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Abstract

Contrails, formed under specific atmospheric conditions, have a noteworthy role in heat-trapping within
the atmosphere. This study bridges the gap between theoretical contrail formation models and real-world
data by employing flight information from OpenSky and meteorological data from the European Centre
for Medium-Range Weather Forecasts. We introduce a computationally efficient contrail estimation mod-
ule, leveraging a client-server architecture that allows on-demand weather data interpolation via an API,
significantly reducing computational load and enhancing performance locally. The study also benchmarks
the entire pipeline, from data acquisition to contrail prediction, offering a robust tool for future air traffic
studies requiring interpolated weather data.
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1. Introduction

1.1 Meteorological data for flight-based analysis

Aviation research has long been intertwined with meteorological data. Trajectory-based research
often relies on weather data provided by meteorological institutes to ascertain the wind and temper-
ature conditions of the flight, both in the strategic and tactical phases, as well as in post-analyses.
For studies reliant on ADS-B data, where only ground speed is presented, wind becomes a crucial
source of information for estimating the flight’s true airspeed. This, in turn, facilitates a better ap-
proximation of aircraft performance. In an earlier study [1], the wind was found to be a significant
factor in assessing aviation emissions.

Wind information is also pivotal for trajectory optimization studies. Given a specific aircraft and
take-off mass, meteorological conditions are one of the primary factors causing variations in the
actual optimal flight trajectory. In the study [2], the effect of wind on optimal trajectory generation

was examined. One of the challenges in applying wind data in large-scale optimization has been the
slow process of obtaining and processing the wind data.

1.2 Meteorology Information for Contrail Formation

The formation and persistence of contrails are highly contingent on the prevailing meteorological
conditions. Understanding these atmospheric parameters is important for the analysis of contrail
formation and its subsequent ramifications. These meteorological variables include temperature,
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humidity, and atmospheric pressure at a given flight altitude.

The temperature and saturation levels in the surrounding atmosphere play a pivotal role in contrail
formation. When aircraft engines expel hot exhaust gases into the cooler ambient atmosphere, con-
trails are likely to form if the atmospheric saturation is surpassed. The lower the temperature, the
higher the propensity for contrail formation and persistence. Moreover, the relative humidity with
respect to ice is a significant parameter [3], as contrails tend to persist in higher humidity conditions,
evolving into contrail cirrus clouds under favorable conditions.

Atmospheric pressure, albeit to a lesser extent compared to temperature and humidity, also influ-
ences contrail formation. The pressure dynamics affect the rate at which exhaust gases from aircraft
engines mix with the ambient atmosphere, thereby influencing the initial formation and subsequent
dispersion or persistence of contrails. Additionally, wind conditions at flight altitude can impact
the dispersion and longevity of contrails. Wind shear, for instance, can either elongate or dissipate
contrails, affecting their visual and radiative properties.

1.3 Challenges of Integrating Meteorological Data

The primary challenge lies in the computational burden of processing large volumes of trajectory
data against the four-dimensional meteorological grids, encompassing time, latitude, longitude, and
altitude.

There are often two bottlenecks in utilizing the meteorological data. First and foremost, the request
and download of ERA5 data from ECMWF can be time-consuming. For large datasets, the queueing
for resources can take up to hours, with additional minutes required for downloading the data once
it is ready. Given that only a single request can be run at a time, requesting ERA5 data for each
trajectory with its bounding box is highly inefficient.

The second challenge pertains to the interpolation model. Constructing such a model necessitates
the grid weather data (in GRIB format or netCDF format) to be fully loaded into the memory before
the selection of a sub-region for the construction of the interpolation model. This task is often both
I/0 intensive and RAM intensive, posing significant hurdles to efficient data processing and analysis.

In this paper, we propose a new approach that addresses these two main challenges, significantly im-
proving the speed of incorporating ERA5 weather data into aviation research. A new Python library,
FastMeteo, is developed and shared as an open-source tool. We use contrail formation estimation as
the primary use case to demonstrate the exceptional speed of obtaining interpolated ERA5 data for
any given flight trajectory.

2. Data

2.1 Trajectory and Weather Data

This study leverages a representative sample of flight data obtained from the OpenSky Network [4],
which boasts an extensive network of receivers scattered globally. The utilization of OpenSky data
serves to illustrate the efficacy and expediency with which contrail estimation can be performed
when dovetailed with a comprehensive meteorological dataset.

The requisite meteorological variables, namely temperature and relative humidity, are gleaned from
the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset [5]. The ERA5
dataset has a high-resolution grid, sporting a resolution of 0.25 degrees horizontally. This granularity
extends across 37 vertical layers, encompassing a pressure range of 1 hPa to 975 hPa, thereby pro-
viding a rich vein of atmospheric data crucial for nuanced contrail analysis. The reanalysis dataset
is provided at each hour, providing accurate information for many aviation use cases.
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In our use case of contrail analysis, only the ERA5 levels pertinent to en-route flights are considered,
spanning between 100 hPa (approximately 53,000 ft) and 700 hPa (approximately 10,000 ft). The
excluded levels either surpass the typical airliner ceiling or fall beneath the common altitude range
for contrail formation.

2.2 Analysis-Ready, Cloud Optimized ERA5 Data

Crowdsourcing platforms like Pangeo Forge accelerate scientific pursuits by offering frameworks
and cloud infrastructure to transform provider archives into Analysis-Ready, Cloud Optimized (ARCO)
data stores, underscoring a community-driven approach towards generating analysis-ready, cloud-
optimized data, including ERAS5 data [6].

The Google ARCO-ERA5 dataset facilitates accessible global climate history in a cloud-optimized
format. The open ARCO-ERAS5 data, used in this paper, aims to make global climate history highly
accessible in the cloud by the Google Cloud Public Datasets. This version of ERA5 has converted
grib data to Zarr which is oriented towards common research and machine learning workflows.

Zarr, a format for chunked, compressed, N-dimensional arrays, presents several advantages over
the commonly used GRIB format [7], particularly in cloud-based or parallel computing settings.
It enables efficient chunking for better data access, compression for storage efficiency, concurrent
read/write access beneficial in multi-threaded environments, and structured metadata storage for
enhanced data interpretation and discovery. Transitioning from GRIB to Zarr within the ARCO-
ERAS5 significantly improves the accessibility and speed for loading a large amount of ERA5, making

it a prerequisite for our approach.

3. System architecture of FastMeteo tool

In this research, we propose the FastMeteo python library to handle the acquisition and interpolation
of the meteorology data for any given flight or set of locations. This architecture allows for on-
demand data acquisition of ERA5 data from the Google ARCO datastore. We employ a local caching
strategy to enhance computational performance.
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Figure 1. The structure of the proposed FastMeteo architecture

Figure 1 shows the architecture of the FastMeteo system. It can be used as an imported common
Python package if the data is stored on the local computer. It can also be deployed in a server-client
model, where the ARCO ERAS5 data is cached on a server, and the interpolation of weather data can
be performed through API using only the client Python module.
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There are several key processes involved in the design of this architecture, which are explained as
follows:

1.

Firstly, a request can be made either from an API (python function) or a client. The data frame is
sent to the FastMeteo service, which is either hosted locally or on a remote server.

The FastMeteo server code checks whether the hours, based on timestamps from the data frame,
are already downloaded in the local cache. If not, it will sync the hour of data with the Google
ARCO-ERAS5 public data store.

Based on the latitude and longitude boundary of the flight, we only load the region of data that
is associated with the requested data frame. Since the data is stored in Zarr format, where data
are stored in chunks according to the four-dimensional indices (time, latitude, longitude, and
altitude), the extraction and loading of data are fast.

Next, the linear interpolation of relevant meteorological features is computed based using the
xarray. This process is vectorized and also provides a signification improvement in computation
efficiency.

Finally, a new data frame, containing the original information and new columns with interpolated
meteorological information is returned or sent to the client.

The use of the library is extremely simple. Once the library is installed, it takes only two lines of
code to get the weather information for a given flight or position. In the following code snippet
(Figure g) we first define the basic information of time, latitude, longitude, and altitude, which are
required for the input. After that, the two lines of the code define the location for the local Zarr
cache and then obtain the weather information through the interpolate function.

import pandas as pd
from fastmeteo import Grid

flight = pd.DataFrame(

{
"timestamp”: ["2021-10-12T01:10:00", "2021-10-12T01:20:00"],
"latitude”: [40.3, 42.5],
"longitude”: [4.2, 6.6],
"altitude”: [25_000, 30_000],
}

# define the location for local store
fmg = Grid(local_store="/tmp/era5-zarr")

# obtain weather information
flight_new = fmg.interpolate(flight)

Figure 2. Example code using FastMeteo library to obtain meteorology data and provide interpolation of relevant parame-
ters for the given flight

For example, the following snippet shows the input dataframe:

timestamp,icao24,latitude,longitude,altitude

2021-03-07 15:38:40+00:00,a56661,41.73921,-87.96647,10050.0
2021-03-07 15:38:45+00:00,a56661,41.7328,-87.97053,10275.0
2021-03-07 15:38:50+00:00,a56661,41.72649,-87.97452,10475.0
2021-03-07 15:38:55+00:00,a56661,41.72021,-87.97845,10675.0
2021-03-07 15:39:00+00:00,a56661,41.71364,-87.9826,10900.0
2021-03-07 15:39:05+00:00,a56661,41.70808,-87.98619,11125.0
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while the new data frame provide by FastMeteo contains the following data:

timestamp,icao24,latitude,longitude,altitude,u_component_of_wind,v_component_of_wind, temperature, specific_humidity
2021-03-07 15:38:40+00:00,a56661,41.73921,-87.96647,10050.0,4.93797,-7.83555,266.78062,0.00019

2021-03-07 15:38:45+00:00,a56661,41.7328,-87.97053,10275.0,4.90272,-8.05699,266.43374,0.00018

2021-03-07 15:38:50+00:00,a56661,41.72649,-87.97452,10475.0,4.87196,-8.2515,266.12855,0.00018

2021-03-07 15:38:55+00:00,a56661,41.72021,-87.97845,10675.0,4.84209,-8.44564,265.82602,0.00017

2021-03-07 15:39:00+00:00,a56661,41.71364,-87.9826,10900.0,4.80977,-8.66434,265.48861,0.00017

2021-03-07 15:39:05+00:00,a56661,41.70808,-87.98619,11125.0,4.77882,-8.88355,265.15389,0.00016

When running the tool in a server-client mode. The following script can be used to start a FastAPI
service on the server, which handles the flight date request, obtaining Google ARCO data if the
partition is not on the server, perform the interpolation of weather data, and return the final data to
the client.

fastmeteo-serve --local-store /tmp/era5-zarr

On the client side, the following code (Figure 3) can be used to submit and get the process flight with
meteorology data, given that the flight data structure similar to previous Figure 2 is defined.

from fastmeteo import Client

# define the input data
#...

# create the client object
client = Client()

# send the flight and receive the new DataFrame
flight_new = client.submit_flight(flight)

Figure 3. Example code using FastMeteo library in a client-server mode

4. Contrail Formation Model

In this section, we explain how ERAS5 parameters, including temperature and humidity, can be used
for the evaluation of contrail formation based on ADS-B flight data. The models used for determining
contrail formation and persistence are based on existing literature [3].

4.1 Schmidt-Appleman Criterion

Contrails primarily form under air temperatures lower than -40 °C (233 K) and high relative humidity
[3]. Their formation is dictated by the Schmidt-Appleman Criterion [8], a thermodynamic model

accounting for ambient pressure, humidity, and the water-to-heat ratio in exhaust plumes.

When an aircraft traverses atmospheric conditions that satisfy the Schmidt-Appleman Criterion,
saturation with respect to liquid water occurs, leading to contrail formation. The specific tempera-
ture threshold for contrail formation depends on the ambient relative humidity and the slope of the
isobaric mixing line (G), defined as follows:

B EIHZO Cp p
"o M
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where constants are defined in Table 1. The isobaric mixing line, G, is influenced by the ambient
pressure (pp) at the flight level and the overall propulsion efficiency (1), which is assumed to be 0.4
according to literature [9],

The threshold temperature (Trc) is the point where the saturation vapor pressure with respect to
ice intersects with the mixing line. The saturation vapor pressure over water is depicted in blue in
Figure 4 and is described by Murphy and Koop [10]:

6763.22

- 4.2101In(T) + 0.000367T

(2)
1331.22
- 9.445231In(T) +0.014025T

In(er;g) = 54.842763 -

+ tanh[0.0415(T - 218.8)] [53.878 -

where T represents the temperature, and satisfies 123K < T < 332K. The saturation vapor pressure
over ice, shown in orange in Figure 4, is given by:

5723.265
log ejce = 9.550426 — —T +3.53068 In(T) - 0.00728332T (3)

where the temperature (T) is higher than 110 K. Before determining the threshold value Tic, the
temperature Tpy must first be identified, which is given by:

Ty = —46.46 + 9.43In(G - 0.053) + 0.720[In(G - 0.053)]°

Subsequently, the mixing line is defined as the tangent line at the Try point with the saturation water
vapor pressure curve (¢'). T represents the intersection of the mixing line and the saturation water
vapor pressure curve over ice.

Table 1. Constants used in Schmidt-Appleman Criterion

Symbol  Constant Value Unit

Elg,0 Emission index 1.2232 ~(kgn,0/kgiuel)
¢ Specific heat capacity air 1004 Fkg 1K1

€ Ratio molar mass of water vapour and air ~ 0.622 -

Q Specific combustion heat 43x10°  Fkg!

Dst Pressure at steam point 101325 Pa

Dice Pressure at ice point 611.73 Pa

R, Gas constant of water vapor 461.51 Jkg ' K

Ry Gas constant of dry air 287.05 Fkg K1

4.2 Ice Supersaturation

Persistent contrail formation is closely tied to the atmospheric conditions in the ice supersaturation
(ISS) regions. Upon exiting aircraft engines, the hot and humid exhaust gases mix with the colder
ambient air, leading to condensation and ice crystal formation if the ambient air is supersaturated
with respect to ice. Ice supersaturation occurs when the relative humidity with respect to ice (RHI)
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exceeds 100%, allowing for the possibility of ice crystal formation and persistence under suitable con-
ditions. Ice supersaturation can endure for extended periods given the lack of efficient ice nucleating
particles. This phenomenon is critical in understanding the life cycle of persistent contrails.

In this paper, we use the following equation to calculate RHI:

R
RH, = & - 1P (4)
eice Ry eice

where e is the actual vapor pressure of water. q and p are specific humidity and pressure, which are
provided by the ERA5 data. R, and Ry are gas constants for water vapor and dry air (see Table 1).

Finally, the geometric approach of the Schmidt-Appleman Criterion to identifying Tic is visualized
in Figure 4.

25 T T
—— over liquid water ==+ critical temperature : persistent contrail :
— overice —— isobaric mixing line ] non-persistent contrail 1

20 1 ice supersaturation 1 Schmidt-Appleman : :

1 1
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215 220 225 230 235 215 220 225 230 235 215 220 225 230 235
Temperature (K) Temperature (K) Temperature (K)

Figure 4. Contrail forming conditions

5. Results

5.1 Example trajectory

To showcase the capabilities of FastMeteo, we use an example flight trajectory sourced from OpenSky;,
depicted in Figure 5. On the left side of the figure, fundamental flight parameters from ADS-B are
displayed, encompassing position, altitude, and ground speed. The right side of the figure presents
the meteorological data we acquired, such as wind, temperature, and humidity.

Based on the additional temperature and humidity information obtained with FastMeteo, the determi-
nation of persistent contrails can be performed using the previously mentioned Schmidt-Appleman
Criterion and ice supersaturation conditions. Consequently, segments of the trajectory that satisfy
these conditions can be visualized alongside the original trajectory. This is depicted in Figure 6.

In the first plot, the segment of the trajectory satisfying the Schmidt-Appleman Criterion is high-
lighted in light purple. This segment encompasses the majority of the cruise flight due to the rela-
tively cold temperatures. In the second plot, trajectory segments passing through ice supersaturated
regions are marked in light blue. This occurs at the beginning of the trajectory, including portions
of the climb and cruise. In the third plot, trajectory segments with estimated persistent contrails are
marked in red, representing the overlap of the first two conditions.
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groundspeed (kts) N true air speed (kts)
450
400 - 400
3004 350
T T d 300
altitude (Ft) temperature (K)
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0.001
0.000 — —
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Figure 5. An example flight trajectory. On the left: the trajectory obtained from ADS-B data. On the right: enhanced trajec-
tory data with meteorological information.

N ¥ 1 \ N

Schmidt-Appleman
p) 7

Figure 6. Persistent contrails (in red) determined from the example flight trajectory, based on the Schmidt-Appleman and
ice supersaturation criteria.

5.2 Computational benchmarks

In this section, we provide a quick analysis of the computational speed of the FastMeteo library. For
this test, we downloaded one day’s worth of flights that departed from EHAM from the OpenSky
network, encompassing around 850 flights. To test the influence of the number of data points, we
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resampled the dataset at varying rates, ranging from 5 seconds to 600 seconds. This yielded a range
of data points from approximately 860,000 to 8,000 for these scenarios. Table 2 displays the compu-
tational speeds for these different tests. Observations show that when operating on large geographic
coverage, the number of data points doesn’t affect performance significantly. For this dataset, com-
puting the meteorological conditions for all 860,000 data points took less than eight seconds.

Table 2. Benchmarking the computational performance FastMeteo, with one data of all flights departed from EHAM, which
covers a large geographic region.

sampletime | data points | computetime

5s 861,276 747s
10s 430,991 6.43s
20s 215,920 5.92s
30s 144,082 5.76 s
60s 72,462 5.72s
120s 36,664 5.45s
180s 24,723 5.47s
300s 15,152 5.57s
600 s 7,977 5.15s

We also tested the library with individual flights in the dataset to show its performance when applied
to single flights. The results are displayed in Figure 7. Most flights are processed in under 1 second.

1.6 1

-
N
1

—_
N
L

-
o
L

o
=)
A

i

computation time (s)

o
s
)

0.2 1

0.0

0 500 1000 1500 2000 2500
flight distance (nm)

Figure 7. The relationship between computation time and flight distance. The colors indicate the varying density of the
data. We can see that most of the flight in this sample is around 500 nautical miles, with a computation time of around 0.8
seconds.

Based on these two tests, we can determine that the performance is not directly proportional to
the number of data points processed by the FastMeteo library. It is more efficient to process a large
number of data points simultaneously because the interpolation of the multi-dimensional grid is
vectorized, utilizing the underlying xarray library’s interpolation functions.
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6. Discussion

This research makes use of the Google ARCO-ERAS5 public dataset, which is converted from the
ECMWF ERA5 data. This implies that the data quality and errors remain consistent with the original
ERAS5 data. It is noteworthy that not all parameters from the ERA5 data are included in the ARCO
dataset. However, for contrail analysis, critical information on temperature and specific humidity
is available. Other commonly used meteorological data such as wind is also included, facilitating
diverse aviation applications.

In addition to the standard grid presented in the original ERA5 dataset, ARCO also offers a reduced
Gaussian grid [11] for its parameters. This could potentially slightly decrease the storage require-
ments and enhance computation speed. However, due to the complexity of the conversion process,
we opt for the standard grid representation. This could be a future enhancement if such a feature

becomes necessary for the aviation research community.

The efficiency of FastMeteo is primarily attributed to the innovative Zarr storage. It enables grid
data to be stored and retrieved efficiently, even on basic personal computers. It obviates the need to
load the entire dataset to extract specific data. This method is also more effective than relational or
non-relational databases, as Zarr is specifically optimized for multi-dimensional data structures.

The performance bottleneck is the synchronization of local data from Google Cloud Storage. With a
high-speed connection, it can take approximately 10 seconds to synchronize one hour of global data
from Google ARCO-ERA5. However, once the data is available locally, subsequent interpolations
are rapid.

In this paper, we focus on one use case of estimating contrails from flight data using FastMeteo. The
application of this library can be broadened to additional aviation scenarios. For instance, with more
precise wind data, we can more accurately estimate fuel consumption and emissions from flights by
using a velocity closer to the true airspeed. We are also developing new programming interfaces to
access a field of meteorological parameters, aiding the trajectory optimization applications.

7. Conclusion

In this study, we try to tackle the computational complexities associated with the incorporation of
meteorological data into aviation studies. Two challenging tasks are identified: the process of down-
loading the vast ERA5 datasets from ECMWEF and the computational demands associated with data
interpolation. Addressing these issues, the FastMeteo Python library is introduced as an innovative
solution. This tool, which can be seamlessly integrated into current research workflows, simplifies
the acquisition and interpolation of meteorological data, offering remarkable computational effi-
ciency.

The FastMeteo library can function either as a standalone Python library or as a client-server module.
This adaptability ensures that users can tailor their data processing based on the dataset size and
computational infrastructure available.

The OpenSky flight data is used to examine the tool’s capability in contrail estimation, demonstrating
the system’s proficiency in fetching and assimilating complex meteorological data. The transition
to ARCO-ERA5 datasets stored in the Zarr format on cloud platforms significantly optimized the
access and utilization of ERA5 data.

Our benchmarks also reveal the computational efficiency of FastMeteo. The tool exhibits non-linear
performance scaling concerning the number of data points, with a significant increase in efficien-
cies when processing larger datasets. This is attributed to the vectorized interpolation capabilities
embedded in the underlying xarray library.
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