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Abstract
Shape from shading arose from artistic practice, and later experimental psychology, but its formal structure
has only been established recently by computer vision. Some of its algorithms have led to useful applica-
tions. Psychology has reversely borrowed these formalisms in attempts to come to grips with shading as a
depth cue. Results have been less than spectacular. The reason might well be that these formalisms are all
based on Euclidean geometry and physics (radiometry), which, are the right tools in third person accounts,
but have little relevance to first person accounts, and thus are biologically (and consequently psychologi-
cally) of minor interest. We propose a formal theory of the shading cue in the first person account, ‘a view
from the inside’. Such a perspective is also required for autonomous robots in AI. This formalism cannot be
based on Euclidean geometry, nor on radiometry, but on the structure of pictorial space, and the structure
of brightness space. The formalism, though different in kind, has a simple relation to the computer vision
accounts. It has great robustness, is free from calibration issues, and allows purely local shape inferences.
It is especially suited to biological (and thus AI) implementation. We consider a number of predictions and
confront them with available empirical evidence.
© Koninklijke Brill NV, Leiden, 2011
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1. Introduction

We consider the ‘Shape From Shading’ (SFS) problem of computer vision (CV),
and the shading shape cue of the experimental psychology of perception. The for-
mer belongs to the third person account of perceptual accomplishments, whereas
the latter is interpreted in terms of a first person account of perceptual awareness.
The formalism presented in this paper applies to the human condition, as well as to
that of autonomous, intelligent, monocular robots.

© Koninklijke Brill NV, Leiden, 2011 DOI:10.1163/187847511X590923
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1.1. Background

‘Shape From Shading’ is one of the formally best understood pictorial shape cues.
It has especially been developed in the context of computer vision (Horn, 1970;
Forsyth and Ponce, 2002). Virtually all formal development has been done in the
context of a rather simplified model of radiometry, the major assumptions being:

◦ configurations of interest are smooth surfaces of opaque objects. The surface
properties are uniform;

◦ the radiometry is fully described in the single bounce approximation, that is to
say, multiple scattering is ignored;

◦ the bidirectional reflectance distribution function is constant. These are the so
called Lambertian surfaces (Lambert, 1760). Without loss of generality one as-
sumes unit albedo;

◦ each surface element can ‘see’ all of the source, thus vignetting is ignored;

◦ the primary radiators are located at a large distance as compared to the extent
of the scene.

This has quite a number of important consequences. An observer looking at the
scene receives a certain radiance of beams that have been scattered to the eye from
surface elements in the scene (Adelson and Bergen, 1991). Given these assumptions
this radiance is proportional to the irradiance of the surface. The viewing geometry
plays no role, only the illumination geometry does. The light field can be summa-
rized through the light vector (Gershun, 1936), a uniform field over the volume of
the scene, thus, it can be further summarized through a single direction. Perhaps
somewhat perversely, but conveniently, one uses the direction toward the source.
Then the ‘shading’ is given through ‘Lambert’s cosine law’ (Lambert, 1760), it is
proportional to the cosine of the angle subtended by the outward normal of the lo-
cal surface element and the light direction. Usually no radiometric calibration is
available, thus one uses ‘image intensities’ (pixel values) multiplied by a factor that
renders the maximum value less or equal than one in order to obtain the values of
the cosine. As a consequence one is left with a purely geometrical problem. The
observation yields a scalar field of the cosine of the outward surface normal with
a fixed direction. The task is to find the surface and the direction. A commonly
encountered variation assumes the direction ‘given’.

The problem is an interesting one from a formal perspective, because it has no
unique solution. (As typical for the sciences, and in contradistinction to pure math-
ematics, the problem of whether there exists a solution at all does not even arise
in the case of an actual observation.) One finds an infinite family of solutions (the
‘bas-relief ambiguity’, Belhumeur, Kriegman and Yuille, 1999), much to the cha-
grin of the CV society. This again gives rise to a large number of methods (Zhang et
al., 1999) that we will not consider here, but that are of obvious interest to CV ap-
plications.
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The methods used in the solution invariably involve Euclidean differential geom-
etry (Coxeter, 1989). This is an immediate consequence of Lambert’s cosine law,
which involves the surface normal, an intrinsically Euclidean object.

1.2. The View from the Inside

The CV formalism for SFS is generally considered to be the natural platform from
which to start psychological investigations of the ‘shading cue’ (Palmer, 1999; Pog-
gio, 1984). This is indeed the motivation to have been a participant ourselves in
the development of the current framework. Perhaps unfortunately, the advances of
psychology in this area have been less than spectacular, most of the current under-
standing was around in the first half of the twentieth century (Metzger, 1953), quite
remarkable in view of the obvious more recent progress in CV.

The reason, we believe, is obvious enough, though perhaps only in retrospect.
The human observer is quite unlike any of the CV algorithms in that the ob-
server cannot draw on established physics (Berkeley, 1709). The observer (perhaps
over evolutionary time spans) has to develop an interface that is efficacious (von
Helmholtz, 1860). Efficacy is what counts evolutionary, ‘veridicality’ as such being
irrelevant (Riedl, 1975; Lorenz, 1977; Tinbergen, 1951, 1975; von Uexküll, 1921)
(survival or fitness, and the pursuit of truth are quite different goals). The observer
can hardly be supposed to use Euclidean geometry, given the fact that visual space
is necessarily non-Euclidean because ‘depth’ and ‘visual field’ dimensions have
very different ontologies. Neither can the observer be supposed to use regular ra-
diometry, indeed every indication we know would suggest that observers do not.

From a phenomenological perspective, we are interested in the microgenesis
(Brown, 2000; Rosenthal, 2004) of immediate visual awareness. Immediate visual
awareness is a sequence of ‘presentations’ that simply happen to an observer. They
are pre-cognitive, and the process of microgenesis is subconscious. Microgenesis
generates presentations at a rate of about a dozen a second. Perceptions are cogni-
tions based on maybe a dozen of presentations in a ‘specious moment’. We are not
involved with reflective thought in this paper, our aim is the nature of the micro-
genetic process. Since presentations happen to you, you have no voluntary control
over them.

For the purposes of psychology the CV algorithms are to be considered so-
phisticated stimulus descriptions. They are not candidates for descriptions of the
microgenetic processes, because they refer to entities and structures that are not
available to the observer. Consequently, the use of CV algorithms in a psycholog-
ical context implies that the microgenetic process is treated as a black box. This
equally applies to artificial intelligence (AI). An automaton programmed from the
outside, and sent out into the world is not an ‘intelligence’, but a machine. For the
creature to be truly intelligent (as distinct from efficacious by design) it needs to
develop a ‘view from the inside’ (see below).

Thus, arises the need to develop a formal theory of SFS ‘as viewed from the
inside’ as it were, what is to say, from the observer’s perspective. The result of
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such ‘computations’ would be pictorial reliefs instead of surfaces in Euclidean
three-space, and the computations will be done on the basis of brightness contrast
gradients, rather than radiance. In such a setting it is inconsistent to use Lambert’s
cosine law directly, since it involves entities (the Euclidean outward normal) that
play no role in the observer’s mental framework.

If one takes these notions seriously, and it is our conviction that one has no al-
ternative, it implies that — for purposes of psychology and AI — one needs to
construct a completely novel formalism from the ground up. This is the aim of our
present exercise. In order to develop such a formal theory we need to draw on exist-
ing formal accounts of pictorial space and subjective radiometry. We will introduce
these subjects — in summary fashion — first, then proceed with the development
of the theory of the shading cue.

The issue of the ambiguity of possible inferences is an important one in framing
methods, because what is to be considered a useful result depends upon the potential
use. We consider two common cases. Either the observer needs to come up with
a definite result, or the result is made available as a constraint on the process as
a whole. In the former case the observer needs to stick its neck out and has to
rely on guesses, for better or worse. These can range all the way from a random
choice from the set of inferences not ruled out by the observation, to a full fledged
Bayesian optimal choice. In the latter case the result of the shading cue will be a
constraint on inferences enabled by other cues. This is probably the generic case
(Erens, Kappers and Koenderink, 1993). The constraint should preferably be of
universal applicability in any setting. We consider both cases.

2. Preliminary Considerations

We consider three concepts that will be crucial in the development of the alternative
SFS-formalism.

The first is the concept of perception as a user interface. This is predominantly
a conceptual matter, although its acceptance has important consequences. The idea
is common enough in biology (the field of ethology), but, with notable exceptions
(Hoffman, 2008), it is not considered seriously in psychology. Although indeed
largely conceptual, we believe that forthcoming empirical data is going to force this
notion on the field. Collecting empirical evidence is only starting, due to the differ-
ent kind of research questions that have to be considered (Koenderink, van Doorn
and Todd, 2009). Thus, the evidence is certainly not to be found in the mainstream.
In the case of AI the necessity of the interface view of perception is obvious enough,
the alternative would be a preprogrammed machine.

The concept is important in the present context because it implies that the enti-
ties playing a role in microgenesis need not be representations of physical entities.
As the icon on your laptop screen does not represent any electronics or systems
programs, but stands for an entity of your reflective thought (a text maybe), the ele-
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ments of immediate visual awareness stand not for physical properties of the scene
in front of you. They are ‘mental paint’ (qualia).

The second is the formal theory of subjective radiometry. Here is much empirical
material to be mined (perhaps starting with Fechner’s psychophysical law, Fechner,
1860). A formal description that covers the area is lacking though. We discuss an
attempt that can at least be drawn upon for the present purpose. It can be shown to be
the optimal choice in the absence of prior knowledge, thus it is also the appropriate
choice for the AI case.

The third is a formal theory of pictorial space. We use ‘pictorial’ in order to stress
the case of the monocular, static observer. Otherwise ‘pictorial space’ is not differ-
ent from ‘visual space’. Here exists a formal theory with excellent, quantitative
predicting power and a large corpus of empirical data (Koenderink and van Doorn,
2008). At least for the present purposes, the formal geometry of pictorial space may
be considered to have been established. In retrospect the structure can be deduced
from general first principles that equally apply to autonomous, monocular robots,
thus, the choice is also an apt one for AI.

We will not discuss the empirical foundations here, as they can be found in the
above reference. But the reader is advised to take the geometrical structure that is
the backbone of the formalism developed in this paper as firmly established rather
than merely hypothetical.

2.1. Perception as a User Interface

We will use ‘presentation’ to denote the visual awareness that you experience when
you open your eyes in front of a scene. It differs from ‘perception’ in that it happens
to you, like a sneeze, whereas perceptions are reflective thoughts, something you do.
Since presentations are not thoughts they are not part of cognition, but perhaps can
be considered to be at the fringe of it, supplying thoughts with their substance so to
speak (Albertazzi, 2008; Poli, 2001; Searle, 1983). To some extent one may study
the microgenesis of presentations, but the microgenetic process proper is not part of
awareness (Wohlfahrt, 1932). The Gestalts from early twentieth century psychology
(Metzger, 1953) are part of presentations, they simply occur, there is nothing you
can do about them. The ‘releasers’ and ‘imprintings’ described by the ethologists
(Lorenz, 1977; Tinbergen, 1951, 1975; von Uexküll, 1921) are likewise part of the
presentations.

The conclusions of the ethologists are of much interest, because they provide a
biological, evolutionary basis for the structure of presentations. Presentations are
in no way ‘representations of the scene in front of you’, and the issue of their
‘veridicality’ is void. Organisms or autonomous robots do not attempt to invent
physics (the matter of veridicality), nor does the notion of ‘representation’ make
sense for them. Representation in the first-person account implies extra sensory
perception, thus is not a scientifically acceptable notion. Organisms simply develop
efficacious user interfaces, this is what drives evolution (Hoffman, 2008; Riedl,
1975; von Uexküll, 1921). An interface need neither be veridical, nor need it be a
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representation. Indeed, the most useful interfaces are neither of these. On the con-
trary, they shield the user from the real world (which only exists in the third-person
account), just like the icons on your computer desktop. Most of us do not know
what happens in the innards of our laptop when we drag a square icon (represent-
ing a file) on another icon (representing the ‘trash’), nor do we have any desire or
necessity to know. That would stand in the way of efficacious interaction. It is only
the interface that is relevant, to most of us our computer is the interface, rather than
the electronics or systems programs. For the autonomous robots of AI the case is
not different.

Interfaces are constructions of the observer and they are by their very nature
idiosyncratic (Brown, 2000). Since we interact with each other via the physical
world, there are no problems with communication. It is only that our ‘mental paints’
may be quite distinct, the ‘problem of qualia’ (Albertazzi, 2008; Block, 2003;
Brentano, 1995). Generic methods in experimental psychology stress objectivity
and downplay first person accounts, which is why such (as we believe very com-
mon) idiosyncrasies are not that often being reported. It requires a small paradigm
shift to allow them as scientifically valid facts, but once one accepts this one en-
counters them abundantly (Koenderink et al., 2001; Koenderink, van Doorn and
Todd, 2009). Such reports are not received with enthusiasm by the mainstream lit-
erature of experimental psychology though, since they go against the grain of what
is considered scientifically acceptable. This is one major reason why there exists
scarce documentation.

The upshot is that the shading cue is processed in the microgenesis of presen-
tations, but that it by no means need to reflect the standard formalism of CV, nor
need it result in reconstructions of the scene in front of you. Shading gives rise to
pictorial relief, which needs not be identical to the Euclidean differential geometry
of a surface in the scene in front of you. This is the human condition, but it applies
equally to the AI case.

2.2. Subjective Radiometry

The subjective entity that roughly correlates with radiance is brightness. These
are categorically distinct. Radiance (Born and Wolf, 1999) is non-negative, and
is measured in some conventional unit, say photons per surface area, per solid an-
gle, per second, and per photon energy interval. In contradistinction, brightness
has no natural origin, nor does it have a natural unit. Thus, whereas radiance may
be parameterized by the Euclidean half-line, brightness is naturally parameterized
through the affine line (Koenderink and van Doorn, 2002). Fechner’s psychophys-
ical law expresses this: � = log(N/N0), where � denotes the brightness, N the
radiance, and N0 is some arbitrary unit. If N(x, y) denotes a ‘picture’ (the retinal
illuminance will be proportional to it), then �(x,y) denotes the corresponding im-
age. We will not use brightness as a point property, but consider only brightness
contrast gradients as observables. This reflects the properties of the front-end re-
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ceptive fields and basic psychophysics. However, its use as a formal parameter (as
in the expression below) leads to greater formal transparency.

It is an empirical observation (Koenderink et al., 2001) that the images �(u, v),
related to the image �(x,y) by the transformation

⎛
⎜⎝

u

v

�

1

⎞
⎟⎠ =

⎛
⎜⎝

h cosμ −h sinμ 0 tx
h sinμ h cosμ 0 ty

sx sy g t�
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

x

y

�

1

⎞
⎟⎠ (1)

with h, g > 0, are in most respects to be considered equivalent (‘same picture’) to
the human observer. This is why people believe to all watch the same TV show,
even when their TV pictures differ a lot, largely described through these equations.
Most people only notice this when they turn on a cheap TV set in a motel room that
has unfamiliar (perhaps due to a previous guest or simply aging of the electronics)
settings. Virtually all of these parameters have control knobs, although typically
hidden away in the TV box somewhere.

The first two rows in equation (1) represent simply Euclidean similarities in the
picture (and image) plane, but the third row defines transformations that involve
brightness:

� = sxx + syy + g� + t�, (2)

it is the really interesting part. These are the transformations that photographers
used to do in the darkroom (Adams, 1950), and are nowadays standard tools in
Photoshop, all considered part of ‘straight photography’. A huge transformation
will be accepted, whereas a minor one will not even be noticed by most observers.

Equation (1) describes the group of similarities of the three-dimensional Cayley–
Klein space (Cayley, 1859; Klein, 1871, 1893, 1928) (like the familiar ‘space
you move in’ is) with two Euclidean and one isotropic dimension. Thus, it is
only slightly different from Euclidean three-space that might be more familar to
you. It is a well-known space (Sachs, 1987, 1990; Strubecker, 1941, 1942, 1943,
1945; Yaglom, 1979). In our application we will only use the subgroup defined
by h = tx = ty = 0, because we have no reason to transform the image plane. In
the resulting subgroup the parameters {sx, sy} describe an isotropic rotation, t�
an isotropic translation (both congruencies) and g a scaling of isotropic angles
(similarity of the second kind). In most cases we will also set sx, sy = 0, as these
parameters are rarely used in photographic image processing, mainly for things as
‘edge darkening’ (Adams, 1950), which have no generic interest.

We will consider some image �(x,y) as the ‘observable’, the input to the shape
from shading process. This is quite a deviation from the CV setting (Forsyth and
Ponce, 2002), because it allows for arbitrary ‘gamma corrections’ (parameter g),
and ‘contrast changes’ (parameter t�). The input data thus being more ambiguous,
one expects the problem to be more difficult, and the group of resulting ambiguities
to be larger.
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Although this structure appears to account for many of the facts of human per-
ception, it can actually be derived from first principles (Koenderink and van Doorn,
2002), thus, it is the obvious choice for the autonomous robot in AI.

2.3. The Structure of Pictorial Space

In this exercise we will be mainly occupied with pictorial reliefs, that are sur-
faces in pictorial space. We will parameterize points in pictorial space by {x, y,w},
where {x, y} parameterize the location in the picture plane (or in the visual field,
we will not distinguish these here). The coordinate w is ‘pictorial depth’, which
is not specified optically, but is a mental entity that results from the microgenesis
of presentations. A pictorial relief is given as a surface w(x, y) in pictorial space
(Koenderink and van Doorn, 2003a). A physical correlate would be the egocentric
distance (we will simply refer to it as ‘distance’) z (say). We do not a priori expect
there to exist a fixed monotonic (or even any functional) relation between depth and
distance (so-called ‘distance function’) though.

Distance is a non-negative entity, with some conventional unit. Depth has neither
an origin (the eye is not in pictorial space), nor a natural unit.

Absolute depth is meaningless in pictorial perception and cannot be measured
experimentally. It is possible to measure the depth gradient ∇w = {wx,wy} (where
the subscripts denote differentiation to that coordinate), that is the surface attitude.
A major finding is that transformations of the type

∇w′(x, y) = {sx, sy} + g∇w(x, y), (3)

with g > 0, otherwise arbitrary and sx, sy arbitrary account in detail for the dif-
ferences between observers in the same task, and for differences over time for a
single observer for the same task (Koenderink et al., 2001). Such idiosyncratic dif-
ferences can be surprisingly large. These ambiguities have already been described
in the visual arts at the end of the nineteenth century (Hildebrand, 1893), though
psychology has taken little notice of this.

This suggests that pictorial space — like the space of brightness images — is a
Cayley–Klein space (Cayley, 1859; Klein, 1871, 1893, 1928) with two Euclidean
(the picture plane) and one isotropic (depth) dimension. (Taking the gradient of
equation (2) leads to the form of equation (3).) This geometry is very similar
to Euclidean geometry (which is also one of the twenty-seven three-dimensional
Cayley–Klein spaces). It can be (but of course need not be) understood as an
approximation to Euclidean space when one Cartesian dimension is considered in-
finitesimal. This geometry can be derived from first principles (Koenderink and van
Doorn, 2008) on the assumption that vision is invariant with respect to arbitrary
rotation–dilations about the vantage point. This is intuitive, since Lilliput looks no
different from Brobdignac to the proper inhabitants (Swift, 1906). These are the
transformations that leave the optical structure available at the eye invariant, thus
it is a very general condition. It equally applies to the human condition as to the
autonomous robot from AI.
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The major group of ambiguities in the formal theories of SFS in CV (Belhumeur,
Kriegman and Yuille, 1999; Forsyth and Ponce, 2002) is exactly described by equa-
tion (3), no doubt for the aforementioned reason. The term {sx, sy} is conventionally
denoted ‘added plane’ and the factor g ‘depth scaling’. Of course CV applies this
not to depth, but to recovered, or estimated, distance.

3. The SFS Problem as Viewed from the Inside

The transformations of singly isotropic space never mix the depths along distinct
visual rays (equation (3)). Thus, pictorial space may be conceived of as a fiber
bundle (Steenrod, 1951) with base space the Euclidean plane (the picture plane),
and fibers the visual rays (fixed {x, y}, free w). The canonical projection simply
forgets the depth. A pictorial relief is a cross section of this fiber bundle, a smooth
assignment of depth values to the fibers (Fig. 1). Thus, the task of the microgenetic
process in shape from shading is to assign these values, moving depth estimates
along the visual rays as beads on strings (Fig. 2). It does so on the basis of cues, in
this case the shading cue.

Notice that this concept of pictorial space as a fiber space is actually more apt,
but also formally simpler, than the notion of Euclidean three-space. It is in many
respect (formally) similar to David Marr’s notion of a ‘two-and-a-half dimensional
sketch’ (Marr, 1982). The ‘half’ dimension is the isotropic dimension, that is the
depth dimension. Of course Marr never was explicit about the meaning of a ‘half’
dimension. Here we have a formal description of it.

In the user interface model it is evident that the microgenetic process also has the
task to define the cues. Cues are not somehow ‘given’, all that may be considered
‘given’ is (necessarily meaningless) recorded optical structure.

Figure 1. The notion of a fiber bundle. The base space BB represents the visual field, whereas the
fibers (such as FF) are ‘visual rays’, that is the depth dimension. A cross section like CC is a ‘pictorial
relief’, each fiber has been assigned a depth. The canonical projection (or bundle projection) maps
points of the fiber (like p) on the base space (in this case q). In microgenesis the mind shifts depth
values (like point p) along the visual rays like beads on a string. Points never leave the fiber they
belong to. (Of course, the actual base space — the visual field — is two dimensional, the figure
merely suggests the essential formal relations.)
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Figure 2. A transformation in the fiber bundle, fibers the verticals, base space horizontal. We have
applied a shift along the base space in order to show the original (left) and transformed configuration
(right) separately. Notice that points shift only along the fibers, thus, this is not a Euclidean rotation,
although it does manage to tilt the apparent frontoparallel. The transformation is exactly that described
by equation (3). It is typical for what is found in the psychophysics of pictorial space. (The checker-
board is only a convenient visualization here: this figure shows only a planar cut through visual space,
thus the ‘visual image’ is linear, no room for a checkerboard!)

The optical structures that might be of interest in shape from shading are bright-
ness gradients. Zero gradient implies a uniform region, which could be interpreted
as the result of an illuminated plane of arbitrary spatial attitude. Such a plane can
be removed with a transformation of the type (3), it is of no interest to the microge-
netic process. Any gradient is at least potentially a shading cue. Of course it might
be due to other causes too. If the process takes it for shading it sticks out its neck
so to speak, it is a leap in the dark. Only the result will tell whether the guess was
a fortunate one or not. If not, a fresh assignment has to be made (e.g., not shading,
but a reflectance variation). The microgenetic process is naturally iterative and re-
cursive. Here we only consider the case that the shading cue assignment is a useful
one.

The assignment need not to be correct for it to be useful. For instance, it is often
useful to ‘see’ three-dimensional scenes in photographs whereas these are actually
flat objects covered with pigments. This latter, technically to be considered ‘veridi-
cal’, meaning is more useful if you want to hang the picture on the wall, or use it
as a mouse mat. On the other hand, the assignment is useful if you want to use the
contents of the picture as forensic evidence. The choice is entirely up to you.

A brightness gradient may be taken as the cue for a change of tangent plane of the
pictorial relief with respect to some ‘light direction’. Of course, light direction can
not be taken in the radiometric sense here. The light direction matters. For instance,
if a cylindrical surface is illuminated from a direction that is coplanar with the
cylinder axis no shading will result, whereas if it is illuminated from a direction
that is skew to the axis it will. Thus, if the surface is known to be a cylinder, the
observation of a gradient rules out certain light directions.

In the pictorial space descriptions surface normals are useless (any visual ray
being perpendicular to any surface element, thus all ‘normals’ being mutually par-
allel), but a good alternative is to use depth gradients. Depth gradients define tangent
planes, which is what really counts. (Even in the CV setting the normal serves pri-
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marily to indicate the tangent plane as the causally effective factor, in Euclidean
space the relation is immediate.) Since depth gradients live in the two-dimensional
tangent space of the picture plane, the alternative for a light direction has to be a
two-dimensional vector in that plane too.

In setting up a formalism for the shading cue, one may take some inspiration from
the formalism of the external view. Consider a surface described by the distance
function z(x, y) = 1

2(zxxx
2 +2zxyxy +zyyy

2)+O[x, y]3, thus, the tangent plane at

x = y = 0 is frontoparallel, and the relief considered shallow (thus,
√

z2
x + z2

y � 1).

Let the light vector be {sinϑ,0, cosϑ}, in the xz-plane. Then Lambert’s cosine law
yields the illuminance I (x, y) = cosϑ − (xzxx + yzxy) sinϑ , thus the illuminance
gradient ∇I |{0,0} = − sinϑ{zxx, zxy}. The expression that finally appears, and that
may serve as a heuristic for the formalism of the view from the inside is

∇I |{0,0}
I0

≈ − tanϑ{zxx, zxy}, (4)

where I0 = I (0,0) = cosϑ and (∇I |{0,0})/I0 is the ‘contrast gradient’. This is a
pretty relation in its own right, but it is only of use to an external observer.

Now for the view from the inside. Suppose the light direction is the vector a, say,
and the local depth gradient ∇w. Both are vector fields in the visual field, the depth
dimension is not involved. Then the simplest expression with the qualitatively cor-
rect properties to represent a ‘shading’ is a ·∇w. If we agree on ‖a‖ = 1 (Euclidean
length is well defined in the picture plane!) we obtain a number on the real line
{−∞,+∞}. Thus, we set

�(x,y) = a · ∇w(x, y), (5)

as the alternative to Lambert’s cosine law.
Further on, we will show that this can be interpreted as a low order (ϑ � 0) ap-

proximation (Pentland, 1988) to the Euclidean–radiometric case (equation (4)). For
some people, this may put their minds at rest. However, this is not how we will view
it at all! Here we are in an ontologically completely different universe. Equation (5)
is essentially an independent construction, fully in the spirit of the ‘perception as
user interface’ concept. It is a bold hypothesis, rather than some approximation. It
makes good sense from a general, formal point of view (being much more general
than the Euclidean–radiometrical setting), but it could be completely wrong as a
biological or psychological theory. Thus, equation (5) is to be considered to be a
speculative hypothesis (Fig. 3).

From equation (5) we find the brightness gradient:

∇�(x,y) = Hw(x,y)a, (6)

where H denotes the Hessian of the pictorial relief. If the parameters {sx, sy} in
equation (2) are zero (they are typically very small) it turns out that (apart from the
light direction) the crucial entity is the Hessian of the pictorial relief up to a factor.
An arbitrary factor is no problem anyway, since the relief itself (equation (3)) is
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Figure 3. Comparison between the views from the outside (left) and from the inside (right). In the
left-hand figure the cosine of the angle ξ subtended by the surface normal n and the light vector j
determines the illuminance at p on the visual ray V . The angle ξ is read on the protractor U, connected
at p, oriented towards j. At the left of point q the surface SS′ is not illuminated due to the attached
shadow. In the right-hand figure the illumination is towards the left, shadows are meaningless. The
isotropic angle ϑ determines the illumination, it can be read of on the scale U, which serves as a
protractor in this geometry (U is connected to p and at unit distance from it). This is formally just
Lambert’s cosine law (for ϑ mimics sin(π

2 − ξ) = cos ξ in the Euclidean case), the difference is in the
angle measure, which is hyperbolic (not periodic), and the non-Euclidean trigonometry (cosϑ = 1,
sinϑ = ϑ ). Notice that both N and U are normal to the surface SS′ in this geometry, isotropic normals
are useless for most purposes.

only of interest up to a factor. The Hessian concerns only the curvature, the spatial
attitude of the relief again being undefined (the result of equation (3)).

Thus, one ends up with an alternative to Lambert’s cosine law that uses only
parameters of interest to the microgenetic process. We consider the relation to the
generic CV formalism later.

Although this might appear like a mere crummy version of the real thing, it has
the advantage of being very robust. Both the observables and the estimates are only
defined up to a large group of ambiguities, thus calibration issues hardly arise.

Written out explicitly equation (6) is

�x = A(axwxx + aywxy), (7)

�y = A(axwxy + aywyy), (8)

for some arbitrary A > 0, or, equivalently,

�yaxwxx + (�yay − �xax)wxy − �xaywyy = 0, (9)

a bilinear, homogeneous equation in {wxx,wxy,wyy} and {ax, ay}.
It is already possible to draw some initial conclusions. Suppose the light direction

is (somehow) known. Then we may take ax = 1, ay = 0, without loss of generality.
From equations (7) and (8) we find that we obtain wxx and wxy up to a common
scaling, whereas wyy remains indeterminate. Thus, along a field line of the flow, we
obtain a strip of pictorial surface. Due to the uniformity of the light field the strip
has zero geodesic curvature, and the solution yields its normal curvature (wxx ) and
twist (wxy ) up to a common constant.
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Suppose we know the surface to be umbilical. Without loss of generality, we
set wxx = wyy = 1, wxy = 0, and find that the light direction equals the brightness
gradient direction.

The light direction evidently constrains possible shapes and vice versa. Thus, the
shading cue leads to an infinite family of solutions. The microgenetic process has
two options (apart from giving up, which is no option) open, either to just guess at
the lacking information, or to use additional cue information to narrow down the
possibilities. Judging from the literature (Palmer, 1999; Ramachandran, 1988), the
former option is often adopted. Observers report to see either a concave or a convex
umbilical shape and are consequently able to judge the light flow direction. This is
quite an extreme move, because in reality any quadric shape qualifies as a possible
solution.

Why are these perfectly good solutions never reported in practice? We believe
that the reason is that no experiment addresses the shading cue proper, in all cases
there are additional cues that appear to force the issue (see below).

4. Light Flow as Viewed from the Inside

Although we assume a uniform light direction throughout space, this is not imme-
diately evident from the optical structure. Assuming opaque, Lambertian objects,
with — for the moment — smooth surfaces, the only causally effective component
of the light vector is its normal component at the location of material surfaces. The
result is the shading that is observed. In the conventional SFS setting the tangential
component is causally ineffective.

This changes if one assumes opaque surfaces that have relief modulations on the
mesoscale. Here ‘mesoscale’ is the region between the megascale at which objects
have ‘shapes’, and the microscale which influences the optical properties of the
surface, but remains unresolved in the image. Such relief modulations give rise
to ‘texture’, a modulation pattern in the image intensity at a scale below that of
relevant shape variations. The nature of this texture depends upon the illumination
geometry (Chantler, Russell and Linnett, 1994; Koenderink and Pont, 2003), a fact
that distinguishes it from ‘wallpaper texture’ due to albedo variations. In this paper
we assume constant albedo throughout. The texture is easily shown to depend upon
the tangential component of the light vector. This component, on the illuminated
surface of objects, we call ‘(surface) illumination flow’, projected in the image we
speak of ‘(image) light flow’. (In the interest of succinctness we will often omit
‘surface’ or ‘image’.) The orientation of the flow (direction up to 180° ambiguity)
is imprinted on the statistical structure of the texture. The gradient structure tensor
allows the estimation of image light flow, human observers are sensitive to this and
estimate orientation with an accuracy of better than 10° (Koenderink, van Doorn
and Pont, 2004). This aspect of the illumination induced optical structure is ignored
in the classical SFS setting. It is often of relevance in actual situations though.
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Let i be the light direction, and i⊥ its projection in the visual field, renormalized
to unit magnitude. The lost inclination (captured in i‖, the component of i along the
visual direction) is ε, say. Let the distance gradient of the surface be g(r), where
r denotes the location in the visual field. Then, to first-order in the slope and the
inclination, the light flow is

f(r) = i⊥ + εg(r), (10)

where f is, to first-order, of unit magnitude. (That is to say, we assume ε2 = 0, ε 
= 0,
thus, ε is a ‘nil-square infinitesimal’.) Thus, the flow direction depends upon the lo-
cal spatial attitude of the surface. The exact expressions are rather more complicated
than this first-order approximation of course. This is the Euclidean analysis, that is
to say, the ‘outside view’ of the matter. We use it as a heuristic in the construction
of a ‘view from the inside’.

The Euclidean analysis is purely objective, and essentially trivial. It is quite an-
other matter to frame a speculative theory that purports to capture the view from
the inside. The fact that we framed the Euclidean case in terms of a linear approxi-
mation is not arbitrary, for we believe it a priori likely that the view from the inside
will be most aptly described by way of a linear theory.

As viewed from the inside, the field of flow directions f(r) is an observable,
whereas both the component of the light vector in the viewing direction and the
gradient g(r) are not observable, but, when necessary, need to be constructed. In or-
der to be able to do so we use equation (10), interpreted from the inside perspective.
As is well known, the flow direction is crucial in SFS. Perhaps less appreciated is
that the spatial variation of the flow direction is a shape cue in its own right. From
the Euclidean analysis you have

f(r + δr) = f(r) + εHδr, (11)

where H denotes the Hessian of the distance. Locally, this is best expressed in
terms of two differential invariants, the rate of turn of the flow direction for a unit
progression in the flow direction, and the rate of turn of the flow direction for a
unit progression orthogonal to the flow direction. The former leads to a curvature
of the flow lines and will be denoted ‘swerve’ σ , the latter leads to a progressive
divergence of the flow lines and will be called the ‘splay’ τ . One has

σ = ε zxy, (12)

τ = ε zyy, (13)

where x denotes a coordinate in the flow direction, and y a coordinate orthogonal
to it (Fig. 4). By construction, splay and swerve are differential invariants.

This then is the flow of light account for the view from the inside: The flow is ob-
served, although usually with a 180° ambiguity. Extraneous cues may in some cases
lift the ambiguity. The mechanism can be a non-linear receptive field, implementing
the gradient structure tensor

S =
( 〈IxIx〉R 〈IxIy〉R

〈IyIx〉R 〈IyIy〉R

)
, (14)
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Figure 4. Some flow fields for a surface 1
2 (zxxx2 + 2zxyxy + zyyy2), where x denotes the light

direction (horizontal in the figure). At top left one has zxx 
= 0, zxy, zyy = 0 (neither swerve, nor
splay), at top right one has zxy 
= 0, zxx, zyy = 0 (pure swerve), at bottom left one has zyy 
= 0, zxx ,
zxy = 0 (pure splay). At bottom right a general case with both swerve and splay.

where the averaging is over a region R that contains a sufficient number of texture
elements. The flow is understood as a flow field over the pictorial relief. The other
observables are the local variation of the flow direction, the swerve and splay. They
are understood as being proportional to the curvature of the relief at right angles to
the flow, and the mixed derivative. Thus, the view from the inside is based on the
(speculative) relations

wxy = σ

μ
, (15)

wyy = τ

μ
, (16)

where μ is a parameter of the inner view that captures the influence of ε. The
mechanism would be receptive fields that implement spatial derivatives of the flow
direction, thus fields that are larger than those that serve to monitor the flow itself.
Swerve and splay are of considerable interest, since the curvature of the surface at
right angles to the flow does not affect the shading, and thus leads to problems for
pure SFS inferences. Of course, it may not always be possible to observe either the
flow direction, or the swerve and splay, for instance if the surface happens to be
very smooth.

This ‘inside view’ is a simple one, that will make sense as seen from the outside
when the observed surfaces are not slanted too much. In Fig. 5 we show the example
of a sphere with arbitrarily high slants as one approaches the contour. It yields an
idea of the utility of the simple inside view.
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Figure 5. The example of a sphere. At right is the exact flow field. At left the field for the analogous
case in the formalism captured by equation (11).

5. Inferences

Shape from shading, in the first person account, is often considered an inference on
the basis of currently available optical structure and situational awareness (Minsky,
1974; Searle, 1983). An extreme view considers it even as ‘inverse optics’ (Poggio,
1984).

From a biological perspective ‘inference’ has perhaps too much of a cognitive
connotation. Here we consider the microgenesis of perception to be pre-cognitive,
somewhat close to the notions of the early Gestalt school. This is how ‘inference’
should be read.

In an AI setting the ‘inferences’ would be results of a first stage of default pro-
cessing, prior to any logical or probabilistic reasoning.

5.1. Purely Local Inferences

So far, no one has proposed a purely local receptive field for pictorial shape on
the basis of shading. The reason is evident from equations (7) and (8). Apparently
the shape remains ambiguous even if the light flow direction is known. The same
problem troubles the CV algorithms. One uses some global constraint in order to
force a solution (Zhang et al., 1999). For biological systems this appears to be little
of an option.

One would prefer purely local inferences if at all possible. This would also be
of interest for AI robotics designs. In order to make some progress we need a little
digression on the topic of local shapes of quadric surfaces.

5.1.1. Quadrics
One advantage of the structure of pictorial space is that the differential geome-
try of surfaces is much simpler than it is in Euclidean space (Sachs, 1987, 1990;
Strubecker, 1941, 1942, 1943, 1945; Yaglom, 1979). All one needs is the Hessian,
whereas in Euclidean geometry one deals with nonlinear combinations of the Hes-
sian and the gradient (Coxeter, 1989).

Consider the quadric

w(x, y) = 1

2

(
a20x

2 + 2a11xy + a02y
2). (17)
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We rewrite it in terms of the alternative coefficients r = (a20 − a02)/2, s = a11 and
t = (a20 + a02)/2:

w(x, y) = t
x2 + y2

2
+

(
r
x2 − y2

2
+ sxy

)
(18)

for the reason that x2 − y2 and 2xy transform as a pair under rotations (hence the
parentheses), after all x2 − y2 equals (x − y)(x + y), just another cross product,
but for a 45° rotated coordinate system. Indeed, in rotated coordinates {u, v} over
an angle a, defined as x = u cosa − v sina, y = u sina + v cosa you have

w(u, v) = t
u2 + v2

2
+ (s cos 2a − r sin 2a)uv

+ (r cos 2a + s sin 2a)
u2 − v2

2
. (19)

The term in uv will vanish if you set

a = 1

2
arctan

s

r
or cos 2a = r√

r2 + s2
, sin 2a = s√

r2 + s2
, (20)

then the quadric becomes

w(u, v) = t
u2 + v2

2
+

√
r2 + s2 u2 − v2

2
. (21)

Thus, the principal curvatures are κ1,2 = t ± √
r2 + s2, whereas a yields the orien-

tations of principal curvature. We will adopt the convention κ1 � κ2. (Notice that
this definition of principal curvatures is simpler than the Euclidean equivalent, it is
the proper definition for the group of motions of the singly isotropic Cayley–Klein
space.)

Now we define (Koenderink and van Doorn, 1992) the Casorati curvature C

(Casorati, 1889) and the shape index S (Koenderink and van Doorn, 1992) as

C =
√

κ2
1 + κ2

2

2
=

√
r2 + s2 + t2, (22)

S = arctan
κ1 + κ2

κ1 − κ2
= arctan

t√
r2 + s2

. (23)

In terms of the original coefficients aij one has

C =
√

1

2

(
a2

20 + 2a2
11 + a2

02

)
, (24)

S = arctan
a20 + a02√

(a20 − a02)2 + 4a2
11

. (25)

In computer vision the Casorati curvature occurs as the ‘bending energy’ or ‘total
curvature’, it is obviously a differential invariant. The shape index does not depend
on size, thus measures pure shape. It is invariant against arbitrary similarities.
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A crucial observation derives from the identity
(

C sinS

C cosS cos 2a

C cosS sin 2a

)
=

(
t

r

s

)
. (26)

If we use a Cartesian ‘shape space’ with coordinates {r, s, t} then, in polar coordi-
nates, the Casorati curvature is the radius, the shape index the elevation, and double
the orientation of the principal directions (no matter which one) the azimuth.

Since the Casorati curvature is a pure size measure, we can use the unit sphere
as the space of all shapes and orientations (Fig. 6). The ‘north pole’ has the convex
umbilics, the south pole the concave umbilics, the equator the symmetrical saddles.
At the ±45° latitudes we have cylinders. A latitude circle contains all orientations
of a given shape, whereas a meridian contains all shapes for a given orientation
(Fig. 7).

This is the most intuitive and useful representation of quadrics from the perspec-
tive of pictorial shape. It is crucial in local shape (i.e., osculating quadric) estimation
since it allows a metrical description of shape space (Griffin, 2007), as required in
Bayesian inference.

Figure 6. The unit sphere in shape space represents all quadrics of unit Casorati curvature. Here
the quadrics are drawn by way of their ‘Dupin indicatrix’ (Coxeter, 1989), that is the locus
a20x2 + 2a11xy + a02y2 = ±ε2. The poles represent the umbilical (spherical) shapes, the equator
the symmetrical saddles, and the 45° latitude circles the cylinders. Along a latitude circle one finds all
orientations of a given shape, along a meridian all shapes of a given orientation. Changing the Casorati
curvature merely involves changing the diameter of the sphere.

Figure 7. Quadrics along a meridian of the unit sphere in quadrics shape space. From left to right a
concave umbilical, a concave cylinder, a symmetrical saddle, a convex cylinder and a convex umbili-
cal.
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5.1.2. Local Shape Inference
Assume we do not know the light flow direction and we are interested in shape.
(Here we use ‘shape’ to include orientation, it will rarely be of interest to see a
cylinder without seeing its orientation. Such a vision would be conceptual, not op-
tical.) Thus, we are searching for a point on the quadrics shape sphere. Here we
can use equation (9). The possible shapes are constrained to lie on a certain plane
through the origin. In terms of the {r, s, t} parameters the constraint is

ax�y(r + t) + (ay�y − ax�x)s + ay�x(r − t) = 0. (27)

We may as well select coordinates such that the gradient is along the first coordinate
direction. Setting �x = 1, �y = 0, we obtain

ay(r − t) − axs = 0. (28)

Thus, possible inferences lie on a certain great circle of the quadrics shape space.
Apparently we have a one-parameter set of possible inferences. This is very useful,
for apparently we need only a single additional constraint to settle the case. The
ambiguity is not that bad.

From equation (28) it follows that all constraint planes share a common diameter,
given by s = r − t = 0 or {1,0,1}/√2. Thus, this common diameter lies on the 45°
latitude circle, its azimuth being determined by the direction of the gradient. The
direction of the light flow then determines which circle out of the bundle one has.
The pole of such a circle is given by (by differentiation of equation (28) with respect
to r , s and t) {sinϕ,− cosϕ,− sinϕ}/

√
1 + sin2 ϕ, where ϕ denotes the direction

of the light flow (Fig. 8).
This immediately shows that only if the light flow is along the brightness gradient

one has umbilicals among the possible inferences, when it is perpendicular to the
brightness gradient the only non-hyperbolic (saddle-shaped) solution is a cylinder,
whereas saddle-shaped (and cylindrical) inferences are possible in any case.

Figure 8. The unit sphere in rst-space. An observation of the local contrast gradient due to shading
limits possible shape inferences to one of the bundle of great circles sharing the diameter s = r − t = 0.
The locus of most spherical inferences is the locus drawn fat. The loci of symmetrical saddles (equator)
and cylinders (±45° latitude circles) have been drawn dashed. It is very close to a small circle of radius
π/8 and center {1,0,2}/√5.
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In the absence of additional information we can only proceed by guessing one
parameter (of course the mainstream would perform a Bayesian inference (Bayes,
1763; Brunswik, 1955; Knill and Richards, 1996; Purves et al., 2001), but this is not
different from a best guess either). Obvious candidates are the light flow direction
and the shape index. If we guess the light flow direction we obtain a unique shape
inference, if we guess the shape index, we may infer a light flow direction, but there
exists the additional possibility that the guess is an impossible one, ruled out by the
optical data.

Suppose you know the light direction. Then the solution must lie on a certain
meridian, and you arrive at a unique solution, because the meridian is certain to
meet a generic great circle in a single point.

Now suppose you know the shape index. Then the inference must lie on a certain
latitude. Thus, you obtain either no solution (the shape index is out of the range
of shape indices described by the great circle), or you obtain a pair of solutions. It
is a priori clear that umbilics will essentially never be among the set of solutions
(only meridians reach the poles), whereas the symmetrical saddles always will (the
equator meets any great circle). But even cylinders (±45° latitude) should always
be possible, simply take their orientation as different from the gradient direction.
There evidently exists a range of possible shape inferences that lies symmetrically
about zero (Figs 9 and 10).

Although it will generally not be possible to infer an umbilical if the light flow
direction is known, it is a well-defined problem to find the most umbilical infer-
ence, that is the one for which the shape index reaches an extremum. Given wxx

and wxy , the lacking coefficient wyy is taken to be wyy = (w2
xx + 2w2

xy)/wxx

and the shape is guaranteed to be elliptical. The locus of these inferences on the
shape sphere is shown in Fig. 8. It is the intersection with the elliptical cone
{1 − cos 2ϕ,− sin 2ϕ,2}. The locus is almost circular, with (spherical) semi axes
π/4 = 45◦ and arccos(2/3) ≈ 48.19◦.

Figure 8 neatly sums up the possibilities as constrained by a single observation
of the local contrast gradient.

Figure 9. Variation of the shape index inference as a function of the arc length along the constraint
circles. The extreme values are shown in Fig. 10.
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Figure 10. Possible shape index inferences depending upon the light direction relative to the gradient
direction. Only if these directions are colinear are umbilical inferences possible. An elliptical shape is
almost always possible, at worst one needs to assume a cylinder.

Of course, all this can easily be reformulated in a Bayesian framework if such is
desired. A problem is to obtain the priors. In the absence of any knowledge the prior
for the flow direction would appear to be the uniform distribution. For biological
observers this should probably be skewed towards a preference for illumination
from above, the precise prior most likely being idiosyncratic. In the simplest case
the probability density could be taken as

P(ϑ) = 1

2π
(1 + a cosϑ), (29)

where the parameter a, with 0 < a < 1, is observer dependent, and the angle ϑ pa-
rameterizes the direction of light flow, ϑ = 0 representing illumination from above.
A prior for the shape index can be obtained from first principles (Koenderink and
van Doorn, 2003b; Lillholm and Griffin, 2009), for instance one might use the dis-
tribution of shape indices for isotropic random Gaussian surfaces. One finds

P(S) = 2
√

2 cosS

(3 + cos 2S)3/2
. (30)

Such a distribution peaks at the cylinders (S = ±π
4 ) and is zero for the umbili-

cals (S = ±π
2 ). The probability to encounter a saddle shape is 1/

√
3 ≈ 57.7%, to

encounter a convexity (same for concavity) 21.1%. We do not use the Bayesian
framework here because it implicitly assumes the third person account, thus, it is
not consistent with a view from the inside.

5.2. Global Inferences

Global inferences are possible if you know the light flow direction. In that case you
pick coordinates such that ax = 1, ay = 0, and you obtain wxx and wxy up to a
common factor. The common factor is irrelevant, since it involves only the depth
of relief. Thus, you may limit the absolute magnitude or force w2

xx + w2
xy = 1,

whatsoever the preference, it does not matter. In any case, you obtain wxx and wxy .
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Figure 11. Ribbon geometry. The ribbon at left is planar and only modulated through geodesic curva-
ture, the ribbon at center is only modulated through normal curvature, and the ribbon at right is purely
twisted. A generic ribbon will have geodesic and normal curvature, as well as twist. Ribbons assume
an ontological position between curves and surfaces.

Notice the ambiguity implied by the necessary integration. If w(x, y) is a solu-
tion, then so is w′(x, y) = w(x, y) + Cx + F(y), where C is an arbitrary constant,
and F(y) an arbitrary function of y.

One way to proceed towards a solution is to notice that the observation concerns
the gradient of wx , for ∇wx = {wxx,wxy}. Integrating the gradient is a well-defined
problem, and integrating the result once again over the x-direction yields the relief,
up to an arbitrary ‘additive plane’ and an arbitrary depth scaling. These ambiguities
are understood anyway, thus, this is a solution. The integration of the gradient can be
formulated as a simple least squares problem, a numerical procedure would simply
use the singular values decomposition. It is perhaps a method that is biologically
less likely though.

Another method is more geometrical and might be implemented in a biologically
more plausible manner. You do a one-dimensional integration (integrating the gra-
dient is a two-dimensional integration) along the field lines of the light flow. You
interpret wxx as the normal curvature of a strip, and wxy as the twist of the strip
(Fig. 11). The strips are of course again subject to arbitrary additive planes and
depth scalings. Suppose you integrate only wxx , you obtain∫ ∫

wxx(x, y)dx dx = C0(y) + C1(y)x + w(x, y), (31)

where C0,1 are arbitrary integration constants that still depend upon y. If you inte-
grate over the area of a flow box (Fig. 12), you may assume an arbitrary depth along
the boundary of the box, this settles the constants of integration.

This shows the importance of information concerning the boundary of the flow
box (Fig. 12). It is crucial in typical empirical results reported in the literature.
The most popular stimuli are linear gradients in a circular area, embedded in a uni-
form surround. The microgenetic process will almost certainly interpret the circular
boundary as a planar edge at which the relief meets the flat (because it has uni-
form brightness) environment. Then the umbilical solution is forced, and indeed,
observers report only convex and concave umbilicals (Palmer, 1999; Ramachan-
dran, 1988). It need not surprise that a change of shape of the boundary will affect
the resulting relief. A square boundary lined up with the flow yields an apparent
cylinder, for instance. Such results are evidently due to the boundary conditions,
they have only minor relevance to the shading cue proper.
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Figure 12. A ‘flow box’. At all points except P and Q the boundary is transverse to the flow. By
specifying arbitrary depths along the contour one uses the full room of ambiguities. Consider the flow
line ab, you can both add a constant and a tilt in the flow direction by assigning suitable depth values
to the boundary points a and b.

6. Some Consequences of the Theory

In this section we demonstrate the formal theory through application on a number
of commonly presented stimuli. We also show some results for photographs of real
scenes (Figs 13 and 14).

6.1. Estimation of Flow, Splay and Swerve

In Fig. 13 we show a photograph of a concrete sphere. The object is illuminated by
the sun, the edge of the body shadow is clearly visible, and, because we have the
spherical shape as ground truth, is sufficient to estimate the elevation of the source
as 28°. The concrete yields plenty of textural detail, thus running a structure tensor
analysis we obtain a reasonably good estimate of the light flow.

The photograph measures 512 × 512 pixels. The spatial derivatives for the struc-
ture tensor were computed at a one-pixel scale, whereas the local averaging was at
a 16-pixel scale. Such operations are easily available in the human visual cortex
(Hubel, 1989; Koenderink and van Doorn, 1990; Tolhurst, 1972), thus, a flow field
of this nature may be assumed available to the microgenetic process. The field is
close to that theoretically expected, except on the lower half of the sphere, where
deviations are likely to be due to scattered radiation from the environment. In any
case, the flow direction at the center is easily estimated with an accuracy of a few
degrees.

The flow field is mainly splay with only a little swerve. At the center we estimate
the splay to be about half a radian (ca. 30°) turn for a sphere radius. (A more pre-
cise analysis yields 0.47 radians per radius, not essentially different from the rough
estimate by eye.) The swerve is at least an order of magnitude smaller.

6.2. Purely Local Inference

From the flow field shown in Fig. 13 we immediately conclude that the surface is
convexly curved in the direction orthogonal to the flow, whereas the mixed second-
order derivative is essentially zero. A numerical estimate yields a radius of curvature
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Figure 13. A concrete sphere, illuminated by sunlight, photographed along a San Francisco street.
(Upper left) The cut-out from the photograph (rotated so as to put the flow direction roughly horizon-
tal); (upper right) a blurred version; (lower left) the isophotes of the blurred version; (lower right) the
estimated flow.

of approximately 1.12, only a little higher than the true value (exactly one). This is
a purely local estimate (no integration), purely on the basis of flow.

Next consider the shading proper. From the isophote pattern of the blurred photo-
graph the contrast gradient is seen to be lined up with the flow direction. Thus, there
is significant curvature along the flow, whereas the second-order mixed derivative
is negligible. A numerical estimate yields a contrast gradient of 0.50, which, com-
bined with the elevation of the source, yields an estimate of the radius of curvature
of 1.05, only little higher than the true value (exactly one). This, again, is a purely
local estimate (no integration), this time purely on the basis of shading.

If the microgenetic process does not use the elevation of the source (which is
available only through the edge of the body shadow, the boundary of the sphere, and
the assumption of sphericity), it will still classify the surface as convex umbilical
at the center (combining the splay and shading cues). Combined with the circular
outline (interpreted as occluding contour) this is all the microgenetic process needs
to let the observer hallucinate a sphere. This is a presentation that does not conflict
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Figure 14. Facade of the Asam house at Munich, a snapshot taken from the other side of the street.
Illumination by the overcast sky, due to vignetting by the facades at both sides of the street mainly
from above. The ornamentation is in white stucco, some in low relief, at other places fully modeled in
the round. Indicated regions A, B and C are considered in the text.

with any of the optical structure, and thus makes sense. Moreover, it is useful as it
identifies sphericity. Combined with the contour it settles the scene.

Notice that these inferences are very robust. The concrete is not Lambertian, the
texture and city dirt perturb the shading distribution (as evident from the shapes of
the isophotes, etc.). It is unlikely that a full fledged CV analysis of the photograph
would do much better.

In Fig. 15 we show area C from Fig. 14 and a local shape inference based on
shading. In this case the flow is not available from texture, we used the ‘light from
above’ assumption, which agrees with the overall structure of the photograph. With
shading alone one has to guess at the shape index, here we used the ‘most spherical’
inference. It turns out to be almost umbilical, not surprising given the isophotes
pattern. This is about the best the microgenetic process can do with scarce optical
structure. Even so, the inference is clearly a useful one.

6.3. Inferences Along Flow Lines

Integrating along flow lines is useful in general, but perhaps especially so in cases
of cylindrical relief. In the latter case one needs not even estimate the flow direction
since any generic flow direction (transverse to the cylinder axis) will yield the same
result up to sign. We illustrate this case on area B of Fig. 14.
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Figure 15. Area C from Fig. 14 (the exposed knee of the standing figure) and a local shape inference
(at the point marked at the center of the image) based on shading.

Figure 16. Area B from Fig. 14 (the moulding of the lower window sill) and a local shape inference
based on the integration of the contrast gradient along the vertical.

We simply integrate the contrast gradient along the vertical and obtain the profile
shown in Fig. 16. There is no way to compare the result with physical reality, but —
for this paper more importantly — it looks like what one would guesstimate by eye
measure. Of course the result is only defined up to the usual ambiguities. In this
case the vertical plane of the facade lifts all ambiguities except for the depth of
relief.

Such simple inference engines are easily implemented in biological systems, and
are surprisingly useful. Many shapes of immediate biological interest are approxi-
mately cylindrical, think of arms, legs, sections of faces or thoraxes, treetrunks and
so forth (Marr, 1982). In such cases it is not even necessary to estimate the flow,
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Figure 17. Area A from Fig. 14 (the upper part of the thorax of the standing figure) and a global shape
inference based on the integration of the contrast gradient over the rectangular area.

one simply integrates the contrast gradient along any direction that is transverse to
the (approximate) cylinder axis.

6.4. General (Extended, but Non-Cylindrical) Reliefs

The area A from Fig. 14 has been selected because it is evidently structured in
two dimensions, and can in no way be approximated with a cylindrical moulding
without losing crucial structure.

We defined a rectangular area, tilted such that one side is (by eye measure)
roughly parallel to the light flow. Then we integrated once to obtain the depth gra-
dient, and another time to obtain the depth. The result is shown in Fig. 17. It clearly
reflects the shape impression of the upper part of the torso of the standing figure
quite well. Of course, the result is subject to the usual ambiguity transformations,
but the default (frontoparallel) posture works well enough in this case. One could
no doubt do better by segmenting out the torso and providing suitable boundary
conditions. However, the quick and dirty method is quite effective, and probably
the microgenetic process required in order to present the observer with an effective
hallucination of the depth dimension.

6.5. The Importance of Boundary Constraints

The conventional stimulus for shape from shading psychophysics is a circular disk
filled with a linear brightness gradient. Common wisdom has that it can be per-
ceived either as a convex or a concave umbilical quadric (either a ‘sphere’ or a
spherical ‘cup’) (Palmer, 1999; Ramachandran, 1988). It has been noticed that the
shape of the boundary makes a difference, in that a square lined up with the gra-
dient looks like a cylindrical surface (sometimes referred to as ‘illusory’), and an
equilateral triangle lined up with a median line like a conical surface. It is not gener-
ally recognized that SFS algorithms yield many more possible interpretations, even
for the conventional circular disk. This is also the case for the formalism presented
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Figure 18. The conventional SFS stimulus and three equally possible inferences (an umbilical, a cylin-
der and a symmetric saddle, infinitely more are possible). Only the umbilical shape is reported.

Figure 19. The same gradient as that in Fig. 18, but presented in a square outline, lined up with
the gradient. The cylindrical inference is preferred over the umbilical one, apparently because of the
simplicity of its outline in depth. Notice that part of the boundary of the flow box is parallel to the
flow, such parts play no role in the inference.

here as a model for SFS as seen from the inside. In Fig. 18 we show a few of the
(infinite) possibilities.

It seems likely that the microgenetic process applies rather strong boundary con-
ditions (Minsky, 1974). For instance, the assumption that the outline of the disk is
a planar, frontoparallel curve in pictorial space rules out all interpretations but the
umbilical surfaces. But this would imply that perceptions on the basis of such stim-
uli reveal more about shape from contour than about shape from shading. Thus, this
is a conceptually very important issue.

As discussed earlier, the depth structure of the boundary of a flow box can be pre-
scribed arbitrarily. This immediately allows us to explain the perception of cylinders
and cones in rectangular or triangular outlines filled with the same linear gradient
as the conventional circle (Figs 19 and 20). The resulting presentations are perfectly
valid interpretations, just as the umbilical interpretation is. For non-circular outlines
it may be the case that non-spherical inferences are in agreement with particularly
simple depth structures of the outline (e.g., a planar curve), whereas an umbilical
inference might imply a much more complicated structure.

7. Shading in the Visual Arts

Shading in the visual arts (Hamm, 1982; da Vinci, before 1542) is quite distinct
from shading in computer graphics (CG) (Foley et al., 1990). Of course, the ob-
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Figure 20. The same gradient as that in Fig. 18, but presented in a triangular outline, lined up with the
gradient. Two possible inferences are shown. The one at the center has a flat outline, but is hyperboli-
cally curved. Observers tend to report ‘seeing a cone’, but quantitative data as to the perceived shape
are not available. None of the solutions is a true right circular cone.

jectives are also different. Mainstream CG aims at veridical, or photographic, ren-
derings of virtual scenes. Various deviations from veridicality are accepted due to
considerations of computational overhead, but as computing power grows, methods
are invariably moving in the direction of increased veridicality.

The visual artist typically has different objectives. Although some make great
efforts at photographic (or preferably better!) effects, most are concerned with the
picture as a vehicle of evoking certain intended responses in the audience. This
rarely involves the issue of veridicality or only marginally so. Important objectives
are the tonal nature of the picture and the composition. We are mainly concerned
with the shading of virtual (imagined) scenes here, ‘optical’ painting alla prima is
quite another issue. However, true optical painting is rare. Even in front of a model
most artists will shade according to their usual ‘system’, rather than acting like a
camera. Most contemporary artists consider the camera as a tool as a matter of
course (and so does their audience), so one feels rarely an incentive to act like one.

Typical shading methods will not directly use Lambert’s cosine law (Lambert,
1760) at all. Few artists would be able to define the cosine function and its relation
to Euclidean geometry. Those that do tend to have other interests besides the art.
There are two major methods (each with many variations) in common use.

One method sees surfaces as (variously modulated) ribbons (Bridgman and Si-
mon, 2001; Hamm, 1982) (Fig. 21(left)). The ribbons are only conceptual, any
surface can be analyzed into ribbons in many ways. One picks a ribbon that runs
along the (often imagined) direction of illumination. As the ribbon turns away from
the light one darkens it, if it turns towards the light one lightens it. This is a very
effective method. It yields a first handle on the shading that will be modulated or
corrected, in numerous minor ways, but the initial impact of the picture is due to
the dominance of the ribbon and the artist is careful not to destroy that. The ob-
server should not notice the method, but ‘feel’ the ribbon structure in subsidiary
awareness.

The other method analyzes complicated surfaces or shapes in terms of ‘ovoids’,
that is convex, egg-shaped bodies (Hatton, 1904) (Fig. 21(right)). The actual sur-



332 J. J. Koenderink et al. / Seeing and Perceiving 25 (2012) 303–338

Figure 21. (Left) Example of the method of ribbons (Hamm, 1982). Here the ribbon has been chosen
to run vertically downwards over the front of the torso, but other choices are equally possible. When
artfully blended, the ribbon trick becomes invisible to the lay observer. The method by nature ‘gener-
alizes’ the shape, only major landmarks can be identified and named. (Right) Example of the method
of ovoids. Rimmer (Rimmer, 1970) (the artist) was an expert on the muscular anatomy. The ovoids
(main contractile bellies) have been artfully blended (but Rimmer could name each and any of them).
Notice how the torso looks much like a sack of potatoes.

face will of course be suitably smoothed, but the basic ovoids remain visible (the
observer is supposed to ‘feel’ them in subsidiary awareness), a bit like a sack of
potatoes seen from the outside. Since shading of an egg is trivial, this is a great
method to generate the typically far more complicated shading of an actual surface.

Here ‘darker’ and ‘lighter’ are relative to the tonal scale of the painting, they
have little to do with the actual illuminances or radiances.

The shading account given here fits in very well with such practices. It can
easily be implemented in CG style, and yields a ‘shading method’ that deviates
from Lambert’s cosine law (Pottmann, Hagen and Divivier, 1991). Here is a sum-
mary account of such a method. Consider a surface z(x, y). The distance gradi-
ent is g = {zx(x, y), zy(x, y)}. Pick a light flow direction (in the picture plane!)
i = {ix, iy} and define the brightness as g · i. Notice how this is different from the
‘real thing’: the light direction lives in the picture plane instead of space, and so
does the attitude of the surface. The brightness is a number that ranges over the real
line, {−∞,+∞}. The advantages are that one needs not worry about body and cast
shadows at all. In order to draw the picture (on the screen) you need to map the real
line on the range of gray-tones that the machinery will display. A convenient way
is to define

g = 1

2

(
1 + erf

(
b − m

r

))
(32)
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Figure 22. The sculpture has been crudely triangulated (due to the late John Willats (Dubery and
Willats, 1972)), each (of course, planar) triangle is illuminated according to Lamberts cosine law in
the three leftmost cases, the light vector moving from almost frontal to almost sideways. In the latter
cases many triangles lie in the body shadow region and are rendered flat black. The image on the right
has been rendered via the gradient method. In this method body shadows have no meaning. Although
not based on physics and Euclidean geometry, such renderings look perfectly acceptable to the human
observer.

(erf(x) the conventional error function) where you can assign the mid-point m and
range r of rendered brightness b so as to arrive at gray-tones g in the range (0, 1)
(Fig. 22). The parameterization gives desirable freedom in the tonal composition
of the picture. If so desired there are obvious possibilities to skew the gray-tone
distribution, and gain even more control.

Such possible CG methods are close to the shading account discussed here and
are much closer to artistic praxis than the ‘correct’ methods. In scientific visual-
ization they also make much more sense than the Euclidean methods (Pottmann,
Hagen and Divivier, 1991) because there usually is no natural Euclidean setting.
The case of human perception is similar. ‘Depth’ is not a Euclidean dimension,
so pictorial space cannot be approached by way of the ‘correct’ framework at all.
For the view from the inside, the Euclidean method is quite alien, involving many
unwarranted assumptions.

8. Relation to the Formal Methods of CV

In order to show up the formal relation we use the simple example of a one-
dimensional image. The general case yields no additional insights and is troubled
by much longer expressions. Consider a surface

z(x) = a + tanϑx + εζ(x), (33)

where ζ(0) = 0, ζx(0) = 0 (these conditions are not essential, but formally very
convenient). This describes the surface by absolute distance a, slope ϑ and some
additional modulation described by ζ(x). The parameter ε is introduced to keep
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track of orders of magnitude, for the moment one may simply take ε = 1, eventually
we consider the limit ε → 0. Consider the light direction to be given by

i = cos(ϑ + ϕ)ex + sin(ϑ + ϕ)ez, (34)

where the parameter ϕ describes the elevation of the source relative to the overall
slope of the surface. For the moment consider ϕ > 0, eventually we will consider
the limit ϕ → 0.

The direction of the surface normal is {−zx(x),1}, thus one has

n(x) = {− tanϑ − εζx(x),1}√
1 + (tanϑ + εζx(x))2

, (35)

and finds the illuminance, invoking Lambert’s cosine law, as I (x) = i · n(x). The
illuminance contrast is defined as

c(x) = I (x) − I (0)

I (0)
, (36)

such that c(0) = 0. The expression of interest is the gradient of the illuminance
contrast

∇c(0) = −ε cos2 ϑ cot(ϕ)ζxx(0). (37)

Now consider the limit for low relief and almost raking illumination. It is a double
limit in which we want to keep the ratio ε/ϕ at a finite value, whereas both ε and ϕ

approach zero. Setting the ratio to some constant and taking the limit one obtains

∇c(0) ∝ ζxx(0). (38)

This is exactly the result from the previous calculation (equation (4)). Thus, the
Euclidean geometry with Lambert’s cosine law contains the previous formalism as
the limit for shallow relief and raking illumination.

It is a very useful approximation for a number of reasons. For instance, the slope
of the surface does not matter, one has no perspective foreshortening issues. There
is no need to worry about body and cast shadows. Various calibration issues play no
role. This renders the method attractive for biological purposes, the more so because
everything can be framed in terms of the brightness and pictorial spaces. The latter
fact need not surprise one, it is no doubt one of the reasons why these spaces have
the structure they do.

9. Conclusions

We have presented a speculative account of the shading cue as it appears in the
first person account, a ‘view from the inside’. The general theory implies a number
of ways to handle shading patterns, depending upon the availability of additional
structure (such as light flow, shape or spatial attitude), and situational awareness.
This makes sense, because in no case known to us is a perceived shape causally de-
pendent upon the shading cue alone. In fact, it may well be impossible to design a
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stimulus that would really isolate the shading cue (Erens, Kappers and Koenderink,
1993). In virtually all cases the stimulus bouquet, including shading, will severely
underdetermine possible inferences. Since perception (whether of the human ob-
server or the autonomous robot of AI) does not have the option to quit, one needs
to consider ways to proceed in such cases.

The theory allows one to develop many rather immediate predictions. For almost
any given case there is an obvious implementation of the theory. Usually there will
be a number of options left open. Whether an option is used and how is a matter
of hypothesis, and the theory will allow one to put it to the test. An example is the
case of the linear gradient inside a circular, rectangular or triangular boundary. Here
the human observer apparently goes for the most simple (planar) outline in depth,
simply ignoring the infinitely many equally valid inferences.

Whether it is desirable to model the inner perspective of an autonomous robot
on the human condition is a moot point. Some streams in AI have the explicit aim
to mimic human capabilities, but there exists a broad realm of enquiry here. The
present formalism is general enough to offer a useful platform to start from.
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