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A B S T R A C T

Accurate prediction of mill load parameters is crucial to improving grinding efficiency and saving energy.
Traditional prediction models have challenges such as poor interpretability, low prediction efficiency and
differences in data distribution. This study innovatively proposed a multi-task prediction model that integrates
physical information and domain adaptation. By constructing a physical-data-driven hybrid model, the physical
relationship between mill load parameters is embedded into the model as prior knowledge to improve the
prediction accuracy of the model. At the same time, multi-task learning is used to predict the material-to-ball
volume ratio and the pulp density at the same time, which improves efficiency and reduces repetitive work.
The domain adaptation method is introduced to ensure that the model maintains stable prediction performance
when the data distribution changes. Laboratory ball mill data verification shows that the proposed model not
only improves the prediction accuracy, but also adapts well to variable working conditions, showing significant
superiority.
1. Introduction

The ball mill is an important mechanical equipment in the grinding
process and is also a high-energy-consuming equipment (Lu et al.,
2014; Yin et al., 2019). In the mineral processing industry, its energy
consumption accounts for about 40%–70% of the mineral processing
plant (Daniel, 2016). The grinding particle size, a key quality indicator
of the grinding process, has a direct impact on product quality and
subsequent processes (Dai and Chai, 2014; Zhou et al., 2009). Inap-
propriate grinding particle size will not only affect the efficiency of
subsequent flotation operations, reduce the recovery rate and economic
benefits of high-value minerals, but also cause environmental pollu-
tion (Dai et al., 2015; Pease et al., 2006). Mill load parameters such as
material-to-ball volume ratio (MBVR) and pulp density (PD) are key pa-
rameters affecting grinding particle size and energy consumption (Tang
et al., 2020c). Due to the limitations of physical conditions, it is usually
difficult to achieve online measurement of mill load parameters in
actual production (Zhuo et al., 2021). Operators can only perceive the
operating status of the ball mill based on the particle size test value
and by observing the mill current and mechanical signals. This cannot
ensure that the ball mill is in the best working state for a long time,
and it is easy to cause faults such as overload (Tang et al., 2018a,

∗ Corresponding author.
E-mail address: yangaowei@tyut.edu.cn (G. Yan).

2012). Therefore, establishing an accurate mill load parameter predic-
tion model is of great significance to improving grinding efficiency,
reducing energy consumption, and ensuring safety.

In existing research, scholars have modeled the grinding process
of ball mills using methods such as finite element method (FEM) and
discrete element method (DEM) (Jonsén et al., 2014; Mayank et al.,
2015; Hilden et al., 2021). The mechanism model mainly relies on
the understanding of the internal mechanisms of industrial processes
to establish the model (Xia et al., 2024). With the development of
artificial intelligence, data-driven models have also been gradually
applied to the prediction of mill load parameters. Data-driven models
mainly construct prediction models by mining the potential relation-
ships between data without the need to understand detailed physical
information (Habib et al., 2021). Commonly used data-driven mill
load parameter prediction models include support vector machines (Liu
et al., 2015; Cai et al., 2021), partial least squares (Tang et al., 2020b),
neural networks (Yang and Cai, 2021), etc. Although pure data-driven
models can capture the complex relationships between data to a certain
extent, they have problems such as poor interpretability and unstable
model prediction results (Frost Jr and Quinn, 2018; Zhang et al., 2024).

At present, more and more scholars are focusing on physical-data-
driven hybrid models, hoping to overcome the shortcomings of physical
https://doi.org/10.1016/j.mineng.2024.109148
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data mining, AI training, and similar technologies. 
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Minerals Engineering 222 (2025) 109148 
models and data driven models (Sansana et al., 2021; Gao et al.,
2024). Cao et al. (2024) constructed a physical-data-driven hybrid
model and used it for the remaining life prediction of bearings, making
the prediction results more in line with physical laws. Syauqi et al.
(2024) combined the physical model with the data driven model to
construct a hybrid model for solar photovoltaic power generation pre-
diction, making the model more interpretable and accurate. Xin et al.
(2024) used the constructed hybrid model for low calorific value fuel
gas turbine load prediction to improve the model prediction accuracy.
The above research results show that combining physical information
with data-driven models can improve the prediction accuracy of the
model and make the prediction results more consistent with physical
laws (Alber et al., 2019). Although the physical-data-driven hybrid

odel has demonstrated its good prediction performance in many
ields, there is still a lack of related work in the prediction of mill load
arameters.

Summarizing the above models, we also found that the existing
ill load parameter prediction models, whether mechanism models

r data-driven models, are single-task (ST) models. When predicting
ill load parameters, we usually need to complete multiple prediction

asks. In this case, the traditional single-task model needs to perform
ndependent model training for each prediction task. This process not
nly increases the experimental cost, but also leads to a lot of repetitive
ork, affecting the overall prediction efficiency (Wang et al., 2020).

The emergence of multi-task models provides a solution to the above
problems. Multi-task models can learn multiple tasks at the same time,
and the knowledge in one task can also be used by other tasks, thereby
improving the generalization performance and prediction accuracy of
the model (Zhang and Yang, 2021). Hard parameter sharing (HPS) is
he most commonly used multi-task model, which mainly includes a
hared layer and a task-specific output layer (Ruder, 2017). Due to
he existence of the shared layer, HPS may cause the model prediction
ccuracy to decrease due to task conflicts, that is, the negative transfer
roblem (Tang et al., 2020a). The emergence of methods such as Multi-
ate Mixture-of-Experts (MMoE) (Ma et al., 2018) and Customized
ate Control (CGC) (Tang et al., 2020a) provides solutions to avoid

the above problems. The MMoE and CGC mainly add gating networks
compared to HPS. The gating network controls the transmission of
information and effectively alleviates the negative transfer problem.

The above multi-task model requires the same data distribution, that
s, the data comes from the same working condition (Curreri et al.,

2021). However, in the actual production process, due to different
nvironments, set values, and operating conditions, the collected ball
ill data are usually data from different working conditions (Gao-Wei

et al., 2018; Liu et al., 2023). In this case, the traditional multi-task
odel will have the problem of reduced model prediction accuracy.
omain adaptation, as a type of transfer learning, is mainly applicable

o situations where there are differences in data distribution between
he source domain and the target domain, but the tasks of the two
omains are the same (Pan and Yang, 2009). He et al. (2019) intro-

duced manifold regularization to maintain the geometric structure of
the data, and introduced a domain adaptation random weight neural
network to propose a mill load parameter prediction model under
variable working conditions. Zhang et al. (2022) aligned the marginal
istribution and conditional distribution of historical working condition
ata and current working condition data to achieve soft measurement
f mill load parameters under variable working conditions. Huang

et al. (2022) proposed a joint discriminant high-order moment align-
ment network to solve the variable working condition problem. Liu
t al. (2024) proposed a multi-source domain unsupervised domain
daptation model based on fusion features, which applied multi-source
omains to the mill load parameter prediction model to improve the
eneralization and prediction accuracy of the model. Although the
ill load prediction model based on domain adaptation has achieved

nitial results, the comprehensive solution involving both multi-task

odels and variable working condition adaptability requirements, that

2 
is, the construction of variable working condition multi-task models,
till needs further exploration and research.

In response to the above problems, this paper proposes a multi-task
mill load parameter prediction model based on physical information
and domain adaptation (PIDAMT). The innovations and contributions
of this study are as follows:

(1) A hybrid model integrating physical information and data-driven
model is proposed to improve the prediction accuracy of mill load
parameters.

(2) In view of the low efficiency and repeated training of traditional
ingle-task models when predicting multiple mill load parameters, a
ulti-task mill load parameter prediction model is designed.

(3) Considering the impact of variable working conditions on the
prediction accuracy of multi-task models, a multi-task model based
on domain adaptation is constructed to solve the problem of reduced

odel prediction accuracy due to differences in data distribution.

2. Physical information

2.1. Grinding process

Fig. 1 shows a schematic diagram of the grinding process. The input
of the ball mill includes raw ore, grinding media and water. The raw
ore is sent to the ball mill through the ore bin and conveyor belt, and
is ground together with steel balls and water. The steel balls grind the
re through collision, friction and extrusion to form slurry. The slurry
nters the pump pool through the spiral classifier, is mixed with new
ater, and is pumped into the hydrocyclone to separate fine-grained
verflow and coarse-grained sediment. The sediment is returned to
he ball mill for re-grinding, and the overflow is further processed to
ecome a grinding product.

As shown in Fig. 1, the ball load, water load, material density,
and steel ball density at the mill inlet can be measured by installing
etection instruments. The mill load parameters are related to material

density, steel ball density, and other parameters. Therefore, we can use
sensors to measure relevant information and construct an approximate
hysical relationship between mill load parameters.

2.2. Physical relationship between mill load parameters

There is a correlation between the mill load parameters PD and
MBVR, which together reflect the operating status of the ball mill. Pulp
density (PD) refers to the percentage of the material load in the ball
mill to the sum of the material and water loads (Tang et al., 2010).

he material changes dynamically during the grinding process and
cannot be directly measured (Góralczyk et al., 2020). However, the

aterial load is directly related to the volume and density. Therefore,
the equation for PD can be rewritten as Eq. (1):

𝑌𝑃 𝐷 =
𝑉𝑚 ⋅ 𝜌𝑚

𝑉𝑚 ⋅ 𝜌𝑚 + 𝐿𝑤
(1)

where 𝑌𝑃 𝐷 represents the value of PD, 𝐿𝑤 represents the water load,
𝑚 represents the volume of the material, and 𝜌𝑚 represents the density

of the material.
The material-to-ball volume ratio (MBVR) refers to the ratio be-

tween the material volume and the pore volume of the steel ball (Tang
et al., 2010). The steel ball pore volume refers to the volume of space
between steel balls and between steel balls and the inner wall of the
all mill that is not occupied by steel balls. This variable cannot be
easured directly, but is directly related to the porosity of the medium

nd the volume of the steel ball. The volume of the steel balls can be
pproximated by the density of the steel balls and the load of the steel
alls. Therefore, the equation for MBVR can be written as Eq. (2):

𝑌 =
𝑉𝑚 ⋅ (1 − 𝜇) ⋅ 𝜌𝑏 (2)
𝑀 𝐵 𝑉 𝑅 𝜇 ⋅ 𝐿𝑏
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Fig. 1. Schematic diagram of grinding process.
where 𝑌𝑀 𝐵 𝑉 𝑅 represents the value of MBVR, 𝜇 is the porosity of the
medium, 𝐿𝑏 represents the load of the steel ball, and 𝜌𝑏 is the density
of the steel ball.

Combining Eq. (1) and Eq. (2), we can get the relationship between
PD and MBVR, as shown in Eq. (3):

𝑌𝑃 𝐷 =
𝑌𝑀 𝐵 𝑉 𝑅 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚

𝑌𝑀 𝐵 𝑉 𝑅 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚 + 𝐿𝑤 ⋅ (1 − 𝜇) ⋅ 𝜌𝑏
(3)

3. Physics-data-driven hybrid model

3.1. PIDAMT

The source domain data is defined as 𝑋𝑠 =
{

𝑥𝑠𝑖
}

∈ R𝑛𝑠×𝑚, where
𝑛𝑠 represents the number of source domain data samples and 𝑚 is the
feature dimension. The number of tasks is defined as 𝑁 , and the source
domain data has a continuous label 𝑌 𝑠

𝑗 =
{

𝑦𝑠𝑖,𝑗
}

∈ R𝑛𝑠×1, 𝑗 = 1,… , 𝑁 .
The target domain data is defined as 𝑋𝑡 =

{

𝑥𝑡𝑖
}

∈ R𝑛𝑡×𝑚, and 𝑛𝑡

represents the number of samples to be predicted in the target domain.
In order to accurately predict the mill load parameters, a multi-task

mill load parameter prediction model based on physical information
and domain adaptation (PIDAMT) is proposed. The structure of the
proposed multi-task model includes three parts: feature extractor, gate
network and tower network. The loss function includes prediction loss,
domain adaptation loss and physical loss. The PIDAMT framework
diagram is shown in Fig. 2.

3.2. Multi-task data-driven model

The framework diagram of the multi-task data-driven model pro-
posed in this paper is similar to CGC, which includes three parts:
feature extraction block, gating network and tower network. However,
in order to simplify the model structure and reduce the number of
model parameters, this paper does not add an expert system to the
feature extraction block.

The feature extractor of the multi-task data-driven model consists
of two parts: common feature extraction and special feature extraction.
Common feature extraction is responsible for capturing common in-
formation between multiple tasks, which is crucial to improving the
3 
generalization ability of the model. First, the data is input into the
common feature extractor to extract common features of different tasks.
The common feature extractor consists of two fully connected layers.
Define the common feature extractor as 𝐹𝑐 (⋅), then the common features
of the source domain and target domain data can be expressed as
Eq. (4):
{

𝑍𝑠
𝑐 = 𝐹𝑐 (𝑋𝑠)

𝑍𝑡
𝑐 = 𝐹𝑐 (𝑋𝑡)

(4)

where 𝑍𝑠
𝑐 represents the common features of the source domain data,

and 𝑍𝑡
𝑐 represents the common features of the target domain data.

However, there are often differences between tasks in actual situ-
ations, which requires the model to mine special features unique to
each task while extracting common features. The task-specific special
feature extraction block can achieve this goal. Therefore, the data is
simultaneously input into the task-specific special feature extractor to
mine a more refined feature representation unique to each task. The
network structure of the special feature extractor is also two layers of
fully connected layers, so the special features of the source domain and
target domain data can be expressed as Eq. (5):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑍𝑠
𝑝 =

{

𝑍𝑠
𝑝,1,… , 𝑍𝑠

𝑝,𝑗 ,… , 𝑍𝑠
𝑝,𝑁

}

=
{

𝐹𝑝,1(𝑋𝑠),… , 𝐹𝑝,𝑗 (𝑋𝑠),… , 𝐹𝑝,𝑁 (𝑋𝑠)
}

𝑍𝑡
𝑝 =

{

𝑍𝑡
𝑝,1,… , 𝑍𝑡

𝑝,𝑗 ,… , 𝑍𝑡
𝑝,𝑁

}

=
{

𝐹𝑝,1(𝑋𝑡),… , 𝐹𝑝,𝑗 (𝑋𝑡),… , 𝐹𝑝,𝑁 (𝑋𝑡)
}

(5)

where 𝑍𝑠
𝑝 and 𝑍𝑡

𝑝 represent the special features of the source domain
and the target domain respectively, 𝑍𝑠

𝑝,𝑗 and 𝑍𝑡
𝑝,𝑗 represent the special

features of the 𝑗th task of the source domain and target domain data
respectively. represents the special feature extractor of the 𝑗th task.

Given that common features and special features contribute differ-
ently to the task, we introduce a gating network (Jacobs et al., 1991).
The main task of the gating network is to further process and filter the
extracted feature vectors, controlling which information should be re-
tained and passed to the tower network, and which information should
be suppressed or ignored. The gating network acts as an information
filter, and the network includes a fully connected layer and a Softmax
layer.

In the gated network, the output of the Softmax layer is used as a
‘‘gate’’ switch to control the degree of information passing. Specifically,
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Fig. 2. PIDAMT framework diagram.
when the Softmax layer assigns a higher weight to a feature, the
information of the feature will be retained to a greater extent. On
the contrary, if the Softmax output value of the feature is low, the
information will be appropriately suppressed during the transmission
process. In this way, the gated network can effectively filter out key
information and pass it to the subsequent parts of the model for
further processing. The output of the gated network can be defined as
Eq. (6):
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑍𝑠
𝑔 =

{

𝑍𝑠
𝑔 ,1,… , 𝑍𝑠

𝑔 ,𝑗 ,… , 𝑍𝑠
𝑔 ,𝑁

}

=
{

𝐺1(𝑋𝑠)⊗
(

𝑍𝑠
𝑐 , 𝑍𝑠

𝑝,1

)

,… , 𝐺𝑗 (𝑋𝑠)⊗
(

𝑍𝑠
𝑐 , 𝑍𝑠

𝑝,𝑗

)

,… ,

𝐺1(𝑋𝑠)⊗
(

𝑍𝑠
𝑐 , 𝑍𝑠

𝑝,𝑗

)}

𝑍𝑡
𝑔 =

{

𝑍𝑡
𝑔 ,1,… , 𝑍𝑡

𝑔 ,𝑗 ,… , 𝑍𝑡
𝑔 ,𝑁

}

=
{

𝐺1(𝑋𝑡)⊗
(

𝑍𝑡
𝑐 , 𝑍𝑡

𝑝,1

)

,… , 𝐺𝑗 (𝑋𝑡)⊗
(

𝑍𝑡
𝑐 , 𝑍𝑡

𝑝,𝑗

)

,… ,

𝐺1(𝑋𝑡)⊗
(

𝑍𝑡
𝑐 , 𝑍𝑡

𝑝,𝑗

)}

(6)

where 𝑍𝑠
𝑔 and 𝑍𝑡

𝑔 represent the fusion features of the common fea-
tures and special features of the source domain and target domain
respectively. 𝐺𝑗 (⋅) represents the gating network of the 𝑗th task. 𝑍𝑠

𝑔 ,𝑗
and 𝑍𝑡

𝑔 ,𝑗 represent the gating outputs of the source domain and target
domain data of the 𝑗th task, respectively. ⊗ represents matrix dot
multiplication.

The final task prediction is implemented by task-specific tower net-
works. The main function of the tower network is to achieve accurate
predictions for each task by integrating different feature information
based on the features extracted and screened by the above modules.
To achieve this goal, the tower network structure adopts three fully
connected layers. In addition, to further improve the prediction perfor-
mance, the tower network also integrates dropout and ReLU activation
function layers. The dropout layer randomly discards the output of a
part of the neurons during the training process, which can prevent
the network from overfitting. The ReLU activation function enhances
the network’s expression ability through its nonlinear characteristics,
enabling the model to capture the nonlinear relationship of the input
data and improve the accuracy and generalization of the prediction.
4 
Define the tower network as 𝑇𝑗 (⋅), then the calculation equation of the
tower network can be expressed as Eq. (7):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑌 𝑠 =
{

𝑌 𝑠
1 ,… , 𝑌 𝑠

𝑗 ,… , 𝑌 𝑠
𝑁

}

=
{

𝑇1(𝑍𝑠
𝑔 ,1),… , 𝑇𝑗 (𝑍𝑠

𝑔 ,𝑗 ),… , 𝑇𝑁 (𝑍𝑠
𝑔 ,𝑁 )

}

𝑌 𝑡 =
{

𝑌 𝑡
1 ,… , 𝑌 𝑡

𝑗 ,… , 𝑌 𝑡
𝑁

}

=
{

𝑇1(𝑍𝑡
𝑔 ,1),… , 𝑇𝑗 (𝑍𝑡

𝑔 ,𝑗 ),… , 𝑇𝑁 (𝑍𝑡
𝑔 ,𝑁 )

}

(7)

where 𝑌 𝑠 and 𝑌 𝑡 represent the prediction results of the source domain
and target domain respectively. 𝑌 𝑠

𝑗 and 𝑌 𝑡
𝑗 represent the prediction

results of the 𝑗th task of the source domain and target domain data
respectively.

3.3. Loss function

In order to improve the prediction effect of the model, three loss
functions are constructed: prediction loss, domain adaptation loss, and
physical loss. The overall training process of the model is shown in
Fig. 2. The purpose of prediction loss is to quantify the difference
between the model prediction value and the actual observation value,
so as to guide the model to continuously optimize during the training
process, thereby improving the accuracy of model prediction. In the
mill load parameter prediction task, mean squared error (MSE) is often
used as prediction loss. The calculation equation of prediction loss is
shown in Eq. (8):

𝐿𝑝 =
𝑁
∑

𝑗=1
𝑎𝑗 ⋅ MSE(𝑌 𝑠

𝑗 , 𝑌
𝑠
𝑗 ) = 𝑎1 ⋅

1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
(𝑦𝑠1,𝑖 − 𝑦̂𝑠1,𝑖) +⋯

+ 𝑎𝑗 ⋅
1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
(𝑦𝑠𝑗 ,𝑖 − 𝑦̂𝑠𝑗 ,𝑖) +⋯ + 𝑎𝑁 ⋅

1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
(𝑦𝑠𝑁 ,𝑖 − 𝑦̂𝑠𝑁 ,𝑖)

(8)

where 𝐿𝑝 represents the prediction loss and 𝑎𝑗 is the weight coefficient.
The purpose of domain adaptation loss is to solve the problem

of model performance degradation and reduced prediction accuracy
caused by data distribution differences. To achieve this goal, domain
adaptation loss usually adopts various technical means, such as adver-
sarial training and distance metric. Adversarial training introduces a
domain discriminator to distinguish the data of the source domain and
the target domain, and at the same time trains the model to deceive the
domain discriminator so that the features learned by the model cannot
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Fig. 3. Model framework diagram.
be distinguished by the domain discriminator, thereby achieving cross-
domain feature alignment. The distance metric calculates the distance
between the source domain and the target domain and optimizes it as
part of the loss function to reduce the difference between the domains.
Since adversarial training is often used for classification tasks, this
paper adopts the maximum mean discrepancy (MMD) (Lin et al., 2018),
a commonly used distance metric, to achieve domain adaptation. The
calculation method of MMD is shown in Eq. (9):
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where 𝐿𝑚 represents domain adaptation loss, 𝜙 represents feature map,
and

{

𝑧𝑠𝑔 ,𝑗 ,𝑖
}

∈ 𝑍𝑠
𝑔 ,𝑗 ,

{

𝑧𝑡𝑔 ,𝑗 ,𝑖
}

∈ 𝑍𝑡
𝑔 ,𝑗 , and 𝑘 (⋅, ⋅) represent kernel

functions.
In addition to the above losses, we also introduced physical losses

to further constrain and optimize the model. The physical loss is
constructed based on the physical laws and prior knowledge of the
mill operation process, and takes into account the physical relationship
between the mill load parameters. By incorporating physical laws into
the loss function, we can guide the model to follow these physical prin-
ciples during the prediction process, thereby improving the rationality
and accuracy of the prediction results.
5 
The physical relationship between MBVR and PD is shown in Eq. (3).
According to Eq. (7), the prediction results of MBVR and PD can be
obtained. Substituting the prediction results of MBVR into Eq. (3), the
prediction value of PD calculated according to the physical Equation is
obtained. The calculation Equation is shown in Eq. (10):

𝑌 ′
𝑃 𝐷 =

𝑌𝑀 𝐵 𝑉 𝑅 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚
𝑌𝑀 𝐵 𝑉 𝑅 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚 + 𝐿𝑤 ⋅ (1 − 𝜇) ⋅ 𝜌𝑏

(10)

where 𝑌𝑀 𝐵 𝑉 𝑅 represents the MBVR prediction value obtained accord-
ing to the data-driven model, and 𝑌 ′

𝑃 𝐷 represents the PD prediction
value calculated according to the physical equation.

The constructed physical loss is shown in Eq. (11):
𝐿𝑤 = MSE(𝑌𝑃 𝐷′, 𝑌𝑃 𝐷)

= 1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
(

𝑦̂𝑀 𝐵 𝑉 𝑅,𝑖 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚
𝑦̂𝑀 𝐵 𝑉 𝑅,𝑖 ⋅ 𝜇 ⋅ 𝐿𝑏 ⋅ 𝜌𝑚 + 𝐿𝑤 ⋅ (1 − 𝜇) ⋅ 𝜌𝑏

− 𝑦̂𝑃 𝐷 ,𝑖)
(11)

where 𝐿𝑤 is the physical loss, 𝑌𝑃 𝐷 =
{

𝑦̂𝑃 𝐷 ,𝑖
}

is the predicted value of
slurry concentration obtained according to the data-driven model, and
{

𝑦̂𝑀 𝐵 𝑉 𝑅,𝑖
}

∈ 𝑌𝑀 𝐵 𝑉 𝑅 is.
According to the above content, the total loss function of the model

can be obtained as shown in Eq. (12):

𝐿 = min
{

𝐿𝑝 + 𝑏𝐿𝑤 + 𝑐 𝐿𝑚
}

(12)

where 𝐿 represents the total loss function of the model, 𝑏 and 𝑐 are
weight coefficients.

3.4. Hybrid model training process

The overall training process of the hybrid model is shown in Fig. 3,
which includes three parts: signal acquisition, data processing, and
model prediction.

(1) Signal acquisition: The vibration signals of the laboratory ball
mill bearings under different working conditions are collected, and the
sampling rate of the signal is 51.2 kHz.

(2) Data processing: Perform fast fourier transform on the collected
vibration signals to obtain the representation of the vibration signals
in the frequency domain. After that, perform maximum and minimum
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Fig. 4. Laboratory small ball mill.

normalization on the data under different working conditions to obtain
the source domain data and target domain data.

(3) Prediction: Use the source domain data to train the model. Input
the data to be predicted into the trained model to obtain the prediction
results of different tasks.

The specific training steps of the model are as follows:
Step 1: Input the processed source domain data 𝑋𝑠 =

{

𝑥𝑠𝑖
}

and
target domain data 𝑋𝑡 =

{

𝑥𝑡𝑖
}

into Eq. (4) to obtain common features
of different tasks.

Step 2: At the same time, input source domain data 𝑋𝑠 =
{

𝑥𝑠𝑖
}

and
target domain data 𝑋𝑡 =

{

𝑥𝑡𝑖
}

into Eq. (5) to obtain special features of
different tasks.

Step 3: Input source domain data, target domain data, common
features, and special features into Eq. (6) to calculate the output of the
gating network.

Step 4: Input the output of the gating network into Eq. (7) to obtain
the predicted values of the data-driven models MBVR and PD.

Step 5: Input the label value of the source domain data and the
predicted value of the mill load parameter obtained from Step 4 into
Eq. (8) to calculate the prediction loss.

Step 6: Input the output of the source domain and target domain
data gating network into Eq. (9) to calculate the domain adaptation
loss of the model.

Step 7: Input the predicted values of steel ball load 𝐿𝑏, steel ball
density 𝜌𝑏, material density 𝜌𝑚, water load 𝐿𝑤 and MBVR of the
working condition of the source domain data into Eq. (10) to obtain
the PD predicted value calculated according to the physical equation.

Step 8: Input the PD prediction value obtained by the physical
equation and the data-driven model into Eq. (11) to obtain the physical
loss.

Step 9: Input the loss and weight coefficients 𝑎𝑖, 𝑏 and 𝑐 obtained
from Step 5, Step 6 and Step 8 into Eq. (12) to obtain the total loss
function of the model. Through back propagation, the trained model is
obtained.

Step 10: Input the target domain data 𝑋𝑡 =
{

𝑥𝑡𝑖
}

into the trained
model to obtain the predicted value of the mill load parameter of the
target domain data.

4. Experimental description

4.1. Dataset introduction

The data set used in the experiment is the data collected from a
small ball mill in the laboratory. The volume of the mill is 200 L, the
diameter is 60 cm, and the length is 70 cm. The rotation speed of the
mill cylinder is 42 r/min. The experimental material is iron ore, and
the grinding medium is steel balls with a diameter of about 30 mm.
The small ball mill in the laboratory is shown in Fig. 4.
6 
Table 1
Experimental parameters.

Dataset Ball charge 𝐿𝑏 𝐿𝑤 Number of Number of
volume ratio training sets test sets

1 0.3 292 35 2780 1112
2 0.35 340.69 40 2060 824
3 0.4 389.36 40 1760 704
4 0.45 438.03 35 1900 760
5 0.5 486.7 40 2040 816

Fig. 5. Dataset distribution.

The experiment collected data from five working conditions. In ac-
tual industry, the ball charge volume ratio (BCVR) of the mill fluctuates
between 0.3 and 0.5. Therefore, when designing the experiment, a
fixed medium filling rate, that is, a certain steel ball mass, was used
to change the load parameters such as MBVR and PD inside the mill
by continuously adding materials. The experimental parameters of the
five working conditions are shown in Table 1.

The probability density curves of the five working conditions are
plotted as shown in Fig. 5. Among them, the five data sets are defined
as 1–5, the ordinate represents the probability density, and the abscissa
represents the value of the sample after dimensionality reduction. The
probability density curve is used to describe the data distribution. As
can be seen from Fig. 5, the distribution of the five sets of data collected
is inconsistent.

4.2. Model parameters and hyperparameters

This section details the network structure, specific parameters, and
hyperparameters set during network training. The network structure
and specific parameters are shown in Table 2. The structures of the
common feature extractor and the special feature extractor are both
three-layer fully connected layers. In order to make the model nonlin-
ear, the ReLU activation function is introduced. Dropout is added to
prevent the model from overfitting. Since the network structure and
input of the common feature extractor and the special feature extrac-
tor are consistent, the network structure and parameters of different
feature extractors are uniformly represented by feature extractors in
Table 2. Similarly, the parameters and input dimensions of the gated
network and tower network for different tasks are consistent, so the
gated and tower network structures and parameters are uniformly rep-
resented. The gated network learns the weights between input features
through the fully connected layer, and the Softmax layer is designed
to convert the output of the fully connected layer into a probability
value. In this way, each input feature or feature combination has a
corresponding probability value, indicating the degree to which the
feature should be retained. The structure of the tower network is
also three-layer fully connected layers, two layers of ReLU activation
function layers and two layers of Dropout layers, which are used to
enhance the nonlinear ability of the model while preventing the model
from overfitting.
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Table 2
Network structure and parameters.

Structure Basic block Input size Output size

Feature Extractor

Linear (1,512) (1,128)
ReLU (1, 128) (1,128)
Dropout (1, 128) (1,128)
Linear (1, 128) (1,64)
ReLU (1, 64) (1,64)
Dropout (1, 64) (1,64)

Gated Network Linear (1,512) (1,2)
Softmax (1, 2) (1,2)

Tower Network

Linear 64 64
ReLU 64 64
Dropout 64 64
Linear 64 32
ReLU 32 32
Dropout 32 32
Linear 32 1

Table 3
Network hyperparameters.

Parameter Value Parameter Value

Batch size 64 lr 0.01
epoch 100 iteration 100
𝑎1 4 𝑎2 6
𝑏 0.8 𝑐 1
optimizer Adam device Cpu

The model is implemented using Python in the Pytorch deep learn-
ing framework. Intel(R) Core(TM) i5-7200U CPU is used to train and
evaluate the models. The medium porosity parameter in the physical
information is set to a general value of 0.38 in the actual industrial
process (Tang et al., 2018b). The hyperparameters in the data-driven
model are optimized using the grid search method, and the obtained
hyperparameter values are shown in Table 3.

5. Results and discussion

5.1. Comparative experiment

In order to verify the effectiveness of the multi-task method pro-
osed in this paper, the experimental results of ST and three commonly
sed multi-task methods are compared. The compared multi-task meth-
ds are HPS, MMoE and CGC. The number of experts of MMoE and CGC
s set to 2. The network parameters are consistent with Table 2.

The experimental results of different methods for the MBVR are
shown in Table 4, and the prediction results for the slurry concentration
re shown in Table 5. The evaluation indicators used are the root mean

square error (RMSE) and the R-square (R2). The experimental results
show that the experimental results of the multi-task method proposed
in this paper are the best among the five methods. In order to more
clearly compare the experimental results of different methods, we use
box plots and bar graphs to plot the R2 values and RMSE values in
Tables 4 and 5. Fig. 6(a) and (b) are box plots of the R2 values of the
prediction results of different methods for the MBVR and PD. The closer
the R2 value is to 1, the higher the fit of the model. Fig. 6(c) and (d)
re bar graphs of the RMSE values of the prediction results of different
ethods for the MBVR and PD.

As can be seen from Fig. 6(a) and Fig. 6(b), when performing multi-
ask prediction, the R2 value of PIDAMT is closer to 1, indicating that
IDAMT can predict data more accurately. In contrast, the R2 values

of the other four models (ST, HPS, MMoE and CGC) are relatively
low and the data distribution is more dispersed. This shows that the
model is more unstable and it is difficult to ensure good prediction
performance in different experiments. Among the five models, ST has
the smallest median in the prediction results of the two tasks, indicating
hat the overall prediction performance of the model on this task is
7 
poor. The prediction accuracy of HPS is slightly improved compared
with that of the ST model, indicating that the multi-task learning model
can effectively enhance the prediction ability of the model by sharing
information between tasks. MMoE adds a gating network compared
to the HPS model. By comparing the experimental results of the two,
it can be found that MMoE performs better in the MBVR prediction
task, but the model performance decreases slightly in the PD prediction
task. However, after adding a special feature extraction block to the
model, that is, the CGC model, the model accuracy is improved and
the prediction results are more stable. However, combining the exper-
imental results of the two tasks, it can be found that PIDAMT shows
ood prediction performance in both tasks, proving the effectiveness of
he multi-task method proposed in this paper.

Fig. 6(c) and Fig. 6(d) show the RMSE values of the five methods
when predicting MBVR and PD. RMSE is an indicator to measure the
prediction accuracy of the model. The smaller the value, the better
the prediction performance of the model. Combining Fig. 6(c) and
(d), it can be seen that the RMSE value of the ST model on the two
asks is the highest, indicating that the multi-task model has higher
rediction accuracy than the single-task model. The RMSE values of

HPS, MMoE and CGC are between the two, but show a trend of
gradually decreasing. This change shows that in the multi-task model,
y introducing the gating network (such as MMoE) and the special

feature extraction block (such as CGC), the prediction performance of
the model can be effectively improved. By analyzing the RMSE values
of different methods predicting the two tasks, it can be found that the
PIDAMT model has the lowest RMSE value, indicating that the model
has high prediction accuracy on both tasks, proving the effectiveness
of the method proposed in this paper.

In order to more clearly compare the experimental results of differ-
nt methods, the experimental results of dataset 1 predicting dataset 5

are visualized. Curve graphs between model prediction values and true
alues under different methods are drawn to evaluate the performance
f each model. Fig. 7 is a curve graph of MBVR predicted by dataset 1

for dataset 5. Fig. 8 is a curve graph of PD predicted by dataset 1 for
dataset 5. In Figs. 7 and 8, sub-figures (a)–(e) are the prediction result
curve graphs of ST, HPS, MMoE, CGC and PIDAMT, respectively. By
analyzing these charts, it can be observed that the prediction effect of
the method PIDAMT proposed in this paper is the best.

5.2. The impact of physical information and domain adaptation on model
performance

In order to explore the influence of physical information and domain
adaptation methods on the prediction effect of mill load parameters, we
also conducted an ablation experiment on PIDAMT. Different versions
of PIDAMT are shown in Table 6.

The experimental results of the ablation experiment are shown in
Tables 7 and 8. Table 7 shows the R2 values of different tasks predicted
by the ablation experiment, and Table 8 shows the RMSE values of
different tasks predicted by the ablation experiment. The bold in the
able indicates the best result.

PIMT is a hybrid model without domain adaptation, and DAMT
s a multi-task model without physical information. When physical
nformation is incorporated into the multi-task model, that is, when
t is transformed from DAMT to PIDAMT, the prediction accuracy of
he model is improved. This result shows that the introduction of
hysical information can improve the accuracy of model prediction. By
omparing PIMT and PIDAMT, that is, introducing domain adaptation
ethods in the model, the prediction accuracy of the model under

ariable operating conditions is improved. In most cases, the prediction
ccuracy of the model will be greatly improved after adding domain
daptation methods.

In order to further compare the comprehensive performance of
the model under different conditions, we visualized Tables 7 and 8,
and the visualization results are shown in Fig. 9. Fig. 9(a) uses a
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Table 4
MBVR prediction results.
Source Target ST HPS MMoE CGC PIDAMT

domain domain R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1

2 0.930 0.078 0.963 0.057 0.957 0.061 0.952 0.064 0.965 0.055
3 0.825 0.124 0.895 0.096 0.916 0.086 0.920 0.083 0.942 0.071
4 0.788 0.135 0.919 0.084 0.953 0.063 0.943 0.070 0.959 0.060
5 0.916 0.086 0.910 0.089 0.926 0.080 0.921 0.083 0.952 0.065

2

1 0.873 0.105 0.819 0.125 0.764 0.143 0.947 0.067 0.950 0.066
3 0.955 0.063 0.979 0.042 0.971 0.051 0.978 0.044 0.984 0.037
4 0.962 0.057 0.969 0.052 0.943 0.070 0.971 0.050 0.974 0.047
5 0.929 0.079 0.940 0.072 0.961 0.058 0.967 0.053 0.986 0.035

3

1 0.755 0.145 0.703 0.160 0.858 0.110 0.842 0.117 0.932 0.076
2 0.872 0.105 0.903 0.092 0.906 0.090 0.902 0.092 0.980 0.042
4 0.866 0.107 0.979 0.042 0.979 0.042 0.981 0.041 0.987 0.033
5 0.936 0.075 0.938 0.074 0.948 0.067 0.923 0.082 0.990 0.030

4

1 0.651 0.173 0.816 0.126 0.846 0.115 0.833 0.120 0.929 0.078
2 0.851 0.113 0.881 0.102 0.886 0.099 0.877 0.103 0.962 0.058
3 0.905 0.091 0.918 0.084 0.974 0.048 0.963 0.057 0.976 0.045
5 0.809 0.129 0.934 0.076 0.976 0.046 0.936 0.075 0.989 0.032

5

1 0.317 0.243 0.507 0.206 0.439 0.220 0.544 0.198 0.922 0.082
2 0.337 0.240 0.670 0.169 0.545 0.198 0.629 0.179 0.944 0.070
3 0.739 0.151 0.762 0.144 0.853 0.113 0.803 0.131 0.946 0.069
4 0.851 0.113 0.900 0.093 0.857 0.111 0.838 0.118 0.959 0.060
Table 5
PD prediction results.
Source Target ST HPS MMoE CGC PIDAMT

domain domain R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1

2 0.886 0.097 0.914 0.084 0.912 0.085 0.914 0.084 0.925 0.079
3 0.730 0.151 0.739 0.149 0.726 0.152 0.844 0.115 0.920 0.082
4 0.872 0.102 0.935 0.073 0.947 0.065 0.950 0.064 0.963 0.055
5 0.906 0.090 0.904 0.091 0.969 0.051 0.961 0.058 0.972 0.049

2

1 0.577 0.188 0.654 0.170 0.700 0.158 0.790 0.132 0.913 0.085
3 0.895 0.094 0.933 0.075 0.952 0.064 0.925 0.080 0.958 0.059
4 0.932 0.074 0.969 0.050 0.969 0.050 0.923 0.079 0.974 0.046
5 0.879 0.102 0.957 0.060 0.961 0.058 0.954 0.063 0.962 0.057

3

1 0.295 0.242 0.483 0.207 0.468 0.210 0.418 0.220 0.875 0.102
2 0.711 0.154 0.784 0.134 0.835 0.117 0.815 0.124 0.936 0.073
4 0.726 0.150 0.851 0.110 0.908 0.087 0.816 0.123 0.956 0.060
5 0.924 0.081 0.930 0.077 0.874 0.104 0.924 0.081 0.944 0.069

4

1 0.693 0.160 0.799 0.129 0.675 0.164 0.759 0.142 0.867 0.105
2 0.809 0.126 0.896 0.093 0.827 0.119 0.889 0.096 0.901 0.091
3 0.871 0.104 0.876 0.103 0.853 0.112 0.897 0.094 0.927 0.078
5 0.914 0.086 0.872 0.104 0.724 0.153 0.925 0.080 0.965 0.054

5

1 0.422 0.219 0.547 0.194 0.624 0.177 0.575 0.188 0.840 0.115
2 0.655 0.169 0.851 0.111 0.792 0.131 0.824 0.121 0.929 0.077
3 0.784 0.135 0.899 0.093 0.917 0.084 0.926 0.079 0.937 0.073
4 0.853 0.110 0.888 0.096 0.923 0.080 0.910 0.086 0.970 0.049
M

b

s

Table 6
Different versions of PIDAMT for ablation studies.

Method Physical information Domain adaptation

PIMT ✓ ×
DAMT × ✓

PIDAMT ✓ ✓

box plot to visualize the R2 value of the ablation experiment, and
Fig. 9(b) uses a bar chart to visualize the RMSE value of the ablation
xperiment. It can be seen from the figure that after adding physical

information, the prediction accuracy of the model is improved, indicat-
ing the effectiveness of building a physical-data-driven hybrid model.
After adding the domain adaptation method, the prediction accuracy
of the model under variable working conditions is greatly improved,
indicating that adding the domain adaptation method can improve the
model prediction performance.
8 
5.3. Model performance comparison

To further illustrate the effectiveness of the proposed method, we
use a scatter plot to visualize the R2 value of the experimental results,
as shown in Fig. 10. The horizontal axis represents the R2 value of the

BVR prediction result, and the vertical axis represents the R2 value
of the PD prediction result. The closer the scatter point is to the upper
right, the higher the R2 value of the two task prediction results, and the
etter the performance. Taking the experimental results of the single-

task model as the benchmark, the experimental results can be roughly
divided into four cases.

(1) Case 1 (Fig. 10(a), Dataset 1 predicts Dataset 2): The multi-task
learning model performs significantly better than the corresponding
ingle-task model in both MBVR and PD prediction tasks.

(2) Case 2 (Fig. 10(b), Dataset 1 predicts Dataset 5): The prediction
effect of some multi-task models on both tasks is not as good as that of
single-task models, that is, negative transfer problem occurs.
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Fig. 6. Visualization of different methods for predicting MBVR and PD experimental indicators.
Fig. 7. Experimental results of dataset 1 predicting MBVR of dataset 5.
(3) Case 3 (Fig. 10(c), Dataset 2 predicts Dataset 1): Certain multi-
task models show higher accuracy in predicting PD, but the accuracy
decreases when predicting MBVR.

(4) Case 4 (Fig. 10(d), Dataset 3 predicts Dataset 5): In contrast to
Case 3, the accuracy of some multi-task models in predicting MBVR is
improved, while the accuracy in predicting PD is decreased. Cases 3
and 4 are both seesaw phenomena (Tang et al., 2020a).

As can be seen from Fig. 10, the HPS model has unstable predictions
in the cross-operating mill load parameter prediction task, which is
9 
specifically manifested in the proneness of negative transfer problems
and seesaw phenomena. After adding a gated network, that is, the
MMoE model, the negative transfer problem can be reduced, but the
seesaw phenomenon still exists. The CGC model adds a special feature
extractor on the basis of the MMoE model, which can alleviate the
seesaw phenomenon to a certain extent, but the accuracy of some
tasks will still decrease under variable operating conditions. The model
proposed in this paper not only effectively avoids the occurrence of
negative migration and seesaw phenomenon by integrating physical
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Fig. 8. Experimental results of dataset 1 predicting PD of dataset 5.
Table 7
Ablation experiment R2 value.
Source Target PIMT DAMT PIDAMT

domain domain MBVR PD MBVR PD MBVR PD

1

2 0.953 0.920 0.963 0.922 0.965 0.925
3 0.939 0.830 0.927 0.876 0.942 0.920
4 0.916 0.962 0.952 0.945 0.959 0.963
5 0.941 0.967 0.945 0.958 0.952 0.972

2

1 0.897 0.770 0.943 0.912 0.950 0.913
3 0.978 0.948 0.955 0.950 0.984 0.958
4 0.965 0.968 0.957 0.965 0.974 0.974
5 0.970 0.958 0.946 0.951 0.986 0.962

3

1 0.739 0.458 0.925 0.823 0.932 0.875
2 0.897 0.816 0.976 0.920 0.980 0.936
4 0.962 0.854 0.985 0.954 0.987 0.956
5 0.932 0.910 0.982 0.920 0.990 0.944

4

1 0.775 0.718 0.920 0.838 0.929 0.867
2 0.901 0.842 0.944 0.892 0.962 0.901
3 0.942 0.909 0.975 0.916 0.976 0.927
5 0.855 0.937 0.982 0.858 0.989 0.965

5

1 0.752 0.701 0.785 0.845 0.804 0.861
2 0.534 0.812 0.928 0.897 0.944 0.929
3 0.719 0.873 0.936 0.936 0.946 0.937
4 0.860 0.872 0.940 0.962 0.959 0.970
Fig. 9. Visualization of ablation experiment results.
10 
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Table 8
Ablation experiment RMSE value.
Source Target PIMT DAMT PIDAMT

domain domain MBVR PD MBVR PD MBVR PD

1

2 0.064 0.081 0.057 0.080 0.055 0.079
3 0.073 0.120 0.080 0.102 0.071 0.082
4 0.085 0.056 0.065 0.067 0.060 0.055
5 0.072 0.053 0.070 0.060 0.065 0.049

2

1 0.094 0.138 0.070 0.086 0.066 0.085
3 0.044 0.066 0.063 0.065 0.037 0.059
4 0.055 0.052 0.061 0.053 0.047 0.046
5 0.051 0.060 0.069 0.064 0.035 0.057

3

1 0.150 0.212 0.081 0.121 0.076 0.102
2 0.094 0.123 0.045 0.082 0.042 0.073
4 0.058 0.109 0.036 0.061 0.033 0.060
5 0.077 0.087 0.039 0.082 0.030 0.069

4

1 0.139 0.153 0.083 0.116 0.078 0.105
2 0.093 0.114 0.070 0.095 0.058 0.091
3 0.071 0.088 0.047 0.084 0.045 0.078
5 0.112 0.073 0.040 0.110 0.032 0.054

5

1 0.146 0.158 0.136 0.114 0.130 0.108
2 0.201 0.125 0.079 0.092 0.070 0.077
3 0.156 0.104 0.075 0.074 0.069 0.073
4 0.110 0.102 0.072 0.055 0.060 0.049
Fig. 10. Task model performance analysis.
s
c

5

f

nformation and domain adaptation methods in the multi-task model,
ut also has a further improvement in prediction accuracy (as shown
n Fig. 10, located in the second quadrant and closer to the upper right
orner) compared with other models. Through the high-precision mill
oad prediction results, operators can understand the current MBVR and
D without waiting for measurement results. According to the predicted
ill load results, the feed and water supply in the grinding process can

e adjusted in time to keep the grinding process in the best operating
 p

11 
tate, thereby improving grinding efficiency and reducing mill energy
onsumption.

.4. Loss weight coefficient performance analysis

The loss function in the model proposed in this paper consists of
our parts, namely the prediction loss of the MBVR prediction task, the
rediction loss of the PD prediction task, the physical information loss,
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Fig. 11. Impact of loss weight on model performances.
and the domain adaptation loss. Different losses contribute differently
to the model training process, so different weight coefficients need to be
assigned to each loss term. Fig. 11 shows the impact of different weight
coefficients on model performance. Since the model includes two tasks,
the evaluation index is the sum of the R2 values of the two tasks. In
the figure, the horizontal axis is the value of the weight coefficient, the
vertical axis is the sum of the R2 values of the two tasks, and the red
point is the optimal value. The larger the sum of the R2 values, the
better the model performance.

Fig. 11(a) shows the result of the sum of the R2 values of the two
tasks when the MBVR prediction loss weight is [1,9]. It can be clearly
seen from the figure that when the value is 4, the sum of the R2 values
is the highest. Fig. 11(b) shows the result of the sum of the R2 values of
the two tasks when the PD prediction loss weight is [1,9]. As the value
increases, the value of the evaluation index gradually increases. When
the sum of the R2 values of the two tasks is the highest. As the value
continues to increase, the model performance decreases. Fig. 11(c)
shows the experimental results when the physical information loss
weight is [0.1,0.9]. The experimental results show that when the value
is 0.8, the prediction accuracy of the model is the highest. Fig. 11(d)
shows the experimental results when the domain adaptation loss weight
is [0.1,1.1]. It can be seen from the figure that when is 1, the sum of
the R2 values is the highest.

6. Conclusions

Accurately predicting mill load parameters is of great significance
for improving grinding efficiency and reducing mill energy consump-
tion. This paper proposes a multi-task mill load parameter prediction
model based on physical information and domain adaptation for the
prediction of multiple mill load parameters. By deriving the physical
relationship between mill load parameters and embedding it into the
data-driven model as a physical constraint, a physical-data-driven hy-
brid model is constructed. A multi-task learning framework is adopted
to achieve simultaneous prediction of multiple mill load parameters,
improve prediction efficiency and avoid repeated training of traditional
single-task models. In view of the significant distribution difference of
ball mill data under different working conditions, the maximum mean
12 
discrepancy is introduced to improve the adaptability of the model to
variable working conditions. The effectiveness of the proposed model
is verified by conducting experiments on laboratory small ball mill
data. The experimental results show that compared with the single-
task model and the conventional multi-task model, the proposed model
shows higher prediction accuracy under cross-working conditions. In
addition, in order to clarify the contribution of physical information
and domain adaptation methods to the improvement of model per-
formance, this paper conducts ablation experiments. The experimental
results show that the addition of physical information and domain
adaptation methods improves the prediction accuracy of the model.
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