
A Conceptual Foundation of the ThinkLet Concept
for Collaboration Engineering

Gwendolyn L. Kolfschoten1, Robert O. Briggs1,2 ,
Gert-Jan de Vreede1,3, Peter H.M. Jacobs1, Jaco H. Appelman1

1Faculty of Technology, Policy and Management
Delft University of Technology
P.O. Box 5015 – 2600 GA Delft
The Netherlands
{g.l.kolfschoten, j.h.appelman, p.h.m.jacobs}@tbm.tudelft.nl

2Center for Distance Education
College of Rural and Community Development
University of Alaska Fairbanks
bob.briggs@uaf.edu

3University of Nebraska at Omaha
gdevreede@mail.unomaha.edu

Abstract. Organizations increasingly use collaborative teams in order to create value for their

stakeholders. This trend has given rise to a new research field: Collaboration Engineering. The goal of

Collaboration Engineering is to design and deploy processes for high-value recurring collaborative

tasks, and to design these processes such that practitioners can execute them successfully without the

intervention of professional facilitators. One of the key concepts in Collaboration Engineering is the

thinkLet – a codified facilitation technique that creates a predictable pattern of collaboration. Because

thinkLets produce a predictable pattern of interactions among people working together toward a goal

they can be used as snap-together building blocks for team process designs. This paper presents an

analysis of the thinkLet concept and proposes a conceptual object model of a thinkLet that may inform

further developments in Collaboration Engineering.

ThinkLet Conceptualization

 2

Key words

Collaboration Engineering, thinkLets, collaboration, object oriented modeling, collaboration process

design, facilitation, group support systems.

1. Introduction

People frequently join forces to accomplish goals through collaboration that they could not achieve as

individuals. By collaboration we mean joint effort toward a goal. Collaboration is essential for value

creation (Hlupic and Qureshi, 2002, 2003), and often used for mission critical tasks. While team efforts

can be productive and successful, group work is fraught with challenges that can lead to unproductive

processes and failed efforts (Nunamaker et al., 1991). Many teams therefore rely on professional

facilitators to design and conduct high-value or high-risk tasks (Griffith et al., 1998, Niederman et al.,

1996).

The need for facilitation increases when teams seek to use Group Support Systems (GSS)

technology. Under certain circumstances, GSS can lead to order-of-magnitude increases in team

productivity (see (Fjermestad and Hiltz, 1999, 2001) for a comprehensive overview of GSS research).

However, the success of a GSS session is by no means assured, see e.g. (Vreede, et al., 2003). As with

many tools, GSS must be wielded with intelligence guided by experience in order for its potential to be

realized. Novice users find the GSS tools easy to operate, but they typically cannot use the full potential

of GSS. Most GSS users must therefore rely on professional facilitators in order to derive the benefits

offered by GSS (Briggs et al., 2003, Vreede and Briggs, 2005).

Skilled facilitators, however, tend to be expensive. They either have to be trained in-house, or hired

as external consultants. Therefore many teams who could benefit from facilitation interventions and

from GSS must often manage without them. One solution to this challenge would be to reduce the need

for skilled facilitation expertise; to find a way that a team could wield the GSS and manage its

ThinkLet Conceptualization

 3

collaboration process for itself, without the ongoing intervention of a professional facilitator but with

predictable results. Addressing this challenge is the domain of the emerging field of Collaboration

Engineering.

Collaboration Engineering is an approach that designs, models and deploys repeatable collaboration

processes for recurring high-value collaborative tasks that are executed by practitioners using

facilitation techniques and technology. Collaboration processes designed in Collaboration Engineering

are processes that support a group effort towards a specific goal, mostly within a specific timeframe.

The process is build as a sequence of facilitation interventions that create patterns of collaboration;

predictable group behavior with respect to a goal. The effort involves a continuous reciprocal interaction

(Thompson, 1967), but does not require co-location of participants. Collaboration Engineering

researchers seek to codify and package key facilitation interventions in forms that can be re-used readily

and successfully by teams that do not have professional facilitators at their disposal. Therefore, there are

three key roles within Collaboration Engineering:

A facilitator both designs and conducts a dynamic process that involves managing relationships,

tasks, and technology, as well as structuring tasks and contributing to the effective accomplishment of

the meeting’s outcome (Bostrom, et al., 1993).

A practitioner is a task specialist who must execute some important collaborative task like risk

assessment or requirements definition as a part of his or her professional duties. A practitioner is not

necessarily a professional facilitator who designs new processes for new situations; a practitioner

executes a specific collaboration process on a recurring basis (Briggs et al., 2003, Vreede and Briggs,

2005). A practitioner therefore does not need extensive training as a facilitator, but only needs to learn

the specific skills required to accomplish a particular collaboration process. The practitioner needs a

high-quality, reusable, transferable process design that can deliver predictable results.

ThinkLet Conceptualization

 4

 A collaboration engineer designs and documents collaboration processes that can be readily

transferred to a practitioner. This means that a practitioner can execute the process without any further

support from the collaboration engineer, nor from a professional facilitator.

Table 1 describes the collaboration engineering roles, their tasks in terms of collaboration process

design and execution, and their required expertise. Textbox 1 provides an example of a collaboration

engineer designing and transferring a risk management process in a large financial services firm.

Table 1. Collaboration Engineering roles

Role Process Design Process Execution Expertise

Collaboration
Engineer

Repeatable,
transferable processes

No execution, just
process transfer

Both process and
application domain

Facilitator Ad-hoc, context
specific processes

Execution and ad-hoc
modification

Process

Practitioner No design Execution Application domain

Textbox 1. Collaboration Engineering example

A large international financial services organization was faced with the
challenge to perform hundreds of operational risk management (ORM) workshops.
They requested a repeatable collaborative ORM process to be developed that
operational risk managers could execute themselves. Based on the experiences and
the requirements from the ORM domain experts, collaboration engineers developed
a first prototype of a repeatable collaborative ORM process. This process was
evaluated in a pilot project within a business unit, leading to a number of
modifications to the definition of the overall process in terms of collaborative
activities, their interdependencies, and the facilitation techniques used. The
resulting collaborative ORM process was shown to a group of 12 ORM experts.
During a half day discussion, the wording and order of activities was modified and
the proposed collaborative activities where tested with a number of chosen
facilitation techniques. In the period that followed, over 200 ORM practitioners
were trained to execute this process. To date, these ORM practitioners have
moderated hundreds of workshops where business participants identify, assess, and
mitigate operational risks.

ThinkLet Conceptualization

 5

To achieve the required quality and predictability described above, one of the current foci of

Collaboration Engineering research is to identify and document reusable elementary building blocks for

group process design. Toward that end, researchers have begun to codify a collection of such building

blocks, called thinkLets, see e.g. (Enserink, 2003, Harder and Higley, 2004, Kolfschoten, et al. 2004a,

Lowry et al., 2002, Santanen and Vreede, 2004). A thinkLet is a named, packaged facilitation technique

that creates a predictable, repeatable pattern of collaboration among people working towards a goal

(Briggs et al., 2001). ThinkLets can be used as conceptual building blocks in the design of collaboration

processes (Kolfschoten, et al., 2004a) and as learning modules of facilitation techniques for practitioners

and novice facilitators (Kolfschoten and Veen, 2005, Vreede and Briggs, 2005). A thinkLet is meant to

be the smallest unit of intellectual capital required to be able to reproduce a pattern of collaboration

among people working toward a goal.

A few examples of thinkLets are presented in Table 2 (see (Vreede, et al., 2001) for a more elaborate

description of the mechanics of these thinkLets). Each thinkLet provides a concrete group-dynamics

intervention, complete with instructions for implementation as part of some group process.

Collaboration process designers who have a set of specific thinkLets available can therefore shift part of

their attention from inventing and testing solutions to choosing known solutions (Kolfschoten and Veen,

2005). This may reduce both the effort and the risk of developing group processes.

Table 2. Examples of thinkLets (Vreede and Briggs, 2001).

Name Purpose

LeafHopper To have a group brainstorm ideas regarding a number of
topics simultaneously.

Pin-the-Tail-on-
the- Donkey

To have a group identify important concepts that warrant
further deliberation.

RichRelations To have a group uncover possible categories in which a
number of existing concepts can be organized.

StrawPoll To have a group evaluate a number of concepts with respect
to a single criterion.

ThinkLet Conceptualization

 6

MoodRing To continuously track the level of consensus within the
group regarding a certain issue.

To date, Collaboration Engineering researchers have formally documented approximately 70

thinkLets. Field experiences suggest that 16 of these thinkLets fill in perhaps 70% of a given

collaboration process design; the other 30% of actions a group must perform need more specific

thinkLets, either those described in the set of 70 or new thinkLets customized for the task at hand

(Kolfschoten, et al., 2004a). In this sense, thinkLets have become a powerful pattern language for

collaboration engineers, who use thinkLet names to describe and communicate sophisticated, complex

process designs in a compact form (Briggs et al., 2003, Vreede and Briggs, 2005). Case studies

describing such processes include an operational risk management process at an international financial

services organization on (see textbox 1 and Vreede and Briggs, 2005), a mission analysis process at the

U.S. Army’s Advanced Research Lab (Harder et al., 2005), a knowledge elicitation process at the

European Aeronautic Defense and Space company (EADS), and a crisis response process in the

Rotterdam Harbor in the Netherlands (Appelman and Driel, 2005). ThinkLets have also been used

successfully for training facilitators (Kolfschoten and Veen, 2005) and in collaboration research

(Santanen, 2005).

While only 70 thinkLets have been formally documented to date, it appears that the number of

possible thinkLets may be infinite. The original conceptualization of thinkLets frames them as having

three components: A tool, a configuration of that tool, and the facilitation script (Briggs et al., 2001).

Each adaptation variation of any of these components on a known thinkLet can become a new thinkLet

in its own right. This could lead to an exponential explosion in the number of thinkLets, giving rise to

much redundancy and overlap among thinkLets, and to thinkLet “dialects” where collaboration process

designers in different communities use different names for the same concepts. A large variety of

thinkLets will enable a high chance of fit between thinkLets and tasks, but thinkLet dialects would make

ThinkLet Conceptualization

 7

it difficult to transfer group process knowledge across the boundaries of local communities of practice.

If dialects of thinkLets would be used jointly, it would increase the difficulty of the choice for a

thinkLet. Therefore, there are several key goals for the Collaboration Engineering community:

 To minimize the explosion of thinkLets by identifying a stable core of conceptual thinkLets.

 To assist facilitators and collaboration engineers in choosing among the existing set of

thinkLets.

 To design new thinkLets with the components of other thinkLets, being mindful not to

replicate those that already exist.

Toward these ends, this paper presents several approaches to classifying thinkLets, and proposes a

new conceptualization of the thinkLet as a first step towards enabling collaboration engineers to:

 More easily identify the optimal thinkLets for a collaboration process design.

 More easily distinguish the relevant differences among similar thinkLets.

 More easily identify areas of collaborative endeavor for which no useful thinkLets yet exist.

 Consolidate similar thinkLets into a uniform, non-redundant base set.

The remainder of this paper is structured as follows. In the next section we introduce thinkLets as

originally defined and discuss their limitations. Next we propose a new conceptualization using the

object-oriented modeling approach. We conclude this paper by discussing the implications and

limitations of our research and proposing directions for future research.

2. ThinkLets and Collaboration Process Design

A collaboration process is a series of activities performed by a team to accomplish a goal. A

fundamental assumption in the design of repeatable collaboration processes is that each process consists

of a particular sequence of thinkLets that create various patterns of collaboration among the team

members. Each activity in the design of a collaboration process can be supported by one or more

ThinkLet Conceptualization

 8

thinkLets. ThinkLets can be combined but in order to go from one activity to the next, transitions are

used. These concepts are discussed in more detail below.

2.1 ThinkLets

As presented above, a thinkLet is a named, packaged, scripted collaboration activity that produces a

predictable, repeatable pattern of collaboration among people working towards a goal. The initial

conceptualization of thinkLet comprised three components: A tool, a configuration, and a script (Briggs

et al., 2001).

 The tool concerns the specific technology used to create the pattern of collaboration – anything

from yellow stickies and pencils to highly sophisticated collaboration technologies such as

GSS.

 The configuration defines how the tool is prepared (e.g. projected on a public screen), set up

(e.g. configured to allow anonymous communication), and loaded with data (e.g. a set of

questions to which people must respond).

 The script concerns everything a facilitator would have to do and say to a group to create the

required pattern of collaboration (Vreede and Briggs, 2005, Briggs et al., 2003).

Each differentiation in the components of a thinkLet influences the way in which people collaborate and

is by definition a new thinkLet. It is important to be aware of such changes as research shows that small

changes to, for instance, thinkLet scripts can create significant differences in group interactions, see

e.g.(Shepherd et al., 1996). However, experience shows that thinkLets are very customized to the

situation at hand.

Knowledge of the three components of a thinkLet, it was argued, would be sufficient for a

practitioner to recreate the pattern of collaboration (Vreede and Briggs, 2005, Briggs et al., 2003, Briggs

et al., 2001, Santanen and Vreede, 2004). Field trials with more than 200 novice trained practitioners

ThinkLet Conceptualization

 9

bore out the proposition that non-facilitators who knew the tool, configuration, and script for a thinkLet

could, in fact, predictably and repeatable engender the pattern of collaboration a given thinkLet was

meant to produce (Vreede and Briggs, 2005). In table 3, the thinkLets of table 2 are described in the tool

configuration script conceptualization.

Table 3. Conceptualized thinkLet examples.

Name Tool Configuration Script (summary)

LeafHopper GSS:
GroupSystems
Categorizer

Several
categories to
which
participants can
add ideas

Explain categories
Explain how to add
Emphasize that participants work in the
category of their choice

Pin-the-Tail-on-
the- Donkey

GSS:
GroupSystems
Categorizer

participants can
add annotation
pin’s

Allow a maximum amount of pin’s
Explain that participants should pin the
items they want to discuss
Discuss the pinned items

RichRelations GSS:
GroupSystems
Categorizer

Participants can
read chauffeur
can name
categories and
move concepts

Ask participants to name related
concept.
Document the name of the relation
Categorize concepts with the relation

StrawPoll GSS:
GroupSystems
Vote

Cast a vote Explain voting criterion and scale
Allow participants to vote
Discuss the results

MoodRing GSS:
GroupSystems
Opinion meter

Allow to adjust
vote

Explain topic, voting criterion and
scale
Discuss topic while allowing
participants to adjust their vote

2.2 Transitions

If thinkLets are building blocks for a collaboration process, then transitions are the mortar that connects

them. The transition defines all the changes, events and actions that must take place to move people

from the end of one thinkLet to the beginning of the next. A transition design must account for at least

these aspects of change:

ThinkLet Conceptualization

 10

 Changes of Technology – when one thinkLet finishes, it may be necessary to reconfigure a

technology or to move to a completely different technology before the next thinkLet can

begin.

 Changes of data – it may be necessary to transform the output of one thinkLet in some way

so that it can serve as the input to the next thinkLet.

 Changes of orientation – It is necessary to alert team members that one activity has

finished and a new one is about to start. In this alert, the team should reflect its progress in

reaching their goal.

 Changes of location – it may be necessary for people to move from one place to another

between thinkLets.

 Changes of membership – sometimes it is necessary to change the composition of the

team before the next thinkLet begins.

Although the importance of transitions seems obvious, it is hard to relate them to practice. Since

Collaboration Engineering and thinkLets are often used in combination with GSS, part of the transition

is automated. The role of transitions in the design of reusable, transferable and predictable collaboration

process should yet be further analyzed.

ThinkLet Conceptualization

 11

2.3 Compound thinkLets and Modifiers

Sometimes a specific combination of several thinkLets are reused frequently in a variety of contexts.

Such a sequence of thinkLets and transitions can be amalgamated into a named, reusable compound

thinkLet (Kolfschoten, et al., 2004a). It can be wielded as a single building block during process

design.

Further, we noted that certain repeatable variations could be applied to a set of thinkLets to create a

predictable change in the dynamics those thinkLets produce. We called these variations modifiers, and

gave them names so they could be reused. For example, all creativity thinkLets allow people to

contribute any idea that comes to mind. Using different tools and instructions, we can adjust the size

and depth of the brainstorm. However, one could apply a OneUp modifier to any idea-generation

thinkLet. The OneUp modifier changes the ground rules for brainstorming such that people may only

contribute new ideas that are arguably better along some dimension than those already contributed. This

modification can be added to any brainstorming technique.

Although facilitators, collaboration engineers, and practitioners found the initial conceptualization of

thinkLets, transitions, and modifiers to be useful, field experience revealed a number of drawbacks

(Kolfschoten, et al., 2004b, Kolfschoten and Veen, 2005, Kolfschoten, 2005). First, the original concept

tied a thinkLet closely to a specific technology in a specific configuration. Strictly speaking, a new

thinkLet would have to be documented for any change of technology. Yet, collaboration engineers in

the field frequently implemented the same thinkLet with a variety of different technologies. This

suggested that the tool-and-configuration constructs might only be instances of a more-fundamental

concept. This is also consistent with Briggs’ guidelines for the development of collaboration theory,

which argue the importance of concepts being independent of technology (Briggs, 2004).

ThinkLet Conceptualization

 12

Second, the original model of thinkLets also tied a thinkLet to a particular script. The purpose of the

script is to prescribe exact behavior of the facilitator to support and instruct the group. Strictly speaking,

this would mean that a new thinkLet would be documented to record any changes in the things a process

leader did or said. Yet, both professional facilitators and practitioners in the field often deviated from

the formal thinkLet script without significantly changing the pattern of collaboration (Kolfschoten, et

al., 2004a). Thus, it also seems that the existing thinkLet scripts might be instances of some more-

fundamental concept.

Finally, under the original conceptualization, thinkLets were difficult to classify (Kolfschoten, et al.,

2004b). A reliable, detailed classification scheme for design components is an important tool for design

support in any engineering discipline (Kolfschoten and Veen, 2005). The root of this difficulty may

have been that concept addressed practical execution details of thinkLets rather than the essence of a

thinkLet. The most commonly used classification scheme organizes thinkLets based on the patterns of

collaboration they engender (Vreede, et al., 2005). This scheme proposes five general patterns of

collaboration:

 Diverge: Move from having fewer to having more ideas.

 Converge: Move from having many ideas to a focus on and understanding of a few deemed

worthy of further attention.

 Organize: Move from less to more understanding of the relationships among ideas.

 Evaluate: Move from less to more understanding of the value of ideas relative to one or

more criteria.

 Build Consensus: Move from less to more agreement among stakeholders so that they can

arrive at mutually acceptable commitments.

All thinkLets engender at least one of these patterns, so this scheme is somewhat useful for deciding

which thinkLet might apply to a given situation. However, a number of thinkLets invoke multiple

ThinkLet Conceptualization

 13

patterns simultaneously, so this scheme is not taxonomic. Further, it does not address issues of requisite

pre-conditions, deliverables, available communication channels, and a host of other concepts that are

important considerations when choosing one thinkLet over another.

In an effort to delve under the superficial properties of the original thinkLets concept, we undertook

to create a base class diagram of group processes using the UML modelling language. The next section

of the paper articulates the new concept.

3. A new conceptualization of thinkLets

3.1 Object orientation

 To develop the new conceptualization of thinkLets, we drew on the object-oriented modeling

approach that has become the de-facto modeling paradigm for systems engineering. The basic theory of

object-oriented modeling is to divide a system into classes and relations. A class is characterized by a

set of attributes, operations and relations. Objects are specific instances of a class. All objects based on a

given class share the same set of attributes, operations, relationships and semantics (Booch et al., 1999).

For example all automobiles (a class) have wheels (an attribute). However, a particular Mercedes (an

object which is an instance of the class, automobile) may have different kind of wheels than a given

Volkswagen (a different object with a different value for the wheels attribute). Object-orientation

distinguishes the following two types of relations:

 Generalization versus specialization; class A is a generalization of class B if and only if every

instance of class B is also an instance of class A, and there are instances of class A which are

not instances of class B. Equivalently, class A is a generalization of B if B is a specialization of

A.

ThinkLet Conceptualization

 14

 Association; where generalization specifies a relation between classes, association refers to the

structural relation between objects, or instances. Aggregation is a special form of association

where a whole-part relationship between the aggregate, i.e. the whole, and the object, i.e. the

part, is specified.

0..*

has

Manager

Employee Contract

-name : String

+getManager() : Manager

-description : String
-salary : double

 1 1
 has

1

 is a special

Figure 1: Types of relations in OO

In the Unified Modeling Language, UML, class diagrams such as the one presented in Figure 1 present

the object oriented view on a particular system. In this figure, both types of relations are illustrated. The

arrow connecting the Manager and the Employee illustrates a specialization relation. A manager is thus

a special case of employee, and as such its class inherits both name and contract from the Employee

class. The association between a manager and a set of managed employees justifies the existence of the

Manager class. This relation is equivalent to the relation between an employee and his name and

contract.

ThinkLet Conceptualization

 15

3.2. The ThinkLet class diagram

thinkLet

-name: string
-patternofcoll: string
-successor: thinkLet
-predecessor: thinkLet

1..n

Rule

-constraint: string

Action

-name: string

1..1Role

-name: string

1..n

Capability

-name: string

0..1

CollaborationProcess

-name: string
-goal: string

1..n

Participant

-name: string

3..n

1..n

Dataset

+alter(Action)

1..n

1..n
1..n

1..n

1..n

1..n

1..n

1..1

1..1

1..1

1..1

1..n

1..1

1..n

extends

Modifier

-name: string

0..n 2..n

1..n

Parameter

-name: string

1..n

1..n

extends

1..1

1..1

Figure 2. A Class Diagram of Collaboration Processes.

ThinkLet Conceptualization

 16

Figure 2 illustrates a class diagram for a collaboration process. The model incorporates the key

concepts that must be taken into account when creating a design for a particular collaboration process

This section explains each of the components in that model, in more detail.

3.2.1 CollaborationProcess

The central component of this model is the CollaborationProcess. Collaboration processes have a

name attribute to identify them (e.g. Strategic Planning or Marketing Focus Group). Because all

collaboration has some purpose, all collaboration processes also have a goal attribute. For a recurring

collaboration process, the goal is typically instantiated as the deliverables that the team must create.

3.2.2 Participant

In a collaboration process, a group of 3 or more (Krackhardt, 1999) participants agree to work

together towards the goal. Participants have a name attribute and they fulfill a certain role in the

collaboration process.

3.2.3 ThinkLet

The collaboration process that people use to achieve their goal is composed of a series of thinkLets.

A thinkLet is a named, packaged facilitation intervention that creates a predictable, repeatable pattern of

collaboration among people working together toward a goal (Briggs et al., 2003). ThinkLets have a

name attribute. The name is often intended to be catchy and somewhat amusing so as to be memorable,

and it is usually intended to remind the collaboration engineer of the specific pattern the thinkLet

invokes. For example, in the LeafHopper thinkLet, participants jump from topic-to-topic at will, making

contributions in different categories as inspiration strikes. ThinkLets always supports the group in

ThinkLet Conceptualization

 17

modifying a data set, whether captured (written down) or virtual (in a discussion). ThinkLets can be

combined with other thinkLets (Kolfschoten, et al., 2004a) yielding compound thinkLets that evoke

more complex patters of collaboration, or a sequence in the pattern of collaboration.

3.2.4 Capability

The new approach to modeling thinkLets departs from the original convention of tool, configuration and

script. Any tool, configured in a given fashion, affords certain capabilities. It may be possible to afford

those same capabilities with a variety of other tools. The new model therefore incorporates the concept

of capabilities, while leaving the decision of how to realize those capabilities to the collaboration

engineer. For example, the LeafHopper thinkLet requires the following capabilities: One page for each

of several brainstorming topics. The possibility to display the topic of each page. The ability to

contribute ideas to all pages. In an actual workshop, these capabilities could be afforded by flipchart

pages taped to a wall and markers, or by a sophisticated GSS. When instantiated the tool and

configuration of that tool that enable the capability should be defined.

3.2.5 Action

Once the capabilities have been provided to participants, they are instructed to execute certain actions

– e.g. add, edit, move, delete, judge – using those capabilities.

3.2.6 Rule

Under the old conception of thinkLets, the script explained the actions people were to take, the

constraints they were to apply to their actions, and the capabilities they were to use. However, these

concepts could be conveyed by any number of scripts, i.e. a given script is merely a particular

implementation of these concepts. Therefore, the new conceptualization captures the rules rather than

ThinkLet Conceptualization

 18

the complete script of a thinkLet. Rules describe actions that participants must execute using the

capabilities provided to them under some set of constraints. In all thinkLets, individual actions are

subject to constraints. For example, the brainstorming question constrains the kind of concepts a person

contributes to an ideation thinkLet.

To execute a given thinkLet, the participants must become aware of the rules that are to drive their

efforts. If each participant executes their actions as guided by the rules, together they will produce the

desired pattern of collaboration. For example, the rules of the FreeBrainstorm thinkLet require that

added contributions must relate to the brainstorming question at hand and pages must be swapped after

each contribution. A GSS can automatically enforce the page-swapping rule; a group working on paper

must rely on social protocols and voluntary compliance.

Thus, under this framing, the thinkLet becomes technology- and script-independent. The designer of

the process may choose any technology that provides the capabilities, and may choose any means to

convey information and constraints to the team. This reduces the theoretical amount of possible

thinkLets.

The small changes to the rules that guide actions can give rise to very different patterns of

collaboration. For example, an ‘add’ action guided by a ‘summarize’ rule gives rise to abstraction,

synthesis, and generalization, while an ‘add’ action guided by an ‘elaborate’ rule gives rise to

increasingly detailed exposition of present concepts. Thus, the process designer must take care to

choose rules purposefully and to express them carefully.

3.2.7 Parameter

In many thinkLets, there are certain pieces of information that must be conveyed to the team in order

for them to work effectively. For example, in a brainstorming thinkLet, there is always a brainstorming

question. In a polling thinkLet, there are always one or more voting criteria. The new model of

ThinkLet Conceptualization

 19

thinkLets therefore incorporates the concept of parameters, which are variables whose content; a name

and value(s) must be instantiated for each thinkLet.

3.2.8 Role

 In some thinkLets, different actors must behave according to different rules (with different

constraints actions and capabilities). The new model therefore incorporates the concept of roles. For

example, in the ChauffeurSort thinkLet one person acts as the scribe while others discuss how concepts

should be organized. Thus, the thinkLet requires two roles. In the PopcornSort thinkLet, however, all

participants work in parallel, moving ideas into the categories where they best fit. This thinkLet has

only one role.

3.2.9 Modifier

Finally, a modifier is a reusable rule that can be applied to a set of two or more thinkLets to change

their dynamics in some predictable way. For example, the OneMinuteMadness modifier can be applied

to any ideation activity. About a minute after the start of the brainstorm, the moderator stops the

participants for a few moments to discuss whether their contributions are sufficiently responsive to the

brainstorming question, and to clarify the rules and constraints of the thinkLet. Afterwards,

brainstorming resumes.

4. An example

ThinkLets are instantiated on 2 levels. First, the instantiation is made as described above. This is

illustrated for a number of thinkLets in table 4, which presents the thinkLets from table 2 in the new

conceptualization for the general participant role. This way, thinkLets are described with a name,

pattern of collaboration, successor and predecessor, parameter dataset, rules with constraints, action and

ThinkLet Conceptualization

 20

capability. Note that in table 4 we describe independent thinkLets, which are not connected to a dataset

or connected with successors and predecessors in a collaboration process.

Table 4. Re-conceptualized thinkLet examples.

Name &
Pattern of
collaboration

Rule (constraint) Capability
(name)

Action
(name)

Parameter
(not
instantiated)

LeafHopper
Diverge

1: Add ideas to page in scope
of the discussion topic (X)
and scope (Y)
2: Add to any page at random
as your interests dictate

A Page for
each X

Add X : Discussion
Topic
Y: Brainstorm
Question

Pin-the-Tail-
on-the-
Donkey
Converge

1: Select the amount (X) of
ideas (Y) that you consider
key contributions
2: Read the indicated key
contributions
3: Explain and discuss why a
selected idea is a key
contribution

X
Discriminators

Judge
Read
Discuss

X: Amount
Y: Idea

RichRelations
Organize

1: Read the ideas (X) &
Identify related (X)
2: Define& Add the relation
(Y)
3: Connect the X to the Y

A link for
each Y
connecting X1
and X2
A Page for
each Y

Read,
Judge
Add
Relate

X: Idea
Y: Relation

StrawPoll
Evaluate

1: Judge each idea (A) on
criterion (X) ranging from
scale min (Y) to scale max
(Z)
2: Discuss the results of the
combined voting

A Scaled
Discriminator
for each idea
Processing of
the combined
results

Judge
Discuss

A: idea
X: criterion
Y: scale min
Z: scale max

MoodRing
Build
Consensus

1:Indicate your opinion on
issue (X) on criterion (Y)
ranging from scale min (A) to
scale max (B)
2: Discuss the issue
3: Indicate any change in
opinion
4: Continue until there is
sufficient consensus

A reusable
Scaled
Discriminator
for the Issue

Judge
Discuss
Judge

X : issue
Y: criterion
A: scale min
B: scale max

ThinkLet Conceptualization

 21

The thinkLets thus can be used for any collaboration process. In order to use for instance LeafHopper to

do a SWOT analysis (strengths, weaknesses, opportunities, threats), we need to do a second

instantiation, called implementation, in which we specify the parameters, rules and the capabilities, by

providing the brainstorm question, (e.g. what are the factors that need to be considered in our company

strategy?), the discussion topics, (e.g. strengths, weaknesses, opportunities, threats), the tool and

configuration, (e.g. 4 whiteboards with the topics and a marker for each participant) and a script with

precise instructions for the facilitator.

Note that each of the thinkLets requires a different combination of actions, under a different

combination of rules. For instance, the StrawPoll allows participants to render judgments once about

multiple concepts, while the MoodRing allows for continuous changes in judgment over time with

respect to a single concept. Process designers may find that the actions-and-constraints model of

thinkLets may provide a useful basis for selecting among available thinkLets at design time. This new

framing may provide a more rigorous basis for classifying and choosing thinkLets.

5. Discussion and conclusions

A thinkLet is a named, packaged activity that produces a predictable, repeatable pattern of collaboration

among people working toward a goal. The purpose of a thinkLet is to capture the smallest-possible unit

of intellectual capital required to recreate a particular pattern of collaboration with specific results.

ThinkLets serve as building blocks for designers of collaboration processes. This paper offers a re-

conceptualization of the thinkLet concept in terms of elementary participant actions, physical

capabilities, rules, roles, and parameters, rather than tool, configuration, and script. As a result, the new

thinkLet conceptualization describes the requirements to create a certain pattern of collaboration

independent from a technology and its configuration. This allows a collaboration engineer to choose

ThinkLet Conceptualization

 22

appropriate thinkLets and subsequently select and adapt available technologies and facilities to

instantiate the required capabilities. This reframing has clarified some ambiguities and eliminated some

apparent challenges surrounding the old framing of the thinkLets concept. Although it is impossible to

predict everything about a dynamic collaboration process, the new thinkLet concept is expected to offer

more support to the collaboration engineer. In particular, it has the following advantages:

First, the thinkLet concept is now technology independent. As technologies change, a concept that is

independent of these changes will be more consistent. Also, some of the descriptions of thinkLets

already indicated that different tools could be used to reach the same result. This ambiguity has been

removed.

Second, the cognitive load of the thinkLet concept is reduced. Since the ambiguity is resolved, it will

be easier to transfer specific thinkLet objects to novice collaboration engineers and the instantiations of

these thinkLets to practitioners.

Third, even with the new modeling convention, a very large, if not infinite set of thinkLet

instantiations can be defined. However, the new thinkLets allow different instantiations and

customizations, and the concept allows thinkLets to be modified adding additional rules. An analysis of

a collection of thinkLets based on rules, roles, and parameters, should make it possible to distill

redundancy out of the collection. It may also be possible to abstract modifiers from a large collection of

thinkLets, thus reducing combinatorial complexity.

Finally, the new conceptualization allows researchers to better compare differences and similarities

in thinkLets and therefore also allows a better explanation for differences in apparently similar studies,

and better design and operationalization of case and field studies on the effects of facilitation

interventions and collaboration process design (Santanen, 2005).

There are a number of limitations with respect to the research presented in this paper. Each of these

limitations gives rise to exciting avenues for future research. First, although the new conceptualization

ThinkLet Conceptualization

 23

may give rise to a taxonomic classification scheme for thinkLets, no such scheme has yet been derived.

To this end, it would be fruitful to compare other classifications in disciplines that are both close and

distant from Collaboration Engineering, such as small group research (e.g. McGrath’s (McGrath, 1984)

task circumplex), GSS research (e.g. Bostrom et al. (Bostrom and Anson, 1992)’s electronic meeting

tasks and Zigurs and Buckland’s (Zigurs and Buckland, 1998) task-technology fit model), workflow

systems research (e.g. the Workflow Management Coalition’s (Workflow Management Coalition, 2002)

specification of workflow processes), telematics (e.g. BETADE’s (Verbraeck and Dahanayake, 2002)

telematics services building blocks), software development, (Briggs, 2004) and architecture (Alexander

(Alexander, 1979)’s pattern language). A taxonomic thinkLets classification is critical to facilitate the

choice of a thinkLet. Given the new, more elementary, conceptualization of thinkLets, we expect the

creation of a taxonomic classification may be easier. In addition, we anticipate it be more

straightforward to define a set of thinkLet choice criteria.

A taxonomic classification will also help to identify redundancy in the current thinkLet set. Some

current thinkLets might be identified as variations on other thinkLets, resulting in a more limited yet

more sharply defined final set of basic thinkLets that clearly differ from each other. If we can classify

these we can also identify the area’s where the current thinkLets do not provide solutions and new

thinkLets or modifiers are required. This research is one step further on the path towards this goal.

Second, the current framing of the thinkLets still leaves open some questions. For example, Shepherd

et al. (Shepherd et al., 1996) demonstrated that slight variations in facilitator instructions that had no

impact on rules, but rather touched on motivation, produced significant differences in group-

productivity. The proposed new framing of thinkLets does not address that effect. In general thinkLets

are focused on solving complexity of task or content rather than on complexity of group dynamics.

ThinkLet Conceptualization

 24

Third, new thinkLets classifications may be explored based on the new components of thinkLets. It

appears that especially the rules represent a promising starting point. For example, the rule ‘generalize’

could classify all thinkLets that use a given data set and produce the essence of that data set.

Fourth, the class model of Collaboration processes captures all the objects that must be considered

when designing a collaboration process. However, it is not intended to convey the process itself, there is

no sequence of steps in the model, just the components of the collaboration process are displayed.

Transitions only contain process elements and are therefore excluded from this model. However, they

could be part of a different modeling convention that conveys the flow and logic of a collaboration

process as a team moves toward its goals. This model can be built as an extension on the facilitation

process model described in (Vreede and Briggs, 2005).

Finally, although the thinkLet concept seems to have evolved into a more useful one, we need to

confirm that indeed it is an improvement both in practice and in theory by testing its use in collaboration

process design and execution.

Acknowledgments

The authors gratefully acknowledge Daniel Mittleman and Alexander Verbraeck for their

contributions to the new conceptualization of thinkLets. Furthermore we thank Johanna Bragge,

Mariëlle den Hengst-Bruggeling, and the anonymous reviewers for their constructive feedback on this

paper.

ThinkLet Conceptualization

 25

References

1. Alexander, C. (1979). The Timeless Way of Building, New York, Oxford University Press.

2. Appelman, J.H., and J.van Driel. (2005). "Crisis-response in the Port of Rotterdam: can we do
without a facilitator in distributed settings?" Proceedings of the Hawaii International Conference on
System Science. Los Alamitos: IEEE Computer Society Press.

3. Booch, G., J. Rumbaugh, and I. Jacobson. (1999). The Unified Modeling Language User Guide,
Indianapolis: Addison-Wesley.

4. Bostrom, R., R. Anson, and V.K. Clawson, (1993) "Group Facilitation and Group Support Systems",
in Valacich, Jessup And, Editor Book, Group Facilitation and Group Support Systems, Macmillan.

5. Bostrom, R.P., and R. Anson, (1992) "The Face-To-Face Electronic Meeting: A Tutorial", in
Bostrom, R.P., R.T. Watson And S.T. Kinney, Editor Book, The Face-To-Face Electronic Meeting: A
Tutorial, New York: Van Nostrand Reinhold.

6. Briggs, R.O. (2004). "On theory-driven design of collaboration technology and process". Proceedings
of the CRIWG 2004. San Carlos, Costa Rica: Springer-Verlag.

7. Briggs, R.O., G.J. de Vreede, and J.F. Jr. Nunamaker. (2003). "Collaboration Engineering With
ThinkLets To Pursue Sustained Success With Group Support Systems", Journal Of Management
Information Systems, 19, 4, 31-63.

8. Briggs, R.O., G.J. de Vreede, J.F. Jr. Nunamaker, and T.H. David. (2001). "ThinkLets: Achieving
Predictable, Repeatable Patterns of Group Interaction with Group Support Systems". Proceedings of the
Hawaii International Conference on System Sciences. Los Alamitos: IEEE Computer Society Press.

9. Enserink, B. (2003). "Creating a Scenariologic - Design and Application of a Repeatable
Methodology". Proceedings of the Hawaii International Conference on System Sciences. Los Alamitos:
IEEE Computer Society Press.

10. Fjermestad, J., and S.R. Hiltz. (1999). "An Assessment of Group Support Systems Experimental
Research: Methodology and Results", Journal Of Management Information Systems, 15, 3, 7-149.

11. Fjermestad, J., and S.R. Hiltz. (2001). "A Descriptive Evaluation of Group Support Systems Case
and Field Studies", Journal Of Management Information Systems, 17, 3,

12. Griffith, T.L., M.A. Fuller, and G.B. Northcraft. (1998). "Facilitator Influence in Group Support
Systems", Information Systems Research, 9, 1, 20-36.

13. Harder, R.J., and H. Higley. (2004). "Application of ThinkLets To Team Cognitive Task Analysis".
Proceedings of the Hawaii International Conference on System Sciences. Los Alamitos: IEEE
Computer Society Press.

ThinkLet Conceptualization

 26

14. Harder, R.J., J.M. Keeter, B.W. Woodcock, J.W. Ferguson, and F.W. Wills. (2005). "Insights in
Implementing Collaboration Engineering". Proceedings of the Hawaii International Conference on
System Science. Los Alamitos: IEEE Computer Society Press.

15. Hlupic, V., and S. Qureshi. (2002). "What causes value to be created when it did not exist before? A
research model for value creation". Proceedings of the Hawaii International Conference on System
Sciences. Los Alamitos: IEEE computer society press.

16. Hlupic, V., and S. Qureshi. (2003). "A Research Model for Collaborative Value Creation from
Intellectual Capital". Proceedings of the 25th International Conference of Information Technology
Interfaces. Cavtat, Croatia.

17. Kolfschoten, G.L., J.H. Appelman, R.O. Briggs, and G.J. de Vreede. (2004a). "Recurring Patterns of
Facilitation Interventions in GSS Sessions". Proceedings of the Hawaii International Conference On
System Sciences. Los Alamitos: IEEE Computer Society Press.

18. Kolfschoten, G.L., R.O. Briggs, J.H. Appelman, and G.J. de Vreede. (2004b). "ThinkLets as
Building Blocks for Collaboration Processes: A Further Conceptualization". Proceedings of the
CRIWG. San Carlos, Costa Rica: Springer-Verlag.

19. Kolfschoten, G.L., and W. Veen. (2005). "Tool Support for GSS Session Design". Proceedings of
the Hawaii International Conference on System Sciences. Los Alamitos: IEEE Computer Society Press.

20. Kolfschoten, G.L., Veen, W. (2005). "Tool support for GSS session design". Proceedings of the
38th Hawaii International Conference On System Sciences. Los Alamitos: IEEE Computer Society
Press.

21. Krackhardt, D. (1999). "The Ties that Torture: Simmelian Tie Analysis in Organizations", Research
in the Sociology of Organizations, 16, 183-210.

22. Lowry, P.B., C.C. Albrecht, J.F. Jr. Nunamaker, and J.D. Lee. (2002). "Evolutionary Development
and Research on Internet-Based Collaborative Writing Tools and Processes to Enhance Ewriting in an
Egovernment Setting", Decision Support Systems, 34, 229-252.

23. McGrath, J.E. (1984). Interaction and Performance, Englewood Cliffs: Prentice Hall, Inc.

24. Niederman, F., C.M. Beise, and P.M. Beranek. (1996). "Issues and Concerns About Computer-
Supported Meetings: The Facilitator's Perspective", Management Information Systems Quarterly, 20, 1,
1-22.

25. Nunamaker, J.F., A.R. Dennis, J.S. Valacich, D.R. Vogel, and J.F. George. (1991). "Electronic
Meeting Systems to Support Group Work", Communications Of The ACM, 34, 7, 40-61.

26. Santanen, E.L. (2005). "Resolving Ideation Paradoxes: Seeing Apples as Oranges Through the
Clarity of ThinkLets". Proceedings of the Hawaii International Conference on System Sciences. Los
Alamitos: IEEE Computer Society Press.

ThinkLet Conceptualization

 27

27. Santanen, E.L., and G.J. de Vreede. (2004). "Creative Approaches to Measuring Creativity:
Comparing the Effectiveness of Four Divergence ThinkLets". Proceedings of the Hawaiian International
Conference on System Sciences. Los Alamitos: IEEE Computer Society Press.

28. Shepherd, M.M., R.O. Briggs, B.A. Reinig, J. Yen, and J.F. Jr. Nunamaker. (1996). "Social
Comparison to Improve Electronic Brainstorming: Beyond Anonymity", Journal Of Management
Information Systems, 12, 3, 155-170.

29. Thompson, J.D. (1967). Organizations in action, New York: McGraw-Hill.

30. Verbraeck, A., and A. Dahanayake, eds. (2002). Building Blocks for Effective Telematics
Application Development and Evaluation, Delft: Delft University Of Technology.

31. Vreede, G.J. de , A. Fruhling, and A. Chakrapani. (2005). "A Repeatable Collaboration Process for
Usability Testing". Proceedings of the Hawaii International Conference on System Sciences. Los
Alamitos: IEEE Computer Society Press.

32. Vreede, G.J. de, and R.O. Briggs. (2001). "ThinkLets: Five Examples Of Creating Patterns Of
Group Interaction". Proceedings of the Group Decision & Negotiation. La Rochelle, France.

33. Vreede, G.J. de, and R.O. Briggs. (2005). "Collaboration Engineering: Designing Repeatable
Processes for High-Value Collaborative Tasks". Proceedings of the Hawaii International Conference on
System Science. Los Alamitos: IEEE Computer Society Press.

34. Vreede, G.J. de, R. Davison, and R.O. Briggs. (2003). "How a Silver Bullet May Lose its Shine -
Learning from Failures with Group Support Systems", Communications of the ACM, 46, 8, 96-101.

35. Workflow Management Coalition. (2002). "Workflow Management Coalition Workflow Process
Definition Interface - XML Process Definition Language", http://www.wfmc.org/standards/docs/TC-
1025_10_xpdl_102502.pdf.

36. Zigurs, I., and B. Buckland. (1998). "A Theory of Task/Technology Fit and Group Support Systems
Effectiveness", Management Information Systems Quarterly, 22, 3, 313-334.

