straightforward ghost­vertices management, because ghost­data is
also placed consistently throughout memory. Within a partition, data is stored with one
of the previously mentioned data structures for graph topology.

Alternatively, we distribute data using a METIS partitioning. METIS aims to provide
equally sized partitions with a minimal number of partition­crossing edges. This partition­
ing is (pre)processed once per graph, and can be reused for multiple applications. Work­
ers then autonomously load their part of the graph based on a provided vertex mapping
file (note: METIS only provides edge­cuts).

Again, workers use one of the previously mentioned data structures for local topology
storage. Additionally, each worker maintains a dedicated list of inter­worker edges to
synchronize ghost­vertices efficiently. Compared to block­based partitioning, communi­
cation volume is reduced. However, as memory access requires one step of indirection,
management overhead is increased.
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3.4.4. Computation Kernels
Following the Scatter­Gather model, PageRank is a composition of two building blocks:
(1) computation of a partial rank based on iteration over edges; (2) vertex rank update
based on aggregated information from the scattering phase (section 3.2.2). These build­
ing blocks will be referred to as the computation kernels of PageRank, and are imple­
mented according to graph­processing considerations discussed in section 3.2.

Algorithm 3 Generalized PageRank Computation
s⃝ Inter­worker synchronization task
c⃝ PageRank computation task

1: function ComputePageRank(𝑊: Workers; (𝑉, 𝐸): Graph)
2: for all 𝑤 ∈ 𝑊 in parallel do
3: (𝑉′, 𝐸′, 𝑑𝑒𝑔) ← load_local_graph(𝑉, 𝐸, 𝑤)
4:
5: 𝑠𝑟𝑐𝑣 ←

1
|𝑉| for 𝑣 ∈ 𝑉

′

6: 𝑑𝑠𝑡𝑣 ←
1
|𝑉| for 𝑣 ∈ 𝑉

′

7:
8: repeat
9: s⃝ synchronize_ghost_vertices(𝑜𝑟𝑖𝑔𝑖𝑛 → 𝑔ℎ𝑜𝑠𝑡, 𝑢𝑝𝑑𝑎𝑡𝑒) ▷ Scatter

10: c⃝ 𝑑𝑠𝑡 ← pagerank_edge_traversal(𝑠𝑟𝑐, 𝑑𝑒𝑔, 𝑉′, 𝐸′) ▷
11:
12: s⃝ synchronize_ghost_vertices(𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑔ℎ𝑜𝑠𝑡, 𝑠𝑢𝑚) ▷ Gather
13: c⃝ 𝑒𝑟𝑟𝑤 ← pagerank_vertex_apply(𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝐷𝐴𝑀𝑃𝐼𝑁𝐺, 𝑉′) ▷
14: s⃝ 𝑒𝑟𝑟 ← ∑

𝑤∈𝑊
𝑒𝑟𝑟𝑤 ▷

15:
16: SWAP(𝑠𝑟𝑐, 𝑑𝑠𝑡)
17: until 𝑒𝑟𝑟 < 𝐸𝑃𝑆𝐼𝐿𝑂𝑁
18:
19: s⃝ 𝑟𝑒𝑠𝑢𝑙𝑡 ← collect_result(𝑠𝑟𝑐)
20: end for
21:
22: return 𝑟𝑒𝑠𝑢𝑙𝑡
23: end function

Algorithm 3 presents a generalized Parallel PageRank computation. Note that the
manner of kernel execution and data synchronization is dependent on the target platform
and execution model. Every inter­worker synchronization task (depicted with s⃝) implies
a computation barrier. For edge­cut data, all edges for a vertex are placed on the same
worker, so only one ghost­data synchronization step is required; pull­based computation
style requires the first synchronization (replication) step, while push­based requires the
second (aggregation).

Note that we implement the actual PageRank algorithm using convergence detection,
rather than Pregel’s simplified algorithm which uses a preset number of iterations (result­
ing in another synchronization step). We also make sure vertices without outgoing edges
(“endpoints”) distribute their value over the full set of vertices, as per the original algorithm
(not depicted in pseudocode). This guarantees an output vector with sum 1.0.
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Algorithm 4 Push­Based Traversal Kernel
1: for all 𝑣 ∈ 𝑉′ do
2: for all 𝑒 ∈ 𝑣.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠(𝐸′) do
3: 𝑑𝑠𝑡𝑒 ← 𝑑𝑠𝑡𝑒 ∪

𝑠𝑟𝑐𝑣
𝑑𝑒𝑔𝑣

4: end for
5: end for
6: return 𝑑𝑠𝑡

Algorithm 5 Pull­Based Traversal Kernel
1: for all 𝑣 ∈ 𝑉′ do
2: for all 𝑒 ∈ 𝑣.𝐼𝑛𝐸𝑑𝑔𝑒𝑠(𝐸′) do
3: 𝑑𝑠𝑡𝑣 ← 𝑑𝑠𝑡𝑣 ∪

𝑠𝑟𝑐𝑒
𝑑𝑒𝑔𝑒

4: end for
5: end for
6: return 𝑑𝑠𝑡

Algorithms 4 and 5 show reference PageRank edge traversal kernels for push and
pull­based flows, respectively. Although the computation structure is similar between the
two, memory access patterns are markedly different. Implementation details differ per
platform and will be discussed in following sections.

Algorithm 6 Vertex Apply Kernel
1: for all 𝑣 ∈ 𝑉′ do
2: 𝑑𝑠𝑡𝑣 ←

1−𝐷𝐴𝑀𝑃𝐼𝑁𝐺
|𝑉| + 𝐷𝐴𝑀𝑃𝐼𝑁𝐺 × 𝑑𝑠𝑡𝑣

3: 𝑒𝑟𝑟 ← 𝑒𝑟𝑟 + |𝑠𝑟𝑐 − 𝑑𝑠𝑡|
4: end for
5: return 𝑒𝑟𝑟

Algorithm 6 shows the reference kernel for PageRank’s vertex­value update. This
kernel’s implementation is relatively straightforward on all platforms, as itsmemory access
patterns and computation structure are familiar.

3.4.5. CPU Implementations
Ideally, each kernel is programmed once, independent of its target platform. However,
different platforms demand different optimization strategies. High­level cross­platform
parallelization Application Programming Interfaces (APIs) exist, but they inherently pro­
vide a lesser ability of fine­tuning. Not knowing the effect of these tradeoffs in the context
of graph processing, we implement all PageRank kernels for CPUs using three concep­
tually different interfaces: OpenMP, OpenCL, and MKL. The programming language of
choice is C11, as it is the common denominator between all target APIs. This section will
briefly discuss the concepts behind each implementation.

OpenMP
OpenMP is an open standard that defines a collection of compiler directives and library
routines for straightforward parallelization of shared­memory C/C++/Fortran programs.
The standard is well­established and adopted by most popular open source and commer­
cial C/C++ compilers.

The PageRank kernels using OpenMP are similar to their sequential counterpart, only
adding explicit threading directives for guided data management and parallel execution,
but a grasp of basic concurrency concepts is required to optimally place directives and
guarantee proper execution without race conditions.

A single “omp parallel for” directive before algorithm 3 line 2 ensures threaded
execution. The number of threads (workers) is statically set to the number of local graph
partitions and the compiler is guided to vectorize inner loops using the “omp simd” di­
rective (e.g., algorithm 6 line 1). Inter­worker synchronization is achieved through explicit
barriers, atomic operations, and reduction directives.
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OpenCL
OpenCL is an open standard for the development of parallel programs across a wide
range of processors and hardware accelerators. It defines a set of library routines and
a kernel programming language (subset of the C programming language) that enable
the execution of arbitrary user programs (kernels) on varying processors (such as CPUs,
GPUs, and FPGAs). Rather than relying on compiler adoption, this standard relies on
vendor adoption. Every supporting vendor provides an OpenCL implementation that is
optimized for the target platform. Compilation of user kernels is done at runtime and fully
tailored for the executing hardware.

The PageRank kernels using OpenCL are implemented as vertex­centric OpenCL
functions and enqueued for execution using vendor heuristics for work distribution (with
clGetKernelWorkGroupInfo). OpenCL event wait lists are used for kernel synchro­
nization.

MKL
The Intel Math Kernel Library (MKL) is a collection of vendor­optimized math routines.
It can be used for implementing graph­processing algorithms in their algebraic formula­
tion. MKL trades the ability of fine­tuning performance for a programming interface with a
higher level of abstraction. Instead of allowing parallelization of arbitrary user constructs,
the library offers a set of basic composable high­performance computation kernels. These
kernels are specifically optimized for Intel processors, and support the CSR/CSC data
structures discussed in section 3.4.1.

It should be noted that the MKL cannot be used to implement arbitrary custom kernels
and, due to its limited set of available kernels, only a few graph algorithms can benefit from
using this library. However, this PageRank implementation can be used as a performance
reference point for the platform.

3.4.6. GPU Implementations
For the GPU, we use three different programming interfaces with concepts correspond­
ing to their CPU counterparts: CUDA, OpenCL, and cuSPARSE. This section will briefly
discuss the concepts behind each implementation.

CUDA
The CUDA (Compute Unified Device Architecture) framework is a parallel programming
framework by NVIDIA that enables the use of CUDA­enabled (NVIDIA) GPUs as acceler­
ators for general purpose processing. It is the most commonly used interface for writing
arbitrary user programs for GPUs. User kernels are annotated with specific syntax and
can be intertwined with “traditional” code. Contrary to OpenCL, user kernels are compiled
beforehand and target a specific CUDA (hardware) version.

Compared to OpenCL, the PageRank kernels are implemented quite similarly. How­
ever, CUDA exposes more low­level GPU capabilities useful for graph processing, most
notably more atomic operations, which allows for more straightforward/optimized imple­
mentations. Again, we use vendor heuristics for work distribution (with cudaOccupan­
cyMaxPotentialBlockSize).

OpenCL
Although OpenCL targets both CPUs and GPUs and implementations can be reused, we
implement additional kernels to exploit the GPU execution characteristics as described in
section 3.3.2. More specifically, instead of having each execution unit process one vertex,
we process one vertex per warp.



3.4. Design and Implementation of Parallel PageRank 23

cuSPARSE
The CUDA Sparse Matrix (cuSPARSE) library is part of the CUDA framework and pro­
vides composable GPU­accelerated computation kernels for sparse data structures. The
API is similar to MKL, but targets NVIDIA hardware rather than Intel’s. Just as the MKL,
cuSPARSE cannot be used to implement arbitrary custom kernels, so this PageRank
implementation will be used as a performance reference point for the platform.

3.4.7. Heterogeneous Implementations
When targeting heterogeneous platforms, writing software becomes notably more difficult.
Taking into account the performance characteristics of each platform and non­uniform
inter­worker communication times make data partitioning and task scheduling non­trivial
problems, especially in the area of graph processing.

We can observe the performance characteristics of each platform by benchmarking
the respective specialized implementations, but we need to take into consideration the
overhead of orchestrating different devices as well. We use two markedly different pro­
gramming interfaces to be able to model these overheads: the low­level MPI and the
high­level StarPU.

MPI
OpenMPI is a low­level Message Passing Interface (MPI) library that enables a cluster
of processors to communicate through messages. The best way of transport is selected
transparently (i.e., in order of preference, shared­memory, InfiniBand, or Ethernet). The
library also offers intrinsics for coordination, such as global barriers and topology man­
agement.

For each node in the cluster, already­made kernels for the platform can be reused,
while OpenMPI takes care of the data synchronization. Partitioning and task scheduling
(selecting the best device for a task) is done manually.

StarPU
StarPU is a framework that allows programmers to exploit all processors in a heteroge­
neous system (i.e., all CPUs and GPUs), while abstracting away the task scheduling and
data synchronization parts. For each “task”, users attach one or multiple kernels (CPU,
OpenCL, and CUDA are supported), and StarPU automatically schedules the task on
the best suited device, and migrates data accordingly. It does this based on task size
and heuristics from on earlier runs. In this regard, StarPU should automatically learn to
execute a set of tasks optimally over time.

For the StarPU implementations, we reuse the CPU and GPU kernels. We let StarPU
model performance based on task size, and execute tasks accordingly (this is known as
StarPU’s dequeue model data aware ready or dmdar scheduler). However, StarPU
does not partition data to execute simultaneously on all processors, so we partition the
input data manually, and create a StarPU task for each partition in order to create the
possibility of parallel execution on multiple devices.
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3.5. Overview
In order to evaluate the graph­processing performance characteristics of a processing
unit, we propose a structural benchmarking method based on the four pillar design
principles of graph­processing frameworks defined by McCune et al. [45]. To examine
different platforms, we follow a bottom­up approach and prefer in­house PageRank
implementations over preexisting graph­processing frameworks and libraries. This
allows for a more structured comparison and a better understanding of the performance
characteristics of each platform. The design requirements for each benchmark kernel,
based on both graph­processing considerations (section 3.2) and platform considerations
(section 3.3), are summarized in listing 3.1.

1. Must return correct result (not an optimized approximation).
2. Must work with directed graphs.
3. Must follow TLAV model (section 3.2):

(a) synchronous timing model for deterministic execution.
(b) shared­memory communication abstraction.
(c) push or pull execution model depending on topology data structure.
(d) edge­cut or vertex­cut data partitioning depending on topology data

structure.

4. Should optimize for target architecture (section 3.3):

(a) CPU kernels should limit the amount of threads and operate on consec­
utive memory blocks.

(b) GPU kernels should exploit a large number of light­weight threads and
operate on consecutive memory blocks.

(c) heterogeneous implementations should reuse CPU/GPU kernels while
taking care of data synchronization and scheduling.

5. Should use fitting programming interface for each platform (section 3.4).

Listing 3.1: Requirements for benchmark kernels.

Table 3.1 provides an overview of all kernel implementations. For each platform, we
use multiple programming interfaces. First, we use the most commonly used interface
for each platform: OpenMP for CPU, CUDA for GPU. Second, we use OpenCL to target
both CPU and GPU with the same implementation. Finally, we use a vendor­ optimized
library for a performance reference point: MKL for CPU, cuSPARSE for GPU.

Kernels mostly differ on granularity, i.e., the the amount of work performed by a single
execution unit. For each kernel, we implement both the push and pull execution modes
(with CSR and CSC memory layouts respectively); this makes for a total of 30 kernels.
For source code, the reader is referred to github.com/nielsAD/hgb.

https://github.com/nielsAD/hgb
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Platform Interface Kernel Granularity Implementation notes

CPU OpenMP
OMP1 edge­cut block Parallel pragma for (outer) vertex loop,

SIMD pragma for (inner) edge loop.

OMP2 vertex­cut block Use parallel reduction to merge vertex progress.

OMP3 vertex­cut range Thread cuts 2 vertices at most (range start/end),
processes all edges of vertices inbetween.

CPU/GPU OpenCL OCL1 vertex Use clGetKernelWorkGroupInfo to determine
work­group size.

OCL2 warp Constant warp size of 32.

GPU CUDA
CUD1 vertex Use cudaOccupancyMaxPotentialBlockSize

to determine block size.

CUD2 warp Vary warp size between 2 and 32 based on
average degree.

CUD3 warp Use atomically increasing global counter to
distribute vertices among warps.

HET

StarPU SPU1 edge­cut block Provide all OMP, OCL, CUD kernels as codelets.
Use regression perfmodel, DMDA scheduler.

SPU2 vertex­cut block Use STARPU_REDUX to merge vertex progress.

MPI
MPI1 edge­cut block Use OMP or CUD kernels on each worker.

Use MPI_Allgather to synchronize ghost­data.

MPI2 vertex­cut block Use MPI_Reduce to merge vertex progress.
MPI3 METIS partition Use MPI_Alltoallv to synchronize ghost­data.

CPU MKL MKL graph Vendor­optimized reference implementation.
Internals unknown.

GPU cuSPARSE CSP graph Vendor­optimized reference implementation.
Interals unknown.

Table 3.1: Overview of our in­house PageRank kernels for each platform.





4
Device Performance Evaluation

In this chapter, we address RQ2: how to model the graph­processing performance of
a processing unit with respect to dataset topology? For this, we conduct an in­depth
case study of the graph­processing performance characteristics of CPUs and GPUs. Sec­
tions 4.1 and 4.2 introduce our evaluation methodology, metrics, and datasets.

Sections 4.3 and 4.4 discuss our results. Consequently, we propose a graph­
processing performance model that takes into account dataset topology in section 4.5.
Finally, we conclude this chapter with our main findings in section 4.6.

4.1. Methodology
We start by evaluating CPUs and GPUs independently, with the goal of making perfor­
mance observations for graph processing in general. In order to accurately compare and
model performance in multi­architectural graph­processing systems, we introduce a new
benchmarking suite, which is publicly available at github.com/nielsAD/hgb and can easily
be repurposed for other architectures and graph­processing building blocks.

Popular graph libraries that deal with implementing data structures, dataset loading,
preprocessing, and synthetic graph generation are generally not well­suited for large­
scale and/or high­performance graph processing purposes. For example, iGraph [12]
uses double­precision floating point data types in data structures where integers are pre­
ferred. Boost Graph Library [54] (including its parallel [27] derivative) uses nested contain­
ers to store edge lists (resulting in noncontinuousmemory allocation), while NetworkX [29]
and SNAP [36] trade in performance for flexibility, by using hash maps to store data.

Our benchmarking library exposes generic, lightweight, accelerator­ready graph
data structures (section 3.4.1). Datasets can be loaded from common formats (e.g.,
the METIS graph format [33], the Matrix Market Exchange format [7], compressed
(un)directed adjacency lists), or generated using one of the synthetic large­scale graph
generators. A (distributed) partitioning interface is available for both block­based and
edge­cut partitioning (using METIS). Additionally, the library provides visualization tools
for results and datasets.

In this chapter, we focus purely on the performance of PageRank edge traversal on
isolated devices. Before execution, all datasets are converted to directed graphs, and
stripped of any unconnected vertices. Benchmark timings are averaged over 10 iterations,
after dataset initialization and a warm­up iteration. All experiments are run on commodity
hardware of the DAS­5 cluster [3], described in table 4.1 and compiled with software
outlined in table 4.2. An overview of the examined kernels is available in section 3.5.
Specifically, we focus on the OpenMP (OMP), OpenCL (OCL), and CUDA (CUD) kernels.

27

https://github.com/nielsAD/hgb
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We defined our main metric of interest to be traversed Edges Per Second (EPS).
Measuring throughput, this metric normalizes execution time against dataset size (|𝐸|),
thereby scaling results to a common scale that allows for performance comparison be­
tween different datasets.

CPU GPU
Architecture Intel Haswell Nvidia Maxwell

Model Xeon E5­2630v3 GTX TITAN X
Core Frequency 2.4 GHz 1.0 GHz

Core Count 8 3072
Memory 32 GB 12 GB

Launch Year 2014 2015

Table 4.1: Experiment hardware specification.

Software Version Options
GCC 4.9.3 ­march=native ­Ofast

CUDA 10.0.130 ­Xcompiler “­march=native” ­O3 ­use_fast_math

MKL 11.2 ­DMKL_ILP64

CentOS 7.4.1708

Table 4.2: Software and corresponding compilation options used for experiments.

4.2. Datasets
We benchmark using a mix of synthetic and real­world datasets. The advantage of using
synthetic graphs is that datasets can be generated to arbitrary sizes, while maintaining a
similar structure. Real­world datasets are included for verification purposes.

4.2.1. Synthetic Graphs
We make use of five types of synthetic datasets, with degree distributions ranging from
regular to scale­free. For the sake of reproducibility, all graphs are generated using a
predefined random seed. Figure 4.1 provides an overview, with visualizations for example
graphs of equal size.

Regular
In a regular graph (REG), each vertex has the same constant degree. To generate these
graphs, we built a simple generator where we connect each vertex to its 𝑘 consecutive
neighbors, resulting in a graph where the in­degree, out­degree, and memory access
patterns are the same for each vertex.

Erdős–Rényi
Erdős and Rényi [16] (ER) describe a random graph model where each edge from a fully
connected graph is included with equal probability, independent from every other edge.
This results in a binomial degree distribution, with an average degree corresponding to
|𝐸|
|𝑉| and relatively small tails on either side.

ER graphs have an inherently low clustering coefficient and no heavy­tailed degree
distribution. However, the balanced edge distribution in combination with randomized
memory access patterns make them interesting subjects for analysis.
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Triangular Erdős–Rényi
By keeping the lower triangular of the adjacency matrix of an Erdős–Rényi random graph
(TER), i.e., by removing all edges (𝑣1, 𝑣2) where (𝑣1 > 𝑣2), we generate a graph with
semi­uniform degree distribution. This introduces workload imbalance into ER graphs,
although not heavy­tailed.

Preferential Attachment
By assigning each vertex an exponentially decaying preference of attachment (PA), we
generate a random graph with small diameter and log­normal degree distribution. This is
a heavy­tailed distribution, but not quite as “unbalanced” as power­law.

Kronecker
Finally, we use the Kronecker (KRO) random graph model, described by Leskovec et al.
[37], to generate hierarchical scale­free graphs with a power­law degree distribution. In
this model, edges are distributed recursively among four equal­sized partitions with un­
equal probability.

Using the Graph500 [47] initial matrix, the dataset is scaled up to desired size by
repeatedly applying the Kronecker product. In our benchmark, we consider this model to
be the most accurate approximation of real­world complex graphs.
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Figure 4.1: Edge distribution of synthetic benchmark graphs.
† Dotted red line marks the percentage of vertices needed to process 50% of edges.
‡ Graph sizes are similar, axes are logarithmic and shared.
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4.2.2. Real­world Graphs
Table 4.3 gives an overview of all used real­world benchmark datasets. We use a selec­
tion of graphs with varying density and an average degree ranging from 2 to 102. The
street (OSM) and numerical (BUB) graphs are quite regular, while the other datasets are
heavy­tailed. Figure 4.2 shows that the citation (CIT) graph stands out due to the large
number of nodes with only incoming edges, while the autonomous system (AS) and social
(SOC) graphs display the longest tails.

Name Dataset Class |𝑉| |𝐸| 𝐷 𝛿𝐷 𝑑 𝑃50 𝑃95 𝑃100
OSM europe_osm [2] Street 50.91 108.11 2.12 0.48 0.04 2 3 13
BUB hugebubbles­00020 [2] Numerical 21.20 63.58 3.00 0.03 0.14 3 3 3
CIT cit­Patents [35] Citation 3.78 16.52 4.38 7.78 1.16 2 16 770
EDU wb­edu [24] Web 9.45 55.31 5.85 20.62 0.62 2 20 3841
WIKI wikipedia­20070206 [24] Web 3.52 45.01 12.81 33.18 3.63 2 50 7061
AS as­Skitter [35] Topology 1.70 22.19 13.08 136.86 7.68 5 37 35455
SOC soc­LiveJournal1 [35] Social 4.84 68.48 14.13 36.00 2.92 4 57 20292
WWW arabic­2005 [8] Web 22.74 631.15 27.75 78.79 1.22 15 82 9905
COL coPapersCiteseer [2] Collab 0.43 32.07 73.88 101.27 173.45 39 257 1188
HOL hollywood­2009 [8] Collab 1.11 112.75 101.83 275.31 91.51 29 421 11467

Table 4.3: Real­world dataset statistics. |𝑉| – number of vertices (106). |𝐸| – number of edges (106).
𝐷 – average degree. 𝛿𝐷 – degree standard deviation. 𝑑 – link density (10−6). 𝑃00 – degree percentile.
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Figure 4.2: Continued on next page.
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Figure 4.2: [continued] Edge distribution of real­world datasets.
† Dotted red line marks percentage of vertices needed to process 50% of edges.

4.3. Kernel Performance
Figure 4.3 shows the performance for each kernel over all datasets in traversed edges
per second. At first glance, it is clear that results vary significantly; the OMP3 kernel
ranges between 0.3 and 9.3 billion edges per second (𝜇 = 1.5, 𝜎 = 1.8), CUD3 between
0.9 and 57.1 (𝜇 = 8.7, 𝜎 = 10.4). The results are a clear indication that using a mean
EPS number per kernel is not suited for accurate performance modeling.

OMP1 OMP2 OMP3 OCL1 OCL2 CUD1 CUD2 CUD3 MKL CSP
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Figure 4.3: Performance in 109 traversed edges per second over all datasets, push and pull data flow. We
have 20 real­world and 240 synthetic data points per box plot. There are 15 outliers above 30 ∗ 109 EPS cut
off, all REG graphs. OCL kernels are executed on the GPU.
Synthetic graphs: {|𝑉| ≃ 1𝑀,𝐷 ∈ (1, 2, 4, 8, 16, 32, 64, 128)} ∪ {|𝑉| ∈ (250𝑘, 500𝑘, 1𝑀, 2𝑀, 4𝑀),𝐷 ≃ 32}.

We canmake three general observations from the data in figure 4.3. First off, GPU ker­
nels perform better than CPU kernels overall, but their performance varies more between
datasets. OpenCL kernels seem to be lacking in performance in comparison to CUDA.
This can be attributed to (1) OpenCL missing some essential feature support (e.g., atomic
floating point operations); (2) better optimized CUDA kernels (e.g., dynamic warp size);
(3) compiler optimizations. However, the performance difference is quite significant for
similar implementations. Executing OCL1 on CPU (not depicted in the figure) does give
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similar performance to OMP1 as expected. While OpenCL is, in theory, an ideal frame­
work for heterogeneous programming, we find that writing programs for OpenCL is more
convoluted than for its platform­specific counterparts, and using naive implementations
seemingly results in a significant performance penalty.

Secondly, figure 4.3 confirms the relation between our real­world and synthetic
datasets: the synthetic datasets range from best­case to worst­case scenario. Mea­
sured performance for synthetic datasets is indicative for the performance of real­world
datasets, but not necessarily representative. Using only synthetic benchmarks will give
proper performance boundaries, but extrapolating conclusions for real­world scenarios
should be done with caution. Especially the better­performing synthetic graphs, such as
REG, might not be representative for real­world scenarios.

Finally, we note that our kernel implementations are on par or outperform the vendor­
optimized implementations MKL and CSP.

4.3.1. Graph Difficulty
To gain better insight into a kernel’s performance characteristics, it is clear we have to
examine results on a per­graph basis rather than yielding to averages. Figure 4.4 shows
the performance of the best performing kernel for each device per dataset.

CIT ER TER PA WWW WIKI KRO EDU SOC COL AS HOL BUB REG OSM
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Figure 4.4: Performance of best performing kernel in 109 traversed edges per second. Datasets on horizontal
axis are ordered based on speedup of GPU over CPU. Synthetic graphs: {|𝑉| ≃ 4𝑀,𝐷 ≃ 32}.

A few datasets stand out immediately: WWW, COL, HOL, and REG graphs perform
very well on both the CPU and the GPU. This is an interesting observation, as these
graphs do not necessarily have a similar arrangement. Table 4.3 shows that these graphs
have the highest average degree among the real­world datasets. However, our synthetic
datasets all have the same average degree, but do not display comparable performance,
so this cannot be the only indicator.

Figures 4.1 and 4.2 show that the best­performing graphs have a lot of edges
centered around the diagonal of the heat map, indicating relatively high clustering. It
is likely that hardware caches have a considerable impact on performance here. We
also observe that ER is among the worst­performing graphs, even though the workload
for each vertex is normally distributed (and thus roughly similar). Erdős–Rényi graphs
are known to exhibit low clustering, which adds to the suspicion of caches having a
substantial impact.

Figure 4.4 displays a performance disparity between datasets, with some graphs be­
ing inherently more difficult to process than others. Figure 4.5 shows that relative per­
formance between the CPU and the GPU exhibits additional disparity. The figure shows
that the GPU consistently performs better, but speedup ranges between 2.7× and 9.2×.
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Figure 4.5: Speedup of the best GPU kernel compared to the best CPU kernel for all datasets. Average: 4.3×

The relatively high speedup for the OSM and BUB graphs on the GPU — and low
speedup for CIT — could possibly be attributed to low warp divergence due to a very
narrow degree distribution. As expected, the GPU thrives when most vertices have the
same amount of edges.

There does not seem to be a relation between speedup and performance on either the
CPU or the GPU; a high performance on the CPU does not necessarily guarantee higher
(or lower) speedup on GPU. This confirms the suggestion that there is no universal graph
difficulty hierarchy, but rather that such a hierarchy is bound to device and kernel.

4.3.2. Workload
To examine the impact of data size on device performance, figure 4.6 shows the kernel
performance for synthetic graphs with varying vertex set size and varying edge set size.
In general, we observe a slight increase in performance with growing average degree
for most kernels. This can likely be attributed to the usage of SIMD instructions on CPU
and better warp occupancy on GPU. REG graphs stand out by benefiting the most from
having more edges per vertex, while other graphs stabilize around a lower limit, probably
a memory bottleneck.

We observe a slight decrease in performance when varying the vertex set size while
keeping the average degree constant. For all GPU kernels, there is a tipping point around
the same mark (|𝑉| ⪆ 219) after which performance drops significantly. Again, hardware
caches seem to have notable influence here. REG graphs are designed to be cache­
friendly and exhibit stable performance independent of the vertex set size.
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Figure 4.6: Kernel performance in 109 traversed edges per second for synthetic datasets with varying sizes.
Note that x­axes are similar, y­axes are not.
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4.3.3. Hardware Cache
After examining the well­performing datasets in sections 4.3.1 and 4.3.2, we suspect hard­
ware caches have a significant influence on kernel performance. Table 4.4 shows the
GPU cache hit rate for CUD3 on several graphs, and confirms a correlation between
cache hit rate and edge processing speed; ER graphs display a cache hit rate of around
15% compared to 63% for REG graphs. In all cases, most warp stalls are caused by
delayed memory operations.

Kernel EPS Cache Hit Rate Memory Stalls† Warp Efficiency‡

ER 2.1 14.64% 91.90% 62.15%
OSM 9.3 50.00% 87.84% 100.00%
WWW 19.5 63.29% 83.79% 58.27%
REG 48.1 62.84% 79.17% 79.17%

Table 4.4: GPU cache hit rate and warp efficiency for CUD3 pull kernel.
† Percentage of warp stalls occurring because a memory operation cannot be performed.
‡ Ratio of the average active threads per warp.

By introducing variable stride to the synthetic REG datasets, we can reduce its cache
efficiency and benchmark the effects of cache hit ratio on kernel performance. Adding
stride to only the destination vertex of an edge is a structured permutation of REG, which
means that the altered dataset depicts the exact same graph as the original, but neighbor­
ing vertices will be scattered throughout memory as stride increases. Figure 4.7 shows
performance for OMP3 and CUD3 while varying stride. As stride increases (and cache
hit rate decreases), edge processing speed drops significantly for both kernels, indicating
that cache efficiency is an important performance indicator for both CPU and GPU.

In push­based execution, higher cache hit rate increases the risk of false sharing,
where different threads modify memory on the same cache line, thereby invalidating the
cache line and forcing a reload. However, performance on CPU is also negatively affected
by increasing the dataset stride, while performance on GPU remains stable.
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Figure 4.7: Kernel performance in 109 traversed edges per second for REG graphs with varying stride.
Graph size: {|𝑉| ≃ 4𝑀,𝐷 ≃ 32}.
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Cache behavior is difficult to model due to the growing complexity of modern proces­
sors, which feature optimization techniques such as out­of­order execution, pipelined ex­
ecution, and speculative execution; they all interact with the hardware caches. Figure 4.8
plots performance against a simple dataset cache hit ratio estimation. The estimation is
based on sequential kernel execution with 256KB LRU cache and 64B cache lines (based
on the CPU’s secondary cache size).

It is interesting to note that even a grossly simplified estimation shows a clear linear
correlation between cache hit ratio and performance.
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Figure 4.8: Kernel performance in 109 traversed edges per second for estimated cache hit ratio with linear trend
line and 95% confidence interval. Includes all synthetic and real­world datasets.

4.3.4. Data Flow
Figure 4.6 shows a big performance difference in favor of pull­based data flow for all
kernels. This is to be expected, as push­based kernels require synchronization (and
thus, incur additional overhead) to ensure exclusive access while sending neighbor data.
However, a common push­based optimization is to only process the set of “active” vertices.
That is, the set of vertices that has been sent a message in the previous iteration. In
contrast, pull­based kernels are more efficient but unaware of any neighbor updates, so
there might be an overhead in checking for changes.

In our kernel implementations, we process 100% of the vertices in every iteration as a
worst­case scenario. Figure 4.9 shows that for push­based execution to be competitive
with pull­based, the size of active vertices would have to be less than 27% on average
for the CPU and 40% for the GPU. For PageRank, this condition is often reached after a
limited number of iterations.
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Figure 4.9: Speedup for pull over push data flow. Average: CPU 3.7×, GPU 2.5×
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For the CPU, pull­based execution is considerably faster for the WWW, COL, HOL,
and REG datasets. These are the same graphs that stood out in figure 4.4 as well­
performing datasets. However, this performance appears to be mostly limited to pull­
based execution. In that sense, pull­based execution performance does not correlate to
push­based performance. Switching to push­based execution on GPU has slightly less
of an impact.

4.4. Data Transfer
GPU kernels operate on device memory rather than host memory, which means there is
an additional data transfer required to load the dataset in the device memory. Although a
single kernel execution is faster on the GPU, the additional transfer overhead might result
in faster algorithm completion on the CPU. Figure 4.10 depicts the data transfer overhead
in terms of kernel iterations. That is, by dividing the data transfer time to the iteration time
on each device, we effectively quantify the data transfer in number of executed iterations.
The figure indicates that most datasets can be transferred before a single CPU kernel
iteration can complete.

However, looking at the cost relative to the computation time on the GPU, it is clear
that data transfer can take up a significant chunk of time. For example, data transfer will
take up the majority of algorithm completion time for REG graphs if there are less than
16 iterations required for convergence.
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Figure 4.10: GPU data transfer overhead in terms of kernel iterations on the CPU or the GPU.

Figure 4.11 illustrates the GPU vs CPU speedup when taking into account the initial
GPU data transfer cost. Execution on CPU is occasionally faster for a small number of
iterations, but transfer cost is amortized as the number of convergence iterations grows.

The number of convergence iterations is dependent on algorithm and dataset, but it
is safe to assume offloading computation to GPU is generally worth it. After 5 iterations,
GPU performs similarly or better than CPU for all datasets.
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4.5. Performance Modeling
A simple model to predict algorithm runtime 𝑇 for graph 𝐺 on device 𝑑 is illustrated in
equation (4.1), where 𝑀𝑑 is the transfer cost, 𝑆 is the number of supersteps, and 𝑃𝑑
represents the processing speed for device 𝑑 in edges per second (assuming |𝐸𝐺| ≫ |𝑉𝐺|).

Assuming 𝑃𝑑 is a linear function that takes the input graph as parameter, we pro­
pose the estimation of 𝑃𝑑 with equation (4.2), where 𝐸𝑃𝑆𝑑 is the lower bound processing
speed of device 𝑑, 𝐸𝑃𝑆′𝑑 the (additional) cache­optimized processing speed, and 𝐻(𝐺)
represents the cache hit rate (as estimated in section 4.3.3).

𝑇𝑑(𝐺) = 𝑀𝑑(𝐺) +
𝑆

∑
𝑠=1

|𝐸𝐺|
𝑃𝑑(𝐺)

(4.1)

𝑃𝑑(𝐺) = 𝐸𝑃𝑆𝑑 + 𝐻(𝐺) × 𝐸𝑃𝑆′𝑑 (4.2)

𝐻(𝐺) is notably determined by how a dataset is instantiated in memory. Ideally, this
value would be defined in terms of graph metrics. The local clustering coefficient (𝐶) and
assortativity coefficient (𝑟) capture the nature of connectivity between vertices, and are
primary candidates to estimate cache­friendliness of a graph. Table 4.5 shows the Pear­
son correlation coefficients between a selection of graph metrics, the estimated cache hit
ratio, and actual kernel performance. The local clustering coefficient stands out as only
graph metric with a strong linear correlation to kernel performance.

𝐻(𝐺) 𝐸𝑃𝑆𝑂𝑀𝑃3 𝐸𝑃𝑆𝐶𝑈𝐷3
𝐻(𝐺) – 0.86 0.86
𝐶 0.84 0.75 0.76
𝑟 0.48 0.24 0.28
𝑃50 0.15 0.42 0.33
|𝑉| 0.11 −0.06 −0.05
|𝐸| 0.16 0.31 0.12

Table 4.5: Pearson correlation coefficients between various graph metrics and kernel performance over all
datasets. All values are statistically significant (𝑝 < 0.01), values < −0.70 and > 0.70 indicate a strong linear
correlation.

To measure accuracy of the performance model, we compare approximated runtime
against measured runtime. To determine 𝐸𝑃𝑆𝑑 and 𝐸𝑃𝑆′ for different cache­hit estimators,
we fit the performance model using linear regression with ten­fold cross­validation.

Table 4.6 lists the mean approximation error for performance predictors based on
estimated cache hit rate (𝑃𝐻), local clustering coefficient (𝑃𝐶), and device mean EPS (𝑃𝑀).
Some form of device mean processing speed is regularly used as naive predictor in graph
processing applications ([1, 22]). However, without taking dataset characteristics into
account, such a predictor is highly inaccurate with a mean relative error of 189% for the
GPU kernel and 92% on CPU.

Using the predictor based on local clustering coefficient improves accuracy by 97%
percent points for GPU and 13% on CPU, but the resulting error ranges are still significant.
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MRE MSE
OMP3 CUD3 OMP3 CUD3

𝑃𝐻 43% 76% 42% 114%
𝑃𝐶 79% 92% 100% 124%
𝑃𝑀 92% 189% 139% 251%

Table 4.6: Mean Relative Error (MRE) and Mean Squared Error (MSE) for performance predictors.

Figure 4.12 illustrates the mean relative error values for predicted OMP3 kernel perfor­
mance. For 𝑃𝐻, datasets with low link density (EDU, BUB, OSM) stand out negatively. For
these datasets, vertex­related processing time is not necessarily amortized by the (usu­
ally dominating) edge­related workload, resulting in an overestimation of performance.

𝑃𝐶 is more accurate than the naive 𝑃𝑀 predictor for most datasets. We suspect that
predictors can be made more accurate by using additional graph metrics (such as dataset
size, average degree, or degree distribution skewness). Machine learning might be an
interesting approach here, but this is out of the scope of this study.
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Figure 4.12: Relative Error for predicted OMP3 kernel performance per dataset.

4.6. Main Findings
We make the following observations regarding the performance of graph processing on
CPUs and GPUs:

1. Memory latency is the main graph processing bottleneck.
On both the CPU and the GPU, cache­friendly graphs perform considerably better,
indicating that memory access latency is the main graph­processing performance
bottleneck. Performance consequences due to workload imbalance are less im­
pactful and can be mitigated by the programmer up to a certain extent (i.e., bisected
vertex­cut on CPU and dynamic work distribution on GPU).

2. Graph topology heavily impacts performance.
Most processors provide small fast caches backed up by larger, slower caches. The
larger caches have better hit rates but higher access latency. Graph processing
is intrinsically cache­unfriendly, as computations follow the structure of the input
dataset, resulting in irregular memory accesses and performance characteristics.
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Caches impact graph processing in two ways: data locality (spatial) and data reuse
(temporal). For both, effort can bemade to improve cache usage. First, spatial local­
ity may be improved for graphs that display a high clustering coefficient (a tendency
to form local communities), by placing data for local communities close together in
memory.
Second, temporal locality may be improved for graphs that display preferential at­
tachment, as a lot of vertices will access a subset of the same data. A Least
Recently Used (LRU) cache­line replacement policy (as is common for hardware
caches) will be beneficial for temporal reuse in this case.
Research effort has been made to reorder graphs in order to optimize cache usage
[4, 6, 66].

3. Graph metrics that quantify clustering are good indicators of performance.
Some datasets are inherently more difficult to process than others, due to their
topology; cache hit ratio has a strong linear correlation with kernel performance.
Modeling kernel performance is non­trivial, but graph metrics that quantify the level
of node clustering can be used approximate cache­hit ratio and thereby increase
predictor accuracy.

4. GPU kernels perform better than CPU kernels.
GPU kernels generally provide better throughput than CPU kernels. To a certain ex­
tent, memory latency effects are mitigated by heavy multi­threading and time­slicing.
Kernel implementations are more complex for GPU, but our naive CUDA implemen­
tation (CUD1) holds up remarkably well compared to more device­optimized kernels.
Data transfer takes up a significant portion of execution time, but this overhead is
amortized over convergence iterations.

5. Push­based algorithms have significant synchronization overhead.
Pull­based data flow should be preferred as push­based execution is significantly
slower for all evaluated datasets. The tradeoff between performance and aware­
ness of neighbor updates becomes beneficial when it allows for algorithmic opti­
mizations that quickly reduce the number active vertices by more than half.



5
Heterogeneous Performance

Evaluation
In this chapter, we address RQ3: how to take into account the graph­processing perfor­
mance characteristics of each processing unit in a heterogeneous system when distribut­
ing a workload? For this, we study the performance of PageRank in a heterogeneous
environment. Section 5.1 elaborates on our methodology and evaluation metrics.

Sections 5.2 and 5.3 discuss our results. In section 5.4, we put our results into per­
spective and provide a theoretical scalability analysis. Finally, we conclude this chapter
with our main findings in section 5.5.

5.1. Methodology
After a thorough performance evaluation of edge traversal on isolated devices in chap­
ter 4, this chapter will focus on complete execution of the PageRank algorithm using a
heterogeneous amalgamation of devices. Specifically, we examine the performance of
CPU+GPU on a single node, and distributed CPUs in a cluster.

Our goal is to determine the impact of using multiple heterogeneous nodes on the
performance of PageRank. To this end, we will quantify this impact using speedup, as a
quantifier of the relative improvement in runtime after expanding system resources.

Benchmark timings are averaged over 2 algorithm runs (of 16 PageRank iterations)
after one warm­up run. All experiments are run on the DAS­5 cluster [3]; the hardware
platforms are described in table 4.1, and the software (versions) are outlined in tables 4.2
and 5.1. An overview of the examined kernels is available in section 3.5. Specifically, we
focus on the heterogeneous StarPU (SPU) and OpenMPI (MPI) kernels, and their relative
performance to the single device OpenMP (OMP) and CUDA (CUD) kernels.

Software Version Options
Metis 5.1.0 ­seed=12345

StarPU 1.3.1 STARPU_SCHED=dmdar STARPU_CALIBRATE=0 STARPU_PREFETCH=1

OpenMPI 1.10.3 FDR InfiniBand (theoretical throughput of up to 8 GB/s)

Table 5.1: Software and corresponding flags/options used for our large­scale heterogeneous platforms experi­
ments.

41
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5.2. Accelerator Performance
Figure 5.1 shows the completion time ratio of running the complete PageRank algorithm
on GPU compared to CPU, using the best performing kernels for each device. While
pure PageRank computation is an average of 4.3× faster on the GPU than on the CPU
(figure 4.5), offloading the complete algorithm reduces the average speedup to 3.4×. As
discussed in section 4.4, most of the performance regression can be attributed to the
additional cost of the initial data transfer.

Thus, when GPUs are available, it makes sense to offload the PageRank execution to
these accelerators. However, assuming a heterogeneous CPU+GPU system can be used
to its full potential, there is an additional theoretical speedup of 3.4+13.4 ≈ 1.3× obtainable
by utilizing both devices simultaneously. Note that a lower GPU to CPU speedup ratio
indicates a higher potential gain.
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Figure 5.1: Speedup for algorithm execution using best GPU kernel over best CPU kernel. Average: 3.4×
Synthetic graphs: {|𝑉| ≃ 4𝑀,𝐷 ≃ 32}.

5.2.1. Heterogeneous Execution
Figure 5.2 shows the PageRank speedup when using StarPU to schedule our device ker­
nels in a heterogeneous CPU+GPU environment. SPU1 achieves an average additional
speedup of 1.2× over the best performing single device kernel, while SPU2 decreases
overall performance more often than it increases it.

CIT ER TER PA WWW WIKI KRO EDU SOC COL AS HOL BUB REG OSM
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

Kernel
SPU1
SPU2

Figure 5.2: Speedup for SPU kernels over best OMP/CUD kernel. The black lines denote the theoretical
speedup for the dataset. Average SPU1: 1.2×, SPU2: 1.0×
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Although the heterogeneous kernels do manage to increase performance, most
datasets do not achieve their theoretical speedup potential. We consider several reasons
for this gap. First, the overhead of StarPU itself: as StarPU uses on­the­fly performance
modeling, based on heuristics to allocate resources, there is a scheduling overhead.

Second, the inaccuracy of StarPU’s performance modeling: as established in sec­
tion 4.5, kernel performance is heavily influenced by dataset topology, and a naive pre­
dictor based on mean throughput only can exhibit error values of up to 189%.

Third, the additional overhead of ghost­vertex data synchronization: between conver­
gence iterations, workers need to synchronize state. There appears to be a correlation be­
tween link density and speedup; table 4.3 shows that COL, AS, HOL are the most dense
datasets, while EDU, BUB, OSM are the most sparse datasets. For sparse datasets,
the overhead of data synchronization increases relatively, so a decrease in performance
might indicate a communication bottleneck. Especially for SPU2, which increases com­
munication volume to accommodate for vertex­cut data partitioning, this effect is visible.

For three datasets (COL, AS, HOL), heterogeneous execution exceeds the theoreti­
cally expected speedup. As workers are processing smaller data chunks, performance
numbers may vary (for example, due to better caching). Similarly, the relative cost of
data transfer may be smaller when only processing a subset of data.

Figure 5.3 shows the runtime speedup when adding a second GPU device to the
system. Performance improvements are surprisingly marginal. Using CPU+2GPU, we
expect a theoretical average speedup of 1.8× over CPU+GPU, but we only achieve an
average speedup of 1.1× for SPU1 and 1.3× for SPU2. Overall, the larger datasets
(WWW,BUB,OSM) appear to benefit from the extra processing power to a certain ex­
tent. However, the additional transfer and orchestration overhead results in sub­linear
speedup.
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Figure 5.3: Speedup of SPU kernels when adding one extra GPU device (thus, running on CPU + 2GPUs).
Average SPU1: 1.1×, SPU2: 1.3×

5.2.2. Workload
To examine the impact of data size on performance, figure 5.4 shows PageRank perfor­
mance for synthetic graphs with varying vertex set size and varying edge set size. We
observe a strong correlation between growing average degree and performance. This is
in line with the observation in figure 5.2, that denser graphs perform better. For these
graphs, vertex­specific processing time is amortized by the dominating edge workload.
However, for sparse graphs, the vertex­related processing time might be non­negligible.

Similarly, the StarPU kernels start to outperform OMP/CUD kernels for high average
degrees (|𝐷| ⪆ 32). As communication volume is limited by the number of vertices (be­
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cause messages to the same destination can be merged before transfer), this is an indi­
cation that communication overhead is indeed the main bottleneck.

We observe no significant change in performance when varying the vertex set size
while keeping the average degree constant. This indicates that communication over­
head is not caused by the initial dataset transfer, but rather the additional communication
needed to synchronize state between convergence iterations.
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Figure 5.4: Algorithm performance in 109 traversed edges per second for synthetic datasets with varying sizes.
Note that x­axes are similar, y­axes are not.

5.2.3. Task Granularity
As StarPU does not split input data, we manually divide the dataset into blocks of equal
size, and create a StarPU task for each block. Note that the number of tasks we create has
a direct impact on the task size ­ thus, changing the number of tasks will automatically
control task granularity. Fine­grained task submission allows for a more gradual work
distribution between devices, but increases the scheduling and synchronization overhead.
Figure 5.5 shows the performance of SPU1 with varying task granularity.

We observe that there is no task granularity that works best for all graphs. Although
no dataset performs best with 256 tasks, a granularity of 4/16/64 tasks results in best
performance for 5 datasets each; submitting 16 tasks might be a good middle ground.
This indicates that the overhead of StarPU itself is limited. No matter the granularity,
around 84% of all tasks are scheduled on the GPU.
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Figure 5.5: Speedup of the SPU1 kernel with varying task granularity compared to submitting a single StarPU
task.

5.3. Cluster Performance
StarPU’s task scheduling is asynchronous and nondeterministic, complicating system­
atic performance analysis. To further analyze synchronization overhead and its impact
on scalability, we prefer to use MPI in a distributed system. Homogeneous workers use
OMP3 with explicit MPI synchronization barriers, resulting in deterministic algorithm exe­
cution and predictable communication patterns.

Figure 5.6 shows the completion time ratio of running the complete PageRank algo­
rithm with an increased the number of workers. Even though performance increases, we
mostly observe sub­linear speedups. For the BUB and OSM datasets, MPI3 manages to
achieve near linear speedups.
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Figure 5.6: Scaling MPI kernels with different number of nodes (N). Speedup is calculated using 𝑁 = 1 as
reference.

As listed in table 5.2, the datasets that do well on MPI3 (WWW, EDU, BUB, OSM) all
have 𝛽 < 1% partition­crossing edges. Where MPI1 and MPI2 use straightforward block­
based partitioning (edge­cut and vertex­cut respectively), MPI3 uses a METIS minimum
graph­cut to minimize communication.

The structured communication patterns for block­based partitioning enables the use of
optimized broadcast operations, while a minimal edge­cut partitioning requires additional
bookkeeping overhead. This is why MPI1 and MPI2 generally perform better, but MPI3
scales better for datasets with a limited number of partition­crossing edges. However,
it should be noted that preprocessing a good data partitioning using METIS takes up a
significant amount of resources, most notably time.



46 5. Heterogeneous Performance Evaluation

Dataset 4­way 16­way
𝑡 𝛽 𝑡 𝛽

CIT 23.7𝑠 ~4% 37.7𝑠 ~8%
WWW 76.1𝑠 ~0% 67.3𝑠 ~0%
WIKI 72.2𝑠 ~3% 93.2𝑠 ~7%
EDU 13.4𝑠 ~0% 15.5𝑠 ~0%
SOC 59.8𝑠 ~3% 77.3𝑠 ~7%
COL 1.6𝑠 ~1% 1.4𝑠 ~1%
AS 6.1𝑠 ~1% 7.0𝑠 ~3%
HOL 19.8𝑠 ~1% 22.2𝑠 ~3%
BUB 30.3𝑠 ~0% 27.1𝑠 ~0%
OSM 50.4𝑠 ~0% 53.0𝑠 ~0%

Table 5.2: Duration (𝑡) of METIS partitioning and percentage of partition­crossing edges (𝛽) in result.

5.3.1. Execution Stages
Figure 5.7 displays the relative duration of different algorithm stages during the execution
of MPI3. We observe that edge traversal and state synchronization take up the majority
of runtime, while algorithm initialization and vertex update runtime are negligible. State
synchronization (communication) is the main bottleneck and correlates to the number
partition­crossing edges (table 5.2).
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Figure 5.7: Relative duration of different stages of PageRank for MPI3.

For datasets that scale well in a 4­way partitioning (such as WWW), communica­
tion takes up to ~25% of runtime, while for lesser performing datasets (such as SOC)
it takes up the majority (~75%) of runtime. These ratios might differ depending on how
computation­heavy a graph algorithm is. As PageRank is more memory­intensive, these
observations provide an upper bound for the synchronization overhead.

Based Amdahl’s law, we can estimate that maximum speedup is rather limited. Equa­
tions (5.1) and (5.2), where 𝑁 is the number of cores and 𝑝 the relative duration of com­
munication, project the maximum speedup for SOC and WWW to be 5.3× and 16× re­
spectively, and this is assuming communication overhead stays relatively similar when
increasing the number of workers. In reality, communication will likely increase as well,
which make these projections optimistic. Addtionally, due to diminishing returns, a dispro­
portionate number of workers is required to approach these speedup numbers in practice.

𝑆𝑆𝑂𝐶 = 𝑁 ×
1

1 − 𝑝 ≈ 4 ×
1

1 − 0.25 ≈ 5.3 (5.1)

𝑆𝑊𝑊𝑊 = 𝑁 ×
1

1 − 𝑝 ≈ 4 ×
1

1 − 0.75 ≈ 16 (5.2)
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5.3.2. Stream Partitioning
As shown in table 5.2, using METIS for partitioning is relatively time consuming. Ideally, a
dataset can be distributed on the fly with minimal preprocessing. We compare the impact
of partitioning quality with two arbitrary one­pass partitioning strategies: chunk­based and
randomized vertex distribution.

Table 5.3 lists the percentage of partition­crossing edges for a subset of our datasets.
As expected, random partitioning results in a high percentage of partition­crossing edges.
Quality of chunk­based partitioning primarily relies on the ordering of input data. For
the selected datasets, the strategy results in a quality between METIS and randomized
distribution.

Dataset 4­way 16­way
Chunk Rand Chunk Rand

WWW ~0% ~6% ~0% ~13%
SOC ~9% ~13% ~22% ~37%
OSM ~6% ~64% ~8% ~90%

Table 5.3: Percentage of partition­crossing edges for alternative partitioning strategies.

Figure 5.8 shows the change in scalability when applying alternative partitioning strate­
gies, while figure 5.9 shows the relative duration of each stage. In line with earlier findings,
speedup decreases, because the synchronization overhead increases with the number
of partition­crossing edges.

Minimizing communication overhead is important, but difficult to achieve with a
one­pass partitioning strategy. Static datasets can reuse partitioning results, while
dynamic datasets can explore incremental or multi­pass partitioning strategies. If no
good partitioning strategy is available, it might be preferable to fall back to the structured
block­based work distribution from MPI1/MPI2.
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Figure 5.8: Scaling MPI kernels with different partitioning strategies. Speedup compared to 𝑁 = 1.
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Figure 5.9: Relative duration of different stages of PageRank for different MPI3 partitioning strategies.
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5.4. Scalability Analysis
Building upon the device performance model proposed in section 4.5, an approximate
model to predict algorithm runtime 𝑇𝑤 for graph partition 𝐺𝑝 on worker 𝑤 is illustrated in
equation (5.3), where 𝑀𝑤 is initialization cost, 𝑆 number of supersteps, 𝑃𝑤 edge process­
ing speed, 𝐸𝑖 ↔ 𝐸𝑗 the subset of boundary edges between partitions 𝑖 and 𝑗, and 𝐶𝑖,𝑗 the
corresponding communication rate.

Applying this model to a cluster of workers𝑊, where every worker processes exactly
one graph partition, the algorithm runtime 𝑇 is approximated using equation (5.4).

𝑇𝑤(𝐺𝑝) = 𝑀𝑤(𝐺𝑝) +
𝑆

∑
𝑠=1
(
|𝐸𝑝|
𝑃𝑤(𝐺𝑝)

+
𝑁

∑
𝑖=1

|𝐸𝑝 ↔ 𝐸𝑖|
𝐶𝑤,𝑖

) (5.3)

𝑇(𝐺) =max
𝑤∈𝑊

(𝑀𝑤(𝐺𝑤)) +
𝑆

∑
𝑠=1
(max
𝑤∈𝑊

( |𝐸𝑤|
𝑃𝑤(𝐺𝑤)

) +max
𝑤∈𝑊

(∑
𝑣∈𝑊

|𝐸𝑣 ↔ 𝐸𝑤|
𝐶𝑣,𝑤

)) (5.4)

Assuming that the initialization cost is amortized as the number of supersteps grows,
scalability is primarily limited by the ratio of local computation to global communication.
Ideally, computation cost dominates. Equation (5.5) uses the ratio of partition­crossing
edges 𝛽 to estimate general communication cost in this relation. Consequently, the maxi­
mum ratio for which computation exceeds communication cost is defined in equation (5.6).

|𝐸|
𝑃 ≥ 𝛽 ∗ |𝐸|

𝐶 (5.5)

𝛽 < 𝐶
𝑃 (5.6)

Communication rate 𝐶 is bounded by the interconnection speed between workers. For
accelerators, this is the system bus latency and bandwidth, while for distributed workers
this is network latency and bandwidth. Table 5.4 lists the theoretical and tested throughput
rates for different platforms (10G ethernet listed for reference). For both PCIe (GPU) and
InfiniBand (distributed CPUs), we are able to achieve around ~74% of the theoretical
throughput.

Using these throughput rates, we can approximate a limit for partition­crossing edges
such that communication cost does not exceed a specified ratio. For example, for a maxi­
mum theoretical 4× speedup (1:3 ratio) for OMP3 workers using InfiniBand, a partitioning
with (at least) 𝛽 < 0.18 is required. For a 16× speedup, this limit decreases to 𝛽 < 0.04.

Platform Throughput EPS 𝛽
Bus Bench 𝑃 𝐶 2× 4× 16×

PCIe 3.0 16 GB/s 11.7 GB/s 8.7∗ 1.5 17% 6% 1%
InfiniBand 8 GB/s 5.9 GB/s 1.5∗∗ 0.8 53% 18% 4%

10G Ethernet 1.25GB/s − 1.5∗∗ 0.2 10% 3% 1%

Table 5.4: Approximated maximum ratio 𝛽 of partition­crossing edges for specified speedup factor.
𝑃 –mean computation rate (109 edges per second). 𝐶 – estimated communication rate (109 edges per second).
∗Mean CUD3 performance. ∗∗Mean OMP3 performance.
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As shown in table 5.2, achieving such quality data distributions might be difficult, if
not impossible. Using METIS, three of our real­world datasets cannot be partitioned in 16
parts such that 𝛽 < 0.04, while amajority of datasets exceed the theoretical PCIe speedup
threshold of 𝛽 < 0.01. Using (suboptimal) on­the­fly partitioning strategies, these limits
might be even more difficult to accomplish.

Most real­world graphs exhibit limited theoretical scalability, even with optimal (METIS)
data distribution. In that regard, it might be more beneficial to increase scalability by mini­
mizing communication volume through optimization of the graph algorithm. For example,
by only sending differential updates or by limiting the set of active vertices. However,
such optimizations are largely algorithm­dependent.

5.5. Main Findings
We make the following observations regarding the performance of heterogeneous graph
processing:

1. Communication is the major graph processing scalability bottleneck.
For edge iteration in large­scale graph­processing systems, the main scalability bot­
tleneck is the synchronization overhead. Communication of ghost­vertex data takes
up an increasing proportion of the runtime, resulting in sub­linear speedups for most
evaluated datasets. Maximum theoretical speedup is limited by the ratio of compu­
tation to communication cost. Computation­heavy algorithms will scale better as
relatively more work can be parallelized.

2. Graph partitioning heavily impacts scalability.
The number of partition­crossing edges indicates communication volume and di­
rectly correlates to performance. Decreasing the number of partition­crossing
edges improves scalability. However, realizing a minimum graph cut with equal­
sized subsets is an NP­complete problem, which makes optimal data distribution
non­trivial. Maximum theoretical speedup is rather low for the majority of tested
real­world graphs due to the high percentage of partition­crossing edges, even with
an optimal data distribution.

3. Block­based partitioning can provide an alternative to minimum graph cuts.
Using METIS to realize a minimum graph cut for optimal data distribution is not
realistic, as the preprocessing cost would significantly exceed algorithm runtime.
However, using an arbitrary one­pass partitioning strategy such as random vertex
distribution can be detrimental to performance.
For static datasets, expensive preprocessing cost can be amortized by reusing the
minimum graph cut for multiple algorithm runs. For dynamic datasets, research
effort has been made to efficiently distribute datasets using incremental or multi­
pass partitioning heuristics ([9, 23]). For communication­heavy graph algorithms,
straightforward block­based partitioning can achieve decent performance by exploit­
ing optimized broadcast operations in distributed environments.

4. Accelerators can increase graph­processing performance.
Accelerators can significantly improve graph­processing performance. When pos­
sible, it makes sense to offload algorithm execution to GPUs. For a single device,
costly initialization overhead is amortized over multiple convergence iterations.
In heterogeneous scenarios, where one or multiple accelerators are used as part
of a larger system, benefits are smaller, as an increased disparity between com­
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putation and communication rates make GPUs more susceptible to communication
bottlenecks.
The extent to which an additional device in the system can result in speedup is
determined by the (additional) cost of synchronization. For GPUs, this means it will
be difficult to tap into the full processing potential for a lot of real­world graphs.



6
Conclusion and Future Work

Graphs are an ubiquitous concept used for modeling entities and their relationships. Al­
though abundant in present­day computing challenges, large graphs are fundamentally
difficult to process because of their irregular computation structure. In heterogeneous dis­
tributed systems, it is unclear what would be the optimal partitioning of a graph­processing
workload, as the input dataset has a significant impact on device performance.

In this work, we have contributed models to support the distribution of a graph­
processing workload in a large­scale heterogeneous system. To achieve this, we have
designed a novel graph­processing performance benchmark and used PageRank for a
case study to analyze the influence of graph topology on performance and scalability.

In this chapter, we conclude this thesis by presenting answers to our research ques­
tions and discussing directions for future work.

6.1. Conclusion
We conclude this thesis by answering the research questions posed in section 1.2:

RQ1 How to evaluate the graph­processing performance characteristics of a process­
ing unit?
In a heterogeneous environment, it is unclear what would be the best allocation
of resources to optimally process a given workload. To determine and compare
the graph­processing performance characteristics of each processing unit, we
have proposed a structural benchmarking strategy (contribution C1) based on the
four pillar design principles of “think like a vertex” graph­processing frameworks
defined by McCune et al. [45].
In chapter 3, we have discussed the design considerations and implications for
each pillar and how they apply to different computing architectures. Using the
PageRank algorithm as case study, we have designed and implemented 30 cus­
tom kernels targeting CPUs, GPUs, and heterogeneous environments (contri­
bution C5). Each kernel gradually alters a single pillar in order to evaluate the
impact of each design decision.
Furthermore, we have introduced a graph processing benchmarking suite (con­
tribution C6) to facilitate structural evaluation of graph­processing performance
characteristics in a heterogeneous environment. Five different types of synthetic
graphs are used to evaluate the impact of workload size, while maintaining sim­
ilar connectivity characteristics, and ten real­world datasets are included to put
results into perspective.
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RQ2 How to model the graph­processing performance of a processing unit with re­
spect to dataset topology?
PageRank is the composition of two common graph­processing building blocks.
First, an information scattering stage that iterates over all edges in the dataset.
Second, a global gathering stage that updates vertex values and evaluates a stop
condition. As PageRank is more memory­intensive than computation­intensive,
it is an ideal algorithm to analyze the impact of graph topology on performance.
In chapter 4, we have conducted an in­depth case study of the graph­processing
performance characteristics of CPUs and GPUs using our in­house PageRank
kernels (contribution C2). One of our main findings is that hard ware caches have
a significant impact on kernel performance.
We have proposed a graph­processing performance model that takes into ac­
count the topological structure of an input dataset (contribution C3). We estimate
cache hit rate using the local clustering coefficient, a graph metric that quantifies
node clustering.
Compared to mean processing speed, a naive predictor that is commonly used
as performance predictor, we are able to reduce the average predicted runtime
error from 189% down to 92% for GPU kernels, and from 92% to 79% for CPU
kernels.

RQ3 How to take into account the graph­processing performance characteristics of
each processing unit in a heterogeneous system when distributing a workload?
In chapter 5, we have conducted an in­depth evaluation of graph processing
scalability in heterogeneous systems (contribution C4). First, using StarPU for a
heterogeneous amalgamation of CPU and GPU devices. Second, using MPI for
a homogeneous cluster of CPUs to further analyze the impact of synchronization
overhead when scaling the number of workers.
In both scenarios, we have found communication overhead to be the main scal­
ability bottleneck. When adding a worker in a heterogeneous system, we deter­
mine the maximum theoretical speedup by the ratio of device processing speed
(estimated using RQ2), communication speed (estimated using interconnection
bandwidth), and communication volume (estimated using the number of partition­
crossing edges).
In this equation, the quality of data partitioning (communication volume) has a
major impact on performance. In our findings, maximum theoretical speedup
is limited for the majority of tested real­world graphs by the high percentage of
partition­crossing edges, even with optimal (METIS) data distribution.
Our work contributes towards a decision model that can optimize distribution
of workloads in a heterogeneous system, but more research is needed towards
predicting the quality of graph partitioning and the corresponding communication
volume.

6.2. Future Work
We propose the following directions for future work:

1. Extend performance evaluation to include more devices.
In this work, our performance evaluation focused on a single generation of com­
modity CPU and GPU hardware, but it might be interesting to evaluate the graph­
processing performance characteristics of other devices in a similar matter. Co­
processors such as Field­Programmable Gate Arrays (FPGA) or the Xeon Phi are
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possible targets. Similarly, ARM CPUs (based on the RISC instruction set) are
seeing a rise in popularity, and might exhibit different performance characteristics.
As architectures develop over time, so might respective performance characteris­
tics. In that regard, it will also be interesting to evaluate performance over different
generations of hardware in order to better predict performance for future genera­
tions of hardware.

2. Extend performance evaluation to include more partitioning strategies.
As shown in section 5.3.2, dataset distribution and the resulting number of partition­
crossing edges is vital to scalability of large­scale graph processing system. In
this work, we focused on evaluating boundaries: that is, we used METIS minimum
graph cut as a best­case scenario, and random vertex distribution in a worst­case
scenario.
To get a better understanding of the performance impact of partitioning strategies
currently used by various graph­processing frameworks, more research is needed.
Extending our benchmarks with more heuristic partitioning strategies would allow
for a better grasp on the subtleties of data distribution.

3. Apply performance evaluation to other graph algorithms.
PageRank is an ideal algorithm to analyze the influence of graph topology on per­
formance, but it might not necessarily be representative for the entire class of graph
algorithms. To relate our work to other algorithms, more research is needed.
First, we suggest community detection algorithms such as label propagation[51]
and weakly connected components as interesting next research subjects, as they
are similar to PageRank, but more demanding in computation and communication
respectively.
Second, evaluating another building block such as breadth­first search might put
our findings into perspective with regards to more lightweight iterative algorithms.

4. Improve performance model using additional graph metrics.
Performance modeling of a graph processing system is non­trivial. In section 4.5,
we have demonstrated that graph metrics that quantify the level of node clustering
can be used to increase prediction accuracy. We suspect that better accuracy can
be achieved by taking extra graph metrics in account, such as dataset size, average
degree, or degree distribution skewness.
In that regard, multiple linear regression or more advanced machine learning tech­
niques are likely candidates for better performance models, but attention should be
paid to the risk of overfitting.

5. Integrate device performance model with StarPU.
StarPU uses a naive performance predictor heuristic based on mean throughput,
which (as demonstrated in section 4.5) can exhibit up to 189% relative error for
our GPU kernels. Using our proposed performance model, one should be able to
improve StarPU’s performance predictor, and thereby its task scheduling quality.
Calculating the necessary graph metrics for our performance model on­the­fly might
induce significant extra cost. Integrating the model into StarPU is an easy way to
test viability in a real system.
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6. Design a decision model to distribute a workload in a heterogeneous system.
Combining our performance model from section 4.5 and our scalability insights from
section 5.4, one should be able to design a decision model for optimal allocation of
resources for graph processing in a heterogeneous environment.
In such a decision model, the number of partition­crossing edges is likely to be a
fundamental variable. It is unclear whether or not this variable can be accurately
predicted before partitioning. Ideally, this value would be expressed in terms of
graph metrics, similar to our performance model.
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