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Chapter 1

Introduction

For achieving the best performance in sailing, the way a sailor interprets the wind
and the water current is crucial. In order to be prepared in the best way to do this,
sailors want to have as much information about the weather circumstances during
their race as possible. This means that they would like to know the dynamics of
the wind and of the current in a detailed way, so they can sail their boat in the best
positions to benefit from these natural phenomena. The goal of this project is to de-
velop a neural network, capable of predicting the near-surface water current based
on wind data. More specifically we have done a case study in which we predict the
water current in the race areas of the 2020 Olympic Games. This is done by training
a neural network on data of which we reduced the dimensionality by applying prin-
cipal component analysis.

The usage of scientific models in forecasting wind fields for sailing competitions has
been going on for a long time already. During the Olympic Games of Sydney in 2000,
numerical weather prediction models were used to provide weather information for
the athletes and coaches as is mentioned in Spark and Connor, 2004.

In order to get a competitive advantage over other countries, the Dutch Sailing Fed-
eration committed to two things:

• Predicting the wind circumstances with a higher resolution in real-time.

• Predicting the water circumstances based on the wind information.

For this thesis, the focus was the latter of these two.
As part of the preparations for the Olympic Games, different parties have worked
together to model detailed wind and current field data in Sagami Bay, based on ac-
tual wind measurements in the area. The wind and corresponding water current
fields that are generated from these meteorological models form the foundation of
our data-based research.

The report is organized as follows. In Chapter 2 more information is given about
Sagami Bay and its complex meteorological circumstances. We also explain broadly
the nuances of the used models that generated the wind and water data that is avail-
able to us, so we get a better understanding of what factors play a role in predicting
the water current. We also give a simple overview of the available data itself. In
Chapter 3, we start analysing the first part of the data: the wind fields. We look at
whether the dimension of these wind fields can be reduced by analysing the velocity
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and direction components of the wind fields and the relation between those compo-
nents over the grid points considered. In Chapter 4, we take a closer look at the
simulated water current fields. We want to see whether we can divide all simulated
fields into a small number of regimes. We also apply principal component analysis
to reduce the dimensionality of the data. Finally in Chapter 5 we train various neural
networks on our reduced data to predict the water current. In Chapter 6 we discuss
our findings and what steps could be considered for future developments.
In Appendix A we describe a tool that we created for the sailing federation during
the 2020 Tokyo Olympic Games, that could provide insights into what current be-
haviour was to be expected based on the wind behaviour. Appendix B provides
analysis results related to race areas that are not discussed in the report.
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Chapter 2

Sagami Bay and The Data

The goal of this chapter is to provide motivation and background information about
the case study. In Section 2.1 we point out the meteorological complexities of Sagami
Bay. In Section 2.2 the assumptions that were used for modeling the data are dis-
cussed. Section 2.3 provides a short overview of the format of the data is introduced.

2.1 Sagami Bay

Sagami Bay is a coastal body of water, south of Tokyo. Figure 2.1a provides a simple
map of the bay and its surroundings. There are several factors that cause the meteo-
rological circumstances in the bay to be complex.
The first factor is the geology of the bay and the land surrounding it. 40 Kilometer
to the west of the bay lies 3777 meter high Mount Fuji. On the west side of Sagami
Bay, the Manazuru Peninsula is located. On the east side the bay is surrounded by
the Miura Peninsula. South of the bay, where its entrance to the Pacific opens lies
Oshima island with a mountain top of 700 meters high. These land masses interfere
with the wind, creating perturbation.

Regarding the water, there are two ocean currents that come together near Sagami
Bay. From the north the bay receives the Oyashio Current, while from the south
the Kuroshio Current influences the flow of water as is described in Iwata and Mat-
suyama, 1989.

The Olympic races were held in the north-east of the bay. There were six differ-
ent race areas which were all located on a relatively small area of the bay. Figure 2.1
shows where the races were held in the bay, and gives an overview of the six race
areas.
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(A) Sagami Bay. The pink area is the part of the bay
in which the Olympic races were held.

(B) Race areas for Olympic races.

FIGURE 2.1: Grids of all race areas for the Olympic Games

2.2 Models

2.2.1 Wind Model

The wind model that produced the data used for this thesis is a complex meteoro-
logical model, called the “Weather Research and Forecasting (WRF) Model" which
is described in Powers et al., 2017. The model is capable of doing real-time numer-
ical weather predictions in a high resolution. Some applications include modeling
the behaviour of wildland fire and forecasting solar energy. Using the WRF model,
detailed wind fields of the bay and its surrounding were simulated. With the help of
a supercomputer, a computer with extraordinary computational power, these sim-
ulations can also be made in real-time to help the sailors to get the best possible
understanding of the wind during their race. Figure 2.2 shows one of these simu-
lated wind fields of the Sagami Bay area. We will refer to this model as the ‘wind
model’ throughout this report.

2.2.2 Water Model

Ocean currents are primarily driven by winds, water density and tides. Coastal
and sea floor features influence the direction and speed of these currents. Friction
between wind and the surface of a body of water, causes the water surface to be
dragged along with the wind. Many currents in the ocean are so dominant, they
make the ocean water flow in predictable ways along its surface. Some of them even
flow for thousands of kilometers and can be hundreds of meters deep. The Kuroshio
Current and the Oyashio Current, mentioned in Section 2.1 are two examples of such
currents. These dominant currents are always there, created by three factors: global
wind patterns, the rotation of the earth, and the shape of the ocean basins. Research
shows that under high wind speeds (20-50 𝑚𝑠−1) and in open water, the effect of
the wind on the near-surface water currents is linear as is described in Chang et al.,
2012. In the northwestern part of the Pacific Ocean, the ratio between the wind and
current is around 2%. The effect on the direction of the water for these high wind
speeds in the northwestern Pacific is constant; the surface direction is approximately
10 ◦ to the right of the wind direction. Unfortunately, as predictable as currents on
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FIGURE 2.2: Complex wind field around Sagami Bay, modeled by
meteorological model of Dr. Sukanta Basu, August 18th 5:00 local
time. Lines represent wind, where the arrows show the direction and

the colour represents the speed. Image: Dr. Sukanta Basu

the open water are this is not true for every body of water. The water current in
coastal regions is much less predictable. In these areas, the wind is influenced by
bodies of land, and differences in heat capacity between water and dry land. Often
these influences cause the wind speed in these areas to be lower and less constant
than on open sea. Figure 2.2 is exemplary of the difference in the complexity of wind
in open water that generates predictable water currents, compared to wind along the
coast where the wind is not as fast and influenced by the land. Besides the wind be-
haviour being less predictable, the tide is also a factor that in reality also plays a role
in the water current in coastal areas.

The near-surface water current data used in this thesis stems from the FINEL2D
model that was built by Svasek Hydraulics, an engineering firm specialised in wa-
ter engineering Svasek, n.d. The FINEL2D model is a hydrodynamic water current
model that can be used for modeling water current using various input factors. The
model used for this thesis however, generated the data solely based the wind and
the shape of the bay as the input parameters. The effect of the tide or salinity is thus
neglected. We will refer to this model throughout the report as the ‘water model’.
Also when talking about ‘water’, we always mean the near-surface water.

Contrary to the wind model, the sailing federation cannot obtain results from the
water model in real time. Hence it is the goal of this thesis project to create a neural
network that can do so.
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2.3 Data

The data set that was provided for this research consisted of pairs of simulated wind
and water fields, representing the dynamics of the wind and water in and around
Sagami Bay at a certain point in time. The wind fields were simulated using the
WRF model, and the water fields were simulated with the Svasek model, using the
corresponding wind fields as input. The total data represented 1200 wind and water
field pairs, representing the respective dynamics at every hour, starting at 17th of
July 2019 until September 4th of 2019.

Each wind and water field consists of a grid with vector data describing the dy-
namics at these grid points. More precisely, every wind or water field is represented
by a vector that contains the 𝑥 and 𝑦 component for the grid points in this field. The
𝑥 component here represents the velocity of the wind or water respectively in the
𝑥 direction (the longitude), while the 𝑦 component represents the velocity in the 𝑦
direction (the latitude). The first half of the vector contains the 𝑥 components, while
the second half contains the 𝑦 components. Figure 2.3 shows the grid points of the
area in which all sailing races were held. The different race areas are also represented
in this Figure. As can be seen, the race areas vary in size and also consist of different
numbers of grid points:

• Enoshima - 2674 gridpoints

• Fujisawa - 6542 gridpoints

• Hayama - 6450 gridpoints

• Kamakura - 2993 gridpoints

• Sagami - 6554 gridpoints

• Zushi - 4311 gridpoints

What can be seen from Figure 2.3 is that the density of the grid points decreases, as
we look further away from the race areas. The area shown in blue, we will refer to
as the ‘Olympic Area’ from now on. This area represents the north eastern part of
Sagami Bay and contains all the race areas for the olympics. If we zoom out further,
Figure 2.4 shows us the grid points representing the complete data, which we will
refer to from now on as the ‘Complete Bay’. Again we see that the density of the grid
points is much lower outside the north of Sagami Bay. The number of grid points of
these areas are as follows:

• Olympic Area - 69195 gridpoints

• Complete Bay - 80900 gridpoints

This indeed shows that, even though the olympic area is only a small part of the
complete bay, most of the grid points are located in that area.
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(A) Enoshima (B) Fujisawa

(C) Hayama (D) Kamakura

(E) Sagami (F) Zushi

FIGURE 2.3: Grids of all race areas Tokyo bay for the olympic games

FIGURE 2.4: The complete set of grid points, representing one simu-
lation of the state of the water current of the wind. The orange grid

points represent the olympic area.

To summarize this chapter:

• Sagami Bay is a body of water from which we want to predict the near-surface
current.
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• We have simulated wind and water fields of Sagami Bay, generated by two
different models. The bay is represented by a grid.

• The data consists of 1200 wind and 1200 water fields corresponding to each
other. They represent the state of the wind and water current at every hour
from part of the summer of 2019.

• Both wind and water simulations are represented by a vector that contains an
𝑥 and a 𝑦 component for every grid point. The wind or water at a subset of
the bay can be obtained by using the 𝑥 and 𝑦 components of the corresponding
grid points.
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Chapter 3

Analysis of Wind Data

As mentioned in Chapter 2 the dynamics of a wind field are represented by a vec-
tor, containing the 𝑥 and 𝑦 components of the wind at the grid points located in the
desired area. The desired area can be one of the race areas, any other area of inter-
est, or simply the complete bay and its surroundings. One example of a race area is
Hayama. In this area 6450 grid points are located. This means that a wind field in
this area is represented by a vector of length 6450 x 2 = 12900, since there are two
components for every grid point. A wind field covering all the grid points would be
represented by a vector of length 80900 x 2 = 161800. Since we have a total of 1200
wind field simulations, our total wind data can be stored as a 1200 x 161800 matrix.
Since the distance between grid points is small, especially in the race areas, we also
know that there exist correlations within these wind fields. Because the wind in a
specific grid point will be very similar to the wind in its adjacent grid points.
Because of these correlations between the grid points reducing the dimensionality
of the data makes a lot of sense.

In this chapter we will reduce the dimensionality of the wind fields on 3 different
scales, which are relevant as input for predicting the water current in the race areas.
We start by looking at the wind fields on race area level, since these are the wind
fields that directly influence the water at the locations where we want to predict the
current. Secondly we will zoom out a little bit and look at the wind fields covering
the full olympic area, as described in Chapter 2. Finally we look to simplify the wind
fields covering the complete bay. These wind fields cover the whole of Sagami Bay,
as well as Tokyo Bay and even part of the pacific ocean that is connected to Sagami
Bay. There are two main benefits we get from reducing the dimensionality of the
data. Firstly, this will increase the speed of the machine learning algorithms. Sec-
ondly, with a lower dimensionality, a lower number of training examples is required
to strike a proper balance with the number of model parameters.

3.1 Dimensionality Reduction

In the next sections we will try to reduce the dimensionality of the wind fields for
the different areas as mentioned earlier in the chapter.

3.1.1 Race Areas

As input for predicting the water current in the race areas, one of the options we
consider is the wind directly above those areas. This is the wind that directly inter-
acts with the water in the area, and thus should have a direct effect on the water.

It turns out that the method for reducing the dimensionality for the wind fields is
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the same for the different race areas. Therefore we will only discuss the results of
one of the race areas (Hayama) in this chapter. Some results for the other race areas
can be found in Appendix B.

From inspection we notice that, within the race areas, the simulated wind fields ap-
pear to be approximately constant. By constant, we mean that even though the wind
fields vary over time, at each point in time, the direction and the speed of the wind,
within the race area is approximately the same. If indeed the wind speed and direc-
tion in a race area are the same over all grid points in this area, the wind in a race
area could be represented by one single vector, which represents the wind in all the
grid points of the race area, making it possible to describe the wind field in the race
area essentially with one two-dimensional vector. In this section we will analyse
whether it is in fact reasonable to assume a constant wind field over the area.
To get a more intuitive understanding of the wind data we choose to transform the
data into polar coordinates. This means that the data no longer consists of an 𝑥 and
a 𝑦 component in every grid point, but rather a length component, which in our case
represents a velocity, and an angle component, which represents the direction. This
way we can compare the wind represented in the different grid points based on its
speed and direction.

Figure 3.1 contains some randomly selected wind fields out of our data in the Hayama
race area. In this Figure, the arrows represent the wind at the grid points. Here the
direction of the arrows resembles the direction of the wind and the length of the ar-
rows represents its speed. In addition to the arrows, the background colour gives
an extra indication of the velocity of the wind over the different grid points. What
stands out from this randomly selected sample is that, the arrows are very similar
over the grid points, both in length as in direction. This holds for all four samples.
The presumption that the lengths are the same is also confirmed by the background
colour of the examples, which also looks constant in every example, indeed indicat-
ing a constant velocity in the field. Note that the variation of the colour has to do
with scale. Choosing a much lower range of velocities might result in fluctuations in
background colour. Hence inspection alone is not enough to assume that the wind
is completely constant in any of these samples.
However, from looking at the samples, an idea originates. This idea is the follow-
ing: if the wind over all grid points is very similar, we could assume this wind to be
actually constant as a way to simplify the data. If we assume a constant wind over
the area, we would only need one 2-D vector to represent the data in the whole area.
For Hayama this would mean that we could reduce the dimensionality of the wind
fields from 12900 to 2, thus drastically reducing the dimension of our data.

To check whether this assumption is viable, some analysis is required. To get a better
idea of how similar the wind over the grid points is, we need to look at the variance
of the data. The smaller the variance in the data is, the more justified it would be to
reduce the data to one single vector.

In order to analyse the data we start off by introducing some notation. Let’s number
the grid points in a race area from 1 to 𝑁 (for Hayama, 𝑁 = 6450). We then have:

• 𝜙𝑖 : angle of wind at grid point 𝑖

• 𝑟𝑖 : velocity of wind at grid point 𝑖
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FIGURE 3.1: Examples of Wind Fields Hayama at different Time
Stamps

For analysis purposes, we will describe each wind field as a sample set, in which
each wind vector is independently drawn from a bivariate Gaussian distribution.
This corresponds with the assumption that the wind is constant but contains mea-
suring errors. We choose the parameters in the following way:

• 𝜇𝑥 = arctan 2( 1
𝑛

∑𝑛
𝑖=1 sin(𝜙𝑖), 1

𝑛

∑𝑛
𝑖=1 cos(𝜙𝑖))

• 𝜇𝑦 =
1
𝑛

∑𝑛
𝑖=1 𝑟𝑖

• 𝜎2
𝑥 = 1 − 𝑅; where 𝑅2 = (∑𝑛

𝑖=1 sin(𝜙𝑖))2 + (∑𝑛
𝑖=1 cos(𝜙𝑖))2

• 𝜎2
𝑦 =

1
𝑛−1

∑
𝑖 (𝑟𝑖 − 𝜇𝑦)2

Here 𝜇𝑥 is the circular mean of the angles and 𝜎2
𝑥 is the circular variance of the angles.

By choosing the parameters in this way, we assume a different distribution for every
individual wind field. To assess the similarity in a wind field, a good visualisation
is to plot an error ellipse. Figure 3.2 provides one example of such an ellipse. The
Figure displays the wind at every grid point from Hayama. Figure 3.3 shows the
ellipses of 50 randomly selected samples from the 1200 wind fields in the Hayama
area. An error ellipse gives insight into three things:

• The variance over the y-axis, which in our case represents the speed. This is
shown by the size of the ellipse along the y-axis.

• The variance over the x-axis, which in our case represents the direction. This
is shown by the size of the ellipse along the x-axis.

• The correlation between the two variables. This is represented by the orienta-
tion of the ellipse.
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These Figures give us an idea of how big the ‘measurement errors’ are that we
mentioned earlier by the size of the ellipse. If the points are all very close to each
other, the ellipse is small and thus the ‘errors’ are small, and we can indeed assume
that the wind is constant. If the errors are big, the assumption that the wind is
constant is less credible.

FIGURE 3.2: Error ellipse based on 98.9% Confidence Value.

From Figure 3.3 there are a few observations worth noting.

• Most of the samples are wind fields with angles between 1 and 2, i.e. wind
from direction south-southwest

• There appears correlation between the velocity and the direction. However
this correlation differs over the wind different wind fields.

• The higher the velocity of the wind, the less variance in the direction

The first observation will be discussed later on in Section 6.

The second observation tells us that there might exist correlation between the speed
and the direction within a wind field. This can also clearly be seen in Figure 3.2,
where a clear structure can be found in the data, opposed to an actual normally dis-
tributed data set. In reality, data measurements from neighbouring grid points are
more similar, and the wind gradually changes over these grid points. Thus our as-
sumption that the wind is constant and that the variance of the wind over the grid
points is due to measurement errors is not correct. Also, there does not seem to
be a specific correlation between the velocity and the direction of the wind that is
uniform over all wind fields. In Figure 3.3, various shapes and orientations of the
ellipses can be observed, hence implying different relations within the data.
To argue that the correlation within a wind field itself is independent of the direction
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FIGURE 3.3: Error ellipses of 50 Wind Fields in Hayama. Every point
cloud with corresponding ellipse represents a Wind Field.

and velocity of the wind, we plotted the correlation against the average velocity and
against the average direction in Figure 3.41. This plot suggests that indeed we will
find no relation between the correlation within a wind field and the average direc-
tion or velocity of the wind.

Finally the third observation implies that for relatively weak winds, i.e. wind fields
with low velocity, the direction varies a lot more than for winds with higher veloc-
ity. Figure 3.5 shows the relationship between the variance in the direction and the
mean velocity of the wind fields. Indeed, we can see that only for wind fields with
a low velocity, there exists variance in the direction. For winds with a mean velocity
greater than 4 meters per second, the variance is already much lower and quickly
decreases as the mean velocity increases. The argument that we can make here is
that even though there are some wind fields that have quite some variance in terms
of direction. All these wind fields have a very low velocity. And since these wind
fields have a low velocity, their effect on the water current is very low. Hence, the
direction, or even variance in direction for wind fields with very low velocity is not
very relevant, as their influence is hardly affected by it.

In terms of the variance in velocity, we do not observe such a clear relationship. We
do however see that the variance is very low for the majority of the wind fields. This
can be seen in Figure 3.6. The relative variance, i.e. the coefficient of variation, of the
velocity does however decrease when the mean velocity increases as can be seen in
Figure 3.7. This means that relatively speaking, the wind becomes more constant as
it gains in strength.

1For this plot we’ve only used wind fields in which the direction in all grid points was positive or
in which the direction in all grid points was negative.
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FIGURE 3.4: Correlation in each Wind Field plotted against its aver-
age velocity and average direction.

FIGURE 3.5: Variance in direction plotted against mean velocity of
wind fields.

Even though there are multiple arguments that support the assumption of a con-
stant wind, the assumption does not hold up in all cases. Also other questions will
arise like, how would you determine the exact velocity and direction of this wind.
The arguments do however lead to a conviction that reducing the dimensionality of
the wind fields can be done without losing too much information. A popular mathe-
matical technique for doing such reductions is using Principal Component Analysis,
which we will refer to as ‘PCA’ from here on out.
The main idea behind PCA is to replace the original variables by derived variables,
which are called the principal components and are linear combinations of the orig-
inal variables as explained in Jolliffe, 2005. The principal components serve as a
hierarchical coordinate system. This means that there is a certain hierarchy in the
components. For the principal components, this hierarchy is based on the variance
captured by the principal component. In case the first few principal components
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FIGURE 3.6: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE 3.7: Relative variance in velocity plotted against mean veloc-
ity of wind fields.

contain enough of the information, it is possible to use a smaller amount of vari-
ables to represent most of the data. By doing this we can preserve a large percentage
of the variability of the original variables, while the number of variables is signifi-
cantly smaller. Suppose we have 𝑁 samples called 𝑥1, 𝑥2, . . . , 𝑥𝑁 , where each 𝑥𝑖 has 𝑘
entries. Our data can then be represented as an 𝑁 x 𝑘 matrix 𝑋 . The process of trans-
forming data using principal components is described in Jolliffe and Cadima, 2016.
There are several ways to execute the technique. One way is by using the following
steps:

1. Start off by calculating the mean of all of our samples, i.e. the mean of all rows
of 𝑋 . 𝑚𝑋 = 1

𝑁

∑𝑁
𝑖=1 𝑥𝑖 . This is the mean vector, as all our rows are vectors. We

create a matrix with 𝑁 rows, where every row is exactly 𝑚𝑋. Let’s call this
matrix �̂� .

2. Create a new matrix in which we store the ‘mean centered data’. 𝐵 = 𝑋 − �̂� .
Now the center of the distribution creating the wind fields is at the origin.

3. Construct the sample variance-covariance matrix 𝐶 of the rows of 𝐵, so 𝐶 =
1
𝑁
𝐵𝑇𝐵.

4. Compute the real, nonnegative eigenvalues and eigenvectors of matrix 𝐶. Re-
call that for an eigenvector 𝑣𝑖 and its eigenvalue 𝜆𝑖 the equation 𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖
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holds. We then construct a matrix𝑉 containing all the eigenvectors of𝐶, where
the vectors are sorted based on the magnitude of their corresponding eigen-
values. This means that the first row of 𝑉 is the eigenvector that corresponds
with the highest eigenvalue, followed by the eigenvector corresponding to the
second highest eigenvalue etc. The eigenvalue decomposition leads to the fol-
lowing equation: 𝐶𝑉 = 𝑉𝐷, where 𝑉 is the matrix containing the eigenvectors
in order of magnitude as just described and 𝐷 is a diagonal matrix containing
the corresponding eigenvalues 𝜆1,𝜆2, . . . ,𝜆𝐾 .

5. We can now create the principal components. These are the new variables
that are linear combinations of our initial variables. They are uncorrelated
and are ordered by the amount of information they contain from the origi-
nal variables. The principal components can be found by constructing matrix
𝑇 = 𝐵𝑉 . The rows of matrix 𝑇 represent the principal components. The values
in each row are the loadings of the columns for that specific principal compo-
nent. These loadings represent the correlation between the original variables
and the principal components. The eigenvalue corresponding to the principal
component tells us about the captured variance by this principal component
i.e. the amount of information from the original variables. The percentage
captured by principal component 1 for example is calculated by 𝜆1∑𝐾

𝑗=1 𝜆 𝑗
, where

𝜆1,𝜆2, . . . ,𝜆𝑁 are the eigenvalues ordered by magnitude. If we would like to
use 𝑑 ≤ 𝐾 principal components to describe our data, the variance captured

can be calculated similarly:
∑𝑑
𝑗=1 𝜆 𝑗∑𝑁
𝑗=1 𝜆 𝑗

6. Using matrix 𝑇 we can express our original data vectors 𝑥1, 𝑥2, . . . , 𝑥𝑁 in terms
of the principal components. The transformed vectors, 𝑦𝑖 are obtained in the
following way: 𝑦𝑖 = 𝑇𝑥𝑖 . The entries of the transformed vectors 𝑦𝑖 represent the
position of the field in the new coordinate system i.e. the coordinates. These
new coordinates are referred to as the scores.

7. To transform the vectors back to the original space, we use 𝑥𝑖 = 𝑇𝑇 𝑦𝑖 + 𝑚𝑋.
Note that the projected vector, 𝑥𝑖 is not equal to the original vector 𝑥𝑖 unless
we use all principal components. If we use less principal components, infor-
mation will be lost, as is explained by the captured variance of the principal
components. The mean square error between the projected vectors after PCA
and the original vectors is equal to the sum of the eigenvalues corresponding
to the principal components that were not used. Note that 𝑥𝑖 is nothing more
than the average of all samples (𝑚𝑋) plus the scores corresponding to the prin-
cipal components for sample 𝑖 (𝑦𝑖) multiplied with their respective loadings
(which are stored in matrix 𝑇).

We start off by discovering how PCA would work in the case where the assump-
tion we originally made is true. This assumption stated that the wind is actually
constant (with measurement errors). Therefore we now look at a dataset in which
this constantness holds. The dataset we use for this is based on measurements of his-
toric winds of one single location. By applying this measured wind to all grid points
of the wind field, we create a constant wind field over the Hayama race area. This
dataset has the same features of our original dataset except for the values, which are
now actually constant.
If we apply PCA to this dataset (the constant wind fields), we find that there are
only 2 principal components needed to capture 100% of the variance. This is ex-
pected, since the wind is constant over the whole field, and a constant wind can be
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described using only 2 dimensions. The captured variance can be seen in Figure 3.9.
What we have done here by using PCA, is reduce the data of an entire 12900 dimen-
sional wind field to 2 dimensions while still preserving all the information.

If we look at the loadings for the first two components we find something that makes
sense intuitively. The first principal component has a loading score of -0.005 for the
first 6450 entries (the 𝑥 components), and a loading score of -0.01 for the second 6450
entries (the 𝑦 components). This tells us that all 𝑥 components are equally correlated
with this principal component, and all 𝑦 components are also equally correlated with
this principal component. This makes sense since the 𝑥 components are all the same
and the 𝑦 components are all the same. For the second principal component we ob-
serve a similar result, where the loading of all 𝑥 components is the same and the
loading of all 𝑦 components is the same as well.

FIGURE 3.8: Constant wind fields at Hayama. Generated by applying
a measured 2D wind value over all grid points.

Now that we have seen the result of applying PCA on data that actually describes
constant wind fields, we want to apply it on our actual data.

After applying PCA on the data we find out that the first two principal components
capture 99.6% of the variance as is shown in Figure 3.10. Throughout this report we
choose to use 99% as the required threshold for the amount of explained variance, in
order to represent the data as well as possible, while being able to reduce dimension-
ality. Hence the 99.6% is sufficient for reducing the dimensionality of the wind fields
in Hayama to 2 by using these components. Therefore we can conclude that, by us-
ing PCA, we achieve our goal of reducing the dataset containing 12900-dimensional
wind fields to a dataset of 2-dimensional wind fields.
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FIGURE 3.9: Captured variance by the principal components for con-
stant wind fields in Hayama.

FIGURE 3.10: Captured variance by the principal components for the
simulated wind fields in Hayama.

The loadings of the first two principal components show something similar with the
loadings for the constant wind data set. For the first principal component, which ex-
plains about 80% of the variance, the loadings of the 𝑥 components are very similar
and the loading scores of the 𝑦 components are very similar. For the 𝑥 components,
the loadings for PC1 are all between -0.0066 and -0.0059. For the 𝑦 components the
loading scores for PC1 are all between -0.0104 and -0.0108. Even though these load-
ing scores are not exactly the same for all 𝑥 components and all 𝑦 components they
are very similar. This indicates that each grid point contributes (almost) the same to
PC1. For PC2 we find the same type of results, where the 𝑥 components of the grid
points contribute equally and the 𝑦 components of the grid points contribute equally.

The loadings can be seen as the weight given to each original variable when cal-
culating the principal component. In our case the original variables of course are the
𝑥 and 𝑦 components of the grid points of the wind field. If all 𝑥 components have the
same weight, this means that we actually use their average. The same goes for the
𝑦 components. The fact that the average of the 𝑥 components and the average of the
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𝑦 components already provide enough information to explain more than 99% of the
variance is another indication that the field must be (almost) constant as we already
suspected at the start of this chapter.

3.1.2 Olympic Area

In this section we look to reduce the dimensionality of the Olympic Area as is de-
scribed in Chapter 2. This area is a lot bigger than any single one of the race areas,
since it already contains all of them. The idea that we can reduce the wind fields in
this area to a 2-Dimensional vector is therefore a bit far fetched.
Applying PCA however is still a good idea to reduce the dimensionality of these
wind fields. The aim is to still explain 99% of the variance of the data. Figure 3.11
shows the explained variance by the first 10 components. We see that the result is
still very similar to the PCA result of Hayama and even of the constant wind fields
of Hayama. This indicates that the wind in this area does not vary heavily over the
grid points. It turns out that with 6 components we achieve our goal of capturing
more than 99% of the variance. Thus as input for our Neural Network it suffices
to use these 6 components for every wind field, instead of the 138390 dimensional
vectors that originally describe these fields.

FIGURE 3.11: Captured variance by the principal components for the
simulated wind fields in the Olympic Ara.

3.1.3 Complete Wind Fields

In this section we apply PCA to the full simulated wind fields i.e. the wind fields
formed using all the grid points. As mentioned in 2 already, this means that these
wind fields contain not only Sagami Bay, but also Tokyo Bay and even part of the
pacific ocean. As can be seen in Figure 2.2, the wind seems to vary a lot over this
large area.

Figure 3.12 shows the results of applying PCA to this dataset. Indeed we find out
that a lot more principal components are needed to explain 99% of the variance of
these large wind fields. The exact number of principal components necessary turns
out to be 25.
What stands out from Figure 3.12 however is the fact that still the majority of the
variance is explained by the first principal components. To understand this we
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FIGURE 3.12: Captured variance by the principal components for the
simulated wind fields over the whole area.

should first note the difference in density of the grid points over the complete bay. As
mentioned in Chapter 2 already, the complete wind fields contain 80900 gridpoints,
while the olympic area, which is significantly smaller as can be seen in Figure 2.4,
contains 69195 gridpoints. Even in Figure 2.3 it is already apparent that there is a
discrepancy in density of the grid points. The highest density is clearly where the
race areas are located.

The second thing we should understand is that a principal component explains a
certain percentage of the total variance. The total variance is the trace of the covari-
ance matrix of the samples. In other words, it is the sum over all variables of the
variance of each individual variable, where the variables as we know are 𝑥 and 𝑦

components of the grid points in our area.

To illustrate why the first and second principal component are still able to explain so
much of the variance of the complete wind fields let’s compare the total variance of
the wind fields in the olympic area to the total variance of the complete wind fields.
The total variance is calculated by summing the variance over each individual vari-
able:

𝑁∑︁
𝑖=1

(∑𝑀
𝑗=1 𝑥 𝑗 − 𝑥𝑖
𝑀 − 1

)
In this equation, 𝑁 is the number of variables, which is in our case the number of
grid points and 𝑀 is the number of samples. 𝑥𝑖 is the mean for each grid point 𝑖 over
all samples.

• Total variance of the wind fields in the olympic area: 1671753.46

• Total variance of the complete wind fields: 1977648.19

As we can see, most variance is caused by the data in the olympic area. So even
though the area of the complete wind fields is multiple times the size of the olympic
area, due to the number of grid points, the total variance only increases by 18%.
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Now if we look at the loadings of the first principal component, we observe a much
higher variety. The values for the 𝑥 components have loading scores ranging be-
tween -0.0025 and -0.0001. For the 𝑦 components, the loading scores for PC1 range
between -0.0034 and -0.0002. This means that not all points are weighed the same
anymore for PC1 as was the case earlier in Hayama. However it is still the case
that 82% of the variance originates from the olympic area that contains all race ar-
eas. And we have seen that the variance from that area can be very well explained
with two principal components. The additional principal components are however
very important in describing the wind outside the olympic area, which might also
influence the water current in the race areas.
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Chapter 4

Water Current Analysis

The aim of this chapter is to decide upon a dataset which we will use as output to
train our neural network on. Since the original current data is very high-dimensional,
and this is undesirable for our neural network, we would like to find an alternative.
Data dimensionality can be reduced in multiple ways. In this chapter we discuss
two methods to reduce data dimensionality. First, the data fields have been cate-
gorized using clustering. Second, PCA techniques have been used, as described in
Chapter 3, to reduce the dimensionality of the data. The idea behind clustering the
data is to investigate whether the water currents can be divided into a small number
of categories, in which the current fields behave similarly. If this is the case, only
knowing the category would be enough information for the sailors to understand
the behaviour of the current. This would mean that our neural network would only
need to predict the correct category for the current field, depending on the wind in-
put. We will use clustering to see whether it is possible to divide the water fields into
these categories. If clustering turns out to be succesful a classification model will be
trained. If we decide to go with the PCA reduced data, a regression model will be
trained. Throughout this chapter we will give analysis results for the Hayama area,
as these results are very similar for all individual race areas. The results for the other
areas can be found in Appendix B.
To provide better insight in the water current fields, some typical examples are
shown in Figure 4.1. As can be seen from these examples, the water fields contain
a lot more variance in terms of speed and direction than the typical wind fields we
have shown in Chapter 3.
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FIGURE 4.1: Examples of Water Current Fields of the Hayama race
area at different Time Stamps

4.1 Clustering

Using clustering, we will answer the question whether there is a small number of
clusters in which the water fields are very similar. If this is the case, our Neural Net-
work should only need to predict the cluster number instead of the complete current
field.

Clustering is a well known method used to categorise data by attempting to find
clusters which consist of groups of similar data points. It is an unsupervised ma-
chine learning technique, which means that the data is not categorised beforehand.
This makes sense for our problem, since we don’t know beforehand whether there
is a certain set of categories, and if so which field belongs to which category. By
using clustering, an algorithm will assign a label to each data point, based on an op-
timization criterion. What we do need to give as an input is the number of categories
(clusters). There exist many clustering techniques, but for this research the 𝐾-means
clustering method, which is described in Likas, Vlassis, and Verbeek, 2003 is used.
This technique is one of the simplest clustering algorithms, yet it is an effective way
of creating clusters and assigning data points to it, which is what we aim to achieve.
𝐾-means clustering is intuitively easy to understand, which helps in interpreting
the results as well. The method divides the data into 𝐾 distinct categories based
on the coordinates of the samples, which in our case are the 𝑥 and 𝑦 components
of the water current in the grid points of Hayama. More formally: we have a data
set {𝑥1, . . . , 𝑥𝑛} consisting of samples, which in our case are current fields. The goal
of the algorithm is to partition the set into 𝐾 disjoint subsets (clusters) 𝐶1, . . . ,𝐶𝑘 in
such a way that the total variation within these clusters is minimized. This is often
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done by looking at the squared Euclidean distances between the cluster center 𝑚𝑖
and the samples within that cluster. This is the criterion:

arg min
𝑚,𝐶

𝑛∑︁
𝑖=1

| |𝑥𝑖 −𝑚𝐶 (𝑥𝑖) | |2

where 𝑚𝐶 (𝑥𝑖) represents the cluster mean belonging to the cluster to which 𝑥𝑖 is at-
tributed.

Figure 4.2 shows a 2-D example of this total variation, where 3 clusters are used
on one-dimensional samples.

FIGURE 4.2: 2-D Example of total variation within 3 clusters.
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If we can find distinct clusters, we find categories which we can contribute to our
data. The lower the variation between the samples belonging to the same cluster,
the more likely it is that we can actually use the category to characterize the current
fields. A way to define the fields by a category could be for example by using the
average of the samples of this field.

The first step in our clustering analysis is to find out whether there exists a num-
ber 𝐾 of distinct clusters, such that every sample clearly belongs to one of these
clusters and clearly not to any of the other ones. A good way to find this number
𝐾 is by using the ‘elbow-method’. To use this method we start by defining ‘distor-
tion’. The distortion value is the sum of the squared (Euclidian) distances between
the samples and their respective cluster centers. To illustrate this method, Figure 4.3
shows the distortion values for the number of clusters for an unrelated data set that
is very suitable for clustering. To determine the optimal number of clusters, we have
to select the value of 𝐾 at the ‘elbow’, i.e. the point after which the distortion starts
decreasing in a linear fashion. For the data set belonging to Figure 4.3 this value is
3. What this Figure illustrates is that there is a clear reduction in distortion going
from 2 to 3 clusters, while there is no clear reduction anymore when increasing the
number of clusters.

FIGURE 4.3: Example of elbow method on unrelated data set. The red
circle clearly indicates the ‘elbow’ of the graph.

Figure 4.4 shows the distortion against the number of clusters for our actual Hayama
current data. As there was a clear ‘elbow’ in the example shown in Figure 4.3, this is
clearly not the case in our actual data. This is an indication that there does not exist a
clear number of clusters that would make sense. We can also see that for our actual
data the distortion values are very high. This is not a good sign, as this indicates
that the data is on average not very similar to their respective cluster centers. For
comparison: the average squared distance of the two current fields with the average
of the two fields, shown in Figure 4.5 is approximately 0.5𝑒6. Since these two current
fields are very clearly not similar, the fact that the distortion values shown in Figure
4.4 are higher only illustrates that the data cannot effectively be divided in different
clusters.

As an extra analysis for choosing the optimal number of clusters we can look at so
called ‘silhouette values’ for the number of clusters. These values give an indication
of how close the samples are to their respective cluster center compared to other
cluster centers. This is seen as a measure of how well the samples are classified. A
silhouette value can be assigned to each individual sample 𝑖 and is defined in the
following way:

𝑠(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏(𝑖)} ; 𝑎(𝑖), 𝑏(𝑖) ≤ 0
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FIGURE 4.4: Elbow method on Hayama current data.

FIGURE 4.5: Two current fields that are clearly not similar to each
other.

Where 𝑏(𝑖) is the average distance between sample 𝑖 and all samples belonging to
the closest (again Euclidean distance) other cluster. 𝑎(𝑖) is the average distance be-
tween sample 𝑖 and all other samples belonging to the same cluster. The silhouette
value 𝑠(𝑖) can take values between -1 and 1. If the clusters are very distinct, which
is what we want, the Euclidean distance between sample 𝑖 and the other samples in
its own cluster is very small compared to the Euclidean distance with the samples
in the ‘closest’ other cluster. In that case 𝑎(𝑖) would be small and 𝑏(𝑖) would be big,
resulting in a silhouette value close to 1, which would be the best value. The closer
the value gets to -1 the worse the classification has been, since in case of a negative
silhouette value, the sample is actually on average closer to sapmles in another clus-
ter than to the samples of its own cluster. In Figure 4.6 we have plotted the average
silhouette values over all samples for different numbers of clusters. What we can
see from the silhouette plot is that the best values are actually achieved when we
would use 2 or 3 clusters. If we use more clusters, we actually get worse average
silhouette scores. This indicates that there is no clear distinction between the sam-
ples from different clusters if we use so many. On the other hand we have already
seen that the distortion value is very high if we would only use 2 or 3 clusters. To
illustrate this: using 3 clusters the distortion value is about 1.8e08. This means that
the average distance between a sample and its cluster mean equals 1.8𝑒08

1200 = 0.15𝑒06.
This is not much smaller than the distance between the two current fields shown in
Figure 4.5. Using 2 clusters, the average distance is even bigger. This means that we
would not be able to characterize current fields by taking the average of its cluster,
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FIGURE 4.6: Average silhouette values on Hayama current data clus-
tering.

since the samples differ a lot within these clusters.

We can conclude that the idea of characterizing the current fields by a category is
not suitable for our data based on the elbow-method, the silhouette values and the
distortion values.

4.2 PCA

As the K-means cluster technique did not provide clear current field categories, prin-
cipal component analysis is used to reduce data dimensionality. The principal com-
ponent analysis technique we apply on the current data is the same as we have al-
ready described in detail in Chapter 3. To retain as much detail in the current fields
as possible, just as for the wind fields, we would like to capture at least 99% of the
variance of our data with our principal components. Whereas we would only need 2
principal components to capture 99% of the variance in the wind fields in Hayama,
for the current fields this number is 10. Intuitively this makes sense, since Figure
4.1 already displays that the current can differ a lot within a single field. Figure 4.7
shows the variance captured by the first 10 principal components.

FIGURE 4.7: Captured variance by the principal components for the
simulated current fields in the Hayama race area.
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In Chapter 3 we have already discussed that by using principal component analy-
sis we transform our data from its original space where our data is respresented by
the 𝑥 and 𝑦 components of the grid points in our area, to a new space, in which we
express the data by the principal components. For the wind fields, the goal was to
do this transformation so that we could reduce the dimensionality of our data while
still retaining a high percentage of its variance. For the current must do the same
thing, in order to be able to make predictions fast. The principal components can
help us create a faster, simpler neural network. However, we should remember that
we want to predict current fields for the sailors and not just 10 principal components.
Therefore the extra step that we need to take for the current data is that we should be
able to transform the principal components back to actual current fields i.e. vectors
that contain the 𝑥 and 𝑦 components of the grid points of the race area.

As explained in Chapter 3 the fields we obtain when transforming the principal com-
ponent data back to the original space are not an exact copy of the original field. The
error between the original field and the field we get after transforming the data back
from the principal components depends on the number of principal components
used and the amount of variance they capture. More precisely, the mean square er-
ror between the two vectors is equal to the sum of the eigenvalues corresponding to
the principal components not used. In Figure 4.8 we see three plots of the same cur-
rent field to illustrate the difference between the original data and data transformed
back from principal components. The first plot shows the field based on the original
data. The second and third plot show the field represented by the vector that is the
result of transforming the data back from 9 principal components and 2 principal
components respectively. Indeed we see that using 9 principal components we can
do a better job at recreating the original data than we can with 2 principal compo-
nents, even though the 2 principal components already capture 93.3% of the total
variance.

To get a more quantitative understanding of the accuracy, besides the visualisation
shown here, we can compare the current fields after the PCA operations, with the
original current fields by constructig an accuracy score.
A commonly used method to compare two vectors is by looking at the magnitude of
the delta vector, i.e. the difference between the original current field vector: 𝑉𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
and the current field after PCA: 𝑉𝑃𝐶𝐴. The magnitude of the delta vector will then
be:

𝑁∑︁
𝑖=1

(𝑉original𝑖 −𝑉𝑃𝐶𝐴𝑖 )
2

This results in an absolute number that gives an indication of how ‘close’ the predic-
tion vector is to the original vector.
To get a better understanding of what this number actually means, we should make
it relative to the magnitude of the original vector. It also turns out that there is a
positive correlation of 0.582 between the magnitude of the delta vector and the mag-
nitude of the original vector, implying that a higher magnitude of the original vector
causes the difference to be higher as well. We look at the relative difference by di-
viding the magnitude of the delta vector by the magnitude of the original vector.

Here are some statistics from this method of measuring accuracy:
What stands out the most from these statistics, is the huge improvement of using

9 principal components compared to only using the first 2. We can interpret the
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2 Principal Components
Magnitude of Delta Vector Relative Magnitude of Delta Vector

Maximum 221773.25 1.984
Minimum 1246.18 0.0022
Mean 26852.64 0.1036
Median 19526.37 0.0473
Standard Deviation 24856.09 0.1793

10 Principal Components
Magnitude of Delta Vector Relative Magnitude of Delta Vector

Maximum 27681 0.1811
Minimum 258.34 0.0004
Mean 4147.79 0.0162
Median 3139.13 0.0072
Standard Deviation 3687.99 0.0249

relative magnitude of the delta vector as a percentage, hence we see that, with using
the 10 principal components, the mean ‘error’ is 1.62% and the median error is only
0.72%.

(A) Original current field (B) Recreation of current field using 9 principal
components.

(C) Recreation of current field using 2 principal
components.

FIGURE 4.8: Example of a current field and its recreation using prin-
ciple components.

If we only use the first two components, we can also confirm that there are no clear
clusters, as we already suspected from our analysis before. Figure 4.9 shows a scatter



4.2. PCA 31

plot containing all these 2-dimensional representations of the current fields, where
the scores of the first component are represented by the x-axis and the scores of the
second component are represented by the y-axis.

FIGURE 4.9: All current fields represented by the first two principal
components.

We can conclude that we can greatly reduce the dimensionality of the current data
while still being able to retain most of the information by using principal component
analysis. We will use the reduced datasets as output to train our neural network on
in the next chapter. We also know that we are capable to transform the reduced data
back to a current field that very much represents the actual field.
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Chapter 5

Using Neural Networks to Predict
Change in the Current Field

In this chapter we describe how we trained a neural network on our dimensionality
reduced data i.e. the original data reduced to its principle components by the PCA
we described in Chapters 3 and 4. We start by giving some general background
knowledge about how neural networks operate. Then we point out the differences
between different types of neural networks. After that we specify the different se-
tups we will use. In the end we discuss the results.

The goal of this research can be summarized by finding a function 𝑓 (𝒙) = 𝒚, where
𝒙 is wind data and 𝒚 is current data, which is the data that we want to predict.
We do already have 1200 of these wind and current data pairs: 𝒙1, . . . , 𝒙1200 and
𝒚1, . . . , 𝒚1200. The function 𝑓 that returns 𝒚𝒏 when the input is 𝒙𝒏 we do not have
yet. If we have this function 𝑓 then given a new wind field 𝑥new, we can return
𝑓 (𝒙new) = 𝒚new, which is the predicted current field, based on this new wind data.
To find this function we will train a neural network on our data.

An artificial neural network, or neural network for short, is a supervised learning
algorithm that learns a function 𝑓 (·) : 𝑅𝑚 −→ 𝑅𝑛. In our case, this function has as
input the reduced wind fields and as output the reduced water fields. The name
‘neural network’ stems from the way the algorithm works, as it attempts to mimic
the way the human nervous system works. A neural network is a structure of nodes
and connections between those nodes. The nodes in the network are able to receive
input signals, to process them and to send output signals (Zhang, 2018). By doing
this, neural networks are capable of learning complicated nonlinear relationships
from sets of training examples. The nodes can be thought of as neurons, and the
connections between the nodes can be thought of as synapses. Hence the compar-
ison with the human nervous system. Figure 5.1 gives an example of the structure
of a small neural network. As can be seen, the network consists of three ‘types’ of
layers. The first layer is called the input layer. These neurons represent the input we
provide for the network: the wind field. The final layer is the output layer. These
neurons represent the output we provide for the network: the water field. The layers
in between are called the hidden layers.
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FIGURE 5.1: Structure of a neural network that contains 2 hidden lay-
ers.

5.1 The Method

In short a neural network works as follows: The network can be best described from
left to right, keep in mind the example network shown in Figure 5.1. The input
nodes, which are the nodes of the first layer or the ‘input layer’, contain the input
we provide for our network. These inputs are then sent to all the nodes in the next
layer via the connections. As is also shown in Figure 5.1, every node is connected
to every other node in the next layer. The number of nodes in each hidden layer, as
well as the number of hidden layers can be changed to improve the performance of
the model. These connections adjust the values when sending them to the next node
by multiplying them by a weight. These new weighted values are then summed and
a bias is added as well. This results in one value, which is the input of the node in
the next layer. For the next part, note that we use the notation 𝑥𝑖 for just one value
of the input vector, as opposed to 𝒙𝒊 which we use for the entire sample vector. In
the example shown in Figure 5.1, where there are 5 input nodes, the input of a node
in the second layer, or the first hidden layer would be: 𝑉 = 𝑤1𝑥𝑖1 + 𝑤2𝑥2 + 𝑤3𝑥3 +
𝑤4𝑥4 + 𝑤5𝑥5 + 𝑏𝑖𝑎𝑠. Where 𝑤𝑖 is the weight given to the input value 𝑥𝑖 . The node
receiving this value contains an ‘activation function’ 𝑓 . This function again adjusts
the received value to a new value 𝑓 (𝑉). This process is shown in Figure 5.2.

The newly created value from the node is again sent on via connections to the
next layer of nodes, again adjusting its value when sending it to these connected
nodes. This process repeats itself until the values arrive at the output layer. The
weights and biases used in the connections are the parameters of the network. These
parameters are estimated during the training of the network using a technique called
backpropagation. An elaborate explanation on how this technique works can be
found in Hecht-Nielsen, 1992. The idea behind the technique is the following: We
start by simply choosing random values for the parameters. We then use our training
data to see how well the network performs using these randomly chosen parameters
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FIGURE 5.2: How the input data is adjusted by the connections and a
node in the next layer.

by comparing the output of the network, i.e. the predicted values with our actual out-
put i.e. the observed values. We have seen already, that the output of the network is
a result of the function 𝑓 (𝒙), where 𝒙 is the input and 𝑓 (·) represents the result of all
operations on the input. As mentioned earlier these operations consist of applying
weights and biases as well as applying activation functions on which we will elabo-
rate more later on. The predicted values, corresponding to the input values we feed
to the network are then compared with the observed values. The difference between
the predicted and the observed values is measured by the sum of the squared resid-
uals. The value of the sum of the squared residuals, or SSR for short can be written
down as a function:

SSR( 𝒑) =
𝑘∑︁
𝑖=1

|Observed𝑖 − Predicted𝑖 ( 𝒑) |2

where 𝑘 is the number of observed data points used for training the neural network
and 𝒑 is the vector containing the parameters of the model. This is our cost function
𝑐( 𝒑), which tells us the ‘cost’ of the difference between the predicted value and the
actual value. The input of this function are all the parameters of the model i.e. the
weights and biases, while the output is a single value.

5.1.1 Weights and Biases

Since we want to optimize the performance of the network, we would like to find
the minimum of the cost function, by changing the weights and biases. To update
our initial estimates and get improved values for the parameters, we apply an it-
erative technique called gradient descent which is described in Hecht-Nielsen, 1992.
This technique uses the partial derivatives of the SSR with respect to the different
parameters to improve the the value of 𝑐. This process is repeated a number of times
until a certain criterion is reached, usually the criterion is that the improvements
per iteration are smaller than a certain predetermined value. The technique works
in a way where it can update the values of all parameters in one iteration. When
working with a large set of training data, stochastic gradient descent is a technique
that might be preferred. For this technique only a randomly selected sample of the
data is used to estimate the gradient instead of the total set of the data. By selecting
only a sample set, we are able to speed up the process significantly. Now that we
have discussed the weights and biases of the network, in the next section we will
address the activation function of the nodes.

There are some issues that may occur during the optimization process. One of the
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issues is, that instead of finding the global minimum of the cost function i.e. the
optimum, we end up in a local minimum. To increase the chance of finding the
global minimum we should optimize the cost function multiple times, each time
starting with differently chosen parameters. Another issue that could occur is when
the convergence to the minimum goes so slow that the improvements per iteration
are smaller than our criterion causing the algorithm to stop. This can be prevented
by lowering this criterion.

5.1.2 Activation function

An activation function is a function that transforms an input signal into an output
signal. When a value is received by a hidden node in the network, it is used as an
input for the activation function of this node. The outcome of this function is the
output of the node which is then sent forward via its connections to the next layer
in the network. The function derives its name from its use in the past, where a node
would be ‘activated’ or not. If the activation function would output a value of 1, the
node would be activated, if the output would be 0, the node would not be activated.
The 1 or 0 value can be a good choice when using binary classifiers: is this a cat yes
or no?
For binary classifiers usually a threshold function would be used as activation func-
tion:

𝑓 (u) = 1 if u > 𝑎; 0 otherwise

where 𝑎 would be the threshold.
For nontrivial problems however, more complex activation functions are used. With-
out the use of activation functions, a neural network would simply be a polynomial
function of degree 1. The complexity of such a function is limited. To solve more
complex, nonlinear problems activation functions are required.

We will discuss the three most commonly used activation functions in this section,
which are:

• Sigmoid; 𝑓 (𝑥) = 1
1+𝑒−𝑥

• Rectified linear unit (ReLu); 𝑓 (𝑥) = 𝑚𝑎𝑥{0, 𝑥}

• Hyperbolic Tangent: 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥

A plot of these functions can be seen in Figure 5.3 More details about these activation
functions are described in Sharma, Sharma, and Athaiya, 2017. QUOTE: "There is no
thumb rule for selecting any activation function but the choice of activation function
is context dependent, i.e it depends on the task that is to be accomplished. Different
Activation Functions have both advantages and disadvantages of their own and it
depends on the type of system that we are designing."
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(A) Sigmoid function: 𝑓 (𝑥) = 1
1+𝑒−𝑥

(B) ReLu function: 𝑓 (𝑥) = 𝑚𝑎𝑥{0, 𝑥}

(C) Hyperbolic tangent: 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥

FIGURE 5.3: Activation functions.
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5.2 Training the Neural Network

5.2.1 Setups

The neural network we use to predict the current fields is a Multi-layer perceptron
regressor. This is the type of artificial neural network as is described earlier in this
chapter. In order to get the best model, we try out several setups to see which choices
have a positive impact on the performance of the network.
We will vary over the following things:

• The Input Data; For the input data we will experiment with the wind fields
that are reduced in dimensionality as a result of principal component analysis,
as described in Chapter 3. We will use the reduced fields of the race area itself,
which are 2-dimensional (Wind Race Area). We will use the reduced wind
fields of the olympic area, which are 6-dimensional (Wind Olympic Area). And
finally we will also use the reduced fields of the complete area, which consists
are 25-dimensional (Wind Complete Area).

• The activation function; We will test the results of the network using the ReLu
function as well as the hyperbolic tangent function and the sigmoid function.

• The Hidden Layers/Nodes; To get a good result we will try out different com-
binations of number of hidden layers and number of nodes per hidden layer.

In Panchal et al., 2011 some rule-of-thumb methods are mentioned for determining
the number of hidden nodes in a network:

• The number of hidden neurons should be between the size of the input layer
and the size of the output layer

• The number of hidden neurons should be 2/3 the size of the input layer, plus
the size of the output layer

• The number of hidden neurons should be less than twice the size of the input
layer

However, Panchal et al., 2011 mentions, ultimately the selection of the architecture
for a neural network comes down to trial and error. Usually, by increasing the num-
ber of hidden neurons and or the number of hidden layers the performance of the
model will increase. However, this is not granted and over complicating can lead to
over fitting.

We will try to find the best model in the following way:

1. We start training models using the different input data and activation functions
we described earlier in the chapter.

2. To determine the number of hidden nodes in the network, we start with one
layer, and a number of nodes in the layer based on the rules of thumb we just
described.

3. We then increase the number of hidden neurons and check for improvement.

4. If the performance of the model does not improve, we add an extra hidden
layer.
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5. In practice, a more trial and error approach is used, where we improve the
model based on the results by earlier versions of the model.

If in the end we find a number of models that perform similarly, we will use

5.2.2 Scoring Method

To judge how well the neural network performs we use the coefficient of determination
of the prediction: 𝑅2 as a measure of performance. This coefficient is defined as:

𝑅2 =

(
1 − 𝑆𝑆res

𝑆𝑆tot

)
where 𝑆𝑆res is the residual sum of squares, and 𝑆𝑆tot is the total sum of squares:

𝑆𝑆res( 𝒑) =
𝑚∑︁
𝑖=1

( | |observation𝑖 − prediction𝑖 ( 𝒑) | |
2)

𝑆𝑆tot =

𝑚∑︁
𝑖=1

( | |observation𝑖 − mean of observations 1 to 𝑚 | |2)

Here we test on 𝑚 observations. The best possible score equals 1, which occurs when
𝑆𝑆res is 0 i.e. the predictions are 100% accurate. A baseline model that will always
predict the mean of the observations would get a score of 0. It is also possible to get
a negative score for 𝑅2, in case the model performs worse than the baseline model.

Cross-Validation.

Since we only possess 1200 data points, we will construct the models using all these
data points. To evaluate the performance of these models, we would actually like
to see how the model performs on new data i.e. data on which the model was not
trained. We can estimate the performance of the model by using a technique called
leave one out cross-validation. The idea behind this is as follows:
Instead of training the model on the complete set of the 1200 data points, we leave
out one point, and train the model on the remaining 1199. This way the model will
be very similar to the case in which the model would be trained on all data, but we
can test how it performs on unseen data, namely the one data point that we left out.
We can then repeat this process while leaving out another data point. In fact, we
can repeat this process 1200 times, each time leaving out a different data point in the
training set, on which we will then test its performance. For every repetition of this
process we train a model that very well represents the actual model, since we only
leave out 1 data point in the training set, and we can see how it performs on ‘new’
data. By averaging out the performance value over all 1200 repetitions, we can get a
good idea of how accurate our model is.

This is the theoretical idea behind cross-validation. In reality, training those 1200
models takes a long time, so instead of using 1199 points to train the model, we
could also use less data points as long as the model still represents the performance
of the actual model well. In practice I have chosen to train 10 models by splitting
up the data into 10 disjoint subsets. This is called 10-fold cross-validation. Each of
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the 10 models is then trained on 9 of these subsets, containing a total of 1080 data-
points, and then tested on the remaining 120. By taking the average of the perfor-
mance of these 10 models, a good indication of the performance of the actual model
is achieved.

5.3 Results

In this section we provide the scores for the predictive performance of the models
we have trained. These scores are based on the 𝑅2 value as described in the previous
section. By using cross-validation we make sure that the values in this section are
good representations of the true performance of the neural networks we train. The
results shown in this section are the average of the 𝑅2 values using the cross valida-
tion as described in the previous section.

To get an idea of how we should improve the model by adjusting the number of
hidden nodes and layers, we start off by training neural networks for all three ac-
tivation functions using the same number of hidden neurons and hidden layers.
These numbers are the following:

Layer 1 Layer 2 Layer 3
10 0 0
25 0 0
50 0 0
100 0 0
250 0 0
100 100 0
250 250 0
100 100 100
250 250 250

TABLE 5.1: Setups for number of hidden nodes and hidden layers in
initial neural networks

These numbers were initially chosen to get an understanding of how the per-
formance of the model would improve by increasing the number of nodes and the
number of layers.

As already mentioned at the start of Chapter 5, the input for the neural networks
are the dimensionality reduced wind fields, i.e. principal components, over the re-
spective areas (race area, olympic area, complete area). The outputs of the network
are the dimensionality reduced current fields in the respective race areas. Let’s take
the dimensionality reduced wind fields for the race area as an example. In Chapter
3, we have seen that we can reduce the wind fields over these race areas to a two di-
mensional vector that still represents the original wind data in a good way. Thus to
train a neural network on this data, the input of the network consists of two nodes.
In Chapter 4 we have seen that the current fields in the race area can be reduced by
applying PCA, to a 10-dimensional vector. This means that our neural network will
be a function 𝑓 (·) : 𝑅2 −→ 𝑅10. If we use the olympic area as input the function will
be a function 𝑓 (·) : 𝑅6 −→ 𝑅10 and if we use the complete area as input the function
will be a function 𝑓 (·) : 𝑅25 −→ 𝑅10.
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The scores for the models trained on these setups of hidden nodes and hidden layers
are shown in Section 5.3.1. Based on these results we have an idea of how we can
improve the models to perform even better. The results of these improved models
are discussed in Section 5.3.2

5.3.1 Initial Results

In the first type we use only one hidden layer, while in the second type we will use
two hidden layers. Within each type we vary the input and number of hidden neu-
rons to find out what should be the input and how many hidden neurons should be
used. For all models we use stochastic gradient descent to train the model.

Recall that the neural network is trained on the principal components of the data,
i.e. the inputs are the principle components of the wind fields and the outputs are
the principle components of the corresponding current fields, hence the scores apply
to the principal components and not the complete data sets. What follows are the
10-fold cross-validated scores as described before.

ReLu Activation Function

The performance of the models using the ReLu activation function are shown in
Table 5.2.

#Hidden Neurons Race Area Olympic Area Complete Area
10 0.245 0.222 0.235
25 0.250 0.234 0.292
50 0.249 0.226 0.313
100 0.254 0.244 0.311
250 0.252 0.247 0.291
{100,100} 0.263 0.212 0.345
{250,250} 0.268 0.207 0.420
{100,100,100} 0.229 0.226 0.391
{250,250,250} 0.267 0.163 0.482

TABLE 5.2: Coefficients of determination for using the ReLu activa-
tion function. Three different input data using various number of

hidden neurons.

Hyperbolic Tangent Activation Function

The performance of the models using the Hyperbolic Tangent activation function are
shown in Table 5.3

Sigmoid Activation Function

The performance of the models using the Hyperbolic Tangent activation function are
shown in Table 5.4
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#Hidden Neurons Race Area Olympic Area Complete Area
10 0.103 0.107 0.088
25 0.182 0.165 0.147
50 0.199 0.198 0.187
100 0.217 0.232 0.231
250 0.250 0.394 0.293
{100,100} 0.233 0.256 0.189
{250,250} 0.236 0.474 0.251
{100,100,100} 0.187 0.305 0.201
{250,250,250} 0.244 0.334 0.267

TABLE 5.3: Coefficients of determination for using the hyperbolic
tangent activation function. Three different input data using various

number of hidden neurons.

#Hidden Neurons Race Area Olympic Area Complete Area
10 0.059 0.048 0.054
25 0.125 0.103 0.097
50 0.180 0.149 0.164
100 0.244 0.175 0.223
250 0.242 0.198 0.277
{100,100} 0.177 0.164 0.186
{250,250} 0.211 0.201 0.315
{100,100,100} 0.173 0.129 0.163
{250,250,250} 0.219 0.145 0.303

TABLE 5.4: Coefficients of determination for using the Sigmoid acti-
vation function. Three different input data using various number of

hidden neurons.

5.3.2 Final Models

Based on the results of the models with the standard number of nodes and layers,
as shown in Figure 5.1, some important observations can be made. First of all, it is
clear from all models that the wind describing the Olympic Area does not serve as a
better input than the 2-dimensional Race Area data. The performance of the models
is actually worse when using the Olympic Area as input for all different setups, as
can be seen in Tables 5.2 5.3 and 5.4. It is also clear that using the wind from the
Complete Area is the best input for all models. Further more do we observe the
best results for the chosen numbers of neurons using the ReLu activation function.
Therefore we have chosen to focus on models that use the ReLu activation and use
the wind fields of the Complete Area as input. The initial results also indicate that
both increasing the number of hidden neurons as well as the hidden layers improves
the performance of the model. For these reasons the final models we will test consist
of the numbers of hidden neurons and layers are shown in Table 5.5.

Results

The results of the models trained on the neural networks with the structures de-
scribed in Table 5.5 can be found in Table 5.6.
We can conclude from Table 5.6 that the model using 3 hidden layers containing 1000
hidden neurons each performs the best out of the final models. We know that the
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
500 500 500
500 500 500 500
500 500 500 500 500
1000 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000 1000

TABLE 5.5: Setups for number of hidden nodes and hidden layers in
initial neural networks

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Coefficient of Determination
500 500 500 0.586
500 500 500 500 0.605
500 500 500 500 500 0.607
1000 1000 1000 0.640
1000 1000 1000 1000 0.635
1000 1000 1000 1000 1000 0.625

TABLE 5.6: Performances of the models using ReLu activation func-
tion and Complete Area wind input. The Layers describe the number

of hidden nodes used in the respective models.

model has predictive qualities since the coefficient of determination is 0.64.
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To get an intuitive feeling of the results of the model, Figure 5.4 shows 5 randomly
selected current fields that are predicted by the model based on their respective re-
duced wind fields of the complete area, compared to the actual current fields be-
longing to those wind fields. To make this prediction more valuable, we trained the
model on all samples, except the 5 samples we predict here, so that we indeed find
out how well the model performs on ‘new’ data, i.e. data on which the model has
not been trained. Recall that the neural network predicts the principal components
of a water current field, hence we should also transform this predicted data back
to the original space of the water current data, using the loadings of the principal
components.

To quantify the accuracy in a different way than the coefficient of determination,
we will also again look at the relative magnitude of the delta vector, as we have
previously done in Chapter 4. In this case we will compare the predicted current
data, which is transformed back to the original space, with the original current data.
These are the main statistics for using the relative magnitude:

Relative Magnitude of Delta Vector
Maximum 0.2568
Minimum 0.0006
Mean 0.0197
Median 0.0083
Standard Deviation 0.0318

We can see that the average ‘relative error’ is 1.97% and the median relative error is
0.83%.
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FIGURE 5.4: Predictions of our model for randomly selected water
current fields on the left, vs the actual water current fields on the right.
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FIGURE 5.5: Visualisation of where the predicted field differs from
the actual field for water current fields of Figure 5.4
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5.4 Without the use of PCA

To see whether using PCA is justified, the idea was for this section to compare the
performance of our model with a model that we trained on the wind and current
data without using PCA.

We will not go over all the different variations concerning the number of hidden
neurons or the activation function. Instead we will compare the best performing
model that we tested, using the best input: the neural network using the ReLu ac-
tivation function with (1000,1000,1000) hidden neurons i.e. the network with three
hidden layers that each consist of 1000 neurons. The input will be the wind field
describing the complete bay.
Even though the structure of the hidden layers remains the same, the input layer
and the output layer are different in size from when we use principal components.
Using the principal components the input layer consisted of 25 neurons and the out-
put layer of only 10. Using the non-reduced data the size of the input layer will be
161800 and the length of the output layer will be 12900.

Unfortunately, while the model using PCA took 22 minutes to be trained, the model
using the complete, non-reduced, data was not able to be completed as it ran into
timeout errors. Perhaps using more powerful computers the model could be trained,
but for this research we were unable to compare the two.
We can however compare the number of weights and biases between the two differ-
ent choices:

• PCA: (25*1000 + 1000) + (1000*1000 + 1000) + (1000*1000 + 1000) + (1000*10 +
10) = 2038010

• No PCA: (161800*1000 + 1000) + (1000*1000 + 1000) + (1000*1000 + 1000) +
(1000*12900 + 12900) = 176715900

This means that without using PCA the model contains 176700000/2035000 ≈ 87 as
many parameters. Since every parameter needs to be optimized, fitting the model
will be significantly more complicated without using PCA.
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Chapter 6

Conclusion

From the research we can conclude that it is possible to make meaningful predic-
tions about water current based on wind data using a neural network. Even when
using big datasets, these predictions can be made rather fast, by using principal
component analysis to reduce the dimensionality of your data, while still delivering
promising results.

The results show that using a rectified linear unit (ReLu) as activation function, will
provide the most accurate predictions. This is the case in all the race areas, however
it is too early to conclude that this would also be the case for other datasets that rep-
resent wind and water fields in other places in the world. As can also be observed
from Chapter 5 and Appendix A, the model does not perform equally well on all
different race areas, even though it is trained specifically on the areas own data, us-
ing the same setups for all of them.

The model that we trained that delivered the highest accuracy, made use of three
hidden layers of neurons, all consisting of 1000 nodes. However, after more trial
and error a different combination of layers and nodes could possibly perform bet-
ter. Using a more powerful computer, these combinations can be tested to train new
models.
In general, to pick these parameters, there are two main things that should be taken
into account:

• Overfitting

• Complexity versus accuracy

By overfitting, one could find a very specific combination of layers and nodes that
performs very well on the given dataset, but will perform worse than average on
other datasets. As can be seen from the results in 5 as well as the results in Ap-
pendix A, there is not one model configuration that is clearly superior. It can also be
observed that in different race areas, different model configurations are preferred.
Hence the required generality of the model should be considered when constructing
the model.

Something else that is observed from the results in Appendix A, is that the accu-
racy is negatively correlated with the number of principal components used for the
current data i.e. the more principal components used to describe the current field
the lower the accuracy of the model.

As mentioned earlier already, in general, adding more nodes will improve the pre-
dictive quality of the model. However, one should consider whether the added
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complexity of the model, is worth the improved performance. By complicating the
model, it will take longer to be trained, and will take longer to predict. Depending
on the computing power and the relation between added nodes and improved per-
formance, one should find a balance in this.

Another conclusion we can draw, is that using a larger area for the wind, boosts
the performance of the model significantly. Intuitively, it also makes sense that not
only the wind directly above the water area has influence, but also the wind around
the area as this also influences the water around the area. Hence, even though the
wind directly above the area might be the same for two data fields, the current can
still differ significantly.

In the end, the model can definitely be applied to predict water currents, once it
is properly trained on and configured for the underlying data set. This means that
most likely, for every data set, a different number of layers and nodes, and possi-
bly even a different activation function should be used to achieve optimal results.
And those optimal results will also vary in how ‘optimal’ they are for every data set.
Therefore one should be very aware of the accuracy of the model, when using it for
predicting.
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Appendix A

Figures related to other race areas.

A.1 Enoshima

In this section we highlight the results of training our model on the data of the
Enoshima race area. This is the area with the lowest number of gridpoints, which
also helps to explain that with only 7 principal components, we already capture 99%
of the variance of the current fields.

Enoshima might have some of the most complex surroundings, as it is located next
to an island. Because of this the variance of the wind velocity, which can be seen
in Figure A.3, was slightly higher than in the other areas. However, this did not
impact the performance of the model, as its accuracy scored the second highest for
Enoshima, out of all the other race areas.

FIGURE A.1: Grid points of race area Enoshima highlighted

Principal components required to capture >99% of the variance:

• Wind: 2 Principal Components

• Water: 7 Principal Components
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FIGURE A.2: Variance in direction plotted against mean velocity of
wind fields.

FIGURE A.3: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE A.4: Relative variance in velocity plotted against mean ve-
locity of wind fields.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.198 0.117 0.307
25 0.273 0.222 0.310
50 0.301 0.298 0.308
100 0.319 0.329 0.308
250 0.323 0.324 0.312
{100,100} 0.303 0.285 0.331
{250,250} 0.295 0.288 0.330
{100,100,100} 0.256 0.244 0.325
{250,250,250} 0.254 0.278 0.320

TABLE A.1: Coefficients of determination for using the principal com-
ponents of the wind field of the race area, using various numbers of

hidden neurons.
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#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.151 0.098 0.327
25 0.226 0.183 0.350
50 0.268 0.246 0.355
100 0.305 0.276 0.379
250 0.354 0.332 0.399
{100,100} 0.269 0.296 0.425
{250,250} 0.328 0.401 0.506
{100,100,100} 0.262 0.279 0.479
{250,250,250} 0.304 0.374 0.569

TABLE A.2: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using various numbers of

hidden neurons.

#Hidden Neurons
500 0.420
1000 0.438
{500,500} 0.562
{1000,1000} 0.611
{500,500,500} 0.602
{1000,1000,1000} 0.624

TABLE A.3: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using the ReLu activation

function for a various number of hidden neurons.
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A.2 Fujisawa

In this section we highlight the results of training our model on the data of the Fuji-
sawa race area. This area, together with the Hayama and Sagami race areas, contains
the most grid points. This helps explain why Fujisawa required the most number of
principal components to capture 99% of the variance of the data. This is the most
out of all the race areas.

FIGURE A.5: Grid points of race area Fujisawa highlighted

FIGURE A.6: Variance in direction plotted against mean velocity of
wind fields.

Principal components required to capture >99% of the variance:

• Wind: 2 Principal Components

• Water: 13 Principal Components
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FIGURE A.7: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE A.8: Relative variance in velocity plotted against mean ve-
locity of wind fields.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.071 0.047 0.145
25 0.107 0.093 0.162
50 0.129 0.134 0.166
100 0.134 0.145 0.162
250 0.159 0.148 0.166
{100,100} 0.119 0.130 0.169
{250,250} 0.172 0.136 0.176
{100,100,100} 0.113 0.119 0.146
{250,250,250} 0.138 0.130 0.151

TABLE A.4: Coefficients of determination for using the principal com-
ponents of the wind field of the race area, using various numbers of

hidden neurons.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.069 0.034 0.156
25 0.099 0.078 0.194
50 0.118 0.108 0.189
100 0.142 0.140 0.173
250 0.185 0.171 0.135
{100,100} 0.119 0.119 0.211
{250,250} 0.168 0.201 0.272
{100,100,100} 0.114 0.102 0.238
{250,250,250} 0.156 0.208 0.391

TABLE A.5: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using various numbers of

hidden neurons.
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#Hidden Neurons
500 0.177
1000 0.233
{500,500} 0.380
{1000,1000} 0.457
{500,500,500} 0.469
{1000,1000,1000} 0.561

TABLE A.6: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using the ReLu activation

function for a various number of hidden neurons.
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A.3 Kamakura

In this section we highlight the results of training our model on the data of the Ka-
makura race area. This area, together with the Enoshima area, is one of the race
areas with the lowest amount of grid points. In order to capture more than 99% of
the variance of the data, 8 principal components were required. The model scored
the highest accuracy on this race area. The above average constancy of the wind
could have played a role in this.

FIGURE A.9: Grid points of race area Kamakura highlighted

FIGURE A.10: Variance in direction plotted against mean velocity of
wind fields.

Principal components required to capture >99% of the variance:

• Wind: 2 Principal Components

• Water: 8 Principal Components
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FIGURE A.11: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE A.12: Relative variance in velocity plotted against mean ve-
locity of wind fields.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.205 0.146 0.295
25 0.264 0.231 0.279
50 0.286 0.295 0.288
100 0.306 0.310 0.319
250 0.300 0.311 0.326
{100,100} 0.293 0.291 0.304
{250,250} 0.319 0.300 0.309
{100,100,100} 0.233 0.262 0.298
{250,250,250} 0.252 0.275 0.277

TABLE A.7: Coefficients of determination for using the principal com-
ponents of the wind field of the race area, using various numbers of

hidden neurons.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.159 0.136 0.285
25 0.236 0.215 0.354
50 0.273 0.260 0.386
100 0.311 0.292 0.373
250 0.368 0.352 0.399
{100,100} 0.294 0.325 0.428
{250,250} 0.366 0.442 0.508
{100,100,100} 0.283 0.276 0.481
{250,250,250} 0.323 0.380 0.574

TABLE A.8: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using various numbers of

hidden neurons.
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#Hidden Neurons
500 0.424
1000 0.481
{500,500} 0.562
{1000,1000} 0.625
{500,500,500} 0.621
{1000,1000,1000} 0.663

TABLE A.9: Coefficients of determination for using the principal com-
ponents of the wind field of complete bay, using the ReLu activation

function for a various number of hidden neurons.
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A.4 Sagami

In this section we highlight the results of training our model on the data of the
Sagami race area. This area is very similar to the Fujisawa area in many ways. They
are located very close to each other, both relatively far from the land and they have
around the same number of grid points. This could explain why the performance of
the model is so similar on both these areas.

FIGURE A.13: Grid points of race area Sagami highlighted

FIGURE A.14: Variance in direction plotted against mean velocity of
wind fields.

Principal components required to capture >99% of the variance:

• Wind: 2 Principal Components

• Water: 12 Principal Components
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FIGURE A.15: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE A.16: Relative variance in velocity plotted against mean ve-
locity of wind fields.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.086 0.054 0.165
25 0.122 0.108 0.183
50 0.150 0.145 0.177
100 0.150 0.162 0.183
250 0.165 0.169 0.184
{100,100} 0.136 0.135 0.160
{250,250} 0.171 0.141 0.191
{100,100,100} 0.123 0.121 0.160
{250,250,250} 0.134 0.142 0.162

TABLE A.10: Coefficients of determination for using the principal
components of the wind field of the race area, using various numbers

of hidden neurons.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.065 0.045 0.170
25 0.098 0.082 0.183
50 0.130 0.124 0.204
100 0.162 0.156 0.199
250 0.202 0.193 0.210
{100,100} 0.137 0.136 0.234
{250,250} 0.175 0.239 0.314
{100,100,100} 0.135 0.089 0.277
{250,250,250} 0.183 0.196 0.400

TABLE A.11: Coefficients of determination for using the principal
components of the wind field of complete bay, using various num-

bers of hidden neurons.
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#Hidden Neurons
500 0.188
1000 0.232
{500,500} 0.395
{1000,1000} 0.450
{500,500,500} 0.496
{1000,1000,1000} 0.559

TABLE A.12: Coefficients of determination for using the principal
components of the wind field of complete bay, using the ReLu acti-

vation function for a various number of hidden neurons.
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A.5 Zushi

In this section we highlight the results of training our model on the data of the Zushi
race area. This is the area where the accuracy of the final model was the lowest.
Interestingly enough, the accuracy of the model with only one single hidden layer,
containing 500 hidden neurons performed better here than on Fujisawa and Sagami,
but the added layers added relatively less value here.

FIGURE A.17: Grid points of race area Zushi highlighted

FIGURE A.18: Variance in direction plotted against mean velocity of
wind fields.

Principal components required to capture >99% of the variance:

• Wind: 2 Principal Components

• Water: 10 Principal Components
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FIGURE A.19: Variance in velocity plotted against mean velocity of
wind fields.

FIGURE A.20: Relative variance in velocity plotted against mean ve-
locity of wind fields.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.109 0.087 0.240
25 0.144 0.166 0.252
50 0.213 0.209 0.258
100 0.226 0.243 0.260
250 0.261 0.246 0.262
{100,100} 0.216 0.201 0.263
{250,250} 0.268 0.227 0.258
{100,100,100} 0.206 0.178 0.237
{250,250,250} 0.231 0.187 0.217

TABLE A.13: Coefficients of determination for using the principal
components of the wind field of the race area, using various numbers

of hidden neurons.

#Hidden Neurons Hyperbolic Tangent Sigmoid ReLu
10 0.109 0.081 0.235
25 0.165 0.147 0.268
50 0.200 0.199 0.269
100 0.239 0.237 0.246
250 0.288 0.271 0.237
{100,100} 0.210 0.217 0.271
{250,250} 0.262 0.310 0.329
{100,100,100} 0.187 0.181 0.301
{250,250,250} 0.251 0.292 0.399

TABLE A.14: Coefficients of determination for using the principal
components of the wind field of complete bay, using various num-

bers of hidden neurons.
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#Hidden Neurons
500 0.257
1000 0.285
{500,500} 0.383
{1000,1000} 0.454
{500,500,500} 0.464
{1000,1000,1000} 0.507

TABLE A.15: Coefficients of determination for using the principal
components of the wind field of complete bay, using the ReLu acti-

vation function for a various number of hidden neurons.





67

Appendix B

Code

B.1 Code

#Import Packages:

#Importing Data
import pickle as pc
#Importing functions for statistics
from statistics import *
from numpy import *
#Principal Component Analysis
from sklearn.decomposition import PCA
#Generating random samples
import random
#Neural Network
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
#Cross Validation
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
#Plotting
import matplotlib.pyplot as plt
import scipy.interpolate as interpolate

#Functions:

#Import the data --> recall that the data is an array where every row is a wind/current field and is structured as [x1,x2,...,xn,y1,y2,...,yn]
#This also includes the coordinates
def select_area(area):
# Getting back the objects:

with open("./areadata/" + area + ’.pkl’, ’rb’) as f: # Python 3: open(..., ’rb’)
wind_data, c_data, wind_polar, c_polar, testdata, xy_sel = pc.load(f)

#fig1 = windplot(testdata)
#display(HTML(fig1.to_html()))

return(testdata, c_data, wind_data, wind_polar, xy_sel)
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#Function to plot the data
def create_field(fig, ax, df, coords, form, vmin=0, vmax=20, unit = "speed m/s"):## split up data

## step 1: make grid with equal steps based on coords
xr = np.arange(coords[:,0].min(), coords[:,0].max(), 15)
yr = np.arange(coords[:,1].min(), coords[:,1].max(), 15)
xx,yy = np.meshgrid(xr,yr,copy=True, sparse=False, indexing=’xy’)

## create figure
if form ==2:

ll = int(len(df))
X = df[0:int((ll/2))] # velocity in x
Y = df[int(ll/2):int(len(df))] # velocity in y
EE =np.sqrt(X**2+Y**2) # magnitude of the velocity (speed)
ex=X/EE # eenheidsvector
ey=Y/EE #*eenheidsvector

## step 2: interpolate x,y and EE over the grid (griddata in matlab)
grid_z0 = interpolate.griddata(coords, EE, (xx, yy), method=’cubic’)
grid_z1 = interpolate.griddata(coords, ex, (xx, yy), method=’cubic’)
grid_z2 = interpolate.griddata(coords, ey, (xx, yy), method=’cubic’)

else:
grid_z0 = interpolate.griddata(coords, df, (xx, yy), method=’cubic’)

## step 3 create plot
cmap = plt.cm.get_cmap("jet")
ax.axis(’equal’)

cm = ax.pcolormesh(xr,yr, grid_z0, cmap=cmap, vmin = vmin, vmax=vmax)
fig.colorbar(cm, extend=’both’, label= unit, ax=ax)

if form ==2:
skip=(slice(None,None,8))
ax.quiver(coords[skip,0], coords[skip,1], X[skip],Y[skip], units=’xy’, color = "black", scale_units="xy", headwidth=5)

#Training the Neural Network

#Loading data
#Race area ---> Options: [’Enoshima’, ’Fujisawa’, ’Hayama’, ’Kamakura’, "Sagami", "Zushi"]
#xy_sel represent the corresponding coordinates
area = ’Hayama’
[testdata, c_data, wind_data, wind_polar, xy_sel] = select_area(area)
#Full bay
with open(’fullBay.pkl’, ’rb’) as f:

date, fullCurrent, fullWind, fullCurrentPCA, fullWindPCA = pc.load(f)
#Olympic area
with open(’olympicArea.pkl’, ’rb’) as f:
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date2, olyCurrent, olyWind, olyCurrentPCA, olyWindPCA = pc.load(f)

#Filter on 2019 data
c_data2019 = c_data[1395:,:]
wind_data2019 = wind_data[1395:,:]

#PCA Current
pca_cur = PCA(n_components = 10)
pca_c_data = pca_cur.fit_transform(c_data2019)

#PCA Wind
pca_wind = PCA(n_components = 2)
pca_wind_data = pca_wind.fit_transform(wind_data2019)

#Select your data, here we use the principal components data of the wind fields of the complete bay
#and the current field of the race area

X = fullWindPCA
y = pca_c_data

#You can deselect some (random) samples to check out how well these are predicted
#X_train = np.delete(X.copy(), randomlist, 0)
#y_train = np.delete(y.copy(), randomlist, 0)

X_train = X.copy()
y_train = y.copy()
#Using cross validation to measure the accuracy ---> Here we use 10-fold cross validation
cv = KFold(n_splits = 10, random_state = 1, shuffle = True)
#You can use different setups ---> Here we use 3 hidden layers of size 1000 and the ReLu activation function
regr = MLPRegressor(random_state = 10, max_iter = 5000, hidden_layer_sizes = (1000,1000,1000), activation = ’relu’).fit(X, y)
scores = cross_val_score(regr, X, y, cv = cv, n_jobs = -1)

print(’Accuracy: %.3f (%.3f)’ % (mean(scores), std(scores)))

#Training the model without using cross validation:
regr = MLPRegressor(random_state = 10, max_iter = 5000, hidden_layer_sizes = (1000,1000,1000), activation = ’relu’).fit(X, y)

########

#Using the Neural network to make prediction: ---> In this case field 382 from the array
pred_pca_field = regr.predict(X[382,:].reshape(1,-1))
#Transforming the predicted principal components back to the original space
pred_full_field = pca_cur.inverse_transform(pred_pca_field)
#Plotting the field
fig1=plt.figure(figsize=(10,8))
fig1.clf()
data = pred_full_field[0]
ax1 = fig1.add_subplot(111)
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create_field(fig1,ax1, data, xy_sel, form=2, vmin=0, vmax=20, unit = "speed (m/m)")

########

#Extra Analysis

#Determining the number of principal components ---> In this case for the current data
pca = PCA()
test = pca.fit(c_data2019)
fig = plt.figure()
fig.set_size_inches(18, 7)
exp_var_pca = test.explained_variance_ratio_[0:10]
cum_sum_eigenvalues = np.cumsum(exp_var_pca)
plt.bar(range(0,len(exp_var_pca)), exp_var_pca, alpha=0.5, align=’center’, label=’Individual explained variance’)
plt.step(range(0,len(cum_sum_eigenvalues)), cum_sum_eigenvalues, where=’mid’,label=’Cumulative explained variance’)
plt.ylabel(’Explained variance ratio’)
plt.xlabel(’Principal component index’)
plt.legend(loc=’best’)
plt.tight_layout()
plt.show()

#Choose number of components based on explained variance ---> In this case if explained variance is > 0.99
idx = np.where(np.cumsum(test.explained_variance_ratio_)>.99)
print("Number of necessary principal components is " + str(idx[0][0] + 1))
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