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ABSTRACT

In this paper, we used the efficient formulation of the approximated transfer matrix model (ATMM) for the analysis of fibre

Bragg grating (FBG) sensors’ response under anti-symmetrical strain fields. Exploiting the flexible representation of the

transfer matrices in this new model, we will analytically prove that any sort of anti-symmetrical strain distribution over the

length of a uniform FBG sensor will result in symmetrical reflected spectra. This phenomenon had been already observed in

the literature, but proving it using the classical transfer matrix model was laborious and impractical. The same discussion

will be extended to the grating distribution of the FBG sensors as well. A special case of an anti-symmetrical grating

distribution could be the linearly chirped FBG sensor (LCFBG), in which the grating distribution is linearly increasing

over the length of the FBG. Using computer simulations, it can be seen that such a grating distribution will result in

perfectly symmetrical reflected spectra. Therefore, we expect that a well-produced LCFBG, should also have a close to

symmetrical reflected spectra, and deviation from this symmetry could possibly indicate undesirable birefringence effects.

Keywords: Approximated transfer matrix, fibre Bragg gratings, linearly chirped FBG, reflected spectra, strain, transfer

matrix model

1. INTRODUCTION

Fibre Bragg grating (FBG) sensors have become an indispensable component of strain sensing applications, especially in

the last few decades. Due to their high resistance to environmental factors, and their miniature size, they are widely used

in industries such as aviation, oil and gas, and civil engineering.1–3 Apart from the interesting mechanical properties of

FBGs, another feature that makes them attractive for strain (or temperature) sensing applications is considered to be the

linear relationship between the strain and the shift of the Bragg (peak) wavelength of uniform FBG sensors.1, 4 Under

uniform strain fields, the reflected spectrum of the FBG sensor will keep its symmetry, and the aforementioned linear

relationship holds. In addition, using coupled mode theory, the FBG reflected spectra can be characterised by a closed

form function of wavelength and the characteristic physical parameters of the sensor.5 However, when the sensor is subject

to non-uniform strain fields, the reflected spectra becomes more complicated with several local peaks. In such non-uniform

strain fields, using the linear relationship between the mean strain and the shift of the Bragg wavelength will in general

result in an error of up to tens of micro-strains. In such strain fields, using the coupled mode theory to derive an analytical

expression for the reflected spectra will become cumbersome and impractical. In order to solve this problem one of the

most commonly used methods for analysis of FBG reflected (and transmitted) spectra under arbitrary axial strains (or

grating structure) is the transfer matrix model.6 The basic assumption in this model is to consider a piece-wise uniform

strain field (or grating structure) for the sensor. In other words, the length of the sensor is assumed to be divided into smaller

segments, all of which are undergoing a uniform strain. In 1987, Yamada and Sakuda formulated the transfer matrices that

characterise the interaction between the electric waves of consecutive segments in this model, and ultimately, described the

overall reflected spectra by multiplication of all transfer matrices.6

Although the transfer matrix method made it possible to analyse the behaviour of FBG sensors under non-uniform

strain fields, it was still difficult to extract more information about the strain field to which the sensor is subjected. In

our recent work, we presented another variation of this model where we approximated the transfer matrices into a more
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compact and flexible form.7 This new approximated transfer matrix model (ATMM) will be the basis of the analysis in

this paper, where it will be utilised to investigate the behaviour of FBG sensors under anti-symmetrical strain (grating)

distributions. An example of such an anti-symmetrical grating distribution is found in the linearly chirped fibre Bragg

gratings (LCFBG). Based on the discussions of this paper, it will be shown that the reflection spectra of LCFBGs are

theoretically symmetrical. The paper is organised as follows. In Section 2 we present the approximated transfer matrix

model and we define the parameters and assumptions used in this study. In Section 3 we will analyse the behaviour of FBG

reflected spectra under anti-symmetrical strain fields, along with some discussions on the results, and Section 4 discusses

the case of linearly chirped Bragg gratings. Finally, 5 concludes the paper.

2. APPROXIMATED TRANSFER MATRIX MODEL

The approximated transfer matrix model (ATMM) is derived from the transfer matrix model (TMM).6 As such, the under-

lying assumptions for the ATMM are similar as for the TMM. Among these is the assumption that the FBG sensor of length

L is divided into M equal segments of length ∆z (with L = M∆z). The forward propagating electric wave inside the core

of the FBG sensor entering the i’th segment will be called Ai and the backward propagating electric wave reflected from

the i’th segment will be called Bi. A schematic view of this structure is shown in Fig. 1.

Am

Bm

Ai

Bi

A0

B0

∆z

L

Light source

Figure 1: Schematic view of the FBG structure.

We showed that for a sufficiently small ∆z, the relationship between the forward and backward electric waves is

characterized as7

(

Ai

Bi

)

= Fi

(

Ai−1

Bi−1

)

, with Fi =

(

e−j(α−αi) −jκi∆z sinc(α− αi)
jκi∆z sinc(α − αi) ej(α−αi)

)

, (1)

in which Fi is the approximated transfer matrix of segment i, with elements Fi11 , Fi12 , Fi21 and Fi22 , and κi is the coupling

coefficient of the i’th segment. Note that Fi11 = F ∗

i22
and Fi12 = F ∗

i21
, where (·)∗ is the complex conjugate operator. The

α and αi parameters in (1) are defined as

α =
2πneff∆z

λ
and αi =

2πneff∆z

λi

, (2)

with λ being the wavelength region under investigation, λi being the local Bragg wavelength related to the i’th segment,

and neff being the effective refractive index of the core. Multiplying all the transfer matrices gives the relation between the

electric waves of the first and the last segment, given by

(

AM

BM

)

= F

(

A0

B0

)

, in which F =

M
∏

i=1

Fi. (3)

Taking into account that at the last segment there is full transmission of the incident light (A0 = 1) and also no reflection

of the light from the rest of the length of the optical fibre (B0 = 0), the overall reflected spectra, R(λ), can be calculated as
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F21

F11

∣
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∣

∣

2

. (4)

The main advantage of the approximated transfer matrices is its simpler representation form. The simplicity of this

model does not sacrifice the accuracy significantly,7 but facilitates the analysis of FBG reflection spectra. In particular,

the simpler form of the overall product of the approximated transfer matrices can be exploited to extract more information

about the strain field to which the FBG sensor is subjected.

3. FBG SENSORS UNDER ANTI-SYMMETRICAL STRAIN DISTRIBUTIONS

In this section, we will show that an anti-symmetrical strain distribution along the length of the FBG sensor will result in a

symmetrical FBG reflection spectra. This property has been observed in several papers,1, 4 especially in studies concerning

linearly chirped FBG sensors (LCFBG).8, 9 However, proving this property using the classic TMM, for the general case of

anti-symmetrical strain distributions is incredibly cumbersome, and to our knowledge no studies have investigated it so far.

On the other hand, owing to its simple representation, the ATMM provides a simple proof for this property. As an example,

Fig. 2a shows an arbitrarily generated anti-symmetrical strain distribution over the length of an FBG sensor with a length

of 10 mm in a 500 segment model, and the resulting symmetrical reflected spectra (Fig. 2b). For this sensor, the nominal

Bragg wavelength was assumed to be 1550 nm, and the refractive index modulation dn = 2.2× 10−5.
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Figure 2: (a) An anti-symmetrical strain distribution, and (b) the resulting simulated FBG reflected spectra.

We assume that the variation of the coupling coefficient along the length of the sensor is negligible (i.e. ∀i, κi ≈ κ).

Without loss of generality, we assume that all the wavelengths are shifted so that the central wavelength of analysis is at

zero. Although the reflected spectra R(λ) as well as the approximated transfer matrices Fi are a function of the wave-

length λ, we can use the transformation in (2) to the α-domain, which will facilitate the analysis. The symmetry of the

reflected spectra can then be shown by proving that the reflected spectrum is an even function in the shifted α domain, i.e.,

R(−α) = R(α). This implies that for the F matrix in (3) the following should hold

∣

∣

∣

∣

F11(−α)

F21(−α)

∣

∣

∣

∣

=

∣

∣

∣

∣

F11(α)

F21(α)

∣

∣

∣

∣

(5)

To prove (5) we will show that under anti-symmetrical strain distributions, the F matrix in (3) will have the following

properties,
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F11(−α) = F ∗

11(α)

F21(−α) = F21(α).
(6)

Based on (4) it can be seen that if the conditions in (6) hold, we will have R(−α) = R(α), i.e., a symmetrical reflection

spectrum. Matrix F consists of the product of the Fi ∀ i matrices, associated with each segment of the FBG model.

Assuming for simplicity of notation that there are an even number of segments in the model, we index the segments by

index n, with n ∈ {−M/2, ..., +M/2}. Let us assume that we calculate the overall F matrix in M/2 steps, where each

step t results in an intermediate matrix F t where the local transfer matrices of the two neighbouring segments n = −t and

n = t are multiplied to the left and right, respectively, of the already calculated F t−1 matrix that originates from step t−1.

In step t = 0 we have F t = I2, where I2 is the 2-by-2-dimentional identity matrix. As an example, in step t = 1 we get

F 1 = F−1F1 and in step t = 2 we get F 2 = F−2F
1F2, etc. Fig. 3 shows a schematic view of such structure.

n = −t n = +t

Middle point

F t−1 =

(

F t−1
11 F t−1

12

F t−1
21 F t−1

22

)

F t =

(

F t
11 F t

12

F t
21 F t

22

)

Figure 3: FBG structure in an anti-symmetrical strain distribution. The new added pair of segments with opposite strains

at the two sides will preserve the properties given in (6).

As stated earlier, without loss of generality it is assumed that the local Bragg wavelength of the middle segment is at

zero. Therefore, at each step of multiplication the two newly added segments involved in the multiplication will have local

Bragg wavelengths with opposite signs. Suppose that at step t in the multiplication process, the following product needs to

be calculated:

F t =

(

e−j(α−αt) −jK sinc(α− αt)

jK sinc(α− αt) ej(α−αt)

)

·

(

F t−1
11 F t−1

12

(F t−1
12 )∗ (F t−1

11 )∗

)

·

(

e−j(α+αt) −jK sinc(α+ αt)

jK sinc(α+ αt) ej(α+αt)

)

,

(7)

with the centre matrix F t−1 resulting from the previous step t, and K = κ∆z. Also note the opposite signs of the local

αt values in the first and the third matrices in (7). Mathematical induction shows that assuming the F t−1 matrix has the

properties of (6), adding new pairs of segments will preserve these properties. Calculating the product in (7), the elements

of the F t matrix are as follows

F t
11(α) = e−j2αF t−1

11 − jK sinc(α− αt)e
−j(α+αt)(F t−1

12 )∗ + jK sinc(α+ αt)e
−j(α−αt)F t−1

12

+K2 sinc(α+ αt) sinc(α− αt)(F
t−1
11 )∗,

(8)

F t
21(α) = jK sinc(α− αt)e

−j(α+αt)F t−1
11 + e−j2αt(F t−1

12 )∗ −K2 sinc(α + αt) sinc(α− αt)F
t−1
12

+ jK sinc(α+ αt)e
j(α−αt)(F t−1

11 )∗.
(9)

In order to prove the validity of (8) and (9) for all t, we start by setting t = 1 and multiplying the first pair of segments

in the middle of the FBG structure, and first prove that F 1 satisfies the properties in (6) . Notice that for this case, the F 0

matrix in (8) and (9) is set to the identity matrix, which results in
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F 1
11(α) = e−j2α +K2 sinc(α+ α1) sinc(α − α1) = (F 1

11(−α))∗, (10)

F 1
21(α) = jK sinc(α − α1)e

−j(α+α1) + jK sinc(α+ α1)e
j(α−α1) = F 1

21(−α). (11)

Therefore,F 1 satisfies the conditions in (6). Now assuming that the conditions in (6) hold for step t−1, by plugging−α
in (8) and (9) we get

F t
11(−α) = ej2α(F t−1

11 (α))∗ − jK sinc(α+ αt)e
j(α−αt)(F t−1

12 (α))∗ + jK sinc(α− αt)e
j(α+αt)F t−1

12 (α)

+K2 sinc(α− αt) sinc(α+ αt)F
t−1
11 (α) = (F t

11(α))
∗,

(12)

F t
21(−α) = jK sinc(α+ αt)e

j(α−αt)(F t−1
11 (α))∗ + e−j2αt(F t−1

12 (α))∗ −K2 sinc(α− αt) sinc(α+ αt)F
t−1
12 (α)

+ jK sinc(α− αt)e
−j(α+αt)F t−1

11 (α) = F t
21(α).

(13)

It can be seen that the conditions of (6) hold for F t. Therefore, using induction, it is proven that these properties will

hold for the final product of the Fi matrices from all segments.

4. LINEARLY CHIRPED FIBRE BRAGG GRATINGS

One immediate result of this behaviour of FBG sensors is in the quality assessment of linearly chirped fibre Bragg gratings

(LCFBG). The use of this type of grating is in dispersion compensation and also in several sensory applications, and as

the name suggests, the grating period in these structures linearly increases along their length, which can be considered as a

special case of an anti-symmetrical grating distribution. Therefore, the reflection spectra of LCFBGs should theoretically

be as symmetrical as possible. As an example, Fig. 4 shows the reflection spectra of a simulated ideal LCFBG.
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Figure 4: The symmetrical reflection spectrum of an LCFBG with λB = 1550 nm, dλB

dz
= 2.5 nm/cm, δn = 2.2 × 10−4

and L = 10 mm.
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This behaviour has been observed in several studies in the literature,1, 4, 8, 9 and as shown in this paper, can be proven an-

alytically using the ATMM. We conclude that a well produced LCFBG sensor should have a close to symmetrical reflected

spectra, while a poorly manufactured LCFBG with undesirable birefringence effects is expected to show haphazard peaks

and asymmetrical reflected spectra. An example of such a well produced LCFBG with low birefringence was presented

by Li and Yao.10 In this work, they developed a method for producing LCFBGs with optical pumping in Er/Yb co-doped

fibres, whose reflection spectra were much more symmetrical than LCFBGs without optical pumping.10

5. CONCLUSIONS

In this paper, we re-presented the new approximated transfer matrix model (ATMM), and exploited the compact form

of the new formulation to show some interesting properties in FBG sensors. We proved that an anti-symmetrical strain

distribution will result in a symmetrical reflected spectrum. This behaviour had been observed in several papers in the

literature, but proving it using the transfer matrix model was laborious. The compact representation of the elements of the

approximated transfer matrices made it possible to readily prove this property. This property in particular shows a good

potential in quality assessment of linearly chirped FBG (LCFBG) sensors, whose grating distribution is a special case of

such anti-symmetrical structures. We argued that theoretically, a perfectly produced LCFBG with low birefringence would

have symmetrical reflected spectra, and deviation from symmetry could possibly indicate a poor production process with

high undesirable birefringence effects.
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