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Multivariate Weighted Total Least Squares Based
on the Standard Least-Squares Theory

Saeid Gholinejad’ and Alireza Amiri-Simkooei?

Abstract: The weighted total least squares (WTLS) has been widely used in many geodetic problems to solve the error-in-variable (EIV)
models in which both the observation vector and the design matrix contain random errors. This method is widely applied in its univariate
form, where the observations and unknown coefficients appear in vector forms. However, in some geodetic problems, data sets appear in more
than one dimension, and the vector representation of the univariate model may not be suitable to efficiently solve the problem. The ob-
servation and unknown parameter vectors can then be replaced with their counterparts in matrix representations in a multivariate model.
In this paper, we propose a simple, fast, and flexible procedure for solving the multivariate WTLS (MWTLS) problem using the standard least
squares theory. The method has the capability of applying to large-size and high-dimensional data sets. Our numerical experiments on both
simulated and real datasets demonstrate the high performance of the proposed method for solving multivariate WTLS problems. In terms of
computational complexity, our method outperforms the existing state-of-the-art methods, both numerically and analytically. DOI: 10.1061/
JSUED2.SUENG-1424. © 2023 American Society of Civil Engineers.

Author keywords: Error-in-variable (EIV) model; Weighted total least squares (WTLS); Multivariate problem; High-dimensional data.

Introduction

The least squares (LS) method is widely used in many geodetic prob-
lems to estimate unknown parameters based on the Gauss-Markov
model. In this method, the observational errors are only attributed to
the so-called vector of observations. There are however applications
where the design (or coefficient) matrix is not error-free, and, there-
fore, it is only suboptimal to consider it as a fixed matrix. Golub
and Van Loan (1980) proposed the total least squares (TLS) method,
applied to the error-in-variable (EIV) model, to simultaneously con-
sider errors in both the observation vector and design matrix. Since
then, many developments on the formulations and applications of
TLS have taken place, in the statistics literature in general and in
the geodetic literature in particular.

In geodetic and geomatics studies, different versions of TLS
were applied, especially in the field of coordinate system transfor-
mation (Felus 2004; Akyilmaz 2007; Schaffrin and Wieser 2007;
Felus and Burtch 2008; Neitzel 2010; Shen et al. 2010; Amiri-
Simkooei et al. 2016a; Amiri-Simkooei 2018a). Moreover, an
immense range of studies introduced several extensions of the TLS
solutions for equally and quadratically constrained problems. An
iterative algorithm was proposed by Schaffrin (2006) for solving
the TLS problem with linear stochastic constraints. A solution for
TLS with quadratic constraints was also provided in Sima et al.
(2004) to investigate the regularized TLS problem. Furthermore,
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TLS adjustment through a second-order approximation function
was examined by Wang and Zhao (2019). Two algorithms includ-
ing the adaptive two-stage Monte Carlo (ATMC) and adaptive
two-stage quasi-Monte Carlo (ATQMC) algorithms were also in-
troduced for the accuracy estimation of the TLS and calculation
of the expected bias in parameter estimates (Wang and Luo 2023).
Regularized and structured TLS methods were also two wide
categories of the studies.

In addition to the above-mentioned studies, one of the most im-
portant extensions of the TLS method is the weighted TLS (WTLS)
method, which originated from the study of Schaffrin and Wieser
(2007), where WTLS was presented for the linear regression based
on the traditional Lagrange function. WTLS can be considered as a
generalized version of the unweighted TLS algorithm, where the
weight matrices of the observations and design matrix are unequal
and nonidentity. Although the original TLS problem can be solved
by using the singular value decomposition (SVD) theorem without
iteration, a general WTLS problem can only be solved through an
iterative procedure (Amiri-Simkooei et al. 2016a).

Since the development of the WTLS, different variants of the
WTLS problems have been presented of which we name a few con-
tributions. To estimate the parameters in a structured EIV model,
with linear and quadratic constraints, Fang (2013) proposed a con-
strained WTLS in which functionally independent random errors
and their functional relationship were explored. In another study,
Fang provided a solution for the inequality-constrained WTLS
based on a set of Euler-Lagrange conditions (Fang 2014). To en-
hance the numerical efficiency of the WTLS for the mixed EIV
model, where there are some fixed columns in the design matrix,
Zhou and Fang provided a combinatorial method using the
weighted least squares (WLS) and WTLS. Their motivation was
to reduce the computational complexity of the WTLS procedure
while preserving its accuracy (Zhou and Fang 2016). Wang et al.
(2021) also proposed a computationally efficient method to reduce
the time and memory consumption during the WTLS procedure in
large-size problems.

In 2012, Amiri-Simkooei and Jazaeri (2012) proposed a new
formulation of WTLS based on the standard LS, which was more
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applicable and implementable than the original formulation.
This formulation allows applying the existing body of knowledge
of the least squares theory to the EIV models, which are briefly
explained as follows. The least squares variance component estima-
tion (LS-VCE) theory was adopted to deal with the estimation of
different variance components in an EIV model (Amiri-Simkooei
2013). Jazaeri et al. (2013) introduced an iterative algorithm based
on the complete description of the variance-covariance matrices of
the vector of observations errors and the design matrix. Estimation
of the covariance matrix of the WTLS outputs through the direct
conversion of the normal matrix was investigated in Amiri-
Simkooei et al. (2016b). Amiri-Simkooei (2017) provided the
formulations of the WTLS problem subject to weighted or hard
linear(ized) equality constraints on the unknown parameters. He
also presented an alternative derivation without using Lagrange
multipliers for the same problem in Amiri-Simkooei (2018b).
A Tikhonov regularized WTLS method is proposed by Kariminejad
et al. (2021), which was a generalized form of the classical non-
linear Gauss-Helmert model.

All of the above-mentioned versions of the WTLS have been
applied to the one-dimensional problems. In other words, in these
problems, observations and unknown parameters were presented in
the form of a vector. However, in many cases, the samples have
more than one dimension, and consequently, the observations
and unknowns are represented in the form of a matrix. In these
cases, the initial solution is to convert matrices into vectors and
use the univariate mode of the EIV model. But, a proper alternative
that can be used is to use the multivariate EIV model. In this regard,
in various studies, several versions of multivariate EIV-based meth-
ods have been presented, which are highlighted as follows. Two
methods based on the singular value decomposition (SVD) and on
the nonlinear Euler-Lagrange condition equations, were proposed
by Schaffrin and Felus (2008) to solve the multivariate TLS prob-
lem. In another study, Schaffrin and Wieser (2009) successfully ap-
plied multivariate WTLS on the 2D affine transformation problem.
Another method was also presented by Fang (2011), in which the
Lagrange approach was utilized to solve the multivariate WTLS.
Wang et al. (2016) exhibited the Newton algorithm for the multi-
variate WTLS problem, which was too complicated to implement.

Among different methods provided to solve the multivariate
WTLS problem, the multivariate error-in-variable (MEIV) (Wang
et al. 2019) method was recently introduced. This method has two
versions, named MEIV1 and MEIV2, of which MEIV2 outper-
forms MEIV1 in terms of simplicity and convergence. Despite the
efficiency of both MEIV1 and MEIV2, they cannot be considered
as high-speed methods due to the use of a Kronecker product in
their formulation, especially in the case of large-size data. In addi-
tion to the computational burden, applying the Kronecker product
may practically lead to calculation problems when dealing with a
large number of features and out of memory limitation.

Regarding the aforementioned problems, a simple, fast, and
efficient method is proposed in this study to handle the problem
of multivariate WTLS. This method, called multivariate WTLS
(MWTLYS), is based on the standard LS method and can be applied
in a wide range of geodetic applications with various types of con-
straints. On the other hand, using the LS formulation guarantees its
simple implementation and execution.

The remainder of this paper is organized as follows. In the next
section, we first review the available standard least squares theory
applied to the multivariate weighted least squares (MWLS) and
WTLS. A subsequent subsection will then use this background to
present the multivariate WTLS (MWTLS) theory, continued by
computational complexity analysis. Experiments, conducted to
illustrate the efficiency of the proposed MWTLS, are described in
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the section “Experiments.” Finally, we conclude this study in the
section “Conclusion.”

Background and Methodology

This section, presenting the methodology, consists of three subsec-
tions. The first subsection reviews the available standard least
squares theory applied to the MWLS. The second subsection
briefly presents the univariate WTLS described in detail. The third
subsection uses these backgrounds to present the multivariate
WTLS (MWTLS) theory.

Multivariate WLS Formulation

Having k groups of data, each with m observations, the following
linear models of observation equations can be considered for such a
multivariate model (Amiri-Simkooei 2007):
D{yi.y;} = 0,;0;

E{y:} = Ax;; ij=1,....k (1)

where y; € R™ = vector of observations in the ith group; x; € R" =

corresponding unknown vector, A € R™" = design matrix;
and Q € R™ = symmetric positive-definite cofactor matrix.
o;(i,j=1, ... k) are also variance and covariance components,

expressing the variances and covariances among the different
groups. The matrices A and Q are assumed to be identical for all
observation groups.

By aggregating all the unknown vectors x; into the matrix
X € R™*, and correspondingly the observation vectors into ¥ €
Rk we can write

X:[xl,xz, ...,)Ck}
Y=[y,y2 -Vl (2)

The functional part in Eq. (1) can then be rewritten as E{Y} =
AX. Then, using the vec operator, the vector representation of this
model can be written through the Kronecker product as

E{vec(Y)} = (I ® A)vec(X); Ovee) =2®0Q0  (3)

where ® denotes the Kronecker product and ¥ € R, containing
Oij, 1, j = 1, ..., k, is the cross-covariance matrix among different

yi's.
The best linear unbiased estimation (BLUE) of the unknown
matrix X is (Amiri-Simkooei 2007):

X =(ATQ'A)'ATQ Y (4)

Moreover, the BLUE of the observation matrix Y and the resid-
uals matrix E can be obtained as follows:
Y=pPy, E=Y-V=PiY (5)

where P, = A(ATQ7'A)'ATQ"! and P} =1,—P, = two
orthogonal projectors (Teunissen 2000). The covariance matrices of
vec(X), vec(¥), and vec(E) are obtained as:

Qvec(f() =X® (ATQ71A)71
Qvec(f’) =X ® P40
Ovec(ty = X ® P10 (6)

For further details, the readers can refer to Amiri-Simkooei
(2007).

J. Surv. Eng.
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Univariate WTLS Formulation

The traditional univariate error-in-variable (EIV) model is ex-
pressed as (Golub and Van Loan 1980):

y=(A—E)xte, )

with the following stochastic properties:

ol 4 RO S (M P I
[ VeC(E A) 0 0 Q A

where y € R”, A € R™", and x € R" are, respectively, the obser-
vation vector, design (or coefficient) matrix, and unknown vector
of parameters to be estimated. Furthermore, E, € R™" and
e, € R™ = corresponding random error of the design matrix
and of the observation vector. Q, € R™ and Q4 € R™™>"" =
covariance matrices corresponding to the observations vector
and the design matrix, respectively. Moreover, o3 = (un)known
variance factor of the unit weight, which is set to one for brevity.
The minimization problem to obtain the unknown parameters of

Eq. (7) is based on the following least squares principle:

minel O;'e, + e} 07 'e,
subjectto y — e, = (A — E,)x 9)
Considering the identity vec(UVS) = (87 ® U)vec(V), as

stated in Amiri-Simkooei and Jazaeri (2012), the target Lagrange
function is formulated as

p=elO7le, +ef0r ey + 20N (y —Ax —e, + (x" ® 1,,)e4)
(10)

where [,, = m x m identity matrix and A € R”™ = vector of
unknown Lagrange multipliers. After calculating some partial
derivatives of the above objective function with respect to its un-
known parameters and applying a few simple mathematical oper-
ations, X is obtained as follows (Amiri-Simkooei and Jazaeri 2012):

i=((A-E)"Q5'A) (A Ey)" 05"y (11)

where Q5 = covariance matrix of the predicted observations,
§ =y — E,&, defined as:

Moreover, in Eq. (11), EA is obtained as:
E, = ivec(e,) = ivec(—Q4 (3 ® 1,,)N) (13)
where ivec = inverse of vec operator, and
N R
A=07'(y—A%) (14)
The drawback of the formulation of X in Eq. (11) is that the
normal matrix is not symmetric and positive-definite. To establish
such a normal matrix (in analogy with the standard least squares),
considering A = A + E,4, % can be reformulated as:
N AT -1 -1 3T 15
F=(A leA) A Q;ly (15)

and therefore, the first approximation of the covariance matrix of
the estimated parameters X is obtained as follows:

0; = (ATQ;'A)"! (16)
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which provides measures for the precision of . The posterior vari-
ance component is obtained as follows:
AT A—1 A
e'Qz'e
= (17)
m—n

where ¢ = y — AX = least squares residuals.

Multivariate WTLS Formulation

The results and derivations of the two previous subsections are used
to present the multivariate weighted total least squares (MWTLS)
theory. The combination consists of the terms multivariate
weighted least squares and weighted total least squares. In a multi-
variate model, multiple observation vectors can be formulated in an
EIV model, which is of the following form:

Y—Ey = (A—E)X (18)

where Y € R"™* X € R™*, and Ey € R™ are same as those in-
troduced in subsection “Multivariate WLS Formulation.” In this
case, the covariance matrix of y = vec(Y) is Qyec(y) € Rmhexmk
Accordingly, to estimate the unknown parameters, the minimiza-
tion problem is as follows:

n}(ine}T,Q;'ey + eZQ;]ea
st. Y=(A—E; )X+ Ey (19)

where e, = ey (y) € R™ and e, = vec(E,) = €yec(a) € R™.

The Lagrange function of the above optimization problem is
¢ = e)T,Q;ley + ezQZlea + Ztr(AT(Y _AX - EY + EAX))
(20)
where A = m x k matrix of Lagrange multipliers. Let us assume
a =vec(A), y=vec(Y), x=vec(X), and A = vec(A). Using
the identities vec(UVS) = (87 ® U)vec(V) and tr(UVT) =

vec(U)Tvec(V), the Lagrange function in Eq. (20) can be reformu-
lated to the following two equivalent representations:

¢ = elQyle, + el 05'e, + 2\ (y — vec(AX)
— e, + vec(l,,EsX))
= e Qy'ey + el 05" e, + 20 (v — vec(AX)
_ey+(XT®1m)ea) (2])
Based on the Euler-Lagrange necessary conditions, the partial

derivatives of the above function should satisfy the following equa-
tions:

1d N o 5 o
-G -A=0-h -0k (@)
y
1 do 1 . R _ R .
EW = QA e, + (X ® Im))‘ =0— e, = _QA(X X Im))\
(22b)
1 N
Eﬁ—y—veC(AX) -6+ (X' ®1,)6,=0  (220)
1d N A
Ed—)?)r = (AT +E})A = (AT —E))A=0 (22d)

Substituting e, and e, from Eqgs. (22a) and (22b) into Eq. (22¢),
we get

J. Surv. Eng.
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y—vec(AX) — QyA - (X" ® N0,(X ®1,)A=0  (23)
and then
vee(E) = (Qy + (X" ® 1,)04(X ® I,,))A (24)

where E =Y — AX = estimated total residuals matrix. From the
above equation, A can be calculated as:

A= 07'vec(E) = 05'e (25)
where & = vec(E), and
0y =0y + (X" ®1,)04(X ® 1)) (26)

Substituting \ from Eq. (25) into Egs. (22a) and (22b), respec-
tively, yields

ey = 0y0;'e (27)
and
6. =—0,(X®1,)0;'¢ (28)

Although the above formulation can directly be used, further
simplification can be applied as follows. We assume that Q4 =
¥4 ® Q0 and Oy =Xy ® Q where Q € R™™, ¥, € R™", and
Yy € RF are given positive-definite matrices. This will then give

7= @0+ (X @1, ® Q)X ®1,)
=% ®0+X'S,X® 0
=y +XX) 0
=3®0 (29)
where $ = Yy + X'y A)A( . The above equation is inverted to:
0;'=%"® 0! (30)
Eq. (25) can then be reformulated to

A= 3" ® 0 vec(E)
vec(Q'ES) (31)

and therefore, A can be obtained through the following equation
A =ivec(}) = Q1 ES! (32)

where ivec(-) = inverse vec operation. Substituting A from the
above equation into Eq. (22d) follows:

(AT —EDQ'ES™ = (AT —EDQ (Y —AR)S™ =0 (33)
which can be simplified as
(A—E)TQ'AX = (A—E\)"Q7 'Y (34)

and subsequently

which, after a few simple mathematical operations, results in
ATQ'AX =ATQ 'Y (37)

where Y =Y — E Af( = matrix of predicted observations. Finally,
the unknown parameters X, with a symmetric positive-definite nor-
mal matrix, are calculated as

X=(ATo'A)'ATo Yy (38)

which is similar to the standard multivariate LS method. Hence, the
covariance matrix of the estimated parameters can easily be calcu-
lated without any derivation as follows [see Eq. (6)]:

Queeity =X ® (ATQ7'A)™! (39)

Moreover, the estimated observations and total residuals are
obtained as:

V=AX-E,X=AX=P;¥
E=Y-V=Y—-AX=PLY (40)

with the following covariance matrices:

Qvec(f/) =S P;0
Qvec(f?) = i ® Pj_Q (41)

where Pj; and Pf‘ = two orthogonal projectors as
P; =AATQ'A)'AT Q!
PL=1,-P; (42)
Although the vectorized format of E y and E 4 were already de-
fined, respectively, in Eqs. (27) and (28), they can also be obtained
in a simpler way without the Kronecker product. It is for Ey as:
e, = vec(Ey) = Oy A
=(Zy ® Q)5 ® 07")vec(E)
= (27! @ I,)vec(E)
= vec(EXT'Ey) (43)

which gives
Ey =ivec(é,) = EXT'Y, (44)
and for E 4 as:

éa = VeC(EA) = _QA()A( ® Im)j‘
= (2, ® Q)X ® I,)vec(Q'ES™)
= —(Z,X ® Q)vec(Q'EST)

X=(A-E)"0'"A) " (A-E)"0 'Y (35) — —vec(QOESIRTY,)
Similar to the univariate WTLS, to make a symmetric positive- = —vec(EXTIRTS,) (45)
definite normal matrix, A=A + E 4 1s replaced in Eq. (34) as
follows: and therefore
ATO YA+ ENX =ATQ Y (36) E, =ivec(é,) = —ES'RTY, (46)
© ASCE 04023008-4 J. Surv. Eng.
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Finally, the entire procedure of the multivariate weighted total
least squares (MWTLS) is described in Algorithm 1.

Algorithm 1 Multivariate weighted total least squares algorithm
Inputs: >, Xy, O, € (termination threshold)
Initialize: X = (A7A)~'ATY
X0<—)A(
while 1 do
E<y —AX
Sl einv(Dy + X5, X)
Ey——ES7'RTy,
A<A-E A
Y<Y—E Af(
X—(ATo'A)'AQ Y
if |X — X,||, < € then
Break;
else
X0<—)A(
end if
end while
Output: X

Computational Complexity Analysis

To demonstrate the performance of the proposed MWTLS
method, especially when working with high-dimensional data
sets, its computational complexity is analyzed in this part. To pro-
vide a comprehensive comparison, the computational burden of
two other methods, univariate WTLS and MEIV1 (Wang et al.
2019), is also determined. This comparison is based on counting
the time of floating-point calculations for the iterations of each
method.

In the univariate WTLS process, the dominant term is calculat-
ing Q;T‘ [see Egs. (12) and (15)]. Because matrix Qy, in its uni-
variate form, is of size mk x mk, the computational complexity
of its inverse is of order O(m*k?). In MEIV1, the algorithm is
executed in two steps. The first step involves determining E 4, with
the most computationally intensive part being the calculation of the
inverse of an mk x mk matrix. The second part is dedicated to the
calculation of unknown parameters. The heaviest computational
part is the inverse calculation of an nk x nk matrix, posing a com-
plexity of O(nk3). As we usually have m > n (to have redundancy
in the functional model), this indicates that the contribution of the
first step is larger than the second step, and therefore the computa-
tional complexity of MEIV1 is also O(m3k?).

To calculate the complexity of MWTLS, we use the steps
in Algorithm 1. Two steps in the process are computationally
heavier than the others. These steps are the calculation of %!
and X. To calculate 7!, the inverse of a k X k matrix is required,
posing computational burden of O(k?). To calculate X, the inverse
of the m x m matrix Q is needed, which results in a computational
complexity of O(m?). As a result, according to the size of the
input Y (of size m x k), we may face one of the following two
scenarios:

) . o) ifm<k
Computational Complexity = 47)
Om®) ifk<xm

which gives the complexity of MWTLS as O = max(m?, k%).
This computational complexity is clearly lower than that of uni-

variate WTLS and MEIV1 models, expressed as O(m’k?).
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Experiments

To numerically evaluate the performance of the proposed method,
two experiments have been conducted in this section. The first
part of the experiments is dedicated to examining the performance
of the proposed MWTLS on the simulated data, whereas in the sec-
ond one, a real data set has been used to evaluate its efficiency. It is
worth mentioning that the MEIV method (Wang et al. 2019) has
been applied as the competing method for MWTLS. This method
has two versions, named MEIV1 and MEIV2. According to Wang
etal. (2019), these two versions have the same performance, but the
convergence of the MEIV2 is superior to MEIV1. However, be-
cause there are some errors in the pseudocode of MEIV2 in the
source paper Wang et al. (2019), MEIV 1 has been used in this study.
Moreover, the termination threshold has been set to e = 107 in all
experiments.

Simulated Data

In the first experiment, the procedure of finding the parameters
of a 2D affine transformation has been selected to evaluate the per-
formance of the experimental methods. This transformation is as
follows:

X =ag+ax+ay
Y = bo+b1x+b2y (48)

where (x, y) and (X, Y) are respectively, coordinates of the points in
the primary and secondary coordinate systems. n = {ay, a;, a,, b,
by, by} are also the transformation’s coefficients, which are the un-
known parameters of the problem. Using seven points, observation,
design, and coefficient matrices are as follows:

X, Y L x; y ay by
Y=1|: |, A=|: : |, X=|a b (49)
X7 Y7 1 X7 X7 as b2

The affine transformation coefficients for data simulation have
arbitrarily been selected as follows:

ao -2 b() 1
a=la|=]0|.  b=|b|=]1 (50)
%) 1 bz —1

To generate simulated data, first, points’ coordinates in the pri-
mary coordinate system were generated randomly. Then, using
transformation coefficients, their coordinates in the second coordi-
nate system were calculated. After that, it is necessary to add noise
to the points’ coordinates in both coordinate systems. To do so, first
Qy and Q, were obtained using predefined arbitrary >y and >, as
described in the previous section. >y, >,, and Q matrices were
considered as:

0.01  0.005
Yy = (51a)
0.005 0.01
0 0 0
4=10 0.01 0.005 (51b)
0 0.005 0.01
0=1I (51c)
J. Surv. Eng.
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Table 1. Results obtained by implementing MEIV1 and MWTLS on the simulated data set

MEIV1 MWTLS

Coefficient Real value Average STD Average STD

ag -2 —2.0003358822 0.0549285465 —2.0003358422 0.0549285473
a —0.0000686282 0.0117425389 —0.0000685568 0.0117425386
a, 1 1.0002475289 0.0109372601 1.0002475324 0.0109372588
by 1 1.0010814788 0.0545704568 1.0010814645 0.0545704569
by 0.9999643060 0.0118635274 0.9999643211 0.0118635287
b, — —1.0001089740 0.0108065191 —1.0001089475 0.0108065192

where [; = identity matrix of size seven. After determining
the variance-covariance matrices, the method in Khazraei and
Amiri-Simkooei (2019) has been used to generate noise using
Cholesky decomposition of Xy and ¥,.

To better investigate the performance of the proposed method
along with the MEIV1 method, the procedure of generating noise
was repeated 10,000 times, and for each run, the unknown coeffi-
cients were separately estimated. Table 1 shows the average and
standard deviation values of the estimated parameters from
10,000 runs of MWTLS and MEIV1 algorithms. The reported re-
sults in this table indicate the high accuracy of both MWTLS and
MEVII methods in estimating the unknown parameters. As shown
in this table, the values obtained from the two methods are to a great
extent the same, given the threshold provided, e= 107°.

The experiments were conducted on a personal computer with
an Intel Core i5-4200M CPU @ 2.50 GHz processor and 6.00 GB
RAM. The average execution time of MWTLS and MEVII1 algo-
rithms in these 10,000 repetitions was 0.0001 and 0.0132 s, re-
spectively. In other words, the MWTLS method is almost 130
times faster than MEIV1. In big problems, with a high number
of samples and dimensions, this difference will show dramatically
its impact. This is also linked to the computational complexity of
these two algorithms, previously explained. Considering both the
accuracy and the speed of the two studied methods in this part of
the experiments show the superiority of the MWTLS over
the MEIV1.

Fig. 1 shows the histogram of the results, obtained from 10,000
independent runs of the MWTLS algorithm. Examining the dia-
grams in this figure and comparing their values with the real values
of the transformation coefficients proves the unbiased estimation of
parameters by the proposed MWTLS algorithm.

To better investigate the effect of data size on the implementa-
tion of MWTLS and MEIV1, two other simulated data sets were
generated in this section separately with 1,000 and 10,000 samples.
In these data sets, the transformation coefficients were the same as
the previous one, and just the number of samples increased, from
m="T7 to m = 1,000 and m = 10,000. The data sets generation
process was also as stated for the generation of the previous data
set. The results of implementing MEIV1 and MWTLS algorithms
on these data sets are listed in Tables 2 and 3.

As is clear in Table 2, the obtained results of the two experimen-
tal methods are the same to a great extent. It is noted that the ex-
ecution times of MEIV1 and MWTLS were 124.43 and 0.18 s,
respectively. This indicates that in this case, the proposed method
is almost 700 times faster than MEIV1. The comparison of this
case with the previous experiment, which used only seven points,
shows that the increase in dimensions has caused a drastic differ-
ence between the execution time of the two MEIV1 and MWTLS
algorithms.

In Table 3, which exhibited the results of the methods on the
10,000 sample data set, dashed lines imply the failure of the method
in calculating desired results. As shown in this table, the MEIV1
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method completely failed because of the out of memory problem,
which occurred due to the use of a high-dimensional Kronecker
product,whereas our proposed method extracted high-accuracy
results, just in 1.2 s.

Real Data

In this part of the experiments, the georeferencing of a GeoEye-1
satellite image has been investigated using a number of ground con-
trol points (GCPs) through a 3D to 2D affine transformation as:

l =a —+ alE -+ azN —+ a3H
S :b0+b]E+b2N+b3H (52)

where (I, s) and (E,N, H) are respectively, the image and ground
coordinates of the GCPs. Moreover, ay, ...,as and by, ..., by are
the transformation coefficients to be estimated. Hence, in this case,
observation, design, and coefficient matrices are as follows:

ll S 1 El Nl Hl
Y = N A = ’
lm S"‘I 1 Em Nm Hm
_Cl() bo-
a by
X= (53)
a, by
Las b3 ]

For this experiment, 70 GCPs were selected using the sharp
objects in the satellite image, whereas their corresponding ground
coordinates were extracted from a 1:2000 digital reference map.
A number of GCPs, named train GCPs (TGCPs), were selected
for the coefficients’ estimation process. After calculating the un-
known parameters, another group of the GCPs, called check GCPs
(CGCPs), is utilized to evaluate the accuracy of these extracted
parameters. It is assumed that the ground coordinates of CGPs are
known, and their image coordinates should be determined through
Eq. (52). The root mean squares error (RMSE) over the extracted
and real image coordinates of CGCPs is applied as the metric for
the evaluation of the extracted unknown parameters.

Six different experiments, 10, 20, 30, 40, 50, and 60 TGCPs,
were executed in this part. The distribution of TGCPs in different
experiments along with the distribution of CGCPs have been illus-
trated in Fig. 2.

The results obtained from implementing MWTLS and MEIV1
on the real data set with different numbers of TGCPs are shown
in Table 4. As indicated in this table, both methods provide iden-
tical results. This indicates the high performance of both methods in
real scenarios. But, the proposed method with high capability in
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(f)

Fig. 1. Histogram of estimated coefficients in 10,000 repetitions of the MWTLS algorithm: (a) ag; (b) a;; (¢) ay; (d) by; (e) by; and (f) b,.

Table 2. Results obtained by implementing MEVI1 and MWTLS on a data
set with 1,000 samples

Coefficient Real value MEIV1 MWTLS

ay -2 —1.9996313520 —1.9996313521
a; 0 0.0002005223 0.0002005224
a, 1 0.9998703032 0.9998703031
by 1 0.9996497503 0.9996497503
b, 1 0.9996596630 0.9996596629
b, —1 —0.9999185717 —0.9999185716

Table 3. Results obtained by implementing MEVI1 and MWTLS on a set
with 10,000 samples

Coefficient Real value MEIV1 MWTLS
ag -2 — —1.9999992818
a 0 — 0.0000431740
a, 1 — 0.9999242961
by 1 — 0.9998795438
b, 1 — 0.9998789893
b, —1 — —1.0000845498
© ASCE
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high-dimensional problems and higher running speed, outper-
forms MEIV1.

Conclusion

In this research, a simple, fast, and flexible procedure, called
MWTLS, was presented based on the standard LS theory to solve
the problem of multivariate WTLS. Simplifying the computational
process and avoiding the use of Kronecker product in the calcula-
tions, the proposed method has a high capability in problems with
large size and high dimensional data sets. On the other hand, it is a
clear and simple process provided the ability to easily implement
the proposed procedure on a wide range of applications in geodetic
issues. Experiments performed in this study on both simulated and
real data sets to determine the parameters of 2D-2D and 3D-2D
affine transformation showed that, in addition to its simplicity
and ability to work with bulk data, the proposed method outper-
formed the state-of-the-art MEIV1 method in terms of speed and
accuracy.

As with many studies, there are some unresolved issues in this
study that could be a prospect for future research. One of the most
important remaining challenges in the present study is the need for
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Fig. 2. Distribution of TGCPs (circle markers) and CGCPs (pentagram markers) in different experiments of the real case scenario: (a) 10 GCPs;
(b) 20 GCPs; (c) 30 GCPs; (d) 40 GCPs; (e) 50 GCPs; and (f) 60 GCPs.

Table 4. Results obtained from implementing MEIV1 and MWTLS on the real data set

MEIV1 MWTLS

Number Number

of TGCPs of CGCPs RMSE, RMSE; RMSE, ., RMSE, RMSE; RMSE o1
10 60 0.5721926634 0.4230934257 0.7116266514 0.5721926635 0.4230934258 0.7116266514
20 50 0.4649924422 0.3610036919 0.5886778719 0.4649924422 0.3610036919 0.5886778719
30 40 0.5054859988 0.3470532192 0.6131574284 0.5054859987 0.3470532192 0.6131574283
40 30 0.4867388916 0.3722063880 0.6127416616 0.4867388916 0.3722063881 0.6127416617
50 20 0.5073174706 0.3922464145 0.6412708209 0.5073174704 0.3922464146 0.6412708208
60 10 0.5471968102 0.3547466251 0.6521269180 0.5471968100 0.3547466250 0.6521269177
© ASCE 04023008-8 J. Surv. Eng.
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a predefined weight matrix before performing the algorithm pro-
cess. The exact determination of these values, which have a signifi-
cant effect on the final extracted results, can be considered in future
studies. Moreover, applying the proposed method in different re-
lated applications, especially high-dimensional data modeling like
remotely sensed hyperspectral images and point clouds problems,
can be another part of our future work.

Data Availability Statement

Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable
request. The available data are: (1) generating synthetic data, and
(2) MATLAB code for MWTLS.
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