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Abstract

Helmholtz problem has a various application in real world. The discretization of Helmholtz
equation results in a sparse linear system that is hard to solve. The main difficulty lies in the
high indefiniteness of the matrix. In order to improve the spectral properties of the original
matrix, the shifted Laplacian preconditioner and deflation operator are used to precondition
the system so that the Krylov convergence accelerates.

This thesis is devoted to the analysis on the spectrum distribution of the preconditioned
systems together with the resulting convergence behaviour. Fourier analysis is the tool that
finds out the eigenvalues of the matrices and therefore the spectrum distribution. The pre-
conditioning effect is investigated with respect to various wavenumbers and different wave
resolution. The study is also done on the action of the shift in the shifted Laplacian precon-
ditioner. Based on the multigrid method, the investigation is extended to the approximated
preconditioning where the shifted Laplacian preconditioner is inverted not exactly but by
several multigrid iterations. Besides that the convergence behaviour of the multigrid method
is studied and some observation is obtained. The calculation is done for the optimal shift
which is expected to result in the fastest Krylov convergence of the preconditioned system.

The theoretical analysis is substantiated by the numerical experiments. The numerical ob-
servation matches the conclusion by Fourier analysis. In addition to that the numerical
experiment reveals the influence of orthogonalization method on the Krylov convergence.
The experiment on the multilevel Krylov multigrid method shows how the internal iteration
on different levels affects the external Krylov convergence. Finally, the optimal shift for the
Krylov convergence is obtained by the numerical experiment.

Key Words Helmholtz problem, Krylov subspace methods, multigrid method, multilevel
Krylov multigrid method, shifted Laplacian preconditioner, deflation
operator, Fourier analysis
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Chapter 1

Introduction

The Helmholtz equation, named for the German physicist Hermann von Helmholtz, is a
partial differential equation that governs the scattering of plane wave in acoustics and elec-
tromagnetism [17].

−∆u(x)− k2 u(x) = f(x), in Ω ∈ R3

In many applications the problem is modelled by a high wavenumber propagation. For
the sake of accuracy, the discretization of the Helmholtz equation generates a very large-scale
coefficient matrix, especially in case of the 3D modelling. Due to the sparsity of the large
matrix, iterative methods [26] are usually employed as the solver. And these solvers require
more attention to the choice of preconditioner because the matrix becomes highly indefinite
as the wavenumber increases. In the early 1980’s Goldstein & Turkel [2] started the work
on the iterative methods for Helmholtz problem. From then on, various methods have been
developed and applied to Helmholtz problem, which makes it nowadays still an active research
topic. A survey is done in [7] for the recent advances in solving Helmholtz problem.

1.1 Helmholtz problem

1.1.1 Derivation of Helmholtz equation

Helmholtz equation is the time-independent form of time harmonic wave propagation. It
often appears in the study of physical problem that involves PDE in both time and space.
The technique of separation of variables reduces the complicated analysis into the simpler
form concerning only spatial derivatives.

The derivation starts from the common wave equations(
∇2 − 1

c2

∂2

∂t2

)
u(x, t) = 0, (1.1)

where c is the wave speed and x represents the space position in R3. Applying separation of
variables, the harmonic wave function u(x, t) can be decomposed into

u(x, t) = φ(x)T (t). (1.2)

Substitution (1.2) into (1.1) results in

∇2φ

φ
=

1

c2T

∂2T

∂t2
, (1.3)

where the left-hand expression is only dependent of x and the right-hand side depends only on
t. In order to have the equality (1.3) valid, both left-hand and right-hand sides are supposed

1



2 Chapter 1. Introduction

to equal an identical constant value. This observation brings out two equations for φ(x) and
T (t) respectively.

∇2φ

φ
= −k2 and

1

c2T

∂2T

∂t2
= −k2. (1.4)

Here the expression−k2 is chosen as the constant value. Physically, k stands for the wavenum-
ber. Thus, the Helmholtz equation can be obtained by rearranging the first equation in (1.4).

−∇2φ− k2φ = −(∇2 + k2)φ = 0 (1.5)

In the above derivation φ is an abstract quantity which can be more meaningful in a specific
problem, i.e. pressure, amplitude, velocity et al.

1.1.2 Boundary Conditions

As an elliptic equation, the Helmholtz equation requires a proper boundary condition in
order to construct a well-posed physical problem. Particular physical laws are satisfied on
the boundary of the domain where the solution is computed. The domain is either finite
or infinite, which refers to the interior problem or exterior problem respectively. When the
solution is computed numerically, an infinite domain needs a truncation.

Generally there are Dirichlet condition, Neumann condition and Sommerfeld conditon [6].
Here, the Sommerfeld condition in the form of first order is given by.

∂φ

∂n
− ιkφ = 0, on Γ = ∂Ω, (1.6)

where n is the outward direction normal to the boundary and ι =
√
−1 is the imaginary

number1.
Using the Sommerfeld condition, the Helmholtz problem for wave propagation can be

defined in the following way.

Definition 1.1. Find the field φ such that

−∇2φ− k2φ = f, in Ω ∈ R3

∂φ

∂n
− ιkφ = 0, on Γ = ∂Ω

The function f is the source term or the driving force.

1.1.3 Dimensionless Helmholtz problem

For the sake of generalization, the Helmholtz problem is now scaled to a dimensionless problem
on a unit domain Ω̃ = [0, 1]3. The wavenumber will therefore be adapted properly in order
to make the dimensionless problem spectrally equivalent to the original one.

The Helmholtz equation can be written in the following scalar form

−∂
2φ

∂x2
− ∂2φ

∂y2
− ∂2φ

∂z2
− k2φ = f(x, y, z) on Ω = [0, L]3.

The new scaled variables are introduced as

x̃ =
x

L
, ỹ =

y

L
, z̃ =

z

L
,

which leads to the derivative relation

dx̃

dx
=
dỹ

dy
=
dz̃

dz
=

1

L
.

1Throughout the thesis, the Greek letter ι is employed as the unit for imaginary number.



1.1. Helmholtz problem 3

Then, the original Helmholtz equation is reformulated into

− ∂2φ

∂x̃2
− ∂2φ

∂ỹ2
− ∂2φ

∂z̃2
− k̃2φ = f̃(x̃, ỹ, z̃), (1.7)

where (x̃, ỹ, z̃) ∈ Ω̃ = [0, 1]3 and k̃ = L · k, f̃ = L2 · f . Although the domain is transferred
from [0, L]3 to [0, 1]3, the solution is still the same due to the new k̃ and f̃ . And the scaled
wavenumber also guarantees the spectral equivalence between two problems in different do-
mains. For the sake of brevity, the tilde notation will be left out in the following section.

1.1.4 Discretization of Helmholtz equation

Both finite difference method and finite elements method are suitable for the discretization of
the Helmholtz problem. In this thesis the finite difference method is used while the application
of finite element method to Helmholtz problem can be found in [18].

Here, a second order accurate finite difference method is applied to the dimensionless
Helmholtz equation (1.7). A high order finite difference application can be found in [29].

The 3D domain of interest Ω = [0, 1]3 is discretized on an equidistant grid which has L
subintervals in x-direction, M subintervals in y-direction and N subintervals in z-direction

xl = l ∆x, l = 0, 1, · · · , L
ym= m∆y, m = 0, 1, · · · ,M
zn = n ∆z, n = 0, 1, · · · , N.

A standard central difference scheme is applied to the spatial derivatives and results in a
second order accuracy.

∂2φ

∂x2

∣∣∣∣
l

= − 1

∆x2
(φl−1 − 2φl + φl+1)−O(∆x2)

It is similar in y-direction and z-direction. The complete set of discretization becomes

− 1

∆x2
(φl−1 − 2φl + φl+1)− 1

∆y2
(φm−1 − 2φm + φm+1)+

− 1

∆z2
(φn−1 − 2φn + φn+1)− k2φl,m,n = fl,m,n (1.8)

A first order forward/backward scheme is applied to (1.6) on left/right conditions. The result
is a set of extra terms added to equation (1.8).

p1,m,n − p0,m,n

∆x
− ιkp0,m,n = 0 and

pL,m,n − pL−1,m,n

∆x
− ιkpL,m,n = 0 (1.9)

The discretized equations in y and z directions have the similar form to (1.9) and all the
unknowns on the boundaries can now be written as the expression of their neighboring internal
grid points.

p0,m,n =
p1,m,n

1 + ιk∆x
and pL,m,n =

pL−1,m,n

1 + ιk∆x

pl,0,n =
pl,1,n

1 + ιk∆y
and pl,M,n =

pl,M−1,n

1 + ιk∆y

pl,m,0 =
pl,m,1

1 + ιk∆z
and pl,m,N =

pl,m,N−1

1 + ιk∆z

(1.10)

Inserting equation (1.10) into equation (1.8) for all l,m, n in the domain yields a set of linear
equations

Ax = b for A ∈ Cn×n.
The vector x contains all unknowns in the domain and its total amount is n = (L− 1) · (M −
1) · (N − 1).
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Linear System The resulting linear system is a symmetric complex sparse matrix. The
seven-point stencil discretization (see Figure 1.1a) generates a highly sparse matrix which
only has seven non-zero diagonals (see Figure 1.1b). Although the coefficient matrix for the
Helmholtz equation is real, the complex number is introduced to the linear system by the
Sommerfeld condition. For a large k, the matrix becomes very indefinite which has a bad
impact on the convergence of iteration.

l,m, n E: l + 1,m, nW: l − 1,m, n

S: l,m− 1, n

N: l,m+ 1, n

B: l,m, n− 1

T: l,m, n+ 1

z
y

x

(a) seven-point stencil

EW

B

T

S N

L ·M
L

1

(b) sparsity pattern

Figure 1.1: The illustration of discretization stencil and the linear system

1.1.5 Model Problem

Throughout this thesis, the model problem is based on the one-dimensional Helmholtz prob-
lem with homogeneous Dirichlet boundary condition. The resulting linear system is given
by

Ax = b where A =
1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

− k2I. (1.11)

Here, I denotes the identity matrix. The matrix size is n × n and the grid size is given by
h = 1

n+1 .

Wave Resolution In the numerical solution of wave problems, the wave resolution deter-
mines the accuracy of the solution [3]. It refers to the amount of subintervals per wavelength,
which is denoted by gw. So the wave resolution gw will be an important parameter that
represents the discretization accuracy of the Helmholtz problem in this thesis. The relation
among grid size, wavenumber and wave resolution is given by

2π

k
= gw · h.

Eigenvalues The matrix A in (1.11) is a linear combination of the discrete Laplacian
operator. Its eigenvalues are given by

λl =
4

h2
sin2(lπh/2)− k2 for l = 1, 2, · · · , n.

The corresponding eigenvectors are in the form of

vl = [sin(lπh), sin(2 · lπh), · · · , sin(n · lπh)]T for l = 1, 2, · · · , n.
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1.2 Difficulties in Solving Helmholtz problem

The main difficulty in solving Helmholtz problem by Krylov subspace methods lies in the
high indefiniteness of the linear system. Consider the model problem on page 4. The eigen-
values are spread over a large range which varies from the negative to the positive. Such
an unfavourable spectrum distribution leads to a very slow Krylov convergence. The indef-
initeness is demonstrated by the comparison between the largest eigenvalue λmax and the
smallest eigenvalue λmin as in Figure 1.2a. Due to the indefiniteness, the smallest eigenvalue
is negative so it is shown in the absolute value.

0 100 200 300 400 500

10
2

10
4

10
6

10
8

wavenumber k

e
x
t
r
e
m
it
ie
s
o
f
λ

 

 

λmax

|λmin|

(a) largest and smallest eigenvalues

0 100 200 300 400 500

10
2

10
4

10
6

10
8

wavenumber k

c
o
n
d
it
io
n
n
u
m
b
e
r
κ

(b) condition number

Figure 1.2: The spectral properties of the model problem on page 4

Besides the indefiniteness, the condition number κ(A) is also very large as plotted in
Figure 1.2b. The smallest eigenvalue in magnitude is located somewhere near zero, the
distance of which is neither regular nor monotonic as the wavenumber increases. This explains
the oscillation in the Figure 1.2b.

Multigrid Method It might be reasonable to consider solving Helmholtz problem by
multigrid method. However, the application of multigrid method would definitely fail. The
first reason is that the smoothing iteration is not convergent since some of the eigenvalues of
the ω-Jacobi operator are always larger than one. Secondly, the coarse grid is incapable of
tackling the high wavenumber problems. So the information will be lost or distorted during
the intergrid operation. See [12] for more details.

1.3 Outline of the Thesis

The Helmholtz problem is solved by the Krylov subspace method. This thesis attempts to
build a bridge between the convergence behaviour and the spectral properties. The main
task focuses on the application of Fourier analysis to investigating spectral properties.

All the analysis and computation are applied to the simple model problem on page 4.
There are two reasons.

• There is no essential difference in principle between one-dimensional and higher dimen-
sional problems. The conclusion on one-dimensional problem provides a good reference
and can be extended to higher dimensional problems.

• The Dirichlet boundary condition is mathematically simple but results in the most
unfavourable spectral properties. So the research is focused on the problem with the
poorest convergence.

The formulation of the Helmholtz problem has already been discussed in the previous two
sections. Chapter 2 discusses the iterative methods that are used in the solution of Helmholtz
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problem. The preconditioning techniques for the Helmholtz problem are introduced in Chap-
ter 3. In Chapter 4 the spectral properties of the matrix A are investigated in detail by using
Fourier analysis. The numerical experiments are presented in Chapter 5, which corresponds
to the analytical result in the previous chapter. The thesis is finalized by Chapter 6.



Chapter 2

Iterative Methods

The Helmholtz problem is discretized with either finite difference method or finite element
method, which results in the linear system

Ax = b.

The linear system can be solved by a direct method if its size is small. However, the compu-
tational cost will increase superlinearly in accordance to the problem size. Furthermore, the
numerical solution by a direct method will be plagued by the rounding error as the matrix
size goes up. So the iterative methods are employed to tackle the large scale problems.

The computational procedure of an iterative method starts with an initial guess for the
solution and stops when the approximation has met the termination criterion. The conver-
gence behaviour of the iterative methods is closely related to the spectrum of the matrix
A, i.e. σ(A). Provide it is convergent, each iteration step improves the approximation. For
large problems, a well-chosen iterative method manages to approximate the solution to the
expected precision at a much cheaper cost than the direct method.

Three kinds of iterative methods are working for the solution of Helmholtz problem. The
Krylov subspace method is the main solver that solves the entire preconditioned system. The
inversion of shifted Laplacian preconditioner is approximated by the multigrid method in
which the ω-Jacobi iteration is employed as the smoother.

2.1 Basic Iterative Methods

The class of basic iterative methods annihilates some components of the residual. The itera-
tion process consecutively updates the iterate via a fixed iteration operator. The construction
of the iteration operator is based on the decomposition A = M −N . In case of an invertible
M , the updating formula is given by

xm+1 = M−1N xm +M−1b. (2.1)

Denote M−1N by G as the iteration operator. Then, the error em is updated by the relation

em+1 = Gem.

The sufficient condition of convergence requires the spectrum radius be bounded by one,
namely ρ(G) 6 1.

2.1.1 ω-Jacobi Iteration

The type of iteration depends on the decomposition of the matrix A. One of the most popular
type is the ω-Jacobi iteration which splits the diagonal away from A. The splitting is given
by

M = D and N = D −A,

7



8 Chapter 2. Iterative Methods

where D is a diagonal matrix whose diagonal is identical to that of A. Then, the updating
formula of the Jacobi iteration is given by

xm+1 = (I −D−1A)xm +D−1b.

The convergence behaviour can be improved by introducing a weight ω, which motivates the
ω-Jacobi iteration

xm+1 =
(
(1− ω)I + ω(I −D−1A)

)
xm + ωD−1b.

The weight determines how much old information will be used to update the approximation.
With a suitable ω, each iteration will be able to reduce the residual by a maximal fraction.

100 200 300 400 479

0

0.25

0.5

0.75

1

eigen index l

|λ
(l
)|

 

 

ω = 0.2
ω = 0.7
ω = 1.0

Figure 2.1: The magnitude of eigenvalues of the ω-Jacobi iteration operator for M = −∆h−
βk2I where k = 100 and β = 1− 1ι

The detailed analysis of the optimal ω is presented in appendix A for the application to
approximating the inversion M−1.

2.2 Multigrid Method

The basic iterative methods are incapable of approximating the inversion of shifted Laplacian
preconditioner. The multigrid method [32, 4] is employed as the iterative solver for the linear
system

Mx = b.

2.2.1 Motivation

Assume the system size is n and it is an odd number. The error is spanned by the basis of
n eigenvectors of the ω-Jacobi iteration operator, namely n components. The convergence
factor of each component in the error is determined by the corresponding eigenvalue.

The eigen index l can be considered as a representation of wave frequency of the com-
ponent. As shown in Figure 2.1, the eigenvalues of the low frequency (small l) are always
far away from zero but close to one while those of the high frequency part (large l) can be
adjusted close to zero by an appropriate choice of ω. So the high frequency components
((n + 1)/2 6 l 6 n) in the error are reduced faster than the low ones (1 6 l 6 (n − 1)/2).
After some iteration steps, the high frequency components will be almost wiped out while
the low frequency part is hardly reduced. In order to accelerate the convergence, the idea is
to solve a smaller problem in the coarser grid.
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In the coarse grid, the matrix size of the small problem is (n− 1)/2. Now the eigen index
varies from 1 to (n− 1)/2. Part of the low frequency components ((n+ 1)/4 6 l 6 (n− 1)/2)
in the fine grid becomes high frequency part in the coarse grid. And the amount of low
frequency components has been reduced to (n− 3)/4 in the coarse grid. Figure 2.2 gives an
illustration to this idea.

λ1
λn

λ1 λn−1
2

λn−1
2

λn+1
2

λn+1
4

λn−3
4

Ωh

Ω2h

low frequency high frequency

low frequency high frequency

Figure 2.2: The illustration of the eigen relation between fine ad coarse grids

A large problem in the fine grid is transferred into a small problem in the coarse grid. The
error will be corrected in the coarse grid. If the small problem is sufficiently small, then it is
solved by a direct method. Otherwise the small problem is transferred into an even smaller
problem in an even coarser grid. Such a process will not stop until the problem in the coarsest
grid is small enough for the direct method. In the process from fine to coarse grids, different
components of the error will be gradually reduced level by level until the lowest frequency
components is thoroughly removed by a direct solution.

2.2.2 Multigrid Components

The multigrid method consists of several components. They collaborate to complete the
multigrid iteration.

Multilevel Grid Assume an m-level grid. For the sake of simplicity, the grid on each level
is coarsened by a factor of two. On the first level is the finest grid denoted by Ωh. And on
the lowest level m is the coarsest grid denoted by Ωmh. The subscript is the grid size on each
level.

Intergrid Operator Information on different levels is transferred by the intergrid oper-
ators. The restriction operator Rk+1

k projects quantity from the fine grid on the k-th level
onto the coarse grid on the (k+ 1)-th level. When the information is turned back to the fine
grid, the prolongation operator P kk+1 interpolates the information of the coarse grid.

There are many choices of the restriction and prolongation operators. Throughput the
thesis, the full weighting operator realizes the effect of restriction and the linear interpolation
is used for the prolongation operator. In the matrix notation, they reads

Rk+1
k =

1

4


1 2 1

1 2 1
· · · · · · · · ·

1 2 1

 and P kk+1 =
1

2



1
2
1 1

2

1
...
...
... 1

2
1


Suppose the size of Rk+1

k and P kk+1 are a × b and b × a respectively. Then, a and b should

satisfy a = b−1
2 .
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Smoother There are two types of smoothing in one multigrid iteration. The smoothing
operator is denoted by S. The pre-smoothing happens before the problem is restricted to the
coarse grid. The post-smoothing happens after the problem has been prolongated onto the
fine grid. The amount of pre- and post- smoothing steps are denoted by µ1 and µ2 respectively.
Throughout this thesis, the smoothing is implemented by the ω-Jacobi iteration.

2.2.3 Multigrid Cycle

Consider the two-grid problem. The approximation xm is obtained by m steps of iteration.
The pre-smoothing by µ1 ω-Jacobi iterations results in the approximation x̄m,1, which defines
the residual

d̄m,1 := b−Mx̄m,1.

The residual on the first level is restricted to the second level by the restriction operator as

d̄m,2 := R2
1 d̄m,1.

The coarse grid operator M2 is obtained by the Galerkin projection as

M2 := R2
1 M1 P

1
2 where M1 = M.

The error is corrected by a direct method, which yields

ŷm,2 := M−1
2 d̄m,2.

The error correction ŷm,2 is then projected onto the first level by prolongation operator as

ŷm,1 := P 1
2 ŷm,2.

The approximation is now corrected by

x̄m,1 = x̄m,1 + ŷm,1.

The application of µ2 ω-Jacobi iterations to the updated x̄m,1 yields the new approximation
xm+1. The iteration process can be expressed in the matrix form. The two-grid operator is
given by

T 2
1 := Sµ2 (I − P 1

2M
−1
2 R2

1M1)Sµ2 .

Here, the coarse grid correction operator can be defined as

K2
1 := I − P 1

2M
−1
2 R2

1M1.

The process of two-grid correction can be extended to the multigrid correction by re-
cursively applying the two-grid correction to solving the inversion on the second level. The
multigrid iteration operator is given by the recursion

Tk = Sν2k (I − P kk+1 (I − Tk+1)A−1
k+1R

k+1
k Ak)S

ν1
k with Tm = 0, (2.2)

Here, the number γ is the cycle index. On the k-th level, the problem on the (k+ 1)-th level
is solved by γ multigrid iterations. Three typical types are illustrated in Figure 2.3. The
F -cycle refers to an index γ = γk that depends on the level.
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• smoothing step

� exact inversion
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Figure 2.3: The illustration of multigrid cycles

2.2.4 An Illustrative Example

An experiment is conducted to show the advantage of multigrid method over basic iterative
methods. Both multigrid method and ω-Jacobi iteration are used to solve the linear system
Mx = b which results from the model problem

−u′′ − βk2u = 0 where k = 100 and β = 1− 1ι.

The model problem has a zero source term (right hand side) so the exact solution is zero.
For ω-Jacobi iteration, by choosing the initial guess as one of the eigenvector of the ω-Jacobi
operator, the error reduction only depends on the magnitude of the corresponding eigenvalue.

The system size is n = 479. The initial guess of eigenvector w100 represents the low
frequency component while that of w400 represents the high frequency part. The convergence
behaviour is shown in Figure 2.4. It is clear that ω-Jacobi iteration can hardly reduce the
error of low frequency but multigrid method has successfully reduced the error in both cases.
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Figure 2.4: The comparison of convergence behaviour between ω-Jacobi iteration and multi-
grid method

2.3 Krylov Subspace Methods

Krylov subspace methods are a set of iterative methods that can efficiently solve large sparse
linear systems. The Krylov solution can be considered as the projection processes onto Krylov
subspaces. Different specific algorithms are developed to fit different kinds of problems. They
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are distinguished by the way how the approximation is built, which therefore determines the
type of error minimization and presents corresponding convergence behaviour.

The fundamental idea of Krylov iteration will be explained in the next section, which are
followed by the introduction to several typical Krylov methods.

2.3.1 Krylov Subspace

For a linear system Ax = b, the projection method takes an approximation xm from the
m-dimensional search subspace K by imposing the Petrov-Galerkin condition

b−Axm ⊥ Lm.

Here, Lm is the subspace of constraints. With an arbitrary initial guess x0 of the solution,
the search subspace can be denoted by K = x0 +Km.

A Krylov subspace method is the one that uses Krylov subspace to build the search
subspace with

Km = span{r0, Ar0, A
2r0, · · · , Am−1r0}, (2.3)

where r0 = b−Ax0 is the initial residual. Different Krylov methods vary in the choice of the
subspace of constraints. A simple choice is Lm = Km or Lm = AKm for the orthogonalization
methods. Another class of choice uses A∗ to construct the subspace as

Lm = span{r0, A
∗r0, (A

∗)2r0, · · · , (A∗)m−1r0}. (2.4)

This forms the origin of the biorthogonalization methods.

Orthonormality In practical implementation an orthonormal basis of Krylov subspace is
used instead of the straightforward form (2.3) so that the numerical calculation is stable and
insensitive to the rounding error.

The orthonormal basis can be generated by Arnoldi iteration [1] which actually imple-
ments the modified Gram-Schmidt orthogonalization. At the m-th step, the following rela-
tions hold:

AVm = Vm+1H̃m and V ∗mAVm = Hm, (2.5)

where the columns of Vm forms the orthonormal basis of Krylov subspace and Hm is obtained
by deleting the last line of the (m+ 1)×m Hessenberg matrix H̃m.

Anther approach to construct the orthonormal basis is to apply the Householder algo-
rithm. It computes the QR factorization of the subspace (2.3). From a numerical viewpoint,
Householder algorithm is more robust at the cost of more computational resources.

Symmetry When the matrix A is Hermitian, the Arnoldi’s algorithm can be simplified to
the Lanczos algorithm. The Hessenberg matrixHm turns out to be Hermitian and tridiagonal.
Fast algorithm is based on the three-term recurrences instead of (m+1)-term at step m. The
relation (2.5) becomes

AVm = Vm+1T̃m and V ∗mAVm = Tm. (2.6)

Biorthogonalization Lanczos algorithm can be extended to the non-Hermitian matrix by
building a pair of biorthogonal bases

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

and

Km(A,w1) = span{w1, A
∗w1, · · · , (A∗)m−1w1}.
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The two subspaces should satisfy the biorthogonal condition W ∗mVm = Im. The computation
is then doubled since the orthogonalization happens in both subspaces at each step. Similar to
the application of Lanczos process to Hermitian matrix, the relations for biorthogonalization
methods hold in terms of corresponding Hessenberg matrices as

AVm =Vm+1T̃m

A∗Wm =Wm+1S̃m

W ∗mAVm =T̃m = S̃∗m.

2.3.2 GMRES

The generalized minimal residual method (GMRES) [27] is based on choosing Lm = AKm as
the subspace of constraints. Among all the vectors in the subspace x0+Km, the approximation
xm is supposed to have the minimal residual. GMRES has no additional requirement on the
matrix A and can be applied to any type of matrices.

The derivation of GMRES exploits the optimality property. At the m-th iteration step,
the vector in the search subspace x0 +Km is written as

xm = x0 + Vmy,

where y is an m × 1 vector. With the help of orthogonal relation (2.6), the residual can be
simplified as

rm =b−Axm
=r0 −AVmy
=βv1 − Vm+1H̃my

=Vm+1(βe1 − H̃my).

As a function of the vector y, the residual norm can be written as

J(y) =‖rm‖2
=‖Vm+1(βe1 − H̃my)‖2
=‖βe1 − H̃my)|2

(2.7)

So the GMRES algorithm finds a unique vector y so that the approximation xm = x0 +Vmy ∈
x0 +Km minimizes the residual function J(y) = ‖βe1−H̃my)|2. The task is then transformed
into solving an (m + 1) ×m least-square problem. Although the original problem size n is
very large, m is typically small enough for a direct solution. The sketch of GMRES is given
in algorithm 1 on the following page.

Breakdown Algorithm 1 will stop if the condition on line 10 is not satisfied. In this
situation the next Arnoldi vector cannot be generated and the residual vector is zero, which
means the iteration has reached the exact solution.

Restarting As the iteration goes on and the dimension of Krylov subspace increases, the
growing storage requirement makes the algorithm impractical. One remedy is to restart the
Arnoldi orthogonalization. The approximate solution of the previous loop and its residual is
used as the initial guess for the next loop. However, this approach sometime will stagnate if
the matrix is not positive definite.
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Algorithm 1 GMRES with modified Gram-Schmidt orthogonalization

1: Choose an initial guess x0

2: Compute r0 = b−Ax0, β = ‖r0‖2 and v1 := r0/β
3: for j = 1, 2, · · · until convergence do
4: Compute wj := Avj
5: for i = 1, 2, · · · , j do
6: hij := (wj , vi)
7: wj := wj − hijvi
8: end for
9: hj+1,j := ‖wj |2

10: if hj+1,j 6= 0 then
11: vj+1 := wj/hj+1,j

12: else
13: go to line 16
14: end if
15: end for
16: Build the (m+ 1)×m Hessenberg matrix H̃m = {hi,j}
17: Find y =: argminy‖βe1 − H̃my‖2
18: Build Vj := [v1, v2, · · · , vj ]
19: Compute xj = x0 + Vjy as the resulting approximation.

Convergence Let p ∈ Pm where Pm is the set of polynomials whose degree are not higher
than m and satisfy p(0) = 1. For a diagonalizable matrix which can be decomposed as
A = X−1ΛX, the convergence rate of GMRES reads

‖rm‖2
‖r0‖2

6 κ2(X) inf
p∈Pm

max
λ∈Λ(A)

|p(λ)|. (2.8)

where κ2 = ‖X−1‖2‖X‖2. Theoretically, GMRES iteration for an n× n system converges to
the exact solution in at most n steps or when rm = 0. But this has little practical content
since a useful GMRES must converge to the desirable precision in m� n steps.

2.3.3 CG

The conjugate gradient method (CG) is among the most important iterative techniques for
solving sparse linear systems which are Hermitian and positive definite [19]. CG algorithm
takes Lm = Km as the subspace of constraints. The Hermitian property of A makes it feasible
to apply Lanczos iteration. The approximate solution xm minimizes the A-norm of the error

‖e‖A =
√
e∗Ae, (2.9)

which is made meaningful by the positive definite property.
The CG algorithm, originally as a direct method for optimality, can be derived by impos-

ing the orthogonality condition to the residual

(ri, rj) = 0 for i 6= j,

and conjugacy condition to the search direction

(Api, pj) = 0 for i 6= j.

The approximation xm+1 can be expressed in a recursive form as

xm+1 = xm + αmpm.
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and the new search direction is a linear combination of the old direction and the residual

pm+1 = rm+1 + βmpm.

The orthogonality necessitates

αm =
(rm, rm)

(Apm, pm)
.

and the consequence of the conjugacy follows as

βm =
(rm+1, rm+1)

(rm, rm)
.

Combining these relations together forms the whole algorithm.

Algorithm 2 CG

1: Choose an initial guess x0

2: Compute r0 = b−Ax0 and take p0 := r0

3: for j = 1, 2, · · · until convergence do
4: αj := (rj , rj)/(Apj , pj)
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: βj+1 := (rj+1, rj+1)/(rj , rj)
8: pj+1 := rj+1 + βjpj
9: end for

Convergence The convergence rate of CG can be expressed with respect to the error in
A-norm

‖em‖A
‖e0‖A

6 inf
p∈Pm

max
λ∈Λ(A)

|p(λ)|. (2.10)

With the help of Chebyshev polynomials, a slightly different formulation comes out as

‖em‖A
‖e0‖A

6 2

(√
κ− 1√
κ+ 1

)m
, (2.11)

where κ is the spectral condition number κ = λmax/λmin.

CGNR The application of CG method is limited to Hermitian matrix of positive definite-
ness. For any non-singular but not necessarily Hermitian matrix, one of the simplest methods
is to apply the CG algorithm to the normal equation (CGNR)

A∗Ax = A∗b.

The advantage of three-term recurrence is used but the computation will now requires two
matrix-vector multiplications on line 4 in algorithm 2. The 2-norm residual is minimized over
the Krylov subspace at every step as ‖e‖A∗A = ‖Ae‖2 = ‖r‖2. Furthermore, the condition
number in equation (2.11) is squared, which is very likely to make the convergence far worse.

2.3.4 Bi-CGSTAB

The biconjugate gradient stabilized (Bi-CGSTAB) method [34] is a transpose-free biorthog-
onalization algorithm developed from the conjugate gradient squared (CGS) method [30]. It
improves the irregular convergence of CGS by delivering a residual vector of the form

r′j = ψj(A)φj(A)r0, (2.12)
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in which both ψ(t) and φ(t) are polynomials of j-th degree. Additionally, ψ(t) is defined
recursively as

ψ(t)j+1 = (1− ωjt)ψ(t)j .

A natural choice for the parameter ωj is to achieve a steepest descent step in the original
residual direction φj(A)r0, which actually minimizes ‖(I − ωjA)φj(A)r0‖2. As a variant of
CGS, Bi-CGSTAB compute other parameters for the iteration process in a similar way to
CGS.

Algorithm 3 Bi-CGSTAB

1: Choose an initial guess x0

2: Compute r0 := b−Ax0 and choose a r∗0 such that (r∗0, r0) 6= 0
3: Take p0 := r0

4: for j = 0, 1, · · · until convergence do
5: αj := (rj , r

∗
0)/(Apj , r

∗
0)

6: sj := rj − αjApj
7: ωj := (Asj , sj)/(Asj , Asj)
8: xj+1 := xj + αjpj + ωjsj
9: rj+1 := sj − ωjAsj

10: βj :=
(rj+1,r

∗
0)

(rj ,r∗0) ×
αj

ωj

11: pj+1 := rj+1 + βj(pj − ωjApj)
12: end for

2.3.5 More Biorthogonalization Methods

Besides CGS and Bi-CGSTAB there are more Krylov subspace methods based on a biorthog-
onalization algorithm. The Arnoldi iteration is replaced with Lanczos iteration and the
three-term recurrence process can be applied to the non-Hermitian matrices.

BCG In biconjugate gradient (BCG) method [13] the orthogonal relation is replaced with
the biorthogonal relation as

(rj , r
∗
i ) =0 for i 6= j (2.13)

(Apj , p
∗
i ) =0 for i 6= j. (2.14)

The total computational work is doubled due to the matrix-by-vector product with both A
and A∗.

QMR Quasi-minimal residual (QMR) method [16] can be regarded as the biorthogonal
version of GMRES. The QMR approximation minimizes the quasi-residual norm ‖βe1−T̃my‖2
rather than the complete residual ‖Vm+1(βe1− T̃my)‖2 since the columns of Vm+1 is no longer
orthogonal.

Transpose-free variants The transpose-free variants, for instance CGS [30], Bi-CGSTAB
and TFQMR [15], can bypass the use of A∗ in BCG and QMR. The idea is based on the
fact that in biorthogonalization process the residual with respect to both A and A∗ can be
expressed in a polynomial form as

rj = φj(A)r0 and r∗j = φj(A
∗)r∗0.

Then, the inner product of the vectors in polynomial form can be given by(
φj(A)r0, φ

∗
j (A

∗)r∗0
)

=
(
φ2
j (A)r0, r

∗
0

)
.
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Hence, the idea is to find out a sequence of iterates whose residual have the form

r′j = φ2
j (A)r0.

Similar implementation is also applied to the conjugate direction. Thus, A∗ is not explicitly
used and faster convergence is obtained at a roughly same computational cost as BCG or
QMR.

2.4 Modified System and Approximated Inversion

2.4.1 Iteration Operator

Without loss of generality an iterative method can be introduced by starting from the ap-
proximation of the residual (or defect) equation. For any approximation xm of the exact
solution x∗ to the linear system Ax = b, the error is denoted by

em := x∗ − xm,

and the residual is denoted by
rm := b−Axm.

Since x∗ = xm + em, to solve the original system is equivalent to solve the system of residual

Aem = rm.

Numerically, the operator matrix in the residual equation is replaced with another simpler
operator A such that the inversion of A can be computed in an easier way. Then, the solution
êm to

Aem = rm

gives a new approximation

xm+1 :=xm + êm

=xm +A−1rm

=(I −A−1A)xm +A−1b.

The iterate process is now given by

xm+1 = Gxm + f for m = 0, 1, · · · ,

where f = A−1b and the iteration operator is defined as

G := I −A−1A. (2.15)

Then, the error is updated by

em+1 = Gem = (I −A−1A)em, (2.16)

and the residual is updated by

rm+1 = (I −AA−1)rm. (2.17)

Each iteration can be considered as solving a modified linear system whose matrix A
is exactly inverted. The approximation xm+1 is actually the exact solution to the modified
system

Axm+1 = (A−A)xm + b︸ ︷︷ ︸
modified RHS

.
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By rearranging (2.15), the expression of approximated inversion1 can be given by

A−1 = (I −G)A−1. (2.18)

The modified system is associated with the approximated inversion A−1, which results from
one iteration for approximating the exact inversion A−1.

The expression of A−1 is useless in practical computation and is impossible to obtain in
matrix form since A−1 is never explicitly available. But A−1 is valuable in the theoretical
analysis. The knowledge of A−1 gives an important insight into the convergence behaviour of
the iteration operator. The iteration operator G plays a role of perturbation in the iteration
process. An effective iteration operator, which yields a fast convergence, should be close to
zero matrix and therefore have the approximated inversion A−1 less deviated away from the
exact inversion A−1.

2.4.2 More about Basic Iterative Methods

In the basic iterative methods the simpler operator A can be obtained from the operator of
any stationary iterative method, for instance ω-Jacobi iteration. Given the initial guess x0,
the approximation xm can be obtained by induction.

xm =Gmx0 +
m−1∑
i=0

GiA−1b

=Gmx0 + (I −Gm)(I −G)−1A−1b

=Gmx0 + (I −Gm)A−1b

≈(I −Gm)A−1b

The last approximate equality follows the fact that an efficient iteration should reduce ‖Gm‖
to a very small and negligible quantity for large m. In case of x0 = 0, it now turns out to be
that xm is the exact solution to the modified system(

(I −Gm)A−1
)−1

x = b

and the approximated inversion after m iterations is denoted by

A−1
m = (I −Gm)A−1. (2.19)

2.4.3 More about Multigrid Method

The iteration operator for a two-grid method reads

T1 = Sν21 (I − P 1
2A
−1
2 R2

1A1)Sν11 .

When more than two levels of grids are used, the inversion A−1
2 is approximately obtained

by the application of another two-grid method on the coarser grid. Using the relation (2.18),
the approximation is given by

A−1
2 = (I − T2)A−1

2 .

Thus, by induction, the recursive definition of the iteration operator for a m-level multigrid
method is

Tk = Sν2k (I − P kk+1 (I − Tk+1)A−1
k+1R

k+1
k Ak)S

ν1
k with Tm = 0,

for k = 1, 2 · · · ,m. And the approximated inversion is given by

A−1
MG = (I − Tm1 )A−1, (2.20)

1In the remaining part of the thesis the approximated inversion is denoted by the double-stroke symbol.
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where Tm1 denotes the iteration operator in an m-level grid.
In case of W -cycle, or more generally the cycle index γ > 1, the inversion on the coarse

grid is approximated by γ steps of multigrid iterations, which is implemented by

A−1
k+1 = (I −Mγ

k+1)A−1
k+1.

2.4.4 Iteration Operator for Krylov Subspace Methods

Krylov subspace methods are not within the class of stationary iteration because the in-
creasing Krylov subspace at every step generates a dynamic iteration. However, although no
stationary iteration operator can be found, the error/residual after m iterations is related to
the initial error/residual by a matrix-vector multiplication. At the m-th step the polynomial
matrix that minimizes a certain norm of the error/residual plays the role of error/residual
reduction operator and the entire effect of all the m iteration steps can be considered as one
single iteration. Thus, the knowledge of reduction operator is sufficient for the derivation of
iteration operator. Finally, the approximated inversion can be expressed in the same way as
what is done for the stationary method.

Residual Reduction Operator of GMRES

In the GMRES iteration the residual after m iterations is given by

rm = pm(A)r0,

where the polynomial pm of degree m is chosen to minimize ‖rm‖2. Now the polynomial
matrix pm(A) is the residual reduction operator. Using equation (2.17), the approximated
inversion by m steps of GMRES iterations is given by

A−1 = A−1 (I − pm(A)) . (2.21)

Error Reduction Operator of CG

After m steps of CG iterations, the error is given by

em = qm(A)e0,

which is minimized in A-norm by the polynomial qm of degree m. The polynomial matrix
qm(A) is the equivalent error reduction operator which plays the same role as G in equa-
tion (2.16). So the approximated inversion by m steps of CG iteration is given by

A−1 = (I − qm(A))A−1. (2.22)

It is possible to extend the above approach to other Krylov subspace methods only if
the expression of either error of residual can be obtained in terms of reduction operator.
Once the corresponding polynomial is found, the approximated inversion can be obtained in
the concrete form. Therefore, the investigation in spectral properties will reveal the Krylov
convergence behaviour.
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Chapter 3

Preconditioning Techniques

The linear system that results from the Helmholtz problem is an ill-conditioned matrix be-
cause of its high indefiniteness. The direct application of Krylov subspace method will suffer
from slow convergence due to the unfavourable spectral properties of the original matrix A.
The key to the success of Krylov method in the Helmholtz problem is the preconditioning
technique.

There are three ways of applying the preconditioning matrix M , which are from the left,
the right and from both sides in a split form. Different ways of preconditioning results in
different residuals. This fact may affect the stopping criterion and then cause the iteration
process to stop either prematurely or with delay. However, in most situations, the difference
is not important in the convergence behaviour of different preconditionings.

As a qualified preconditioning matrix, the preconditioner M is supposed to satisfy the
following basic requirements.

• It should be easy to obtain the inversion M−1, which requires that it be inexpensive to
solve the linear system Mx = b.

• The preconditioner M should be close to the original matrix A to some extent and also
be nonsingular. The closer M to A is, the closer AM−1 to the identity matrix I is, and
then the easier the Krylov convergence will be.

• Generally the preconditioning should preserve the symmetry if the original matrix A is
symmetric.

In this chapter the preconditioners specializing in Helmholtz problem will be introduced
and their properties will be discussed. Besides that a special method will be introduced
to approximately construct these preconditioners. Throughout this thesis, the right pre-
conditioning will be employed during the analysis and the computation. Because the right
preconditioning leads to the same residual as the original one.

3.1 Shifted Laplacian Preconditioner

The application of preconditioning to the Helmholtz problem started from [2] which used
the Laplacian operator as the preconditioner. The preconditioning was improved in [21]
by adding an extra term to the Laplacian operator. Later on the work was extended and
generalized in [11]. This class of preconditioners is named shifted Laplacian preconditioner.

The construction of the shifted Laplacian preconditioner is based on the matrix A that
results from the discretized Helmholtz equation. In the 1D Helmholtz problem with Dirichlet
boundary condition, the matrix A is given by

A := −∆h − k2 I,

21
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where ∆h is the discrete Laplacian operator. Then, the shifted Laplacian preconditioner is
defined as

M := −∆h − (β1 + ιβ2)k2 I for β1, β2 ∈ R. (3.1)

Eigen Relation It is self-evident that both the left and right preconditioned matrices share
the same eigenvalues

λ(M−1A) = λ(AM−1). (3.2)

Furthermore, the connection between A and M leads to the following relation

A = M + (β1 + ιβ2 − 1)k2 I,

which is followed by the equality

M−1A = M−1
(
M + (β1 + ιβ2 − 1)k2 I

)
= I + (β1 + ιβ2 − 1)k2M−1

=
(
M + (β1 + ιβ2 − 1)k2 I

)
M−1 = AM−1.

So either the left or right preconditioning actually results in the same preconditioned matrix
that is denoted by

Â := M−1A = AM−1. (3.3)

For the sake of consistent residual1, the right version of the shifted Laplacian preconditioner
will be used in the rest of the thesis.

Symmetry The original matrix A is real and symmetric. The shifted Laplacian precon-
ditioner M is not Hermitian but only symmetric. The shifted Laplacian preconditioning
preserves the symmetry. With the help of (3.3), the proof is given by the following deduction

(AM−1)T = M−TAT = M−1A = AM−1. (3.4)

3.1.1 Spectrum Distribution

The eigenvalue of the discrete Laplacian operator ∆h is given by

µl =
4

h2
sin2(lπh/2) for l = 1, · · · , n.

So the eigenvalue of the preconditioned matrix Â is given by

λl =
µl − k2

µl − (β1 + ιβ2)k2
for l = 1, · · · , n. (3.5)

The detailed spectral analysis of the preconditioned matrix is presented in [11, 35] for different
choices of the shift β1 + ιβ2. One of the most important conclusions is that the eigenvalues
are distributed on a circle.

Proof of the circular sprectrum distribution. Consider the 1D Helmholtz problem with Dirich-
let boundary condition and assume β2 6= 0.

The eigenvalue of the preconditioned matrix can be written in the format of the complex
number as

λ = λr + ιλi. (3.6)

1The Krylov convergence of the right preconditioned system shares the same residual as that of the original
system.
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Substitution of (3.6) into (3.5) yields the equality

λr(µ− β1k
2) + λiβ2k

2 − (µ− k2)− ι
(
λrβ2k

2 − λi(µ− β1k
2)
)

= 0.

By equating the real and imaginary parts respectively, the above equality can be transformed
into

(λr − 1)µ =(λrβ1 − λiβ2 − 1)k2 (3.7)

λiµ =(λrβ2 + λiβ1)k2 (3.8)

The right hand sides of the above two equations can be connected by multiplying (3.7) by λi
and (3.8) by (λr − 1). The resulting equality that excludes the term k2 is given by

β2λ
2
r − β2λr + β2λ

2
i − (β1 − 1)λi = 0.

In case of β2 6= 0, the above relation can be transformed into a quadratic form as

(λr −
1

2
)2 + (λi −

β1 − 1

2β2
)2 =

β2
2 + (1− β1)2

(2β2)2
. (3.9)

Equation (3.9) is the expression of a circle that is centered at (1
2 ,

β1−1
2β2

) with the radius√
β2
2+(1−β1)2

|2β2| . Thus, the spectrum distribution is circular.

The circular distribution explains the functionality of the shifted Laplacian precondition-
ing. All the eigenvalues are now on a circle which is a much tighter shape than that without
preconditioning. The tightness is determined by the shift. The choice of β1 = 1 results in the
tightest circular distribution which is centered at (1

2 , 0) with the radius 1
2 . A basic illustration

of the shifted Laplacian preconditioning is presented in Figure 3.1.
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Figure 3.1: The spectrum distributions of the preconditioned matrix AM−1 with respect to
several typical shifts when k = 100

The shifted Laplacian preconditioning will still result in some very small eigenvalues that
are close to zero. So it is not necessarily that the condition number of the preconditioned
matrix is much smaller than that of the original matrix. But the important effect is that the
more tightly clustered spectrum distribution is favourable for the Krylov convergence.

3.2 Deflation Operator

The shifted Laplacian preconditioning succeeds in restricting the eigenvalues to a tight shape
but still leaves a certain amount of small eigenvalues. The eigenvalue that is close to zero
will slow down the Krylov convergence.
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The deflation preconditioning, which was discussed in [10] specifically for Helmholtz prob-
lem, is used to overcome the weakness of the shifted Laplacian preconditioning by projecting
the smallest eigenvalues towards the maximal eigenvalue. The deflation preconditioning is
applied to the system that has been already preconditioned by the shifted Laplacian operator.

The early research on the deflation preconditioning was made in [24] for CG and in [22]
for GMRES. Some recent research on deflation preconditioning is presented in [14, 23, 8],
which provide the theoretical support for the application of deflation preconditioning to the
Helmholtz problem.

3.2.1 The Motivation of Deflation

The idea of deflation preconditioning is related to the power method that iteratively computes
the eigenvalue of largest or smallest magnitude. By using Wielandt deflation[5], the power
method will be able to solve the eigenvalue of second largest of smallest magnitude.

Denote the spectrum of the preconditioned matrix Â by σ(Â) = {λ1(Â), λ2(Â), · · · , λn(Â)}
with the corresponding eigenvectors z1, z2, · · · , zn. The sequence satisfies the condition
|λ1| 6 |λ2| 6 · · · 6 |λn|. The process of deflating λ1 towards zero is given by

Â1 = Â− λ1z1y
T ,

where y is any vector that satisfies the requirement yT z = 1. A generalized version of
Wielandt deflation is given by

Â1,γ1 = Â− γ1z1y
T where γ1 is arbitrary. (3.10)

Theorem 3.1. The spectrum of the deflated matrix Â1,γ1 is given by

σ(Â1,γ1) = {λ1 − γ1, λ2, · · · , λn}.

Proof. For i = 1, the condition yT z = 1 leads to the following derivation

Â1,γ1 z1 = Â z1 − γ1z1y
T z1 = (λ1 − γ1) z1.

For i 6= 1, denote yi as the left eigenvector. The relation yTi z1 = 0 leads to the following
derivation

yTi Â1,γ1 = yTi Â− γ1y
T
i z1y

T = yTi Â = yTi λi.

Thus, the first eigenvalue of Â is deflated towards λ1 − γ1 while the other eigenvalues
remain unchanged. And all the eigenvectors are still the same.

There is no restriction on the choice of γ1. Besides the choice γ1 = λ1 deflating λ1 towards
zero, there is another useful choice γ1 = λ1 − λn which deflates towards λn.

The deflation of single eigenvalue can be extended to r smallest eigenvalues by using the
diagonal matrix Γ. Denote the matrix of r eigenvectors by Z = [z1, z2, · · · , zr] and take an
arbitrary matrix Y that satisfies the relation Y TZ = I. The diagonal elements of Γ are
γ1, γ2, · · · , γr. The deflated matrix is then given by

Âr,γ = Â− ZΓrY
T where Y TZ = I. (3.11)

Theorem 3.2. The spectrum of the deflated matrix Âr,γ is given by

σ(Âr,γ) = {λ1 − γ1, λ2 − γ2, · · · , λr − γr, λr+1, · · · , λn}.
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The proof is similar to that of single eigenvalue deflation. Thus, the first r smallest
eigenvalues λi are deflated towards λi− γi while the rest n− r eigenvalues remains the same.

So far the matrix Y is undefined. Now take the matrix of r left eigenvectors as Y . Then,
the r-component diagonalization can be obtained by

Ê := Y T Â Z,

where Ê is a diagonal matrix that contains the first r smallest eigenvalues λ1, λ2, · · · , λr.
Then, it leads to the following eigenvalue relations

Â Z = Z Ê and Y T Â = Ê Y T .

Suppose that all the r smallest eigenvalues are deflated towards the same value λd. Then,
the diagonal matrix Γr is given by

Γr = Ê − λdI.
Now equation (3.11) can be rewritten as

Âr,γ =Â− Z(Ê − λdI)Y T

=Â− Z Ê Y T + λd ZY
T

=Â− Z ÊÊ−1Ê Y T + λd ZÊÊ
−1Y T

=Â− Â ZÊ−1Y T Â+ λd ÂZÊ
−1Y T

=Â (I − ZÊ−1Y T Â+ λd ZÊ
−1Y T ).

(3.12)

It is meaningful to assume that Â is invertible so that λi(Â) 6= 0 for any i. Then, the inversion
of Ê is applicable2.

A slight variation in the last term after the third equality of derivation (3.12) leads to
another version, which is given by

Âr,γ = . . .

=Â− Z ÊÊ−1Ê Y T + λd ZÊ
−1ÊY T

=Â− Â ZÊ−1Y T Â+ λd ZÊ
−1Y T Â

=(I − ZÊ−1Y T Â+ λd ZÊ
−1Y T ) Â.

(3.13)

The derivation (3.12) and (3.13) give rise to the definition of deflation operator.

Definition 3.1. Take Y = [y1, y2, · · · , yr] and Z = [z1, z2, · · · , zr] as the eigenvectors of Â.
The deflation operator is defined as{

left P := I − Â ZÊ−1Y T + λd ZÊ
−1Y T ,

right Q := I − ZÊ−1Y T Â+ λd ZÊ
−1Y T ,

where Ê = Y T ÂZ.

Both the left and right deflation operators are derived from the same expression (3.11). So
the right and left deflation preconditioned matrices are identical to each other and therefore
have the same eigenvalues

PÂ = ÂQ and λ(ÂQ) = λ(PÂ).

When λd = 0, the first r smallest eigenvalues are deflated to zero. The deflation operator
is reduced to

PD = I − Â ZÊ−1Y T and QD = I − ZÊ−1Y T Â.

2In the discretization of Helmholtz problem, it is likely to have an A which has a zero eigenvalue and then
Â also has a zero eigenvalue. Such a defect can be easily remedied by taking a slight different grid. Then, the
resulting discretization can skip the very point that leads to a zero eigenvalue.



26 Chapter 3. Preconditioning Techniques

When λd = λn, the first r smallest eigenvalues are deflated to the eigenvalue of largest
magnitude, i.e. λn. The deflation operator is denoted by

PN = I − (Â− λn I)ZÊ−1Y T and QN = I − ZÊ−1Y T (Â− λn I).

Figure 3.2 demonstrates the deflation preconditioning. As the deflation subspace gets
larger, more small eigenvalues will be deflated while the rest eigenvalues still stay at the
original positions. The spectral properties will be improved for the Krylov convergence.
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Figure 3.2: The spectrum distributions of the deflated matrix ÂQ towards λd = 0.2 when
k = 100, shift = 1− ι1

3.2.2 Generalized Deflation Subspace

The n × r rectangular matrices Y and Z forms the deflation subspace. In the previous
subsection both Y and Z are chosen as the matrices that contain the eigenvectors of Â. The
deflation subspace can be generalized by choosing any arbitrary n× r full rank matrices.

Now it is time to discuss some important properties of deflation preconditioning.

Projector In case of λd = 0, the deflation operator is actually a projector, which satisfies

PD · PD = PD and QD ·QD = QD.

The proof is done by direct matrix multiplication. However, the projection property is invalid
when λd 6= 0. So it is rigorous to classify P and Q as deflation operator rather than a
projector. Moreover, neither P nor Q is a full rank matrix.

Symmetry The preconditioned matrix Â is symmetric as shown in (3.4). Provided Y = Z,
the application of either PD or QD will still preserve the symmetry of Â. When λd 6= 0, neither
P nor Q can preserve the symmetry.

Eigen Relation In case of λd = 0, the left and right deflation preconditioning leads to the
same result, i.e. PDÂ = ÂQD. When λd 6= 0, the preconditioned matrices are not identical
but the two preconditioned matrices still share the same spectrum.

Theorem 3.3. Let Y, Z ∈ Rn×r be any full rank matrices. Assume Â is nonsingular and
define Ê = Y T ÂZ. Then,

σ(PÂ) = σ(ÂQ).

Proof. For the sake of brevity, the notation
σ
= is used to state the equivalence in terms of

eigenvalues, namely σ(LHS) = σ(RHS).
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For the left preconditioning, there is

PÂ =PDÂ+ λdZÊ
−1Y T Â= PDÂ+ λd(I −QD) = PD · PDÂ+ λd(I −QD)

=PDÂQD + λd(I −QD)= λdI + (PDÂ− λdI)QD
σ
=λdI +QD (PDÂ− λdI)= QDPDÂ− λdZÊ−1Y T Â

=(QDPD − λdZÊ−1Y T ) Â.

For the right preconditioning, there is

ÂQ =ÂQD + λdÂZÊ
−1Y T= ÂQD + λd(I − PD) = ÂQD ·QD + λd(I − PD)

=PDÂQD + λd(I − PD)= λdI + PD (ÂQD − λdI)
σ
=λdI + (ÂQD − λdI)PD= ÂQDPD − λdÂZÊ−1Y T

=Â (QDPD − λdZÊ−1Y T ).

It is easily seen that Â (QDPD − λdZÊ−1Y T )
σ
= (QDPD − λdZÊ−1Y T ) Â, which leads to the

eigen relation σ(PÂ) = σ(ÂQ).

Spectrum Once the deflation subspace is not the eigenvectors, the r smallest eigenvalues
are still deflated towards the value λd but the rest n− r eigenvalues will be modified.

Theorem 3.4. Let Y, Z ∈ Rn×r be any full rank matrices and define Ê = Y T ÂZ. The
spectrum of deflated matrix is given by

σ(PÂ) = σ(ÂQ) = {λd, · · · , λd, µr+1, · · · , µn}. (3.14)

Proof. Consider the left deflation preconditioning. The information of the first r eigenvalues
is obtained by the following derivation.

PÂZ =Â Z − ÂZÊ−1Y T Â Z + λdZÊ
−1Y T Â Z

=Â Z − Â Z + λd Z

=λd Z

However, it is impractical to find out the rest n− r eigenvalues since Y and Z are no longer
the eigenvectors. The detailed knowledge of µr+1, · · · , µn depends on the exact choice of Y
and Z.

The proof for σ(ÂQ) is easily done by the equivalent eigen relation shown in the previous
paragraph.

Condition Number In case of λd 6= 0 the deflation can change the lower bound of the
spectrum to a larger value. So the condition number will be greatly improved. In case of
λd = 0, the zero eigenvalues do not participate in the Krylov convergence [33] so the actual
lower bound is still increased. Since PD has preserved the symmetry of Â, the condition
number can be given explicitly. Due to the zero eigenvalues, the effective condition number
is introduced as

κeff(PDÂ) = |µn|/|µr+1|.

Since µr+1 is relatively much larger than zero, the effective condition number κeff(PDÂ) is
now much smaller and more favourable than κ(Â).
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3.2.3 The Inaccuracy in the Deflation

In the practical implementation, the numerical computation will introduce rounding error
into the inversion Ê−1 in the deflation operator. The inaccuracy in the deflation will deviate
the theoretical preconditioning effect. The influence of the inaccuracy is investigated by using
perturbation analysis.

Consider the case that the deflation subspace Y,Z consist of the left and right eigenvectors
of Â. Then, Ê = Y T ÂZ is a diagonal matrix whose diagonal elements are the eigenvalues of
Â. The inaccuracy of the inversion Ê−1 introduces the small perturbation ε1, · · · , εr to the
diagonal. The approximated inversion is given by

Ê−1 = diag(
1− ε1
λ1

, · · · , 1− εr
λr

).

where |εi|i=1,··· ,r � 1. Then, the eigenvalue computation of the deflated matrix with inaccu-
racy is given by

PÂ Z =Â Z − ÂZÊ−1Y T Â Z + λdZÊ
−1Y T Â Z

=ZÊ − ZÊÊ−1Ê + λdZÊ
−1Ê

=Z (diag(λ1, · · · , λr)− diag(λ1(1− ε1), · · · , λr(1− εr)) + λddiag(1− ε1, · · · , 1− εr))
=Z diag((1− ε1)λd + λ1ε1, · · · , (1− εr)λd + λrεr).

Due to the inaccuracy in the inversion, the first r eigenvalues are deflated towards the per-
turbed value (1− εi)λd+λiεi. However, it can be easily proved that the rest n−r eigenvalues
keep unchanged regardless of the inaccuracy. The spectrum of the PÂ is given by

σ(PÂ) = {(1− ε1)λd + λ1ε1, · · · , (1− εr)λd + λrεr, λr+1, · · · , λn}.

The spectrum of the deflated matrix with inaccuracy tells that it is insensible to choose
λd = 0. Once the inversion is not exact, the eigenvalues would not be deflated towards zero
but are actually towards some very small non-zero values. Then, the Krylov convergence will
be slowed down by these very small eigenvalues close to zero.

In order to reduce the influence of inaccuracy to the minimum, the best choice is λd = λn,
which brings the smallest relative deviation.

3.3 Multilevel Krylov multigrid method

The application of the shifted Laplacian preconditioner and the deflation operator has greatly
improved the spectral properties of the Helmholtz equation. The deflated preconditioned sys-
tem AM−1Q now has the favourable spectrum distribution and the resulting linear system is
to be solved by the Krylov subspace method. The shifted Laplacian preconditioner is inverted
approximately by the multigrid method. The deflation operator is computed approximately
by the multilevel Krylov method [9].

The combination of the multigrid method and multilevel Krylov method gives d rise to
the idea of multilevel Krylov multigrid method (MKMG), which was proposed in [10].

3.3.1 Flexible GMRES

MKMG computes both M−1 and Q in an implicit way. The deflated preconditioned system
AM−1Q is never available explicitly. More important, the preconditioning is varying. Instead
of GMRES with constant preconditioning, the flexible GMRES should be employed as Krylov
solver.

The flexible GMRES was first introduced in [25]. The procedure remains the same in the
construction of the orthonormal Krylov subspace as well as the solution of the least square
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problem. The difference lies in the Krylov subspace where the solution is spanned. At every
step, an additional vector is required to be stored

zj := M−1
j Qj vj , (3.15)

where vj is the j-th component in the Krylov basis for the system AM−1Q and zj is that
for the original matrix A. After the intermediate vector zj is saved, the Krylov iterate is
computed by

wj := Azj ,

and then wj is to be orthogonalized to the basis Vj−1. The reason why zj requires the
additional storage is that zj forms the actual Krylov basis where the solution to A is spanned.
The algorithm is given below.

Algorithm 4 Flexible GMRES with right preconditioning

1: Choose an initial guess x0

2: Compute r0 = b−Ax0, β = ‖r0‖2 and v1 := r0/β
3: for j = 1, 2, · · · until convergence do
4: Compute zj := M−1

j Qjvj
5: Compute wj := Avj
6: for i = 1, 2, · · · , j do
7: hij := (wj , vi)
8: wj := wj − hijvi
9: end for

10: hj+1,j := ‖wj‖2
11: if hj+1,j 6= 0 then
12: vj+1 := wj/hj+1,j

13: else
14: go to line 17
15: end if
16: end for
17: Set m = j
18: Build Zm = [z1, z2, · · · , zm] and H̄m = {hi,j}16i6m+1,16j6m
19: Find y =: arg miny ‖βe1 − H̄my‖2
20: Compute xm = x0 + Zmy as the resulting approximation.

The varying preconditioning For the time being, there are limited choices of Krylov
solver for varying preconditioning. Besides GMRES, generalized conjugate residual method
[26] and induced dimension reduction method [31] are the other Krylov solvers that can
cope with varying preconditioning. The main obstacle is the difficulty in integrating varying
preconditioning into the Krylov iteration.

3.3.2 Multilevel Krylov

Multilevel idea

The construction of deflation operator requires the inversion of a Galerkin matrix

Ê := Y T ÂZ = Y TAM−1Z

in the coarser grid. For a small scale problem, the matrix size is small and the inversion can be
computed exactly. However, in the large scale problem, the inversion has to be approximated
in an implicit way.
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In the right preconditioning step of Krylov method, the iterate can be written as

z :=M−1Qv

=M−1(I + ZÊ−1Y T (λnI − Â))v

=M−1(v + ZÊ−1vr),

where

vr :=Y T (λnI − Â)v = Y T (λnI −AM−1)v.

Denoting Ê−1vr by v′, now approximating the inversion amounts to solving the Galerkin
system

Êv′ = vr. (3.16)

Because Ê results from the Galerkin projection, it will inherit the unfavoured spectral
property from the matrix Â with whom Ê is associated. In order to accelerate the Krylov
convergence, the Galerkin system (3.16) is also preconditioned by the deflation operator. The
construction of Q for (3.16) requires the inversion of a smaller Galerkin matrix Y T ÊZ. If it is
sufficiently small, then (Y T ÊZ)−1 is computed exactly. Otherwise, it forms a new Galerkin
system which is again solved by Krylov method with deflation preconditioning.

The process will not stop until the Galerkin matrix in the nested deflation operator is
sufficiently small for an exact inversion. Such a recursive application of Krylov method forms
the multilevel Krylov method.

Approximate Galerkin projection

During the iteration, M−1 is always implicitly computed since it is approximated by the
multigrid method. So the preconditioned matrix Â is never explicitly available. By multiply-
ing Y T and Z, the consecutive projections onto the lower levels lead to a Galerkin matrix on
the k-th level

Êk := Y T
(k−1,k) · · ·Y T

(1,2) Â Z(1,2) · · ·Z(k−1,k).

Êk will be multiplied by the Krylov iterate during the iteration. After k − 1 matrix-vector
multiplications, the iterate vector will have to multiply the M−1 in the Â on the first level. So
the multigrid iteration for M−1 in the finest grid should be conducted in order to accomplish
the Krylov iteration on the k-th level. The system size on the k-th level is much smaller than
that on the first level. It is not economical to perform in this way.

In [9], an approximation of Ê is proposed so that the inversion can takes place on an M
of the same size that matches the k-th level. The approximation is based on the replacement
of M−1 with Z(Y TMZ)−1Y T , which leads to

Ê := Y T ÂZ = Y TAM−1Z ≈ Y TAZ︸ ︷︷ ︸
A(2)

(Y TMZ︸ ︷︷ ︸
M(2)

)−1 Y TZ︸ ︷︷ ︸
B(2)

.

Now, the formulation of Ê is conducive to the application of multilevel Krylov method. With
this approximation, the Galerkin system (3.16) is rewritten as

Â(2)v
′ = vr where Â(2) = A(2)M

−1
(2)B(2).

The solution v′ is approximated by the Krylov method. In order to accelerate the convergence,
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the Galerkin system Â(2) is again preconditioned by a deflation operator

Q(2) :=I + Z(2,3)Ê
−1
(3)Y

T
(2,3)(λnI − Â(2))

where Ê(3) :=Y T
(2,3)Â(2)Z(2,3)

≈Y T
(2,3)A(2)Z(2,3)︸ ︷︷ ︸

A(3)

(Y T
(2,3)M(2)Z(2,3)︸ ︷︷ ︸

M(3)

)−1 Y T
(2,3)Z(2,3)︸ ︷︷ ︸
B(3)

.

If Ê(3) is not sufficiently small for an exact inversion, then its inversion is approximated by
the Krylov method with preconditioning by Q(3).

In case of an m-level grid, the consecutive process will not stop until the Krylov iteration
has arrived the m − 1-th level, where the Ê(m) in Q(m−1) is sufficiently small for an exact
inversion on the m-th level. A detailed algorithm for the multilevel Krylov method is given
below.

Algorithm 5 Multilevel Krylov method with approximate Galerkin projection

1: Initialization Phrase
2: Construct A(k), M(k) and B(k).
3: Choose A(1) := A, M(1) := M and B(k) := I.
4: for k = 2, · · · ,m do
5: compute A(k) := Y T

(k−1,k)A(k−1)Z(k−1,k)

6: compute M(k) := Y T
(k−1,k)M(k−1)Z(k−1,k)

7: compute B(k) := Y T
(k−1,k)B(k−1)Z(k−1,k)

8: define Â(k) := A(k)M
−1
(k)B(k)

9: define Q(k) := I + Z(k,k+1)Â
−1
(k+1)Y

T
(k,k+1)(λnI − Â(k))

10: end for
11:

12: Iteration Phrase
13: Apply flexible GMRES to Â(k)Q(k) x(k) = b(k).

14: Compute vr := Y T
(k,k+1)(λnI − Â(k)) v(k), where M−1

(k) is approximated by the multigrid
iteration.

15: if k + 1 = m then
16: Invert Â(k+1) exactly by a direct method.

17: Set v′(k) := Â−1
(k+1)vr.

18: else
19: Set k = k + 1.
20: Set b(k) := vr. {The k is the result of the updating on line 19.}
21: Go to line 13.
22: end if
23: Compute w(k) := A(k)M

−1
(k)B(k) (v(k) − Z(k,k+1)v

′
(k)), where M−1

(k) is approximated by the
multigrid iteration.

24: The matrix-vector multiplication is completed and set of w(k)’s form the Krylov subspace.

25: The approximation x̃(k) is spanned by the Krylov subspace.
26: Set v′(k) = x̃(k).

Remark On the first level, the Krylov subspace Zm in the flexible GMRES spans the
solution to the original system Ax = b and the vector zj := M−1

j Qj vj is saved. On the k-th
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level for 2 6 k 6 m − 1, the Krylov subspace Zm contains the vectors zj := Qj(k) vj , which

span the solution to the Galerkin system A(k)M
−1
(k)B(k) v

′
(k) = vr(k).

3.3.3 MKMG

The multilevel Krylov method shares a similar idea with the multigrid method in simplifying
the computation difficulty. Both of them project the original problem from the finest grid to
the coarsest grid level by level so that an matrix in the coarsest grid will be inverted exactly
on the lowest level. Such an idea makes a connection between the two kinds of iteration in
the numerical implementation.

Due to the definition of the deflation subspace, Y and Z can be chosen arbitrarily provided
they are full rank matrices. So it is natural to consider the intergrid operators in the multigrid
method as the candidates for the deflation subspace[10]. In this case Â(k) and M̂(k) in the
multilevel Krylov method become the coarse grid operators.

Now both multilevel Krylov method and multigrid method shares the same M(k) in the
iteration. This implementation not only saves the storage but also reduces the computation.

Figure 3.3 demonstrates how the multilevel Krylov method collaborates with the multigrid
method. In order to simplify the drawing, the illustration shows the implementation where
only one iteration on each level is conducted for both methods. Generally, in practical
implementation, several iterations are conducted for each method.

In the illustration, the multilevel Krylov method, denoted by •, is conducted from level
1 to m − 1. On the m-th level, the Galerkin system is solved exactly by a direct method.
The multigrid method uses V -cycle, which can be replaced with any other type of iteration
cycle. The pre/post smoothing is denoted by ◦. On the j-th level the multigrid method
approximates the inversion of M(k) in a (m− j + 1)-level grid.

1

2

3

4

5

k-th iteration (k + 1)-th iteration◦ multigrid method
• multilevel Krylov method
� exact inversion of M(m)

� exact inversion of Â(m)

Figure 3.3: The illustration of multilevel Krylov multigrid method in a five-level grid

Due to the right preconditioning Â(k)Q(k), the multigrid methods on the left part of

the figure refer to the approximation of M−1
(k) for the construction of the deflation operator

Â(k)Q(k) (see line 14 in algorithm 5). Those on the right part approximate M−1
(k) for precon-

ditioning the Galerkin system Â(k)Q(k) = A(k)M
−1
(k)B(k)Q(k) (see line 23 in algorithm 5). In

case of the left preconditioning, the sequence is inverted.
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Fourier Analysis

In the iterative methods the spectrum of the operator matrix provides important information
of the convergence. For stationary iterative methods and the multigrid method, the spectral
radius of the operator matrices determines whether the method is convergent and how fast it
can converge. Besides that, the distribution of the whole spectrum is of great significance to
the convergence of Krylov subspace methods. So it is valuable to know the precise information
of the spectrum, which predicts the convergence behaviour of the adopted iterative method.

However, it is more difficult to solve the eigenvalue problem of a large matrix than the
system itself. The chances are that the eigenvalues of some particular problems can be
obtained in an analytical way. Because the operators in these problems consist of regular
components whose spectral properties are already known.

In the model Helmholtz problem on page 4 the main operators are linear transformations
of the discrete Laplacian operator ∆h. All of them share the same set of eigenvectors and
their eigenvalues can be easily obtained.

With the help of this basic knowledge, it now becomes feasible to apply the eigenvalue
analysis to the iterative methods for the Helmholtz problem. A powerful tool for the eigen-
value analysis is Fourier analysis which is able to find out the quantitative information of the
spectrum.

4.1 Principles of Fourier Analysis

In this section the theory of Fourier analysis will be introduced. The introduction is based
on the related content in [32].

4.1.1 Invariance Subspace

The fundamental idea of Fourier analysis is based on the fact that a certain space E is
invariant under the discrete operator K. With respect to the invariance space, the discrete
operator can be represented by a block diagonal matrix. The collection of the eigenvalues of
each block matrix are equivalent to the spectrum of the discrete operator.

Assume K is an n×n matrix and the invariance space E is spanned by the column vectors
of an n×m full rank matrix Φ = [φ1, φ2, · · · , φm]. The invariance can be demonstrated by

KE ⊂ E =⇒ K Φ = Φ K̃. (4.1)

The m×m matrix K̃ is called the representation.
The representation reveals the information of how the operator acts in the invariance

space. The vectors in E can be expressed as v = Φc where c is an m× 1 vector. The action
of K on v actually transforms c into c̃ by

K v = K Φc = ΦK̃ c = Φ c̃, where c̃ = K̃c.

33
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The effect of K on v is represented by K̃. More basically, K̃ measures the effect of K on c
in the space E. So the analysis on K̃ gives equivalent knowledge about the behaviour of K.

If a big space E is the union of several disjoint subspace El all of which are invariant
under K, then the action of K on E can be represented by a block diagonal matrix as

K :
∧
= [K̃ l] with l as the block index.

Each K̃ l corresponds to the representation of K with respect to each subspace El. The
analysis of the action of K on E is now the collection of the analysis on each K̃ l.

The size of each block matrix is equivalent to the dimension of the invariance space. So
it is important to keep the subspace small so that the analysis of each block representation
can be handled in an easy way, either theoretically or numerically.

In case the invariance subspace happens to be the eigenspace of the operator, then the
analysis is simplified since the block representation is diagonal. All the basic operators in the
following sections possess such a property.

4.1.2 Fourier Analysis for Multigrid Components

In this section the computation of the representation is conducted for each component in
the multigrid method. Without loss of generality, the smoother employs the weighted Jacobi
iteration while the restriction and prolongation operator are the full weighting operator and
linear interpolation respectively.

Assume the system size is (n− 1)× (n− 1) where n is an even number. The fine grid on
the first level is denoted by

Ωh := {xi = ih for i = 1, 2, · · · , n− 1},

where the amount of subintervals n is supposed to be an even integer. Similarly, the definition
of the coarse grid on the second level is given by

Ω2h := {xi = i2h for i = 1, 2, · · · , n
2
− 1}.

The two-grid iteration operator is given by

T 2
1 = Sν21 K2

1 S
ν1
1 with K2

1 = I − P 1
2M

−1
2 R2

1M1. (4.2)

Here, K2
1 is the coarse grid correction operator. S1 is the fine grid smoothing operator with

the pre- and post- smoothing steps ν1 and ν2. R2
1 is the restriction operator and P 1

2 is the
prolongation operator. M is the shifted Laplacian preconditioner

Mh = −∆h − (β1 + ιβ2)k2I.

Space of harmonics In the 1D Helmholtz problem a two-dimensional space of harmonics
is chosen as the invariance space

Elh :=

{
span{ϕlh, ϕn−lh } for l = 1, 2, · · · , n2 − 1;

span{ϕlh} for l = n
2 .

The space basis ϕlh is the eigenvector of the discrete Laplacian −∆h on the fine grid Ωh. Each
pair of the bases [ϕlh, ϕ

n−l
h ] coincides in the coarse grid Ω2h, which means

ϕl2h = ϕlh = −ϕn−lh on Ω2h.



4.1. Principles of Fourier Analysis 35

Invariance under M As M is the shifted Laplacian, ϕlh is also the eigenvector of M and
the invariance property follows as

M : Elh → Elh for l = 1, 2, · · · , n
2
− 1,

which leads to the diagonalized representations

M̃ l
1 :=

[
4
h2

sin2(lhπ/2)− (β1 + ιβ2)k2 0
0 4

h2
cos2(lhπ/2)− (β1 + ιβ2)k2

]
For l = n/2, the invariance holds with respect to E

n/2
h = span{ϕn/2h } and the above repre-

sentation degenerates into a 1× 1 matrix

M̃
n/2
1 :=

2

h2
− (β1 + ιβ2)k2. (4.3)

Because M2 is inverted exactly on the coarse grid. The representation of M2 with respect to
El2 is just a single eigenvalue of M2 as

M̃ l
2 :=

4

(2h)2
sin2(l2hπ/2)− (β1 + ιβ2)k2

On the coarse grid El2h is invariant under M−1
2 and its representation is given by

M̃−1
2

l
:=

(
4

H2
sin2(lHπ/2)− (β1 + ιβ2)k2

)
where H = 2h. (4.4)

Representation of the Smoother Using Jacobi iteration the smoothing operator is given
by

S = (1− ω)I + ω(I −D−1M).

The subspace El1 is also invariant under S with the representation

S̃l1 :=

[
(1− ω) + ω 2 cos(lhπ)

2−(β1+ιβ2)h2k2
0

0 (1− ω)− ω 2 cos(lhπ)
2−(β1+ιβ2)h2k2

]
(4.5)

Intergrid operators R2
1 and P 1

2 , as the intergrid operators in multigrid method, do not
possess the invariance property but have the following mapping relation which bridges be-
tween the fine and coarse grids. For l = 1, 2, · · · , n/2− 1, there is

R2
1 : Elh → span{ϕl2h},

P 1
2 : span{ϕl2h} → Elh.

The representations of R2
1 with respect to El2h is given by

R̃2
1
l

:= [cos2(lhπ/2),− sin2(lhπ/2)]. (4.6)

Similarly, the representation of P 1
2 with respect to Elh is given by

P̃ 1
2
l

:=

[
cos2(lhπ/2)
− sin2(lhπ/2)

]
. (4.7)

For l = n/2, no representation of R2
1 and P 1

2 exists. The n/2-th mode does not exist on

Ω2h and the restriction from Ωh to Ω2h can only lead to a trivial result R2
1ϕ

n/2
l = 0. The

prolongation from Ω2h to Ωh cannot excite the n/2-th mode, either.
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4.1.3 Two-grid Analysis

The representation of the two-grid iteration operator T̃ 2
1 can be obtained by substituting the

representations (4.3),(4.4),(4.5),(4.6) and (4.7) into equation (4.2). For l = 1, 2, · · · , n/2− 1,
there is

T̃ 2
1 := S̃ν21 K̃2

1 S̃
ν1
1 with K̃2

1 := (I − P̃ 1
2 M̃

−1
2 R̃2

1M̃1). (4.8)

The intact mode The mode n/2 is excluded by the coarse grid correction and M̃−1
2

n/2

does not exist on Ω2h. The computation of K̃n/2 is validated by direct multiplication without

the presence of M̃−1
2

n/2
as

ϕ
n/2
h K̃n/2 :=(1− P 1

2R
2
1M1)ϕ

n/2
h

=ϕ
n/2
h − P 1

2R
2
1ϕ

n/2
h M̃

n/2
1

=ϕ
n/2
h

The last equality follows the fact that R2
1ϕ

n/2
h = 0. So the result is K̃n/2 = 1 with respect

to the subspace En/2 = span{ϕn/2h }. The n/2-th component is kept intact under the coarse
grid operator. So the representation of the two-grid iteration operator for the n/2-th mode
is

T̃ 2
1 := S̃ν21 S̃ν11 . (4.9)

The equation (4.9) presents the fact that the two-grid iteration operator has no coarse grid
correction effect on the n/2-th mode but only the smoothing effect. The n/2-th error com-
ponent is only smoothed but not corrected on a coarser grid.

The above interpretation can be easily validated by the numerical experimentation. The

calculation of |K2
1 , ϕ

n/2
h − ϕn/2h | only shows machine error.

4.1.4 Multigrid Analysis

On a three-level grid, the coarse grid operator M2 on the second level is not inverted exactly
but the exact inversion M−1

2 is replaced by another two-grid approximation

(I − T 3
2 )M−1

2 ,

where T 3
2 is the two-grid iteration operator between Ω2h and Ω4h. M3 is inverted exactly in

T 3
2 the coarse grid operator on the third level.

The three-grid analysis can be extended to an m-grid analysis by using the recursive
expression. Including the smoothing operator, the multigrid iteration operator Tm1 is given
by

T̃mk = S̃ν2k (I − P̃ kk+1 (I − T̃mk+1)M̃−1
k+1 R̃

k+1
k M̃k)S̃

ν1
k withT̃mm = 0, (4.10)

for k = 1, 2, · · · ,m− 1.

The above expression cannot cover all the modes in the finest grid on the first level.
Because on every level except the coarsest one, there is always one intact mode that is not
included in the coarse grid correction. On the k-th level the n/2k-th mode is the intact
mode. It is not activated by the components in the coarser grid on the (k + 1)-th level but
this mode should be existent to activate the corresponding two modes in the finer grid on
the (k − 1)-th level and then their following modes. For the n/2k-th mode on the k-th level,
the approximation to the inversion M−1

k is given without the presence of Tmk+1 by

(I − Sν2k Sν1k )M−1
k .
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Then, the recursive computation of the representations excited by the n/2k-th mode on the
k-th level can be given by

T̃mi = S̃ν2i (I − P̃ ii+1 (I − T̃mi+1)M̃−1
i+1 R̃

i+1
i M̃i)S̃

ν1
i with T̃mk = Sν2k S

ν1
k ,

for i = 1, · · · , k − 1. In the finest grid on the first level there will be 2k−1 representations
resulted from the n/2k-mode on the k-th grid.

In an m-grid analysis every mode in the coarsest grid on the m-the level will finally
activate 2m−1 modes in the finest grid on the first level. The resulting representation T̃ then
contains (n/2m−1 − 1) blocks matrices whose sizes are all 2m−1 × 2m−1. Besides that, due to
the intact mode, there will be (m− 1) block matrices whose size are respectively 2k−1× 2k−1

for k = 1, · · · ,m− 1.

4.1.5 The Application to Preconditioning

Both the shifted Laplacian preconditioner and deflation preconditioner are made of the multi-
grid components. So the spectral properties of the preconditioning can be investigated by
computing the representations of each preconditioner. The representation of the shifted
Laplacian preconditioner is given by

˜̂
A = ÃM̃−1

and that of the deflation operator is given by

Q̃ = I − P̃ 1
2

˜̂
E2R̃

1
2(λnI − ˜̂

A) with
˜̂
E2 = R̃2

1
˜̂
AP̃ 1

2

Without Fourier analysis, the eigenvalues have to be computed by using the Matlab
built-in function eig. In this case, the computation takes place on the entire matrix. In
Fourier analysis, the eig computation is just applied to the very small representation matrices.
The advantage of Fourier analysis over the direct application of eig can be concluded in three
aspects.

Computation time It is obvious that the Fourier analysis method is much cheaper, as
demonstrated in Figure 4.1. Directly using eig, the computation time increases largely as the
increase in wavenumber raises the system size. In contrast, Fourier analysis just has a tiny
increment in the computation time.
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Figure 4.1: Comparison of the CPU time for the eigenvalue computation of AM−1Q.
The wavenumber k varies from 10 to 200.
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Memory requirement In order to apply eig in Matlab, the matrix should be stored as a
full matrix. The increase in system size will have a heavy demand on memory. The memory
limit will prevent studying the large problem. But Fourier analysis only requires the storage
of the very small block matrices, which is much less demanding. So Fourier analysis extends
the research to the large problem of high wavenumber and fine wave resolution, especially in
2D and 3D cases.

Accuracy The computation accuracy of Fourier analysis will not decrease as the system size
goes up while the eig method has to suffer from the decreasing accuracy1. As the system size
increases, the size of Fourier representation keeps the same except that the amount of these
small block matrices increases. So the accuracy of computing every block matrix is unchanged.
However, the accuracy of directly using eig will decrease. Because the computation is applied
to the entire matrix whose size is increasing.

4.2 Analysis of the Preconditioning

The application of Fourier analysis makes it more convenient to investigate the spectral
properties of the preconditioned system, especially when the wavenumber is very large.

The spectrum study starts from the case where all the inversions are computed in an
exact way. Without special mention, the analysis is applied to the Helmholtz problem of
k = 100. The wave resolution that denotes the amount of subintervals per wavelength is set
as gw = 30. The default shift is 1 + 1ι and the eigenvalues are deflated towards one. These
parameters will change respectively in accordance to the research interest.

4.2.1 The Preconditioning Effect

Figure 4.2 demonstrates the effect of shifted Laplacian preconditioner with respect to var-
ious wavenumbers. The preconditioning has greatly reduced the high indefiniteness of the
unpreconditioned system. The spectrum is now restricted to a unit circle. Preferably, the
eigenvalues are more densely clustered around (1, 0) and (0.5, 0.5) than around the origin
(0, 0), which can effectively accelerate the Krylov convergence.
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Figure 4.2: The spectrum distributions of the preconditioned system AM−1

However, it is also clear that the increase in wavenumber will raise the amount of small
eigenvalues close to zero. This unfavourable property will slow down the Krylov convergence
in the case of a high wavenumber. The deflation technique is employed to remedy this defect,
as shown in Figure 4.3. All the eigenvalues have been deflated to a very small and slim region.
In fact, they are now located on a short arc of the unit circle. The spectral properties of the
deflated system become favourable to the Krylov convergence.

1It is difficult to present a demonstration in this aspect. Because the eigenvalues of AM−1 and AM−1Q
are complex and cannot be sorted in an ordered sequence. So the comparison of the results by two methods
cannot be made
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Figure 4.3: The spectrum distributions of the deflation preconditioned system AM−1Q

4.2.2 The Choice of the Shift

The shift β1 + ιβ2 plays a decisive role in the shifted Laplacian preconditioner M . It is
self-evident that β1 cannot be chosen larger than one. Otherwise, the preconditioner would
be even more indefinite than the original Helmholtz equation. On the other hand, if β2

is chosen smaller than one or even negative, it will weaken the preconditioning effect for
Krylov convergence since the preconditioner M becomes deviated from the original Helmholtz
equation A. Generally, β1 = 1 is a suitable choice, which makes the β2 responsible for reducing
the indefiniteness.

Figure 4.4 shows the spectrum distributions due to different β2. The magnitude of β2

determines the length of the arc on which the eigenvalues are located. A large magnitude β2

will not only locate the eigenvalues on a shorter arc but also have more eigenvalues clustered
around the origin. A smaller magnitude β2 can locate fewer eigenvalues around the origin.
Since the preconditioner of smaller β2 is closer to the original matrix A, the product AM−1

is closer to the identity I, which results in more eigenvalues around one.
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Figure 4.4: The influence of β2 on the preconditioned system AM−1

Figure 4.5 shows the influence of β2 on the deflation preconditioned system AM−1Q. A
smaller β2 leads to a more tightly clustered distribution around (1, 0). It can be concluded
that a smaller β2 is more favourable for the Krylov convergence of both AM−1 and AM−1Q.
However, on the other side, a smaller β2 makes the preconditioner M more similar to the
original matrix A, which leads to a harder solution of the inversion M−1.

It can be shown that the sign of β2 only determines the sign of eigenvalues but has no
influence on the spectral properties. Since A is real and M(β2) = M (−β2), the following
relation holds

AM−1
(−β2) = ĀM̄−1

(β2) = AM
−1
(β2),

which is followed by the eigenvalue equality

λ(AM−1
(−β2)) = λ(AM−1

(β2)).

So both β2 and −β2 result in the eigenvalues of the same modulus and therefore the same
preconditioning effect.
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Figure 4.5: The influence of β2 on the deflation preconditioned system AM−1Q

4.2.3 The Influence of Wave Resolution

The system size is determined by both the wavenumber and the wave resolution gw. The
influence of the wave resolution on the spectrum distribution is shown in Figure 4.6. It is
preferable that the amount of the small eigenvalues close to the origin is not raised by the
increase in the wave resolution. Then, the Krylov convergence will not be slowed down when
the wave is better resolved.
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Figure 4.6: The influence of wave resolution gw on the preconditioned system AM−1 when
k = 50

For the deflation preconditioned system AM−1Q, the increase in wave resolution will make
the spectrum distribution more tightly clustered around (1, 0), except for the small system
of gw = 10. If the Krylov solver is applied to AM−1Q, the convergence will not be slowed
down but be accelerated. The system AM−1Q contains only favourable eigenvalues around
(1, 0), the convergence will not suffer from the negative influence of the small eigenvalues
around the origin. In a large system due to the increase in wave resolution, there are more
favourable eigenvalues which will make convergence more rapidly.
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Figure 4.7: The influence of wave resolution gw on the deflation preconditioned system
AMQ−1 when k = 50.
Please notice the axis scaling of the first subplot is different from others.
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4.2.4 Different influence of k and gw

The system size will be raised by the increase in either wavenumber k or wave resolution gw.
However, the two variables have distinct behaviour in the eigenvalue computation of AM−1,
which is given by

λl(AM
−1) =

1
h2

4 sin2(lπh/2)− k2

1
h2

4 sin2(lπh/2)− k2(β1 + ιβ2)
.

Using the relation h = 2π
k /gw = 2π

k·gw , the above formula is transformed into

λl(AM
−1) =

(
gw
π sin( lπ2

k·gw )
)2
− 1(

gw
π sin( lπ2

k·gw )
)2
− (β1 + ιβ2)

.

Denoting gw
π sin( lπ2

k·gw ) by x(l), the eigenvalue computation can be decomposed into to two
parts

x(l) =
gw

π
sin(

lπ2

k · gw ) and f(x) = |λl| =
∣∣∣∣ x2 − 1

x2 − (β1 + ιβ2)

∣∣∣∣ .
In case of a fixed gw and an increasing k, the range2 of function x(l) keeps the same. The

increasing system size n leads to more discrete values within this range. When k is fixed and
gw is increasing, the range of x(l) is amplified by the gw/π in front of the sin(· · · ). Although
the amount of discrete values also increases, it is much less crowded in the range than the case
of enlarged k with unchanged gw. Within a specific small range, the increase in gw slightly
changes the amount of discrete values but the increase in k will largely raise the amount of
discrete values, as shown in the left plot of Figure 4.8.
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Figure 4.8: The mechanism of the eigenvalue computation of AM−1

Such a mechanism has a significant influence on the final result, as shown in the right
plot of Figure 4.8. Only small value x (but not too small) results in small f(x). For a large
k, more small x(l)’s result in more value f(x)’s, which is the modulus of the eigenvalue. For
a large gw, the amount of small x(l)’s is not raised and thus the amount of small f(x)’s
maintains the same.

4.2.5 A Variant of the Deflation Operator

A variant of deflation operator was proposed in [28]. The difference lies in the Galerkin
matrix. In terms of left preconditioning, the deflation operator of the variant version is

2The range is the interval [ min
16l6n

{x(l)}, max
16l6n

{x(l)}]
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defined by
PD := I − ZE−1Y TA where E := Y TAZ.

Here, the Galerkin matrix is associated with the original matrix A rather than the precondi-
tioned system M−1A. Then, the deflation preconditioned system is given by

PDM
−1Au = PDM

−1 b.

Figure 4.9 shows the spectrum distribution of PDM
−1A. It is apparent that the result is

different from using the original deflation operator in [10]. The eigenvalues are not tightly
clustered and there are some small eigenvalues around the origin. Because the deflation does
not involve the effect of shifted Laplacian preconditioner, the increase in k leads to more
eigenvalues which are loosely located away from the point (1, 0).
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Figure 4.9: The spectrum distributions of the deflation preconditioned system PDM
−1A.

Please notice the different axis scaling in x and y directions.

4.3 The Approximation in MKMG

In the multilevel Krylov multigrid method, the matrices on different levels are obtained by
Galerkin projection. According to the definition of the deflation operator, Galerkin projection
should be consecutively applied to the entire preconditioned system, which is denoted by

(AM−1)(k) := R(k−1,k)(AM
−1)(k−1)P(k−1,k)

on the k-th level. But in the practical implementation, the Galerkin matrix is replaced by
an approximation A(k)M

−1
(k)B(k), in which the Galerkin projection is applied respectively to

each matrix as
X(k) := R(k−1,k)X(k−1)P(k−1,k) where X is A,M,B.

Figure 4.10 shows that the approximation replacement is suitable.
The first column shows the spectrum distribution of the theoretically constructed system

(AM−1)(k). The second column shows that of the practically constructed systemA(k)M
−1
(k)B(k).

For the sake of comparison, the preconditioned system AkM
−1
k is also presented, where both

Ak and Mk are obtained by direct discretization on the k-th level.
The comparison has validated the replacement of (AM−1)(k) by A(k)M

−1
(k)B(k). The sim-

ilar spectrum distribution guarantees that the approximation replacement will have almost
the same convergence behaviour as the theoretical construction. The only small difference
between the first and second columns does not lie somewhere away from the origin, which
can avoid the amplification of any small inaccuracy around zero.

It is natural to think about replacing (AM−1)(k) with AkM
−1
k because the direction

discretization operators Ak and Mk require no matrix multiplication and then can save the
computational cost. However, as shown in the third column, the spectrum distribution of
AkM

−1
k is very different from the other two, which implies there would not be high similarity

between (AM−1)(k) and AkM
−1
k .
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Figure 4.10: The influence of different approximations on the spectrum distribution in a four-
level grid

4.4 Multigrid Analysis

In the practical implementation, the iteration is conducted in a multilevel grid. Only the
matrix on the lowest level is inverted exactly and the inversions on the higher levels are
approximated. In order to investigate the approximation M−1 by multigrid method, Fourier
analysis is now applied to the multilevel grid.

4.4.1 Approximated Spectrum

Approximated Shifted Laplacian Preconditioning

The shifted Laplacian preconditioner is intended to improve the spectrum distribution of the
discrete Helmholtz equation by moving the eigenvalues to a small region located between 0
and 1 on the real axis. So the effect of the approximation by the multigrid method is reflected
by the spectrum distribution of the approximated preconditioned system. Provided that the
approximated spectrum distribution is close to the exact one, it is of little concern whether
the error in the iteration of solving M−1 has been reduced to a certain tolerance.

According to the previous explanation, the coarse grid correction introduces perturbation
to the linear system. The perturbation is enhanced by employing more coarse grids. Such
a perturbation growth is now demonstrated by the plots in Figure 4.11, where the spectrum
distribution is plotted for the approximately preconditioned system (I − Tm1 )M−1A with
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m = 1, 2, 3, 4. The one-grid analysis is just the exactly preconditioned system M−1A since
the inversion is computed exactly in the sole grid.

It is obviously seen that the approximation in a multigrid introduces larger deviation from
the exact preconditioning. The spectrum distribution of the exact preconditioning is circular
and connected while the circular shape of the approximated ones are slightly distorted and
split somewhere. However, all deviations are widely acceptable since all the approximated
spectra are still bounded by the same square region that bounds the exact one. In terms of
improving the spectral property, even the four-grid approximation has successful reached the
desirable effect.

Remark It is worth noticing that the deviation mainly appears around the point (1, 0).
There is no severe distortion of splitting around the origin. So the approximation inaccuracy
would not be amplified due to some very small value around zero.
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Figure 4.11: The influence of grid levels on the spectrum of the approximated system AM−1

after one step iteration

For the multi-grid approximation, the deviation of spectrum distribution can be easily
reduced by using more iteration steps, as shown in Figure 4.12. The plots are the spectrum
distribution of (I−(T 4

1 )k)M−1A with k = 1, 2, 3, 4. Comparing the plots of different steps, the
observation tells that two or three iteration steps are enough to obtain a well-approximated
result and using four iteration steps almost yields the same distribution as the exact one.
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Figure 4.12: The influence of iteration steps on the spectrum of the approximated system
AM−1 in a four-level grid

These two figures substantiates the application of multigrid method as a solver for the
shifted Laplacian preconditioner. A good approximation can be cheaply obtained by using
just several multi-grid iterations. The exact inversion can be done in a fairly coarse grid,
which makes the solution much easier.

Approximated Deflation Preconditioning

The construction of the deflation operator is based on the preconditioned system AM−1.
When the AM−1 is approximated, then the deflation will also be effected even if the inversion
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in the deflation operator is computed exactly. Figure 4.13 shows the spectrum distribution
of the approximated system

AM−1Q = AM−1
(
I + PÊ−1R(λnI −AM−1)

)
where Ê = R(AM−1)P.

Here, all the AM−1’s are approximated by the multigrid method, which means the Galerkin
matrix Ê is associated with an approximated preconditioned matrix. The result shows that
one iteration multigrid method is not enough to approximate the deflation preconditioning.
The eigenvalues are not tightly clustered. But one more iteration can greatly improve the
distribution to a tight clustering. However, even four iterations can not leads to a distribution
that is visibly identical to the theoretical one. It is more difficult to approximate the deflation
preconditioning AM−1Q than the sole preconditioning AM−1.
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Figure 4.13: The influence of iteration steps on the spectrum of the approximated system
AM−1Q in a four-level grid

4.4.2 The Influence of the Shift on the Multigrid Convergence

The performance of the shifted Laplacian preconditioner is determined by its shift. For
the multigrid method, the different choice of the shift has an important influence on the
convergence factor of the iteration process. Figure 4.14 contains a set of four contour plots,
which shows the magnitude of the convergence factor in a four-grid iteration with respect to
β1 and β2. The darkest region in the plot refers to the choices that make the convergence
factors larger than one, which leads to a divergence. A brighter region corresponds to the
choices that results in a faster convergence.

Some useful observation can be obtained from the figure. Concerning the convergence
behaviour, it is beneficial to choose a shift with a large imaginary part. The convergence
factor decreases rapidly along the imaginary axis from zero in both positive and negative
directions. The choice β1 + ιβ2 = 1+ ι0 is nothing but the discrete Helmholtz equation whose
high indefiniteness fails the application of multigrid method. The darkest region indicates that
the original Helmholtz equation is positively shifted and therefore the indefiniteness is being
increased. So in order to guarantee a convergence, it is reasonable to have an imaginary shift
and keep the real part unchanged, which refers to 1 + ιβ2. Besides that the convergence can
be achieved by a shift of negative real part. But such a shift will deviate the preconditioner
further away from the original matrix, which is not favoured by the Krylov convergence.

The set of plots reveals two properties that can simplify the research work. The symmetry
of the plot shows the convergence factor is not related to the sign of the imaginary part.
Furthermore, the wavenumber has no effect on the convergence factor.

However, the wave resolution has a significant influence on the convergence factor. As the
wave resolution increase, it becomes easier to achieve the convergence. The darkest regions
will reduce. And even a small shift in the imaginary part can lead to a very satisfactory
convergence.
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Figure 4.14: Contour plot of the convergence factor ρ4
1 of the multigrid method

The Independence of the Sign of β2

The contour of the convergence factor reveals the fact that the convergence factor is indepen-
dent of the sign of β2. Both β2 and −β2 result in the same convergence factor. This property
can be explained by investigating the conjugate relation.

Proof of the β2 sign independence. In the Helmholtz problem with Dirichlet boundary con-
dition, the shifted Laplacian preconditioner results from shifting a real value matrix A by a
complex value β1 + ιβ2. If A is shifted by β1 − ιβ2, then the conjugate relation holds

M (β1+ιβ2) = M(β1−ιβ2), (4.11)

Here, the notation denotes the conjugation.

In the two-grid method, where the inversion is exact, the iteration operator reads

T 2
1 = Sν2

1 (I − P 1
2M

−1
2 R2

1M1)Sν1
1 .

With the fact that both P and R are real, the conjugation of T 2
1 is given by

T 2
1 = S

ν2
1 (I − P 1

2M
−1
2 R2

1M1)S
ν1
1 . (4.12)
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Using ω-Jacobi iteration, the smoothing operator S is given by

S = (1− ω)I + ω(I − 1

d
M) with d = 2− (β1 + ιβ2)h2k2,

which leads to the relation
S = (1− ω)I + ω(I −M/d).

Then, a relation similar to (4.11) holds

S(β1+ιβ2) = S(β1−ιβ2). (4.13)

Hence, substitution of (4.11) and (4.13) into (4.12) reveals the following relation

T 2
1 (β1+ιβ2) = T 2

1 (β1−ιβ2). (4.14)

In the m-level multigrid method, the iteration operator on the k-th level is given by

Tmk = Sν2
k (I − P kk+1(I − Tmk+1)M−1

k+1R
k+1
k Mk)S

ν1
k for 1 6 k 6 m− 1.

The conjugate relation can be easily proved by induction. The base case in the induction
proof is already presented in equation (4.14). So the generalized conjugate relation is given
by

T (β1+ιβ2) = T(β1−ιβ2). (4.15)

For any matrix A, the relations between the eigenvalues of A and A are given by

λ(A) = λ(A) and |λ(A)| = |λ(A)|.

Together with (4.15), the final relation holds

λ(T(β1+ιβ2)) = λ(T (β1+ιβ2)) = λ(T(β1−ιβ2))

=⇒ |λ(T(β1+ιβ2))| = |λ(T (β1+ιβ2))| = |λ(T(β1−ιβ2))|. (4.16)

The convergence factor is measured by the absolute value or the modulus. So the relation
(4.16) well explains the independence of the sign of β2. Using a β2 of an opposite sign
amounts to using the conjugate M , which leads to a conjugate iteration operator. The
resulting eigenvalues are the conjugates but have the same modulus.

k-independence

The observation of k-independence can be explained by the fact that k never acts alone in
the representations of the multigrid iteration operator Tm1 . It always appears together with
h in the product of h2k2. In case of a fixed wave resolution, the value of h2k2 = (2π/gw)2 is
confined to a constant. So the representations are independent of the change in k but only
responds to the change in the wave resolution.

The smoothing factor in the iteration operator is given by

µ = (1− ω) +
2ω cos(lπh)

2− (β1 + ιβ2)h2k2
. (4.17)

In the two-grid correction operator the inversion on the coarse grid is computed exactly so
Ã−1

2 is a scalar. It then follows

K̃ = Ĩ − P̃ 1
2 Ã
−1
2 R̃2

1Ã1 = Ĩ − P̃ 1
2 R̃

2
1Ã
−1
2 Ã1 where

Ã−1
2︸︷︷︸

scalar

Ã1 =

4 sin2(lπh/2)−(β1+ιβ2)h2k2

sin2(lπh)−(β1+ιβ2)h2k2
0

0 4 cos2(lπh/2)−(β1+ιβ2)h2k2

sin2(lπh)−(β1+ιβ2)h2k2

 (4.18)
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In both (4.17) and (4.18), k also implicitly appears in the discrete value sin(· · · ) and
cos(· · · ) since h is determined by the wave resolution together with k. However, k plays
an almost trivial role in sin(· · · ) and cos(· · · ). In terms of a continuous viewpoint, sin(· · · )
is equivalent to sin(x) where x varies from 0 to π. So there is little influence of k on the
computation of sin(· · · ) and cos(· · · ).

The conclusion on a two-level grid can be extended to the multigrid by induction. Thus, it
has proved that the representation of the iteration operator is not related to the wavenumber
k.

4.4.3 Optimal Shift for the Preconditioner

The construction of the preconditioner M is based on the original matrix A by shifting.
The magnitude of the shift determines how far away the preconditioner is deviated from the
original highly indefinite matrix. On this viewpoint a larger shift is favoured by the multigrid
method for solving the inversion M−1. However, Krylov subspace method is main solver of
Helmholtz problem. The Krylov convergence will benefit from a preconditioner close to the
original matrix, which means a smaller shift. Otherwise, the preconditioning for the Krylov
solver becomes less useful.

Now the choice of the best shift is placed in a dilemma. In order to have the solution
converge, a suitable shift should not only guarantee the convergence of the multigrid method
but also be kept as small as possible. The convergence factor of the multigrid method is given
by

G(l, β1, β2) := ρ(T ) = max
16l6n−1

|λl(T )|. (4.19)

Thus, the optimal shift is defined as

(β1 + ιβ2)opt := arg min{|β1 + ιβ2| : max
16l6n−1

G(l, β1, β2) 6 1}. (4.20)

In order to secure the convergence, it is sensible to reduce the convergence rate to a constant
slightly smaller than one as

(β1 + ιβ2)opt := arg min{|β1 + ιβ2| : max
16l6n−1

G(l, β1, β2) 6 c < 1}. (4.21)

There will be some negative effect on the Krylov convergence but it is small.

Generally, the real part of the shift is set as β1 = 1. So the problem is reduced to finding
out the smallest β2 that can guarantee the multigrid convergence, namely the optimal β2.
As explained in section 4.4.2, the choice of the optimal β2 should be independent of the
wavenumber.

Theoretically, the analytical expression of G is a function of β1 and β2. But the derivation
is not possible in a practical way due to the arithmetic complication, especially in the case
of the multi-level grid analysis. So the optimal shift has to be found out by the numerical
calculation.

Figure 4.15 shows the behaviour of convergence factor with respect to β2. As a function
of β2, the convergence factor is monotonically decreasing. Besides that the increase in wave
resolution will accelerate the convergence.

The result of the optimal β2 is shown in Table 4.1. The optimal β2 is largely influenced
by the amount of levels. As more levels are used, it becomes less easy to converge and thus
the optimal β2 should be larger. It is preferable to see that the increase in wave resolution
can greatly reduce the requirement on β2 for convergence.

When the wave is extremely well resolved, the iteration already converges without the help
of the imaginary shift. The shifted Laplacian preconditioner of (β1, β2) = (1, 0) is identical
to the original matrix A. Although it is convergence to solver the inversion M−1, i.e. A−1,
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Figure 4.15: The convergence factor for the m-level multigrid method when β1 = 1

gw = 10 gw = 30 gw = 60 gw = 120 gw = 240

m = 2 0.1096 0.0126 0 0 0
m = 3 0.3228 0.0616 0.0150 0 0
m = 4 0.3931 0.2002 0.0632 0.0155 0
m = 5 0.3931 0.2886 0.2012 0.0636 0.0156

Table 4.1: The optimal β2 in the shift1 + ιβ2 for ρ(Tm1 ) 6 c = 0.9

it is impossible to solve the Helmholtz problem Ax = b by multigrid method. Because the
convergence factor is just a little smaller than one, which is far from sufficient as a solver.
Secondly, the high wave resolution requires an impractically large memory storage.

4.5 A Newly Proposed Preconditioner

Recently, there is a new proposal for preconditioning the original matrix A. The new pre-
conditioner is chosen as M = A∗A. In case of Dirichlet boundary condition, the matrix A is
real and symmetric. The preconditioned matrix is given by

Â := AM−1 = A(A∗A)−1 = A−1.

The preconditioning actually has inverted the matrix A. The magnitude of λ(A) is very large
so the magnitude of λ(A−1) is very small and close to zero.

In the numerical computation the inversion of M is approximated by the ω-Jacobi itera-
tion. The approximated inversion is given by

M−1 := (I − Jω)M−1

where
Jω = (1− ω)I + ω(I −D−1M) with D := diag(diag(M)). (4.22)

So the approximated preconditioned matrix is AM−1.
The eigenvalues of the preconditioned system are shown in Figure 4.16. All the eigenvalues

are real. Although the two plots do not look similar, the axis scaling accounts for the
difference. The inversion M−1 is approximated by one ω-Jacobi iteration. The approximation
has a good match for most eigenvalues that are almost zero. But it loses the information of
those eigenvalues whose modulus is relatively large.

The deflation preconditioning effect is shown in Figure 4.17. All the eigenvalues λ(AM−1)
are deflated towards 1. Some of the resulting eigenvalues around 1 contain a very small
imaginary part. Others cluster at the origin.
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Figure 4.16: The eigenvalues of the preconditioned system AM−1 in a sorted sequence
when k = 100 and gw = 30. Please notice the different axis scaling in y direction.
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Figure 4.17: The spectrum distribution of the deflation preconditioned system AM−1Q
when k = 100 and gw = 30. Please notice the different axis scaling in y direction.

4.5.1 The failure of Rigorous Fourier Analysis

The eigenvalue analysis of the approximated inversion M−1 cannot be implemented by the
rigorous Fourier analysis. Because it fails to find out an invariant subspace for the ω-Jacobi
iteration operator.

Due to the definition of M , the elements of the diagonal matrix D in (4.22) are not
uniform. The element D(1, 1) and D(n, n) are identical to each other but different from
other elements. So D cannot be treated as an identity matrix multiplied by a constant,
as what happens in the shifted Laplacian preconditioner. Thus, D and M have different
invariant subspaces. The application of the rigorous Fourier analysis has to stop in the
ω-Jacobi operator.

In this case the local Fourier analysis can be used to tackle the problem. The two different
end-elements will be considered as the boundaries; so they are ignored. The subspace will be
invariant under the interior part of the operator.



Chapter 5

Numerical Experiments

In this chapter a series of numerical experiments is performed to attempt the Helmholtz
problem. The observation reveals the effect of the preconditioning techniques as well as the
intrinsic properties of the iteration solvers. In addition to that the numerical result gives
validation to the analytical result by Fourier analysis in the previous chapter.

In order to keep consistent and make the results comparable, a unique one-dimensional
Helmholtz equation is being computed for all experiments. The wave number is real and
keeps constant throughout all the domain. The homogeneous Dirichlet boundary conditions
are imposed on two end-points. A point source term is placed where it is close to the left
boundary1. Mathematically, the model problem is given by

−∆u(x)− k2u(x) = f(x) in Ω = (0, 1),

f(x) = δ(x− 0.1),

u(0) = u(1) = 0.

(5.1)

The continuous differential equation is discretized with a second-order finite difference
method on a uniform grid. Without additional statement, the zero vector is used as the
initial guess for all the iteration processes. And the tolerance ‖rm‖2/‖r0‖2 < 10−6 is set as
the convergence criterion, which is the same as the default tolerance of the built-in Krylov
solvers in Matlab.

This model problem is proposed for studying the convergence behaviour of the iterative
methods. Its physical meaning is of little concern. All the work that has been done is intended
for the mathematical research though it is based on a physical model. In this point of view
some computations are contributed to very high wavenumber. The wavenumber might be
unphysically high but these computations complete the mathematical rigorousness.

5.1 Basic Convergence Behaviour

5.1.1 Overview

An overview of the convergence behaviour is obtained by solving the Helmholtz problem
in three respective situations, namely A with no preconditioning, the sole preconditioning
AM−1 and the deflation preconditioning AM−1Q. In order to give a complete insight about
the behaviour, the total number of iterations is set as the matrix size. The result is shown
in Figure 5.1 by three iteration-residual curves.

This Helmholtz problem is of a moderate wavenumber; so the result is representative and
the observation can be generalized. The unpreconditioned system leads to an extremely poor

1A source term closer to the boundary leads to a slower convergence. Such an unfavourable convergence
property actually brings some convenience to the research work. Because the convergence behaviour of different
methods would not be very close to each other, which makes the observation easier.
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Figure 5.1: Overview of the convergence behaviour by different preconditioning

Krylov convergence. After a long slow convergence stage, the residual has only been reduced
by a factor of O(102), which means the failure of the solver. The residual does not drop to a
very small value until the number of iterations has almost reached the value of system size.
However, this behaviour well matches the property of Krylov methods as the iteration process
must converge after at most n steps where n is the matrix size. In the practical computation
‖rn‖2 only contains the machine error.

The two curves of the preconditioned systems show a good convergence behaviour. In
both situations the residual begins to rapidly decline after a short stage of slow convergence.
The process converges to the almost exact solution after an acceptable amount of iterations
in total. The deflation preconditioning shows an obvious advantage over the sole precondi-
tioning. Although both of them have a similar linear convergence rate during the fast stage,
the deflation preconditioning suffers a much shorter stage of slow convergence and starts the
fast convergence earlier. The deflation preconditioning only takes half of the iterations as the
sole preconditioning to reach the same accuracy.

It is undoubted that the Helmholtz problem can be hardly solved without the help of
preconditioning. The deflation preconditioning results in a better effect than the sole precon-
ditioning.

5.1.2 The Influence of wave resolution

The system size is associated with the wave resolution gw, the value of which equals the
amount of subintervals of each wave. However, the convergence would not be slowed down
by the increase in the system size due to high wave resolution. The convergence behaviour2

is summarized in Table 5.1 with respect to wave resolution. To the left of the slash is the
iteration number for AM−1Q while on its right is that for AM−1.

The observation from the above table has a perfect match with the result of Fourier
analysis on the preconditioning in the previous chapter. When the solely preconditioned
system is solved, the number of iterations almost keeps the same for different wave resolutions.
Because the amount of unfavourable small eigenvalues of AM−1, which are responsible for
the slow convergence, is not raised by the increase in wave resolution. So the convergence
would not deteriorate.

2The orthogonalization method is modified Gram-Schmidt.
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gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 15/15 39/69 61/112 107/204 143/292 185/366 238/510
30 15/21 30/68 44/109 85/210 120/300 156/386 199/478
60 7/21 13/68 43/120 74/216 85/310 110/404 145/502

Table 5.1: Number of iterations with respect to different wave resolution gw

In the case of deflation preconditioning, the convergence turns out to be faster as the
wave resolution improves. Once the deflation is applied, all the eigenvalues will cluster
around (1, 0). The convergence would never be retarded by the small eigenvalues around
the origin. The increase in wave resolution leads to a larger system and therefore results in
more favourable eigenvalues of AM−1. Thus, the convergence is accelerated.

However, the total computation time is not necessarily reduced in case of higher wave
resolution. A larger system is more demanding in the matrix-vector multiplication. But at
least the computation time would not increase in the same fast speed as the wave resolution.

5.1.3 The functionality of deflation

The deflation preconditioning has a better effect than the sole preconditioning. The benefit
gets larger as the wavenumber increases. Figure 5.2 shows the comparison of the number
of iterations. The convergence of both preconditionings is proportional to the wavenumber.
But the growing rate of the deflation preconditioning is far smaller than that of the sole
preconditioning.
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Figure 5.2: Number of iterations by two different kinds of preconditioning

According to the definition, the functionality of deflation is to move the small eigenvalues
to the value of the largest eigenvalue so that the entire spectrum distribution is more clus-
tered and keeps away from the origin. Then, the application of Krylov solver to a deflation
preconditioned system will not suffer from the slow convergence due to the small eigenval-
ues. Thus, as the wavenumber increases, the spectral properties will not deteriorate. The
numerical results can be supported by the Fourier analysis done in the previous chapter.
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5.1.4 The influence of orthogonalization

In GMRES, there are two orthogonalization methods to construct the orthonormal Krylov
subspace. The orthogonalization with Householder reflection is less sensitive to the round-
ing error (more numerically stable) than that with modified Gram-Schmidt method. The
observation in Figure 5.4 shows that such an advantage will lead to faster convergence.
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Figure 5.3: Convergence behaviour of AM−1 by different orthogonalization methods

The observation can be obtained in both cases of sole preconditioning and deflation pre-
conditioning. The explanation is that the error in orthogonalization adds to the total error of
the iteration, which consequently retards the convergence. In the situation of an extremely
small system, the Gram-Schmidt method can even not converge to the machine error while
the Householder reflection is still stable enough to succeed. For a normal size system, both
of them can finally reach the same accuracy except that it is always a little faster to use
Householder reflection. In terms of computational cost, the choice of the orthogonalization
method is a compromise between convergence speed and computational time.
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Figure 5.4: Convergence behaviour of AM−1Q by different orthogonalization methods

5.2 The Influence of Approximation on the Convergence

In the practical computation for solving the Helmholtz problem, both the inversion of shifted
Laplacian preconditioner M−1 and the deflation operator Q are approximated during the
Krylov convergence. Table 5.2 lists the number of Krylov iterations for the systems which are
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approximated to different degrees3. The data in every cell contains the number of iterations
for AM−1Q, AM−1Q and AM−1Q respectively. Here, AM−1Q denotes the system with
both the exact inversion M−1 and the exact construction of Q; AM−1Q means that Q is
approximated by MKMG but the M−1’s on all the levels are exactly computed; AM−1Q

refers to the practical implementation where both M−1 and Q are approximated.

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 6/9/9 11/18/18 14/26/27 21/43/44 28/59/61 33/71/70 39/98/111
30 4/5/5 6/13/13 6/15/17 8/36/37 9/54/55 10/73/75 11/92/ 94
60 3/4/4 4/ 5/ 8 4/ 7/ 9 5/12/16 6/18/22 6/24/27 6/32/ 34

Table 5.2: Number of iterations with respect to different degrees of approximations
i.e. AM−1Q / AM−1Q / AM−1Q

It is clear that the approximation does have some negative effect on the convergence.
When all the matrices are exact, the convergence is much faster and only a few steps of
iterations is required. Once the approximation is involved, the convergence will be slowed
down even in the case of the exact M−1. When Q is approximately constructed by MKMG,
there is no significant influence whether or not the M−1 is exact. The little influence of the
inaccuracy in M−1 is verified by the experiment on the solely preconditioned system AM−1,
whose data is listed in Table 5.3.

gw k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

10 11/11 36/36 60/60 108/105 153/149 193/188 265/258
30 12/12 36/36 60/58 114/108 161/152 209/196 255/240
60 12/12 36/36 63/62 113/111 161/158 207/204 255/250

Table 5.3: Number of iterations with respect to different degrees of approximations
i.e. AM−1 / AM−1

There is tiny difference between the two numbers in each cell. First of all, it substan-
tiates the successful application of multigrid method to approximating the inversion M−1.
Secondly, when the wavenumber is high, it even takes slightly fewer iteration steps by using
the approximation. The pleasant surprise can be explained by the fact that the application
of preconditioning is intended for improving the spectral properties. It is of little importance
whether the inversion M−1 is closely approximated. The inaccuracy happens to bring out
more eigenvalues closer the favourable point (1, 0), which are advantageous accelerate the
Krylov convergence.

Remark The different behaviour of the inaccuracy in the approximated M−1 and Q gives
the numerical verification to the result of Fourier analysis in the previous chapter. It has
already been seen that it is more difficult to approximate the deflation preconditioning even
when the inversion of the small Galerkin matrix is exact.

5.2.1 Smoothing Steps in the Multigrid Methods

In the multigrid method ν1 is the number of pre-smoothing steps and ν2 is that of post-
smoothing steps. In the eigenvalue analysis it is impossible to distinguish the independent
behaviour of the two smoothings, for the equality λ(Sν2 ·K ·Sν1) = λ(S(ν1+ν2) ·K) has merged
the effect of the pre- and post- smoothing. But the numerical experiment on various pairs of
(ν1, ν2) is able to give a direct understanding of the independent behaviour.

3The orthogonalization method is Householder reflection. So the value for AM−1Q is smaller than its
counterpart in Table 5.1 on page 53.
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Table 5.4 lists the number of iterations for the solely preconditioned system AM−1. The
comparison shows that the convergence is not sensitive to the smoothing. One or two steps of
either pre- or post- smoothing is sufficient. And more steps of smoothing does no more good
to the convergence. So there is no distinction between pre-smoothing and post-smoothing in
the case of sole preconditioning.

(a) using one multigrid iteration

ν2
ν1 0 1 2 3 4

0 / 87 60 56 55
1 86 60 56 55 54
2 59 55 54 53 54
3 55 54 53 54 54
4 54 53 54 54 55

(b) using two multigrid iterations

ν2
ν1 0 1 2 3 4

0 / 58 58 59 59
1 58 58 59 59 60
2 58 59 59 60 60
3 59 59 60 60 60
4 59 60 60 60 60

Table 5.4: Number of iterations for AM−1 with respect to different smoothing steps in the
multigrid method when k = 100 and gw = 30

The number of iterations for the deflation preconditioned system AM−1Q is listed in
Table 5.5, which presents a different pattern. More steps of smoothing will be helpful for the
convergence. Furthermore, it is worth doing more post-smoothing than pre-smoothing. It is
very efficient to have two steps of post-smoothing with no pre-smoothing. After that, more
steps of smoothing would not improve the convergence.

(a) using one multigrid iteration

ν2
ν1 0 1 2 3 4

0 / 43 41 37 36
1 24 23 24 24 24
2 16 16 17 16 16
3 14 14 14 13 13
4 13 13 13 13 13

(b) using two multigrid iterations

ν2
ν1 0 1 2 3 4

0 / 38 33 31 28
1 21 18 19 18 18
2 15 15 16 16 15
3 15 15 15 16 16
4 16 15 16 16 16

Table 5.5: Number of iterations for AM−1Q with respect to different smoothing steps in the
multigrid method when k = 100 and gw = 30

The comparison of the subtable (a) and (b) within in every table shows that two multigrid
iterations would not lead to a faster convergence than one iteration, especially when the solely
preconditioned system AM−1 is being solved. The slightly strange behaviour corresponds
with the result in Table 5.3 on the previous page. Therefore, the same explanation can
account for the influence of smoothing in the multigrid method.

The specific multigrid setup depends on the exact problem, i.e. k and gw. Without loss of
generality, it is reasonable to use one iterations with (ν1, ν2) = (1, 2). There will not be a big
loss in the convergence behaviour when this setup is used for other problems of different k and
gw. Because all the early analysis and results have shown that the multigrid approximation
has done a good job in preconditioning. More effort brings little help to the convergence.

5.2.2 Iteration Steps in Multilevel Krylov Method

At each step of the Krylov iteration for AM−1Q, the multilevel Krylov method approximates
the deflation operator Q by taking several steps of flexible GMRES iterations on different
levels. The internal iterations take place from the second level until the (m− 1)-th level and
the inversion of the Galerkin matrix is computed exactly on the m-th level. Actually the
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number of Krylov iterations determines the dimension of the Krylov subspace that spans the
approximate solution.

The MKMG setup (�,#2, · · · ,#m−1, ◦) denotes the number of Krylov iterations on dif-
ferent levels, where � and ◦ is only to state the position of the first and last level of the
multilevel Krylov iteration.

In Figure 5.5, the MKMG setup (�, 2, 2, 2, 2, ◦) is considered as the standard reference.
The result shows that more Krylov iterations on the higher levels are helpful for the conver-
gence. However, it is unnecessary to have more Krylov iterations on the lower levels, which
may instead slow down the convergence.
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Figure 5.5: Number of iterations with respect to different MKMG setup in a six-level grid

It is straightforward to understand that the iteration on the higher levels brings more
benefit to the convergence of the whole iteration. The Galerkin system on the higher levels
are more closely connected with the original Helmholtz equation. As the level goes down,
the smaller Galerkin system gets further away from the original system and its influence is
weakened.

Furthermore, it is not necessarily cheaper to have more iterations on lower levels. Due
to the recursive iteration in MKMG, although the system on the lower level is small, one
iteration on the first level actually requires a multiple of #k iterations on the k-th level in
total. For instance, the setup (�, 2, 2, 4, 2, ◦) will lead to 2 iterations on the second level but
2× 2× 4 = 16 iterations on the fourth level for every iteration on the first level.

In terms of a general viewpoint, it is more efficient to invest the iteration on the higher
levels.

5.3 The Best Shift for the Krylov Convergence

The shift β1 + ιβ2 in the shifted Laplacian preconditioner plays a critical role in the pre-
conditioning of Helmholtz problem. Its spectral influence on the preconditioning has been
discussed in section 4.2.2. In this section its influence on the Krylov convergence will be
investigated by numerical experiments.

A best shift is defined as the one that leads to the fastest Krylov convergence, i.e. fewest
number of iterations. Since the real part of the shift is generally fixed as β1 = 1, the task is
reduced to find out the best β2 that leads to the fewest number of iterations for the Krylov
convergence.

The result is listed in Table 5.6 and 5.7 respectively for the sole preconditioning and
deflation preconditioning. The independence of the sign of β2 was proved in section 4.4.2 so
only the positive β2 is listed. In the parentheses is the fewest number of iterations by using
the best β2. During the computation of the best β2, the minimal step size for β2 is chosen
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as 0.01. So some of the resulting best β2’s are identical. If the minimal step size is chosen
smaller, then the small difference will be distinguishable.

k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

gw = 10 0.01(7) 0.01(17) 0.01(27) 0.04(47) 0.02(67) 0.04(85) 0.05(116)
gw = 30 0.01(6) 0.01(11) 0.01(16) 0.01(24) 0.07(31) 0.08(39) 0.06( 47)
gw = 60 0.01(5) 0.01( 7) 0.01( 9) 0.01(12) 0.01(15) 0.02(17) 0.01( 21)

Table 5.6: The best β2 that leads to the fastest convergence for the solely preconditioned
AM−1 when β1 = 1

k = 10 k = 50 k = 100 k = 200 k = 300 k = 400 k = 500

gw = 10 0.01(7) 0.01(14) 0.01(20) 0.35(34) 0.33(46) 0.39(53) 0.37(74)
gw = 30 0.01(5) 0.13(10) 0.16(16) 0.09(23) 0.10(29) 0.10(36) 0.10(43)
gw = 60 0.01(4) 0.01( 8) 0.03( 9) 0.02(14) 0.02(15) 0.02(17) 0.01(21)

Table 5.7: The best β2 that leads to the fastest convergence for the deflation preconditioned
AM−1Q when β1 = 1

When the solely preconditioned system AM−1 is solved, the best β2 is very small. The
smaller β2 makes the AM−1 closer to the identity matrix and then it is easier of the Krylov
iteration to converge.

When the deflation preconditioned system AM−1Q is solved, the best β2 is a little larger.
The multigrid method not only approximates the M−1 for the original matrix A but computes
the approximation of M−1

(k) in the deflation operator. More complication is introduced by the
deflation so it requires a larger β2 that makes the multigrid convergence easier.

Compared to the optimal β2 that was studies in section 4.4.3, the best β2 is fairly smaller.
Although the small β2 is highly likely to fail the multigrid convergence, the results shows
that it has still guaranteed the Krylov convergence. It once more proves that the accuracy
of the approximated inversion M−1 is of trivial significance provided the spectral properties
have been improved.

Remark In some situations the best β2 is the smallest possible discrete value, i.e. the step
size 0.01, which indicates an almost zero shift. In this case it should be distinguished that
the preconditioning does not multiply the original matrix A by its exact inversion but by the
multigrid approximated inversion A−1.



Chapter 6

Summary

6.1 Overview

The work in this thesis focuses on analyzing the spectral properties of the linear system
that results from the discretization of one-dimensional Helmholtz problem with homoge-
neous Dirichlet boundary condition. The study on the spectrum distribution with respect to
different parameters gives a reasonable explanation to the convergence behaviour of solving
Helmholtz problem.

In Chapter 2 three types of iterative methods are introduced. Although the multigrid
method cannot tackle the Helmholtz problem as the main solver, it can well approximates
the inversion of shifted Laplacian preconditioner M . As the main solver, the Krylov subspace
method solves the linear system Ax = b or the preconditioned systems AM−1x̃ = b and
AM−1Qx̃ = b.

Because the spectral properties of the original matrix A are very unfavourable, the precon-
ditioning plays the key role in solving the Helmholtz problem. Two types of preconditioning
are introduced and discussed in Chapter 3. The application of shifted Laplacian precon-
ditioner to the original matrix A can greatly improve the spectral properties by reducing
the spectrum distribution to a compact circular shape. Although the convergence has now
been largely accelerated, it could be further improved by moving the small eigenvalues to
somewhere away from the origin. The deflation operator completes this task. For the sake of
numerical stability, the small eigenvalues are deflated towards the eigenvalue of largest mag-
nitude rather than zero; otherwise, the deflation effect would be spoiled by the inaccuracy in
the construction of deflation operator.

In practical implementation, both the shifted Laplacian preconditioner and the deflation
operator are computed approximately in an implicit way. So the varying preconditioning
motivates the application of flexible GMRES. Because the small Galerkin system Ê in the
construction of deflation operator is associated with the original matrix A, it is as difficult
to compute its inversion Ê−1 as to solve the original Helmholtz problem. The MKMG in
section 3.3 recursively approximates the inversion of small Galerkin systems on the lower
levels and therefore completes the construction of deflation operator in an implicit way at
each Krylov iteration step.

6.2 Conclusion

6.2.1 Analytical Results

Preconditioning effect The detailed spectral analysis has been conducted in Chapter 4 by
using Fourier analysis. The study shows the functionality of shifted Laplacian preconditioner
and deflation operator.
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• The shifted Laplacian preconditioner restricts the eigenvalues to a circle, as proved
mathematically in section 3.1.1 on page 22. But the increase in wavenumber will gener-
ates more small eigenvalues around the origin, which will retard the Krylov convergence.

• The deflation operator moves the small eigenvalues far away from the origin.

The shift β1 + ιβ2 plays the key role in the shifted Laplacian preconditioner. Generally, the
real part β1 is set to one so that the spectrum distribution of AM−1 can be restricted to the
most compact shape. The study on the imaginary part β2 shows that

• The imaginary part β2 determines the length of the arc on which the eigenvalues are dis-
tributed. A smaller β2 is always favourable for the Krylov convergence but theoretically
will increase the difficulty in approximating M−1 by multigrid method.

• Either positive or negative β2 results in the same preconditioning effect.

In addition to the wavenumber k, the wave resolution gw is the other factor that determines
the size of the linear system. The study on gw shows that

• The increase in wave resolution would not deteriorate the spectral properties in case of
AM−1 and that of AM−1 will be even more favourable.

Multigrid convergence Fourier analysis is also applied to the preconditioning by M−1,
which is the approximated M−1 by multigrid method. The analysis shows that

• The multigrid method is capable of efficiently approximating the inversion M−1 by just
several iteration at a cheap cost.

• The deflation preconditioning is more difficult to approximate. It requires more multi-
grid iterations for M−1 in order to provide a more accurately approximated M−1 and
therefore to produce a better deflation preconditioning.

The analysis is also done on the convergence factor of multigrid method. The result shows
that

• The convergence factor is independent of wavenumber and the sign of β2. Both com-
putational and theoretical proof have been provided on pages 46–47.

• It is easier to achieve the multigrid convergence for M−1 in case of high wave resolution,
which results in a smaller optimal β2 that is more favourable for the Krylov convergence..

6.2.2 Numerical Observations

In Chapter 5 a set of numerical experiments gives the observations about the different action
of the preconditionings on the convergence behaviour. The numerical result substantiates the
analytical conclusion by Fourier analysis in Chapter 4 while it also reveals some new valuable
information that cannot be obtained by theoretical analysis.

• The deflation preconditioning AM−1Q outperforms the sole preconditioning AM−1 by
a much smaller growth rate in the number of iterations as the wavenumber increases.

• The orthogonalization method in GMRES has a significant influence on the convergence
behaviour. Householder reflection has the advantage over the modified Gram-Schmidt
method in both convergence speed and convergence robustness.
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• The multigrid method has done an efficient job in approximating the inversion M−1.
The convergence behaviour is little influenced by the inaccuracy in M−1. It is of
importance to obtain a better approximated deflation operator because the convergence
is more vulnerable to the inaccuracy in the construction of deflation operator.

• In MKMG, it is more effective and efficient to do more internal Krylov iterations on
the higher levels.

6.3 Suggestions on Future Work

This thesis has made a connection between the convergence behaviour of iterative methods
and the spectral properties of the linear system. The achievement gives rise to more ideas
that can be implemented in the future work.

Higher dimension So far, all the work is done on a one-dimensional Helmholtz problem.
It is necessary to extend the analysis to the higher dimensional cases, especially the 2D
Helmholtz problem which has an important application in engineering. The theory of Fourier
analysis for the higher dimensions is in principle the same as that for one-dimension except
that the formulae become more complex.

Local Fourier analysis The Fourier analysis that has been used is in the scope of rigorous
Fourier analysis. In order to have a wider application, it is necessary to apply the local Fourier
analysis. Then, the investigation of convergence behaviour can be done to those iteration
operators that fail the rigorous Fourier analysis. In fact, rigorous Fourier analysis can be
considered as the special case of local Fourier analysis while local Fourier analysis is the
generalization.

Krylov solver The varying preconditioning has limited the type of Krylov solvers that can
be employed. Besides the flexible GMRES that is used in this thesis, there are another two
suitable options. They are generalized conjugate residual method [26] and induced dimension
reduction method [31]. Both of them can handle the varying preconditioning. It is worth
comparing the convergence behaviour of different Krylov solvers.
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Appendix A

Optimal ω for the Jacobi Iteration

A.1 Problem Formulation

The ω-Jacobi iteration method, whose iteration operator is given by

Jω = (1− ω)I + ωD−1(D −M) where D = diag(diag(M)),

is adopted as the smoothing component of the multigrid method for approximating the in-
version of the shifted Laplacian preconditioner

M =
1

h2


d −1
−1 d −1

. . .
. . .

. . .

−1 d

 with d = 2− (β1 + ιβ2)h2k2.

Then, the smoothing operator is in the form

S := (1− ω)I + ω(I − 1

d
M). (A.1)

The eigenvalue of the shifted Laplacian preconditioner is already known. Then, the eigen-
value of the smoother can be easily obtained. For l = 1, 2, · · · , n, there is

λ(l, ω) =(1− ω) + ω(1− 2(1− cos(lπh))− (β1 + ιβ2)h2k2

2− (β1 + ιβ2)h2k2
)

=(1− ω) +
2ω cos(lπh)

2− (β1 + ιβ2)h2k2
.

The functionality of the smoother is to quickly reduce the error of high frequency components,
namely for l = (n+ 1)/2, · · · , n. So the smoothing factor is defined by

µ(ω) := max
(n+1)/26l6n

|λ(l, ω)|, (A.2)

which gives the information of how much error at least could be reduced by one iteration.
For the sake of convenience, a continuous equivalence to (A.2) is generally used so that this
factor is n-independent. By taking lπh = θ, the continuous smoothing factor is given by

µ∗(ω) := max
π/26θ6π

|λ(θ, ω)|. (A.3)

For the sake of brevity, two denotations are introduced in order to simplify the expression
of λ.

A = 2− β1h
2k2 and B = β2h

2k2 (A.4)
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In terms of A and B, the expression of the modulus of the eigenvalue is given in its quadratic
form by

|λ(θ, ω)|2 =

(
1− ω +

2ωA

A2 +B2
cos θ

)2

+

(
2ωB

A2 +B2
cos θ

)2

=(1− ω)2 +
4A

A2 +B2
ω(1− ω) cos θ +

4ω2 cos2 θ

A2 +B2
. (A.5)

Obviously, |λ(θ, ω)|2 shares the same maximizer and minimizer with |λ(θ, ω)|.

A.2 Analytical Derivation

The fastest convergence results from the ω that minimizes the smoothing factor. This idea
motivates the definition of the optimal ω

ωopt := arg min
ω∈(0,1]

{µ∗(ω)}. (A.6)

The analytical expression of ωopt can be obtained in the explicit form.

Maximizer θi The derivation of ωopt starts from determining the θ that maximizes the
modulus of eigenvalue. One candidate for the global maximizer over [π/2, π] is θ1 = π/2 as
the left end point of the domain. There are two other possibilities obtained by

d

dθ
|λ(θ, ω)|2 =

4Aω(ω − 1) sin θ

A2 +B2
− 8ω2 sin θ cos θ

A2 +B2
= 0 for θ ∈ [

π

2
, π]

=⇒
{
θ2 = π (also as the right end point);

θ3 = arccos A(ω−1)
2ω and sin θ3 6= 0.

(A.7)

The θ2 and θ3, as the local maximizer of µ∗(θ, ω), should be verified by the negtiveness
condition

d2

dθ2
|λ(θ, ω)|2

∣∣∣∣
θi,i=2,3

=
4Aω(ω − 1) cos θi

A2 +B2
− 8ω2 cos 2θi

A2 +B2
< 0. (A.8)

Then, the smoothing factor becomes

µ∗(ω) = λ(θi, ω)

Minimizer ω The ω that minimizes the smoothing factor is derived in a similar way by

d

dω
|λ(θi, ω)|2 = 2(ω − 1) +

4A(1− 2ω) cos θi
A2 +B2

+
8ω cos2 θi
A2 +B2

= 0

=⇒ ω0 =
A2 +B2 − 2A cos θi

A2 +B2 − 4A cos θi + 4 cos2 θi
. (A.9)

Besides that the candidate for the minimizer ωopt is supposed to satisfy

d2

dω2
|λ(θi, ω)|2

∣∣∣∣
ω0

= 2− 8A cos θi
A2 +B2

+
8 cos2 θi
A2 +B2

> 0. (A.10)

Disqualified θ3 Substitution of cos θ3 = A(ω−1)
2ω into (A.9) yields ω0 = 1 and θ3 = π/2.

As a candidate for the local maximizer, θ3 = π/2 is disqualified since the condition (A.8) is
violated. So θ3 = π/2 is eliminated but θ1 = π/2 is still a candidate as the global maximizer.
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The final choice Substitution of θ1 = π/2 and θ2 = π into (A.5) yields

|λ(θ1, ω)|2 = (1− ω)2 and |λ(θ2, ω)|2 = (1− ω)2 +
4((A+ 1)ω2 −Aω)

A2 +B2
.

So it follows1

µ∗(ω) = max{|λ(θ1, ω)|, |λ(θ2, ω)|} (A.11)

=

{
|1− ω| for ω 6 A

A+1 ,√
(1− ω)2 + 4((A+1)ω2−Aω)

A2+B2 for ω > A
A+1 .

If ωopt is located in [ A
A+1 , 1], then the value of µ∗ is determined by the point θ2 = π and it is

minimized by

ω2 =
A2 +B2 + 2A

A2 +B2 + 4A+ 4
with µ∗(ω2) =

√
(1− ω2)2 +

4Aω2(ω2 − 1) + 4ω2
2

A2 +B2
.

Otherwise, the value of µ∗ is obtained at the point θ1 = π/2 and the optimal ω is given by

ω1 =
A

A+ 1
with µ∗(ω1) = |1− ω1|.

Hence, the optimal ω is given by

ωopt = max{ω1, ω2}. (A.12)

A.3 Numerical Calculation

It is easily found that ωopt is independent of the wavenumber k but dependent on the value
of h2k2. h2k2 is associated with the wave resolution gw which refers to the amount of
subintervals per wavelength. The plot in Figure A.1 shows that h2k2 has an significant
influence on the determination of ωopt. The explanation can be made by comparing the order
of magnitude.

(a) gw = 10 i.e. h2k2 = 0.395
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(b) gw = 50 i.e. h2k2 = 0.016
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Figure A.1: The contour plot of ωopt with respect to the shift β1 + ιβ2

1The piecewiseness is based on the condition A+ 1 > 0, i.e. β1h
2k2 < 3.
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Generally, the minimal requirement on the wave resolution is that every single wave is
resolved by 10 subintervals, i.e. gw = 10, which leads to

kh = O(10−1) =⇒ k2h2 = O(10−2).

Recall the definition of A and B in equation (A.4). For a well-resolved wave, i.e. small h2k2,
it is valid to have

ω1 =
2 +O(10−2)

3 +O(10−2)
≈ 2

3
,

ω2 =
4 +O(10−2) +O(10−4) + 2(2 +O(10−2))

4 +O(10−2) +O(10−4) + 4(2 +O(10−2)) + 4
≈ 1

2
,

⇒ ωopt = ω1 ≈
2

3
. (A.13)

The estimate gets sharp as β1 is kept small. If the resolution is poor, i.e. large h2k2, the
small terms cannot be ignored, making the estimate invalid. Especially, when β1 is large,
ωopt is more likely to be determined by ω2 which depends on both β1 and β2 as shown in
Figure A.1a.

β2-independence Figure A.1 also shows that the choice of ωopt is independent of β2 in
most cases. Because these cases lead to the choice of ω1 which only depends on β1. As seen
in (A.13), ω1 is larger than ω2 provided the wave is not poorly resolved. Even when the wave
is a little poorly resolved, the estimate (A.13) will still keep valid provided β1 is small.

Throughout the thesis, β1 is fixed as one and the wave resolution gw would not be smaller
than 10, which guarantees the condition ω1 > ω2. So it is valid to take the β2-independent
choice ωopt = ω1.

The β2-independent ωopt will bring convenience to the research since the convergence
of ω-Jacobi iteration has now excluded the influence of β2. The preconditioning effect of
different β2 has no relation with the choice of ωopt, which simplifies the number of control
variables.
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