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Preface 

This thesis treats the distribution process of vaccines, starting in a time where the virus really hits the 

world and actively dominates life by causing serious diseases, death and fear. At the same time it has 

a huge influence on the social life in the form of serious deregulating lockdowns. Starting this project 

in the middle of the ‘c-word’ pandemic combined with my interest for optimizing processes, quickly 

ignited the interest of the treated problem. 

I personally experienced that this lockdown really hampered the real life interaction with the 

supervisors and members of the group for reflection and mirroring , having on the spot feedback, 

and learning from others. All these I would have loved to have more of, but regretfully limited by the 

lockdowns. A pity, but it is what it is. 

At the same time I just got a fantastic daughter, who created a lot of mental energy. And yes she 

asked of course for a lot of attention and care but also supported me in the creation of practical 

knowledge on logistics: The supply chain of diapers, having the right food at the right time, 

organising the baby care and last but not least how to get enough sleep! (The latter has failed me 

several times). 

It is has been a weird, but fruitful, coincidence: working on a distribution scheme for a vaccine at the 

very moment the virus was spreading and in using an algorithm that is inspired by the genetic 

evolution process that shows similarities to how the virus finds its way. 

In this thesis you find the result of this work , something I am proud of, certainly given the 

circumstances in which it was created. I hope you will enjoy the reading! 
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Summary 

The distribution chain of two-dose vaccines by an air carrier (KLM cargo) with its practical features is 

modelled to study the influence of supply uncertainty. First the goal is to find an efficient solution 

approach for the model which gives good quality solutions in reasonable computation time. Secondly 

with the developed solution method the supply uncertainty is taken into account using robust 

optimization.  

Solving the model using an exact solution method leads to a too large increase of computation time 

with increase of the model size for the purpose of robust analysis. Nevertheless, given the high 

reliability of the model the results of this commercial model are used as a reference. 

To circumvent the high computation time, two alternative solution methods are developed and 

implemented. Respectively the genetic algorithm and the rolling horizon method.  

A basic implementation of the genetic algorithm does not provide adequate results and gets trapped 

in a local optimum. An analysis shows that measures are needed to increase the flexibility and 

stimulate the algorithm to find  so called “transaction-less” events. To achieve this, a toolbox is 

developed. The toolbox consists of analysis tools (measurement of convergence rate, sparsity and a 

diversity measurement) and tools intended to improve the convergence and accuracy of the solution. 

These latter are an adapted mutation operator that stimulates the number of transaction-less events 

(sparsity) and an approach for directed mutation. Each measure by itself has a  positive effect on the 

initial convergence rate, but the algorithm still gets trapped at a somewhat improved local optimum 

at a level of  approximately 10% above the optimum solution. A strong improvement is found by 

combining these measures of the toolbox resulting in solutions that approach the optimal solution 

within less than 5% for a single destination at a very high convergence rate. The best found 

combination of measures are implemented to solve a multi-destination problem. The results prove to 

be not as good as the result for the single destination: the gap to the optimal solution is roughly 10% 

and the convergence rate is somewhat slower. Probably this is due to the fact that the boundary 

conditions impose a reduction of flexibility for the multi-destination setting. On the other hand this 

finding might provide  a base for worthwhile future work. Since this is solver is not (yet) suitable to 

be used in the robustness analysis. Three different implementations of the rolling horizon method 

were made: (i) the straight forward (myopic) approach, (ii) extending the time window with relaxed 

periods and (iii) a shifting rolling horizon. The straight forward approach is significantly improved by 

using the relaxed and shifting methods. Considering the accuracy and the computation time the 

rolling horizon with shifting is the best solution method. This method is used for the analysis of 

robust optimization 

To study the effect of the supply uncertainty, where the exact probability distribution is unknown, 

robust optimization is applied. The uncertainty resides in a polyhedral uncertainty set. The influence 

of supply uncertainty is studied over a specified practical interval. Over this interval the total cost 

proves to be sensitive to variation in the ordering amount. The shifting rolling  horizon method is 

used to compute a flight and order plan given an uncertainty in the supply amount. To protect the 

solution against supply uncertainty a high level of conservatism proves to be required.  This is 

achieved  by using gamma values in the range of 0.7 to 0.9. For a Γ of 0.9 the price of the robustness 

is 20% higher than the optimal costs  in which no uncertainty is taken into account. If lower costs are 

desired , at the price of somewhat less protection against uncertainty, but still at  a significant 

robustness level, the flight and order scenario that fits a Γ of 0.8 and even 0.7 can be used lowering 

the estimated cost with respectively 4% and 10%.   
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1. Introduction 
 

Immunization is an effective way to prevent or decrease the spreading of contagious and 

transferable diseases such as the current SARS-Cov-2 virus. A controlled method for achieving 

immunity is by means of vaccines. Vaccines consist of several components, where the most 

important component is a weakened version of the germ that causes the disease or a small 

characteristic piece of its protein. By injecting this substance  the immune system of a person 

produces antibodies against this germ to develop immunity against the disease, without the negative 

effects of suffering from the disease [2]. 

Before a person can be vaccinated, a supply chain is necessary. This supply chain is the network of a 

vaccine producing company and its suppliers as well as other parties involved to produce, store, 

distribute and administer the product to the final user [3]. In the distribution network the product is 

transported from the production facility via the storage facilities eventually to the end consumer. 

What makes the supply chain of vaccines (and other pharmaceuticals) unique is the set of stringent 

requirements which must be fulfilled to enable a safe administration at the point of use. E.g. the 

vaccines must be transported and stored under strict physical conditions.  

 

1.1. The distribution process of vaccines 

 
Once the vaccines have been allocated to a population in a region, the distribution of the vaccines 

can start. The population receives the vaccine at a point of dispensing (POD). To ensure safety and 

efficiency during the vaccination procedure the POD’s should be replenished timely. In general the 

replenishment occurs from the national stockpile through various lower level distribution centres to 

the POD. So the distribution of vaccines consist of storage on different levels and transportation. The 

result is a multilevel distribution strategy of which the details depend on the size of the vaccinating 

region, the amount of vaccines to be distributed and available transportation modes. Basically the 

question which should be answered in the distribution phase is:  

How can the allocated vaccine reach the population in the most efficient way under the stringent 

conditions?   

 An important aspect of using multiple distribution centres is the uncertainty from the supply side. 

The effect of this uncertainty can be damped since the distribution centres can be used as a buffer. 

Another vulnerable aspect of the distribution process is the conservation of the vaccines (by using 

refrigerators and other cooling instruments). Not complying to the requirements will result in wasted 

vaccines. Besides dealing with the packaging of the vaccines, the distribution centres and transport 

vehicles should fulfil the necessary requirements. The following Figure 1.1 summarizes the 

differences with general supply chains and the unique characteristics of the vaccine supply chain: 



2 
 

 

Also in the vaccine supply chain choices for each component resonate through to the other 

components. For example, the size of the vial should be chosen carefully as it has influence on the 

amount of vaccine to be allocated, the inventory size and the transport. This requires an overall 

coordination to take these interdependencies into account. In this process various decision makers 

are involved. These decisionmakers can have different interests which may affect the efficiency of 

the supply chain. This makes the vaccine supply chain a unique process where uncertainty, time 

pressure and stringent requirements interplay.  

 

1.2. Scope and research question 
 

The scope of this project is the distribution of a multi-dose vaccine similar to the BioNtech/Pfizer [5] 

vaccine by means of air transport. In specific the role of KLM as link between the production facility 

and the national warehouses is considered. The distribution process  consists of the supply from the 

production facility, the storage facilities at the airport, the air transport and the storage at the 

national warehouses located at the airports. The process is driven by the demands on national level. 

Given the strict requirements in combination with the possible variations in supply, for this 

distribution process a robust approach is required that protects against this supply uncertainty. To 

solve this, the research question to be answered is: 

 

 “What is the influence of supply uncertainty on the distribution process of multi-dose vaccines?” 

 

Detailing of this research question: 

 

- What is the structure of the distribution process? 

- What model underlies the distribution process? 

- What is an efficient solution method to solve the model? 

Figure 1-1: Similarities and unique characteristics of the vaccine supply chain [4] 
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- What is a robust scenario that protects against the supply uncertainty? 

 

For this the challenge is to adapt or implement a solution method which is able to approximate good 

quality solutions in little computation time as compared to a commercial solver. For this 

development it will be necessary to construct measuring tools for analysis of details of the applied 

methods, to create and adapt the method.  

 

1.3. The structure of this report 
 

After introducing the vaccine supply chain and its challenges, in Chapter 2 a concise literature survey 

will be presented. In Chapter 3 the distribution process and the details will be described and 

subsequently modelled. In Chapter 4 solution methods will be presented. It will start with a brief 

introduction on the commercial solver after which two alternative solution methods are presented. A 

significant part of the thesis pays attention to the analysis and development of the genetic algorithm. 

Followed by introducing an alternative, the rolling horizon method. This method proves to be 

computational better fit for the robust analysis. The chapter ends with the robust optimization 

approach. The results of the application of the solution methods and the robust approach are 

presented in Chapter 5 and will be discussed in Chapter 6 together with directions for future work. 

The main findings and conclusions on the distribution process that is protected against the supply 

uncertainty will be summarized in Chapter 7.  
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2. Literature review 
 

In this chapter an overview of literature concerning the vaccine supply chain, multi-period inventory 

management, robust optimization and solution methods is presented.  

A complete overview of the vaccine supply chains is presented in the literature review of Duijzer et al 

[4].  A comparison is made between supply chains in general and the vaccine supply chain in specific. 

Unique to the vaccine supply chain is the aspect of mass distribution under time pressure and 

accounting for perishability.  

Optimization of the distribution of vaccines often focuses on the location of the distribution centres 

in different countries. The location of the distribution centres and points of use are based on routing 

decisions. An example of optimizing this part of the supply chain for vaccines is given by Georgiadis et 

al. [6]. Using a decomposition method based on distances of the distribution centres and points of 

use  a mixed integer linear programming model is solved for a multi-echelon vaccine supply chain 

with a short planning horizon. A similar approach is followed by Tavana et al. [7] for equitable 

distribution of COVID-19 vaccines in developing countries, in specific in India, considering different 

refrigeration methods. Both use short planning horizons of respectively 14 and 8 time periods, treat 

single dose vaccines and do not take uncertainty explicitly into account.  

For proper optimization of the distribution process multi-period inventory decisions should be taken 

into account to prevent myopic outcomes [8]. This field gets plenty of attention in the literature 

[9,10,11,12,13,14].  

Soysal et al. [9] and Chu et al. [10] minimize the inventory cost for the supply chain of arbitrary 

products taking into account the inventory cost of all considered nodes applying a vendor managed 

inventory characterized by the knowledge of the supplier on the inventory levels at the demand 

nodes. For the distribution process the model should be able to determine whether products are 

waste and should be disposed. Soysal does take perishability into account but for perishable 

inventories different, more insightful formulations have been proposed. Alipour et al. [11], Gunpinar 

et al. [12] and Rohmer et al. [13] track  the remaining shelf life or the product age as an extra index to 

the inventory variable.  

Many described inventory routing problems [9,12,13,14] deal with multiple delivery points in a single 

route. The distribution network we have to look at  uses the hub-and-spoke network of directed 

flights. This is a type of network which has a single hub as centre point and in principle does not 

consider transport between the endpoints described by e.g. Hsu et al [15]. Different measures for the 

transport cost can be found. Woo [16] groups the transport cost per unit, Rohmer et al. [13] 

computes a fixed charge for a routing decision and Rinaldi et al. [17] uses a combination of the 

aforementioned.  

Decisions based on deterministic  optimization models can be very sensitive to the input parameters 

and thus result in wrong outcomes, see Ben-tal and Nemirovski [18]. To provide a better ground for 

decision-making and to reduce the probability of a severe outcome, uncertainty should be taken into 

account. The two main approaches used for optimization of uncertain models are robust 

optimization and stochastic optimization. They differ in the way the probability distribution of the 

uncertain data is treated. Stochastic optimization has two major drawbacks [18]. The first drawback 

is the need for knowledge of the exact probability distribution. The second drawback is that by taking 
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the details from the probability distribution into account the solution can become computational 

intractable [18]. Due to the nature of the problem considered in this thesis, where the probability 

distributions of the considered parameters are assumed to be unknown, from the two main 

approaches, the robust optimization method will be applied. 

The schemes of distribution should be protected against uncertainties. Robust optimization is a 

method developed to serve this purpose. Soyster [19] started exploring the field of robust 

optimization based on the worst-case scenarios. Ben-tal and Nemirovski [18], Ben-tal et al. [20] and 

Soyster [19] himself point out that this method produces ultra-conservative solutions. Continuing the 

work of Soyster two less conservative main approaches are developed by the groups of respectively 

Ben-tal [18] and Bertsimas [21]. Ben-tal et al. use an ellipsoidal uncertainty set. This results in a non-

linear set of equations. While for the method developed and Bertsimas et al., using a polyhedral 

uncertainty set, the set of equations remain linear. Bertsimas and Thiele [20] extend this robust 

optimization to a broad variety of networks to protect the distribution process against demand 

uncertainty. From the work of [22] Chu et al. [10] extend the formulation to include the supply 

uncertainty. 

Multi-period optimization problems take the entire planning horizon into account. This can lead to 

significant computation time. Producing reliable results in a reasonable computation time is the 

focus of the development of solution methods. For small to moderate size models often commercial 

solvers are used to provide the optimal solutions. The issue of large computation times in specific 

holds for problems which are formulated as mixed integer program (MIP) models. Optimization 

problems formulated as a MIP belong to the class of NP-hard problems [13]. There does not exists an 

algorithm which can be used to solve MIP models in polynomial time. To approximate the optimal 

solution, heuristic methods are applied. A widely applied heuristic method is the genetic algorithm. 

The work on genetic algorithms was initiated by Holland [23]. He formulated the (intermediate) 

solution to a problem in terms of genes that are assembled in a so called chromosome. The main 

requirement is that the chromosome describes a unique solution [24]. Based on the evolution 

principle of Darwin, ‘survival of the fittest’, the population of chromosomes evolves with the aim to 

find improved solutions with advancing generations. The chromosomes are changed by 

recombination, mutation and selection.  In early stages of the development of the genetic algorithm 

these chromosomes consisted of binary valued genes. Later also the use of numerical valued genes 

was implemented(real coded genetic algorithm)  to reduce the computation time by eliminating the 

translation of binary values to the real valued solution [25]. In this thesis the real-coded genetic 

algorithm  will be used.  

Recombination strategies which are applied in real coded genetic algorithms often use quantitative 

relations between two genes to determine the values for the genes of the offspring. An example of 

this is the linear interpolation between to genes (“whole arithmetic cross-over”) [24].  

In the cases where the gene values cannot be quantitative combined, (e.g. in sequential decision 

making, found in the inventory routing where the sequence of numbers determines the route [24]), 

parts of the chromosomes are exchanged by applying single or multiple cut points thus creating 

offspring. Additional to the recombination strategy, changes in the chromosome can be introduced 

by mutation: Changing the value of the gene by a random process.  

The resulting offspring will be evaluated to assign a ‘fitness’ value. The fitness value quantifies the 

quality of the solution presented by one chromosome compared to the rest of the population. After 

this a selection strategy is applied based on the fitness values of the chromosomes [26]. 
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An often mentioned serious disadvantage of the genetic algorithm is the possibility of ‘premature 

convergence’ [27]. In this case the algorithm is trapped in a local optimum. Often this is caused by 

chromosome which are too much alike [27]. This is an aspect of the evolution process which should 

be adapted. 

The genetic algorithm is applied to a wide variety of problems. For the subset of inventory and 

distributions problems the details of the application of the method may differ but the generic 

essence remains the same.  

In [26] a genetic algorithm is applied on a multi-plant capacitated lot sizing problem. The production 

amount of multiple production plants for multiple products and time periods are represented as a 

chromosome and compared with different (meta)-heuristics. It is concluded that the GA performs 

better, in particular on convergence.  

Tamer et al. [29]  discuss an inventory routing problem which is solved with a hybridized genetic 

algorithm. The chromosome representation consists of the delivery amounts to the destinations in 

multiple periods. The routing part is solved by a different heuristic method. Feasibility of the model is 

ensured by using repairing mechanisms for non-feasible chromosomes. For this strategy the gap to 

the optimal solution is small for smaller problems and increases with model size to 20%.  

Dolgui et al. [30] present a non-revisiting genetic algorithm where the solutions are placed in a 

search tree. If a chromosome is already placed in the search tree, the chromosome is mutated to a 

place in the search space which has not yet been discovered. No specific chromosome 

representation is presented on the considered variables. Instead of considering the real values of the 

genes, the values a gene can take lie in a discretized interval between zero and one, which coincide 

with the lower and upper bound values for the real solution of the problem. The level of 

discretization can be adjusted to the computing power available, where high level discretization 

leads to more refined solutions. 

Another versatile method as alternative to the genetic algorithm is the rolling horizon heuristic. The 

rolling horizon heuristic decomposes the time period into smaller sub-problems that are solved 

subsequently. The solution of the solved sub-problem is the input for the following sub-problem.  

Glomb et al [31] use variations of the rolling horizon time decomposition to solve a lot sizing 

problem. The basic algorithm consists of a fixed number of time periods which are solved 

subsequently to optimality. This approach does not provide good quality solutions given that the 

optimality for a sub-problem does not necessarily belong to the solution of the global optimum. To 

overcome this issue, an algorithm is used in which the sub-problems are allowed to overlap. The 

overlap allows to re-optimize the overlapping part of the previous sub-problem proving to result in a 

better quality solution. The influence of the amount of overlap on the quality of the solution is 

studied by Hartleb and Schmidt [32] for a vehicle scheduling problem. To approximate the global 

optimum for a large scale model a large overlap compared to the length of the solved sub-problem is 

required.  

In [6] the MILP is solved using a decomposition method where hubs and points of use are grouped 

based on distance. With a rolling horizon method disturbances in the supply chain are taken into 

account by reacting accordingly to the changes without using the formal principles of robust 

optimization. 
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2.1.1. Literature table  
 

Table 2-1: An overview of studies from literature related to the topic at hand. Indicated are the elements covered by the 
respective papers as well as the elements that are covered in this work. 

 

 

2.1.2. Scientific gap and contribution 
 

In this work the vaccine supply chain is modelled, taking into account the perishability of the double 

dose vaccines including strict requirements on the delivery of the second dose. In addition to 

different works on the distribution of vaccines that consider multiple storage facilities, in this work 

the operational cost for the different storage facilities are taken into account. Furthermore here the 

uncertainty in the supply chain is taken into account using a robust optimization strategy. In 

preparation for the robust optimization strategy, the mutation process of the genetic algorithm has 

to be improved to obtain higher convergence rates and avoid trapping in local optima. For this a 

toolbox that enables analysis of the convergence rate and diversity is required. To have an 

alternative to the genetic algorithm, the rolling horizon heuristic has to be implemented.  

  

Literature Ref. Location Distribution Vaccines Perishability Genetic Roling Double Refrigeration Uncertainty

allocation Algorithm Horizon dose

This work x x x x x x x x

Georgiadis [6] x x x x

Tavana etal [7] x x x x

Soysal [9] x x

Chu [10] x x

Gunpinar [12] x x x

Bertsimas [21] X x

Mohammadi [26] x x x

Tamer [29] x x

DoIgui [30] x x x
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3. Modelling the distribution process of vaccines 
 

This chapter provides the description and assumptions of the considered distribution process and the 

modelling as a mixed integer programming model. 

3.1. Description  of the distribution process and assumptions 
 

The model describes the role of KLM in the distribution of vaccines. KLM is the link in the vaccine 

supply chain between the production facility and the national warehouses of several countries. At 

the production facility the vaccines are filled in vials that  contain multiple vaccination doses. 

Multiple  vials are packaged in designated boxes, so called vaccine units (VU). The boxes are designed 

such that the vaccines are protected against external influences (such as light and heat) and prevent 

the vials from breaking. Once the vaccines have been produced and packaged accordingly the 

vaccine units will first be stored in a warehouse at the production facility. KLM can demand these 

vaccine units when KLM has the available resources to distribute or to store in KLM’s own facility. 

This procedure is referred to as “the ordering of vaccines”.  In the next step the vaccine units will be 

distributed by KLM to several locations. KLM has a fleet of several planes to transport the vaccines to 

the required destination and offers two types of storage facilities. The locations are assumed to be 

national warehouses located at airports of different countries. The generic flow of vaccines is 

depicted in the following Figures 3-1 and 3-2: 

 

Figure 3-1: Generic flow diagram of the vaccines in the considered distribution process 

Figure 3-2: Generic flow of vaccines inside the KLM facility 
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The arrows show the flow of the vaccines. The vaccines enter the KLM facility by placing an order at 

the production facility. The vaccines leave the KLM facility by transport or as waste. The transport 

couples the locations to the KLM facility. The vaccines at the locations leave the destination by  

fulfilling the demand  or again as waste. 

The flow of vaccines inside the KLM facility is shown in Figure 3.2 The figure shows the incoming 

order amount that can be stored in the two type of storage facilities or directly leave the KLM facility 

as transport by means of flights.  

The transport can consist of a partition from the dry ice storage facility and a one from the deep 

freezer storage facility. The transport to the location is conducted by a scheduled passenger plane 

with a fixed capacity. The amount a location can receive in one period depends on the flight 

frequency.  

3.1.1. Constraints on the vaccine use and its storage 
 

The type of vaccine in this model is based on the characteristics of the Pfizer\BioNtech vaccine. The 

vaccine is a two dose vaccine where the prescribed time between the first  and the second dose is 

three weeks. This implies that it is required that the quantity of vaccines used to fulfil the demand of 

the first dose in a certain period at a certain destination also needs to available three weeks later at 

that same destination to fulfil the demand for the second dose.  

To ensure the efficacy of the vaccine, the vaccine should be maintained at a temperature of – 70 

degrees Celsius. During transport this is accomplished by using dry ice. The temperature of the 

vaccines in the storage facilities of KLM can be maintained by either dry ice combined with a passive 

cool box (PCB)   in one type of storage, or using deep freezers in the other facility where no dry ice is 

required. The vaccine units in the deep freezer facility are stored per vaccine unit. For the storage 

facility regarding dry ice, a number of vaccine units are stored in a passive cool box which contains 

dry ice. The passive cool box has a certain capacity for vaccine units which must be utilized. Both type 

of methods to maintain the temperature of the vaccine have different limitations. The vaccine can 

remain in the deep freezer for a period of 6 months. The dry ice of the passive cool box must be 

replaced every ten days, with a maximum of three dry ice (re)placements, so resulting in a maximum 

storage time here is 30 days. Once the vaccines have been stored in the dry ice storage facility, the 

vaccines cannot be stored again in a deep freezer. For modelling convenience and a conservative 

approach the replacement of dry ice coincides with a period, this implies that the shelf life for 

vaccines stored with dry ice is three periods. The shelf life for vaccine stored in the deep freezers is 6 

months, which translates to 26 periods. 

 

3.1.2. Goal of  the model: Cost optimization 

 
The goal of the model is to minimize the cost involved with the distribution of vaccine units for KLM. 

The model is a multi-period inventory control problem where the planning horizon is a year. The 

planning horizon is divided in a number of weeks. Where one period is equal to one week.   
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3.1.3. Cost elements 

 
The ordering cost are the cost for placing an order, preparing for receiving and other general ordering 

cost. These costs are independent of the order size.  

The inventory holding cost take the inventory levels of both storage facilities  at KLM into account 

where the inventory cost are per unit stored. The deep freezer facility require an investment, this 

investment are included for the respective storage facility.  

The shortage cost will be imposed when the demand for the first dose cannot be satisfied, where the 

costs are based on the amount of vaccine units which cannot be delivered to the specified location.  

The wastage cost considered in this model is based on the vaccines which exceed the shelf life.  

The transport cost to a destination are fixed per flight ,  independent of the amount  of vaccines 

transported, and only dependent on  the distance.  

The handling cost are the cost used for re-icing the PCB which remain in inventory and icing the PCB  

with vaccine units from the deep freezers used for transport.  

 

Model assumptions: 

 
- The demand for the first dose in each period is known and is given in vaccine units.  

- Products are depleted on a FIFO basis from the respective inventories 

- The amounts of vaccines are the number vaccine units containing a fixed amount of vaccines. 

- Ordered vaccines have no lead time and arrive fresh at the KLM facility. 

- The vaccines have a fixed shelf life  

- No shortages occur at the KLM facility. 

- The dry ice in the passive cool boxes needs to be replaced at the end of each period. 

- The dry ice can be replaced three times, thus the maximum stay of a box is four periods. 

- Vaccine units from the deep freezer used for transport are equipped with dry ice in a single 

box. 

- Shortages at the destination can only occur for the first dose. 

- Shortages must be fulfilled in the following period 

- Shortages can only occur if there is no inventory at hand. 

- All planes have a fixed capacity in terms of vaccine units. 

- The transportation time is negligible compared to the period length. 

- The total demand for all destinations must be fulfilled in the specified planning horizon 

The model will determine: 

 
- The total cost for the distribution process 

- The amount of vaccines which need to be ordered to fulfil the demand in each period 

- The amount of transport in each period to each destination 

And:  

- The inventory level of both storage facilities at KLM and at different locations in each period. 

- The amount of vaccine units transported each period 

- The amount of shortage for the first dose at each destination location in each period 

- The amount of demand for the second dose for each destination in each period 

- The amount of dry ice required each period 

- The number of flights in each period to each destination 
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3.2. Nomenclature of the MIP formulation 

 
The following notations, decision variables and input parameters are used to formulate the model as 

a MIP. 

Set notations: 

𝑙 ∈ 𝐿 l is a location belonging to the set of all locations 𝐿.  𝐿 = {0,1,… , 𝐿} 
𝑝𝑑  ∈ 𝒫𝑑 𝑝𝑑 is the product age regarding dry ice, 𝒫𝑑 is the set of product ages. 
𝑝𝑓  ∈ 𝒫𝑓  𝑝𝑓 is the product age in the deep freezers, 𝒫𝑓 is the set of product ages. 

𝒫𝑑  {0,1, . . , 𝑝𝑑,𝑚𝑎𝑥}  
𝒫𝑓  {0,1, . . , 𝑝𝑓,𝑚𝑎𝑥}  

𝑡 ∈ 𝐻  t is a time period of the planning horizon set 𝐻.  𝐻 = {1,… ,𝐻} 
ℤ+ Set of all positive real integers including 0 

 

Decision variables: 

𝐴𝑑𝑖,𝑡  PCB’s requiring dry ice in period 𝑡 

𝐵𝑑𝑖,𝑡  Vaccine units requiring dry ice in period 𝑡 

𝑑𝑡,𝑝𝑑
𝑙,1   Demand for first dose fulfilled with product age 𝑝𝑑 at destination  𝑙 in period 𝑡 

𝑑𝑡,𝑝𝑑
𝑙,2   Demand for second dose fulfilled with product age 𝑝𝑑 at destination  𝑙 in period 𝑡 

𝐷𝑡
𝑙,2  Demand for second dose at destination  𝑙 in period 𝑡 

𝑓𝑡,𝑙  Number of flights in period t to destination 𝑙  

𝐼𝑡,𝑝𝑑
𝐴   Inventory level of storage facility A in period 𝑡 with product age 𝑝𝑑 

𝐼𝑡,𝑝𝑓
𝐵   Inventory level of storage facility B in period 𝑡 with product age 𝑝𝑓 

𝐼𝑡,𝑝𝑑
𝑑𝑒𝑠𝑡,𝑙  Inventory level at destination 𝑙 in period 𝑡 with product age pd 

𝑆𝑡
𝑙  Shortage level at destination l at time period 𝑡 

𝑇𝑡
𝑙  Amount of transported Vaccine units in period 𝑡 to destination 𝑙 
𝑈𝑡   Total order amount in period 𝑡 

𝑢𝑡
𝐴 Amount of ordered PCB destined for storage A in period 𝑡 

𝑢𝑡
𝐵 Amount of ordered vaccine units (VU) destined for storage B in period 𝑡 
𝑣𝑡  Binary order value for each period 𝑡 {1,0} which is 1 if ordered, else 0. 

𝑤𝑡,𝑙,𝑝𝑑
𝐴   Transported PCB from storage A in period 𝑡 with product age pd to dest. 𝑙 

𝑤𝑡,𝑙,𝑝𝑓
𝐵   Transported Vaccine units from storage B in period 𝑡 with product age pf to dest. l 𝑙 

𝑤𝑡,𝑙,𝑝𝑑
𝐵,𝑝𝑑

  𝑤𝑡,𝑙,𝑝𝑓
𝐵  with product age pd 

𝑊𝑎𝑠𝑡𝑒𝑡
𝐴  Wastage of storage facility A at time period 𝑡 

𝑊𝑎𝑠𝑡𝑒𝑡
𝐵  Wastage of storage facility B at time period 𝑡 

𝑊𝑎𝑠𝑡𝑒𝑡,𝑙
𝐿   Wastage of for destination 𝑙 at time period 𝑡 

𝑦𝑡,𝑙  Number of flights in period t to destination 𝑙 
 

Input parameters: 

𝐴𝑑𝑖,𝑡  PCB’s requiring dry ice in period 𝑡 

𝐶𝐴  Capacity storage A 
𝐶𝑐𝑏  Capacity passive cool box 
𝐶𝑑𝑓  Capacity deep freezer 

𝐶𝐿,𝑙  Capacity storage facility at location 
𝐶𝑝𝑓  Capacity passenger flight 

𝑐𝑑𝑖  Dry ice cost 
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𝑑𝑙   Distance to destination 𝑙 

𝐷𝑡
𝑙,1  Demand for first dose at destination  𝑙 in period 𝑡 

𝐷𝐼𝑡,𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  Amount of available dry ice 
𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  Amount of dry ice used in period 𝑡 

𝐷𝐼𝐹𝐴  Dry ice factor for PCB in storage A 
𝑒  Icing cost 
𝑓𝑓𝑙𝑖𝑔ℎ𝑡,𝑙  Flight frequency to location 𝑙 

ℎ𝐴  Holding cost storage facility A 

ℎ𝑑𝑓  Holding cost storage facility B 
𝐾  Order cost 
𝑀  Very large number for the Big-M method 
𝑝𝑓,𝑚𝑎𝑥  Maximum shelf life in deep freezer 

𝑝𝑑,𝑚𝑎𝑥  Maximum shelf life regarding dry ice 

𝑄𝑡
𝑒𝑥𝑡  Maximum available supply 
𝑟𝑡  Period between two vaccine doses 
𝑟𝑒  Re-icing cost 
𝑡𝑐  Transport cost 
𝜔 Wastage cost 
𝜃 Number of deep freezers 
𝜑  Penalty cost for shortage  

 

3.3. MIP formulation of the distribution problem 

 
The model will be formulated as a mixed integer program (MIP) according to the model description. 

The total costs consists of the contribution of the different cost elements. The different cost 

elements and forthcoming boundary conditions and constraints will be described in the following.  

 

3.3.1. Order cost 

 
In one period one order can be placed. The order cost 𝐾 are fixed for each order and independent of 

the amount ordered. Whether an order is placed in a certain time period is indicated by the variable   

𝑣𝑡 :  a binary value that adopts  the value 1 if an order is placed in period t and 0 if there is no order 

in the respective period. The order cost summed over all the periods are described as: 

𝑂𝑟𝑑𝑒𝑟 𝐶𝑜𝑠𝑡(𝑂𝐶) = ∑ 𝑣𝑡 ∗ 𝐾𝑡   (1) 
 

The constraint deciding if 𝑣𝑡 is 1 or 0 in (mixed) integer programming can be accomplished by the 

following equation(2) with the big M method [33]. 

𝑈𝑡 −𝑀 ∗ 𝑣𝑡  ≤ 0,   𝑀 ≫ 𝑈𝑡 , ∀𝑡 ∈ 𝐻       (2) 
 

In this equation 𝑈𝑡  is the total amount of ordered vaccines in period t.  M is a number which is much 

greater than 𝑈𝑡. If 𝑈𝑡  > 0, 𝑣𝑡 is 1 and if  𝑈𝑡  is 0, 𝑣𝑡 is 0. The total order amount is bounded by the 

amount the supplier has available: “The available supply” 𝑄𝑡
𝑒𝑥𝑡 . This is formulated as: 

𝑈𝑡 ≤ 𝑄𝑡
𝑒𝑥𝑡, ∀𝑡 ∈ 𝐻       

 
(3) 
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3.3.2. Inventory, shortage and wastage cost 

 
Before determining the cost and taking the perishability into account the general relations between 

the different inventories are described. 

General inventory 

 
From the flow diagram in Figure 3-2 the inventory levels at KLM depend on the amount of vaccine 

units ordered from the production facility and the amount of vaccine units which leave the KLM 

facility by transport or due to wastage. The total amount of ordered vaccines (𝑈𝑡) consists of vaccine 

units which are designated to be stored in storage facility ‘A’ with passive cool boxes (PCB’s) 

containing dry ice and vaccine units which are designated to be stored in the deep freezer storage 

facility. For vaccine units stored in storage facility ‘A’, the passive cool box is filled to its fixed capacity 

(𝐶𝑐𝑏). The total amount of ordered vaccine units is divided over the designated storage facilities  and 

is given by: 

𝑈𝑡 = 𝐶𝑐𝑏 ∗ 𝑢𝑡
𝐴 + 𝑢𝑡

𝐵 (4) 

 

Where 𝑢𝑡
𝐴 are the incoming PCB filled with 𝐶𝑐𝑏 vaccine units and for storage facility ‘A‘ and 𝑢𝑡

𝐵 are 

the amount of vaccine units designated to the deep freezer storage facility in period t. 

As mentioned in the model description, the transportation of vaccine units has to be performed by 

using PCB. For facility A, the amount of PCB leaving the facility to destination 𝑙 with 𝐶𝑐𝑏 vaccine units 

is denoted as 𝑤𝑡,𝑙
𝐴 . The vaccine units leaving facility B have to be transferred to a different PCB which 

fits just one vaccine unit. The number of vaccine units leaving facility B is then determined as 𝑤𝑡,𝑙
𝐵 . 

The amount of vaccine units coming from storage facility A and B used for transport to each 

destination is: 

𝑇𝑡
𝑙 = 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙

𝐴 +𝑤𝑡,𝑙
𝐵 , ∀𝑡 ∈ 𝐻, ∀𝑙 ∈ 𝐿  (5) 

 

The total inventory in the respective storage facilities at the KLM facility is the difference between 

the ordered vaccine units and the transported vaccine units and wasted vaccine units. For storage 

facility A the inventory level at the end of period t considering PCB filled with vaccine units at the end 

of each period t is determined as equation (6) with:  

𝐼𝑡
𝐴,𝐾𝐿𝑀 = 𝐼𝑡−1

𝐴,𝐾𝐿𝑀 + 𝑢𝑡
𝐴 −∑𝑤𝑡,𝑙

𝐴

𝑙∈𝐿

−𝑊𝑎𝑠𝑡𝑒𝐴,𝑡 , ∀𝑡 ∈ 𝐻 (6) 

 

For storage facility B the vaccine units are considered as these vaccine units are directly stored in 

deep freezers. The inventory level of storage facility B at the end of period t is defined in equation (7) 

with ∀𝑡 ∈ 𝑇: 

𝐼𝑡
𝐵,𝐾𝐿𝑀 = 𝐼𝑡−1

𝐵,𝐾𝐿𝑀 + 𝑢𝑡
𝐵 −∑𝑤𝑡,𝑙

𝐵

𝑙∈𝐿

−𝑊𝑎𝑠𝑡𝑒𝐵,𝑡 , ∀𝑡 ∈ 𝐻 (7) 

 The demand for each destination consists of the demand for the first and the second dose and 

possible shortages (𝑆𝑡
𝑙) on the first dose from the previous period. The total demand (𝐷𝑡

𝑙) for 

location l in period t is: 

𝐷𝑡
𝑙 = 𝐷𝑡

𝑙,1 + 𝐷𝑡
𝑙,2 + 𝑆𝑡−1

𝑙  (8) 
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The demand for the first dose and second dose are coupled by the fulfilment of the first dose and the 

prescribed number of periods between the first and second dose: 𝑟𝑡. The coupling of the first and 

second dose is given by the following equation as: 

𝐷𝑡
𝑙,2 = 𝐷𝑡−𝑟𝑡

𝑙,1 − 𝑆𝑡−𝑟𝑡
𝑙 , 𝑡 ≤ 𝑟𝑡, ∀𝑡 ∈ 𝐻, ∀𝑙 ∈ 𝐿  (9) 

 

The inventory level  at the end of period t at location (𝐼𝑡
𝑑𝑒𝑠𝑡,𝑙) is determined by the inventory from 

the previous period, the transport amount, the demand and possible shortage for the first dose. This 

results in the following material balance for the locations as: 

𝐼𝑡
𝑑𝑒𝑠𝑡,𝑙 = 𝐼𝑡−1

𝑑𝑒𝑠𝑡,𝑙 + 𝑇𝑡
𝑙 − 𝐷𝑡

𝑙 + 𝑆𝑡
𝑙 −𝑊𝑎𝑠𝑡𝑒𝑡

𝑙  , ∀𝑡 ∈ 𝐻, ∀𝑙 ∈ 𝐿  (10) 

 

Perishability  

 
The vaccines in the model are assumed to have a fixed shelf life. The length of the shelf life is 

influenced by the type of storage in which the vaccine units are kept. Each storage facility has 

imposes a maximum shelf life for the vaccines. The maximum shelf life is denoted by 𝒫𝑑,𝑚𝑎𝑥 and 

𝒫𝑓,𝑚𝑎𝑥 for the vaccines stored in the storage facilities regarding dry ice and the deep freezer storage 

facility respectively. The amount of periods the vaccines remain in a specific storage facility is traced 

by using the product age. The product age of  stored vaccine units with dry ice is denoted as 𝑝𝑑. The 

product age of the vaccine units kept in the deep freezer storage is denoted as 𝑝𝑓.  

The administration of the product age is based on the method used in [14] where the product age 

and the period are denoted by different indices. Besides tracing the product age of the inventory at 

the KLM facility, the product age of the vaccines used for transport should be taken into account for 

the administration of the product ages at the destinations. The products arrive with product age 0 at 

the KLM facility. The product age progression of the vaccines stored in storage facility A is 

determined as: 

  

𝐼𝑡,0
𝐴 = 𝑢𝑡

𝐴 −∑𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿

, 𝑓𝑜𝑟 𝑝𝑑 = 0 (12) 

𝐼𝑡,𝑝𝑑
𝐴 = 𝐼𝑡−1,𝑝𝑑−1

𝐴 −∑𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿

, 𝑓𝑜𝑟 1 < 𝑝𝑑 < 𝑝𝑑,𝑚𝑎𝑥 (13) 

  

𝐼𝑡,𝑝𝑑
𝐴 = 𝐼𝑡−1,𝑝𝑑−1

𝐴 − ∑ 𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿 −𝑊𝑎𝑠𝑡𝑒𝐴,𝑡 = 0, 𝑓𝑜𝑟 𝑝𝑑 = 𝑝𝑑,𝑚𝑎𝑥,  (14) 

  

𝐼𝑡
𝐴,𝐾𝐿𝑀 = ∑ 𝐼𝑡,𝑝𝑑

𝐴

𝑝𝑑∈𝓟𝒅

,                                                      (15) 

 

The vaccines that reach the expiration age are still included, since these will exit the model as the 

waste in this same period.  Summing the product age specific inventories over the product ages 

results in the general inventory balance. 

The vaccines stored in storage facility B have a considerably longer shelf life due to the constant 

temperature of the deep freezers. The product age progression of the vaccines stored in the deep 

freezers is similar to the product age progression of the vaccines in storage facility A. The product age 

progression of vaccines in storage facility B is defined as equations (17-19) with ∀𝑡 ∈ 𝐻 
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𝐼𝑡,𝑝𝑓
𝐵 = 𝑢𝑡

𝐵 −∑ (𝑤𝑡,𝑙,𝑝𝑓
𝐵 )𝑙∈𝐿                   , 𝑓𝑜𝑟 𝑝𝑓 = 0,   

(16) 

𝐼𝑡,𝑝𝑓
𝐵 = 𝐼𝑡−1,𝑝𝑓−1

𝐵 − ∑ (𝑤𝑡,𝑙,𝑝𝑓
𝐵 )𝑙∈𝐿                                                𝑓𝑜𝑟 0 < 𝑝𝑓 < 𝑝𝑓,𝑚𝑎𝑥,  (17) 

  

𝐼𝑡,𝑝𝑓
𝐵 = 𝐼𝑡−1,𝑝𝑓−1

𝐵 − ∑ (𝑤𝑡,𝑙,𝑝𝑓
𝐵 )𝑙∈𝐿 −𝑊𝑎𝑠𝑡𝑒𝐵,𝑡 ,                                    𝑓𝑜𝑟 𝑝𝑓 = 𝑝𝑓,𝑚𝑎𝑥   (18) 

  

𝐼𝑡
𝐵,𝐾𝐿𝑀 =∑ 𝐼𝑡,𝑝𝑑𝑓

𝐵

𝑝𝑓∈𝒫𝑓

                                                                                      ∀𝑡 ∈ 𝐻  (19) 

 

When vaccines stored in the deep freezer are issued for transport, the vaccines need dry ice for the 

transport. To relate the product age administration of the values of 𝑝𝑑𝑓 and 𝑝𝑑. The vaccine units 

which leave the deep freezer younger than (𝑝𝑓,𝑚𝑎𝑥 − 𝑝𝑑,𝑚𝑎𝑥 ) are assumed to be fresh in terms of 

product age 𝑝𝑑. The following relations are proposed where 𝑝𝑓 relates to 𝑝𝑑 with: 

𝑝𝑑 = 0,                                                    𝑓𝑜𝑟 𝑝𝑓 ≤ 𝑝𝑓,𝑚𝑎𝑥 − 𝑝𝑑,𝑚𝑎𝑥  (20) 

𝑝𝑑 = 𝑝𝑑,𝑚𝑎𝑥 − (𝑝𝑓,𝑚𝑎𝑥 − 𝑝𝑓),        𝑓𝑜𝑟 𝑝𝑓,𝑚𝑎𝑥 − 𝑝𝑑,𝑚𝑎𝑥  < 𝑝𝑓 ≤ 𝑝𝑓,𝑚𝑎𝑥  (21) 

 

The inventory at the locations takes the product ages of the incoming vaccines from transport and 

the inventory from the previous period into account. The vaccines at the locations are stored in 

similar conditions to the inventory of storage facility A, defining the product age as 𝑝𝑑. Except for the 

FIFO assumption, the demand fulfilment is independent from the product age. Considering that the 

inventory is age specific and the demand is not, variables are introduced for the age specific demand 

fulfilment for the first and second dose as respectively 𝑑𝑡,𝑝𝑑
𝑙,1  and 𝑑𝑡,𝑝𝑑

𝑙,2 . The following expressions are 

used to translate the general inventory to the age specific inventory.  

For the demand of the first dose and second dose it holds that the amounts are fulfilled with age 

specific products as: 

𝐷𝑡
𝑙,1 − 𝑆𝑡

𝑙 = ∑ 𝑑𝑡,𝑝𝑑
𝑙,1

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑𝑖=0

,                                                                                     (22) 

𝐷𝑡
𝑙,2 = ∑ 𝑑𝑡,𝑝𝑑

𝑙,2

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑𝑖=0

,                                                                                     (23) 

 

The formulation relating the age specific demand fulfilment of the first dose and the shortage allows 

for situations where there is inventory at hand and shortage can occur. To impose that shortages can 

only occur if there is no inventory, a binary decision variable is introduced as 𝑞𝑡 and  the following 

equations are implemented following the big M method [33]: 

𝑆𝑡
𝑙 − 𝑞𝑡 ∗ 𝑀 ≤ 0,                                                                                     (24) 

∑ 𝐼𝑡,𝑝𝑑
𝑙

𝑝𝑑𝑖,𝑚𝑎𝑥

𝑝𝑑𝑖=0

− (1 − 𝑞𝑡) ∗ 𝑀 ≤ 0                                                                                     (25) 

 

Using the relations for the age specific demand fulfilment in the age specific inventory, the age 

specific inventories at the end of each period for all locations are written as: 

𝐼𝑡,𝑝𝑑
𝑙 = 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑

𝐴 +𝑤𝑡,𝑙,𝑝𝑑
𝐵 − 𝑑𝑡,𝑝𝑑

𝑙,1 − 𝑑𝑡,𝑝𝑑
𝑙,2  ,                                         𝑓𝑜𝑟 𝑝𝑑𝑖 = 0    (26) 

𝐼𝑡,𝑝𝑑
𝑙 = 𝐼𝑡−1,𝑝𝑑−1

𝑙 + 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴 +𝑤𝑡,𝑙,𝑝𝑑

𝐵 − 𝑑𝑡,𝑝𝑑
𝑙,1 − 𝑑𝑡,𝑝𝑑

𝑙,2  ,        𝑓𝑜𝑟 0 < 𝑝𝑑 < 𝑝𝑑.𝑚𝑎𝑥    (27) 
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𝐼𝑡,𝑝𝑑
𝑙 = 𝐼𝑡−1,𝑝𝑑−1

𝑙 + 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴 +𝑤𝑡,𝑙,𝑝𝑑

𝐵 − 𝑑𝑡,𝑝𝑑
𝑙,1 − 𝑑𝑡,𝑝𝑑

𝑙,2 −𝑊𝑎𝑠𝑡𝑒𝑡
𝑙 = 0, 𝑓𝑜𝑟 𝑝𝑑 = 𝑝𝑑.𝑚𝑎𝑥    (28) 

  

𝐼𝑡
𝑑𝑒𝑠𝑡,𝑙 = ∑ 𝐼𝑡,𝑝𝑑

𝑙

𝑝𝑑𝑖,𝑚𝑎𝑥

𝑝𝑑𝑖=0

,                                                                                     (29) 

 

Capacity constraints 

 
The storage facilities have a certain capacity which cannot be exceeded. For storage facility ‘A’ and 

the storage facilities of the destinations the capacity depend on the available space. The capacity of 

storage facility B depends on the amount of acquired deep freezers. The capacity constraints are 

given as: 

𝐼𝑡
𝐴,𝐾𝐿𝑀 ≤ 𝐶𝐴 (30) 

𝐼𝑡
𝐵,𝐾𝐿𝑀 ≤ 𝜃 ∗ 𝐶𝑑𝑓 (31) 

𝐼𝑡
𝑑𝑒𝑠𝑡,𝑙 ≤ 𝐶𝐿,𝑙  (32) 

 

Determining the cost of inventory ,shortage and wastage 

 
The considered cost for inventory are applied to the inventory at the KLM facility. For each period a 

unit holding cost is incurred depending on the type of storage facility. The unit holding cost for 

storage facility A are ℎ𝐴 and for the deep freezer storage facility are ℎ𝑑𝑓. The total inventory cost for 

the planning period are than denoted as: 

∑(ℎ𝐴 ∗ 𝐼𝑡
𝐴,𝐾𝐿𝑀 + ℎ𝑑𝑓 ∗ 𝐼𝑡

𝐵,𝐾𝐿𝑀) = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡

𝑡∈𝐻

                                             (33) 

 

The demand for the first dose which cannot be fulfilled, i.e. the shortage, at each location for each 

period, has a unit penalty cost 𝜑. The total cost for shortage of all locations over the planning horizon 

are determined as: 

𝜑 ∗∑∑𝑆𝑡
𝑙

𝑙∈𝐿𝑡∈𝐻

 = 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡                                                     (34) 

 

The vaccines which have reached the maximum shelf life and are not used to fulfil demand leave the 

model as waste. For each vaccine unit leaving the system as waste a waste cost 𝜔 is incurred. The 

total waste cost are: 

𝜔 ∗∑(𝐶𝑐𝑏 ∗ 𝑊𝑎𝑠𝑡𝑒𝐴.𝑡 +𝑊𝑎𝑠𝑡𝑒𝐵.𝑡 +∑𝑊𝑎𝑠𝑡𝑒𝑡,𝑙
𝑙∈𝐿𝑡∈𝐻

) =  𝑊𝑎𝑠𝑡𝑒 𝑐𝑜𝑠𝑡                             (35) 

 

3.3.3. Dry ice and handling cost 

 
Dry ice is required for the transport and storage of vaccines. The required amount of dry ice is taken 

into account for the inventory in storage facility A and the amount of transported vaccine units from 

the deep freezer storage facility B ( 𝑤𝑡,𝑙,𝑝𝑑
𝐵  ). Handling operations are considered to replace the dry 

ice for the passive cool box of storage facility A and to transfer the vaccine units from the deep 
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freezer to a passive cool box equipped with dry ice. The respective handling operations are referred 

to as ‘re-icing’ and ‘icing’. The passive cool box stored in storage facility A require a different amount 

of dry ice compared to the passive cool box used for transport from the deep freezer storage facility. 

A dry ice factor (𝐷𝐼𝐹𝐴) for the PCB from storage facility A is used, where it assumed that this PCB 

requires less dry ice than a PCB issued with a single vaccine unit. The number for the dry ice factor is  

a parameter setting.  The required amount of dry ice for the inventory at storage facility A and the 

transport from the deep freezer storage facility are denoted as  𝐴𝑑𝑖,𝑡 and 𝐵𝑑𝑖,𝑡. The following 

expressions determine the required amount of dry ice and an imposed boundary which limits the 

available amount of dry ice 

𝐴𝑑𝑖,𝑡 = ∑ (𝐷𝐼𝐹𝐴 ∗ 𝐼𝑡,𝑝𝑑
𝐴 )  

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑=0

 

 

(36) 

𝐵𝑑𝑖,𝑡 = ∑ 𝑤𝑡,𝑙,𝑝𝑑
𝐵

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑=0

 

 

(37) 

𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐴𝑑𝑖,𝑡 + 𝐵𝑑𝑖,𝑡 

 
(38) 

𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≤ 𝐷𝐼𝑡,𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (39) 
 

A unit cost 𝑐𝑑𝑖 is incurred for the required amount of dry ice. The handling cost incur a unit cost of 𝑟𝑒 

and 𝑒 for the re-icing and icing operations respectively. The cost contribution of the dry ice cost and 

the handling cost is determined by the following expressions: 

∑𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
𝑡∈𝐻

∗ 𝑐𝑑𝑖 = 𝐷𝑟𝑦 𝑖𝑐𝑒 𝑐𝑜𝑠𝑡 (40) 

∑(𝐼𝑡,𝑝𝑑
𝐴 ∗ 𝑟𝑒 + 𝐵𝑑𝑖,𝑡 ∗ 𝑒)

𝑡∈𝐻

= 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (41) 

 

3.3.4. Transport cost 

 
The transported amount of vaccines to a location couples the inventories at KLM to the inventory at 

the respective location. The transport amount consists of vaccines which are available at the KLM 

facility including the ordered amount. The amount which can be transported to a location in period t 

depends on the number of assigned flights to a destination in period t (𝑦𝑡,𝑙) with a flight capacity 

𝐶𝑝𝑓. The number of assigned flights is bounded by the frequency of flights to a location in a period, 

referred to as the flight frequency  (𝑓𝑓𝑙𝑖𝑔ℎ𝑡,𝑙).  The model determines the number of assigned flights 

and with this determines the maximum transport capacity to the respective destination. The 

following equations show the transport amount and the implied boundaries: 

𝑇𝑡,𝑙 = ∑ 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑝𝑑∈𝑃𝑑

+𝑤𝑡,𝑙,𝑝𝑑
𝐵  (42) 

0 ≤ 𝑦𝑡,𝑙 ≤ 𝑓𝑓𝑙𝑖𝑔ℎ𝑡,𝑙  , ∀𝑡 ∈ 𝐻  and ∀𝑙 ∈ 𝐿    (43) 

 

𝑇𝑡,𝑙 ≤ 𝑦𝑡,𝑙 ∗ 𝐶𝑝𝑓 (44) 
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The contribution of the transport cost to the total cost depends on the number of assigned flights to 

a location, the distance of the location 𝑑𝑙  and the cost of transport per km of the flight flown 𝑡𝑐. The 

total transport costs are defined as: 

∑∑𝑦𝑡,𝑙 ∗ 𝑑𝑙 ∗ 𝑡𝑐

𝑙𝑡

= 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑠𝑡                                                                            (45) 

 
 

3.3.5. Total cost of the distribution process 

 
With all components of the cost function defined, the cost function is determined by adding the cost 

equations (1),(33), (34) ,(35),(40),(41) and (45) as: 

Total cost =  ∑𝑣𝑡 ∗ 𝐾

𝑡∈𝐻

⏞      
𝑂𝑟𝑑𝑒𝑟 𝑐𝑜𝑠𝑡

+ ∑(ℎ𝐴 ∗ 𝐼𝑡
𝐴,𝐾𝐿𝑀 + ℎ𝑑𝑓 ∗ 𝐼𝑡

𝐵,𝐾𝐿𝑀)

𝑡∈𝐻

⏞                    
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡

+ 𝜑 ∗∑∑𝑆𝑡
𝑙

𝑙∈𝐿𝑡∈𝐻

⏞        
𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

+𝜔 ∗∑(𝐶𝑐𝑏 ∗𝑊𝑎𝑠𝑡𝑒𝐴.𝑡 +𝑊𝑎𝑠𝑡𝑒𝐵.𝑡 +∑𝑊𝑎𝑠𝑡𝑒𝑡,𝑙
𝑙∈𝐿𝑡∈𝐻

)
⏞                                  

𝑊𝑎𝑠𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

+  ∑𝐷𝐼𝑡,𝑢𝑠𝑒𝑑
𝑡∈𝐻

∗ 𝑐𝑑𝑖
⏞          

𝐷𝑟𝑦 𝑖𝑐𝑒 𝑐𝑜𝑠𝑡

+∑(𝐼𝑡,𝑝𝑑
𝐴 ∗ 𝑟𝑒 + 𝐵𝑑𝑖,𝑡 ∗ 𝑒)

𝑡∈𝐻

⏞                
𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

+ ∑∑𝑦𝑡,𝑙 ∗ 𝑑𝑙 ∗ 𝑡𝑐

𝑙∈𝐿𝑡∈𝐻

⏞            
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑠𝑡

 

 
 

(46) 

The set of formulated constraints, boundary conditions and cost components leads to a model which 

can be implemented in a solution method. In the following chapter different suitable solution 

methods will be discussed.  
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4. Solution methods for the distribution process  
 

In this section we will discuss three solution methods to solve the distribution of the vaccines. First a 

commercial MIP solver will be introduced shortly, after this a genetic algorithm will be discussed 

intensively and subsequently a rolling horizon approach will be presented.  

The vaccine distribution problem is formulated as a mixed integer problem (MIP) in the previous 
chapter. The solution to the model resides in a (multi-dimensional) space which is bounded by 
specified constraints. The space which satisfies all constraints is referred to as the ‘feasible region’ of 
the model. This means that any combination of decision variables allowed by the constraints can be a 
solution to the model. Compared to problems without the integrality requirement mixed integer 
problems are in general difficult to solve. An approach for solving mixed integer problems could be 
by lifting the integrality requirement and rounding the values off to the nearest integer value. Lifting 
the integrality of the decision variables is referred to as ‘relaxation’ of the MIP model. Although 
rounding off the solution might provide reasonable solutions, it is not certain it provides the optimal 
solution[13].  
 

4.1. Exact solution approach with a commercial solver  
 

Often used solution methods for mixed integer programming models are “branch and bound” and 

“cutting planes” [34].  With the technological advancement and computational power of the current 

computers, moderate and larger sized models are solved using software based on these methods. In 

this thesis a commercially available solver is used to provide solutions for the formulated mixed 

integer programming model. In this thesis Gurobi is used, this an advanced commercial solver for 

mathematical programming that is applied for solving a wide variety of operations research 

problems. The Gurobi solver is generally considered to provide accurate results and is able to 

calculate and prove the optimal solutions. The drawback of this instrument is that it is computational 

intensive for large systems. Nevertheless the results with this solver will be used as a reference for 

comparing results in further work with alternative solution methods.  

It is not publicly known how the Gurobi solver exactly works. What ís public is that mixed integer 

programming problems are solved  by using a combination of solution methods. The main solution 

methods are Branch and Bound, cutting planes and a heuristic method, specifically of the heuristic 

part no background is available since the details are classified. For details on the branch and bound 

and cutting planes method see references [34].  

 

4.2. Genetic algorithm approach 
 

Genetic algorithm is an evolutionary based search method [23]. The working principle of the genetic 

algorithm is inspired by Darwin’s principles of the biological evolution process: ‘The survival of the 

fittest’. The algorithm follows  Darwin’s principles of evolution by evolving a population of 

chromosomes in a sequence of generations heading for improved solutions. In the Genetic Algorithm 

each chromosome, describes a unique solution of the problem. The chromosomes consist of a 

sequence of genes  that represent the values of the variables of the problem at hand.  The 

chromosomes are changed and result offspring by so called genetic operators. The genetic operators 
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that can induce  changes in chromosomes are recombination and mutation. Finally a selection 

process creates the population that constitutes the next generation.   

The algorithm runs as follows: The algorithm starts with creation of an initial population. Most often 

the initial population is generated randomly to spread the chromosomes over the search space in 

which the optimal solution resides [35]. After forming the initial population, parents are selected 

from the population to generate offspring. The parents are selected based on the ‘fitness’ of the 

respective chromosome. The next step is mutation, where individual chromosomes from the 

available population are selected to change a number of genes. After recombination and mutation, 

selection occurs. Depending on the chosen selection strategy, the individuals that are part of the next 

generation are selected.  

The evolution process is continued until a stopping criterion is met e.g. until the imposed number of 

generations is achieved or a quality criterium is met. The schematic overview of the functioning of 

the genetic algorithm is presented in the following figure. 

 

 

In the following section the application of the genetic algorithm to the distribution problem at hand 

will be presented. First the chromosome representation is presented, then the genetic operators are 

introduced. 

4.2.1. The chromosome representation of the problem  

 
The genes of the chromosome describe an encoded unique solution to the problem. Besides 

containing a unique solution, a requirement is that decoding the fitness of the chromosome should 

be retrieved in reasonable time [30]. Therefor in the chosen chromosome representation explicit 

variables are chosen as the genes 

 In this case the genes that constitute the chromosome are chosen as the values for the order 

amount  (𝑢𝑡 ) and the transport amount to each destination (𝑇𝑡
𝑙). Specifically these two type of genes 

are chosen since  the order amount and transport amount are the elements constitute directly  the 

solution of the problem.  

Figure 4-1: Schematic overview of the genetic algorithm 
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The problem is multi-period thus the length of the chromosome is set to the planning horizon. This 

results in a chromosome with one row describing the order amount and L rows that describe the 

transport amount to the L destinations. The number of columns equals the dimension of the planning 

horizon (H). The chromosome representation is depicted in the following figure: 

 

 

 

 

 

Figure 4-2:  Chromosome representation with the periodic order amount (𝑢𝑡) and transport amount to each destination (𝑇𝑡
𝑙 )  

over the planning horizon (H). The population consist of N of the chromosomes. 

 

4.2.2. Decreasing the search space: Bounds on the genes 
 

Before discussing the genetic operators, the bounds for the genes will be determined. Besides aiming 

for feasible solutions, the goal of the bounds is to aid the genetic algorithm in exploring the search 

space. Defining the bounds should be done carefully, since over-defining the bounds will interfere 

and might hamper with the search ability of the genetic algorithm [F. Schulte, “Personal 

communication”, February 2022].  

An addition to the upper bounds 

 
While complying with the constraints specified for the MIP solver does result in feasible solutions, 

the search space can be decreased somewhat. The optimal solution from the MIP solver never 

contains waste for neither the destination nor the KLM storage facility. This fits with the intuitive 

desire  of ”not ordering more than required”. The search space can be decreased by imposing 

conditional upper bounds for both the order amount and the transport amount. The addition to the 

upper bound for the transport amount to a destination  is determined as follows: the sum of the 

demand over a period equal to the shelf life (transporting more would result waste) corrected for the  

inventory at hand at that respective destination. The addition to the upper bound for the order 

amount follows the same line of argumentation, where it is the sum over all destinations of the 

previous introduced transport upper bounds minus the inventory at hand at the KLM storage facility.  

It should be noted that it is not to say that there is no occurrence of wastage at the KLM facility in 

solutions found by the GA. Wastage at KLM can occur due to a mismatch of the order amount and 

the transport amounts. 

In summary , from the model formulation and the previous section,  the bounds for the genes are: 

• Bounds on Transport (𝑻𝒕
𝒍) 

• Upper bound is the minimum value of: 

• Flight capacity 

• Available products at KLM including the ordered amount 

• Destination specific demand over the time span of the product age minus the 

age specific inventory at the destination 

𝑡 = 0 1 2 3 ⋯ 𝐻 

𝑢𝑡       

𝑇𝑡
1  gen     

⋮       

𝑇𝑡
𝐿       

chromosome 
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• Storage capacity at the respective destination 

• Lower Bound: 

• Shortages from the previous period and the demand for the second dose which 

cannot be fulfilled from the inventory at the destination 

• Bounds on Order amount (𝒖𝒕) 

• Upper bound is the minimum value of: 

• Available supply from supplier (𝑄𝑡
𝑒𝑥𝑡) 

• Sum of demands over all destinations over  the time span of the product age 

minus the age specific inventory at the destinations minus the inventory at KLM. 

• Lower bound: 

• Shortages from the previous period and the demand for the second dose for all 

destinations, which cannot be fulfilled from the inventory at KLM 

 

4.2.3. Creating the initial population of chromosomes 
 

The initial population is spread as much as possible over the search space.  During the formation of 

the initial population chromosomes are randomly generated while complying with the gene specific 

upper and lower bounds. After a chromosome is generated, the cost (and thus the “fitness”) of the 

respective chromosome is determined. 

For the initial population the search can be guided by specifying a minimal order amount in the case 

an order occurs. The idea behind the minimum order quantity is to decrease number of order 

occurrences. 

The minimal order amount can be chosen as the ratio between the ordering cost and the inventory 

cost per product formulated as: 

 
𝑀𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑎𝑚𝑜𝑢𝑛𝑡 =

𝐾

ℎ𝐴
 (47) 

 

4.2.4. How chromosomes change: Genetic operators 

 

Recombination 
 

The idea of recombination is to exploit the search space. Recombination occurs by recombining the 

chromosomes  of two parent chromosomes which result in offspring. In this thesis parents are 

selected by roulette wheel selection. Roulette wheel selection is a selection method where parents 

with a better fitness value have a higher chance to be selected for recombination. The probability for 

a chromosome to be selected as parents is: 

 
𝑃 (𝐶ℎ𝑟𝑜𝑚𝑖) =

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐶ℎ𝑟𝑜𝑚𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐶ℎ𝑟𝑜𝑚𝑘𝑘∈𝑁𝑝𝑜𝑝

 (48) 

 

When the parents are selected, the so called cross-over rate determines if the parents are allowed to 

recombine. The cross-over rate is a constant parameter typically in the range of [0.6-1]. This 

parameter is compared with a random number drawn from the [0,1] interval. If this random number 
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is less than the cross-over rate, the parents are allowed to recombine. If the parents are not allowed 

to recombine, the parents will take themselves the place of the offspring in the population.  

The three respective recombination strategies that will be evaluated in  this thesis are whole 

arithmetic cross-over, single point cross-over and multipoint cross-over.  Each of these 

recombination methods is separately evaluated, to come to a best choice in the end. 

Each recombination strategy is applied independent to  each row of the chromosome, see Figures 4-

3 and 4-4. The reason to apply the recombination row-wise is to allow the model to break inter 

dependencies of the genes in one period. The difference in recombination strategies is as follows: 

Whole arithmetic cross-over 

Whole arithmetic cross-over is a recombination strategy often used in genetic algorithms which are 

coded using the real values of the variables. This recombination works as follows. Two blank 

offspring chromosomes are created and the values of the genes are interpolated between the  

corresponding gene values of both parents. For each set of rows the genes are combined using a 

number 𝑦𝑟𝑜𝑤,𝑖 that is randomly drawn from the interval [0,1]. The value of 𝑦𝑟𝑜𝑤,𝑖 determines the 

contribution of both genes parents to each offspring as follows: 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔𝑒𝑛𝑒,𝑖,𝑡
1 = 𝑦𝑟𝑜𝑤,𝑖 ∗ 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡

1 + (1 − 𝑦𝑟𝑜𝑤,𝑖) ∗ 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡
2  

 
(49) 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔𝑒𝑛𝑒,𝑖,𝑡
2 = 𝑦𝑟𝑜𝑤,𝑖 ∗ 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡

2 + (1 − 𝑦𝑟𝑜𝑤,𝑖) ∗ 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡
1  

 

(50) 

 

 

Figure 4-4: Multi point cross-over with 2 cut points per row 

Figure 4-3: single point cross-over, for each row a cut point is chosen 
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Where 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡
1  and 𝑃𝑔𝑒𝑛𝑒,𝑖,𝑡

2  are the gene values  from the chromosome of parent 1 and 2 

respectively. 

Single point and multi point cross-over 

Where the arithmetic cross-over calculates new values of the genes for each chromosome, with 

single point and multipoint cross-over the values of the genes remain intact. Mostly: If the bounds do 

not permit the generated value, the value is adapted to the bounds. For single point cross-over one 

cut point (𝑐𝑟𝑜𝑤,𝑖 ) is randomly chosen from the length of the planning horizon. Single point cross-over 

generates two offspring. For multipoint cross-over multiple cut points are chosen.  The number of 

offspring generated with the multipoint cross-over depends on the number of cut points 

as: (2( #cutpoints+1) − 2)  The schematic overview of the two different cross-over strategies are 

depicted in Figures 4-3 and 4-4. 

After the recombination has provided the offspring, each generated offspring is evaluated. The 

evaluation provides corrects the chromosome if a certain bound is exceeded If a gene exceeds the 

upper bound, the value of the specific gene will be changed to the upper bound, in the case the value 

of a gene is less than the lower bound, the value will be set to the lower bound. Subsequently the 

cost for the chromosomes is evaluated. 

 

Mutation 

 
Where with recombination the chosen values for the genes mostly remain the same, unless bounds 

are exceeded, the goal for mutation is to create a change in a chromosome. Each gene has a 

probability 𝑃𝑚𝑢𝑡 to change its value. If a gene is subject to mutation. The new value for the 

respective gene is randomly drawn from the gene specific uniform interval [LB,UB] 

The intermediate population: adding elitist(s) 
 

After applying the genetic operators, the intermediate population consists of the resulting offspring. 

This intermediate population is now extended with a prescribed number of best performing 

chromosomes from the parent population. This strategy is called elitism. The elitism variable 

determines how many of the best performing solutions are moved to the next generation.  

 

Selection of chromosomes for the next population 
 

The next step is a selection process, applied to the intermediate population in order to reduce 

population to the prescribed dimension. This is the parent population of the next generation. The 

selection process consists of several selection criteria which will be described in the following. 

Uniqueness  

The following step in the selection process is to discard duplicate chromosomes, such that only 

unique chromosomes remain.  

Diversity  

An often mentioned disadvantage of the GA is its possible premature convergence to a local 

optimum This can partly be overcome by not only selecting the best found solution thus far, but also 
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allow for chromosomes which perform less to be selected. This way a certain level of diversity is 

introduced. The total cost relate to the values of the genes in the chromosome. The values of the 

genes differ from chromosome to chromosome (phenotypic diversity) [35]. Consequently in the first 

implementation the differences in total cost are used as a measure for a diverse selection. 

(Neglecting for the moment that the chromosome structure does not uniquely relate to the total 

cost.). The available number of spots for “less” performing chromosomes is a parameter setting in 

this implementation of the genetic algorithm.  

 

4.2.5. Measuring Performance  
 

How does the GA perform? Heuristic methods are often applied to problems which are hard to solve 

for commercial solvers. The idea of applying a heuristic method is to approximate the optimal 

solutions. Two important quality factors that have to be considered are: 

• the gap to the exact solution approach  

• How fast does the GA reach the solution.  

 

Gap to exact solution 

Gaps from literature show that a reasonable gap to the optimal solution is between 0 and 20 percent 

[26,30]. 

 

Convergence rate 

A performance criterium is how fast the optimal solution is approached per generation step.  

A first pragmatic impression of the convergence rate is obtained visually from the graph of the cost 

versus the generation. In specific how rapid do the cost decrease, especially in the first generations, 

and when does the algorithm reach a plateau.  

More quantitative measures can be useful. An intuitive measure to the visually obtained one is the 

ratio of  the step in the cost over the previous cost:  

𝐶𝑜𝑛𝑣. 𝑟𝑎𝑡𝑒1 =
𝐶𝑜𝑠𝑡𝑖−1 − 𝐶𝑜𝑠𝑡𝑖

𝐶𝑜𝑠𝑡𝑖−1
 

 
(51) 

A measure that results a constant value when the relative improvement of steps is constant would be 

preferred, in principle. This can be achieved by using (an approximation) of the exact solution  and 

take the ratio of the step in the cost over the distance of the cost of the previous step to the exact 

solution. This relative convergence considers the optimal solution, the solution of the current 

generation and the solution from the previous generation. The optimal solution from the commercial 

solver is chosen as a reference to give a better insight in the progression to a better solution of the 

genetic algorithm. Whereas taking the zero line as reference for the relative convergence would 

result in a relative convergence rate which does not truly reflect the convergence. In formula: 

𝐶𝑜𝑛𝑣. 𝑟𝑎𝑡𝑒2 =
𝐶𝑜𝑠𝑡𝑖−1 − 𝐶𝑜𝑠𝑡𝑖

𝐶𝑜𝑠𝑡𝑖−1 − 𝐶𝑜𝑠𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙
 

 

(52) 
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This method will be used in this thesis. (By the way: Care should be taken that this value can explode 

when the value of the cost are close to the optimal solution.)  

 

Computation time 

Computing time is an important factor, especially in the case of the larger problems we typically deal 

with. The measure is straightforward: How much time is required to evaluate a certain  number of 

generations? Or to achieve a solution with a specified percentage of accuracy. 

 

4.3. Rolling horizon method 

 
Rolling horizon is a method which solves the model by dividing the considered planning horizon into 

smaller time windows. The aim is to decrease the computation time by consecutively solving the 

reduced planning horizons for the model until the total planning horizon is reached. The time 

windows are consecutively solved, where the solution of the previous time window is the input for 

the following time window.  

In this thesis three approaches of the rolling horizon method will be discussed. All three approaches 

share the decomposition of the total planning horizon. The differences between the approaches are 

on how the decomposed time windows are solved.  The three approaches are: the straight forward 

method where the time windows are solved for the given decomposition size, the second method 

considers relaxed future periods in solving the decomposed problem. In this method in each iteration 

an additional time period is added, but for this time period the integrality constraint is relieved. The 

integrality for this time period is imposed in the next iteration of this method. The third method is an 

extended version of the second method. The difference is the addition of overlapping of the 

decomposed time windows. Examples of the approaches are depicted in the following figure: 

 

 

 

 

 

 

 

 

The variables involved for solving the rolling horizon approaches are the number of time periods 

which are optimized with the integrality constraints, the extension of this time window for the 

number of periods which are relaxed and the shift amount for overlap.  

The time window which is optimized with integrality is denoted by η, the extended time window 

which includes the relaxed periods is denoted by μ and the shift is simply denoted by ‘step’.  

Figure 4-5: Rolling horizon approaches: from left to right: Straight forward RH approach, considering future periods in the RH approach and 
overlapping the consecutive solved time periods. 
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4.4. Robust optimization 

 
The approach to study the influence of supply uncertainty on the distribution process is robust 

optimization, a technique where detailed information of the probability distribution of the 

uncertainty is not needed. The goal of robust optimization is to find an optimal solution which is 

feasible for all instances of the uncertain parameters. 

4.4.1. Formalism of robust optimization: 
 

The generic optimization model consists of a cost function subject to a set of constraints and 

boundary conditions. The model can be formulated as:  

Min 𝐜’𝐱 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑨𝒙 ≤ 𝒃 

For robust optimization the uncertainty resides in the matrix A that consists of elements 𝑎𝑖𝑗. 

The goal of robust optimization is to find a solution which is feasible for all values of the uncertain 

parameters. Although the distribution of the uncertainty is unknown, with robust optimization 

uncertainty can be taken into account. This is accomplished by specifying an interval in which the 

uncertainty resides. The interval of the uncertainty is given as: [�̅�𝑖𝑗 − �̂�𝑖𝑗 , �̅�𝑖𝑗 + �̂�𝑖𝑗] in which the 

uncertain parameter 𝑎𝑖𝑗  resides. �̅�𝑖𝑗 is used to denote the nominal value and �̂�𝑖𝑗  is the ‘half length’ 

value.  

Less conservative approaches [18] and [21] use the uncertainty interval to determine the scaled 

deviation of the uncertain parameter. The value of the scaled interval lies in the interval of [-1,1] 

where the scaled deviation is determined as: 

𝑧𝑖𝑗 =
𝑎𝑖𝑗 − �̅�𝑖𝑗

�̂�𝑖𝑗
 (53) 

 

By imposing a boundary condition on the scaled deviation conservative solutions can be avoided. 

With the imposed boundary conditions the number of equations to formulate the model increases.  

In this work the polyhedral uncertainty set as described by Bertsimas et al. [21] is used. The method 

of Bertsimas remains linear when imposing the boundary conditions for the scaled deviation as 

opposed to methods which use ellipsoidal uncertainty sets. The generic application of the polyhedral 

uncertainty set works as follows: 

For each row of the product 𝑨𝒙 that contains uncertainty it should hold that: 

∑�̅�𝑖𝑗𝑥𝑖𝑗 +∑𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗
𝑗

≤ 𝑏𝑖
𝑗

, ∀𝑖 (54) 

The idea of robust optimization is to maximize the uncertainty term ∑ 𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗𝑗  under the conditions 

formulated by Bertsimas et al [21] in equation (55).  

∑�̅�𝑖𝑗𝑥𝑖𝑗 +max (∑𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗)

𝑗

≤ 𝑏𝑖
𝑗

,∑𝑧𝑖𝑗 ≤ Γ𝑖 , ∀𝑖 

𝑗

 (55) 
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The total allowed amount of scaled deviations of all uncertain parameters for each row i is limited by 

the parameter Γ𝑖, this Γ𝑖  is called the ‘budget of uncertainty’. 

This constraint cannot be solved directly due to the maximization term. Using the principles of 

duality theory, proven by Bertsimas et al. [21] the maximization term can be converted into a 

minimization term. The resulting maximization problem summarizing equation 55 and the interval of 

𝑧𝑖𝑗  leads to:  

max (∑𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗)

𝑗

≤ 𝑏𝑖 (56) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑𝑧𝑖𝑗 ≤ Γ𝑖 , ∀𝑖 

𝑗

 

 

(57) 

|𝑧𝑖𝑗| ≤ 1 

 
 

(58) 

The dual of this auxiliary problem results in a minimization problem: 

𝑚𝑖𝑛∑𝑝𝑖𝑗 + 𝑞𝑖 ∗ Γ𝑖  

𝑗

 

 

(59) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑞𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗|𝑥𝑖| (60) 

𝑝𝑖𝑗 ≥ 0 (61) 

𝑞𝑖 ≥ 0 (62) 
 

The implementation of the dual formulation is implemented in the original uncertain equation (55) 

and results in the robust counter part of the model:  

∑�̅�𝑖𝑗𝑥𝑖𝑗 + 𝑞𝑖 ∗ Γ𝑖 +∑𝑝𝑖𝑗  

𝑗

≤ 𝑏𝑖
𝑗

, ∀𝑖 

 

(63) 

𝑞𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑖  (64) 

−𝑦 ≤ 𝑥 ≤ 𝑦 (65) 
𝑞𝑖 ≥ 0, 𝑝𝑖𝑗 ≥ 0, 𝑦 ≥ 0 (66) 

 

The 𝑞𝑖 ∗ Γ𝑖 + ∑ 𝑝𝑖𝑗  𝑗 -term protects the solution against variation of the uncertain parameter  𝑎𝑖𝑗  in a 

defined interval.  

 

4.4.2. Application of robust optimization: 
 

The available production capacity at the supplier, and thus the available supply is allowed to 

fluctuate. This uncertainty will have an effect on the total costs. Limits on the available supply are the 

following, (i) the production capacity per period can be equal or larger than the transport capacity 

per period and (ii) the minimum amount required for a feasible model. The implementation of robust 
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optimization starts with the constraints in which the uncertainty takes place. From the model 

formulation the constraint which requires a robust counterpart is equation (Chapter 3) that with 

neglecting the deep freezer results in: 

𝑢𝑡 ≤ 𝑄𝑡
𝑒𝑥𝑡 

 
(67) 

As  𝑄𝑡
𝑒𝑥𝑡 is uncertain, 𝑄𝑡

𝑒𝑥𝑡 can be written as: 

𝑄𝑡
𝑒𝑥𝑡 = �̅�𝑡

𝑒𝑥𝑡 + 𝑧𝑡 ∗ �̂�𝑡
𝑒𝑥𝑡 

 
(68) 

Where �̅�𝑡
𝑒𝑥𝑡 is the nominal value of  𝑄𝑡

𝑒𝑥𝑡 and �̂�𝑡
𝑒𝑥𝑡 is the half length of the interval in which 𝑄𝑡

𝑒𝑥𝑡 

resides. 

From initial experiments it can be seen that using a production capacity higher than the total 

transport capacity per period has no influence on the total costs. Hence, the interval in which the 

uncertainty resides is one sided [10] and defined as: [�̅�𝑡
𝑒𝑥𝑡 − �̂�𝑡

𝑒𝑥𝑡, �̅�𝑡
𝑒𝑥𝑡]. 

From the theory of Bertsimas et al [21] the constraints regarding the order amount (𝑢𝑡) can be 

written as:  

𝑢𝑡 − �̅�𝑡
𝑒𝑥𝑡 + 𝑞𝑡 ∗ Γ𝑡 +∑𝑝𝑡𝑗 

𝑗

≤ 0 

 

(69) 

𝑞𝑡 + 𝑝𝑡𝑗 ≥ �̂�𝑡
𝑒𝑥𝑡 (70) 

𝑞𝑡 ≥ 0, 𝑝𝑡𝑗 ≥ 0, (71) 
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5. Numerical results 
 

In this chapter the numerical results for the exact solution approach, the two developed solution 

methods; the genetic algorithm and the rolling horizon method. The two developed solution 

methods should be qualitative to be able to perform the robust optimization for the supply 

uncertainty with which this chapter will finish. 

 

5.1. Results with exact solution approach 
 

The results of the exact solution approach will be presented with a sensitivity analysis after which the 

model will be simplified based on the findings from the sensitivity analysis. The reason to opt for an 

alternative solution method will be made clear in the Section 5.1.3. which concerns the computation 

time. 

5.1.1. Sensitivity analysis 
 

How does the model  behave with the variation of the order costs for a moderate size model? For 

this purpose the number of destinations is set to 4 and the planning horizon is set to 23 periods. Here 

the interest is in the behaviour of the model when minimizing the total cost with different parameter 

settings. Choices of the model are the number of order occurrences, the number of flights to each 

destination, amount of inventory stored and the amount of shortages.  

The influence of the order cost (K) with varying available supply on respectively the total costs, the 

number of order occurrences and the inventory costs is presented in the graphs shown in Figure 5-1 

and 5-2: 

 

In Figure 5-1 the influence of the order cost on the total costs is shown in dependence of the 

available supply. For varying the order with a decade has only a slight influence on the total costs. 

The total costs plateau off with increasing available supply. For varying with a decade in this plateau 

Figure 5-1: Influence of the order cost K  on the total costs in dependence 
of the available supply 
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regime   typically the total costs increase with a factor of 2. The increase of total costs at low 

available supply is more dependent on the order costs. For the order costs of K = 1000, used largely 

in the remainder of this work, the total costs are insensitive to the available supply. This is different 

for the number of order occurrences in dependence of the available supply, see Figure 5-2, where 

the number of required order occurrences is plotted versus the available supply for different order 

costs. The number of order occurrences shows to be much more dependent on the available supply 

while the plateau is shifted to higher values of available supply. The increase of order costs strongly 

reduces the number of orders. The number of order occurrences is always less than the length of the 

planning horizon. Typically in 25-50% of the time periods an order occurs. 

The model has the possibility to store the vaccines using dry ice or deep freezers. In Figure 5-3 the 

effect on the inventory costs for both storage facilities is shown versus the available supply for 

varying order costs K. Remarkably only for very high levels of available supply and order costs the 

deep freezer storage is used. Since this situation is unlikely the deep freezer facility will be neglected 

for the remainder of this work. The inventory will be kept only using dry ice.  

 

 

 

Figure 5-3: Influence of the order cost on the inventory cost for the dry 
ice storage facility(A) and the deep freezer facility(B) 

Figure 5-2: Influence of the order cost on the number of order 
occurrences 
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5.1.2. Solutions used as reference 
 

Using the commercial solver two reference cases are created that are used to develop and adapt 

alternative solution methods.  First  the case for a single destination is considered followed by four 

destinations. For both reference cases a constant demand rate for the first dose of 100 is used for 52 

weeks. The planning horizon is extend to 56 weeks. To develop the solution methods no boundary is 

imposed on the amount that can be ordered from the supply side. Furthermore the maximum 

number of available flights per period is set to 2 for each destination.  

For one destination : 

The computation show that the minimum total costs for transporting to one destination are 44250 

monetary units. There are 18 order occurrences and 35 flights to the destination. There are no 

inventory costs, which implies that periods in which an order occurs and transport occurs coincide.  

For multi-destinations: 

Increasing the number of destinations does not have an influence on the order occurrences and 

show a similar pattern, where the periods in which is ordered and transport occurs also coincide. 

For all situations modelled, the optimal solution does not produces waste.  

 

The opportunity of using the deep freezer storage facility increases the computation time due to the 

quantity of decision variables involved. Furthermore, the calculations show that there is no utilization 

of this deep freezer storage facility. Therefor in the remainder of this report the use of the deep 

freezer facility will be neglected. 

In Figure 5-4 the updated schematic flow of the vaccines is shown: 

Based on the updated distribution process and the implication that the handling cost and the cost for 

dry ice depend on the inventory at the dry ice storage facility, the cost for inventory, handling and 

dry ice can be combined in the holding cost and is updated to: 

 ℎ𝐴,𝑛𝑒𝑤 = 𝐷𝐼𝐹 ∗ 𝑐𝑑𝑖 + 𝑟𝑒 + ℎ𝐴,𝑜𝑙𝑑 = ℎ𝐴 (72) 
 

From this new definition for the holding cost, the equations and the forthcoming constraints 

regarding the dry ice cost and the handling cost can be eliminated. 

Figure 5-4: Updated schematic overview of the distribution process: Neglecting the deep freezer 
storage facility 
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5.1.3. Computation time 
 

Computation time is a critical factor in solving problems. For several settings for the number of 

destination and the amount of available supply the calculation time is determined. To provide an 

insight in the relation between the size of the model and the computation time a constant demand 

rate of 100 will be considered for the first dose in each period. The size of the model is related to the 

number of destinations and the length of the planning horizon, affecting the number of decision 

variables and constraints. Two instances of available supply will be considered: 

- The available supply is set to the minimum required for a feasible solution based on the 

assumption that the total demand must be satisfied 

- The available supply is equal to the transport amount. 

For a single destination the computation time versus the planning horizon is presented in Figure 5-5.  

The figure shows that the computation time for relative small problems is low. The computation time 

increases slightly with the increase of time periods if the minimal amount of available supply is set to 

the minimum for a working model. For the instances where the supply is more than sufficient (Umax 

> transport capacity), the calculation time shows an increasing trend with increasing planning 

horizon. On the other hand the computation time for some specific planning horizons are low, they 

show dips, e.g. for planning 44 and 48, after which the computation time increases again. The source 

of this phenomenon is unclear and will not be sorted out.  
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for different amounts of supply availability 
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The dependence of the computation time on the planning horizon for an extended number of 

destinations is determined. In Figure 5-6 the results are shown for the available supply equal to the 

transport capacity. In Figure 5-7 the results are show for the minimum amount of required available 

supply. A limit on the computation time of 7200 seconds is applied. 

A curious behaviour can be seen for the instances where the available supply is equal to the 

transport capacity. On average the trend is that the computation increases with as well the number 

of destinations as with the length of the planning horizon. Just to mention, but not to elaborate on 

here, is a curious behaviour: dips in computation time seem to coincide irrespective of the number of 

destinations.  

In the case the available supply is equal to the minimum amount required, a more pronounced 

relation between the model size and the computation time can be seen. This is the result of a more 

‘tight’ available supply. For this case the computation time increases much more rapid with 

increasing the number of destinations as well as increasing the length of the planning horizon. 

Actually the imposed limit on the computation time of 7200 seconds is met early and disguises the 

actual effect of increasing the model size.  

Apart from the size of the model also the parameter setting, in this case the available supply, has a 

strong effect on the computation time. This can be explained, partly:  , due to the limited available 

supply in almost each period an order occurs. This increases the number of decisions the model must 

Figure 5-6: Computation time of commercial solver for multiple 
destinations vs planning horizon comparing with a supply availability 
for each period which equals the transport capacity 

Figure 5-7: Computation time of commercial solver of multiple 
destinations vs planning horizon with a minimum supply availability for 
each period for a feasible model 
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explore. As the destinations only differ in transport cost, this suggests that the model considers all 

possible options for each destination.  

The general trend of large increasing computation times motivates the use of alternative solution 

methods. 
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5.2. Results of genetic algorithm parameters 
 

In this section the influence of the parameter selection and settings of the genetic algorithm will be 

discussed. First a basic implementation of the genetic algorithm will be presented for a small sized 

model. Based on the results of the basic implementation the mutation operator will be adjusted for 

an improved functioning of the genetic algorithm. 

 

5.2.1. A first basic implementation and evaluation of the genetic algorithm 

 
To build an understanding of the behaviour of the model  and to guide adaptations of the algorithm, 

it is helpful to simplify the model and thus reduce the computational time. For this purpose the 

model will be simplified to the situation with a single destination with a constant demand for each 

period.  

 

5.2.2. The influence of algorithm parameters and genetic operators: 

 
For each recombination strategy experiments are conducted. The parameters which are varied are 

the cross-over rate, the mutation rate, the number of elitism and the number for phenotypic 

diversity. Most experiments are conducted varying one parameter and keeping the remaining 

parameters constant. Each parameter setting is tested for 10 runs. Unless stated otherwise the best 

performing parameter setting will be presented for each recombination strategy. The less performing 

results can be found in the appendix. What follows now are the results of the subsequent parameter 

variations. 

Cross-over rate: 

The cross-over rate describes the probability of the recombination of two parents . The cross-over 

rate is varied between 0 and 1 with increments of 0.2. The results show limited sensitivity to the 

exact value of the cross-over rate in the range from 0.2 – 0.8. In Figure 5-8 the best solution is 

presented for a cross-over rate of 0.8 for each recombination strategy (results for the other cross- 

over rates showing similar trends can be found in appendix B. All recombination strategies show 

rapid initial convergence. After the initial convergence the solution is trapped (or converges only very 

slowly) at a plateau level  approximately 20% above the optimum solution for all strategies. There 

exists a difference in convergence rate: The multipoint strategy converges the fastest while the 

arithmetic strategy converges only very slowly. 



37 
 

In conclusion different recombination strategies do differ in convergence rate, but all get locked at 

more or less the same deviation from the exact solution. A typical remedy to avoid early trapping of 

the solution is introducing mutations. 

Mutation rate: 

The probability that a gene is selected for mutation is called the mutation rate. Following the choices 

made in literature [24,27] also here the mutation rate is varied in the range between 1/(# genes) and 

0.2. The effect is evaluated for the three different recombination strategies. The result of varying the 

mutation rate for the arithmetic cross-over strategy is presented in Figure 5-9.   

Intuitively one would expect increasing the mutation rate would increase the flexibility of the model. 

But unexpectedly  the experiment shows the convergence rate drops tremendously with increasing 

the mutation rate and the distance to the optimal solution is increased! This same influence  is , to a 

somewhat lesser extent, found for the other recombination strategies.  

Figure 5-9: Total cost versus generations with different mutation rates for the 
arithmetic cross-over. The arrow depicts the increase of mutation rate 

Optimal solution 

Figure 5-8: Total cost vs generations for three different cross-over strategies for a 
cross-over rate of 0.8, mutation rate 0.01, elitism 10, phenotypic diversity 30% 
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All in all , varying the mutation rate according to this protocol does not help to increase the 

performance of the model for neither of the recombination strategies. For completeness  the effect 

varying elitism is illustrated in the next section. 

 

Elitism: 

The influence of elitism with the three recombination strategies is tested by varying the amount of 

elitism from 0 to the number of the total population. In Figure 5-10 the total cost versus the level of 

elitism is presented for each of the three recombination strategies. With the exception of introducing 

1 elitist solution to the selection of the population the total cost is hardly influenced by increasing 

the elitism parameter. With varying the elitism parameter the gap to the optimal solution remains, 

even for the best results, more than 20%.  

 

5.2.3. Discussion: How to improve?  
 

On the one hand the initial convergence rate is significantly influenced by varying the parameter 

settings of the genetic operators. The multi point and single point strategies perform (by far) the 

best, so these are the strategies of choice. But on the other hand considering the gap between the 

total costs of the different recombination strategies and the optimal solution, the current GA does 

not provide adequate results yet. The magnitude of the gap ( >20%) is similar for all three strategies . 

Different parameter settings of the genetic operators prove not to affect this gap.  

Most probably the high initial convergence rate is not so much caused by the influence of the genetic 

operators but is caused by the random generation of the initial population that offers the space to 

improve rapidly in the earlier generations. 

The question is : why is the solution trapped in a local optimum?  

A qualitative analysis as well as literature provides a base for improvement. Mentioned as possible 

causes for premature convergence are: lack of diversity [26] and “blocking” of the algorithm [23]. 

Here we will focus for the moment on limitations of the used mutation operator in exploring the 

search space [21].  

 

Figure 5-10: Total cost vs level of elitism for all recombination strategies 
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Increasing the flexibility 

The idea behind the functioning of the genetic operators is to create the ability to explore the entire 

search space. The current implementation of the genetic algorithm and the respective operators may 

be too rigid. In specific the mutation operator may not facilitate proper exploration of the search 

space.  

The current mutation operator only allows changes for the genes which are chosen for mutation or 

exceed the bounds of the respective gene.  By following  manually imposed mutations that logically 

can be inferred to increase the quality of the solution, it is observed that the positive change is 

negated  because of corrections that are imposed based on the forthcoming boundary violations. 

This way the cost of the chromosome increases again.  

Furthermore the current boundaries limit the effect of the mutation operator. In specific the 

transport gen is limited by the upper boundary created by the products available at KLM.   

Another impression was that chromosomes show increasing resemblance after several generations.  

Based on this first of all an adaptation of the mutation operator could be the way to go. Details and 

results of an adapted mutation operator will be presented in the next section. Furthermore we will 

focus on maintaining sufficient diversity of the chromosomes. 
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5.2.4. Giving the algorithm more flexibility and allowing for diversity 

 
The results from the previous section showed that the basic implementation of the genetic algorithm 

does not provide adequate results. Probably this is due to the fact that this implementation is too 

rigid. In this chapter several approaches to increase the flexibility of the algorithm will be proposed 

and implemented. The results will be discussed.  

 

Introducing methods to increase flexibility  
 

The methods proposed in this section are concerned with the mutation operator and the selection 

process. First an alternative mutation operator will be proposed.  Secondly dealing with the 

development of sparsity in the chromosomes (the fraction  of “transaction-less” genes) proves to 

need attention and will be treated.  

 

An alternative mutation operator  

 
In the initial mutation operator genes are obliged to change in the case the bound on that specific 

gene is exceeded. To accommodate for this the mutation operator is adapted by adding three 

features.  

Firstly, the current mutation operator only allows changes for the genes which are selected for 

mutation or exceed the bound of the respective gene. In the improved mutation operator any 

arbitrary gene following the mutated one can be changed . The amount these genes are allowed to 

change is determined by the change of the mutated gene and the respective bounds. 

The second added feature allows other genes than the mutated one  to change in the same period 

where the mutation takes place. These genes can adapt their value to the changes the mutated gene 

induces (In the old situation only the value of the actual mutated gene can change)  

The third additional feature considers one type of genes: the transport amount. The upper bounds 

regarding the products available at KLM is increased to the possible number of products available at 

KLM, this equals the upper bound for the order amount of the considered period. Furthermore a 

destination for which the transport amount is mutated is prioritized in transport over the other 

destinations, so giving it the “first choice” of the available products.  

Combining the three features, the change of the genes in a certain period is captured in a mutation 

vector (∆𝒎𝒖𝒕). The values of the mutation vector describe the magnitude the genes are allowed to 

change and in which direction. The mutation vector is constructed as: 

∆𝒎𝒖𝒕=

[
 
 
 
∆𝑢
𝑚𝑢𝑡

∆𝑇𝑟𝑎𝑛𝑠,𝑙
𝑚𝑢𝑡

⋮
∆𝑇𝑟𝑎𝑛𝑠,𝐿
𝑚𝑢𝑡 ]

 
 
 

=

[
 
 
 
 𝑢𝑡𝑚𝑢𝑡

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝑢𝑡𝑚𝑢𝑡

𝑚𝑢𝑡

𝑇𝑡𝑚𝑢𝑡,𝑙
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝑇𝑡𝑚𝑢𝑡,𝑙
𝑚𝑢𝑡

⋮

𝑇𝑡𝑚𝑢𝑡,𝐿
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

− 𝑇𝑡𝑚𝑢𝑡,𝐿
𝑚𝑢𝑡

]
 
 
 
 

 (73) 

 

Where 𝑢𝑡𝑚𝑢𝑡
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

 is the value before mutation has occurred in the mutation period (𝑡𝑚𝑢𝑡) and 𝑢𝑡𝑚𝑢𝑡
𝑚𝑢𝑡  is 

the value due to the mutation. The same structure is applied to the transport amounts.  
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The magnitude of genes are chosen from a specified interval. Depending on whether the value in the 

mutation vector is positive or negative, the intervals are constructed in the following way.  

𝑖𝑓 ∆𝑔𝑒𝑛𝑒
𝑚𝑢𝑡 ≤ 0:  

The interval consists of [min( 𝐿𝐵𝑔𝑒𝑛𝑒 , 𝑣𝑎𝑙𝑢𝑒𝑔𝑒𝑛𝑒,𝑡 − 𝑎𝑏𝑠(∆𝑔𝑒𝑛𝑒
𝑚𝑢𝑡 )), 𝑣𝑎𝑙𝑢𝑒𝑔𝑒𝑛𝑒,𝑡   ] 

𝑖𝑓 ∆𝑔𝑒𝑛𝑒
𝑚𝑢𝑡 > 0:  

The interval consists of [𝑣𝑎𝑙𝑢𝑒𝑔𝑒𝑛𝑒,𝑡 ,max(𝑈𝐵𝑔𝑒𝑛𝑒 , 𝑣𝑎𝑙𝑢𝑒𝑔𝑒𝑛𝑒,𝑡 + 𝑎𝑏𝑠(∆𝑔𝑒𝑛𝑒
𝑚𝑢𝑡 ))  ] 

Additional : multi-gene mutation 

First the proposed mutation operator is applied to a single gene. In later parts of the thesis the 

mutation operator is allowed multiple genes to be mutated again based on the principle of the 

mutation rate in one chromosome. 

 

5.2.5. Increasing the quantity of “transaction-less” genes or “sparsity” 
 

An intriguing observation is that the details of the chromosome that describes the solution found 
with the genetic algorithm, shows differences with that of the optimal solution generated with 
Gurobi. A remarkable difference is the number of “transaction-less” genes (zeros) for both cases.  
 

Analysing the evolution of transaction-less events 
 
In Figure 5-11 the development of the average number  of transaction-less genes ( “zero’s”) with 
increasing generation is illustrated for the three recombination strategies and compared with that of 
the optimal solution.  

 
 
 
In all strategies the first generations show a steep rise of the number of zero’s. So in this stage the 
average number of transaction-less events increases rapidly. The steepness of the rise directly 
correlates with the initial convergence rate of the three subsequent strategies (see Figure 5-8). After 

Figure 5-11: Comparing the average number of zeros in a chromosome per generation for 
the different recombination strategies and the optimal chromosome for the basic GA 
implementation. 
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the initial increase the level of zero’s plateaus off, significantly below that of the optimal 
chromosome.  The optimal chromosome proves to be more dominated by zero valued genes. The 
level of dominance of transaction-less genes or zeros will be referred to as “sparsity”. 
 
So at the start of the evolution process the number of zeros is low, but the algorithm is able in this 
stage to create new zeros at  a significant rate. After this initial stage it plateaus off, so somehow 
zeros are not formed anymore at a sufficient rate  or disappear, thus balancing at a level below the 
optimum. In the current form the genetic operators are not able to compensate for this.   
 
A qualitative, somewhat handwaving, explanation of this phenomenon is in the following reasoning: 
After the recombination process of parents intermediate chromosomes are formed. In the next step 
the values of these genes are compared to the boundary conditions. Subsequently the value of each 
gene is adapted to comply with the lower, and higher bounds.  Those genes for which the value is 
already non- zero or for which the zero is exchanged after the mutation  by a value larger than zero 
(due to an imposed lower bound) will not, or only slowly change to zero via mutation or cross-over.  

 
Probably this is caused by the following:  
At the start of the algorithm the structure of the chromosomes is randomly created, so the sequence 
of zeros is randomly spread and non-correlated over the chromosomes. This facilitates an increase in 
the number of zeros in specific chromosomes by  cross-over, while at the same time the number of 
zeros in other chromosomes will decrease. The latter will result in higher costs so these 
chromosomes have a higher chance to be discarded in the subsequent selection process.  
After some generations  the average number of zero’s in the population has increased, but at the 
same time becomes more structured / correlated over the chromosomes. The cross-over process will 
not help anymore to create more zeros and the creation of zeros is inferred to become mainly 
dependent on the mutation process . 
 
In the current mutation process the value of a mutated gene is selected randomly from an interval 
spanned by the lower and upper bound. So the chance to create a zero by this process is much 
smaller than that for a non-zero value.  Furthermore in the case a lower bound is met (larger than 
zero) , the chance that the resulting gene will take a value of zero is none. Overall this results only a 
very weak tendency to (re-)form transaction-less genes. 
 

Figure 5-12: The difference between the number of zeros for the best chromosome of the 
population and the average number of zeros of the respective population in each generation 
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So in conclusion: Improving on the creation of zeros is required when comparing the results with 
those of the optimal model. So the measure to repair this is to stimulate the formation of 
transaction-less events and increase the sparsity, specifically by the adapting the mutation process. 
 

Adapting the mutation process to create transaction-less events: Bias towards a “zero” 
 
As stated above in the current mutation process the chance to create a zero is much smaller than 

that for a non-zero  value. The probability for creating a zero in the mutation process is increased by 

biasing the probability distribution. The bias is created as follows: 

Under the condition that the lower bound of the gene  equals zero, the added probability for a zero 

value (P0) will get a pre-set value chosen  on beforehand in the range from 0 to 0.5  (variation will be 

done in steps of 0.1). While a non-zero value can be picked with the complementary probability 1-P0, 

the value is with uniform probability drawn from the range between the lower and higher bound .   

 

An additional route to introduce zeros: Discretization of the interval. 

Another way to increase the probability for generating a value at the boundary (so also a zero)  is 

achieved by discretising a dummy interval between zero and a value somewhat higher than the 

upper bound.  The values of the lower and upper bound are projected on this dummy interval. This 

results in a sequence of values starting with the lower bound, the values from the discretized interval 

and ends with the upper bound. The mutation operator uniformly draws a value from this sequence.     

Adjusting the number of the discretization steps  between the two values influences the chance of 

using one of the boundaries as the value for the mutated gene. The following figure shows the 

projection of the lower and upper bound on a discretized interval with different levels of 

discretization (k). 

This is in line with the reasoning of the function for the mutation operator, which main goal is to 

explore the search space [23]. The level of discretization is randomly chosen by the model. Where 

high level of discretization allows for small refinements in the solution, low level of discretization 

allows for more exploring behaviour.  

Figure 5-13: Discretized intervals for different levels of discretization (k) with the projection of the lower 
and upper bound. This results in an interval from which the to be mutated value can be chosen. 
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5.2.6. A method to measure diversity based on the chromosome structure 
 

Diversity is supposed  to enable a diverse population what would  avoid premature convergence. To 

more or less quantify this ait it is worthwhile to introduce a measurement: a diversity parameter.   

Next to quantifying and thus giving an insight in the evolution process  this parameter can/will  also 

be actively used to control the evolution process. 

Measuring diversity: 
 
Of the  several methods to measure diversity  two methods are considered in this thesis. One  is 

based on total cost and the other on quantifying chromosome similarity. The diversity based on cost 

is straightforward: determined by the value of the total cost as discussed in Chapter 4.  

A more relevant measure of diversity is created in the following way: In a population the 

chromosomes are compared to the best one. The chromosomes are compared on gen level, based 

on the order occurrences and the number of flights. If a shared value is found a 1 is given, else a 0 

will be given. Summing those and dividing by the number of genes provides a number for 

chromosome similarity. For this measure it are not the amounts that are chosen as a base for the 

shared value, because whether a flight or order occurs or not presses in general more heavy on the 

total than variants in the respective amounts  

An example of the diversity measurement and the total cost evolution is shown in the next figures. 

The diversity measurement based on the chromosome similarity is used to calculate the 

chromosome similarity for a situation where the genetic algorithm was performed while using 

phenotypic diversity. 

  

Figure 5-14 show the cost progression over the generations. The convergence is in the first 

generations is high, but rapidly decreased after roughly 120 generations. The cost progression 

correlates to some extent with the development of the diversity of the population over the 

generations shown in Figure 5-15. This figure shows that a higher level of diversity can be found in 

the 20-40 generations, afterwards the diversity rapidly drops. This might be a reason why the genetic 

algorithm is having difficulties improving the solution.  

Another observation from this graph is that it seems that the genetic algorithm improves if in 

previous generations the diversity increases. This is based on the relative convergence rate and the 

Figure 5-15: Chromosome similarity diversity based on the total cost 
diversity 

Figure 5-14: Cost progression over periods 
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diversity depicted in the following figure where the dashed line is the relative convergence and the 

solid line is the diversity based on chromosome similarity. 

Figure 5-16 shows that if the genetic algorithm improvement with the spikes of the relative 

convergence rate. In the generations just previous to this improvement there is an increased 

diversity. This could be coincidental but is enough ground to explore this direction. 

The diversity based on chromosome similarity  is implemented as follows: Based on the number of 

best performing chromosomes and the population size, a number of spots is available for less 

performing chromosomes. The spots are filled with chromosomes which have a chromosome 

similarity ,compared to the best performing chromosome of the respective generation, which is less 

than a threshold given by the diversity parameter.  

By the way, in the situation where the number of available spots is higher than the number of unique 

chromosomes which satisfy the threshold, random chromosomes will be mutated until the threshold 

is met and the available spots are filled . In the situation where the chromosomes eligible for the 

available spot selection outnumber the available spots, the spots are randomly assigned with a 

decreasing probability over the increasing total cost.  

 

 

 

 

 

 

 

 

  

Figure 5-16: Diversity and relative convergence rate versus the generations 
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5.2.7. Directed mutation 
 

Increasing Performance by directed mutation 

 
The Genetic algorithm does not know explicitly where to apply a mutation. To guide the algorithm 

where to apply mutation, directed mutation could be applied. The summed contribution of all the 

genes constitutes the fitness function. The idea behind using the directed mutation is that when 

there is a strong cost increase over a number of time periods, this cost increase is caused in a certain 

range of periods before. The steps are: to identify these regions with high cost increase and 

subsequently apply mutation in a timespan before the cost increase is the highest. For this procedure 

it is convenient normalize the cumulated cost. The cumulative cost are normalized over the vaccines 

which are or should be available at the respective time period.  The algorithm can be guided based 

on the normalized cost cumulation over the time periods. The following figure shows an example of 

the normalized cumulative cost evolution over the time periods.  

To find the periods of highest cost increase a sample period with length n is used. ‘s’ is a parameter 

setting that can be varied. The regions for which the cost increase, over this length s, is the highest 

are sought for.  

To affect the periods in which the cost increase is the highest, the periods before and the respective 

periods should be targeted for mutation.  The periods with the highest cost increase are noted as 

𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡. The periods which are considered for mutation are determined by the width parameter τ. 

The interval in which mutation should occur is then [𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡 − 𝜏, 𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡]. From Figure 5-17 of the 

normalized cost function, the highest cost increase is often in the first period due to the initialization. 

To allow for more mutation possibilities, the genetic algorithm determines the n highest cost 

increases 𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡,𝑛. The model constructs the mutation interval for each 𝑡ℎ𝑖𝑔ℎ𝑒𝑠𝑡,𝑛 in which mutation 

Figure X: Normalized cumulative cost per period for a random chromosome 

Figure 5-17: Example of normalized cost over the periods for a random chromosome 
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occurs. After which each mutation interval is mutated separately from the original chromosome of 

which the intervals are determined. Applying the directed mutation to each chromosome of the 

population would lead to a significant increase in computation time. To retain a reasonable 

computation time the application of the directed mutation is limited to the best 10 chromosomes in 

every 10 generations. 

 

5.2.8. Results of applying the flexibility improvements 
 

Most of the measures introduced in the previous section separately only  give moderate effects on 

the evolution process. The strength is found in combing the different measures that increase the 

flexibility. This is presented at the end of the section. To show the effect of the separate measures as 

well as for completeness  first these results will be addressed shortly. 

Results for the improved mutation operator  

As only a single  gene is selected for mutation, the mutation rate has no influence. The parameters 

which will be varied are the cross-over rate and the elitism parameter. The cross-over rate is varied 

between 0.6 and 1, where the elitism is set the range from 10 to 100 % in steps of 10 % . 

The best performing recombination strategy is the multipoint with a cross-over rate of 1. The result 

in the following figure shows the cross-over rate of 1 with several levels of elitism. 

The first observation is that the algorithm converges very fast initially, nearly independent of the 

level of elitism (a very slight optimum around a level 0f 30%) and after 200 generations plateaus off 

to a rigid plateau . Also here only a tiny improvement in the gap to the solution found by the MIP 

solver is realised.  

The same trend is observed for all three cross-over operators. This means the GA is still getting stuck 

in a local optimum. The improved mutation shows promising results with, although tiny, 

improvements to the basic implementation of the mutation operator. The use of the improved 

mutation operator will be further exploited with the use of the bias towards a zero and the use of 

discretized intervals. 

Figure 5-18: Influence of the elitism and the improved mutation operator on the total cost 
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Increasing the sparsity  

The idea behind this method is to push the genetic algorithm out of the local optimum by increasing 

the probability for a gene to obtain the value zero  that will reduce the number of transactions. The 

increased probability for a zero is increased from 0 to 0.5 with increments of 0.1. In the following the 

results for the multipoint cross-over will be presented as the cost versus the generations and the 

final total costs for each increased probability for a zero. The difference in average zeros per 

chromosome in each population will be compared for each recombination strategy. 

  

 

 

 

 

 

The final solution is still significantly above the optimum solution shown in Figure 5-21. Although the 

intention was to push the generation of zeros, this proves to be hardly effective , see Figure 5-22 that 

shows the development of the number of zeros over the generations. So it can be concluded that 

applying only a bias towards a zero is not strong enough.  

  

Figure 5-22: Bias towards a zero: Comparing the 
average number of zeros in a chromosome per 
generation with a bias towards a zero for the different 
recombination strategies and the optimal 
chromosome. 

Figure 5-21: Basic GA implementation: Comparing 
the average number of zeros in a chromosome of 
the basic GA implementation per generation for the 
different recombination strategies and the optimal 
chromosome. 

Figure 5-19: Bias towards a 0 for different probabilities applied with the 
multipoint cross-over showing the total cost vs generations 

Figure 5-20: Final cost for different probabilities for bias towards a 
zero 
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Discretized interval 

The last proposed method to improve the search for zeros is by implementing the discretized interval 
where the algorithm randomly chooses the level of discretization for each mutation. Similar to the 
previous methods the multipoint shows superior performance compared to the rest. The best found 
solution with multipoint is shown in the following figure:  
The application of the discretized interval with varying levels of discretization show a significant 

improvement in both the gap to the optimality and the increase of zeros in the population for each 

generation shown in Figure 5-24. 

 

So all in all the separate measures to increase the flexibility and to create more “transaction-less“ 

events are effective in creating a high initial convergence rate, but only very limited in avoiding  

trapping in a local optimum. The final results is improved only slightly towards the optimal solution.  

It seems that none of these measures generates sufficient flexibility to avoid the local optimum.. At 

least: when used separately. Since the measures taken are different in nature it seems worthwhile  to 

combine the protocols 

  

Figure 5-23: Applying the discretized interval method to the multipoint 
recombination strategy showing the total cost versus the generations 

Figure 5-24: Discretized interval The average number of 
zeros in a chromosome per generation for the different 
recombination strategies with the discretized intervall 
method and the optimal chromosome 
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Combination of bias towards a zero and the discretized interval: 

The combination of combining the bias toward a zero and the discretized interval improves the 

convergence rate and results in a better solution compared to no increased chance for zero. 

 

Directed mutation 

The results for directed mutation improve the convergence of the genetic algorithm further. The 

length of the search interval and the number of periods before the search interval have little 

influence on the convergence and the gap to the optimal solution of the genetic algorithm. 

Based on the Figures 5-27 and 5-28 there is a tendency increasing the interval upfront for the 

mutation leads to better solutions. 

 

 

 

 

 

Figure 5-27: Directed mutation: Total cost vs 
generations for the directed mutation with a search 
interval of length 8 and an interval of length 12 in 
which mutation is applied. 

Figure 5-28: Directed mutation: Total cost for varying 
the width of the search interval and the number of 
periods added to interval in which mutation is applied 

Figure 5-26: Best found solution with single point 
recombination and the combination of bias towards a 
zero and the discretized interval method. 

Figure 5-25: Best found solution with multipoint 
recombination and the combination of bias towards a zero 
and the discretized interval method. 
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5.2.9. Results of the adapted GA on the multi-destination problem 

 
In this section the proposed genetic algorithm will be extended to multiple- destinations. The best 

performing mutation operator designed in the previous chapter will be implemented. Based on the 

increased size of the chromosome the improved mutation operator will be combined with the ability 

to choose multiple genes for mutation. The recombination is the multipoint cross-over based on the 

overall best performance in the previous chapter.  

Varying the diversity parameter and the number of spots available the best solution was found for 

0.7 chromosome similarity and 15 spots available for the less performing chromosomes respectively.  

The convergence of the solution shows a similar pattern to the convergence for a single destination. 

In the beginning the convergence is higher and gradually decreases. The difference is that there is no 

clear plateau formation yet as can be found for the single destination. The gap to the optimal 

solution is larger compared to the gap for a single destination. Here the gap after a 1000 generations 

is 11%. Observation of the chromosome evolution, shows that the genetic algorithm behaves more 

rigid compared to the single destination. The genetic algorithm has more difficulties in combining 

order occurrences it seems.  

The accuracy can be increased by choosing for a larger number of the population size or extending 

the number of generations. The disadvantage of extending the population size and the number of 

generations is the significant increase in computation time.  

 

 

 

  

Figure 5-29: Multi-destination: Total cost vs generations for the best found solution 
with the genetic algorithm applied to the multi destination problem 
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5.3. Results for varying rolling horizon parameters 

 
The influence of the parameters related to the rolling horizon approach on the total cost and the 

computation time will be presented in the following. 

The rolling horizon approaches are tested for a model with 4 destinations and a planning horizon of 

56 weeks. Two instances of available supply will be considered which are the minimum amount 

required for a feasible model and the total transport capacity per period. The minimum amount of 

available supply is estimated with the use of the commercial solver. For the considered situation the 

minimum available supply is approximated to be 765. The total transport capacity per period is 2400.  

The parameters which can be adjusted are the number of time periods which are optimized with the 

integrality constraints (time window), the total number of time periods including the relaxed time 

periods (mu) and the step size which determines how much time periods the next to be solved 

problem is shifted(step size).  

Considering the computation time : the time limit for each sub-problem is set to 600 seconds. 

 

5.3.1. Straight forward approach: 
 

The considered time windows are 4,8 and 12 time periods. The results for both instances of available 

supply are shown in the following table: 

Table 5-1: The cost and computation time for different time windows and available supply 

 

 

If the available supply is set to the transport capacity shorter time windows lead to higher cost. The 

results show for increasing the time window the total cost decrease.  Optimizing for short time 

windows does not take future decisions into account which lead to higher costs. This same 

mechanism is the reason why this approach does not provide feasible solutions for the minimum 

amount of available supply.  

𝑸𝒕
𝒆𝒙𝒕= 2400 

Time window Total Cost Computation Time (s) 

4 150800 1.2 

8 144500 58 

12 130000 2.1 

Commercial 
solver 

130000 7200 

 

𝑸𝒕
𝒆𝒙𝒕= 765 

Time window Total Cost Computation Time (s) 

4 Infeasible - 

8 Infeasible - 

12 Infeasible - 

Commercial 
solver 

220200 7200 
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Note that for the available supply equal to the transport capacity the computation time is an 

encouraging orders of magnitude less than that of the commercial solver. 

 

5.3.2. Rolling horizon with relaxation and no overlap 
 

Based on the myopic result for a time window of 4 periods, the considered time windows are 8 and 

12. Varying the number of periods which are taken into account for the relaxation and the results are 

presented in the following table: 

Table 5-2: The dependence of the total cost and computation time on the parameter μ for different values of the time 
window and for the available supply equal to the transport capacity and the numerical minimum amount. 

Time 
window 

μ Cost Computation 
time (s) 

 Time window μ Cost Computation 
time (s) 

𝑸𝒕
𝒆𝒙𝒕= 2400  𝑸𝒕

𝒆𝒙𝒕= 765 

8 12 1300000 3.3  8 12 Infeasible - 

 20 1300000 2.0   20 Infeasible - 

 24 1300000 5.3   24 Infeasible - 

 30 1300000 7.0   30 Infeasible - 

 34 1300000 7.3   34 220600 26 

 40 1300000 7.8   40 220828 29 

         

12 20 1300000 9.3  12 20 Infeasible - 

 24 1300000 10   24 Infeasible - 

 30 1300000 13   30 Infeasible - 

 34 1300000 12   34 219250 644 

 40 1300000 15   40 218650 74 

         

Commercial 
solver 

 1300000 7200  Commercial 
solver 

 220200 7200 

 

Setting the available supply to the minimum required, this approach only provides feasible solutions 

for adding a large number of relaxed periods. In contrast in the case the available supply is equal to 

the transport capacity the addition of relaxed periods provides the same solution as the commercial 

solver for all values of mu. This again, within a fraction of the computation time compared with the 

commercial solver. An increase in the computation time can be noted with the increase of the μ 

value. For the minimum available supply a larger extension is required to calculate the solution. But 

when allowing for a larger value of μ does lead to an improved solution and the performance is even 

better than that of the commercial solver.  
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5.3.3. Rolling horizon with relaxation and shifting: 
 

The results of the rolling horizon approach including relaxation and shifting are presented in the 

Figures 5-30 – 5-33. The shift of the time windows is varied in a range from 2 till 6 for the time 

window of size 8, and in a range from 2 till 10 for the time window of size 12. 

For the case where the available supply is equal to the transport capacity the total costs are similar to 

the costs found with the commercial solver. For both settings of the time window good quality 

solutions are found. In both cases there is no influence of the μ value on the solution. (With the 

exception of using a shift of 10 time periods in the time window 12 results in a minor increase of the 

costs). The results are presented in Figure 5-30 

Setting the available supply equal to the required minimum amount, similar quality of solutions 

compared to the commercial solver are found. The solutions are even slightly better than those of 

the commercial solver. The concrete costs are dependent on the value of μ and the shift amount. To 

obtain a solution  a high value of μ is required; If the shift is too large and the μ value is low, the 

algorithm does not find feasible solutions. Results are presented in Figure 5-31  

 

 

 

Figure 5-30: Rolling horizon(iii) Transport capacity: Total cost versus μ for time window length 8 (left) and 12(right) for the 
available supply set to the transport capacity for different shift amounts 

Figure 5-31:Rolling horizon(iii) Minimum amount : Total cost versus μ for time window length 8 (left) and 12(right) for the available 
supply set to the minimum amount required for different shift amounts. Infeasible solutions in figure are denoted with an ‘x’. 
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The computation remains running smoothly.  

For the situation where the available supply is equal to the transport capacity the computation runs 

two to three decades faster than that of the commercial solver. The value of μ has no strong effect 

on the computation time. While the shift amount has a stronger effect. For the time window of 

length 8 the computation time increases with decreasing shift amount. A similar trend can be seen 

for the time window with length 12, although step size 4 is an extreme outlier for each value of mu. 

The results for the computation time are shown in Figure 5-32  

For the situation where the amount of available supply is equal to the minimum amount required the 

computation time is generally somewhat larger but still is 1.5 to 3 decades faster. see Figures 5-33. 

As discussed above for small values of μ not all shift amounts provide feasible solutions. Increasing 

the value of μ has a positive effect on the computation time for a window length of 12, somewhat 

depending on the shift amount (see Figure 5-33 (right)). For a window length of 8 the computation 

time decreases with increasing the shift amount, while there is negligible influence of the μ value on 

the computation time.   

 

 

  

 

  

Figure 5-33: Rolling horizon(iii) Minimum amount: Computation time versus μ for time window length 8 (left) and 
12(right) for the available supply set to the minimum amount, for different step sizes. 

Figure 5-32: Rolling horizon(iii) Transport capacity: Computation time versus μ for time window length 8 (left) and 
12(right) for the available supply set to the transport capacity for different step sizes 
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5.4. Results of Robust optimization 
 

In this section the results of robust optimization are presented. Robust optimization is applied on the 

situation with four destinations, a constant demand rate of 100 for all destinations and a planning 

horizon of 21 weeks. The resulting  size of the model requires a fast algorithm, so the model  will be 

solved using the rolling horizon method including relaxation and shifting. The time window of 12 and 

a shift amount of 2 are used. 

First the influence of the available supply  on the total costs is calculated (see Figure 5-34). The figure 

shows that for an available supply larger than the transport capacity there is no effect on the total 

costs. But it also demonstrates that the total costs are largely influenced by the available supply in 

the range of interest i.e. from the minimum amount required up to the transport capacity. 

Consequently the  supply uncertainty in this range will have a large effect on the total cost. This 

interval of the available supply, ranging from the minimum amount required up to the transport 

capacity, will be used as the uncertainty interval for the robust optimization. 

Using the method described in Section 4.4 on robust optimization first the optimal robust solutions 

for different values of Γ are determined. The values of Γ range from 0 to 1.  

In figure 5-35 the optimal costs found with the rolling horizon method for different 𝛤- values are 

presented. With increasing the 𝛤- value the costs increase. The increase of costs for increasing 𝛤- 

values is mainly caused by the increase of order costs and shortage costs. For a 𝛤-value of 1.0 the 

transport cost increase significantly. There are no wastage costs and in four cases (𝛤 = 0.2, 0.6, 0.9 

and 1) tiny inventory costs are charged.  

 

 

 

Uncertainty 

interval 

Figure 5-34: Influence of the available supply on the total costs. The 
interval ranging from the minimum amount required up to the transport 
capacity is used as the uncertainty interval for the robust optimization. 
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In Figure 5-36 the number of occurrences is indicated with black dots and the blue line is the length 

of the planning horizon. Similar to the cost increase shown in Figure 5- 35. The number of orders 

Increases stronger than the cost increase. It can be seen that in no Γ – solution orders occur in every 

period. 

 

 

The relative constant transport costs can be seen in Figure 5-37 where the number of total flights is 

depicted. Up to a Γ –value of 0.8 the total number of total flights are equal. A significant increase of 

total flights starts from a Γ –value of 0.9.  

 

 

Figure 5-35: The costs of the different components of the distribution process for different 
values of 𝛤. 

Figure 5-36 : Number of order occurrences in the planning horizon for different 
values of  𝛤 where the blue line is the length of the planning horizon 
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The solution for each Γ value provides  the total costs, the order and the transport amounts to each 

destination combined with the number of flights and the periods in which an order occurs. The order 

moments and the number of flights can be gathered in a flight and order plan.  

To test for which value of gamma the solutions are most protected against the supply uncertainty, 

simulations are performed using the rolling horizon method. In the simulation the available supply 

for each separate time period is uniformly drawn from the uncertainty interval. Note that if the order 

amounts and transport amounts from the robust solutions are combined with the random values of 

the available supply most probable only the most conservative robust solution leads to a feasible 

solution. Hence, a different approach is chosen to test the performance of the robust solutions. 

Neglecting the order and transport amounts and using the flight and order plan allow for more 

flexibility in testing the robust solutions with a simulation. The simulation determines the order and 

transport amounts based on the uniformly drawn available supply.   

Figure 5-37: Total number of flights for different value of 𝛤 
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First it is determined if the simulation provides a feasible solution, if so the results from the 

simulations provide the order amount and transport amount to each destination. The total costs 

found with the simulations are compared with the total costs found in the robust solutions. The 

simulations are tested for 100 sequences of available supply. In Figure 5-38 the number of feasible 

solutions out of  the 100 simulations is shown in dependence of  Γ.  With increasing conservative 

values of Γ, more feasible solutions can be found. For values which are less than Γ = 0.5 very few, 

much less than 15, feasible solutions are found.  

 
In Figure 5-39 for the range of values of Γ the total costs resulting from the robust solutions are 
compared with the average of the total costs of the feasible fraction of the 100 simulations.   
 

Figure 5-38: Number of feasible solutions resulting from the simulations with the 
flight and order plans of the respective 𝛤 -values. 

Figure 5-39: The total costs of the robust solutions versus the 𝛤 -value. These are compared with the average total costs 
calculated from the concrete flight and order plans fitting the respective 𝛤 -value. Only the feasible solutions out of the 100 
runs are used, for the numbers of feasible solutions see Figure 5-38. The bars indicate two times the standard deviation.  For 
a 𝛤 -value of 0 (x) no feasible solution are obtained with the simulations. 
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The results of the total costs show a decreasing gap between the robust costs and costs resulting 

from the simulation with increasing value of Γ. Note that for lower Γ values the small  fraction of 

feasible solutions result in a large scatter of the total costs found with the simulations, indicated in 

the graph with bars that represent two times the standard deviation. (Note that for a  Γ of zero the 

simulation does not result feasible solutions at all). For a Γ  in the range of 0.7 to 0.9 the costs from 

the simulations and the robust costs are nearly the same with only very little scatter, with slightly 

increasing total costs. The best robust solution is found in this range. 0.9 gives a feasible solution for 

all simulations. Lowering Γ to 0.7 results in a somewhat lower fraction of feasible solutions and 

somewhat more scatter on the total costs. This comes at the advantage of slightly lower total costs 

for the robust solution. For the worst-case scenario (Γ is equal to 1) the robust costs are higher than 

the simulated costs. This is caused by the constraints on the available supply in the robust solution. 
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6. Discussion 
 

In this report a model for the distribution process for KLM has been designed and solved. The large 

computation time with the commercial solver requires a different solution approach. Two solution 

methods are studied. First the genetic algorithm is implemented and adapted to solve the model. 

The second solution method which is studied is the rolling horizon method.  

 

6.1. Exact solution method 
 

The exact solution method provides good quality results. For large size models, to reach the optimal 

solution, the computation time is excessive in line with findings in literature [35]. Given the quality of 

the solutions in terms of optimality, the results for the commercial solver will be used as a reference 

for the other solution methods.  

 

6.2. Genetic algorithm: 
 

The basic implementation of the genetic algorithm does provide results in a reasonable computation 

time, however the solutions are far away from the optimal solutions found with the commercial 

solver. Different parameter settings of the genetic operators prove not to affect this gap.  

But the initial convergence rate can be significantly influenced by varying the parameter settings of 

the genetic operators. The multi point and single point strategies perform (by far) the best, so these 

are the strategies of choice. For these two strategies the genetic algorithm will be adapted to 

increase the quality of the solution.  

Initially the convergence rate is high and can be maximised by choosing the right recombination 

strategy and the parameter setting. This is caused by the random generation of the initial population 

that offers the space to improve rapidly in the earlier generations. 

The question is : why does this convergence rate diminish and why is the solution trapped in a local 

optimum? A qualitative analysis as well as literature provides a base for improvement. Mentioned as 

possible causes for premature convergence are: lack of diversity [26] and “blocking” of the algorithm 

[23]. In this work the focus is on the limitation of the used mutation operator to explore the search 

space [23]. The trapping of the genetic algorithm is investigated using a developed toolbox to analyse 

the diversity, convergence rate and the development of transaction-less genes. 

The initial results of the basic implementation show that the genetic algorithm cannot adjust 

chromosomes in to the right direction. Due to the constraints which must be satisfied, the genetic 

algorithm gets trapped in a local optimum. The toolbox shows that valuable zeros in the 

chromosome are replaced with costly non-zero values.  

To repair this phenomenon an improved mutation operator and a different diversity approach are 

proposed which allows for more flexibility. The functioning of the mutation operator is changed on 

the following aspects: 
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- A mutation vector is introduced which keeps track of the changes caused by the mutated 

gene(s) and defines the amount of value genes are allowed to change after the time period in 

which the mutation takes place. 

-  Impose a bias towards a zero with the help of monitoring the development of transaction 

less genes to prevent losing sparsity. 

- Discretized interval to increase the chance for transaction less genes. 

- Directing the mutation towards the genes that are involved with a large cost increase in a 

chromosome. 

- Maintaining sufficient diversity based on the underlying chromosome structure. 

None of these measures, individually, generates sufficient flexibility to avoid the local optimum. 

However, combining the measures creates an even higher initial convergence rate and provides 

results which are less than 5% off for a single destination.  

Increasing the model size to four destinations  the convergence of the solution shows a similar 

pattern to the convergence for a single destination. In the beginning the convergence is higher and 

gradually decreases. The difference is that there is no clear plateau formation yet as can be found for 

the single destination. The gap to the optimal solution is larger compared to the gap for a single 

destination. Here the gap after a 1000 generations is 11%. Observation of the chromosome 

evolution, shows that the genetic algorithm behaves more rigid compared to the single destination. 

The genetic algorithm has more difficulties in combining order occurrences it seems.  

The accuracy can be increased by choosing for a larger number of the population size or extending 

the number of generations. The disadvantage of these measures is the significant increase in 

computation time. 

 

The parameter which increases the convergence rate for the single destination the most is the 

directed mutation. Maybe in the future it is worthwhile to further explore the possibilities of 

improving this directed mutation for the multi-destination problem.   

The large computation time and a too large gap to the optimal solution, asks for a different solution 

method. 

 

6.3. Rolling horizon approaches 

 
Three different applications of the rolling horizon method have been applied. The first application is 

the straightforward (myopic) approach. The second application, allows for adding a number of 

relaxed time periods in which the integrality constraints are relieved. The third application allows, 

besides adding relaxed time periods for a shift in time periods such that solved sub-problems are 

partly re-optimized with new information regarding future decisions. The straight forward 

approach(I) does not give a solution for the problem if the available supply is set to the minimum. 

The reason for this is the myopic approach of this method, where only the considered time window is 

optimized without considering future decisions. On the other hand, in the situations where the 

available supply is equal to the transport capacity, solutions are found. The quality of the solution 

increases with the increase of the time window. For all time windows the computation time is orders 

of magnitude lower compared to the commercial solver.  
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The rolling horizon approach with relaxation and without overlapping(II) is able to find a solution for 

the minimum available supply. If the solution is found, it is almost as good as or even better than the 

commercial solver. But to accomplish a feasible solution a large relaxed extension is required (a large 

value of mu).  So for small and medium values of μ no solutions can be found. The main benefit is the 

reduced computation time. 

Extending the rolling horizon approach with relaxation combined with overlapping(III) results in 

similar quality of the solution for both instances of available supply. The introduction of shifting 

broadens significantly the range of mu’s for which a solution can be found. If the value of the shift is 

minimal (e.g. 2) the shortest extension of the time window is able to compute a feasible model for all 

values of mu. The reason for this is that limited shifts enable the algorithm to change the value of 

variables in subsequent iterations of the rolling horizon. This minimal overlap allows for a larger 

amount of variables to be reoptimized with the gained extra information.  

The shift size also affects the computation time. An increase in shift decreases the computation time. 

This originates from the increase of sub problems which need to be solved. Notwithstanding this, for 

very limited instances (μ of 30 and step sizes larger than 2) this methods leads to infeasible solutions. 

It is unclear why.  

Given the outstanding results on quality and computation time with the right choice of parameters 

this method will be used for the robust optimization in the next section.  

 

6.4. Robust optimization: 
 

For the robust optimization the method described by Bertsimas et al. [21] has been used. This 

method uses a Γ  value to protect the solution of the model against the supply uncertainty up to a 

certain degree. The robust solutions for different values of Γ are determined. The robustness of each 

Γ value is tested by performing simulations using the resulting flight and order plans. The results 

show that a high value of Γ is required to protect the solution against supply uncertainty. Feasible 

solutions are obtained in the range of  Γ values from 0.6 up to 1, while for lower values of Γ only 

small fractions of the simulations lead to feasible solutions. Based on the results of the robust 

optimization combined with the costs found with the simulations a Γ in range of 0.7 and 0.9 show a 

reasonable to good protection against the supply uncertainty. In this range the fraction of feasible 

solutions increases. This robustness does come at a price; The cost for the Γ  value of 0.9 are 4% 

higher than the costs for the Γ  value of 0.8 and 10% higher than the costs for Γ equal to 0.7. All total 

costs are higher than the nominal case without protection for uncertainty. Choosing for a robust 

approach with a Γ  value of 0.8 results costs that are 16% higher than the nominal case. Needless to 

say that opting for this nominal case will expose the company to a very high probability of not 

satisfying the boundary conditions. 

There is a high level of conservatism required. This might be influenced by the probability 

distribution used to generate the values of the available supply. Notwithstanding that the method 

developed by Bertsimas [21] is intended to be insensitive to the details of the probability 

distribution. Intuitively one might guess that robustness of the solutions could be sensitive to some 

details e.g. skewed probability distributions towards the transport capacity  might allow for less 

conservative values of Γ. This influence of the probability distribution is not studied here, detailing on 

this aspect may require future attention. 
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7. Managerial insights and Conclusion 
 

In this section first the managerial insights will be presented after which the report will be concluded 

with the conclusions from the experiments. 

7.1. Managerial insights 
 

This report provides an insight on the distribution process of multi-dose vaccines. Based on the 

conducted experiments and acquired knowledge the following points should be considered coping 

with supply uncertainty. 

In extreme cases of order costs or available supply the deep freezers are used.  However it should be 

noted that In the model formulation the acquisition for deep freezers is not taken into account. 

Hence, there is no need to use deep freezers at the KLM facility for the storage of vaccines. 

Based on the assumption that there is no lead time for the vaccines which are ordered by the KLM 

facility, the larger part of the order amount is directly used for transport to reduce inventory costs. 

The size of the storage facility can be small based on the inventory cost but should be taken into 

account. Depending on the level of protection between a Γ- value of 0.7 to 0.9 orders occur in 

roughly 50 – 90% of the time periods. 

First the uncertainty interval of the available supply should be determined. If the interval has a 

minimum value which is greater than the flight capacity per period there is no need to incorporate 

the uncertainty for the supply. In the case that there is no known uncertainty interval it is important 

to consider the supply uncertainty. To deal with supply uncertainty a flight and order plan is advised 

that is risk averse. The risk aversion comes at a price. Depending on the level of risk aversion, the 

increase of costs are up to 20% higher than the case where no supply uncertainty is taken into 

account. The experiments show that a protection against supply uncertainty from a Γ-value of 0.7 

show increasing high levels of protection. Fully protecting the distribution process against supply 

uncertainty with a Γ  of 1 shows that the estimated costs are higher than the cost realized with the 

simulations Not complying with the possibility of supply uncertainty can put the distribution process 

under large strain and has a high probability of not satisfying the boundary conditions.  

To determine the optimal order and flight amount to each destination an agile method such as the 

rolling horizon method is advised. This allows for re-optimization of the order and flight amounts 

based on the chosen flight and order plan.  

 

7.2. Conclusion 
 

In this thesis a part of the vaccine supply  chain is studied. A brief literature study shows the 

complexity of the vaccine supply chain. The distribution process considered here is the link of KLM 

between the vaccine supplier and national warehouses. This work addresses the influence of supply 

uncertainty on the distribution process of vaccines based on a mixed integer programming 

formulation. Two solution methods are developed, the genetic algorithm and the rolling horizon 

method. Significant attention has been paid to the analysis and development of the genetic 

algorithm. In the basic implementation of the genetic algorithm the solution is easy trapped in local 
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optima. Analysis tools that were developed show that the mutation operator does not allow for 

proper search in the solution space and in specific has a bias towards too little transaction-less 

events. Methods to improve the flexibility are demonstrated. Individually the separate 

measures(improving mutation operator, sparsity, discretized interval and measurement of diversity, 

directed mutation) are effective in creating a higher initial convergence rate but are only limited 

capable in avoiding  local optima. Combining all the measures creates an even higher initial 

convergence rate and provides more accurate results. For a single destination model the costs 

deviate less than 5% from the commercia solver but the computation time for the genetic algorithm 

is higher. It is known for heuristic methods that the computation time is larger for small sized 

models. Applying the modified genetic algorithm to a multi destination model creates results which 

deviate roughly 10% from the optimal solution. Also the convergence rate decreases. For multi-

destination problem the genetic algorithm behaves more rigid compared to the single destination. 

Although the genetic algorithm is strongly improved by the proposed measures it is not the method 

yet to be applied for robust optimization. 

Three variations on the rolling horizon method are implemented. With stepwise improvements of 

the overlap strategy the quality of the results improves. The best results are obtained for the method 

that includes relaxation and shifting. This provides high quality solution at reasonably low 

computation times. And is therefore used for the analysis of robust optimization. 

The results of the robust optimization show that a high level of conservatism is required to protect 

against uncertainty. The additional costs to obtain this level of protection are between 10-20 % 

compared to the nominal case.  

Some recommendations for future work: 

First of all it seems worthwhile to develop the algorithm further based on the proposed toolbox. It is 

believed that higher convergence rates and lower gaps to the optimal solution can be achieved. In 

specific exploring the possibilities of improving the directed mutation for the multi-destination 

problem may be fruitful in view of larger models to be solved. 

The robust analysis is performed with a uniform distribution. Analysing the effect of different, in 

specific very skew, distributions might be worthwhile. Furthermore the results of the robust 

optimization show to be conservative. It would be interesting to  develop  a robust optimization 

method which does not require Γ for each period but where alternatively the Γ limits the sum of 

scaled deviations over all the time periods. 
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Appendix A: Scientific paper 

 
A robust approach to the distribution  

of double dose vaccines: 
 

J. Bulters, dr. N. Pourmohammad-Zia, dr. F. Schulte, prof.dr. R. Negenborn 

Department Maritime and Transport Technology, 

Delft University of Technology, Delft, The Netherlands 

 

Abstract.  The distribution chain of two-dose vaccines by an air carrier (KLM cargo) with its 

practical features is modelled. An efficient solution approach for the model is applied that provides 

good quality solutions in reasonable computation time to be able to account for supply uncertainty. 

To circumvent the high computation time required for a commercial solver, the rolling horizon 

method is applied of which three approaches are compared. The best quality results in terms of 

computation time and gap to the optimal solution are found with the approach (i) using shifting and 

relaxation compared to (ii)the straight forward (myopic) approach and the approach (iii) with  only 

relaxation. To study the effect of the supply uncertainty, where the exact probability distribution is 

unknown, robust optimization is applied. The uncertainty resides in a polyhedral uncertainty set. 

The influence of supply uncertainty is studied over a specified practical interval of the available 

supply. Over this interval the total costs proves to be sensitive to variation in the ordering amount. 

The shifting rolling  horizon method is used to compute a flight and order plan given this uncertainty 

in the supply amount. To protect the solution against supply uncertainty a high level of 

conservatism proves to be required. This protection is obtained using Γ values ranging from 0.7 to 

0.9. The level of protection is described as the fraction of feasible solutions out of 100 simulation 

runs. For a Γ of 0.7 approximately 85 % of the runs were feasible, for a Γ of 0.9 all runs were 

feasible. To obtain the protection level of a Γ value of 0.7 the costs are 12% higher compared to 

the nominal case while for a Γ of 0.9. the costs are increased  25%. The increase of protection 

comes at a price of higher cost.  

Keywords: Vaccine supply chain, supply uncertainty, double dose vaccines, perishable, robust 

optimization, rolling horizon method, air carrier 

 

 

1 Introduction: 
 

Immunization is considered to be an effective way to 

prevent or decrease the spreading of contagious and 

transferable diseases such as the current SARS-

Cov-2 virus. A controlled method for achieving 

immunity is by means of actively vaccinating the 

population. This requires a vaccine supply chain. The 

supply chain is the network of a vaccine 

manufacturer and its suppliers as well as other 

parties involved to produce, store, distribute and 

administer the product to the final user [1]. In the 

distribution network the product is transported from 

the production facility via the storage facilities 

eventually to the end consumer. What makes the 

supply chain of vaccines unique, is the set of 

stringent requirements which must be fulfilled to 

enable a safe administration at the point of use.  

In the supply chain KLM forms the distributing link 

between the production facility and the national 

warehouses of several countries. The distribution 

process has the following structure: At the production 

facility the vaccines are filled in vials that contain 

multiple vaccination doses. Multiple  vials are 

packaged in designated boxes. Once the vaccines 

have been produced and packaged accordingly the 

vaccine units will first be stored in a warehouse at the 

production facility. KLM can demand these vaccine 

units when KLM has the available resources to 

distribute or to store in KLM’s own facility. This 
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procedure is referred to as “the ordering of vaccines”.  

In the next step the vaccine units will be distributed 

by KLM to national warehouses at the airports of 

several locations. KLM has a fleet of several planes 

to transport the vaccines to the required destination 

and offers a storage facility.  

The type of vaccine in this model is based on the 

characteristics of the Pfizer\BioNtech vaccine[2]. The 

vaccine is a two dose vaccine where the prescribed 

time between the first  and the second dose is fixed 

to three weeks. This implies that it is required that the 

quantity of vaccines used to fulfil the demand of the 

first dose in a certain period at a certain destination 

also needs to be available three weeks later.  

To ensure the efficacy of the vaccine, the vaccine 

should be maintained at a temperature of – 70 

degrees Celsius. During transport and storage this is 

accomplished by using dry ice combined with a 

passive cool box (PCB) having a certain capacity for 

vaccine units that must be utilized. The dry ice of the 

passive cool box must be replaced every ten days, 

with a maximum of three dry ice (re)placements. This 

puts a maximum limit on the shelf life of 30 days 

coinciding with 3 periods in the model.  

An extensive overview of the vaccine supply chain is 

presented in the literature review of Duijzer et al [3], 

comparing the supply chains in general and the 

vaccine supply chain in specific. Unique to the 

vaccine supply chain is the aspect of mass 

distribution under time pressure and accounting for 

perishability.  

Optimization of the distribution of vaccines often 

focuses on the location of the distribution centres in 

different countries. The location of the distribution 

centres and points of use are based on routing 

decisions. An example of optimizing this part of the 

supply chain for vaccines is given by Georgiadis et 

al.[4]. Using a decomposition method based on 

distances of the distribution centres and points of use  

a mixed integer linear programming model is solved 

for a multi-echelon vaccine supply chain with a short 

planning horizon. A similar approach is followed by 

Tavana et al. [5] for equitable distribution of COVID-

19 vaccines in developing countries, in specific in 

India. Both use short planning horizons of 

respectively 14 and 8 time periods, treat single dose 

vaccines and do not take uncertainty explicitly into 

account. 

Decisions based on deterministic  optimization 

models can be very sensitive to the input parameters 

and thus may result in wrong outcomes, see Ben-tal 

et al. [6]. To provide a better ground for decision-

making and to reduce the probability of a severe 

outcome, uncertainty should be taken into account. 

The two main approaches used for optimization of 

uncertain models are robust optimization and 

stochastic optimization. They differ in the way the 

probability distribution of the uncertain data is 

treated. Stochastic optimization has two major 

drawbacks[6]. The first drawback is the need for 

knowledge of the exact probability distribution. The 

second drawback is that by taking the details from 

the probability distribution into account the solution 

can become computational intractable [6]. Due to the 

nature of the problem considered in this work the 

probability distributions of the considered 

parameters are assumed to be unknown. Therefore, 

from the two main approaches, the robust 

optimization method will be applied. 

Robust optimization is a method developed to protect 

the schemes of distribution against uncertainties. 

Soyster [7] started exploring the field of robust 

optimization based on the worst-case scenarios. 

Ben-tal and Nemirovski[6] and Soyster[7] himself 

point out that this early method produces ultra-

conservative solutions. Continuing the work of 

Soyster two less conservative main approaches are 

developed by the groups of respectively Ben-tal[7] 

and Bertsimas[8]. Ben-tal et al. use an ellipsoidal 

uncertainty set. This results in a non-linear set of 

equations. While for the method developed and 

Bertsimas et al., using a polyhedral uncertainty set, 

the set of equations remain linear. Bertsimas and 

Thiele [9] extend this robust optimization to a broad 

variety of networks to protect the distribution process 

against demand uncertainty. In [10] the method is 

extended to supply uncertainty. This approach will be 

applied here in combination with the rolling horizon 

method [11]  

In this paper first the assumptions of the distribution 

process will be discussed. Based on the description 

of the distribution process and the assumptions the 

model will be formulated as a mixed integer 

programming model. For solving the model a solution 

method is selected, resulting in the rolling horizon 

method. After specifying the solution method, robust 

optimization will be applied to study the effect of the 

supply uncertainty on the distribution process. 

2 Model assumptions and 

formulation: 
 

The model is a multi-period inventory control problem 

with a specified planning horizon. Here it will be 

formulated in the form of a mixed integer program 

(MIP) with the goal to minimize the total costs, 

subject to the constraints resulting from the 
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description in the introduction and the assumptions 

described below.  

The assumptions and boundary conditions 

underlying the model are: 

 

- The amounts of vaccines the number of vaccine 

units each containing a fixed amount of 

vaccines. 

- The demand for the first dose is prescribed 

- The demand for both doses must be fulfilled  

- Shortages at the destination can only occur for 

the first dose. 

- The second dose must be available in a 

prescribed time interval 

- No shortages can occur at the KLM facility. 

- Shortages must be fulfilled in the following period 

- Shortages can only occur if there is no inventory 

at hand. 

- The vaccines have a fixed shelf life  

- Ordered vaccines have no lead time and arrive 

fresh at the KLM facility. 

- Products are depleted on a FIFO basis from the 

respective inventories 

- The dry ice in the passive cool boxes needs to 

be replaced at the end of each period. 

- The dry ice can be replaced three times, thus the 

maximum stay of a box is four periods. 

- All planes have a fixed capacity in terms of 

vaccine units. 

- The transportation time is negligible compared to 

the period length. 

 

The goal of the model is to minimize the cost involved 

for KLM. 

Furthermore the model will determine: 

 

- The total cost for the distribution process 

- The amount of vaccines which need to be 

ordered in each period 

- The amount of transport in each period to each 

destination 

Results will be generated for the amount of:  

- inventory at KLM and at different locations in 

each period. 

- vaccine units transported each period 

- shortage for the first dose at each destination 

location in each period 

- demand for the second dose for each destination 

in each period 

- dry ice required each period 

- flights in each period to each destination 

 

In the presentation of the model the indexes of the 

variables belong to the following sets: 

Set notations: 
 

 

𝒕 ∈ 𝑻 t is a time period of the planning horizon 
set 𝑻 .  𝑻 = {𝟏,… , 𝑻} 

𝒍 ∈ 𝑳 l is a location belonging to the set of all 
locations 𝑳.  𝑳 = {𝟎, 𝟏, … , 𝑳} 

𝒑𝒅  ∈ 𝓟𝒅 𝑝𝑑 is the product age of the vaccine, 𝓟𝒅 
is the set of product ages.  

ℤ+ Set of all positive real integers including 
0 

The assumptions and the description are formalized 

by the following set of equations.  

Total costs: 

To calculate the total costs of the model a cost 

function is defined in equation (1). This cost function 

consist of the elements: cost of respectively: 

ordering, inventory at the KLM facility, (penalty for) 

shortage at the destinations, wasted vaccines and 

transport.

 

Total cost =  ∑𝑣𝑡 ∗ 𝐾

𝑡∈𝐻

⏞      
𝑂𝑟𝑑𝑒𝑟 𝑐𝑜𝑠𝑡

+ ∑((ℎ𝐴 + 𝑟𝑒 + 𝑐𝑑𝑖) ∗ 𝐼𝑡
𝐴,𝐾𝐿𝑀)

𝑡∈𝐻

⏞                  
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡

+ 𝜑 ∗∑∑𝑆𝑡
𝑙

𝑙∈𝐿𝑡∈𝐻

⏞        
𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

+ 𝜔 ∗∑(𝐶𝑐𝑏 ∗ 𝑊𝑎𝑠𝑡𝑒𝐴.𝑡 +∑𝑊𝑎𝑠𝑡𝑒𝑡,𝑙
𝑙∈𝐿𝑡∈𝐻

)
⏞                        

𝑊𝑎𝑠𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡

  +  ∑∑𝑦𝑡,𝑙 ∗ 𝑑𝑙 ∗ 𝑡𝑐

𝑙∈𝐿𝑡∈𝐻

⏞            
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑐𝑜𝑠𝑡

 

 
 

(74) 
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The total costs are subject to the following 

constraints:  

Constraints on ordering: 

𝑢𝑡 −𝑀 ∗ 𝑣𝑡  ≤ 0,   𝑀 ≫ 𝑢𝑡 , ∀𝑡 ∈ 𝐻       (75) 

𝑢𝑡 ≤ 𝑄𝑡
𝑒𝑥𝑡 , ∀𝑡 ∈ 𝐻       (76) 

 

Inventory constraints: 

𝐼𝑡,𝑝𝑑
𝐴 = 𝑢𝑡

𝐴 −∑𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿

, 𝑓𝑜𝑟 𝑝𝑑 = 0 (77) 

𝐼𝑡,𝑝𝑑
𝐴 = 𝐼𝑡−1,𝑝𝑑−1

𝐴 −∑𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿

,  

𝑓𝑜𝑟 1 < 𝑝𝑑 < 𝑝𝑑,𝑚𝑎𝑥 

(78) 

  

𝐼𝑡,𝑝𝑑
𝐴 = 𝐼𝑡−1,𝑝𝑑−1

𝐴 −∑𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑙∈𝐿

−𝑊𝑎𝑠𝑡𝑒𝐴,𝑡 = 0, 

 𝑓𝑜𝑟 𝑝𝑑 = 𝑝𝑑,𝑚𝑎𝑥,    

 

(79) 

𝐼𝑡,𝑝𝑑
𝑙 = 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑

𝐴 − 𝑑𝑡,𝑝𝑑
𝑙,1 − 𝑑𝑡,𝑝𝑑

𝑙,2  ,  

𝑓𝑜𝑟 𝑝𝑑𝑖 = 0    
 

(80) 

𝐼𝑡,𝑝𝑑
𝑙 = 𝐼𝑡−1,𝑝𝑑−1

𝑙 + 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴 − 𝑑𝑡,𝑝𝑑

𝑙,1 − 𝑑𝑡,𝑝𝑑
𝑙,2   

, 𝑓𝑜𝑟 0 < 𝑝𝑑 < 𝑝𝑑.𝑚𝑎𝑥     
 

(81) 

𝐼𝑡,𝑝𝑑
𝑙 = 𝐼𝑡−1,𝑝𝑑−1

𝑙 + 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴 − 𝑑𝑡,𝑝𝑑

𝑙,1 − 𝑑𝑡,𝑝𝑑
𝑙,2

−𝑊𝑎𝑠𝑡𝑒𝑡
𝑙 = 0 

, 𝑓𝑜𝑟 𝑝𝑑 = 𝑝𝑑.𝑚𝑎𝑥     
 

(82) 

∑ 𝐼𝑡,𝑝𝑑
𝐴

𝑝𝑑∈𝓟𝒅

, ≤ 𝐶𝐴 

 

(83) 

∑ 𝐼𝑡,𝑝𝑑
𝑙

𝑝𝑑𝑖,𝑚𝑎𝑥

𝑝𝑑𝑖=0

, ≤ 𝐶𝐿,𝑙 

 

(84) 

𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = ∑ (𝐷𝐼𝐹𝐴 ∗ 𝐼𝑡,𝑝𝑑
𝐴 )  

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑=0

 

 

(85) 

𝐷𝐼𝑡,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≤ 𝐷𝐼𝑡,𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  (86) 

 

Constraints on the demand: 

𝐷𝑡
𝑙 = 𝐷𝑡

𝑙,1 + 𝐷𝑡
𝑙,2 + 𝑆𝑡−1

𝑙  (87) 

𝐷𝑡
𝑙,2 = 𝐷𝑡−𝑟𝑡

𝑙,1 − 𝑆𝑡−𝑟𝑡
𝑙 , 𝑡 ≤ 𝑟𝑡 , ∀𝑡 ∈ 𝐻, ∀𝑙 ∈ 𝐿  (88) 

𝐷𝑡
𝑙,1 − 𝑆𝑡

𝑙 = ∑ 𝑑𝑡,𝑝𝑑
𝑙,1

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑𝑖=0

,    

(89) 

𝐷𝑡
𝑙,2 = ∑ 𝑑𝑡,𝑝𝑑

𝑙,2

𝑝𝑑,𝑚𝑎𝑥

𝑝𝑑𝑖=0

                                                 

(90) 

𝑆𝑡
𝑙 − 𝑞𝑡 ∗ 𝑀 ≤ 0                                                         (91) 

∑ 𝐼𝑡,𝑝𝑑
𝑙

𝑝𝑑𝑖,𝑚𝑎𝑥

𝑝𝑑𝑖=0

− (1 − 𝑞𝑡) ∗ 𝑀 ≤ 0                   

(92) 

 

Transport constraints: 

𝑇𝑡,𝑙 = ∑ 𝐶𝑐𝑏 ∗ 𝑤𝑡,𝑙,𝑝𝑑
𝐴

𝑝𝑑∈𝑃𝑑

 (93) 

0 ≤ 𝑦𝑡,𝑙 ≤ 𝑓𝑓𝑙𝑖𝑔ℎ𝑡,𝑙  , ∀𝑡 ∈ 𝐻  and ∀𝑙 ∈ 𝐿    (94) 

 

𝑇𝑡,𝑙 ≤ 𝑦𝑡,𝑙 ∗ 𝐶𝑝𝑓 (95) 

 

Elaborating briefly on the constraints: The total costs 

for the distribution of vaccines are presented in 

equation (1). The choice of the model to order in a 

period, is determined with the Big-M method[12] 

given by equation (2). The order amount cannot 

exceed the available supply at the external supplier 

is stated by equation (3). To account for the 

perishability of the vaccines the inventory levels for 

different product ages are traced by equation (4-6) 

for the KLM facility and (7-9) for the destinations. In 

(7-9) the age-specific demand fulfilment for both 

doses is taken into account. The storage facilities 

cannot store more than the capacity allows as shown 

in equation (10) and (11). The amount of dry ice 

required for storage at the KLM facility is determined 

in equation (12) and cannot exceed the upper bound 

imposed by equation (13). Based on the double dose 

requirement of the vaccines and the allowed 

shortage for one period, the periodic demand for a 

destination is given by equation (14). The fixed 

period between the doses and the possible shortage 

determines the required amount for the second dose 

(15). The demand for both doses can be fulfilled with 

vaccines independent of the product age (16) and 

(17). Equation (16) shows the relation between the 

fulfilment of the first dose and the shortage. To 

compensate for the possibility in equation (16) to 

have inventory at hand while incurring a shortage, 

equation (18) and (19) are imposed. Equation (20) 

determines the transport amount from KLM to the 

respective destination in a given period taking the 

product ages of the vaccines into account. The 

number of flights available to a destination is 

bounded by the flight frequency as shown in equation 

(21). The transport capacity based on the available 

flights and the capacity of a flight bounds the 

transport amount (22). 

This set of equations constitutes the model used  to 

study the influence of supply uncertainty on this 

distribution process.  
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3 Methodology: 
 

To study the influence of supply uncertainty, the 

formalism of robust optimization[8] will be presented 

and applied to the distribution process.  

Robust optimization 
The generic optimization model consists of a cost 

function subject to a set of constraints and boundary 

conditions. The model can be formulated as:  

Min 𝐜’𝐱 (96) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑨𝒙 ≤ 𝒃 (97) 
 

For robust optimization the uncertainty resides in the 

matrix A that consists of elements 𝑎𝑖𝑗. 

Robust optimization has to find a solution which is 

feasible for all values of the uncertain parameters. 

With robust optimization an unknown uncertainty 

probability distribution can be taken into account. 

This is accomplished by specifying an interval of the 

uncertainty that is given as: [�̅�𝑖𝑗 − �̂�𝑖𝑗 , �̅�𝑖𝑗 + �̂�𝑖𝑗] in 

which the uncertain parameter 𝑎𝑖𝑗 resides. �̅�𝑖𝑗 is used 

to denote the nominal value and �̂�𝑖𝑗 is the ‘half length’ 

value.  

Less conservative approaches [6][8] use the 

uncertainty interval to determine the scaled deviation 

of the uncertain parameter. The scaled deviation is 

determined as: 

𝑧𝑖𝑗 =
𝑎𝑖𝑗 − �̅�𝑖𝑗

�̂�𝑖𝑗
 (98) 

 

The value of the scaled deviation lies in the interval 

of [-1,1]. By imposing a boundary condition on the 

scaled deviation conservative solutions can be 

avoided. In this work the polyhedral uncertainty set 

as described by Bertsimas et al.[8] is used.  

The generic application of the polyhedral uncertainty 

set works as follows: 

For each row of the product Ax that contains 

uncertainty it should hold that: 

∑�̅�𝑖𝑗𝑥𝑖𝑗 +∑𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗
𝑗

≤ 𝑏𝑖
𝑗

, ∀𝑖 (99) 

The idea of robust optimization is to maximize the 

uncertainty term ∑ 𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗𝑗  under the conditions 

formulated by Bertsimas et al [8] in equation (27).  

∑�̅�𝑖𝑗𝑥𝑖𝑗 +max (∑𝑧𝑖𝑗�̂�𝑖𝑗𝑥𝑖𝑗)

𝑗

≤ 𝑏𝑖
𝑗

,∑𝑧𝑖𝑗
𝑗

≤ Γ𝑖 , ∀𝑖  

(100) 

 

The total allowed sum of scaled deviations of all 

uncertain parameters for each row i is limited by the 

parameter Γ𝑖, this Γ𝑖 is called the ‘budget of 

uncertainty’.  

This constraint cannot be solved directly due to the 

maximization term. Using the principles of duality 

theory, proven by Bertsimas et al.[8] the 

maximization term can be converted into a 

minimization term.  

The implementation of the dual formulation is 

implemented in the original uncertain equation (27) 

and results in the robust counter part of the 

constraint:  

∑�̅�𝑖𝑗𝑥𝑖𝑗 + 𝑞𝑖 ∗ Γ𝑖 +∑𝑝𝑖𝑗  

𝑗

≤ 𝑏𝑖
𝑗

, ∀𝑖 

 

(101) 

𝑞𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑖 (102) 

−𝑦 ≤ 𝑥 ≤ 𝑦 (103) 

𝑞𝑖 ≥ 0, 𝑝𝑖𝑗 ≥ 0, 𝑦 ≥ 0 (104) 

 

The 𝑞𝑖 ∗ Γ𝑖 + ∑ 𝑝𝑖𝑗  𝑗 -term protects the solution against 

variation of the uncertain parameter  𝑎𝑖𝑗 in a defined 

interval.  

Application of robust optimization: 
 
The available production capacity at the supplier, 

and thus the available supply is allowed to fluctuate. 

This uncertainty will have an effect on the total costs. 

The implementation of robust optimization starts with 

the constraints on the uncertain parameter. From the 

model formulation the constraint which requires a 

robust counterpart is equation (3): 

𝑢𝑡 ≤ 𝑄𝑡
𝑒𝑥𝑡 

 

(3) 

As  𝑄𝑡
𝑒𝑥𝑡  is uncertain, 𝑄𝑡

𝑒𝑥𝑡 can be written as: 

𝑄𝑡
𝑒𝑥𝑡 = �̅�𝑡

𝑒𝑥𝑡 + 𝑧𝑡 ∗ �̂�𝑡
𝑒𝑥𝑡 

 

(105) 

Where �̅�𝑡
𝑒𝑥𝑡 is the nominal value of  𝑄𝑡

𝑒𝑥𝑡 and �̂�𝑡
𝑒𝑥𝑡 is 

the half length of the interval in which 𝑄𝑡
𝑒𝑥𝑡 resides. 

From initial experiments it can be seen that using a 

production capacity higher than the total transport 

capacity per period has no influence on the total 

costs. Hence, the interval in which the uncertainty 

resides is one sided [10] and defined as:  

[�̅�𝑡
𝑒𝑥𝑡 − �̂�𝑡

𝑒𝑥𝑡 , �̅�𝑡
𝑒𝑥𝑡]. 

From the theory of Bertsimas et al. [8] the constraints 

regarding the order amount (𝑢𝑡) can be written as:  
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𝑢𝑡 − �̅�𝑡
𝑒𝑥𝑡 + 𝑞𝑡 ∗ Γ𝑡 +∑𝑝𝑡𝑗  

𝑗

≤ 0 

 

(106) 

𝑞𝑡 + 𝑝𝑡𝑗 ≥ �̂�𝑡
𝑒𝑥𝑡 (107) 

𝑞𝑡 ≥ 0, 𝑝𝑡𝑗 ≥ 0, (108) 

 

Implementing the robust counterpart completes the 

model. The size of the model requires a solution 

method that provides good quality results in 

reasonable computation time. 

4 Solution method 
 

First the genetic algorithm was modified [13] 

creating alternative mutation operators and 

selection process. Although promising, the 

speed and accuracy of this method are not on 

the level yet to perform the robust analysis. 

Instead as an alternative the rolling horizon 

method is used here. 

Rolling horizon is a method which solves the 

model by dividing the considered planning 

horizon into smaller time windows. This way the 

computation time can be decreased by 

consecutively solving the reduced planning 

horizons, using the solution of the previous time 

window as the input for the following time 

window. The method runs until the total planning 

horizon is reached.  

Three approaches of the rolling horizon method 

will be discussed. All three approaches share 

the decomposition of the total planning horizon. 

The differences between the approaches are on 

how the decomposed time windows are solved. 

The straight forward method solves the model 

by using the subsequent time windows for the 

given decomposition size. The second method 

considers relaxed future periods in solving the 

decomposed problem. In this method in each 

iteration an additional time period is added, but 

for this time period the integrality constraint is 

relieved. The integrality for this time period is 

imposed in the next iteration of this method. The 

third method is an extended version of the 

second method. The difference is in the addition 

of overlapping of the time periods subject to 

integrality constraints. Examples of the three 

different approaches are depicted in figure 1. 

The variables involved for solving the rolling 

horizon approaches are the number of time 

periods which are optimized with the integrality 

constraints (η), the extension of this time 

window for the number of periods which are 

relaxed (μ) and the shift amount for overlap 

(step).  

Evaluating the rolling horizon methods shows 

that the approach with relaxation and shifting  

performs superior to the first two approaches 

[13]. Therefore this method will be used. 

5 Results: 
 

Robust optimization is applied on the situation 

with four destinations, a constant demand rate 

of 100 for all destinations and a planning horizon 

of 21 weeks. The model  will be solved using the 

rolling horizon method including relaxation and 

shifting. The time window of 12 and a shift 

amount of 2 are used. When the available 

supply is larger than the transport capacity the 

total costs are not affected, see fig 2. But the 

total costs are largely influenced by the 

available supply in the range of interest i.e. from 

Figure A-1: from left to right: Straight forward RH-approach, considering future periods in the RH-approach and overlapping the 
consecutive solved time periods. 
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the minimum amount required up to the 

transport capacity. Consequently the  supply 

uncertainty in this range affects  the total cost 

strongly, so this interval of the available supply, 

will be used as the uncertainty interval for the 

robust optimization. 

 

The optimal robust solutions for different values 

of Γ are determined. The values of Γ range from 

0 to 1. The solution for each Γ value provides  

the total costs, the order and the transport 

amounts to each destination combined with the 

number of flights and the periods in which an 

order occurs. The order moments and the 

number of flights can be gathered in a flight and 

order plan. 

To test for which value of gamma the solutions 

are most protected against the supply 

uncertainty, simulations are performed. The 

rolling horizon method is used for this. In the 

simulation the available supply for each 

separate time period is randomly  generated 

from the uncertainty interval assuming a uniform 

probability distribution. The flight and order 

plans from the solutions from the robust 

solutions will be used as input for the simulation. 

If the order amounts and transport amounts 

from the robust solutions would be combined 

with the random values of the available supply,  

most probable only the most conservative 

robust solution leads to a feasible solution. The 

order and transport amounts are determined 

from the simulation.  

The simulations are tested for 100 sequences of 

available supply. The total costs found with the 

simulations are compared with the total costs 

found in the robust solutions.  

In figure 3 the number of feasible solutions out 

of  the 100 simulations is shown in dependence 

of   Γ.  With increasing conservative values of Γ, 

more feasible solutions can be found. For 

values which are less than Γ = 0.5 very few, 

much less than 15, feasible solutions are found.  

 
In Figure A-4 for the range of values of Γ the 
total costs resulting from the robust solutions 
are compared with the average of the total costs 
of the feasible fraction of the 100 simulations.   
 

 

Figure A-3: Number of feasible solutions resulting from the 100 
simulations with the flight and order plans of the respective 𝛤 -
values. 

Uncertainty 

interval 

Figure A-2: Influence of the available supply on the total costs. 
The interval ranging from the minimum amount required up to 
the transport capacity is used as the uncertainty interval for 
the robust optimization. 

Figure A-4: The  total costs of the robust solutions versus the 𝛤 
-value. These are compared with the average total costs 
calculated from the concrete flight and order plans fitting the 
respective 𝛤 -value. Only the feasible solutions out of the 100 
runs are used, for the numbers of feasible solutions see Figure 
A-3. The bars indicate two times the standard deviation.  For a 
𝛤 -value of 0 (x) no feasible solution are obtained with the 
simulations. (The blue symbols are shifted 0.01 to the right for 
readability) 
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The results of the total costs show a decreasing 

gap between the robust costs and costs 

resulting from the simulation with increasing 

value of Γ. Note that for lower Γ values the small  

fraction of feasible solutions result in a large 

scatter of the total costs found with the 

simulations, indicated in the graph with bars that 

represent two times the standard deviation. For 

a Γ  in the range of 0.7 to 0.9 the costs from the 

simulations and the robust costs are nearly the 

same with only very little scatter, with slightly 

increasing total costs. The best robust solution 

is found in this range. 0.9 gives a feasible 

solution for all simulations. Lowering Γ to 0.7 

results in a somewhat lower fraction of feasible 

solutions and somewhat more scatter on the 

total costs. This comes at the advantage of 

slightly lower total costs for the robust solution. 

For the worst-case scenario (Γ is equal to 1) the 

robust costs are higher than the simulated 

costs. This is caused by the constraints on the 

available supply in the robust solution. 

 

6 Discussion: 
 

For the robust optimization the method 

described by Bertsimas et al. [8] has been used. 

This method uses a Γ  value to protect the 

solution of the model against the supply 

uncertainty up to a certain degree. The robust 

solutions for different values of Γ are 

determined. The robustness of each /gamma 

value is tested by performing simulations using 

the resulting flight and order plans. The results 

show that a high value of Γ is required to protect 

the solution against supply uncertainty. Feasible 

solutions are obtained in the range of  Γ values 

from 0.6 up to 1, while for lower values of Γ only 

small fractions of the simulations lead to feasible 

solutions. Based on the results of the robust 

optimization combined with the costs found with 

the simulations a Γ in range of 0.7 and 0.9 show 

a reasonable to good protection against the 

supply uncertainty. In this range the fraction of 

feasible solutions increases. This robustness 

does come at a price; The cost for the Γ  value 

of 0.9 are 4% higher than the costs for the Γ  

value of 0.8 and 10% higher than the costs for 

/gamma equal to 0.7. All total costs are higher 

than the nominal case without protection for 

uncertainty. Choosing for a robust approach 

with a Γ  value of 0.8 results costs that are 16% 

higher than the nominal case. Needless to say 

that opting for this nominal case will expose the 

company to a very high probability of not 

satisfying the boundary conditions. 

There is a high level of conservatism required. 

This might be influenced by the probability 

distribution used to generate the values of the 

available supply. Notwithstanding that the 

method developed by Bertsimas [8] is intended 

to be insensitive to the details of the probability 

distribution. Intuitively one might guess that 

robustness of the solutions could be sensitive to 

some details e.g. skewed probability 

distributions towards the transport capacity  

might allow for less conservative values of Γ. 

This influence of the probability distribution is 

not studied here, detailing on this aspect may 

require future attention. 

 

7 Conclusion and further 

research: 
 

In this paper the distribution process of the 

vaccine supply  chain is studied. A literature 

study shows the complexity of the vaccine 

supply chain. The influence of supply 

uncertainty on the distribution process of 

vaccines based on a mixed integer 

programming formulation is addressed. Of the 

three rolling horizon method approaches, the 

one that includes relaxation and shifting 

performs the best and results high quality 

solution at reasonably low computation times. 

This method is therefore used for the analysis of 

robust optimization that takes supply uncertainty 

into account following the approach of 

Bertsimas et al.[8].  

The results of the robust optimization show that 

a high level of conservatism is required to 

protect against uncertainty. Expressed in Γ 

values this ranges from 0.7 to 0.9 showing 

increasing protection. The protection is 

described as the fraction of feasible solutions of 

100 simulation runs. For a Γ of 0.7  85 % of the 

runs were feasible, for a Γ of 0.9  100% of the 

runs were feasible. The increase of protection 
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comes at a price of higher cost. To obtain the 

protection level of a Γ value of 0.7 the costs are 

12% higher compared to the nominal case and 

25% for a Γ of 0.9. 

Some recommendations for future work: The 

robust analysis is performed with a uniform 

distribution for the uncertain parameter. 

Analysing the effect of different, in specific very 

skew, distributions might be worthwhile.  

The results of the robust optimization show to 

be conservative. It would be interesting to  

develop  a robust optimization method which 

does not require Γ for each period but where 

alternatively the Γ limits the sum of scaled 

deviations over all the time periods. 

 

References:

 

[1] Chopra, S., & Meindl, P. (2013). Supply 

chain management. Essex, England: Pearson 

Education. 

[2] Pfizer - Fact sheet. (2021). Retrieved March 

7, 2021, from 

https://cdn.pfizer.com/pfizercom/Pfizer_PGS_C

OVID-19_Factsheet_071122.pdf 

[3] Duijzer, L. E., Van Jaarsveld, W., & Dekker, 

R. (2018). Literature review: The vaccine 

supply chain. European Journal of Operational 

Research, 268(1), 174-192. 

[4] Georgiadis, G. P., & Georgiadis, M. C. 

(2021). Optimal planning of the COVID-19 

vaccine supply chain. Vaccine, 39(37), 5302-

5312. 

[5] Tavana, M., Govindan, K., Nasr, A. K., 

Heidary, M. S., & Mina, H. (2021). A 

mathematical programming approach for 

equitable COVID-19 vaccine distribution in 

developing countries. Annals of Operations 

Research, 1-34. 

[6] Ben-Tal, A., & Nemirovski, A. (2002). 

Robust optimization–methodology and 

applications. Mathematical 

programming, 92(3), 453-480. 

[7] Soyster, A. L. (1973). Convex programming 

with set-inclusive constraints and applications 

to inexact linear programming. Operations 

research, 21(5), 1154-1157.  

[8] Bertsimas, D., & Sim, M. (2004). The price 

of robustness. Operations research, 52(1), 35-

53. 

[9] Bertsimas, D., & Thiele, A. (2006). A robust 

optimization approach to inventory 

theory. Operations research, 54(1), 150-168. 

[10] Chu, J., Huang, K., & Thiele, A. (2019). A 

robust optimization approach to model supply 

and demand uncertainties in inventory 

systems. Journal of the Operational Research 

Society, 70(11), 1885-1899.  

[11] Glomb, L., Liers, F., & Rösel, F. (2022). A 

rolling-horizon approach for multi-period 

optimization. European Journal of Operational 

Research, 300(1), 189-206. 

[12] Duinkerken, M., & Altasoy, B. 

(2018). Integer programming. Presentation, TU 

Delft. 

[13] Bulters, J., Pourmohammad-Zia N., 

Schulte & F., Negenborn N. (2022). The 

distribution process of multi-dose vaccines, 

Master thesis 

 



78 
 

 

Appendix B: Additional intermediate support results on 

genetic operators 
 

The parameters for the cross-over rate, mutation rate, elitism and diversity will be varied. The 

population size and the number of generations are the same for all experiments. The population size 

is 50 chromosomes and the number of generations is 1000. 

Recombination  strategies: 

 
For each recombination strategy the cross-over rate is studied. The figures below show the average 

total cost for 10 runs for each cross-over rate (C_rate). The cross-over rate is varied between 0 and 1 

with increments of 0.2. The results will be presented in two figures for each recombination strategy. 

The first figure shows the average cost of the ten runs per generation and compared with the optimal 

solution. The second figure shows the found minimal cost for each cross-over rate. 

Arithmetic: 

Single Point: 
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Multi point: 

 

The results show typical behaviour of the GA where for all strategies the GA gets stuck in a local 

optimum. The results show a higher convergence speed for multi-point and single point cross-over 

Mutation rate combined with the different cross-over strategies: 

For each recombination strategy the mutation rate is studied. The figures below show the average 

total cost for 10 runs for mutation rate. Often used mutation rates found in literature vary between 

[1/#genes – 0.2] 
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The results with varying the mutation rate show non typical behaviour for the arithmetic cross-over 

and the single point cross-over and to less extend for the multipoint. The cost increase with the 

increase of mutation rate. 

Elitism:  

What is the influence of elitism ( How much good chromosomes are taken to the next generation) 
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The need for elitism is evident from the figures except for the multipoint cross-over. This cross-over 
strategy is less influenced by the elitism. 
 
Diversity: 
 
Adding diversity to the population is a method to aid the GA escaping local optima [21]. Diversity 
initially is based on the cost. The following figures show the percentage of best performing 
individuals of the current population. Diversity is implemented as the X% best unique chromosomes 
and (100-X)% unique chromosomes are selected at random from the current population which do 
not belong to the X% best unique chromosomes. 
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For the arithmetic cross-over adding diversity has a worse effect. Where increasing the number of 

best solutions leads to better results. For single point and multi-point cross-over adding diversity 

from 0.4 has a positive influence on the convergence 

 

Results of the improved mutation operator 
 

As only a single  gene is selected for mutation, the mutation rate has no influence. From this the 

parameters which will be varied are the cross-over rate and the elitism parameter. This is done as the 

functioning of the algorithm cannot be assigned to a single parameter or operator. The cross-over 

rate is varied between 0.6 and 1, where the elitism is set in steps of 10 % starting at 10% to 100%. 

Starting with the arithmetic cross-over followed by the single point and multi-point cross-over: 
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