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Abstract. Modeling languages and thus their metamodels are subject
to change. When a metamodel is evolved, existing models may no longer
conform to it. Manual migration of these models in response to meta-
model evolution is tedious and error-prone. To significantly automate
model migration, operator-based approaches provide reusable coupled
operators that encapsulate both metamodel evolution and model migra-
tion. The success of an operator-based approach highly depends on the
library of reusable coupled operators it provides. In this paper, we thus
present an extensive catalog of coupled operators that is based both on a
literature survey as well as real-life case studies. The catalog is organized
according to a number of criteria to ease assessing the impact on models
as well as selecting the right operator for a metamodel change at hand.

1 Introduction

Like software, modeling languages are subject to evolution due to changing re-
quirements and technological progress [1]. A modeling language is adapted to the
changed requirements by evolving its metamodel. Due to metamodel evolution,
existing models may no longer conform to the evolved metamodel and thus need
to be migrated to reestablish conformance to the evolved metamodel. Avoiding
model migration by downwards-compatible metamodel changes is often a poor
solution, since it reduces the quality of the metamodel and thus the modeling
language [2]. Manual migration of models is tedious and error-prone, and hence
model migration needs to be automated. In coupled evolution of metamodels
and models, the association of a model migration to a metamodel evolution
is managed automatically. There are two major coupled evolution approaches:
difference-based and operator-based approaches.

Difference-based approaches use a declarative evolution specification, gener-
ally referred to as difference model [3, 4]. The difference model is mapped onto
a model migration, which may be specified declaratively as well as imperatively.
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Operator-based approaches specify metamodel evolution by a sequence of
operator applications [5, 6]. Each operator application can be coupled to a model
migration separately. Operator-based approaches generally provide a set of re-
usable coupled operators which work at the metamodel level as well as at the
model level. At the metamodel level, a coupled operator defines a metamodel
transformation capturing a common evolution. At the model level, a coupled
operator defines a model transformation capturing the corresponding migration.
Application of a coupled operator to a metamodel and a conforming model
preserves model conformance.

In both operator-based and difference-based approaches, evolution can be
specified manually [5], can be recorded [6], or can be detected automatically [3,
4]. When recording, the user is restricted to a recording editor. Using automated
detection, the building process can be completely automated, but may lead to
an incorrect model migration.

In this paper, we follow an operator-based approach to automate building
a model migration for EMOF-like metamodels [7]. The success of an operator-
based approach highly depends on the library of reusable coupled operators it
provides [8]. The library of an operator-based approach needs to fulfill a number
of requirements. A library should seek completeness so as to be able to cover
a large set of evolution scenarios. However, the higher the number of coupled
operators, the more difficult it is to find a coupled operator in the library. Con-
sequently, a library should also be organized in a way that it is easy to select
the right coupled operator for the change at hand.

To provide guidance for building a library, we present an extensive catalog of
coupled operators in this paper. To ensure completeness, the coupled operators
in this catalog are either motivated from the literature or from case studies that
we performed. However, we do not target theoretical completeness—to capture
all possible migrations—but rather practical completeness—to capture migra-
tions that likely happen in practice. To ease usability, the catalog is organized
according to a number of criteria. The criteria do not only allow to select the
right coupled operator from the catalog, but also to assess the impact of the
coupled operator on the modeling language and its models. For difference-based
approaches, the catalog serves as a set of composite changes that such an ap-
proach needs to be able to handle.

The paper is structured as follows: Section 2 presents the EMOF-like meta-
modeling formalism on which the coupled operators are based. Section 3 intro-
duces the papers and case studies from which the coupled operators originate.
Section 4 defines different classification criteria for coupled operators. Section 5
lists and groups the coupled operators of the catalog. Section 6 discusses the
catalog, and Section 7 concludes the paper.

2 Metamodeling Formalism

Metamodels can be expressed in various metamodeling formalisms. Well-known
examples are the Meta Object Facility (MOF) [7], the metamodeling standard

Herrmannsdoerfer, Vermolen & Wachsmuth – An Extensive Catalog of Operators for the Coupled Evolution of Metamodels and ModelsSERG

2 TUD-SERG-2010-041



3

proposed by the Object Management Group (OMG) and Ecore [9], the meta-
modeling formalism underlying the Eclipse Modeling Framework (EMF). In this
paper, we focus only on the core metamodeling constructs that are interesting
for coupled evolution of metamodels and models. We leave out annotations, de-
rived features, and operations, since these cannot be instantiated in models. An
operator catalog will need additional operators addressing these metamodeling
constructs in order to reach full compatibility with Ecore or MOF.

Metamodel. Figure 1 gives a textual definition of the metamodeling formalism
used in this paper. A metamodel is organized into Packages which can themselves
be composed of sub packages. Each package defines a number of Types which
can be either primitive (PrimitiveType) or complex (Class). Primitive types are
either DataTypes like Boolean, Integer and String or Enumerations of literals.
Classes consist of a number of features. They can have super types to inherit
features and might be abstract, i.e. are not allowed to have objects. The name
of a feature needs to be unique among all features of a class, including inherited
ones. A Feature has a multiplicity (lower bound and upper bound) and is either
an Attribute or a Reference. An attribute is a feature with a primitive type,
whereas a reference is a feature with a complex type. An attribute can serve
as an identifier for objects of a class, i.e. the values of this attribute must be
unique among all objects. A reference may be composite and two references can
be combined to form a bidirectional association by making them opposite of each
other.

abstract class NamedElement {
name :: String (1..1)

}

class Package : NamedElement {
subPackages <> Package (0..∗)
types <> Type (0..∗)

}

abstract class Type : NamedElement {}

abstract class PrimitiveType : Type {}

class DataType : PrimitiveType {}

class Enumeration : PrimitiveType {
literals <> Literal (0..∗)

}

class Literal : NamedElement {}

class Class : Type {
isAbstract :: Boolean
superTypes −> Class (0..∗)
features <> Feature (0..∗)

}

abstract class Feature : NamedElement {
lowerBound :: Integer
upperBound :: Integer
type −> Type

}

class Attribute : Feature {
isId :: Boolean

}

class Reference : Feature {
isComposite :: Boolean
opposite −> Reference

}

Fig. 1. Metamodeling formalism providing core metamodeling concepts.

Model. At the model level, instances of classes are called objects, instances
of primitive data types are called values, instances of features are called slots,
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and instances of references are called links. The set of all links of composite
references forms a containment structure, which needs to be tree-shaped and
span all objects in a model.

Notational Conventions. Throughout the paper, we use the textual notation
from Figure 1 for metamodels. In this notation, features are represented by
their name followed by a separator, their type, and an optional multiplicity.
The separator indicates the kind of a feature. We use :: for attributes, -> for
ordinary references, and <> for composite references.

3 Origins of Coupled Operators

Literature. First, coupled operators originate from the literature on the evo-
lution of metamodels as well as object-oriented database schemas and code.

Wachsmuth first proposes an operator-based approach for metamodel evolu-
tion and classifies a set of operators according to the preservation of metamodel
expressiveness and existing models [5]. Gruschko et al. envision a difference-based
approach and therefore classify all primitive changes according to their impact
on existing models [10, 11]. Cicchetti et al. list a set of composite changes which
they are able to detect using their difference-based approach [3].

Banerjee et al. present a complete and sound set of primitives for schema
evolution in the object-oriented database system ORION and characterize the
primitives according to their impact on existing databases [12]. Brèche introduces
a set of high-level operators for schema evolution in the object-oriented system
O2 and shows how to implement them in terms of primitive operators [13]. Pons
and Keller propose a three-level catalog of operators for object-oriented schema
evolution which groups operators according to their complexity [14]. Claypool
et al. list a number of primitives for the adaptation of relationships in object-
oriented systems [15].

Fowler presents a catalog of operators for the refactoring of object-oriented
code [16]. Dig and Johnson show—by performing a case study—that most changes
on object-oriented code can be captured by a rather small set of refactoring op-
erators [17].

Case Studies. Second, coupled operators originate from a number of case stud-
ies that we have performed. Table 1 gives an overview over these case studies.
It mentions the tool that was used in a case study, the name of the evolving
metamodel, an abbreviation for the case study which we use in other tables
throughout the paper, and whether the evolution was obtained in a forward
or reverse engineering process. To provide evidence that the case studies are
considerable in size, the table also shows the number of different kinds of meta-
model elements at the end of the evolution as well as the number of operator
applications to perform the evolution.

Herrmannsdoerfer et al. performed a case study on the evolution of two indus-
trial metamodels to show that most of the changes can be captured by reusable
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Table 1. Statistics for case studies.
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[18] F FLUID reverse 8 155 95 155 0 1 10 223
T TAF-Gen 15 97 81 114 1 13 76 134

COPE

[6] PCM reverse 19 99 18 135 0 4 19 101
[19] GMF 4 252 379 278 0 27 166 737
U Unicase forward 17 77 88 161 0 11 49 58
Q Quamoco 1 22 14 35 0 1 2 423

Acoda
B BugZilla reverse 51 208 64 237
R Researchr forward 125 380 278 6 31 64
Y YellowGrass 12 33 21 0 0 28

coupled operators [18]: Flexible User Interface Development (FLUID) for the
specification of automotive user interfaces and Test Automation Framework -
Generator (TAF-Gen) for the generation of test cases for these user interfaces.

Based on the requirements derived from this study, Herrmannsdoerfer im-
plemented the operator-based tool COPE 3 [6] which records operator histories
on metamodels of the Eclipse Modeling Framework (EMF). To demonstrate its
applicability, COPE has been used to reverse engineer the operator history of a
number of metamodels: Palladio Component Model (PCM) for the specification
of software architectures [6] and Graphical Modeling Framework (GMF) for the
model-based development of diagram editors [19]. Currently, COPE is applied
to forward engineer the operator history of a number of metamodels: Unicase4
for UML modeling and project management and Quamoco5 for modeling the
quality of software products.

Vermolen implemented the operator-based tool Acoda6 [20] which detects
operator histories on object-oriented data models. To demonstrate its applica-
bility, Acoda has been used to reverse engineer the operator history of the data
model behind BugZilla which is a well-known tool for bug tracking. Currently,
Acoda is applied to forward engineer the operator-based evolution of a number
of data models: Researchr7 for maintaining scientific publications and Yellow-
Grass8 for tag-based issue tracking. The empty cells in Table 1 indicate that the
metamodeling constructs are currently not supported by the used data modeling
formalism.

3 COPE web site, http://cope.in.tum.de
4 Unicase web site, http://unicase.org
5 Quamoco web site, http://www.quamoco.de
6 Acoda web site, http://swerl.tudelft.nl/bin/view/Acoda
7 Researchr web site, http://researchr.org
8 YellowGrass web site, http://yellowgrass.org
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4 Classification of Coupled Operators

Coupled operators can be classified according to several properties. We are inter-
ested in language preservation, model preservation, and bidirectionality. There-
fore, we stick to a simplified version of the terminology from [5].

Language Preservation. A metamodel is an intensional definition of a lan-
guage. Its extension is a set of conforming models. When an operator is applied
to a metamodel, this has an impact on its extension and thus on the expres-
siveness of the language. We distinguish different classes of operators according
to this impact [5]: An operator is a refactoring if there exists always a bijec-
tive mapping between extensions of the original and the evolved metamodel. An
operator is a constructor if there exists always an injective mapping from the
extension of the original metamodel to the extension of the evolved metamodel.
An operator is a destructor if there exists always a surjective mapping from the
extension of the original metamodel to the extension of the evolved metamodel.

Model Preservation. Model preservation properties indicate when migration
is needed. An operator is model-preserving if all models conforming to an origi-
nal metamodel also conform to the evolved metamodel. Thus, model-preserving
operators do not require migration. An operator is model-migrating if models
conforming to an original metamodel might need to be migrated in order to
conform to the evolved metamodel. It is safely model-migrating if the migra-
tion preserves distinguishability, i.e. different models (conforming to the original
metamodel) are migrated to different models (conforming to the evolved meta-
model). In contrast, an unsafely model-migrating operator might yield the same
model when migrating two different models.

Classification of operators w.r.t. model preservation is related to the clas-
sification w.r.t. language preservation: Refactorings and constructors are either
model-preserving or safely model-migrating operators. Destructors are unsafely
model-migrating operators. Furthermore, the classification is related to a clas-
sification of changes known from difference-based approaches [10, 11]: model-
preserving operators perform non-breaking changes, whereas model-migrating
operators perform breaking, resolvable changes. However, there is no correspon-
dence for breaking, non-resolvable changes, since coupled operators always pro-
vide a migration to resolve the breaking change.

Bidirectionality. Another property we are interested in is the reversibility of
evolution. Bidirectionality properties indicate that an operator can be safely
undone on the language or model level. An operator is self-inverse iff a second
application of the operator—possibly with other parameters—always yields the
original metamodel. An operator is the inverse of another operator iff there is
always a sequential composition of both operators which is a refactoring. Finally,
an operator is a safe inverse of another operator iff there is always a sequential
composition of both operators which is model-preserving.
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5 Catalog of Coupled Operators

In this section, we present a catalog of 61 coupled operators that we consider
complete for practical application. As discussed in Section 3, we included all
coupled operators found in nine related papers as well as all coupled operators
identified by performing nine real-life case studies. In the following, we explain
the coupled operators in groups which help users to navigate the catalog. We
start with primitive operators which perform an atomic metamodel evolution
step that can not be further subdivided. Here, we distinguish structural primi-
tives which create and delete metamodel elements and non-structural primitives
which modify existing metamodel elements. Afterwards, we continue with com-
plex operators. These can be decomposed into a sequence of primitive opera-
tors which has the same effect at the metamodel level but not neccessarily at
the model level. We group complex operators according to the metamodeling
techniques they address—distinguishing specialization and generalization, del-
egation, and inheritance operators—as well as their semantics—distinguishing
replacement, and merge and split operators.

Each group is discussed separately in the subsequent sections. For each group,
a table provides an overview over all operators in the group. Using the classi-
fications from Section 4, the table classifies each coupled operator according to
language preservation (L) into refactoring (r), constructor (c) and destructor (d)
as well as according to model preservation (M) into model-preserving (p), safely
(s) and unsafely (u) model-migrating. The table further indicates the safe (s)
and unsafe (u) inverse (I) of each operator by referring to its number. Finally,
each paper and case study has a column in each table. An x in such a column
denotes occurrence of the operator in the corresponding paper or case study.
Papers are referred to by citation, while case studies are referred to by the ab-
breviation given in Table 1. For each coupled operator, we discuss its semantics
in terms of metamodel evolution and model migration.

5.1 Structural Primitives

Structural primitive operators modify the structure of a metamodel, i.e. cre-
ate or delete metamodel elements. Creation operators are parameterized by the
specification of a new metamodel element, and deletion operators by an existing
metamodel element.

Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Create Package r p 2s x x x
2 Delete Package r p 1s x x
3 Create Class c p 4s x x x x x x x x x x x x x
4 Delete Class d u 3u x x x x x x x x x x x x
5 Create Attribute c s 7s x x x x x x x x x x x x x
6 Create Reference c s 7s x x x x x x x x x x x x x
7 Delete Feature d u 5/6u x x x x x x x x x x x x
8 Create Oppos. Ref. d u 9u x x x x x x x x
9 Delete Oppos. Ref. c p 8s x x x x
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Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

10 Create Data Type r p 11s x
11 Delete Data Type r p 10s x x
12 Create Enum r p 13s x x x x x x
13 Delete Enum r p 11s x x
14 Create Literal c p 15s x x
15 Merge Literal d u 14u x x

Creation of non-mandatory metamodel elements (packages, classes, optional fea-
tures, enumerations, literals and data types) is model-preserving. Creation of
mandatory features is safely model-migrating. It requires initialization of slots
using default values or default value computations.

Deleting metamodel elements requires deleting instantiating model elements,
such as objects and links, by the migration. However, deletion of model elements
poses the risk of migration to inconsistent models: For example, deletion of ob-
jects may cause links to non-existent objects and deletion of references may break
object containment. Therefore, deletion operators are bound to metamodel level
restrictions: Packages may only be deleted when they are empty. Classes may
only be deleted when they are outside inheritance hierarchies and are targeted
neither by non-composite references nor by mandatory composite references.
Several complex operators discussed in subsequent sections can deal with classes
not meeting these requirements. References may only be deleted when they are
neither composite, nor have an opposite. Enumerations and data types may only
be deleted, when they are not used in the metamodel and thus obsolete.

Deletion operators which may have been instantiated in the model (with the
exception of Delete Opposite Reference) are unsafely model-migrating due to loss
of information. Deletion provides a safe inverse to its associated creation oper-
ator. Since deletion of metamodel elements which may have been instantiated
in a model is unsafely model-migrating, creation of such elements provides an
unsafe inverse to deletion: Lost information cannot be restored.

Creating and deleting references which have an opposite are different from
other creation and deletion operators. Create Opposite Reference restricts the
set of valid links and is thus an unsafely model-migrating destructor, whereas
Delete Opposite Reference removes a constraint from the model and is thus a
model-preserving constructor.

Create / Delete Data Type and Create / Delete Enumeration are refactorings,
as restrictions on these operators prevent usage of created or deleted elements.
Deleting enumerations and data types is thus model-preserving. Merge Literal
deletes a literal and replaces its occurrences in a model by another literal. Merg-
ing a literal provides a safe inverse to Create Literal.

5.2 Non-structural Primitives

Non-structural primitive operators modify a single, existing metamodel element,
i.e. change properties of a metamodel element. All non-structural operators take
the affected metamodel element, their subject, as parameter.

Herrmannsdoerfer, Vermolen & Wachsmuth – An Extensive Catalog of Operators for the Coupled Evolution of Metamodels and ModelsSERG
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Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Rename r s 1s x x x x x x x x x x x x x x x
2 Change Package r s 2s x x x x x
3 Make Class Abstract d u 4u x x x x
4 Drop Class Abstract c p 3s x x x
5 Add Super Type c p 6s x x x x x x x x x
6 Remove Super Type d u 5u x x x x x x x
7 Make Attr. Identifier d u 8u x x x
8 Drop Attr. Identifier c p 7s x x x
9 Make Ref. Comp. d u 10u x x x x x x
10 Switch Ref. Comp. c s 9s x x x x x x
11 Make Ref. Opposite d u 12u x x x x x
12 Drop Ref. Opposite c p 11s x x x x

Change Package can be applied to both package and type. Additionally, the
value-changing operators Rename, Change Package and Change Attribute Type
are parameterized by a new value. Make Class Abstract requires a subclass pa-
rameter indicating to which class objects need to be migrated. Switch Reference
Composite requires an existing composite reference as target.

Packages, types, features and literals can be renamed. Rename is safely
model-migrating and finds a self-inverse in giving a subject its original name
back. Change Package changes the parent package of a package or type. Like
renaming, it is safely model-migrating and a safe self-inverse.

Classes can be made abstract, requiring migration of objects to a subclass,
because otherwise, links targeting the objects may have to be removed. Conse-
quently, mandatory features that are not available in the super class have to be
initialized to default values. Make Class Abstract is unsafely model-migrating,
due to loss of type information and has an unsafe inverse in Drop Class Ab-
stract. Super type declarations may become obsolete and may need to be re-
moved. Remove Super Type S from a class C implies removing slots of features
inherited from S. Additionally, references targeting type S, referring to objects
of type C, need to be removed. To prevent breaking multiplicity restrictions, Re-
move Super Type is restricted to types S which are not targeted by mandatory
references—neither directly, nor through inheritance. The operator is unsafely
model-migrating and can be unsafely inverted by Add Super Type.

Attributes defined as identifier need to be unique. Make Attribute Identifier
requires a migration which ensures uniqueness of the attribute’s values and is
thus unsafely model-migrating. Drop Attribute Identifier is model-preserving and
does not require migration.

References can have an opposite and can be composite. An opposite reference
declaration defines the inverse of the declaring reference. References combined
with a multiplicity restriction on the opposite reference restrict the set of valid
links. Make Reference Opposite needs a migration to make the reference set
satisfy the added multiplicity restriction. The operator is thereby unsafely model-
migrating.Drop Reference Opposite removes cardinality constraints from the link
set and does not require migration, thus being model-preserving.
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Make Reference Composite ensures containment of referred objects. Since
all referred objects were already contained by another composite reference, all
objects must be copied. To ensure the containment restriction, copying has to
be recursive across composite references (deep copy). Furthermore, to prevent
cardinality failures on opposite references, there may be no opposite references to
any of the types of which objects are subject to deep copying. Switch Reference
Composite changes the containment of objects to an existing composite reference.
If objects of a class A were originally contained in class B through composite
reference b, Switch Reference Composite changes containment of A objects to
class C, when it is parameterized by reference b and a composite reference c in
class C. After applying the operator, reference b is no longer composite. Switch
Reference Composite provides an unsafe inverse to Make Reference Composite.

5.3 Specialization / Generalization Operators

Specializing a metamodel element reduces the set of possible models, whereas
generalizing expands the set of possible models. Generalization and specialization
can be applied to features and super type declarations. All specialization and
generalization operators take two parameters: a subject and a generalization or
specialization target. The first is a metamodel element and the latter is a class
or a multiplicity (lower and upper bound).

Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Generalize Attribute c p 2s x x x x x x x x x x x
2 Specialize Attribute d u 1u x x x x x x x
3 Generalize Reference c p 4s x x x x x x x x x
4 Specialize Reference d u 3u x x x x x x x x
5 Specialize Comp. Ref. d u 3u x x x
6 General. Super Type d u 7u x x x
7 Specialize Super Type c s 6s x x x x x x x

Generalization of features does not only generalize the feature itself, but also
generalizes the metamodel as a whole. Feature generalizations are thus model-
preserving constructors. Generalizing a super type declaration may require re-
moval of feature slots and is only unsafely model-migrating. Feature specializa-
tion is a safe inverse of feature generalization. Due to the unsafe nature of the
migration resulting from feature specialization, generalization provides an unsafe
inverse to specialization. Super type generalization is an unsafe inverse of super
type specialization which is a safe inverse vice versa.

Specialize Attribute either reduces the attribute’s multiplicity or specializes
the attribute’s type. When reducing multiplicity, either the lower bound is in-
creased or the upper bound is decreased. When specializing the type, a type
conversion maps the original set of values onto a new set of values conforming
the new attribute type. Specializing type conversions are surjective. Generalize
Attribute extends the attribute’s multiplicity or generalizes the attribute’s type.
Generalizing an attribute’s type involves an injective type conversion. Type con-
versions are generally either implemented by transformations for each type to an
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intermediate format (e.g. by serialization) or by transformations for each com-
bination of types. The latter is more elaborate to implement, yet less fragile.
Most generalizing type conversions from type x to y have a specializing type
conversion from type y to x as safe inverse. Applying the composition vice versa
yields an unsafe inverse.

Similar to attributes, reference multiplicity can be specialized and general-
ized. Specialize / Generalize Reference can additionally specialize or generalize
the type of a reference by choosing a sub type or super type of the original
type, respectively. Model migration of reference specialization requires deletion
of links not conforming the new reference type. Specialize Composite Reference is
a special case of reference specialization at the metamodel level, which requires
contained objects to be migrated to the targeted subclass at the model level,
to ensure composition restrictions. Specialize Composite Reference is unsafely
model-migrating.

Super type declarations are commonly adapted, while refining a metamodel.
Consider the following example, in which classes A, B and C are part of a linear
inheritance structure and remain unadapted:

class A { }
class B : A { f :: Integer (1..1) }
class C : A { }

class A { }
class B : A { f :: Integer (1..1) }
class C : B { }

From left to right, Specialize Super Type changes a declaration of super type A

on class C to B, a sub type of A. Consequently, a mandatory feature f is inherited,
which needs the creation of slots by the migration. In general, super type special-
ization requires addition of feature slots which are declared mandatory by the
new super type. From right to left, Generalize Super Type changes a declaration
of super type B on class C to A, a super type of B. In the new metamodel, feature
f is no longer inherited in C. Slots of features which are no longer inherited need
to be removed by the migration. Furthermore, links to objects of A that target
class B, are no longer valid, since A is no longer a sub type of B. Therefore, these
links need to be removed, if multiplicity restrictions allow, or adapted otherwise.

5.4 Inheritance Operators

Inheritance operators move features along the inheritance hierarchy. Most of
them are well-known from refactoring object-oriented code. There is always a
pair of a constructor and destructor, where the destructor is the safe inverse of
the constructor, and the constructor is the unsafe inverse of the destructor.
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Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Pull up Feature c p 2s x x x x x x x x
2 Push down Feature d u 1u x x x x x x
3 Extract Super Class c p 4s x x x x x x x x x x x x
4 Inline Super Class d u 3u x x x x x x x x x
5 Fold Super Class c s 6s x x
6 Unfold Super Class d u 5u x x
7 Extract Sub Class c s 8s x x x x x
8 Inline Sub Class d u 7u x x x x

Pull up Feature is a constructor which moves a feature that occurs in all sub-
classes of a class to the class itself. For migration, slots for the pulled up feature
are added to objects of the class and filled with default values. The corresponding
destructor Push down Feature moves a feature from a class to all its subclasses.
While objects of the subclasses stay unaltered, slots for the original feature must
be removed from objects of the class itself.

Extract Super Class is a constructor which introduces a new class, makes it
the super class of a set of classes, and pulls up one or more features from these
classes. The corresponding destructor Inline Super Class pushes all features of
a class into its subclasses and deletes the class afterwards. References to the
class are not allowed but can be generalized to a super class in a previous step.
Objects of the class need to be migrated to objects of the subclasses. This might
require the addition of slots for features of the subclasses.

The constructor Fold Super Class is related to Extract Super Class. Here, the
new super class is not created but exists already. This existing class has a set
of (possibly inherited) features. In another class, these features are defined as
well. The operator then removes these features and adds instead an inheritance
relation to the intended super class. In the same way, the destructor Unfold
Super Class is related to Inline Super Class. This operator copies all features of
a super class into a subclass and removes the inheritance relation between both
classes. Here is an example for both operators:

class A { f1 :: Integer }
class B : A { f2 :: Integer }
class C { f1 :: Integer

f2 :: Integer
f3 :: Integer }

class A { f1 :: Integer }
class B : A { f2 :: Integer }
class C : B { f3 :: Integer }

From left to right, the super class B is folded from class C which includes all the
features of B. These features are removed from C, and B becomes a super class
of C. From right to left, the super class B is unfolded into class C by copying
features A.f1 and B.f2 to C. B is not longer a super class of C.

The constructor Extract Subclass introduces a new class, makes it the sub-
class of another, and pushes down one or more features from this class. Objects
of the original class must be converted to objects of the new class. The corre-
sponding destructor Inline Subclass pulls up all features from a subclass into its
non-abstract super class and deletes the subclass afterwards. References to the
class are not allowed but can be generalized to a super class in a previous step.
Objects of the subclass need to be migrated to objects of the super class.
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5.5 Delegation Operators

Delegation operators move metamodel elements along compositions or ordinary
references. Most of the time, they come as pairs of corresponding refactorings
being safely inverse to each other.

Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Extract Class r s 2s x x x x x x x x x x x x
2 Inline Class r s 1s x x x x x x x x
3 Fold Class r s 4s x x x
4 Unfold Class r s 3s
5 Move Feat. over Ref. c s 6s x x x x x x x x x
6 Collect Feat. over Ref. d u 5u x x

Extract Class moves features to a new delegate class and adds a composite
reference to the new class together with an opposite reference. During migration,
an object of the delegate class is created for each object of the original class,
slots for the moved features are moved to the new delegate object, and a link
to the delegate object is created. The corresponding Inline Class removes a
delegate class and adds its features to the referring class. There must be no
other references to the delegate class. On the model level, slots of objects of the
delegate class are moved to objects of the referring class. Objects of the delegate
class and links to them are deleted. The operators become a pair of constructor
and destructor, if the composite reference has no opposite.

Fold and Unfold Class are quite similar to Extract and Inline Class. The
only difference is, that the delegate class exists already and thus is not created
or deleted. The following example illustrates the difference:

class A { a1 :: Integer
a2 :: Boolean
r1 −> B (1..1)
r2 −> B (0..∗) }

class B { }
class C { a1 :: Boolean

r1 −> B (1..1) }

class A { c <> C (1..1)
d <> D (1..1) opposite a }

class B { }
class C { a1 :: Integer

r1 −> B (1..1) }
class D { a2 :: Boolean

r2 −> B (0..∗)
a −> A (1..1) opposite d }

From left to right, the features a1 and r1 of class A are folded to a composite
reference A.c to class C which has exactly these two features. In contrast, the
features a2 and r2 of class A are extracted into a new delegate class D. From
right to left, the composite reference A.c is unfolded which keeps C intact while
A.d is inlined which removes D.

Move Feature along Reference is a constructor which moves a feature over
a single-valued reference to a target class. Slots of the original feature must be
moved over links to objects of the target class. For objects of the target class
which are not linked to an object of the source class, slots with default values
must be added. The destructor Collect Feature over Reference is a safe inverse of
the last operator. It moves a feature backwards over a reference. The multiplicity
of the feature might be altered during the move depending on the multiplicity of
the reference. For optional and/or multi-valued references, the feature becomes
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optional respectively multi-valued, too. Slots of the feature must be moved over
links from objects of the source class. If an object of the source class is not linked
from objects of the target class, slots of the original feature are removed. Here
is an example for both operators:

class A { f1 :: Integer (1..∗)
r1 −> B (1..1)
r2 −> C (0..∗) }

class B { }
class C { f2 :: Integer (1..1) }

class A { f2 :: Integer (0..∗)
r1 −> B (1..1)
r2 −> C (0..∗) }

class B { f1 :: Integer (1..∗) }
class C { }

From left to right, the feature A.f1 is moved along the reference A.r1 to class
B. Furthermore, the feature C.f2 is collected over the reference A.r2 and ends
up in class A. Since A.r2 is optional and multi-valued, A.f2 becomes optional
and multi-valued, too. From right to left, the feature B.f1 is collected over the
reference A.r1. Its multiplicity stays unaltered. Note that there is no single
operator for moving A.f2 to class C which makes Collect Feature over Reference
in general uninvertible. For the special case of a single-valued reference, Move
Feature along Reference is an unsafe inverse.

5.6 Replacement Operators

Replacement operators replace one metamodeling construct by another, equiva-
lent construct. Thus replacement operators typically are refactorings and safely
model-migrating. With the exception of the last two operators, an operator to
replace the first construct by a second always comes with a safe inverse to replace
the second by the first, and vice versa.

Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Subclasses to Enum. r s 2s x
2 Enum. to Subclasses r s 1s x x
3 Reference to Class r s 4s x x x
4 Class to Reference r s 3s x x
5 Inheritance to Deleg. r s 6s x x x x x
6 Deleg. to Inheritance r s 5s x x
7 Reference to Identifier c s 8s x
8 Identifier to Reference d u 7u x x x x

To be more flexible, empty subclasses of a class can be replaced by an attribute
which has an enumeration as type, and vice versa. Subclasses to Enumeration
deletes all subclasses of the class and creates the attribute in the class as well
as the enumeration with a literal for each subclass. In a model, objects of a
certain subclass are migrated to the super class, setting the attribute to the
corresponding literal. Thus, the class is required to be non-abstract and to have
only empty subclasses without further subclasses. Enumeration to Subclasses
does the inverse and replaces an enumeration attribute of a class by subclasses
for each literal. The following example demonstrates both directions:
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class C { ... }
class S1 : C {}
class S2 : C {}

class C { e :: E ... }

enum E { s1, s2 }

From left to right, Subclasses to Enumeration replaces the subclasses S1 and S2 of
class C by the new attribute C.e which has the enumeration E with literals s1 and
s2 as type. In a model, objects of a subclass S1 are migrated to class C, setting
the attribute e to the appropriate literal s1. From right to left, Enumeration to
Subclasses introduces a subclass to C for each literal of E. Next, it deletes the
attribute C.e as well as the enumeration E. In a model, objects of class C are
migrated to a subclass according to the value of attribute e.

To be able to extend a reference with features, it can be replaced by a class,
and vice versa. Reference to Class makes the reference composite and creates
the reference class as its new type. Single-valued references are created in the
reference class to target the source and target class of the original reference. In a
model, links conforming to the reference are replaced by objects of the reference
class, setting source and target reference appropriately. Class to Reference does
the inverse and replaces the class by a reference. To not lose expressiveness, the
reference class is required to define no features other than the source and target
references. The following example demonstrates both directions:

class S {
r −> T (l..∗) ...

}

class S { r <> R (l..∗) ... }
class R { s −> S (1..1) opposite r

t −> T (1..1) }

From left to right, Reference to Class points the reference S.r to a new reference
class R. Source and target of the original reference can be accessed via references
R.s and R.t. In a model, links conforming to the reference r are replaced by
objects of the reference class R. From right to left, Class to Reference removes
the reference class R and points the reference S.r directly to the target class T.

Inheriting features from a superclass can be replaced by delegating them to
the superclass, and vice versa. Inheritance to Delegation removes the inheritance
relationship to the superclass and creates a composite, mandatory single-valued
reference to the superclass. In a model, the slots of the features inherited from
the superclass are extracted to a separate object of the super class. By removing
super type relationship, links of references to the superclass are no longer allowed
to target the original object, and thus have to be retargeted to the extracted
object. Delegation to Inheritance does the inverse and replaces the delegation to
a class by an inheritance link to that class. The following example demonstrates
both directions:

class C : S { ... } class C { s <> S (1..1), ... }

From left to right, Inheritance to Delegation replaces the inheritance link of class
C to its superclass S by a composite, single-valued reference from C to S. In a
model, the slots of the features inherited from the super class S are extracted to
a separate object of the super class. From right to left, Delegation to Inheritance
removes the reference C.s and makes S a super class of C.
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To decouple a reference, it can be replaced by an indirect reference via iden-
tifier, and vice versa. Reference to Identifier deletes the reference and creates an
attribute in the source class whose value refers to an id attribute in the target
class. In a model, links of the reference are replaced by setting the attribute in
the source object to the identifier of the target object. Identifier to Reference
does the inverse and replaces an indirect reference via identifier by a direct ref-
erence. Our metamodeling formalism does not provide a means to ensure that
there is a target object for each identifier used by a source object. Consequently,
Reference to Identifier is a constructor and Identifier to Reference a destructor,
thus being an exception in the group of replacement operators.

5.7 Merge / Split Operators

Merge operators merge several metamodel elements of the same type into a sin-
gle element, whereas split operators split a metamodel element into several ele-
ments of the same type. Consequently, merge operators typically are destructors
and split operators constructors. In general, each merge operator has an inverse
split operator. Split operators are more difficult to define, as they may require
metamodel-specific information about how to split values. There are different
merge and split operators for the different metamodeling constructs.

Class. MM OODB OOC [18] COPE Acoda
# Operator Name L M I [5] [10] [3] [12] [13] [14] [15] [16] [17] F T [6] [19] U Q B R Y

1 Merge Features d u x x x
2 Split Ref. by Type r s 1s x
3 Merge Classes d u 4u x x x x x x
4 Split Class c p 3s
5 Merge Enumerations d u x

Merge Features merges a number of features defined in the same class into a single
feature. In the metamodel, the source features are deleted and the target feature
is required to be general enough—through its type and multiplicity—so that the
values of the other features can be fully moved to it in a model. Depending on
the type of feature that is merged, a repeated application of Create Attribute
or Create Reference provides an unsafe inverse. Split Reference by Type splits a
reference into references for each subclass of the type of the original reference. In
a model, each link of the reference is moved to the corresponding target reference
according to its type. If we require that the type of the reference is abstract, this
operator is a refactoring and has Merge Features as a safe inverse.

Merge Classes merges a number of sibling classes—i.e. classes sharing a com-
mon superclass—into a single class. In the metamodel, the sibling classes are
deleted and their features are merged to the features of the target class accord-
ing to name equality. Each of the sibling classes is required to define the same
features so that this operator is a destructor. In a model, objects of the sibling
classes are migrated to the new class. Split Class is a safe inverse and splits a
class into a number of classes. A function that maps each object of the source
class to one of the target classes needs to be provided to the migration.
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Merge Enumerations merges a number of enumerations into a single enumer-
ation. In the metamodel, the source enumerations are deleted and their literals
are merged to the literals of the target enumeration according to name equality.
Each of the source enumerations is required to define the same literals so that
this operator is a destructor. Additionally, attributes that have the source enu-
merations as type have to be retargeted to the target enumeration. In a model,
the values of these attributes have to be migrated according to how literals are
merged. A repeated application of Create Enumeration provides a safe inverse.

6 Discussion

Completeness. At the metamodel level, an operator catalog is complete if any
source metamodel can be evolved to any target metamodel. This kind of com-
pleteness is achieved by the catalog presented in the paper. An extreme strategy
would be the following [12]: In a first step, the original metamodel needs to be
discarded. Therefore, we delete opposite references and features. Next, we delete
data types and enumerations and collapse inheritance hierarchies by inlining sub-
classes. We can now delete the remaining classes. Finally, we delete packages.
In a second step, the target metamodel is constructed from scratch by creating
packages, enumerations, literals, data types, classes, attributes, and references.
Inheritance hierarchies are constructed by extracting empty subclasses.

Completeness is much harder to achieve, when we take the model level into
account. Here, an operator catalog is complete if any model migration corre-
sponding to an evolution from a source metamodel to a target model can be
expressed. In this sense, a complete catalog needs to provide a full-fledged model
transformation language based on operators. A first useful restriction is Turing
completeness. But reaching for this kind of completeness comes at the price of
usability. Given an existing operator, one can always think of a slightly different
operator having the same effect on the metamodel level but a slightly different
migration. But the higher the number of coupled operators, the more difficult it is
to find an operator in the catalog. And with many similar operators, it is hard to
decide which one to apply. We therefore do not target theoretical completeness—
to capture all possible migrations—but rather practical completeness—to cap-
ture migrations that likely happen in practice. Theoretical completeness can still
be achieved by providing a means for overwriting a coupling [6]. This way, the
user can specify metamodel evolution by an operator application but overwrites
the model migration for this particular application.

Metamodeling Formalism. In this paper, we focus only on core metamod-
eling constructs that are interesting for coupled evolution of metamodels and
models. But a metamodel defines not only the abstract syntax of a modeling
language, but also an API to access models expressed in this language. For this
purpose, concrete metamodeling formalisms like Ecore or MOF provide meta-
modeling constructs like interfaces, operations, derived features, volatile features,
or annotations. An operator catalog will need additional operators addressing
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these metamodeling constructs in order to reach full compatibility with Ecore
or MOF.

These additional operators are relevant for practical completeness. In the
GMF case study [19], we found 25% of the applied operators to address changes
in the API. Most of these operators do not require migration. The only excep-
tions were annotations containing constraints. An operator catalog accounting
for constraints needs to deal with two kinds of migrations: First, the constraints
need migration when the metamodel evolves. Operators need to provide this
migration in addition to model migration. Second, evolving constraints might
invalidate existing models and thus require model migration. Here, new coupled
operators for the evolution of constraints are needed.

Things become more complicated when it comes to CMOF [7]. Concepts like
package merge, feature subsetting, and visibility affect the semantics of operators
in the paper and additional operators are needed to deal with these concepts.
For example, we would need four different kinds of Rename due to the package
merge: 1) Renaming an element which is not involved in a merge neither before
nor after the renaming (Rename Element). 2) Renaming an element which is
not involved in a merge in order to include it into a merge (Include by Name).
3) Renaming an element which is involved in a merge in order to exclude it from
the merge (Exclude by Name). 4) Renaming all elements which are merged to
the same element (Rename Merged Element).

7 Conclusion

We presented a catalog of 61 operators for the coupled evolution of metamod-
els and models. These so-called coupled operators evolve a metamodel and in
response are able to automatically migrate existing models. The catalog covers
not only well-known operators from the literature, but also operators which have
proven useful in a number of case studies we performed. The catalog is based
on the widely used EMOF metamodeling formalism [7] which was stripped of
the constructs that cannot be instantiated in models. When a new construct is
added to the metamodeling formalism, new operators have to be added to the
catalog: Primitive operators to create, delete and modify the construct as well as
complex operators to perform more intricate evolutions involving the construct.
The catalog not only serves as a basis for operator-based tools, but also for
difference-based tools. Operator-based tools need to provide an implementation
of the presented operators. Difference-based tools need to be able to specify the
mappings underlying the presented operators.
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