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Given a set of local dynamics, are they compatible with a global dynamics? We systematically formulate these
questions as quantum channel marginal problems. These problems are strongly connected to the generalization
of the no-signaling conditions to quantized inputs and outputs and can be understood as a general toolkit to
study notions of quantum incompatibility. In fact, they include as special cases channel broadcasting, channel
extendibility, measurement compatibility, and state marginal problems. After defining the notion of compatibility
between global and local dynamics, we provide a solution to the channel marginal problem that takes the form
of a semidefinite program. Using this formulation, we construct channel incompatibility witnesses, discuss their
operational interpretation in terms of an advantage for a state-discrimination task, prove a gap between classical
and quantum dynamical marginal problems, and show that the latter is irreducible to state marginal problems.

DOI: 10.1103/PhysRevResearch.4.013249

I. INTRODUCTION

A fundamental question in quantum mechanics is whether
a given set of local states is compatible with a global one.
In other words, can the former be seen as the marginals of a
global quantum state? These kinds of questions are known as
state marginal problems (SMPs). One of the most prominent
examples is the two-body N-representability problem, where
one asks which two-body reduced density matrices can result
as the marginals of a global state of N particles, a problem
motivated by the calculation of the ground states of two-body,
usually local, Hamiltonians; see, for instance, [1,2]. Because
of its relevance, the SMP has been studied from many dif-
ferent viewpoints, for instance in the context of entanglement
[3,4] or Bell nonlocality detection [5,6], or by constructing ef-
ficient measurement strategies for the estimation of marginal
states [7–9]. The SMP also has a classical analog, where
incompatibility appears in the form of frustration due to loops
[10].

Whereas the SMP is concerned with static properties en-
coded in states, the purpose of this work is to understand how
compatibility between local and global descriptions extends at
the level of dynamics. As we shall see, for the concept of local
dynamics to be well defined, the channels under consideration
have to satisfy a generalization of the no-signaling condition
to quantum input and outputs considered in Refs. [11–16].
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First, however, we introduce the channel marginal problems
(CMPs) as a natural dynamical generalization of the SMP.
After this, we provide necessary and sufficient conditions
to solve it that can be addressed using semidefinite pro-
gramming. There exist several previous works that have also
considered the CMP [17–22], and we shall see that our frame-
work includes those (and more) within a unified umbrella.

It is convenient for what follows to recall the definition of
the SMP; see, also, Fig. 1(a).

Definition 1. (State Marginal Problem) Consider a global
system S and a set of local states {ρX}X∈�, where � is a col-
lection of subsystems X of S and each ρX is in X . Then a SMP
asks whether there exists a global state ρS in S compatible with
all of them, that is,

∃ ρS � 0 such that trS\X(ρS) = ρX, ∀ X. (1)

SMPs always have a trivial solution if the marginals do not
overlap, ρS =⊗X∈� ρX. The problem becomes much more
interesting in the case of overlapping regions. It is again easy
to see that the problem has no solution when states ρX are
picked at random. This is because, for the problem to be well
posed, the states ρX must be compatible in the overlapping
regions, that is, their reduced state must be equal. Formally,

trX\(X∩Y)(ρX) = trY\(X∩Y)(ρY) ∀ X,Y ∈ �. (2)

These are sometimes called local compatibility conditions,
which are necessary and easy to verify but, unfortunately, not
sufficient. Still, Eq. (1) is simply a set of linear equations on
positive operators that can be solved using semidefinite
programming (SDP), a standard technique in convex opti-
mization. Note, however, that the size of the SDP scales
exponentially with the number of systems. In fact, the SMP
is not expected to have a scalable solution as it is known to be
Quantum Merlin-Arthur (QMA) complete [23].
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FIG. 1. (a) A state marginal problem is asking whether, for a
given set of local states (e.g., ρAB, ρBC), there is a global state (ρABC)
that has them as its marginal states. (b) As a dynamical generalization
of the state marginal problem, a channel marginal problem is asking
whether, for a given set of local channels (e.g., EAB, EBC, where
EX = EX|X′ when X = X ′), there is a global channel (EABC) that has
them as its marginal channels. (c) The commutation diagram used
to define the marginal channel in a subsystem (Definition 2). For a
local input coming from part of a global input, trB(ρAB), the marginal
channel TrB|B(EAB) of a global channel EAB should map it to the
marginal state of the global output, trB[EAB(ρAB)]. Unlike the case
for states, the marginal of a channel is not always well defined.

II. FRAMEWORK: CHANNEL MARGINAL PROBLEMS

To formalize the dynamical version of SMPs, first recall
that channels correspond to the most general linear operation
on quantum states and are represented by completely positive
trace-preserving (CPTP) maps [24], denoted by E . One is then
tempted to define the CMP as follows: given a set of local
channels {EX}X∈�, where � is a collection of subsystems X of
S and each EX is a channel in X , the CMP asks whether there
exists a global channel ES compatible with all of them. The
formalization of this compatibility condition, however, is not
obvious because the concept of marginals for channels is not
as straightforward as that for states.

In fact, being an input-output process, the existence of
well-defined marginals for a dynamical map requires cer-
tain no-signaling conditions. Consider the classical case first.
A dynamical map from the inputs S′ = {s′

i} to the outputs
S = {s j} is defined by a stochastic matrix PS|S′ [25]. Given
X ′ ⊂ S′ and X ⊂ S, PS|S′ has a well-defined marginal from X ′
to X , or simply a reduced map PX|X′ , if and only if, for every
input probability distribution pS′ , we have

PX|X′
∑

s′
i∈S′\X ′

pS′ =
∑

si∈S\X

PS|S′ pS′ , (3)

where PB|A pA =∑a1,...,ak
P(b1, . . . , bk|a1, . . . , ak )pa1,...,ak .

This is equivalent to the usual condition that the map PS|S′

is no-signaling from S′ \ X ′ to X ; namely,
∑

si∈S\X PS|S′ is
independent of the input S′ \ X ′. For instance, in the standard
bipartite scenario, where local inputs by Alice and Bob are
now labeled by X and Y and their outputs by A and B, a
global map PAB|XY has well-defined marginals PA|X and PB|Y
if it satisfies the standard no-signaling conditions. Moving
now to the quantum domain, the condition in Eq. (3) admits
a straightforward quantum generalization. Denoting by EA|A′

a channel from A′ to A and using A|A′ to represent this
particular output-input pair, we have

Definition 2. (Marginal Channels) Given a global channel
ES|S′ and subsystems X ′ ⊆ S′, X ⊆ S, ES|S′ is said to have a
well-defined marginal from X ′ to X , or reduced channel EX|X′ ,
if, for every state ρS′ ,

EX|X′ ◦ trS′\X′ (ρS′ ) = trS\X ◦ ES|S′ (ρS′ ). (4)

If this is the case, we denote the marginal channel by

TrS\X|S′\X′ (ES|S′ ) := EX|X′ . (5)

Channels satisfying this condition are known in the liter-
ature as semicausal channels in X with respect to S′ \ X ′ or
no-signaling from S′ \ X ′ to X [11–14]. Comparing Eq. (4)
with (3), these channels can be seen as the analog of no-
signaling correlations once we quantize inputs and outputs (in
fact, after dephasing the inputs and outputs, we recover the
definition of no-signaling correlations). Operationally, these
channels were also proven to be equivalent to those quantum
dynamics that can be realized with one-way communication
from X ′ to S \ X [12] (also known as semilocalizable in X ).
Unsurprisingly, this class of channels plays a critical role in
the study of the quantum generalization of causal models [17].
What we highlight here is that they are also at the core of the
dynamical generalization of the SMP, which can be written in
full analogy to Definition 1:

Definition 3. (Channel Marginal Problem) Consider global
systems S′, S and a set of local channels {EX|X′ }X|X′∈�,
where � := {X |X ′} is a collection of output-input pairs with
X ′ ⊆ S′, X ⊆ S. Then a CMP asks whether there exists a
global channel ES|S′ compatible with all of them,

∃ channel ES|S′ such that TrS\X|S′\X′ (ES|S′ ) = EX|X′ ∀ X |X ′.
(6)

With this definition, the analogies between the CMP and
SMP are clear. As for states, when the subsets X ’s and X ′’s
are nonoverlapping, the CMP has a trivial solution, namely,⊗

X|X′∈� EX|X′ . When overlapping marginals are considered,
we again need to first verify whether the problem is well posed
and the overlapping channels coincide in the common region:
For every X |X ′,Y |Y ′ ∈ �, we need

TrX\Y|X′\Y′ (EX|X′ ) = TrY\X|Y′\X′ (EY|Y′ ). (7)

A set of channels {EX|X′ }X|X′∈� satisfying this condition is
said to be locally compatible. As for states, we will see below
that these conditions are necessary but not sufficient.

Our next step is to see how condition (6) can be tackled
and, in particular, whether it can be written as a SDP. But
before doing that, we showcase how the CMP includes as
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special cases several problems considered before in the quan-
tum information and physics literature.

A. Special cases

First consider the case where all X ′ coincide with S′;
namely, � = {X |S′}. The global channels ES|S′ automatically
have well-defined marginals EX|S′ , since the no-signaling con-
dition in Definition 2 trivializes. The CMP then reduces to the
question of the existence of a global channel ES|S′ such that
trS\X ◦ ES|S′ = EX|S′ ∀ X . This broadcasting notion of channel
(in)compatibility has been studied extensively as a natural
generalization of the notion of measurement (in)compatibility
[18–21,26–28]. When the channels under consideration are
the identity, the nonexistence of a global channel is the cel-
ebrated no-broadcasting theorem [29].

Next, consider the case where X ′
i = Xi = ABi, where all

Bi’s are isomorphic. Given identical channels EABi , the CMP
asks whether there exists an extension to a global channel
EAB1...Bn . This notion of channel extendibility was recently
introduced as a natural generalization of the notion of state ex-
tendibility and used in the context of quantum communication
scenarios [22] and testing symmetries on a quantum computer
[30].

B. Solving the CMP

In what follows, and for the ease of notation, we often
denote the vector of local channels defining a given CMP
by E := {EX|X′ }X|X′∈�. We say that E is compatible whenever
the CMP has a solution, namely, there exists a global channel
ES|S′ compatible with each EX|X′ . The set of compatible local
channels is denoted by C. As a first step to solve the CMPs, we
consider the Choi-Jamiołkowski isomorphism between chan-
nels and bipartite states. The Choi state of a channel EX|X′ is
defined by [31,32]

EJ
XX′ := (EX|X′ ⊗ IX′ )(|�+

X′X′ 〉〈�+
X′X′ |), (8)

where |�+
X′X′ 〉 := 1√

dX′

∑dX′ −1
i=0 |ii〉 is maximally entangled in

X ′X ′, which is a bipartite system consisting of two copies of
X ′. Note that since channels are trace preserving, trX(EJ

XX′ ) =
IX′
dX′ . It has been shown [11–16] that the condition (4) used to
define a marginal channel EX|X′ of a global channel ES|S′ can
equivalently be expressed in terms of their Choi states as

trS\X
(
EJ

SS′
) = EJ

XX′ ⊗ IS′\X′

dS′\X′
, (9)

which we prove for completeness in Appendix A.
It is now straightforward to present an equivalent formu-

lation of the CMP in term of the Choi states: a set of local
channels E is compatible if, and only if,

∃ EJ
SS′ � 0 such that trS\X

(
EJ

SS′
) = EJ

XX′ ⊗ IS′\X′

dS′\X′
∀ X |X ′.

(10)

Note that there is no need to impose that EJ
SS′ is a Choi

state, as the condition trS(EJ
SS′ ) = IS′

dS′ follows from the equal-
ities in the previous formulation. Hence, the CMP can be

rephrased via the Choi-Jamiołkowski isomorphism as a par-
ticular SMP with overlapping marginals, but it requires an
additional tensor product structure taking into account the
quantum no-signaling constraints associated to the dynamical
problem. Equation (10) involves a set of linear conditions over
positive operators and can thus be solved using SDP, but it is
not equivalent to the SMP for the Choi states. However, in
the special case of broadcasting compatibility, where all X ′
coincide with the input global system S′, the “tensor identity”
parts in Eq. (10) disappear. In this special case, the CMP
reduces to a SMP for the Choi states, recovering the result
of Ref. [20].

III. CHANNEL INCOMPATIBILITY ROBUSTNESS

In recent years, there has been an intense effort to provide
operational measures to problems defined through SDP or
conic programs; see, for example, [26,27,33–40]. The CMP
defined in Eq. (10) is another example of these problems
and we can therefore apply to it techniques similar to those
presented in the previous references. We first present a ro-
bustness quantity, dubbed incompatibility robustness, which
gives an efficient solution to the CMPs while also providing a
quantitative measure of incompatibility,

R(E ) := max{λ ∈ [0, 1] | λE + (1 − λ)N ∈ C}, (11)

where the maximization is taken over vectors of local chan-
nels N = {NX|X′ }X|X′∈�. The linear combination of E,N
is defined componentwise, that is, as aE + bN := {aEX|X′ +
bNX|X′ }X|X′∈�. R(E ) is the solution of the SDP (see Ap-
pendix B),

max
ρSS′ ,λ

λ

such that ρSS′ � 0, trS(ρSS′ ) = IS′

dS′
,

λ ∈ [0, 1], & ∀ X |X ′,

trS\X(ρSS′ ) � λEJ
XX′ ⊗ IS′\X′

dS′\X′
;

trS\X(ρSS′ ) = trSS′\XX′ (ρSS′ ) ⊗ IS′\X′

dS′\X′
.

(12)

Equation (12) provides a general, quantitative, and numeri-
cally feasible strategy to tackle CMPs. Its solution λ serves
as a measure of incompatibility: R(E ) = 1 if and only if
E ∈ C, meaning that the CMP for E admits a solution. A value
R < 1 can detect instances in which the local compatibility
of the channels EX|X′ is not sufficient for the existence of
the global channel ES|S′ [41]. The solution to the SDP also
returns the global physical process that best approximates the
marginal channels E . In the broadcasting scenario (X ′ = S′),
the incompatibility robustness recovers, as a special case, the
“consistent robustness” of [20] (and the results of Theorem 1
of the same manuscript).

The dual of the SDP (12) provides a simple operational
interpretation, helping us to single out the physical role played
by incompatibility. To proceed, let EJ := {EJ

XX′ }X|X′∈� be
the vector of Choi states of the input channels E . For a
set of operators A := {AX|X′ }X|X′∈�in XX ′, define 〈A,EJ 〉 :=
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∑
X|X′∈� tr(AX|X′EJ

XX′ ). Then we prove that E is incompatible
if and only if there exists a set of positive operators H :=
{HX|X′ }X|X′∈� in XX ′ such that (see Appendix B)

〈H,EJ 〉 > max
L∈C

〈H,LJ 〉. (13)

This result gives a witness form for channel incompatibility
in terms of Choi states of local channels, serving as the dy-
namical version of the state incompatibility witness given by
Ref. [33]. However, intuitively, one expects that it is possible
to define witnesses in terms of channels, rather than Choi
states. Using Proposition 7 in Ref. [34], in Appendix E we
prove the following characterization of incompatibility:

Theorem 1. (Channel Incompatibility Witness) E is incom-
patible if and only if for every X |X ′ ∈ �, there exist Hermitian
operators {H (i)

X|X′ }N�

i=1 in X and states {ρ (i)
X|X′ }N�

i=1 in X ′ such that,
with N� := (maxX|X′∈�{dX, dX′ })2 + 3,∑

X|X′,i

tr
[
H (i)

X|X′EX|X′
(
ρ

(i)
X|X′
)]

> max
L∈C

∑
X|X′,i

tr
[
H (i)

X|X′LX|X′
(
ρ

(i)
X|X′
)]

. (14)

A. Examples of incompatibility

In analogy to states, there exist locally compatible channels
for which there exists no global evolution compatible with
them. Consider channels (X = A,C)

MXB(·) := CNOTXB[|0〉〈0|X ⊗ trX(·)], (15)

where CNOTXB : |i〉X ⊗ | j〉B �→ |(i + j)mod 2〉X ⊗ | j〉B is a
qubit CNOT gate. MAB can be realized by Bob (i) imple-
menting a CNOT between his incoming particle and an extra
ancillary qubit prepared in state |0〉 (controlled on the former)
and (ii) sending the ancillary qubit to A, who uses it as output.
This is incompatible with MCB, as the SDP (12) returns
R({MAB,MCB}) = 0.75. The SDP also returns the optimal
noise making the channels compatible,

NXB(·) = 2
3 (IX ⊗ DB) ◦ CNOTXB[|1〉〈1|X ⊗ trX(·)]
+ 1

3 CNOT−
XB[|0〉〈0|X ⊗ trX(·)], (16)

where CNOT−
XB : |i〉X ⊗ | j〉B �→ (−1) j |(i + j)mod 2〉X ⊗ | j〉B

and D(·) :=∑i=0,1 |i〉〈i| · |i〉〈i|. In fact, this is the noise gen-
erated by a physical process involving the best universal
cloning machine allowed by quantum mechanics [42], which
corresponds to the following protocol: After performing the
CNOT between X and B, Bob sends X into an optimal cloning
machine. He then sends one (imperfect) clone to Alice and
one to Charlie, who use them as outputs. See Appendix C for
details.

IV. PHYSICAL IMPLICATIONS

A. CMP is irreducible to SMP

One may conjecture that the compatibility of channels E =
{EX|X′ } can be reduced to the state compatibility of the image
states {EX|X′ (ρX′ )} for every set of compatible inputs {ρX′ }. We
disprove this conjecture by constructing a counterexample.

Take the bipartite channel

KXB(·) := SWAP[|0〉〈0|X ⊗ trX(·)], (17)

where SWAP : |i j〉 �→ | ji〉 is the swap operation. First,
{KAB,KCB} is locally compatible since in B they are both
(·)B �→ |0〉〈0|B. This pair is nevertheless incompatible. To
see this, by contradiction suppose that there was a tripartite
channel KABC simultaneously realizing KAB,KCB. By con-
sidering all inputs of the form |ψ〉〈ψ |B ⊗ |00〉〈00|AC, KABC

realizes |ψ〉 �→ |ψ〉 ⊗ |ψ〉, in violation of the no-cloning
theorem [42,43]. Hence, KABC does not exist. Still, for ev-
ery compatible input pair {ρAB, ρCB} with marginal in B as
σ = trA(ρAB) = trC(ρBC), the image states under {KAB,KCB}
read {σA ⊗ |0〉〈0|B, |0〉〈0|B ⊗ σC}, which are compatible with
σA ⊗ |0〉〈0|B ⊗ σC. Hence, the incompatibility of local chan-
nels cannot always be detected from the incompatibility of
their image states [45]. See Appendix D for further remarks.

B. Gap between classical and quantum CMP

The previous example demonstrated the existence of non-
trivial instances of quantum channel incompatibility in the
AB/BC scenario. Remarkably, this incompatibility structure
never occurs classically. In fact, given two classical channels
(i.e., stochastic matrices) PAB|XY, PBC|YZ with a well-defined
marginal PB|Y in B|Y , the CMP is always satisfied by the
global classical channel

PABC|XYZ = PAB|XYPBC|YZ

PB|Y
, (18)

as one can show by taking the corresponding marginals [46].
Is the gap between classical and quantum CMP simply due

to the fact that the former is always trivial, that is, simply
defined by local compatibility? The following example shows
that this is not the case. Take a Popescu-Rohrlich (PR)-box
[47,48] on AB: PAB|XY = 1

2 if A ⊕ B = XY and 0 otherwise,
where all random variables are bits. Similarly, define PR-
boxes in AC and BC. The marginals are well defined and
coincide on A, B, and C. Now, is there a joint classical channel
PABC|XYZ compatible with them? By contradiction, suppose it
does. Note that all of its two-party marginals are well defined,
so one can prove that PABC|XYZ must be a no-signaling dis-
tribution. But it is known that the PR-box cannot be shared
without violating the no-signaling condition [49], so PABC|XYZ

cannot exist. This proves that the classical CMP is not trivial
either, but it is structurally different from the quantum one. In
the classical problem, dynamical incompatibility is a conse-
quence of loops, while quantumly these are not required. This
mirrors at the dynamical level what happens with frustration
in the classical SMP [10].

V. OPERATIONAL INTERPRETATIONS

Finally, we can also relate the CMP to discrimination tasks.
In fact, a direct application of the formalism of Ref. [35]
allows interpretation of the robustness R(E ) in terms of an
input-output game. Here we are more interested in the stan-
dard ensemble state discrimination task. Given �, consider
a scenario which has an agent for each X and X ′. With
probability pX|X′ the output-input pair X |X ′ is announced and
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the agent in X ′ is given a set of states {ρ (i)
X|X′ }i sent with

probabilities {q(i)
X|X′ }i (with

∑
i q(i)

X|X′ = 1). The agent in X ′
needs to send them to the agent in X via an arbitrary chan-
nel EX|X′ . The agent in X receives the states and performs a
discriminating measurement M (i)

X|X′ (formally, M (i)
X|X′ � 0 and∑

i M (i)
X|X′ = IX), guessing state i in case of outcome i. Set-

ting D := ({pX|X′ }, {q(i)
X|X′ , ρ

(i)
X|X′ }, {M (i)

X|X′ }), the corresponding
success probability in the task reads

P(D,E ) :=
∑
X|X′

pX|X′
∑

i

q(i)
X|X′ tr
[
M (i)

X|X′EX|X′
(
ρ

(i)
X|X′
)]

. (19)

To avoid trivial scenarios, take D to be strictly positive,
meaning pX|X′ > 0, q(i)

X|X′ > 0, M (i)
X|X′ > 0 ∀ i ∀ X |X ′ [44]. Let

PC(D) := maxE∈C P(D,E ) be the highest success probability
achievable by compatible sets of channels in the discrimina-
tion task D [50]. Then the incompatibility of the channels is
equivalent to an advantage in an ensemble state discrimination
task (see the proof in Appendix E):

Theorem 2. (Advantage in Discrimination Tasks) E is
incompatible if and only if there exists a strictly positive
ensemble state discrimination task D such that

P(D,E ) > PC(D). (20)

Setting X ′ = S′ for every member in �, Theorem 2 im-
plies that every set of broadcast incompatible channels gives
an advantage over compatible ones in some ensemble state
discrimination tasks. This recovers results from Refs. [27,40].
Also, in the particular case of quantum-to-classical channels,
Theorem 2 recovers results on the discrimination advantages
of the incompatible measurements of Refs. [26,36,37].

VI. CONCLUSIONS

We introduced the dynamical generalization of state
marginal problems, termed quantum channel marginal prob-
lems (CMPs), which is formulated as a marginal problem for
channels. The CMP involves in its definition the quantum
generalization of the no-signaling conditions. It encompasses
and naturally generalizes several notions of quantum incom-
patibility [18–20,26–28] and channel extendibility [22,30].

The problem can be expressed in terms of states using
the Choi-Jamiołkowski isomorphism, but in general it is irre-
ducible to state marginal problems. We provided a necessary
and sufficient condition for channel incompatibility in terms
of a robustness measure, which can be cast into a semidefi-
nite program. A witness form for dynamical incompatibility
can be derived, giving channel incompatibility an operational
interpretation in a state discrimination task which recovers
several recent results as special cases [26,27,36,37,40]. The
study of CMPs not only describes, within a unified frame-
work, previously disconnected notions of incompatibility that
found applications in quantum communication [22], quantum
foundations [29], and computing [30], but in analogy to the
study of no-signaling correlations, it may also bring novel
insights into the dynamical structure of quantum theory as it
differs from both classical and supraquantum theories [16].
In this context, we discussed a gap between classical and
quantum CMP.
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APPENDIX A: PROOFS FOR SEC. II B

In this section, we prove Eq. (9) of the main text, which
can be formally stated as the following lemma:

Lemma 1. ES|S′ is compatible with EX|X′ if and only if

trS\X(EJ
SS′ ) = EJ

XX′ ⊗ IS′\X′
dS′\X′ .

This result has appeared in several previous works [11–16];
here we provide a proof for the sake of completeness.

Proof. For every input state ρX′ in X ′, one can write
EX|X′ (ρX′ ) = dX′ trX′ [(IX ⊗ ρT

X′ )EJ
XX′ ], where (·)T is the trans-

pose map. This means

trS\X ◦ ES|S′ (ρS′ ) = dS′ trS\X ◦ trS′
[(
IS ⊗ ρT

S′
)
EJ

SS′
]

= dS′ trS′
[(
IX ⊗ ρT

S′
)
trS\X
(
EJ

SS′
)]

, (A1)

On the other hand, we have

EX|X′ ◦ trS′\X′ (ρS′ ) = dX′ trX′
({IX ⊗ [trS′\X′ (ρS′ )]T }EJ

XX′
)

= dX′ trS′
[(
IX ⊗ ρT

S′
)(
EJ

XX′ ⊗ IS′\X′
)]

,

(A2)

where we use the identity trA(ρAB)T = trA(ρT
AB) [51]. Since

dX′dS′\X′ = dS′ , the validity of Eq. (9) in the main text implies
that ES|S′ is compatible with EX|X′ . This proves that Eq. (9) is
sufficient for the compatibility.

To show that it is also necessary, we note that the validity
of EX|X′ ◦ trS′\X′ (ρS′ ) = trS\X ◦ ES|S′ (ρS′ ) implies

trS\X
(
EJ

SS′
) = [(trS\X ◦ ES|S′ ) ⊗ IS′](�+

S′S′ )

= [(EX|X′ ◦ trS′\X′ ) ⊗ IS′](�+
S′S′ )= EJ

XX′ ⊗ IS′\X′

dS′\X′
.

(A3)

This completes the proof. �
Applying Lemma 1 to X,Y and X ∩ Y (and, hence, also

X ′,Y ′ and X ′ ∩ Y ′) shows a characterization for local compat-
ibility. More precisely, we have the following corollary:

Corollary 1. If EX|X′ and EY|Y′ are compatible, then
TrX\Y|X′\Y′ (EX|X′ ) = TrY\X|Y′\X′ (EY|Y′ ); namely, they are lo-
cally compatible.
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Proof. To see this, we redefine the systems as
A = X \ Y , B = X ∩ Y , C = Y \ X , S = A ∪ B ∪ C
(similar definitions apply to A′, B′,C′, S′). Suppose that
EX|X′ = EAB|A′B′ , EY|Y′ = EBC|B′C′ are compatible, then there
exists a global channel ES|S′ such that TrC|C′ (ES|S′ ) = EAB|A′B′

and TrA|A′ (ES|S′ ) = EBC|B′C′ . Then Lemma 1 implies that
trA(EJ

XX′ ) ⊗ IC′
dC′ = trAC(EJ

SS′ ) = trC(EJ
YY′ ) ⊗ IA′

dA′ . Tracing out

C′ and using Lemma 1 again, we learn that EX|X′ is compatible
with a marginal channel in B|B′ [TrX\Y|X′\Y′ (EX|X′ )] with Choi
state trCC′ (EJ

YY′ ) = trACA′C′ (EJ
SS′ ). A similar argument (tracing

out A′) shows that EY|Y′ is compatible with a marginal
channel in B|B′ [TrY\X|Y′\X′ (EY|Y′ )] with the same Choi state
trAA′ (EJ

XX′ ) = trACA′C′ (EJ
SS′ ). From here, we conclude that

TrX\Y|X′\Y′ (EX|X′ ) = TrY\X|Y′\X′ (EY|Y′ ). �

APPENDIX B: PROOFS FOR SEC. III

1. Proof of Eq. (12)

Proof. By definition, R(E ) is the solution of

max
N ,L,λ

λ

such that L ∈ C, λ ∈ [0, 1], N : vector of channels, λE + (1 − λ)N = L,

(B1)

where the last condition holds if and only if λEJ
XX′ + (1 − λ)NJ

XX′ = LJ
XX′ ∀ X |X ′ ∈ �. By Lemma 1, there exists a

global channel LS|S′ such that trS\X(LJ
SS′ ) = LJ

XX′ ⊗ IS′\X′
dS′\X′ ∀ X |X ′ ∈ �, which implies trS\X(LJ

SS′ ) = [λEJ
XX′ + (1 − λ)NJ

XX′ ] ⊗
IS′\X′
dS′\X′ ∀ X |X ′ ∈ �. This means, for every X |X ′ ∈ �,

trS\X
(
LJ

SS′
)
� λEJ

XX′ ⊗ IS′\X′

dS′\X′
;

trS\X
(
LJ

SS′
) = trSS′\XX′

(
LJ

SS′
)⊗ IS′\X′

dS′\X′
;

trS
(
LJ

SS′
) = trX

(
LJ

XX′ ⊗ IS′\X′

dS′\X′

)
= IS′

dS′
. (B2)

Hence, when (N ,L, λ) is feasible for Eq. (B1), (LJ
SS′ , λ) is feasible for Eq. (12) in the main text.

Conversely, if (ρSS′ , λ) is feasible for Eq. (12), then the state ρSS′ = LJ
SS′ is a Choi state of a global channel

LS|S′ (·) := dS′ trS′ {[IS ⊗ (·)T ]ρSS′ } [using the first condition in Eq. (12), we have trS(ρSS′ ) = IS′
dS′ ]. By Lemma 1 and the last

condition in Eq. (9), LS|S′ has a well-defined marginal in each X |X ′ ∈ �, denoted by LX|X′ , whose Choi state is given by

LJ
XX′ = trSS′\XX′ (ρSS′ ). (B3)

Now, recall the second condition in Eq. (12); namely, λEJ
XX′ ⊗ IS′\X′

dS′\X′ � trS\X(ρSS′ ). Tracing out S′ \ X ′ and using Eq. (B3), we

obtain the inequality

LJ
XX′ − λEJ

XX′ � 0. (B4)

On the other hand, since LJ
XX′ and EJ

XX′ where both have IX′
dX′ as their marginals in X ′, we learn that when λ < 1,

1

1 − λ
trX
(
LJ

XX′ − λEJ
XX′
) = IX′

dX′
. (B5)

Equations (B4) and (B5) imply that for λ < 1, 1
1−λ

(LJ
XX′ − λEJ

XX′ ) is a legal Choi state. In other words, 1
1−λ

(LX|X′ − λEX|X′ ) is a
channel from X ′ to X when λ < 1. For each X |X ′ ∈ �, by defining the channel

NX|X′ := 1

1 − λ
(LX|X′ − λEX|X′ ) if λ < 1 and NX|X′ : arbitrary if λ = 1, (B6)

we have LX|X′ = λEX|X′ + (1 − λ)NX|X′ ∀ X |X ′ ∈ �, showing that ({NX|X′ }X|X′∈�, {LX|X′ }X|X′∈�, λ) is feasible for Eq. (B1) for
every (ρSS′ , λ) that is feasible for Eq. (12). Thus, the two optimization problems given by Eqs. (B1) and (12) have the same
optimum. �

2. Dual problem of Eq. (12)

In what follows, when an operator is written as V (X)
Y|Z , it means that it is an operator acting on the system X with dependency

on the output-input pair Y |Z .
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Lemma 2. The dual of Eq. (12) is

min
z,HS′ ,
{

H (XS′ )
X|X′
}

,

{
Z (XS′ )

X|X′
} tr(HS′ )

dS′
+ z

such that IS ⊗ HS′ +
∑

X|X′∈�

[
H (XS′ )

X|X′ − trS′\X′
(
H (XS′ )

X|X′
)⊗ IS′\X′

dS′\X′
− Z (XS′ )

X|X′

]
⊗ IS\X � 0,

z +
∑

X|X′∈�

tr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]
� 1,

H (XS′ ),†
X|X′ = H (XS′ )

X|X′ ∀ X |X ′ ∈ �, H†
S′ = HS′ ; Z (XS′ )

X|X′ � 0 ∀ X |X ′ ∈ �, z � 0.

(B7)

Furthermore, strong duality holds; hence, Eqs. (12) and (B7) have the same optimum.
Proof. First, we write Eq. (12) in the standard form. In what follows, L(X ) denotes the set of linear maps on X . Then,

let V := ρSS′ ⊕ λ and A := 0 ⊕ 1, both in L(SS′) ⊕ R, such that 〈V, A〉 := tr(V †A) = λ. Note that x ⊕ y := (
x ·
· y

), where the

off-diagonal terms are irrelevant to the definition of the direct sum spaces. This is the objective function for the standard form
that we will adopt. The feasible set can be characterized by defining the following functions: � := (

⊕
X|X′∈� �X|X′ ) ⊕ �0 and

� := (
⊕

X|X′∈� �X|X′ ) ⊕ �0, where for each X |X ′ ∈ �, we have

�X|X′ (V ) := trS\X(ρSS′ ) − trSS′\XX′ (ρSS′ ) ⊗ IS′\X′

dS′\X′
; (B8)

�0(V ) := trS(ρSS′ ); (B9)

�X|X′ (V ) := λEJ
XX′ ⊗ IS′\X′

dS′\X′
− trS\X(ρSS′ ); (B10)

�0(V ) := λ, (B11)

where �X|X′ : L(SS′) ⊕ R → L(XS′), �0 : L(SS′) ⊕ R → L(S′), �X|X′ : L(SS′) ⊕ R → L(XS′), and �0 : L(SS′) ⊕ R → R.
One can check that all of them are Hermitian-preserving linear maps. Also, we choose

B :=
( ⊕

X|X′∈�

0XS′

)
⊕ IS′

dS′
, C :=

( ⊕
X|X′∈�

0XS′

)
⊕ 1, (B12)

where 0XS′ denotes the zero operator in the system XS′. Note that this means that for two different output-input pairs X |X ′,Y |Y ′,
we attribute the same zero operator to them if X = Y . One can rewrite Eq. (12) as

max
V

〈V, A〉
such that �(V ) = B, �(V ) � C, V � 0.

(B13)

The corresponding dual problem is (see, e.g., Sec. 1.2.3 in Ref. [52])

min
H,Z

〈H, B〉 + 〈Z,C〉

such that �†(H ) + �†(Z ) � A, H† = H, Z � 0,

(B14)

where H = (
⊕

X|X′∈� H (XS′ )
X|X′ ) ⊕ HS′ ∈ (

⊕
X|X′∈� L(XS′)) ⊕ L(S′) and Z = (

⊕
X|X′∈� Z (XS′ )

X|X′ ) ⊕ z ∈ (
⊕

X|X′∈� L(XS′)) ⊕ R.

Now it remains to find �† and �†. First, we note that

〈�†(H ),V 〉 =
〈( ⊕

X|X′∈�

H (XS′ )
X|X′

)
⊕ HS′ ,

( ⊕
X|X′∈�

�X|X′ (V )

)
⊕ �0(V )

〉

= 〈HS′ ,�0(V )〉 +
∑

X|X′∈�

〈
H (XS′ )

X|X′ ,�X|X′ (V )
〉 = 〈�†

0(HS′ ) +
∑

X|X′∈�

�
†
X|X′
(
H (XS′ )

X|X′
)
,V

〉
, (B15)

which means �†(H ) = �
†
0(HS′ ) +∑X|X′∈� �

†
X|X′ (H

(XS′ )
X|X′ ) and, similarly, �†(Z ) = �

†
0 (z) +∑X|X′∈� �

†
X|X′ (Z

(XS′ )
X|X′ ). So we find

the adjoint of each �X|X′ ,�0, �X|X′ , �0 separately. Direct computation shows 〈�†
0(HS′ ),V 〉 = tr[HS′ trS(ρSS′ )] = 〈(IS ⊗ HS′ ) ⊕
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0,V 〉, which means �
†
0(HS′ ) = (IS ⊗ HS′ ) ⊕ 0. For a given X |X ′ ∈ �, we have

〈
�

†
X|X′
(
H (XS′ )

X|X′
)
,V
〉 = 〈H (XS′ )

X|X′ , trS\X(ρSS′ ) − trSS′\XX′ (ρSS′ ) ⊗ IS′\X′

dS′\X′

〉

= tr
[
(H (XS′ )

X|X′ ⊗ IS\X)ρSS′
]− tr

[(
trS′\X′

(
H (XS′ )

X|X′
)

dS′\X′
⊗ ISS′\XX′

)
ρSS′

]

=
〈(

H (XS′ )
X|X′ ⊗ IS\X − trS′\X′

(
H (XS′ )

X|X′
)

dS′\X′
⊗ ISS′\XX′

)
⊕ 0,V

〉
, (B16)

which implies �
†
X|X′ (H

(XS′ )
X|X′ ) = {[H (XS′ )

X|X′ − trS′\X′ (H (XS′ )
X|X′ ) ⊗ IS′\X′

dS′\X′ ] ⊗ IS\X} ⊕ 0. On the other hand, we have 〈�†
0 (z),V 〉 = zλ and,

hence, �
†
0 (z) = 0 ⊕ z. Also, for a given X |X ′ ∈ �,

〈
�

†
X|X′
(
Z (XS′ )

X|X′
)
,V
〉 = 〈Z (XS′ )

X|X′ , λEJ
XX′ ⊗ IS′\X′

dS′\X′
− trS\X(ρSS′ )

〉
= λtr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]
− tr
[(

Z (XS′ )
X|X′ ⊗ IS\X

)
ρSS′
]

=
〈(−Z (XS′ )

X|X′ ⊗ IS\X
)⊕ tr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]
,V

〉
. (B17)

From here, we conclude that �
†
X|X′ (Z

(XS′ )
X|X′ ) = (−Z (XS′ )

X|X′ ⊗ IS\X) ⊕ tr[Z (XS′ )
X|X′ (EJ

XX′ ⊗ IS′\X′
dS′\X′ )].

Combining everything and replacing in Eq. (B14), one can obtain Eq. (B7). More precisely, we have 〈H, B〉 =
tr(HS′ IS′

dS′ ), 〈Z,C〉 = z, and

�†(H ) + �†(Z ) =
{
IS ⊗ HS′ +

∑
X|X′∈�

[
H (XS′ )

X|X′ − trS′\X′
(
H (XS′ )

X|X′
)⊗ IS′\X′

dS′\X′
− Z (XS′ )

X|X′

]
⊗ IS\X

}

⊕
{

z +
∑

X|X′∈�

tr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]}
. (B18)

Finally, note that the primal problem is finite and feasible (taking ρSS′ = ISS′
dSS′ and λ = 0). Also, the dual is strictly feasible by

taking any H (XS′ )
X|X′ Hermitian, Z (XS′ )

X|X′ > 0, and HS′ = hIS′ for h > 0, z > 0 large enough. By Slater’s condition (Theorem 1.18 in
Ref. [52]), strong duality holds. �

3. Proof of Eq. (13)

From Lemma 2, we can prove the witness form [Eq. (13) in the main text] as follows:
Proof. Since the validity of Eq. (13) implies that E is incompatible, it suffices to show the necessity, i.e., incompatibility

implies Eq. (13). To start with, we note that when {Z (XS′ )
X|X′ }X|X′∈� and z satisfy the second constraint in Eq. (B7), we have

z � 1 −∑X|X′∈� tr[Z (XS′ )
X|X′ (EJ

XX′ ⊗ IS′\X′
dS′\X′ )]. Using Lemma 2 and strong duality, we conclude that R(E ) is lower bounded by

min
HS′ ,
{

H (XS′ )
X|X′
}

,

{
Z (XS′ )

X|X′
} tr(HS′ )

dS′
+ 1 −

∑
X|X′∈�

tr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]

such that IS ⊗ HS′ +
∑

X|X′∈�

[
H (XS′ )

X|X′ − trS′\X′
(
H (XS′ )

X|X′
)⊗ IS′\X′

dS′\X′
− Z (XS′ )

X|X′

]
⊗ IS\X � 0,

H (XS′ ),†
X|X′ = H (XS′ )

X|X′ ∀ X |X ′ ∈ �, H†
S′ = HS′ , Z (XS′ )

X|X′ � 0 ∀ X |X ′ ∈ �.

(B19)

Note that since the objective function becomes independent of z, the second constraint in Eq. (B7) always holds (e.g.,
by a given {Z (XS′ )

X|X′ }X|X′∈� and a high enough finite z) and hence can be dropped. Now we consider the following
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estimate:

tr(HS′ )

dS′
= max

L∈C
tr
[
(IS ⊗ HS′ )LJ

SS′
]
� max

L∈C

∑
X|X′∈�

tr

({[
−H (XS′ )

X|X′ + trS′\X′
(
H (XS′ )

X|X′
)⊗ IS′\X′

dS′\X′
+ Z (XS′ )

X|X′

]
⊗ IS\X

}
LJ

SS′

)

= max
L∈C

∑
X|X′∈�

tr

{[
−H (XS′ )

X|X′ + trS′\X′
(
H (XS′ )

X|X′
)⊗ IS′\X′

dS′\X′
+ Z (XS′ )

X|X′

](
LJ

XX′ ⊗ IS′\X′

dS′\X′

)}

= max
L∈C

∑
X|X′∈�

tr

[
Z (XS′ )

X|X′

(
LJ

XX′ ⊗ IS′\X′

dS′\X′

)]
, (B20)

where in the first line LJ
SS′ denotes the Choi state of the global channel LS|S′ compatible with L = {LX|X′ }X|X′∈�, and the equality

follows from the property of a Choi state. The inequality is due to the first constraint in Eq. (B7), the second line is due to Lemma

1, and the last line is because of tr[H (XS′ )
X|X′ (LJ

XX′ ⊗ IS′\X′
dS′\X′ )] = tr[trS′\X′ (H (XS′ )

X|X′ ) ⊗ IS′\X′
dS′\X′ (LJ

XX′ ⊗ IS′\X′
dS′\X′ )]. From here, we conclude that

R(E ) is lower bounded by

min{
Z (XS′ )

X|X′
} 1 −

∑
X|X′∈�

tr

[
Z (XS′ )

X|X′

(
EJ

XX′ ⊗ IS′\X′

dS′\X′

)]
+ max

L∈C

∑
X|X′∈�

tr

[
Z (XS′ )

X|X′

(
LJ

XX′ ⊗ IS′\X′

dS′\X′

)]
such that Z (XS′ )

X|X′ � 0 ∀ X |X ′ ∈ �.

(B21)

The first constraint in Eq. (B19) is dropped because it always holds with a properly chosen HS′ (e.g., one can choose
HS′ = hIS′ with a high enough h) and the objective function is independent of HS′ , {H (XS′ )

X|X′ }X|X′∈�. This means that when E
is incompatible, and hence R(E ) < 1, there exist positive operators Z (XS′ )

X|X′ such that maxL∈C
∑

X|X′∈� tr[Z (XS′ )
X|X′ (LJ

XX′ ⊗ IS′\X′
dS′\X′ )] <∑

X|X′∈� tr[Z (XS′ )
X|X′ (EJ

XX′ ⊗ IS′\X′
dS′\X′ )]. Finally, let H̃X|X′ := trS′\X′ (Z (XS′ )

X|X′ )

dS′\X′ , which is again positive. Then the above inequality implies

maxL∈C
∑

X|X′∈� tr(H̃X|X′LJ
XX′ ) <

∑
X|X′∈� tr(H̃X|X′EJ

XX′ ), and the proof is completed. �

APPENDIX C: EXAMPLES OF INCOMPATIBILITY

In this section, we go through the computational details for the examples of incompatibility that we mention in the main
text. We start with constructing a family of examples in a simple tripartite setting ABC with A � A′ � C � C′ and B � B′. Let
EX = EX|X′ when X = X ′. In what follows, |φXBB′ 〉 is a pure state satisfying trXB(|φXBB′ 〉〈φXBB′ |) = IB′

dB′ . We use subscripts to
indicate the same state distributed among different local systems. Define a channel MXB through its Choi state (X = A,C):

MJ
XX′BB′ := |φXBB′ 〉〈φXBB′ | ⊗ IX′

dX′
. (C1)

It is easy to see that MAB and MCB are locally compatible, i.e., TrA|A′ (MAB) = TrC|C′ (MCB). Taking the Hermitian operators
HXB|X′B′ = dX′MJ

XX′BB′ and using Eq. (13) in the main text, one can show the following result:
Proposition 1. MAB and MCB are incompatible if and only if |φXBB′ 〉 is a nonproduct in the X vs BB′ bipartition.
Proof. First, the sufficiency (⇒) can be seen by showing the counterpositive. Suppose |φXBB′ 〉 = |φ〉X ⊗ |ξ 〉BB′ , which is the

product in the X vs BB′ bipartition. Then, by Lemma 1 (S = ABC), EJ
SS′ = |φ〉〈φ|A ⊗ |φ〉〈φ|C ⊗ |ξ 〉〈ξ |BB′ ⊗ IA′C′

dA′C′ is the Choi
state of a global channel compatible with {MAB,MCB}.

To prove the necessity (⇐), consider the Hermitian operators HXB|X′B′ := dX′MJ
XX′BB′ (X = A,C). Then we have

max
L∈C
[
tr
(
HAB|A′B′LJ

AA′BB′
)+ tr

(
HCB|C′B′LJ

CC′BB′
)]

� max
ρSS′

tr[(|φABB′ 〉〈φABB′ | ⊗ IA′CC′ + |φCBB′ 〉〈φCBB′ | ⊗ IAA′C′ )ρSS′]

� 2, (C2)

where the last inequality is saturated if and only if there exists a state ρABB′C such that tr[(|φABB′ 〉〈φABB′ | ⊗ IC)ρABB′C] = 1 =
tr[(|φCBB′ 〉〈φCBB′ | ⊗ IA)ρABB′C]. This is true if and only if trC(ρABB′C) = |φABB′ 〉〈φABB′ | and trA(ρABB′C) = |φCBB′ 〉〈φCBB′ |. Now,
by entanglement monogamy (see, e.g., Ref. [53]), it is impossible for such ρABB′C to exist when |φXBB′ 〉 is the nonproduct
in the X vs BB′ bipartition. Since, by assumption, |φXBB′ 〉 is a nonproduct, we conclude that maxL∈C[tr(HAB|A′B′LJ

AA′BB′ ) +
tr(HCB|C′B′LJ

CC′BB′ )]< 2. On the other hand, a direct computation shows that tr(HAB|A′B′MJ
AA′BB′ ) + tr(HCB|C′B′MJ

CC′BB′ )= 2.

By Eq. (13) in the main text, we learn that {MAB,MCB} /∈ C; i.e., it is incompatible. �
A potential physical explanation for this result is that due to entanglement monogamy [54], it is impossible to clone quantum

correlations, i.e., the mapping |ψAB〉 → |ψABC〉 such that |ψAB〉 = |ψBC〉 is possible only when |ψAB〉 is the product in the A vs B
bipartition.

Now we consider the example mentioned in the main text, namely, consider the three-qubit state |φXBB′ 〉 = |GHZXBB′ 〉,
where |GHZXYZ〉 := 1√

2
(|000〉XYZ + |111〉XYZ) is the Greenberger-Horne-Zeilinger state [55] in a three-qubit system XY Z .
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Numerically, we found robustness 0.75, achieved by the global channel GABC with the following Choi state:

GJ
ABCA′B′C′ = IA′C′

4
⊗ 1

12
[4|0000〉〈0000| + |0001〉〈0001| + |0001〉〈0010| + |0010〉〈0001| + |0010〉〈0010|

+ 4|1111〉〈1111| + |1101〉〈1101| + |1101〉〈1110| + |1110〉〈1101| + |1110〉〈1110|
+ 2|0000〉〈1101| + 2|0000〉〈1110| + 2|0001〉〈1111| + 2|0010〉〈1111|
+ 2|1101〉〈0000| + 2|1110〉〈0000| + 2|1111〉〈0001| + 2|1111〉〈0010|]BB′AC. (C3)

Note that in the above equation and for the rest of this section, subscripts of pure states denote the order of subsystems that the
states live in. As mentioned in the main text, a natural question is to ask whether Eq. (C3) is from a global channel achieved
by cloning the bipartite channel MXB locally with the help of an optimal universal cloning machine [42]. More precisely, Bob
gets an input state in B, takes an ancillary system X initially prepared in |0〉X, and performs a CNOTXB controlled on B. Then he
applies the optimal universal cloning machine to X and sends one copy to Alice and one to Charlie (denote the corresponding
channel CAC|X). The resulting channel is

M̃ABC(·) := (CAC|X ⊗ IB) ◦ CNOTXB[|0〉〈0|X ⊗ trAC(·)]. (C4)

Formally, an optimal universal cloning machine that clones arbitrary states in X into AC is a unitary operator acting as [42]

|0〉X ⊗ |00〉CM �→
√

2

3
|001〉ACM −

√
1

3
|ψ+〉AC ⊗ |0〉M, (C5)

|1〉X ⊗ |00〉CM �→ −
√

2

3
|110〉ACM +

√
1

3
|ψ+〉AC ⊗ |1〉M, (C6)

where |ψ+〉 := 1√
2
(|10〉 + |01〉) and M is an ancillary system (the “machine”) that will be dropped in the end. The map CAC|X

from X to AC is then obtained by tracing out M after the cloning unitary. To verify that the global channel given by Eq. (C4) is
equivalent to the one found numerically, we compute its Choi state, which is given by (note that every single system is a qubit)

M̃J
ABCA′B′C′ = (CAC|X ⊗ IBB′ )(|GHZ〉〈GHZ|XBB′ ) ⊗ IA′C′

4
. (C7)

It remains to compute the output of |GHZXBB′ 〉 after the cloning unitary, which reads

|GHZXBB′ 〉 ⊗ |00〉CM �→ 1√
2

[√
2

3
|000〉BB′A|0〉C|1〉M −

√
1

3
|00〉BB′

1√
2

(|10〉 + |01〉)AC|0〉M

]

+ 1√
2

[
−
√

2

3
|111〉BB′A|1〉C|0〉M +

√
1

3
|11〉BB′

1√
2

(|10〉 + |01〉)AC|1〉M

]

= −
√

1

12
|001〉BB′A|0〉C|0〉M +

√
1

3

(
|000〉BB′A + 1

2
|111〉BB′A

)
|0〉C|1〉M

−
√

1

3

(
|111〉BB′A + 1

2
|000〉BB′A

)
|1〉C|0〉M +

√
1

12
|110〉BB′A|1〉C|1〉M. (C8)

Tracing away M and tensoring with IA′C′
4 , one can check that the resulting state is exactly the same as in Eq. (C3), verifying the

desired claim.
It is worth mentioning that the local noise model can also be found explicitly. Let NXB’s be the noise channels realizing the

value R({MAB,MCB}) = 0.75, i.e., {0.75MXB + 0.25NXB}X=A,C ∈ C. Then, numerically, we have

NJ
ABA′B′ = IA′

2
⊗
[

1

3
(|001〉〈001| + |110〉〈110|) + 1

6
(|000〉〈000| − |000〉〈111| − |111〉〈000| + |111〉〈111|)

]
BB′A

, (C9)

and a similar construction for NJ
CBC′B′ can be obtained by replacing A with C. One can observe that

NAB(·) = 2
3 (IA ⊗ DB) ◦ CNOTAB[|1〉〈1|A ⊗ trA(·)] + 1

3 CNOT−
AB[|0〉〈0|A ⊗ trA(·)], (C10)

where D(·) := |0〉〈0| · |0〉〈0| + |1〉〈1| · |1〉〈1| and CNOT−
XB : |i〉X ⊗ | j〉B �→ (−1) j |(i + j)mod 2〉X ⊗ | j〉B. As a last remark, note

that in a three-qubit setting, λ|GHZXYZ〉〈GHZXYZ| + (1 − λ) IXYZ
8 is multipartite entangled if and only if λ > 1

5 [56,57]. This
means that the local channels become compatible before losing the ability to maintain multipartite entanglement shared between
the local system and an external party (this can be seen by considering noises given by depolarizing channels whose Choi states
are { IABA′B′

16 ,
IBCB′C′

16 }). In this sense, channel incompatibility is a more fragile property than multipartite entanglement.
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APPENDIX D: CMP IS IRREDUCIBLE TO SMP

As mentioned in the main text, one may be tempted to conjecture the following:

Can the CMP be reduced to SMPs for the image states of the local channels?

In other words, we are asking whether the channel compatibility of E = {EX|X′ }X|X′∈� can be reduced to the state compatibility
of the image states {EX|X′ (ρX′ )}X|X′∈� for every input set consisting of compatible states {ρX′ }. We can disprove this conjecture
by constructing a family of counterexamples. To this end, consider a bipartite state ωXB′ satisfying (1) ωXB′ is not 2-extendible
with respect to B′ [22,58], and (2) trX (ωXB′ ) = IB′

dB′ . Then, define a channel WXB : XB → XB with Choi state

WJ
XX′BB′ := σB ⊗ ωXB′ ⊗ IX′

dX′
, (D1)

where σB is a fixed (but arbitrarily chosen) state in B. Then we have the following result:
Proposition 2. The channel WXB satisfies
(i) {WAB,WCB} is locally compatible but incompatible, and
(ii) {WAB(ηAB),WCB(ηCB)} is a compatible pair of states for every locally compatible pair of input states {ηAB, ηCB}.
Proof. First, since locally in B both WAB,WCB are the state preparation channel of σB, they are locally compatible. Now,

assume by contradiction that the pair {WAB,WCB} is compatible; then there exists a global channel whose Choi state contains
a 2-extension of the state ωXB′ , resulting in a contradiction. The first claim is proved. To see that the second claim also holds,
we note that for any given pair of locally compatible states {ηAB, ηCB} with marginal trA(ηAB) = trC(ηCB) = κ , we have that for
X = A,C,

WXB(ηXB) = �X|B(κ ) ⊗ σB, (D2)

where �X|B is a channel from B to X with the Choi state �J
XB′ = ωXB′ . These two image states are always compatible with the

tripartite state �A|B(κ ) ⊗ σB ⊗ �C|B(κ ). This completes the proof. �
Note that the channel given in the main text KXB(·) := SWAP[|0〉〈0|X ⊗ trX(·)] has Choi state KJ

XX′BB′ = |�+
XB′ 〉〈�+

XB′ | ⊗
|0〉〈0|B ⊗ IX′

dX′ . Proposition 2 implies that {KAB,KCB} is a particular case of a family of counterexamples to the above-mentioned
conjecture. For instance, one can consider two-qubit isotropic states ρiso(p) [59,60], with p strictly higher than the 2-extendible
threshold p = 2

3 [61] (see, also, Lemma 3 in Ref. [58]). This gives the following one-parameter family of counterexamples for
2
3 < p � 1:

pKXB(·) + (1 − p)

(
IX

2
⊗ |0〉〈0|B

)
tr(·). (D3)

Our examples also show that channel incompatibility is not equivalent to violation of entanglement monogamy [54] for the
image states of local channels. Finally, as another corollary, we have the following result about the resource theory of state
unextendibility [22,58]:

Corollary 2. The largest set of free operations of resource theory of state unextendibility is not the same with extendible
channels.

Hence, in the resource theory of state unextendibility, being resource nongenerating is a condition strictly weaker than being
extendible for a channel.

APPENDIX E: PROOFS OF MAIN THEOREMS

First, we recall the following decomposition from Proposition 7 in Ref. [34] that will be used in the proof of Theorem 1:
Theorem 3 [34]. WAB is a Hermitian operator acting on a bipartite system AB. Then there exist states ξ (i) in A and ρ ( j) in B and

real numbers ωi j such that WAB =∑i, j ωi jξ
(i),T ⊗ ρ ( j),T , where T is the transpose operator. Moreover, the number of nonzero

ωi j is, at most, d2
min + 3, where dmin is the smallest system dimension among A, B.

1. Proof of Theorem 1

Proof. We start from Eq. (13) in the main text and apply Theorem 3. For every E and {HX|X′ }X|X′∈� with H†
X|X′ = HX|X′ in

the system XX ′, Theorem 3 implies the existence of states ξ
(i)
X|X′ in X , ρ

( j)
X|X′ in X ′, and real numbers {ω(i j)

X|X′ }NX|X′
i, j=1 [we can choose

NX|X′ � (min{dX, dX′ })2 + 3 for every X |X ′ ∈ �], such that

∑
X|X′∈�

tr
(
HX|X′EJ

XX′
) = ∑

X|X′∈�

NX|X′∑
i, j=1

ω
(i j)
X|X′ tr
[(

ξ
(i),T
X|X′ ⊗ ρ

( j),T
X|X′
)
(EX|X′ ⊗ IX′ )(|�+

X′X′ 〉〈�+
X′X′ |)
]

=
∑

X|X′∈�

NX|X′∑
i, j=1

ω
(i j)
X|X′dX′

tr

[
ξ

(i),T
X|X′ EX|X′

(
ρ

( j)
X|X′
)] = ∑

X|X′∈�

NX|X′∑
j=1

tr
[
E ( j)

X|X′EX|X′
(
ρ

( j)
X|X′
)]

, (E1)
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where E ( j)
X|X′ :=∑NX|X′

i=1

ω
(i j)
X|X′
dX′ ξ

(i),T
X|X′ , which is a Hermitian operator in X . Using Eq. (13), and noticing that for every X |X ′ we have

that NX|X′ � (min{dX, dX′ })2 + 3 � (maxX|X′∈�{dX, dX′ })2 + 3, the result follows by adding zero operators (which is Hermitian)
to the set {E ( j)

X|X′ }. �

2. Proof of Theorem 2

Rather than proving the theorem directly, we show the following result that has Theorem 2 as a direct corollary (note that just
like in the main paper, the subscripts of the following Hermitian operators and local states are showing the dependency on the
output-input pair X |X ′ rather than the system they belong to):

Theorem 4. For every E , the following two statements are equivalent:
(1) For every X |X ′ ∈ �, there exist Hermitian operators {H (i)

X|X′ }N
i=1 in X and states {ρ (i)

X|X′ }N
i=1 in X ′, where N ∈ N is

independent of X |X ′, such that∑
X|X′∈�

N∑
i=1

tr
[
H (i)

X|X′EX|X′
(
ρ

(i)
X|X′
)]

> max
L∈C

∑
X|X′∈�

N∑
i=1

tr
[
H (i)

X|X′LX|X′
(
ρ

(i)
X|X′
)]

. (E2)

(2) There exists a strictly positive D such that P(D,E ) > PC(D).
Proof. First, we note that the above statement (2) implies statement (1), with the Hermitian operator H (i)

X|X′ :=
pX|X′q(i)

X|X′M
(i)
X|X′ � 0 (one may also need to add zero operators to make the range of i’s independent of X |X ′). So it remains

to show that statement (2) holds if statement (1) is true. As the first step, we note that statement (1) holds if and only if∑
X|X′∈�

N∑
i=1

tr
[
κ × (H (i)

X|X′ + �
(i)
X|X′IX)EX|X′

(
ρ

(i)
X|X′
)]

> max
L∈C

∑
X|X′∈�

N∑
i=1

tr
[
κ × (H (i)

X|X′ + �
(i)
X|X′IX)LX|X′

(
ρ

(i)
X|X′
)]

, (E3)

for every κ > 0 and real numbers {�(i)
X|X′ }. To see that this is the case, it suffices to notice that since EX|X′ ’s are trace preserving,∑

i,X|X′ tr[�(i)
X|X′IX × EX|X′ (ρ (i)

X|X′ )] =∑i,X|X′ �
(i)
X|X′ is a fixed real number, and adding a fixed real number on both sides of the

inequality in statement (1) preserves the inequality. Let Z (i)
X|X′ := κ (H (i)

X|X′ + �
(i)
X|X′IX), which is a Hermitian operator in X with

dependency on X |X ′; we can choose κ,�
(i)
X|X′ such that Z (i)

X|X′ > 0 ∀ i and X |X ′ and
∑N

i=1 Z (i)
X|X′ < IX ∀ X |X ′. Hence, for each

X |X ′, {Z (i)
X|X′ }N

i=1 can be interpreted as part of a positive operator-valued measurement (POVM). Also, statement (1) implies that

there exists a set of states {ρ (i)
X|X′ } such that

∑
X|X′∈�

N∑
i=1

tr
[
Z (i)

X|X′EX|X′
(
ρ

(i)
X|X′
)]

> max
L∈C

∑
X|X′∈�

N∑
i=1

tr
[
Z (i)

X|X′LX|X′
(
ρ

(i)
X|X′
)]

. (E4)

Now, consider the ensemble state discrimination task D = ({pX|X′ }, {q(i)
X|X′ , σ

(i)
X|X′ }, {M (i)

X|X′ }) given by (what follows holds for
every X |X ′; note again that the subscript now denotes the dependency on X |X ′ rather than the systems they live in)

pX|X′ = 1

|�| ; (E5)

q(i)
X|X′ = 1 − ε

N
if i = 1, . . . , N and q(N+1)

X|X′ = ε; (E6)

σ
(i)
X|X′ = ρ

(i)
X|X′ if i = 1, . . . , N and σ

(N+1)
X|X′ = ηX|X′ ; (E7)

M (i)
X|X′ = Z (i)

X|X′ if i = 1, . . . , N and M (N+1)
X|X′ = IX −

N∑
i=1

M (i)
X|X′ , (E8)

where ε ∈ [0, 1] is a real number whose range will be set later, and ηX|X′ ’s are states in X ′ that can be chosen arbitrarily (but they
still depend on X |X ′). Then, according to the setting, {M (i)

X|X′ }N+1
i=1 is a POVM in the output system X for every X |X ′ ∈ �, which

means D is included in ensemble discrimination tasks. Also note that D is strictly positive once 0 < ε < 1.
For any set of channels N = {NX|X′ }X|X′∈�, we write P(D,N ) = P̃(N ) + ε × �(N ), where

P̃(N ) := 1

N |�|
∑

X|X′∈�

N∑
i=1

tr
[
Z (i)

X|X′NX|X′
(
ρ

(i)
X|X′
)]

; (E9)

�(N ) := 1

|�|
∑

X|X′∈�

{
tr

[(
IX −

N∑
i=1

Z (i)
X|X′

)
NX|X′ (ηX|X′ )

]
− 1

N

N∑
i=1

tr
[
Z (i)

X|X′NX|X′ (ρ (i)
X|X′ )
]}

. (E10)
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Note that Eq. (E4) implies that P̃(E ) = � + maxL∈C P̃(L) for some � > 0. From here, we conclude that

max
L∈C

P(D,L) � max
L∈C

P̃(L) + ε × max
L∈C

�(L) = P̃(E ) − � + ε × max
L∈C

�(L) = P(D,E ) − � + ε × [max
L∈C

�(L) − �(E )].

(E11)

Set �′ := maxL∈C �(L) − �(E ), which is finite since � is bounded in the set of all channels. Then, PC(D) :=
maxL∈C P(D,L) � P(D,E ) − � + ε�′. If �′ � 0, then PC(D) < P(D,E ) ∀ε ∈ [0, 1]. If �′ > 0, take ε < min{ �

�′ , 1} which
again gives PC(D) < P(D,E ). �

As a remark, such operational advantages can be extended to the general dynamical resource theory setups recently
investigated in, e.g., Refs. [34,62–67]. See Refs. [68,69] for further details.
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