

Delft University of Technology

Analysis of service diagnosis improvement through increased monitoring granularity

Chen, Cuiting; Gross, Hans Gerhard; Zaidman, Andy

DOI
10.1007/s11219-015-9286-2
Publication date
2017
Document Version
Final published version
Published in
Software Quality Journal

Citation (APA)
Chen, C., Gross, H. G., & Zaidman, A. (2017). Analysis of service diagnosis improvement through increased
monitoring granularity. Software Quality Journal, 25(2), 437-471. https://doi.org/10.1007/s11219-015-9286-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11219-015-9286-2
https://doi.org/10.1007/s11219-015-9286-2

Analysis of service diagnosis improvement through
increased monitoring granularity

Cuiting Chen1 • Hans-Gerhard Gross2 • Andy Zaidman1

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Due to their loosely coupled and highly dynamic nature, service-oriented

systems offer many benefits for realizing fault tolerance and supporting trustworthy

computing. They enable automatic system reconfiguration when a faulty service is

detected. Spectrum-based fault localization (SFL) is a statistics-based diagnosis technique

that can be effectively applied to pinpoint problematic services. However, SFL exhibits

poor performance in diagnosing services which are tightly interacted. Previous research

suggests that an increase in the number of monitoring locations may improve the diag-

nosability for tight interaction. In this paper, we analyze the trade-offs between the

diagnosis improvement through increased monitoring granularity and the overhead caused

by the introduction of more monitors, when diagnosing tightly interacted faulty services.

We apply SFL in a service-based system, for which we show that 100 % correct identi-

fication of faulty services can be achieved through the increased monitoring granularity.

We assess the overhead with increased monitoring granularity and compare this with the

original monitoring setup. Our experimental results show that the monitoring at the service

communication level causes relatively high overhead, whereas the monitoring overhead at

a finer level of granularity, i.e., at the service implementation level, is much lower, but

highly dependent on the number of monitors deployed.

& Cuiting Chen
cuiting.chen@tudelft.nl

Hans-Gerhard Gross
hans-gerhard.gross@hs-esslingen.de

Andy Zaidman
a.e.zaidman@tudelft.nl

1 Software Engineering Research Group, Delft University of Technology, Mekelweg 4,
2628 CD Delft, The Netherlands

2 Faculty of Information Technology, Esslingen University, Flandernstrasse 101, 73732 Esslingen,
Germany

123

Software Qual J
DOI 10.1007/s11219-015-9286-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9286-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-015-9286-2&domain=pdf

Keywords Residual defect � Fault localization � Online monitoring � Simulator � Service
framework

1 Introduction

The dynamic features inherent to service-oriented software systems, such as online

deployment of services, and runtime reconfiguration and evolution, facilitate fault toler-

ance mechanisms in a natural way, and it makes the handling of emerging problems

straightforward. If a faulty service misbehaves during operation, it can be exchanged for

another healthy service through simple runtime reconfiguration (Bennett et al. 2000;

Canfora and Di Penta 2006). However, before a service may be exchanged, it must be

determined with certainty that this service, indeed, represents the root cause of the failing

system, and that it is not merely propagating an error from somewhere else (Mohamed and

Zulkernine 2008). Even though service-oriented systems provide all the ingredients nec-

essary to recover from and adapt to operation time failures (Di Nitto et al. 2008), adequate

runtime diagnosis approaches that accurately identify a faulty service are still missing.

Diagnosis for services has been proposed in the past (Yan and Dague 2007; Yan et al.

2009), but the techniques are mainly based on static system modeling, disregarding the

dynamic nature of service-based systems.

Recent work (Chen et al. 2012) demonstrates that spectrum-based fault localization

(SFL), which is a statistics-based diagnosis technique, can be applied effectively to pin-

point faulty components in service-based systems. SFL works by automatically inferring a

diagnosis from observed symptoms (Abreu et al. 2009). The diagnosis is a ranking of

potentially faulty components, i.e., the services in a service-based system, and the

symptoms are observations about service involvement in system activation, i.e., the service

transactions, plus pass/fail information for each transaction (Chen et al. 2012; Gonzalez-

Sanchez et al. 2011). SFL is based on the assumption that a service is more likely to be

faulty, if it participates more in failing transactions, and it mimics how a human diag-

nostician would exonerate parts of a system that cannot be used to explain a particular

failure observation.

Although SFL represents an adequate technique for diagnosing faulty services, exper-

iments performed for our previous work (Chen et al. 2012) show that incorrect diagnoses

are more likely, if services are tightly interacted. In other words, if a service S1 always

invokes another service S2 and one of the services is faulty, the diagnosis would be such

that both services S1 and S2 will be convicted, leading to incorrect or inconclusive diag-

noses. In a traditional setting with a human diagnostician, this is not so much of an issue.

However, it would mean that more services would have to be inspected, in order to

determine the true root cause of failure, thereby merely increasing the residual diagnosis

cost (Gonzalez-Sanchez et al. 2010). However, in the case of a service-based system

acting on fault tolerance autonomously, it would mean that reconfiguration or other self-

healing activities would have to be applied to more suspects, thereby unnecessarily treating

services that are actually healthy.

Careful analysis of the experiments performed for (Chen et al. 2012) reveals that the

difficulty of tight coupling for the SFL approach can be resolved either by the architecture

of the system and how services interact or by the granularity of the observations used for

SFL. However, in the first instance, it would be rather difficult to try and rearrange the

Software Qual J

123

architecture in order to decouple services for any individual system configuration; in the

second instance, it would be relatively easy to introduce more monitoring points in the

architecture and thus increase the level of monitoring granularity that would be sufficient to

support the calculation of a conclusive diagnosis.

As a consequence, the goal of this paper was to explore the trade-off between increasing

the accuracy of the diagnosis in the case of tightly interacting faulty services on the one

hand and the performance penalty on the running service system on the other hand. This

current paper is an extension of our previous work presented in (Chen et al. 2013). The

previous article is focused on the improvement of the diagnosis through increasing the

monitoring granularity with a preliminary overhead assessment. The main extension of the

current paper is the addition of a detailed analysis of runtime overhead caused by the

different levels of monitoring. In the current paper, we concentrate on the following

concrete research questions:

RQ1 How and to which extent can the monitoring granularity affect the correctness of

SFL-based diagnosis for service-oriented systems?

RQ2 How can we increase the monitoring granularity for diagnosis in service-oriented

systems?

RQ3 What is the overhead caused by the monitoring for diagnosis at various levels of

granularity?

We make the following contributions. We describe an approach and implementation for

increasing the monitoring granularity in services, and show how this can improve the

accuracy of diagnosing faulty services. We use a SFL simulator to study the effects of

changing the monitoring granularity on the calculation of the diagnosis in many different

system configurations. We assess the overhead of our approach and implementation in a

real case study and discuss its implications.

The remainder of this article is organized as follows: Sect. 2 presents the research field

and techniques related to our approach. Sect. 3 outlines why tight service interaction

inhibits the calculation of a diagnosis by SFL, and why increased monitoring granularity is

adequate to alleviate this problem. Sect. 4 introduces the SFL simulator and explains how

it can be used to assess the performance of our proposed approach quickly. Sect. 5

describes the case study used to assess our proposed approach. Sect. 6 presents the

experiments measuring the runtime overhead caused by the monitoring of different levels

of granularity. Sect. 7 discusses the experimental results and the limitations. Finally,

Sect. 8 presents related work, and Sect. 9 concludes the paper.

2 Background

2.1 Spectrum-based fault localization

SFL infers a diagnosis from symptoms. Diagnosis refers to a ranking of potentially faulty

components (source code lines, blocks, etc.). Symptoms are observations about component

involvement in system activations, plus pass/fail information about the executions (Gon-

zalez-Sanchez et al. 2011). Component involvement is expressed in the form of so-called

block hit spectra (hence the name spectrum-based fault localization). It produces for each

system activation a binary coverage value per component (Reps et al. 1997; Zoeteweij

et al. 2007) with covered = 1 and uncovered = 0. Component coverage can be derived

Software Qual J

123

from a coverage tool. Each system activation, which may be referred to as test, leads to a

spectrum, and it is associated with a binary verdict (pass = 0, fail = 1) from an ora-

cle (Weyuker 1982). Execution of several tests produces an activity matrix, representing

activation of each component over time. The test verdicts lead to a binary output vector

with pass/fail information. The diagnosis is calculated through applying a similarity

coefficient (SC) to each component activity vector and the output vector. The similarity

denotes the likelihood of a component being the faulty one and, therefore, determines its

position in the diagnosis ranking. Any SC may be used; however, the Ochiai SC has been

found to work best (Abreu et al. 2006). Intuitively, SFL works by comparing the different

combinations of component involvements in the individual system operations. Compo-

nents that have not taken part in a system activation or are used more in passing activations

are less likely to be faulty in case a failure is observed.

The basic SFL approach is illustrated in Table 1 by means of a simple Java program.

This example system is comprised of components C0–C10 with a source code line denoting

the component granularity. It is exercised with six system activations, i.e., test cases or

transactions, leading to the corresponding component activation for each transaction t1–t6
noted down in the activity matrix. Four transactions have failing test outcomes (1); two

have passing test outcomes (0), noted in the output vector. The Ochiai SC is calculated for

the output vector and each component’s activity vector. Finally, the similarity values are

brought in a descending order. This results in C4 being ranked top with 100 % likelihood,

which represents the location of the fault in this example system (fault marked in bold).

2.2 SFL for service-based systems

Applying SFL in service-based systems requires the SFL concepts to be adapted to the

service context. This has implications in terms of the component granularity, system

activation, component coverage, and the verdicts. The service represents the natural

component granularity. It is the basic unit that can be restarted, exchanged, or otherwise

Table 1 Illustration of SFL

Comp. Character counter t1 t2 t3 t4 t5 t6 SCo

public int count(String s){ [Activity Matrix]

C0 int upper = 0 ; int lower = 0; int digit = 0; int other =
0;

1 1 1 1 1 1 0.82

C1 for(int i = 0; i\s.length(); i??){ 1 1 1 1 1 1 0.82

C2 char c = s.charAt(i); 1 1 1 1 1 1 0.82

C3 if(c[= ’A’&& c\= ’Z’) 1 1 1 1 0 1 0.89

C4 upper 1 5 2; 1 1 1 1 0 0 1.00

C5 else if(c[= ’a’&& c\= ’z’) 1 1 1 1 0 1 0.89

C6 lower??; 1 1 0 0 0 0 0.71

C7 else if(Character.isDigit(c)) 1 0 1 0 0 1 0.58

C8 digit??; } 1 0 1 0 0 1 0.58

C9 other = s.length()-upper-lower-digit; 1 1 1 1 1 1 0.82

C10 return other; 1 1 1 1 1 1 0.82

}

Output vector (verdicts) 1 1 1 1 0 0

Software Qual J

123

treated, in case an error is detected. Alternatively, a service operation, which represents a

business functionality of a service, may denote a finer level of granularity.

Due to the loosely coupled nature of services, activation in service-based systems is not

so obvious. A service instance may serve many application contexts. In other words, a

service will not be exclusively activated from within one application context, but from a

potentially arbitrary number of other applications operating in other contexts, i.e., the

contexts of all clients that depend on a service. Applying SFL in a service-based system,

therefore, requires a system activation to be made explicit through a unique transaction ID,

which separates the service activations of different application contexts.

Component involvement in transactions is typically measured through coverage tools.

However, since there is no single controlling authority that can produce service coverage

information, involvement of a service in a transaction must be produced differently. To

apply SFL in service-based systems requires dedicated monitors, which observe the service

communication and associate the services or their operations with the corresponding

transactions invoking the services or their operations. This can either be done by the

services themselves or through modern service frameworks. For example, Apache’s

Axis2,1 Redhat’s JBoss,2, or Ebay’s Turmeric3 come well equipped with extensive mon-

itoring facilities that can be adopted to producing service involvement information.

A transaction’s pass/fail information comes from an oracle. Runtime errors, exceptions,

warnings, and logs are natural choices for realizing oracles in service-based systems. They

are readily available through the platforms managing the communication between services,

or they are initiated through the business logic, i.e., the services themselves.

2.3 Implementation of SFL for service-based systems

This section presents the implementation of the aforementioned SFL concepts for service-

based systems. Firstly, the service operation is set as component granularity for diagnosis,

because it permits a more fine-grained diagnosis. Secondly, activation of the service-based

system used for our experiments is outlined. Thirdly, online monitoring is required, in

order to recover the service involvement in transactions and in order to calculate the

verdicts. In addition, a diagnosis engine is built in order to maintain the SFL activity

matrices and calculate the diagnoses. The organization of our SFL implementation for

service-based systems is presented in Fig. 1, and it is briefly summarized in the following

[more details in (Chen et al. 2012)].

Typically, services would be activated at the application interface through user inter-

action. However, in our case, system activation is automated through various third-party

tools for evaluation purposes, or through custom-built clients for assessing overhead. There

are some existing tools, which provide easy access to services, such as SoapUI4 and

JMeter.5 Such tools are used to create SOAP messages and execute them automatically,

thereby mimicking real user interaction coming from different application contexts. On top

of that, our service system is built on Ebay’s open-source service framework Turmeric.

1 http://axis.apache.org.
2 http://www.redhat.com/products/jbossenterprisemiddleware/.
3 https://www.ebayopensource.org/index.php/Turmeric.
4 http://www.soapui.org.
5 http://jmeter.apache.org.

Software Qual J

123

http://axis.apache.org
http://www.redhat.com/products/jbossenterprisemiddleware/
https://www.ebayopensource.org/index.php/Turmeric
http://www.soapui.org
http://jmeter.apache.org

This framework provides stub code for each service, which allows developers to build

customized client applications to invoke the services.

Turmeric also provides many inbuilt features to support the (online) collection of

system data required for applying SFL in service-based systems. These features facilitate

the integration of online monitoring code, in order to record the component coverage for

SFL with minimum amendments, resulting in a slender monitoring design. The message-

handling mechanism of Turmeric is based on a specific pipelined architecture. All

incoming and outgoing messages will go through the pipelines and will be processed by a

group of default handlers. The default handlers can be extended by adding custom-built

handlers for monitoring, i.e., our Turmeric monitors, dedicated to obtaining transaction

information required by SFL. For each service message, the Turmeric monitors will parse

the message context to get the transaction ID, the message content, the service and

operation names, and other information referring to the transaction. The custom-built

monitors in the pipelines publish to a Redis in-memory database instance6 in order to

forward the collected data asynchronously to the diagnosis engine. The diagnosis engine

subscribes to the respective monitoring data via Redis and performs the SFL calculations

offline. That way, the monitoring data from messages belonging to the same transaction

can be easily traced, resulting in the involvement of service operations in a unique

transaction to be used in the diagnosis.

Verdicts are generated based on the monitoring data from Turmeric monitors. A set of

oracles is applied to determine the result of each transaction with pass or fail, based on the

message content. The monitors also check upcoming exceptions, or other noteworthy

events and outcomes during system operation. Any of these noteworthy occurrences can be

associated with a unique transaction ID and used to judge the transaction.

The actual diagnosis is conducted offline in a diagnosis engine. It is designed as a

separately operating application that collects all monitoring data to get service activities

and produce verdicts by applying oracles. Activities and verdicts are transformed into an

activity matrix and an output vector for further calculation of a diagnosis. This imple-

mentation is summarized in Fig. 1.

Fig. 1 Monitoring and diagnosis architecture based on Turmeric

6 We use the publish/subscribe feature for optimal performance; see http://redis.io/.

Software Qual J

123

http://redis.io/

3 Problem statement and approach

One of the main targets of this paper was to study how tight service interaction inhibits the

calculation of a diagnosis, and how adjusting the monitoring granularity can help overcome

this limitation. In order to explain the tight service interaction problem, we make use of a

service topology. An example can be found on the left-hand side in Fig. 2. A topology is

created by defining a number of components. Each component is defined by the component

name and the component health (h). Health denotes the probability that a component will

not produce an error when it is executed: 1.0 represents a healthy component, while a value

in the range (0.0, 1.0) represents a faulty component with intermittent fault behavior. A

health value of 0.0 denotes no fault intermittency, i.e., the component will always produce

an error if activated. Components in a topology can be connected through defining a link

between them with an associated invocation probability.

Besides the service topology, we also look at the monitoring topology, which is basi-

cally a representation of where the monitors are in the service topology. In the most basic

case of Fig. 2, where each component has exactly one monitor, the monitoring topology

corresponds to the service topology.

The diagnosis component topology then represents a virtual service topology in which

the components of the service topology are split up in subcomponents in case multiple

monitors per component are placed. This diagnosis component topology can discern

multiple calling paths within a component in the service topology.

3.1 The problem of tight service interaction

First, we explain how tight interaction aggravates diagnosis.

Consider the service topology on the left-hand side in Fig. 2, which is comprised of six

services, S0–S5, with service S3 being the faulty one with low health probability (h = 0.0).

All other services are set to be 100 % healthy (healthy probability h = 1.0). Services S2
and S3 are tightly interacted, indicated through the 1.0 invocation probability between

them. It means once service S2 is invoked, service S3 will also be invoked, leading to the

same activity status for the two services. This creates a problem for the diagnosis, when

each service gets only one monitor, as illustrated in the monitoring topology shown in the

middle of Fig. 2. There is a one-to-one mapping between the service topology and the

topology of the monitors, hence the topology of the diagnosis components, shown on the

right-hand side of Fig. 2.

The activity matrix and diagnosis results for this monitoring setup (produced with the

SFL simulator, described later in Sect. 4) are presented in the table in Fig. 2. Due to the

tight interaction between services S2 and S3, the diagnosis not only convicts the real faulty

service, S3, but also its tightly interacted peer, the service S2. As indicated by the Ochiai

similarity coefficients (SC) in Fig. 2, the two services are assigned the same values (SC

= 1.0) and thus the same rank in the diagnosis. In this diagnosis, both services are, in fact,

treated as one single diagnosis component. This ambiguity would bring extra effort to

service maintainers to identify the real faulty service; however, in case of automatic service

recovery, both services would have to be treated, thereby treating an otherwise healthy

service (S2). Therefore, in our approach, only a result that ranks the real faulty service

uniquely highest in the diagnosis can be considered as a correct diagnosis. On the other

hand, a result that ranks any healthy services highest is categorized as an incorrect

diagnosis. In this example, tight interaction between services produces an ambiguous

Software Qual J

123

diagnosis, i.e., both a healthy service and the faulty service are ranked top, which is taken

as an incorrect result by our definition.

3.2 Solving tight service interaction: potential solution 1

A possible solution to deal with this insufficiency of diagnosis in the case of tight service

interactions would be to reduce the invocation probabilities between such services. In other

words, create a system, in which not every invocation of service S2 will subsequently lead

to the invocation of service S3. Service topology B in Fig. 3 illustrates such an architecture.

The invocation probability between the two initially tightly interacted services is reduced

to 0.9. Without having to change the monitoring setup, this slight adjustment in the

invocation probability leads to enough decoupling of the services, and to the introduction

of sufficiently more discriminative information in the observations. Thus, a correct diag-

nosis can be calculated in the related activity matrix for the diagnosis component topology

B in the table shown in Fig. 3.

Service Topology A Monitoring Topology A Diag. Comp. Topology A

Topology A

Component Activity for Topology A (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 00000000110000000100 0.280

S4 10111000000110001110 0.728

S0 11111111111111111111 0.922

S3 10111011101111111111 1.000

S2 10111011101111111111 1.000

Output 10111011101111111111

Fig. 2 Example topology illustrating tight service interaction

Software Qual J

123

3.3 Solving tight service interaction: potential solution 2 (our approach)

In real systems, the invocation probabilities between individual services cannot be adjusted

arbitrarily, because they are determined by the business logic and the input parameters

coming from the external system context, i.e., the system’s usage profile. In order to

retrieve similar discriminative power in the observations, a feasible adjustment in the

monitoring topology must be invented that leads to similar results as shown for service

topology B. Experiments with the SFL simulator suggest that this may be achieved through

increasing the number of observation points (monitors) in the service topology. This boils

down to logically splitting services into subcomponents, or simply adding components, and

associating individual monitors to these subcomponents. This increases the level of detail,

i.e., the monitoring granularity used for the similarity coefficients, and helps discriminate

service invocations that follow different internal invocation paths. By defining a moni-

toring topology that separates services into finer-grained subcomponents, we retrieve finer-

grained coverage information and finer-grained potential communication paths between

the subcomponents, with potentially different invocation probabilities between them. The

Service Topology B Monitoring Topology B Diag. Comp. Topology B

Topology B

Component Activity for Topology B (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 01000000000001010001 0.471

S4 11001001000111110100 0.745

S0 11111111111111111111 0.949

S2 11101111111111111111 0.973

S3 11101111110111111111 1.000

Output 11101111110111111111

Fig. 3 Example topology illustrating potential solution 1

Software Qual J

123

assumption that we do make here is that we have access to the internals of the services to

actually implement this finer-grained monitoring.

This increase in the monitoring granularity is illustrated in Fig. 4. Here, service

topology C corresponds to service topology A shown in Fig. 2, with S2 and S3 being tightly

interacted, and S3 being the faulty service. In contrast to monitoring topology A, the new

monitoring topology C is changed in such a way that, instead of using only one monitor,

two monitors (M2:1 and M2:2) are associated with service S2. Each of the monitors is in

charge of different paths through service S2. So, in terms of monitoring, service S2 is split

into two subcomponents: S2:1 and S2:2, as shown in the diagnosis component topology in

Fig. 4. A possible way to realize this splitting is through code slicing. Both subcomponents

lead to two separate observable paths from S2 into S3, and the corresponding activity

matrix is also changed. In this way, the diagnosis is able to produce a correct and

unambiguous result. This example illustrates that adding more observation points can

improve diagnosis for service systems with tight interactions. However, whether and to

which extent the increasing of monitoring granularity can affect diagnosis depends on

careful selection of the observation locations. This requires further investigation when

performing a case study (Sect. 5)

Service Topology C Monitoring Topology C Diag. Comp. Topology C

Topology C

Component Activity for Topology C (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 00000000000000010100 0.000

S2.1 10001101001001000000 0.679

S4 00000001011111011000 0.686

S0 11111111111111111111 0.806

S2.2 10110001111111001000 0.920

S3 10111101111111001000 1.000

Output 10111101111111001000

Fig. 4 Example topology illustrating potential solution 2

Software Qual J

123

4 System simulations

4.1 SFL simulator

Performing experiments with a full-fledged case study is tedious. Every new experiment

requires extensive adaptation to new experimental requirements. This leads us to the

development of a simulator. It is developed in Ruby and used for assessing different system

topologies quickly and easily. It provides functions for setting up component topologies,

executing the topologies thereby gathering coverage information, and calculating diag-

noses. In particular, setting up a system topology in the simulator is easy and flexible, and

the simulator can run a large number of experiments for each system topology in a very

short time.

Similarly to what we have explained in Sect. 3, a topology is created by defining a

number of components. Each component is defined by the component name, component

health, and failure probability. Health denotes the probability that a component will not

produce an error when it is executed. 1.0 represents a healthy component, while a value in

the range (0.0, 1.0) represents a faulty component with intermittent fault behavior. 0.0

denotes no fault intermittency, i.e., the component will always produce an error if acti-

vated. Different from the model that we used in Sect. 3, for the simulator we extend our

model with a failure probability, which denotes the likelihood of a component to propagate

an error into a failure, i.e., the fault observation. A failure probability between 0.0 and 1.0

means the likelihood for a component to issue a failure and terminate the transaction when

it gets an error. The failure probability can also be used to discriminate fatal failures (i.e.,

component health\1.0 and failure probability = 1.0) from warnings (i.e., failure proba-

bility = 0.0). In the case of a warning, the system activation will continue normally and

issue a failed transaction at the end.

Fig. 5 Topology of the case study produced by the SFL simulator

Software Qual J

123

Components in a topology can be connected through defining a link between them with

an associated invocation probability. This denotes the likelihood that a linked component

will be invoked during execution. 1.0 denotes that two components will always be invoked

together (i.e., representing tight coupling), and 0.0 determines that a link is never

exercised.

Based on the topology with components and invocation links, the simulator can be

controlled to perform executions. This requires that one or several entry points (compo-

nents or links) are activated. Every activation of the topology leads to a particular control

flow according to the initially defined probabilities, thereby generating coverage and

pass/fail information. These observations are collected and used in order to calculate a

diagnosis.

For illustration purposes, Fig. 5 displays an example topology of our case study system

produced by the SFL simulator. It shows components (i.e., the services as boxes) with

health and failure probabilities, h and f, respectively, and link nodes (as ovals) with their

respective transaction probabilities. Figure 5 also shows a particular instance after 200

transactions from the Web Application (denoted as ‘‘Web entry’’ at the left-hand side of the

figure). The whole numbers in the link nodes denote the frequencies of invocations, and the

thickness of each line also indicates this.

The source code of the SFL simulator is available for download.7 Its usage for the work

described in this paper was twofold. First, we used it to develop our approach described in

Sect. 3.3. Second, we applied it to simulate our original case system described in (Chen

et al. 2012), for an initial assessment of our ideas in a more realistic setup (described

below).

4.2 Simulation results

To assess our approach in a more realistic setup, we imitated our case study system with

the SFL simulator. Different from the topology shown in Fig. 5, which is only displaying

top-level services (due to space limitations), in the simulator, we used a more detailed

system model that includes the service interface level. This follows the original design of

the case study system (Chen et al. 2012). In addition, the link probabilities used in the

simulations are based on the service implementation logic plus test data applied. The

system health (or failure intermittency) is determined based on the number of fault acti-

vations during testing of the real system.

In the original experiments, two services could be identified to exhibit the problem of

tight service interaction, i.e., the ExchangeCurrencyService and the OrderProcessorSer-

vice, resulting in incorrect diagnoses. The results of the simulations performed for these

two services are shown in Table 2. The simulations are based on two levels of detail. The

first level of granularity assessed is the service interface level (indicated as i1 in Table 2),

and this corresponds to our original experiments described in (Chen et al. 2012). The

second level is more detailed and separates service interfaces into finer-grained subcom-

ponents (indicated as i2 in Table 2). The ExchangeCurrencyService is split into five

subcomponents and the OrderProcessorService is into seven subcomponents. The sub-

components, which are associated with individual monitors, are determined following

roughly the main execution paths through these services. Their respective invocation

probabilities defined in their links are derived experimentally from the original system in

the case study. Since the simulation is made for single-fault case, i.e., only one

7 https://github.com/SERG-Delft/sfl-simulator.

Software Qual J

123

https://github.com/SERG-Delft/sfl-simulator

component/subcomponent can be set as faulty in one activation, so the number of acti-

vations in the simulation (Table 2) is set to 50 and 70 for two services, respectively, in

order to retrieve sufficient fault coverage.

The low values for correctly performed diagnoses for granularity i1 shown in Table 2

illustrate the poor performance of SFL for tightly interacted services. A diagnosis is

considered to be correct, if only the true faulty component is correctly and uniquely

identified by SFL. In the initial setup (with interface-level granularity, i1), this can only be

achieved in 16 and 26 % of the cases for the two tightly interacted services. The simulation

results for the finer-grained level of monitoring granularity (i2, shown in Table 2) are much

improved, up to 78 and 67 %. However, the improvement is poorer than expected. In fact,

they are worse than the results from the experiments performed for the real case study

described later (Table 6). This requires some explanation:

1. Compared to the case study, fewer faults are activated in the simulation (as shown in

Table 3), leading to missing diagnoses. The chance of executing some faults is low

through the combination of failure and invocation probabilities defined in the

simulation. In other words, some faults that are activated in the case study are not

activated in the simulation.

2. Even though the number of activations corresponds to the real system, the random

activations between the components is more diverse. The simulation uses random

invocations according to predefined probabilities in order to exercise the topology. The

probabilities are retrieved experimentally from the real case study, but they cannot

absolutely reflect the usage profile imposed by the real test cases. This leads to

statistically significant deviations of the executions in the simulation compared to the

real system.

3. The monitoring granularity in the real case system is increased compared with the

simulation (see Sect. 5). The simulator allows to define topologies with finer-grained

subcomponents; however, estimating the link probabilities and health values of these

finer-grained subcomponents becomes increasingly difficult.

Table 2 Simulation results for service diagnosis

Services Component
granularity

No. of
activations

Diagnosis % Correct
diagnosis

Correct Incorrect

ExchangeCurrencyService i1 Interface 50 8 42 16

i2 Subcomp 50 39 11 78

OrderProcessorService i1 Interface 50 13 37 26

i2 Subcomp 70 47 23 67

Table 3 Reasons for incorrect diagnoses in simulation

Services Component
granularity

Incorrect
diagnoses

Fault not
activated

Other
reasons

ExchangeCurrencyService i1 Interface 42 16 26

i2 Subcomp 11 5 6

OrderProcessorService i1 Interface 37 5 32

i2 Subcomp 23 5 18

Software Qual J

123

All in all, the simulator always produces worse results when compared to the real case

study, i.e., an approach being tested positive in simulation is more likely to receive positive

results in real system. This is mainly due to the fact that it builds system topologies based

on probabilities. Therefore, using the simulator for trial test can easily assess an approach

without implementing it in a real system. In our experiment, the simulations confirm the

positive effect of introducing more observation points for the calculation of the diagnosis.

In the following section, we describe how our approach is evaluated on a real system.

5 Case study

5.1 Case system

After having demonstrated in the simulator how an increase in the monitoring granularity

of a system can support the calculation of a correct diagnosis, the next step is the evalu-

ation of our proposed approach in a real service-based system. We use our original case

study SFL Stonehenge8 from (Chen et al. 2012; Espinha et al. 2012) and adapt it to the

requirements implied by our problem statement. SFL Stonehenge is a service-based system

simulating the stock market. It supports users in buying and selling of stocks, checking

orders, and performing currency conversion operations for foreign stock acquisition.

Figure 6 illustrates the basic service architecture of the system. It is comprised of 10

web services including one external currency exchange service, plus a web application for

user interaction. In addition, it accesses two data stores. The services provide the following

operations. The BusinessBasicService and the BusinessAccountService provide the func-

tions for user authentication, login, and the user account. The BusinessOPService and the

Fig. 6 Case study system: SFL stonehenge

8 https://github.com/SERG-Delft/sfl-stonehenge.

Software Qual J

123

https://github.com/SERG-Delft/sfl-stonehenge

BusinessStockService are used for buying and selling stock, checking orders, and com-

piling market summaries. The QuoteService and the OrderProcessorService are used to

process the stock orders placed by a user. The ExchangeCurrencyService and the Ex-

changeCheckService are responsible for the currency operations, and the Configura-

tionService binds all the other services together, and acts like a registry.

In the following, we show typical service transactions that can be performed with our

case system.

BusinessBasicService.login -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.getAccountProfile

BusinessAccountService.updateAccountForLogin

BusinessBasicService.logout -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateAccount

BusinessBasicService.register -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.getAccountProfile

BusinessOPService.sell -->

ConfigurationService.getOPSLocations

OrderProcessorService.submitOrder -->

ConfigurationService.getQSLocations

QuoteService.getQuotes

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateWallet

ExchangeCurrencyService.exchCurrency -->

ConfigurationService.getECheckLocations

ExchangeCheckService.checkCurrency

ExchangeCheckService.checkAmount

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateWallet

5.2 Conducting the case study

Because the focus in this paper is on tight service interaction, in the case study, again, we

look at the two services, the ExchangeCurrencyService and the OrderProcessorService,

Software Qual J

123

which present tight interactions with other services. We apply the PIT mutation tool9 in

order to create 65 faulty system versions, 24 faulty versions for the ExchangeCurren-

cyService, and 41 faulty versions for the OrderProcessorService. Table 4 summarizes the

type of mutations applied with PIT, and it briefly states the purpose of each mutator used

and the error it generates in the system. Table 5 illustrates the kind of mutators applied to

the two services. The different numbers of mutations per mutator come from the presence

or absence of specific code features in the service implementations that PIT manipulates.

For each of the 65 faulty system versions, we use JMeter to execute 48 web service

requests as test scenarios in order to cover all service operations. Upon completion of all

transactions for one faulty system version, the diagnosis engine is invoked to parse the

monitoring data, identify the failures in the system, and create an activity matrix with an

output vector. Then, it is assessed whether the resulting diagnosis pinpoints the service

correctly that contains the seeded fault. The whole experiment is designed for the single-

fault case. We ensure that each of the 65 versions of the system contains only one fault,

either in the ExchangeCurrencyService or in the OrderProcessorService.

The conduction of the case study is split up into two instances, i1 and i2. In instance i1,

we invoke the original case system with monitoring enabled at the service interface level of

granularity. The monitoring is provided through the Turmeric framework, mentioned in

Sect. 2.3 and detailed in (Chen et al. 2012). In instance i2, we invoke the same system and

use the same Turmeric-based monitoring. Additionally, we also put monitors in the service

Table 4 Active mutators in the experiment

ID Mutator Error in the system

1 Negate conditionals Wrong internal state or response, null

Or runtime exception

2 Return values Wrong response, null or runtime exception

3 Conditionals boundary Wrong internal state or response

4 Void method call Wrong internal state

5 Math mutator Wrong internal state

Table 5 Mutators used in the two tightly interacted services

Services Mutators (from Table 4) No. of mutations

ExchangeCurrencyService
(24 mutated versions)

1 5

2 7

4 12

OrderProcessorService
(41 mutated versions)

1 15

2 1

3 1

4 23

5 1

9 http://pitest.org/.

Software Qual J

123

http://pitest.org/

implementation codes at the code block level of granularity. Basically, we split the service

implementation into several code blocks and put an observation point at the end of each

block. The observation point is also a Redis-based publisher. Once a code block is exe-

cuted to the end, the ID of the code block will be published to Redis. Based on the time

sequence, the application is able to associate the monitoring data from the code block

monitors with the transaction information from Turmeric monitors. We determine the code

blocks based on the internal control-flow structure of the service implementations. In some

cases, we separate the blocks for better isolation of tightly interacted code sections. This

results in 10 monitored subcomponents for each of the two services under consideration.

That way, we are able to increase the number of observation points in instance i2 to the

finer level of granularity required for correct diagnoses. The additional monitoring intro-

duces more and more diverse coverage information, which we expect will yield better

suited activity matrices, thus leading to better diagnoses. The results of these experiments

are presented in the following subsection.

5.3 Case study results

Tables 6 and 7 summarize the results of the case study for both instances, i.e., i1 for service

interface monitoring granularity and i2 for code block monitoring granularity. Table 6

shows the correctness of diagnoses at both levels of monitoring granularity for each faulty

service version. A diagnosis is considered correct, if the faulty service or one of its

subcomponents is ranked top, and no other service receives the same ranking, i.e., the

diagnosis is correct and unique.

The improvement of the finer-grained monitoring granularity over the original coarser-

grained granularity is substantial. Both services with incorrect diagnoses in our original

case study can now be diagnosed correctly and unambiguously as the faulty services to a

very high degree, i.e., 92 and 90 %, shown in Table 6. Actually, the faults injected in both

services can always be diagnosed correctly, leading to 100 % correct diagnoses. This

Table 6 Experimental results for service diagnosis

Services Component
granularity

No. of
mutations

Diagnosis % Correct
diagnosis

Correct Incorrect

ExchangeCurrencyService i1 service interface 24 3 21 13

i2 code block 24 22 2 92

OrderProcessorService i1 service interface 41 28 13 68

i2 code block 41 37 4 90

Table 7 Reasons for incorrect diagnoses in experiment

Services Component
granularity

Incorrect
diagnoses

No
activation

Tight interaction
on failure

ExchangeCurrencyService i1 service interface 21 2 19

i2 code block 2 2 0

OrderProcessorService i1 service interface 13 4 9

i2 code block 4 4 0

Software Qual J

123

becomes apparent when we look at the reasons for the incorrect diagnoses shown in

Table 7. In the first instance, i1, 19 plus nine out of the total number of incorrect diagnoses

of the two services produced wrong results because of tight interaction on failure. This

represents our original problem, and the table indicates that it can be resolved entirely

through increasing the monitoring granularity for the considered services in the second

instance, i2. In both instances, i1 and i2, two plus four out of the total number of incorrect

diagnoses are due to the faults in the services not being activated. In other words, in these

cases no test execution was able to cover the faults introduced through the mutations. In

general, diagnosis can only be initiated when a fault is actually detected. This is not

attributable to our diagnosis technique, but a fundamental problem of all coverage-based

quality assurance approaches.

Therefore, we can claim that all faults can be diagnosed correctly and unambiguously in

our case study, if they can be detected, i.e., they are propagated into failure. The lower

values of 92 and 90 % shown in Table 6 are a consequence of intermittent fault behavior of

the services, a common property of software.

6 Runtime overhead

6.1 Experimental setup

An important aspect of our proposed diagnosis technique is the runtime overhead it

imposes on the service-based system. Since the diagnosis engine is detached from the

executing system, the analysis of diagnosis will not affect the system performance, and the

main impact of our diagnosis approach on the runtime performance of service system is

from the monitoring required for SFL. Therefore, we focus on determining the overhead of

the online monitoring. In the experiments, we aim to measure the time overhead caused by

the code block monitor for i2 (subcomponent granularity), the time overhead caused by the

Turmeric monitor for i1 (service interface granularity), and the time overhead caused by

the data logging (publishing to Redis) in the Turmeric monitor.

We chose a set of requests based on diversity in service interactions that they will

create, to invoke the ExchangeCurrencyService (ECS) and the OrderProcessorService

(OPS), the main function of which are introduced in Sect. 5.1. Both services have four

fundamentally different associations with other services, e.g., the BusinessAccountService

or the ConfigurationService, which are interesting for performance measurements. Addi-

tionally, we also add the BusinessAccountService (BAS) to the overhead experiments, in

order to measure overhead under diverse scenarios. This service does not invoke any other

subsequent services. That way, we can collect performance data for a range of different

scenarios, i.e., with a variable number of services involved in various shorter and more

extensive transactions.

The service-based system is repeatedly invoked with diverse requests and under various

monitoring configurations setup. For each invocation, we measure the end-to-end response

time for the request. Then, we compare the response time of the exactly same request under

different monitoring setups. Therefore, we are able to observe the time overhead caused by

Turmeric monitor or code block monitor.

For service activation, we used self-created service clients to invoke the services,

instead of JMeter (which we used in the case study described in Sect. 5). The reason is that

service clients are able to produce more reliable performance measurement. When we

Software Qual J

123

compare the standard deviations of 15 requests over 1000 runs for both JMeter and self-

developed service clients, it becomes apparent that for 12 requests, the spread obtained

from our own service clients is much smaller than when using JMeter. These results are

shown in Table 8. Eventually, we decided to drop JMeter in favor of our own developed

clients.

6.2 Overhead results

Table 9 shows the average response times for activating the ECS and OPS services 1000

times. The requests to both the ECS and OPS services may involve other services to

complete. In other words, the request will initially invoke the ECS or the OPS, but the

invoked service will continue to call other services, in order to complete a transaction.

Thus, part of end-to-end response time from the ECS or OPS services can be attributed to

the communication between all involved services. The total number of invoked Turmeric

monitors depends on the number of involved services. When the Turmeric monitors are

enabled, a request to a service will activate two Turmeric monitors, namely (1) one at the

side of service request and (2) the other one at the side of service response. If the first

service invokes another subsequent service, four additional Turmeric monitors will be

activated to handle the message at (1) the side of the client request for the invoking service,

(2) the side of service request for the invoked service, (3) the side of service response for

the invoked service, and (4) the side of client response for the invoking service. Table 9

lists the number of activated Turmeric monitors for each service request. Among the listed

requests, ECS_2 only gets two Turmeric monitors; that is, because this request only

invokes the ECS, it does not make the ECS invoke other services. When code block

monitors are enabled in the system, there will be 10 code block monitors deployed for each

of the two services, in order to improve the diagnosis accuracy for the services as detailed

in Sec 5. However, different requests will activate different parts of service implementa-

tion, so that different code block monitors will be invoked. The numbers of actually

invoked code block monitors for each request are also listed in Table 9.

The four center columns in Table 9 termed ‘‘Monitors’’ present the average response

times for each service request to the service system according to four monitoring strategies,

i.e., all monitors disabled (‘‘None’’), only code block monitors enabled (‘‘Code Block’’),

only Turmeric monitors enabled (‘‘Turmeric’’), both monitoring strategies enabled

(‘‘Turmeric and Code Block’’). Notable are the relatively long response times for the

requests ECS_1 and OPS_1. Based on a further investigation into network traffic during an

experiment with Wireshark,10, we observed that the first request that makes a service to

invoke another new service always consumes extra overhead. However, for the first

request, the service needs to establish a connection to the other service, and the following

requests can directly reuse the connection if they are invoking the same service and the

connection data are still buffered in the system memory. Both ECS_1 and OPS_1 requests

are the first ones that the ECS and OPS services start with, respectively, and both requests

invoke a large set of services as compared with their following requests. Therefore, the

response times from both requests are much longer.

The three columns on the right-hand side in Table 9, termed ‘‘Impact (%),’’ show the

impact of monitoring overhead for various monitoring setups compared to the system

without any monitoring at all (‘‘None’’). The values indicate that Turmeric monitoring

causes the most overhead in the system, while the overhead from code block monitoring is

10 http://www.wireshark.org/.

Software Qual J

123

http://www.wireshark.org/

T
a
b
le

8
S
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
ex
p
er
im

en
ta
l
re
su
lt
s
in

m
il
li
se
co
n
d
s

T
o
o
l

B
A
S
_
1

B
A
S
_
2

B
A
S
_
3

B
A
S
_
4

B
A
S
_
5

B
A
S
_
6

B
A
S
_
7

E
C
S
_
1

E
C
S
_
2

E
C
S
_
3

E
C
S
_
4

O
P
S
_
1

O
P
S
_
2

O
P
S
_
3

O
P
S
_
4

C
li
en
t

3
.3
8
3

7
.5
0
1

1
6
.4
9
8

4
.1
6
5

9
.9
0
6

1
4
.3
6
0

9
.3
4
6

1
7
8
.9
5
4

1
6
.6
2
2

2
1
.4
0
8

1
2
.3
4
0

9
9
.9
2
9

2
2
.1
8
5

3
7
.2
8
1

2
6
.5
6
1

JM
et
er

1
1
.1
0
8

2
8
.2
3
7

2
2
.4
4
5

2
1
.2
3
8

3
2
.8
0
5

4
2
.0
3
1

4
7
.4
6
8

2
0
9
.2
2
0

9
.1
4
3

2
6
.7
1
4

1
3
.5
4
5

1
1
3
.7
6
0

2
8
.6
6
1

2
3
.1
0
6

1
9
.3
6
9

Software Qual J

123

T
a
b
le

9
A
v
er
ag
e
en
d
-t
o
-e
n
d
re
sp
o
n
se

ti
m
e
fr
o
m

E
C
S
an
d
O
P
S
se
rv
ic
es

in
m
il
li
se
co
n
d
s
o
v
er

1
0
0
0
tr
an
sa
ct
io
n
s

S
er
v
.
re
q
.

N
o
.
o
f
m
o
n
it
o
rs

M
o
n
it
o
rs

Im
p
ac
t
(%

)

T
u
rm

er
ic

C
o
d
e
b
lo
ck

N
o
n
e

C
o
d
e
b
lo
ck

T
u
rm

er
ic

T
u
rm

er
ic

an
d
co
d
e
b
lo
ck

C
o
d
e
b
lo
ck

T
u
rm

er
ic

T
u
rm

er
ic

an
d
co
d
e
b
lo
ck

E
C
S
_
1

1
4

6
2
9
9
6
.0
3
4

3
0
0
2
.3
6
7

3
0
5
5
.0
5
2

3
0
6
5
.6
1
8

0
.2
1

1
.9
7

2
.3
2

E
C
S
_
2

2
2

4
9
.6
6
4

5
0
.6
5
7

5
6
.9
2
8

5
6
.9
2
7

2
.0
0

1
4
.6
3

1
4
.6
2

E
C
S
_
3

1
4

5
7
2
.5
8

7
4
.4
5
6

1
1
8
.2
5
6

1
2
0
.1
8
9

2
.5
8

6
2
.9
3

6
5
.6
0

E
C
S
_
4

1
0

4
4
7
.5
7
7

4
7
.3
5
7

6
6
.4
7
7

6
6
.8
7
8

-
0
.4
6

3
9
.7
2

4
0
.5
7

O
P
S
_
1

1
8

8
8
7
0
.4
4
2

8
7
8
.6
7
5

9
8
7
.5
3
7

9
9
5
.0
5
8

0
.9
5

1
3
.4
5

1
4
.3
2

O
P
S
_
2

1
8

7
1
3
5
.5
0
4

1
3
0
.4
9
4

1
7
7
.7
1
4

1
8
0
.3
7
1

-
3
.7
0

3
1
.1
5

3
3
.1
1

O
P
S
_
3

1
8

8
3
1
0
.9
4

3
2
0
.2
2
7

3
5
1
.4
2
3

3
5
3
.6
4

2
.9
9

1
3
.0
2

1
3
.7
3

O
P
S
_
4

1
8

8
1
4
7
.7
6
5

1
5
2
.5
8
7

2
0
2
.5
3

2
0
6
.6
6
9

3
.2
6

3
7
.0
6

3
9
.8
6

Software Qual J

123

minute and may be ignored. An outlier case is the service request ECS_2, in which the

impact from only Turmeric monitors is slightly larger than the impact from both Turmeric

and code block monitors. In addition, we also observed two negative impact results from

the service request ECS_4 and OPS_2. They are caused by the limitation of overhead

measurement in our experiments, which is discussed in Sec. 7.2.

The overhead results presented in Table 9 are different from the results obtained in our

previous overhead experiments outlined in our earlier article (Chen et al. 2013). In this

other article, the experiments were only aimed at getting an initial feeling of the potential

overhead caused by various monitoring strategies, and we had to circumvent a few flaws in

the implementation. The monitors were not decoupled from the database maintaining the

activity matrices, thereby adding considerable overhead through a suboptimal synchronous

implementation. Moreover, earlier we used the EMMA coverage tool11 for realizing the

code block monitors. However, it also causes overhead in itself, because it uses code

instrumentation, plus coverage information could only be generated when the application

server was shutting down, which lead to an awkward data collection procedure at the end

of each experiment. Both implementation issues are now being resolved by using the

publish/subscribe facility of Redis. Now, coverage information is simply published to

Redis the moment it is available, and a monitor is realized through a single ultra-fast Redis

operation. In our opinion, the application of an in-memory publish/subscribe tool like

Redis represents an optimal monitoring solution.

The overhead measurements shown in Table 9 are also influenced by communication

between several involved services which leads to a large spread for the overhead values

measured. Furthermore, the number of code block monitors is fixed for the concern of

diagnosis. We conduct a similar experiment with the BAS service, because the requests to

the BAS service will not cause it to invoke subsequently associated other service(s). This

experiment helps us foresee the likely impact of interservice communication overhead. For

the request to the BAS service, two Turmeric monitors handle the service messages at the

side of service request and service response, respectively. When code block monitoring is

enabled, we deploy different numbers of code block monitors in various service interfaces

of BAS, in order to discover the relation between the number of code block monitors and

the overhead they cause. For instance, the request BAS_1 will invoke a service interface,

which contains 10 code block monitors, and the request BAS_3 will invoke another service

interface with 100 code block monitors. The number of activated monitors for each request

to the BAS service is listed in Table 10.

Table 10 presents the average end-to-end response times of 1000 invocations of BAS.

Since the requests only invoke one service, the response times are much lower than those

found in Table 9, with the exception of the first service request (BAS_S). The BAS_S

request invokes the same service interface as the request BAS_1; however, it is the first

request that the service client starts with in each experiment. As the first request in the

whole experiment, it requires the service client to load the runtime libraries offered by the

Turmeric platform to initialize the communication with a Turmeric service, and it estab-

lishes the connection to the derby database12 that our service system is using. These two

parts consumes the major part of the time overhead from the BAS_S request. Due to the

unreliable deviation caused by the initialization step, we exclude the results from the

BAS_S request in the following analysis.

11 http://emma.sourceforge.net/.
12 http://db.apache.org/derby/.

Software Qual J

123

http://emma.sourceforge.net/
http://db.apache.org/derby/

The impact percentages shown in Table 10 expose more details about the monitoring

overhead. The impact through Turmeric monitoring is still obvious to see. However, the

impact of code block monitoring increases with the number of code block monitors, which

is to be expected. The overhead of a single code block monitor is relatively low and may be

ignored. However, using many monitors, i.e., up to 100, in the same service, increases the

overhead from the code block monitors to values similar to the ones exhibited by the

Turmeric monitors.

Based on the results presented in Tables 9 and 10, we calculated the real value of

overhead caused by the monitoring for each service. Table 11 presents the overhead for

code block monitors. In the BAS service, the overhead corresponds to the number of code

block monitors. The maximum overhead caused by one code block monitor is 0.8 ms; 10

code block monitors can cause overhead from 0.7 to 3.5 ms; and when the number of code

block monitors is increased up to 100, the overhead also increases by 5.5 ms and 12.5 ms.

Although the overhead from one and 10 code block monitors is similar, we can still see a

linear increase in overhead with an increase in the number of code block monitors. In the

ECS and OPS services, the number of activated code block monitors is very low, i.e., less

than 10. In four out of six cases, the total overhead from code block monitor is small.

However, in two cases, the caused overhead is comparable to the overhead of 100 code

block monitors in the BAS service. These two cases come from the results of ECS_1 and

OPS_1, respectively. As mentioned before, both requests cause very long response times.

Furthermore, the deviations of response times caused by both requests are also very large,

i.e., 178.954 ms for ECS_1 and 99.929 ms for OPS_1, as shown in Table 8. Although the

results for code block monitoring from both requests are relatively larger than that of other

requests, they can be ignored, when compared to the base response time results and their

deviations. Therefore, it is possible that the large deviations may influence the results for

code block monitoring.

Table 12 shows the overhead results for Turmeric monitors. Compared with the over-

head for code block monitors, it is more obvious to see the overhead of Turmeric monitors

increases along with the number of activated Turmeric monitors.

We also investigate the amount of monitoring data produced by each request, in order to

see whether the throughput of monitors affects their overhead. Table 13 presents the total

size of monitoring data from two levels of monitoring for each request. Combined with the

impact percentages of code block monitoring shown in Table 10, we notice that the data

size and the impact of code block monitoring for BAS requests have exactly the same

tendency, i.e., when the data size is large, the impact percentage for the same request is

also large, and vice versa. However, the main reason behind this situation is that both the

data size and the impact of code block monitoring are tightly depending on the number of

code block monitors. The content of monitoring data from a code block monitor is the id of

this code block, so the monitoring data for all code block monitors in our system are

always the same size. If more code block monitors are activated, more data will be

generated. If we further calculate the data size and the impact per code block monitor for

each BAS request, as shown in Table 14, we can more clearly see that larger data size does

not cause larger impact (compare BAS_1 with BAS_4) for code block monitoring in BAS.

We apply the same analysis to the rest of results, and our conclusion is that the size of

monitoring data is not really a big issue in terms of overall monitoring overhead.

The Turmeric monitor that we implemented for the experiments in (Chen et al. 2013)

caused a large amount of overhead. The major reason for this overhead was due to the use

of synchronous database access to record the monitoring data. In the current implemen-

tation, we have changed the synchronous database access to a Redis-based

Software Qual J

123

T
a
b
le

1
0

E
n
d
-t
o
-e
n
d
re
sp
o
n
se

ti
m
e
fr
o
m

B
A
S
se
rv
ic
e
in

m
il
li
se
co
n
d
s

S
er
v
.
re
q
.

N
o
.
o
f
m
o
n
it
o
rs

M
o
n
it
o
rs

Im
p
ac
t
(%

)

T
u
rm

er
ic

C
o
d
e
b
lo
ck

N
o
n
e

C
o
d
e
b
lo
ck

T
u
rm

er
ic

T
u
rm

er
ic

an
d
co
d
e
b
lo
ck

C
o
d
e
b
lo
ck

T
u
rm

er
ic

T
u
rm

er
ic

an
d
co
d
e
b
lo
ck

B
A
S
_
S

2
1
0

1
1
1
3
.4
0
2

1
1
4
6
.4
6
9

1
3
0
9
.7
2
1

1
3
1
5
.5
7
5

2
.9
7

1
7
.6
3

1
8
.1
6

B
A
S
_
1

2
1
0

1
2
.9
6
7

1
5
.2
7
8

2
2
.0
2
7

2
4
.1
6
5

1
7
.8
2

6
9
.8
7

8
6
.3
6

B
A
S
_
2

2
1

4
5
.0
8
7

4
5
.8
5
1

6
0
.4
2
4

6
0
.6
0
6

1
.6
9

3
4
.0
2

3
4
.4
2

B
A
S
_
3

2
1
0
0

3
4
.7
0
9

4
5
.9
8
5

4
7
.4
3
7

5
9
.9
3
1

3
2
.4
9

3
6
.6
7

7
2
.6
7

B
A
S
_
4

2
1
0

2
8
.6
3

3
0
.2
2
9

3
4
.8
7
6

3
5
.6
1
9

5
.5
9

2
1
.8
2

2
4
.4
1

B
A
S
_
5

2
1

4
9
.4
5

4
8
.8
6
8

5
3
.7
0
9

5
4
.3
4
1

-
1
.1
8

8
.6
1

9
.8
9

B
A
S
_
6

2
1
0

4
7
.7
2
2

5
0
.7
3
8

6
3
.4
1

6
6
.8
8
6

6
.3
2

3
2
.8
7

4
0
.1
6

B
A
S
_
7

2
1
0
0

2
5
.6
3
7

3
2
.6
1
1

3
9
.1
7

4
4
.6
3
5

2
7
.2
0

5
2
.7
9

7
4
.1
0

Software Qual J

123

publish/subscribe messaging mechanism for the logging of monitoring data, causing less

overhead. The main function that Turmeric monitors perform is to handle the incoming and

outgoing messages, parse the context of a message to get predefined data for SFL, and log

the monitoring data. In order to investigate how much of the total overhead can be

attributed to just the logging of the data, we created two setups in which the Turmeric

monitors are enabled to handle service messages, and no code block monitoring was

activated. In the first setup, the Turmeric monitor is set without data logging, while in the

second setup the monitor does publish the monitoring data.

The third and fourth columns in Table 15 show the end-to-end response time of each

request measured in the system. The third column represents the case with data logging

activated, while the fourth column shows the setup where data logging has been disabled.

The overhead of the data logging part in the Turmeric monitors is calculated and presented

in the fifth column. In order to assess how much the data logging part can impact the

performance of the Turmeric monitor, we calculated the overhead of Turmeric monitors

for each request based on the results in Tables 9 and 10, and also presented in the Table 15.

The last column of Table 15 presents the percentage of overhead caused by the data

logging. In most cases, the data logging causes between 20 and 40 % of the overhead in the

Turmeric monitoring.

Table 11 Monitoring overhead for code block monitor in milliseconds

Service No. of code block monitors Minimum overhead Maximum overhead

BAS 1 -0.582 0.764

BAS 10 0.743 3.476

BAS 100 5.465 12.494

ECS 2 -0.001 0.993

ECS 4 -0.401 -0.22

ECS 5 1.876 1.933

ECS 6 6.333 10.566

OPS 7 -5.01 2.657

OPS 8 2.217 9.287

Table 12 Monitoring overhead for Turmeric monitor in milliseconds

Service No. of turmeric monitors Minimum overhead Maximum overhead

BAS 2 4.259 16.148

ECS 2 6.27 7.264

ECS 10 18.9 19.521

ECS 14 45.676 63.251

OPS 18 33.413 117.095

Software Qual J

123

T
a
b
le

1
3

S
iz
e
o
f
m
o
n
it
o
ri
n
g
d
at
a
in

b
y
te

M
o
n
it
o
r

B
A
S
_
1

B
A
S
_
2

B
A
S
_
3

B
A
S
_
4

B
A
S
_
5

B
A
S
_
6

B
A
S
_
7

E
C
S
_
1

E
C
S
_
2

E
C
S
_
3

E
C
S
_
4

O
P
S
_
1

O
P
S
_
2

O
P
S
_
3

O
P
S
_
4

C
o
d
e
B
.

1
9
0

1
9

3
K

2
7
0

2
1

2
7
0

3
K

4
4

1
5

3
6

2
9

6
2

6
8

7
6

7
6

T
u
rm

er
ic

7
0
7

2
K

9
1
5

8
0
5

7
8
2

2
K

5
0
3

5
K

5
4
8

6
K

4
K

1
0
K

1
0
K

1
0
K

1
0
K

Software Qual J

123

7 Discussion and lessons learned

7.1 Diagnosis observations

From the simulations and the case study, we conclude that the monitoring granularity has

indeed an effect on the calculation of an SFL diagnosis. Furthermore, increasing the

monitoring granularity facilitates the calculation of correct and unambiguous diagnoses

through introducing more and more diverse observations into the statistics of the SFL

diagnosis. The increase in coverage diversity has a positive effect on the similarity coef-

ficients produced, because it helps convict components that participate more in failing

transactions and exonerate components that participate more in passing transactions.

Initially, we expected that we would not be able to achieve 100 % correct diagnoses in

our case study system. We thought that some of the tight couplings between subcompo-

nents would subsist across service boundaries, thereby invalidating our decoupling effort.

This was not case. However, in the case study, some subcomponents within the services are

still tightly interacted, so that the subcomponents are assigned the same similarity

Table 14 Data size versus impact per code block monitor for BAS (just for illustration)

Monitor BAS_1 BAS_2 BAS_3 BAS_4 BAS_5 BAS_6 BAS_7

Data size 19 19 30 27 21 27 30

Impact (%) 1.7 1.69 0.32 0.56 -1.18 0.63 0.27

Table 15 Overhead for the logging part in Turmeric monitor in milliseconds

Service
requests

No. of turm.
moni.

With Turmeric, no
code block
monitoring data
logging

Data logging
over

Turmeric monitor
overhead

%

Acticated Disabled

BAS_1 2 22.027 18.745 3.282 9.06 36.23

BAS_2 2 60.424 52.828 7.596 15.337 49.52

BAS_3 2 47.437 45.798 1.639 12.728 12.88

BAS_4 2 34.876 33.018 1.858 6.246 29.74

BAS_5 2 53.709 51.922 1.787 4.259 41.96

BAS_6 2 63.41 60.167 3.243 15.688 20.67

BAS_7 2 39.17 36.939 2.231 13.533 16.49

ECS_1 14 3055.052 2995.389 59.663 59.018 101.09

ECS_2 2 56.928 54.036 2.892 7.264 39.81

ECS_3 14 118.256 104.477 13.779 45.676 30.17

ECS_4 10 66.477 60.841 5.636 18.9 29.82

OPS_1 18 987.537 956.688 30.849 117.095 26.35

OPS_2 18 177.714 165.165 12.549 42.21 29.73

OPS_3 18 351.423 335.981 15.442 40.483 38.14

OPS_4 18 202.53 181.418 21.112 54.765 38.55

Software Qual J

123

coefficient in the diagnosis. In other words, even though we can pinpoint the faulty service

correctly, and this was our original goal, in some cases, we cannot determine the location

of the fault within the service correctly. This comes from how we determine the finer-

grained monitoring locations according to the predicate nodes in the service implemen-

tations. Some of the monitored code blocks are still exercised in combination and thus are

tightly linked.

Here, an important lesson learned is that we can reduce tight coupling on the higher

level of granularity, i.e., between services, but we cannot remove it entirely on the lower

levels of granularity, e.g., within services. We acknowledge the fact that topology plays a

major role in the successful application of spectrum-based fault localization in service-

based systems. In the future, we will look at other methods of topological separation, for

example program slicing techniques (Weiser 1981).

In addition, all experiments with both the simulator and the case study were set up for

diagnosing a single fault in a service system. It is often not realistic that a software system

only contains one fault. However, when applying online diagnosis for a service system, the

diagnosis is activated immediately once a system failure is observed, i.e., the monitoring

data of the system for each round of diagnosis only contains one failure. Within this

context of single failure, the approach of diagnosing a single fault for a running service

system is practical and effective. Multiple faults in a service system can be found one by

one as long as they cause a failure.

7.2 Overhead observations

In general, from the results of our overhead experiments, we observe that one Turmeric

monitor can cause more overhead than one code block monitor. The overhead of Turmeric

monitoring is always noticeable, whereas the overhead of code block monitoring is only

visible when many monitors are activated. A small number of code block monitors in

service system may be ignored in terms of a potential performance impact they create. On

the other hand, if the number of code block monitors increases (e.g., 100), the caused

overhead becomes comparable to Turmeric monitors.

We are aware of the fact that every type of monitoring comes at a cost. However,

assessing the cost through measurement of overhead can be affected by various factors.

From our experiments, we found that the service system itself may influence the mea-

surement. Basically, the response time of a request is a combination of service processing

time, connection setup time, and message transmission time (Repp et al. 2007). Services

which have interactions with other services always require more time in connection setup

and message transmission. The connection setup depends on the activity state of both

services and their underlying infrastructures. Transmission time depends on the quality of

the network used. Thus, these two parts can be very dynamic, and it may bring deviations

to the overhead measurement. In our case system, most services are internal. They are

running on the same computer system, so the message transmission time boils down to

what is typically used in local socket communication. However, since our system is also

based on the Turmeric platform, the connection to an internal service is set up with the

Turmeric runtime library, we cannot guarantee that this third-party library will not bring

any variation to the connection setup or transmission. Moreover, our system also uses an

external service for real-time currency exchange, and we are not able to monitor the

activity state of this external service, plus all messages to the external service go through

an external network connection. If the overhead caused by a monitor is too small, the

connection setup or communication times can completely hide it. For example, Table 10

Software Qual J

123

shows negative impact by the code block monitors invoked during the execution of

BAS_5. This becomes obvious, if we check Table 11. It demonstrates that the overhead

caused by one code block monitor is less than 1 millisecond, Table 8, in which the standard

deviation from the same request is nearly 10 ms. The same is true for the result of

‘‘101.09 %’’ for ECS_1 in Table 15, and the observation that the impact of Turmeric

monitoring is larger than that of both Turmeric and code block monitoring for ECS_2 in

Table 9.

We also determine that the data logging part inside the Turmeric monitoring is less than

half of overall performance impact of the Turmeric monitors. The rest goes into inter-

cepting and parsing all incoming or outgoing messages. Even though it does not publish

any data, the interception already causes a lot of overhead in the monitoring.

Our experimental results show that a code block monitor consumes much less overhead

than a Turmeric monitor does. This finding leads to an straightforward idea for reducing

monitoring overhead, which is completely replacing the Turmeric monitors with code

block monitors. Additionally, a code block monitor also produces much less monitoring

data than a Turmeric monitor does, based on our current implementation. A code block

monitor only logs out the id of a code block, while a Turmeric monitor offers service and

operation data, transaction data, message content, etc. If a code block monitor is imple-

mented to get all those data, its overhead will also increase. In addition, a Turmeric

monitor spends more than half of overhead on obtaining the required information from the

Turmeric framework, even though those data are readily inside the framework. The code

block monitor is staying inside the service implementation, where to fetch those required

data and how to keep them would be a set of new problems for code block monitor. If code

block monitors are equipped with all those functionalities, it will generate more overhead

than it currently does, and its overhead may become comparable with or even more than

that of Turmeric monitor. Therefore, replacing Turmeric monitor with code block monitor

is not a good solution to deal with monitoring overhead.

7.3 Threats to validity

We are aware of a number of threats that might invalidate our findings. We use SFL

Stonehenge as case study. Although it is a realistic system, our results may not be

applicable to any arbitrary service-based system. In fact, the topology of a system may

have an effect on how well monitoring can be applied and diagnosis can be performed, e.g.,

in the case of very few independent paths through the logic. We see the topology problem

as an important avenue for future work.

Currently, we implement code block monitor with Redis pub/subfunctionality. It

enables the diagnosis engine to receive the monitoring data from code block monitors at

runtime. However, the association between the monitoring data from code block monitor

and Turmeric monitor is based on time stamps, this approach may not be applicable to

service systems allowing concurrent transactions.

A threat to our overhead experiments is the involvement of the external service for

currency exchange in our system. This service is out of our control. The connection to the

external service highly depends on its activity state. Its response can be very slow if it is

overloaded. Correspondingly, the performance of the external service can affect the

measurement of the end-to-end response time for those requests which invoke the external

service. In addition, the Turmeric runtime library may also have an influence on the

connection setup of services built on Turmeric platform.

Software Qual J

123

Another potential threat comes from the tools used for our work. We have tested our

own implementation as much as possible and compared the results of our case study with

the outcome obtained from the simulator. Although the results are not the same, they are in

a similar league, reassuring us that there are no major flaws in our case study

implementation.

Another important threat to external validity is that the results for the overhead

experiment might be dependent on the underlying technology, e.g., Turmeric or the way

that the code block monitor is implemented. In future work, we will replicate our exper-

iment with different underlying technology to establish whether the obtained overhead

results are generalizable.

We are also aware of the fact that code block monitors cannot be inserted into the

service implementation without access to the source code, which in turn typically entails

the ownership of the service. Service-based systems can integrate external services that are

not owned, thus precluding the application of our approach. However, for those companies

which own large enterprise IT infrastructure and a lot of internal services running on it,

such as eBay, Amazon, and Google, the placement of monitors inside services is both

possible and useful.

8 Related work

In this section, we briefly discuss the studies most relevant to diagnosis for service-based

software systems. In particular, we start of by looking into other works that do diagnosis of

service-based systems in Sect. 8.1. Subsequently, in Sect. 8.2, we look into whether

alternative fault localization techniques are applied. Finally, in Sect. 8.3, we look into

monitoring for service-based systems and measurements for overhead of monitoring.

Based on this small survey, we believe that we are the first to study the combination of (1)

spectrum-based fault localization, (2) multi-level monitoring to overcome the fault

localization problem for tightly interacted services, and (3) a detailed analysis of overhead

of multi-level monitoring for diagnosis.

8.1 Diagnosis for service-based systems

Chen et al. (2002) present Pinpoint, a similar diagnosis approach plus a tool using simi-

larity coefficients in order to infer a diagnosis from system activation and component

involvement. However, even though their title suggests otherwise, they do not address the

specific issues of diagnosing services, i.e., the problems of interservice diagnosis, and the

fact that services are used in different contexts.

Yan and Dague (2007), and Yan et al. (2009) propose a model-based approach to

diagnose orchestrated Web service processes. Modeling is done through discrete event

systems, which imposes a heavy burden on the user of the technique. Zhang et al. (2009,

2012) describe approaches for diagnosing quality-of-service problems in service-oriented

architectures. However, their diagnosis approaches cannot adapt well to the dynamic

nature of SOA, due to the static information they used. Moreover, their Bayesian-based

approaches are more heavyweight compared to spectrum-based approaches. Additionally,

the authors measure the execution time for diagnosis, but their main purpose was to

compare the performance of their two approaches, and they did not assess the overhead

caused by diagnosis to the performance of service system. Mayer and colleagues (Mayer

Software Qual J

123

et al. 2010, 2012) describe a similar diagnosis approach that is based on analyzing exe-

cution traces of failed transactions. However, the models they used for diagnosis are rather

complex, and proper evaluation is still pending.

8.2 Fault localization

Wong et al. (2010) discuss a number of code coverage-based heuristics to be used in fault

localization. Grosclaude describes a model-based monitoring approach for diagnosing

component-based systems and suggests to use transactions IDs in order to associate

messages sent between components (Grosclaude 2004). This is also proposed by Chen

et al. (2002), and we see it as a standard approach to determine which service takes part in

which system transaction. Chatzigiannakis and Papavassiliou (2007) use principal com-

ponent analysis in order to identify faulty nodes in sensor networks.

Spectrum-based fault localization is a lightweight technique, but alternatives exists. One

such alternative are techniques that are model-based. Although outside the realm of ser-

vice-based computing, Feldman et al. have proposed a greedy stochastic algorithm for

computing diagnoses within a model-based diagnosis framework (Feldman et al. 2010).

An important drawback of these model-based approaches is that we need to provide a

correct model of the nominal behavior of the entire service-based application, which is

daunting. A second issue is the combinatorial explosion in the reasoning of model-based

diagnosis that inhibits the diagnosis of very large systems.

8.3 Monitoring for service-based systems

There are a large number of papers about monitoring for service systems; however, most of

them are missing overhead measurements, e.g., (Zulkernine et al. 2008; Keller and Ludwig

2003). Furthermore, among those that do have monitoring overhead measurements, most

of them are lacking a real and proper service system for evaluation, e.g., (Baresi and

Guinea 2013). In what follows, we present some of the monitoring solutions that have been

presented.

Lin et al. (2009) implement a middleware to monitor and diagnose service systems.

They use a self-created example business process to measure the overhead of data col-

lection. They do not provide detailed analysis of monitoring impact and types of monitor.

Heward et al. (2010) quantify and assess the performance impact of monitoring on a web

service. Although they measure the performance impact under various monitoring setups,

the testing vehicle they used is a single service.

Moscinat and Bonder present ADULA, a framework for automated maintenance of

BPEL (Business Process Execution Language) processes (Mosincat and Binder 2011).

ADULA automatically detects and repairs service-level agreement (SLA) violations

caused by service performance degradation in a way transparent to the user and to the

BPEL engine. Their approach uses lightweight sampling monitoring and allows for cus-

tomizable violation detection. They have also implemented repair policies, so that a service

which violates the SLA can be replaced with another services that does adhere to the SLA

violation. Their approach has a clear focus on performance and not on correctness.

Baresi et al. present a step toward self-healing compositions of service. Their approach

is to monitor the execution of a service composition and trigger a suitable reaction so that

the system can continue its execution (Baresi et al. 2007). The faulty behaviors that they

consider are non-answering services and services violating their contracts. Their approach

thus heavily relies on a contract violation being present. In contrast, our approach does not

Software Qual J

123

make assumptions toward contract violations and is more geared toward detecting the

actual defect in a service composition.

9 Conclusion and future work

The goal of this paper was to investigate the trade-off between making the diagnosis of

tightly interacting faulty services more accurate by increasing the monitoring granularity

and the resulting performance penalty on the service system.

Referring to our research questions, we looked at:

RQ1: How and to what extent does the monitoring granularity affect the calculation of

an SFL-based diagnosis? First, we used a simulator to reason over different service

topologies. Second, we performed an actual case study on a SOA-based system, varying

the level of monitoring granularity. The main conclusion from both experiments is that

increasing the level of monitoring granularity can indeed improve diagnosis. More pre-

cisely, in our case study, we could obtain up to 100 % correct diagnoses. This comes

through the increased variability in the observations used for the activity matrix of the SFL

technique.

RQ2: How can we increase the monitoring granularity for diagnosis? The natural

choice for placing monitors is at the service level. However, this is so coarse-grained that

many cases cannot be correctly diagnosed. Increasing the level of observation granularity

can then only be done by going into the services, changing their implementations. A brute

force approach would be to monitor every single line of code. However, we restrict the

monitoring to the code block level, representing unique execution branches through a

service or proper isolation of tight coupling.

RQ3: What is the overhead caused by the monitoring for diagnosis at various levels of

granularity? Our case study demonstrates that we are able to diagnose all faulty services

correctly through increasing the monitoring granularity. Yet, at the same time, we are also

worried about the performance overhead that the entire infrastructure adds. The total

impact of monitoring on the system performance depends on the number of used monitors.

In detail, the monitoring at the service level, i.e., Turmeric monitoring, always causes more

overhead than the monitoring at a finer-grained level, i.e., code block monitoring. On the

other hand, when the number of code block monitors is small, the caused overhead can be

negligible; however, the overhead can also become comparable with Turmeric monitoring

if the number of code block monitors is increased.

Contributions Our work makes the following contributions:

1. We apply spectrum-based fault localization in the area of service-oriented systems in

order to pinpoint problematic services.

2. We introduce the problem of tight service interaction, an inhibiting factor toward

obtaining a good diagnosis of where the problematic service is located.

3. We present the SFL simulator, a simulation environment in which we can simulate

faulty behavior of services with a certain probability and which allows us to study

many service topologies with regard to the tight service interaction problem.

4. We introduce the idea of intraservice fine-grained monitoring to overcome the tight

service interaction problem.

5. We present a case study with SFL Stonehenge, a small real-world and open-source

case study, to illustrate that fine-grained monitoring can indeed help overcome the

tight service interaction problem.

Software Qual J

123

6. We perform an in-depth study on the performance overhead of our fine-grained

monitoring approach.

Future work Based on the finding that the overhead of code block monitoring is tightly

related to the number of its monitors and its overhead can become comparable with that of

Turmeric monitoring, we plan to study where would be the best place for monitors in a

service system. Such monitor placement can achieve the highest accuracy of diagnosis and

the least disturbance to the service system at runtime. In the case study, we did the

placement of monitors manually, but in future work, we would like to use some techniques,

such as code slicing, to make it automatic. Currently, the monitors for different granu-

larities are also deployed at compile time, we would like to enable dynamic monitoring in

the future. This can also facilitate the automation of monitor placement.

Another area of future research is verifying whether our approach would also work for

component-based systems.

Acknowledgments We would like to acknowledge NWO for sponsoring this research through the Jac-
quard ScaleItUp Project (Number 638.001.212). Also many thanks to our industrial partners Adyen and
Exact.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abreu, R., Zoeteweij, P., & van Gemund, A. J. (2006). An evaluation of similarity coefficients for software
fault localization. In Proceedings of international symposium on dependable computing (PRDC), IEEE
(pp. 39–46).

Abreu, R., Zoeteweij, P., Golsteijn, R., & van Gemund, A. (2009). A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software, 82(11), 1780–1792.

Baresi, L., & Guinea, S. (2013). Event-based multi-level service monitoring. In IEEE 20th international
conference on web services (ICWS), 2013 (pp. 83–90).

Baresi, L., Ghezzi, C., & Guinea, S. (2007). Towards self-healing composition of services. In B. J. Krämer
& W. A. Halang (Eds.), Contributions to Ubiquitous Computing, Studies in Computational Intelligence
(pp. 27–46). New York: Springer.

Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., & Munro, M. (2000). Service-based
software: the future for flexible software. In Proceedings of asia-pacific software engineering con-
ference (APSEC), IEEE (pp. 214–221).

Canfora, G., & Di Penta, M. (2006). Testing services and service-centric systems: Challenges and oppor-
tunities. IT Professional, 8(2), 10–17.

Chatzigiannakis, V., & Papavassiliou, S. (2007). Diagnosing anomalies and identifying faulty nodes in
sensor networks. IEEE Sensors Journal, 7(5), 637–645.

Chen, C., Gross, H. G., & Zaidman, A. (2012). Spectrum-based fault diagnosis for service-oriented software
systems. In Proceedings of the international conference on service-oriented computing and applica-
tions (SOCA), IEEE (pp. 1–8).

Chen, C., Gross, H. G., & Zaidman, A. (2013). Improving service diagnosis through increased monitoring
granularity. In 7th international conference on software security and reliability (SERE), IEEE (pp.
129–138).

Chen, M., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (2002). Pinpoint: problem determination in large,
dynamic internet services. In Proceedings of international conference on dependable systems and
networks (DSN), IEEE (pp. 595–604).

Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., & Pohl, K. (2008). A journey to highly dynamic, self-
adaptive service-based applications. Automated Software Engineering, 15(3–4), 313–341.

Software Qual J

123

http://creativecommons.org/licenses/by/4.0/

Espinha, T., Chen, C., Zaidman, A., & Gross, H. G. (2012). Maintenance research in SOA—Towards a
standard case study. In Proceedings of European conference on software maintenance and reengi-
neering (CSMR), IEEE (pp. 391–396).

Feldman, A., Provan, G. M., & van Gemund, A. J. C. (2010). Approximate model-based diagnosis using
greedy stochastic search. Journal of Artificial Intelligence Research, 38, 371–413.

Gonzalez-Sanchez, A., Piel, E., Gross, H. G., & van Gemund, A. (2010). Prioritizing tests for software fault
localization. In International conference on quality software, IEEE (pp. 42–51).

Gonzalez-Sanchez, A., Abreu, R., Gross, H. G., & van Gemund, A. J. (2011). Spectrum-based sequential
diagnosis. In Proceedings of international conference on artificial intelligence (AAAI) (pp. 189–196),
AAAI Press.

Grosclaude, I. (2004). Model-based monitoring of component-based software systems. In International
workshop on principles of diagnosis (pp. 155–160).

Heward, G., Muller, I., Han, J., Schneider, J. G., & Versteeg, S. (2010). Assessing the performance impact
of service monitoring. In Software engineering conference (ASWEC), 2010 21st Australian (pp.
192–201).

Keller, A., & Ludwig, H. (2003). The wsla framework: Specifying and monitoring service level agreements
for web services. Journal of Network and Systems Management, 11(1), 57–81.

Lin, K. J., Panahi, M., Zhang, Y., Zhang, J., & Chang, S. H. (2009). Building accountability middleware to
support dependable soa. IEEE Internet Computing, 13(2), 16–25.

Mayer, W., Friedrich, G., & Stumptner, M. (2010). Diagnosis of service failures by trace analysis with
partial knowledge. In Service-oriented computing, LNCS (Vol. 6470, pp. 334–349). Berlin: Springer.

Mayer, W., Friedrich, G., & Stumptner, M. (2012). On computing correct processes and repairs using partial
behavioral models. In 20th European conference on artificial intelligence (ECAI) (pp. 582–587).

Mohamed, A., & Zulkernine, M. (2008). On failure propagation in component-based software systems. In
Proceedings of international conference on quality software (QSIC), IEEE (pp. 402–411).

Mosincat, A. D., & Binder, W. (2011). Automated maintenance of service compositions with SLA violation
detection and dynamic binding. International Journal on Software Tools for Technology Transfer,
13(2), 167–179.

Repp, N., Berbner, R., Heckmann, O., & Steinmetz, R. (2007). A cross-layer approach to performance
monitoring of web services. In Emerging web services technology (pp. 21–32).

Reps, T., Ball, T., Das, M., & Larus, J. (1997). The use of program profiling for software maintenance with
applications to the year 2000 problem. In European software engineering conference symposium on
foundations of software engineering (ESEC/FSE), LNCS (Vol. 1301, pp. 432–449). Springer.

Weiser, M. (1981). Program slicing. In Proceedings of the international conference on software engineering
(ICSE) (pp. 439–449). IEEE Press.

Weyuker, E. J. (1982). On testing non-testable programs. The Computer Journal, 25(4), 465–470.
Wong, W. E., Debroy, V., & Choi, B. (2010). A family of code coverage-based heuristics for effective fault

localization. Journal of Systems and Software, 83(2), 188–208.
Yan, Y., & Dague, P. (2007). Modeling and diagnosing orchestrated web service processes. In Proceedings

of international conference on web services (ICWS), IEEE (pp. 51–59).
Yan, Y., Dague, P., Pencole, Y., & Cordier, M. O. (2009). A model-based approach for diagnosing fault in

web service processes. International Journal of Web Services Research (IJWSR), 6(1), 87–110.
Zhang, J., Chang, Y., & Lin, K. J. (2009). A dependency matrix based framework for QoS diagnosis in SOA.

In Proceedings of international conference on service-oriented computing and applications (SOCA),
IEEE (pp. 1–8).

Zhang, J., Huang, Z., & Lin, K. (2012). A hybrid diagnosis approach for QoS management in service-
oriented architecture. In International conference on web services (ICWS), IEEE (pp. 82–89).

Zoeteweij, P., Abreu, R., Golsteijn, R., & van Gemund, A. J. (2007). Diagnosis of embedded software using
program spectra. In Proceedings of international conference and workshops on engineering of com-
puter-based systems (ECBS), IEEE (pp. 213–220).

Zulkernine, F., Martin, P., & Wilson, K. (2008). A middleware solution to monitoring composite web
services-based processes. In Congress on services part II, 2008. SERVICES-2. IEEE (pp. 149–156).

Software Qual J

123

Cuiting Chen graduated with a Computer Science Master’s degree
from Dresden University of Technology, Germany, in 2010. She cur-
rently works as a PhD student at Delft University of Technology, the
Netherlands. Her main research interests include software testing and
software evolution.

Hans-Gerhard Gross received an MSc in Computer Science (1996)
from the Beuth University of Applied Sciences, Berlin, Germany, and
a PhD in Software Engineering (2000) from the University of Glam-
organ, Wales, UK. Following his PhD, Dr. Gross joined the Fraunhofer
Institute for Experimental Software Engineering in Kaiserslautern,
Germany, where he was responsible for a number of public research
projects and consulting projects with German software organizations.
From 2005 to 2013, Dr. Gross was employed as Assistant Professor at
Delft University of Technology, the Netherlands. Since 2013, Dr.
Gross is working as Professor at Esslingen University, Germany. His
research interests encompass all phases of software development, and
software evolution, and software testing, in particular.

Andy Zaidman is an Associate Professor at the Delft University of
Technology, the Netherlands. He obtained his MSc (2002) and PhD
degree (2006) in Computer Science from the University of Antwerp,
Belgium. His main research interests are software evolution, program
comprehension, mining software repositories, and software testing. He
was the general chair of the 15th Working Conference on Reverse
Engineering (WCRE 2008) held in Antwerp, Belgium, program co-
chair of WCRE 2009 held in Lille, France, and program co-chair of
VISSOFT 2014 held in Victoria, BC, Canada. In 2013, Andy Zaidman
was the laureate of a NWO Vidi career grant.

Software Qual J

123

	Analysis of service diagnosis improvement through increased monitoring granularity
	Abstract
	Introduction
	Background
	Spectrum-based fault localization
	SFL for service-based systems
	Implementation of SFL for service-based systems

	Problem statement and approach
	The problem of tight service interaction
	Solving tight service interaction: potential solution 1
	Solving tight service interaction: potential solution 2 (our approach)

	System simulations
	SFL simulator
	Simulation results

	Case study
	Case system
	Conducting the case study
	Case study results

	Runtime overhead
	Experimental setup
	Overhead results

	Discussion and lessons learned
	Diagnosis observations
	Overhead observations
	Threats to validity

	Related work
	Diagnosis for service-based systems
	Fault localization
	Monitoring for service-based systems

	Conclusion and future work
	Acknowledgments
	References

