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Summary

Quadrotor drones are vehicles with wide range of applications which are gaining more atten-
tion in recent years. Although there is a large body of literature on the topic of modelling
and controlling of quadrotor drones, prediction of their flight envelopes remains a relatively
unexplored research field. The knowledge of the flight envelopes can enhance the understand-
ing of the causes of loss of controls and at the same time aid to prevent them, which could
be seen from the application examples on commercial aircraft. Flight envelope prediction is a
challenging task where one of the difficulties is that major methods, like the level set methods,
is impractical with vehicle models with higher dimensions which is essential to capture the
dynamics of highly manoeuvrable quadrotor drones. One method that can be applied to high-
dimensional systems is with an approach using Monte-Carlo simulation, which is an algorithm
used to estimate probability distributions of a system by calculating outputs with randomly
sampled inputs. This can be applied for flight envelope prediction by repeatedly simulating
the dynamic system model with randomly sampled control sequences to estimate the reachable
set. One of the drawbacks is that a large number of simulations is needed to predict a flight
envelope, while not all simulations directly contribute towards estimating its boundary.

A novel approach is proposed in this research that is able to predict the level of contribution
towards estimating the reachable set boundary of a given input sample using artificial neural
networks, before performing computationally expensive numerical simulations. By rejecting
input samples predicted to have relatively low values, the boundary of the reachable set can be
reconstructed with a smaller number of simulations. This approach is applied on a longitudinal
model of a quadrotor drone in hover with actuator dynamics, which makes it a six-dimensional
system. First the reference reachable sets is estimated using Monte-Carlo simulation, which
each sample point is labelled a score describing its relative distances from the boundary and
from the initial state. A neural network containing long short-term memory cells are trained
to map the sampled control sequences to the labelled scores to the end state of corresponding
trajectories.

With an appropriate choice of the threshold the trained neural network is able to reject
about 50 % of randomly sampled control sequences, in which at most 95% of the rejected sam-
ples would not have contributed towards the boundary estimation. By changing the threshold
further reduction in the numerical simulation can be achieved with an increased risk of re-
jecting potentially valuable trajectories. It is further shown that the trained ANN could be
applied for trajectory pruning for off-nominal systems with changes to the model parameters.
Further research on the computation cost comparison against purely probabilistic approaches
is recommended to draw conclusions on the effectiveness of the proposed approach.
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1
Introduction

Multirotor drones are seeing much development in light of their wide applications from recon-
naissance to package deliveries. While they become more capable, improving their safety is
of high importance. There has been much research on various techniques that makes drones
safer to operate. An example is fault tolerant control strategies such as incremental nonlinear
dynamic inversion, which also has been applied to drones with different failure modes [1, 2].
Such control strategies require minimal knowledge of current vehicle dynamics to stabilise and
control the aircraft. However, further improvement on the safety of aircraft operation can be
expected when the knowledge of aircraft’s health and safety is available. One measure that
serves this purpose is the flight envelope.

A flight envelopes is defined as the region of state space of an aircraft in which the aircraft
can operate safely [3]. Meaning that as long as the aircraft states are within these bounds the
aircraft has no risk of entering loss of control in flight (LOC-I), which is the dominant cause of
incidents for the past decades [4, 5]. Not only can a flight envelope be used as a reliable, quanti-
tative indication of LOC-I [6], more sophisticated applications of flight envelopes are available
in the form of flight envelope protection. For instance, a flight controller can limit the control
inputs to avoid violations of the flight envelope. These techniques are developed for fixed-wing
aircraft [7, 8, 9] as well as for multirotor drones [10]. Flight envelopes are typically determined
off-line, prior to operations which there has been research on different methods of estimating
the flight envelope of fixed-wing aircraft. Straightforward methods include wind tunnel test-
ing, physical flight tests and high-fidelity model-based computations [11]. More sophisticated
methods include formulating the flight envelope prediction as a reachability analysis problem
[12], estimating the stability margin through an analysis in the frequency domain [13] and a
probabilistic approach with Monte-Carlo simulation [14] to name a few.

Although there has been extensive research performed on the flight envelope prediction
methods for commercial aircraft and other forms of fixed-wing aircraft, relatively small body
of literature can be found on the topic of flight envelope prediction of multirotor drones. The
knowledge of the flight envelope is expected to be of especially high importance for multirotor
drones, which is more susceptible to LOC-I due to their nature of being inherently unstable
[15]. Furthermore the most popular configuration among multirotor drones, quadrotors, are
underactuated systems which can cause challenges in stabilising and controlling the aircraft.

The motivation of this research is to contribute towards improved flight envelope prediction
of quadrotor drones, which ultimately could enhance the safety of their operations. The struc-
ture of the report is as follows. First, the objective of this thesis is described in Chapter 2,
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where detailed research questions are derived and motivated. Part I presents the preliminary
study performed to gain an understanding of the flight envelope prediction and to identify
knowledge gaps. Part II presents the draft scientific paper which contains the main results
and conclusions of the research. Part III concludes the thesis as a whole, together with a list
of future recommendations. Finally, a book of appendices is presented in Part IV, where the
implementations of experiments are described and additional results are presented.



2
Thesis objectives

This chapter describes the objective of this thesis derived from the motivations introduced in
Chapter 1 and summarises the findings from the literature study phase. A wide range of flight
envelope prediction methods were considered, in which the Monte-Carlo simulation (MCS)
based reachability analysis approach was studied in further detail. The goal of this research
phase was to gain insight on the overview of the field of flight envelope prediction and to find
knowledge gaps in a relevant sub-field which a topic for this research project could be based on.
The relevance of the research topic and the feasibility of the research as a MSc thesis project
were also considered.

In Section 2.1 the main results from the literature study are summarised. In Section 2.2 the
objective of the research and the research questions established through the literature study
are presented. Finally in Section 2.3 an overview of the proposed research is described.

2.1. Summary of the literature study
The literature study performed can be divided into four phases. In the first phase, a high-level
research was performed in order to grasp the overview of the field of flight envelope prediction
and protection techniques. Through this work, it was possible to identify and classify prediction
methods into different groups and subgroups, as presented in the classification diagram shown
in Figure 3.1. The most popular method among them was identified as the level set method,
which its working principles were researched.

In the second phase, several methods that were gaining attention in literature were selected
to be studied in more detail in search for knowledge gaps. These were zonotopic reachability
analysis, system decomposition techniques, Hamilton-Jacobi PDE solution estimation with
neural networks and the MCS approach. From these topics the knowledge gap found in the
MCS approach, which is a prediction method involving repeatedly performing numerical sim-
ulations with randomly sampled control sequences, were selected to be further investigated.
The knowledge gaps found in these topics are briefly discussed in Chapter 3.

The third phase was a more in-depth research on the state-of-the-art of the MCS-based
approach which the findings are reported in Chapter 4. From this search it was found that one
of the weaknesses of the state-of-the-art by Yin et al. [14] and Sun and de Visser [15] lies in
the sampling process for the control sequences, which could potentially be performed in a more
efficient way. The last phase of the research was performed in search for enabling technologies
that allow more efficient sampling of control sequences for MCS-based reachability analysis.
For this purpose, some machine learning techniques were studied in which supervised learning
algorithms using artificial neural networks were researched in detail, presented in Chapter 5.

3



2.2. Research objective and research question 4

2.2. Research objective and research question
Flight envelope prediction is of high importance for the safety of operations of aircraft but at the
same time a challenging task. However, quadrotor drones which are seeing much development
still has a relatively small body of literature on their flight envelope predictions. One of them is
the work by Sun and de Visser [15] who applied the probabilistic reachability analysis technique
using the MCS approach on a quadrotor dynamic model, which a novel sampling strategy of
control sequences was demonstrated. However it was observed that there is a potential to
be further extended upon, therefore the proposed research objective was established as the
following.

Research objective
“To further improve the speed and reliability of the Monte-Carlo simulation method
for reachability analysis in order to predict the flight envelope of a quadrotor drone
by means of effective sampling of control sequences.”

Through literature studies, the capabilities of machine learning to perform complex tasks were
deemed to be an enabling technique to realise this research objective. The main research
question of this research project was therefore determined as the following.

Main research question
“Is it possible to reduce the number of required sample trajectories to predict flight
envelopes using the Monte-Carlo simulation approach by integrating machine learn-
ing techniques?”

This research question can be decomposed into different subquestions, in which answering
them will give an answer to the main research question. These subquestions are presented
below in the intended order to be answered during the research project.

Subquestion 1
“What could serve as a reference for the boundary of the theoretical reachable set
for a given dynamic system which there is no analytical solution for?”

Subquestion 2
“What measures could be used to distinguish trajectories that reach near the bound-
aries of reachable sets from those that do not?”

Subquestion 3
“What sort of machine learning technique could be implemented to quickly identify
input sequences that contribute more for estimating a more accurate reachable
set?”

Subquestion 4
“How does the overall computational complexity compare with other flight envelope
prediction methods?”



2.3. Proposed research 5

2.3. Proposed research
The general framework of the aimed contribution of this research is illustrated in Figure 2.1.
The proposed extension to the sampling strategies for flight envelope estimation with the MCS
approach is to train a machine that can classify randomly sampled control sequences according
to how valuable they are towards constructing the reachable set boundary, which is illustrated
on the right side of Figure 2.1. Each relevant field of knowledge to train such a machine are
illustrated in the boxes with rounded corners on the left side of Figure 2.1.

In order to quantitatively describe the value of a randomly sampled trajectory, this shall be
measured by how close the end state has reached towards an a-priori reachable set. However
this requires an knowledge of the true reachable set, which shall be found using the answer
to Subquestion 1. Prominent candidates are set constructions with a large number of MCS
sample trajectories, either as an α-cut of the fuzzy set found using kernel density estimation
as presented by Yin et al. [14] or as an outer surface in three-dimensional space as presented
by Sun and de Visser [15]. The next challenge lies in quantitatively describing the value of a
given trajectory compared to the identified reference set, as posed in Subquestion 2. Notable
candidates are the membership degree of the end state of the trajectory in the fuzzy set
representation of the reachable set or the Euclidean norm of the end state from an outer
surface constructed by a large number of MC samples. Finally a machine shall be trained
that can map a given control sequence to the value of the corresponding trajectory, which
is addressed in Subquestion 3 which a prominent candidate is an advanced recurrent neural
network architecture such as with long short-term memory cells.

The answers to Subquestions 1, 2 and 3 together enable the aimed contribution shown
in Figure 2.1, while the answer to Subquestion 4 can describe how much this research con-
tributes towards the research objective. Identifying valuable input sequences with machine
learning techniques still requires computation time as well as training time. It is important
to critically study the achieved reduction of computational complexity if any to judge how
useful the established method is for flight envelope prediction of quadrotor drones or for other
applications.

Figure 2.1: An illustration of the aimed contribution of this research. A machine will be trained to filter out
less valuable control sequences for reachable set estimation before model simulation (left side), which may be

able to save computation power by performing less simulations for MC reachability analysis (right side).



Part I

Preliminary thesis report
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3
A review on flight envelope applications and

prediction methods

This section presents findings from literature study on different ways flight envelopes can be
used to make operations of aircraft safer and different methods of predicting them. In Section
3.1 the definition of the flight envelope used throughout this report is presented. In Section
3.2 different types of flight envelope prediction techniques are introduced. In Section 3.3 the
popular approach of representing the flight envelope using reachable sets is introduced. In
Section 3.4 the working principle of one of the most studied methods called the level set
method is explained. In Section 3.5 some of the knowledge gaps in different approaches of
flight envelope prediction identified during the literature study are reported.

3.1. Definition and applications
The term flight envelope is often used to refer to the safe area in the space between aircraft
velocity and load factor also known as the V-n diagram. The V-n diagram indicates the bound-
aries of safe flight conditions with manoeuvrability and structural safety under considerations.
However the flight envelope in question serves as a metric with broader application. Although
the term does not have a strict definition, the definition by van Oort [3] is adapted throughout
this research, which is stated as “the part of the state space for which safe operation of the air-
craft and its cargo can be guaranteed and external constraints will not be violated” which is an
intersection of following three envelopes: dynamic, structural/comfort and environmental en-
velopes. The structural/comfort and environmental envelopes pose external constraints, either
from the airframe, pilot, passengers and cargo or from the environment such as terrain, walls
and other aircraft. These constraints are generally well-known and can be easily quantified [3].
In this report Definition 3.1.1, is adapted and referred as the flight envelope. This definition
is also referred as “safe flight envelope” or “manoeuvring envelope” in some literature.

Definition 3.1.1 (Flight envelope/Dynamic envelope). The region of the aircraft state space
in which the aircraft can be safely controlled where no loss-of-control events can occur, subject
to constraints posed by the dynamic behaviour of the aircraft [3]

For an aircraft represented as a dynamic system in n dimensional state space, the flight envelope
can be regarded as an n dimensional volume while its boundary is a n−1 dimensional interface.
A given point in the state space can be either inside, outside or exactly on the boundary. Flight
envelopes can also change their shapes over time, for example due to external disturbances [16]
and failure of the aircraft [17].

7



3.2. Different flight envelope prediction methods 8

One primary use of the knowledge of the flight envelope is to gain a better insight in for
example a fatal accident, where the flight envelope can be used to make a clear distinction
between the LOC-I with other factors of accidents such as Controlled Flight into Terrain [18].
The knowledge of the flight envelope can also be used to describe how severe LOC-I was and to
identify possible causes. For instance Wilborn and Foster defined flight envelopes between five
different combinations of aircraft state variables, each of them corresponding to five different
modes of unsafe flight conditions such as adverse aerodynamics and unusual attitude [6]. They
enhance the understanding of how LOC-I occurs in real flights and can serve as foundations
of strategies to avoid LOC-I.

The knowledge of the flight envelope is essential for flight envelope protection systems to
actively prevent LOC-I. Their functionality is to help pilots to keep the aircraft within the flight
envelope [19], by reducing their workload or by enhancing their situation awareness. This can
be implemented as human-machine interfaces such as stick shakers and stick pushers [19] or
directly to flight control systems to prohibit specific control actions [14]. Given accurate knowl-
edge of the flight envelope and a flight protection system, the number of handling and control
accidents in the commercial aviation sector has been greatly reduced [7]. Flight envelopes of
quadrotor drones may be applied in a similar fashion to improve the safety of their operations.

3.2. Different flight envelope prediction methods
There exists various methods to predict flight envelopes, which can be categorised into dif-
ferent types and branches as illustrated in Figure 3.1. Methods can mainly be classified into
two categories which are test-based methods and model-based methods. Test-based methods
include for example wind tunnel testing and physical flight tests, in which the states where an
aircraft (or a scale model) can operate safely can be recorded to estimate the flight envelope.
Such tests are often time consuming and expensive but are able to produce reliable results.
However there may be parts of the flight envelope that are difficult to reach in the given test
environment, resulting in a conservative prediction. On the other hand, model-based meth-
ods can be performed without the need for physical aircraft, pilot nor special facilities such
as the wind tunnel. Model-based methods can perform more extensive analysis at different
flight conditions that may be difficult to reach in a real flight. Perhaps the largest drawback
of model-based method is that the model almost always contains model gaps as discussed in
Subsection 6.2, which creates discrepancies in the actual flight envelope and a perfectly esti-
mated flight envelope of its model. However the estimated envelope could be used to perform
physical flights to both validate the envelope as well as to re-identify the model creating an
iterative loop to gain further insight in the vehicle dynamics.

Within the model-based approaches, there are again different categories of flight envelope
prediction methods. Lichter et al. evaluated the stability margin of an identified dynamic
model in frequency domain [13], Shin and Belcasto performed robust analysis to determine a
reliable flight regime [20] and Pandita et al. defined the flight envelope as region of attraction
[21]. A more rigorous method is to formulate flight envelope prediction as a reachability
problem in the optimal control framework, which involves solving Hamilton–Jacobi partial
differential equations (HJ PDE) as first demonstrated by Lygeros [12].

The reachability analysis approach is one of the most studied methods for flight envelope
prediction with the most popular method called the level set method [22]. The level set method
describes the boundaries in a multi-dimensional space using the implicit function, which maps
a given state to a numerical value, where the boundaries are all state spaces which the implicit
function returns some constant value (often set as zero). The implicit function is typically
found with an Eulerian numerical scheme performed over a fixed grid. The level set method
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has different variations, for example a stochastic approach was taken by van den Brandt et al.
[16], semi-Lagrangian approach was taken by van Oort et al. [3] and solved with time scale
separation by Kitsios and Lygeros [23]. In recent years, computation methods for HJ PDEs
that avoids the computations on fixed grids are attracting interests [24, 25].

Other flight envelope methods in the optimal control framework include for example dis-
tance field over grid (DFOG) approach by Helsen et al. [19], zonotopic reachability by Eyang
et al. [26] and by solving a time to reach optimisation problem using Fast Marching method
by Sethian [27]. Another branch exists in the reachability analysis technique, which takes a
probabilistic approach using Monte-Carlo simulation often used for validation purposes. In
this approach instead of solving for optimal controls to guide the system from the initial set to
another point in state space, the reachable set is estimated by performing a series of numerical
simulations using randomly sampled controls. Yin et al. [14] used kernel density estimation to
formulate a continuous representation of the reachable set from discrete collection of numerical
simulation results who also made use of the extreme control effectiveness method (ECEM) to
reduce the sample space of control inputs, while Sun and de Visser [15] extended this method
to achieve more effective control sampling strategy.

Figure 3.1: A classification diagram of different approaches for flight envelope prediction.

3.3. Flight envelope prediction in terms of reachable sets
One of the most extensively studied methods for flight envelope prediction is by formulating the
problem into a reachability problem. Consider a nonlinear dynamic system which its dynamics
can be represented as ẋ = f(x,u). The mathematical definition of a reachable set by Lygeros
[12] is as shown in Equation 3.1. Put into words, a reachable set is the set of states in which
there exists an input sequence δ such that it drives the system into a trajectory ξ which reaches
the target set K within the time horizon T . This particular reachable set is referred as the
backward reachable set Rb because for a given trim set K, this set represents the states where
the system can return to the trim set within some time horizon T . The definition of a trim set
or equivalently a safe set is presented in Definition 3.3.1. Alternatively, this reachable set can be
solved backwards in time with the same system with time running backwards as ẋ = −f(x,u),
assuming a continuous dynamic system where there exists a unique trajectory for given initial
state, time, and input signal [28]. Then this is referred as the forward reachable set Rf , which
are the states the system can reach from a trim set K within some time T . The reachable set
is related to another type of set called the invariant set, which is shown in Equation 3.2. For a



3.4. The level set method 10

certain set K, an invariant set is a region in state space where for all possible input sequences
the system stays within K. These two sets are related as shown in Equation 3.3 from the
duality principle where (·)c denotes the complement set, meaning that R(T,K) and I(T,Kc)
share the same boundary.

R(T,K) = {x ∈ Rn | ∃δ(t) ∈ U , ∃τ ∈ [0, T ], ξ(τ ; t,x, δ) ∈ K} (3.1)

I(T,K) = {x ∈ Rn | ∀δ(t) ∈ U(t), ∀τ ∈ [0, T ], ξ(τ ; t,x, δ) ∈ K} (3.2)

R(T,K) = (I(T,Kc))c (3.3)

A flight envelope can be predicted by intersecting the forward and the backward reachable
sets as shown in Figure 3.2 [3]. This set represents the set of states which an aircraft can
travel to and back, starting from an a-priori known trim set K within the time horizon of 2T .
By setting an appropriate time horizon, for example related to the reaction time of a pilot or
flight control systems, LOC-I can be effectively avoided by making sure to stay within this
intersection. This is a quantitative formulation and satisfies the Definition 3.1.1 presented in
Subsection 3.1.

Definition 3.3.1 (Trim set/safe set). The region in the state space which the aircraft is able
to maintain its state indefinitely.

Figure 3.2: Illustration of the flight envelope predicted as the
intersection of forward and backward reachable sets [3].

3.4. The level set method
One way of representing a set is using a level set of an implicit function V : Rn −→ R, such
that the boundary of a set can be represented as all states x, where V (x) = c where c is a
constant scalar value, typically taken as zero. Therefore, the reachable set R of a system can
be predicted by solving for an implicit function V (x) such that R = {x ∈ Rn|V (x) ≤ 0}. It
was shown by Lygeros that a viscosity solution of a HJ PDE can represent the reachable set of
a system by formulating the reachability problem as optimal control or differential game theory
problem [12]. In a differential game, dynamics depends on the state x, the control signal u and
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the disturbance d in which the goal is to minimise an objective function J : u, d −→ R, which is
a terminal cost that only depends on the state reached after some time horizon T [12].

A HJ PDE is shown in Equation 3.4, where the second term H is called the Hamiltonian
which contains the function that needs to be optimised which depends on the spatial deriva-
tive of the value function and the state. The backward and the forward reachable sets are
represented as the viscosity solutions of the terminal value and the initial value problems of
the HJ PDE, respectively [3]. A wide range of application exists for reachability analysis using
HJ PDE, for example in collision avoidance [29], path planning [30] as well as flight envelope
prediction of fixed-wing aircraft [3, 31]. For example van Oort et al. solved a type of HJ
PDE called the Hamilton–Jacobi–Isaacs (HJI) PDEs shown in Equations 3.5 and 3.6 to solve
the backward and forward reachable sets, respectively [3]. Equations 3.5 and 3.6 are terminal
value and initial value problems, respectively, where the level sets of T (x) and S(x) describe
the target and the initial sets respectively.

∂V

∂t
(x, t) +H(

∂V

∂x
(x, t), x) = 0 (3.4)

Hb(
∂V

∂x
(x, t), x) = min[0,min

u
max

d

(
∂V

∂x

)T

f(x, u, d)], V (x, 0) = T (x) (3.5)

Hf (
∂V

∂x
(x, t), x) = max[0,max

u
min
d

(
∂V

∂x

)T

f(x, u, d)], V (x, 0) = S(x) (3.6)

Such HJ PDEs can be solved using numerical computation schemes developed by Osher and
Fedkiw [22], which a MATLAB toolbox developed by Mitchell is often used [32]. The compu-
tational complexity of this method is O(Nn+1) where n is the number of dimensions and N
is the number of nodes in each dimension [33, 34]. The “+1” in the exponent emerges from
rounding up the number of time steps Nt as computations are performed on each point on a
grid at each time step. These computations include numerically computing the spatial deriva-
tives ∂V

∂xi
for each dimension i, approximating the numerical Hamiltonian Ĥ, computing the

maximum time resolution according to the Courant–Friedrichs–Lewy criteria and numerically
solving the resultant differential equation in the form of ∂V

∂t + Ĥ = 0 [33]. The number of
computations required in the level set method increases exponentially with increasing number
of dimensions, often referred as “the curse of dimensionality” [35], which limits the number of
dimension of a tractable problem to four [10]. This makes the level set method less suitable to
be directly applied to flight envelope prediction of highly nonlinear and manoeuvrable systems
like quadrotor drones, which lower-dimensional models may not be able to fully capture the
dynamics of the system.

The level set method is also known to produce conservative results. Stapel et al. found that
a simulation based method predicted 60% faster arrival times compared to the predictions by
level set methods when analysing the reachable sets of a simplified aircraft model [34]. This
means that control inputs were found through random samples that could reach significantly
further than the boundary of the reachable set predicted using the level set method. This is
not necessarily harmful, but may overly limit the freedom in manoeuvres performed by pilots
and flight control systems. Overly conservative flight envelopes may not be favourable for
quadrotor drones, which one of the benefits of the configuration is its high manoeuvrability.
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3.5. Knowledge gaps in alternative reachability analysis methods
In the previous sections, the level set method in the optimal control framework of flight envelope
estimation technique was described. It was discussed that although the level set method is a
well established method with a wide range of application, the high manoeuvrability of quadrotor
drones may make the method less suitable as its flight envelope prediction method. In this
section, a selection of other reachability analysis techniques that are more suitable for quadrotor
configuration that could see further development are mentioned and their knowledge gaps are
briefly discussed.

Zonotopic reachability analysis
Sets in space can be represented in different ways in which one of them is by using zonotopes,
which is a special case of polytopes defined with two parameters: a centre coordinate c and a
generator matrix G. For an n dimensional space, a zonotope is defined as shown in Equation
3.7 [36]. There exists different variations in zonotopes which interested readers are referred to
Kochdumper and Althoff’s work [37]. Zonotopic representation of a set has a low time and
memory complexity thanks to its compact representation [38].

Flight envelope is often defined in many dimensions with many different aircraft states.
When predicting flight envelopes with reachability analysis, zonotopes have attractive char-
acteristics to be applied for higher dimensions. Among different types of set representations
like ellipsoids and polytopes, computation of reachable sets in terms of zonotopes is relatively
more efficient because operations involving zonotopes are closed under a linear transformation
and Minkowski summation [39]. Furthermore, it was shown that reachability analysis using a
variation called the sparse polynomial zonotopes only involves operation with at most polyno-
mial complexity [37]. One drawback of this method is that it can only be applied to linearised
systems, which linearisation errors can act as another uncertainty in the prediction [36].

Z =

{
x ∈ R|c+

n∑
i=1

βiG(·,i) , βi ∈ [−1, 1]

}
(3.7)

Zonotopic reachability analysis for flight envelope prediction has been studied for fixed-wing
aircraft in an auto-land mode [26], helicopters [40] and linearised 12 dimensional quadrotor
model [39]. This research could be extended to for example quadrotor models with failures.
Furthermore, a research on dedicated flight envelope protection systems may follow if flight
envelope can be accurately predicted using zonotope representations.

System decomposition to reduce dimensionality of reachability analysis
One way of dealing with the curse of dimensionality is to decompose the dynamic systems with
a series of simplifications and assumptions, such that reachability analysis needs to be only
performed in lower dimensions. Much like in a way an aircraft can be decoupled in symmet-
rical and asymmetrical modes, in which dynamic analysis can be performed separately. The
method involves two challenges, which are decomposing of dynamic systems and synthesising
the reachable sets found in subspaces.

Decomposition techniques have been researched for dynamic models that take specific forms,
such as the exact system decomposition method by Chen et al. [41] and the state decoupling
disturbance method by Chen et al. [42]. Which the former has been applied to a quadrotor
model while an application to quadrotor models for the latter has been mentioned but has not
been explicitly presented [42]. The first challenge is that the original dynamic model needs to
be converted into respective special forms, which may negatively impact the model fidelity. The
second challenge is that after completing reachability analysis separately for each subsystem,
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intersecting the reachable sets to construct the reachable set of the original system introduces
inaccuracies known as the “leaking corners” as Lee et al. pointed out [43].

In order to apply this decomposition technique for higher order systems, an important
study is to critically analyse the trade-off between the accuracy of the derived flight envelope
and the accomplished reduction of computational complexity. The degradation in the model
fidelity through decomposition and making envelopes more conservative to avoid leaking cor-
ners may impact the usefulness of the flight envelope for flight envelope protection purposes.
Furthermore, application of this technique to quadrotor models with actuator dynamics, which
has been shown to have a significant impact on the predicted flight envelope by Sun and de
Visser [15], has not been demonstrated to this date.

Estimating viscosity solutions of HJ PDE using neural networks
Level set method has been the most popular method to compute reachable sets to determine a
flight envelope of a given aircraft, which involves solving for viscosity solutions of HJ PDE. This
requires numerical approximations of high order implicit functions in a grid. As the number
of dimensions increases, number of numerical computations needed to cover the grid increases
exponentially. One approach to alleviate this is to approximate the viscosity solution in a
different way without a need for grid, for example using physics-informed neural networks as a
review is summarised by Campbell et al. [44]. Physics-informed neural networks are networks
which have been explicitly introduced to the physical laws through symmetries and constraints
during training. With such networks, PDEs can be solved using relatively smaller data sets
[45], meaning problems involving HJ PDEs may be able to be solved with sparser grids or only
with selected samples in the state space.

It has been shown by Darbon et al. that there exist special architectures of neural networks
that can represent viscosity solutions of certain classes of HJ PDEs that naturally encode the
physics contained in those HJ PDEs [46, 25]. Such methods may be extended to forms of
HJ PDE that can be directly applied to reachability analysis, which could be used to flight
envelope prediction of higher order dynamic models. However, Campbell et al. cautions that
the achieved accuracy with this approach may limit its use to serve only as a reference, which
then another prediction method could follow to build upon the estimated envelope from the
neural networks [44].

Monte-Carlo simulation
Another branch exists in the reachability analysis methods opposed to the optimal control
framework, which is the Monte-Carlo (MC) simulation method. MC simulation is an algorithm
used to estimate probability distributions of a system by calculating outputs with sampled
inputs based on their distributions, which is commonly used either for validation of analytical
models or to solve for complex systems which analytical approximations are difficult to make
[47]. This can be applied for flight envelope prediction by repeatedly simulating the system
with randomly sampled control sequences. The MC method is a relatively new approach in
the field of flight envelope prediction, aside from its uses for validations.

An extensive literature study on this topic was performed, which revealed its high potential
to be a suitable flight envelope prediction method for quadrotor drones despite its simplicity.
The results of the study are presented in the next chapter in order to identify the research gap
present in literature, which this research aims to fill this gap.



4
Flight envelope estimation with the

Monte-Carlo approach

As discussed in the previous section, Monte-Carlo (MC) simulation-based reachability analysis
is still a relatively new approach applied to flight envelope prediction. In Section 4.1 a general
introduction of MC simulation and its application to reachability analysis are presented. In
Section 4.2 recent advancements in the MC method shown by Yin et al. [14] and Sun and de
Visser [15] are described in detail. In Section 4.3 the state-of-the-art and the knowledge gap
present in the field are discussed and summarised.

4.1. General introduction to Monte-Carlo simulation
One approach of estimating the reachable sets is using numerical simulation based techniques,
which does not involve solving computationally expensive problems like finding an optimal
control to reach a point in space or solving partial differential equations. An example is
MC simulation, which is an algorithm used to estimate probability distributions of a system
by calculating outputs with randomly sampled inputs, which is commonly used either for
validation of analytical models or to solve for complex systems which analytical approximations
are difficult to make [47]. MC simulation can be used to estimate reachable sets by repeatedly
simulating the dynamic model with randomly sampled control sequence, where each resultant
state is a random sample inside the reachable set.

This strategy has been used for verification and validation purposes for the research in the
field of reachability analysis and flight envelope prediction [34, 31]. The MC approach remains
tractable for higher order systems which level set methods cannot be applied, which is one of
the most frequently addressed weaknesses of the level set method. However there are challenges
to the MC approach, because in order to make an accurate prediction of a reachable set a very
large number of simulations may need to be performed. Furthermore it is also difficult to
estimate the required number of simulations to construct the reachable set with a given level
of confidence. Another challenge lies in constructing a continuous set from a set of points the
simulations were able to reach.

Each numerical simulation performed in the MC approach can be divided into two steps. The
first step is to generate a random control sequence of size m × N by randomly sampling a
control action from m dimensional control space at each of the N time steps. The second
step is to simulate the system dynamics represented as an initial value problem of a system
of ordinary differential equations (ODE) as shown in Equation 4.1 using numerical integration
schemes.

14
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ẋ = f(t,x(t),u(t))

x(t0) = x0
(4.1)

There exists different types of integration schemes with varying complexities and accuracy
depending on for example the number of times the system of ODE f is being evaluated at
each time step. One example of numerical methods for solving systems of ODE is the 4th
order Runge–Kutta method which evaluates f four times per time step. If higher accuracy
is required, discretisation error can be reduced by employing more advanced methods such as
higher-order Runge–Kutta methods which comes at a cost of increased number of evaluations
of f at each time step.

Furthermore, the setting of the time step for the numerical method for solving ODEs can
have an effect on the stability of the solution. When the time step is too large, the approxi-
mation error can continuously grow over time, which results in an inaccurate approximation.
Suppose that the control sequences are sampled with a relatively large time interval, then
a smaller time step than this interval may need to be applied for numerically solving the
ODE. Therefore, the number of computations needed to generate one sample point inside the
reachable set of a system depends on the system dynamics as well as the required accuracy.

There exists different numerical schemes to solve ODEs which in itself forms a large body of
literature. In terms of development of the MC simulation-based reachability analysis, another
approach is the seek for more efficient sampling strategies to sample control sequences. In
the next section, findings from the literature review on the state-of-the-art of flight envelope
prediction method using the MC approach are presented.

4.2. State-of-the-art of Monte-Carlo flight envelope prediction
Although the MC flight envelope prediction suffers less from the curse of dimensionality, which
is essential for applications using more complex high dimensional systems, there exist areas
of continued development for flight envelope prediction. In recent years, research has been
performed to reduce the number of simulations to be performed for reachable set estimation
with the MC approach. In this section, the state-of-the-art methods in this field by Yin et al.
[14] and Sun and de Visser [15] are presented in Subsections 4.2.1 and 4.2.2 respectively.

4.2.1. Probabilistic flight envelope and extreme control effectiveness method
Yin et al. performed a study on estimation and protection of flight envelope of a seven-
dimensional nonlinear simulation model of Lockheed Martin’s Innovative Control Effectors
aircraft [14]. A novel flight envelope prediction method was applied in their work, which
uses kernel density estimation to produce a fuzzy flight envelope assuming the final states of
simulated trajectories as stochastic variables.

Flight envelopes are often treated as a crisp set, meaning according to the envelope an
aircraft is either “safe” or “not safe” and never in between. Yin et al. argue that this is not
a practical definition, as the safety of the aircraft depends on various factors such as external
disturbances, pilot’s ability to recover the aircraft, modelling errors and controller performance
[14]. When the flight envelope is modelled as a fuzzy set the degree of membership of a given
state x is described with a membership function µẼ(x), which returns a value between 0 (not
safe) and 1 (safe). The probabilistic safe flight envelope Ẽ can be described using this concept,
which is shown in Equation 4.2 defined per time horizon T and target set K. fX(x) is the
probability density function of the state at t = T for all safe trajectories of time horizon 2T .

Ẽ(T,K) =

{(
x ∈ Rn, µẼ(x) =

fX(x)

maxx∈Rn fX(x)

)}
(4.2)
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The main challenge is to find fX , which Yin et al. [14] estimated using the kernel density
estimator. Suppose a n dimensional random vector X = (X1, X2, ..., Xn) and N samples from
it where the ith sample is denoted as yi = (yi,1, yi,2, ..., yi,n)

T . Then with these samples,
the kernel density estimator is shown as in Equation 4.3 where KH(·) is the kernel, which is
a distribution estimation with 1 sample at the origin. This can be normalised as shown in
Equation 4.4, where k(·) is a normalised Gaussian kernel function and hj is a bandwidth which
is equivalent to bin size in a histogram. Therefore this approach constructs a more informative
representation of flight envelope as a fuzzy set and at the same time create a continuous set
using scattered end state points.

f̂(x) =
1

N

N∑
i=1

KH(x− yi) (4.3)

f̂(x) =
1

N · h1 · h2...hn

N∑
i=1

n∏
j=1

k(
xj − yij

hj
) (4.4)

Another innovation presented was an efficient sampling strategy for the control sequences to
simulate trajectories called the extreme control effectiveness method (ECEM) [14]. Yin et al.
proved that for input-affine systems an optimal control to reach a certain state within a given
time limit is almost always with extreme control effectiveness, making full use of the control
surfaces to drive the system in a certain direction. This observation can be made by deriving
the Hamilton–Jacobi–Bellman PDE (HJB PDE) , which is a variation of HJI PDE which
assumes no disturbances d. Considering an input-affine system (ẋ = f(x,u) = b(x) +A(x)u),
the optimal control of ith control element is as shown in Equation 4.5. This shows that
when the control sequence has any effect on the Hamiltonian of the HJB PDE, meaning when
∂V
∂xA(x) ̸= 0, the optimal control u∗i is always either of the extreme ends of the control. With
this proof, Yin et al. showed that it is possible to greatly reduce the number of simulations to
determine the reachable sets by narrowing down the input space.

u∗i =

{
ui,max,

∂V

∂x
A(x) < 0

ui,min,
∂V

∂x
A(x) > 0

(4.5)

Yin et al. also mentions that the required sample size Nreq to maintain a certain level of
mean integrated square error (MISE) of the constructed reachable set relates to dimension
n as shown in Equation 4.6 [48]. This suggests that the MC approach also suffers from the
curse of dimensionality, but to a lesser extent than numerical methods performed on grids like
the level set method. However, although difficult to find analytically, it may be possible to
further reduce the scaling by not only randomly sampling the control sequences but to only
sample sequences that results in samples inside the reachable set that reaches further towards
the boundary.

Nreq = O(MISE
−(4+n)

4 ) (4.6)

4.2.2. Application on quadrotor drone models
Application of the MC approach for flight envelope prediction of quadrotor drone models has
been demonstrated by Sun and de Visser [15]. The model used was a gray-box six-dimensional
longitudinal model identified partially using a stepwise regression method [49] with added
actuator dynamics, which means that the level set method is intractable for this problem. Sun
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and de Visser argued that the flight envelope of a highly manoeuvrable system like quadrotor
drones should be estimated with a shorter time horizon than for example fixed-wing aircraft,
otherwise the flight envelope will be estimated as an arbitrarily large set which does not serve
any significant meaning. It was also shown that the modelling of the actuator dynamics has a
significant effect on the predicted reachable sets with briefer time horizons as shown in Figure
4.1, which suggest that the inclusion of actuator dynamics in the dynamic model is essential
for quadrotor drone flight envelope prediction.

Figure 4.1: Estimations of forward reachable sets of a quadrotor with (blue) and
without (green) modelling the actuator dynamics [15]. It can be seen that the reachable

sets are smaller for models with actuator dynamics.

Sun and de Visser adapted the ECEM by Yin et al. [14] and achieved further reduction in
the required sample trajectory by introducing a parameter that determines the probability of
switching between the two extreme input values in each dimension of the control space [15].
This is mathematically shown in Equation 4.7, where ps is the probability the next control
input is sampled as the opposite control to the current control. Consequently, the probability
of sampling a constant control input sequence of length N is shown in Equation 4.8. This is a
simple yet effective way to increase the chance of reaching the set boundary with each sample
of control sequences with an appropriate choice of pc. For instance by setting pc as a relatively
large value, it is possible to construct input sequences with higher chances of maintaining one
extreme control input leading to control sequences that deviate more from its original trim
state. This can be seen from Figure 4.2 which shows the end points reached after simulating
trajectories sampled with different values of pc. Larger value of pc yields relatively more control
sequences that result in trajectories which reach further towards the boundary of the reachable
set.

ps = 1− P (ui(k + h) = ui(k)) (4.7)

pc = (1− ps)
N (4.8)

4.3. Summary of previous works and knowledge gaps
In the previous sections, the general working principle of reachability analysis with the MC
approach and the state-of-the-art application on flight envelope prediction were presented. It
was shown that the MC approach can be extended beyond serving only as a validation tool
but as a prediction technique that is strictly conservative which can be applied to higher
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Figure 4.2: Forward reachable set projection of a quadrotor on q − θ plane sampled
with a.) pc = 0.1 and b.) pc = 0.001 [15]

dimensional vehicle models. However there remain unresolved challenges, for example since
this approach is the only tractable method for nonlinear problems over certain number of
dimensions, it is not possible to validate or compare the results with other methods. This
makes it even more difficult to assess the reliability and the level of conservativeness of a given
prediction.

One approach of improving the current state-of-the-art is to make better use of the sampled
trajectories. Current state-of-the-art only takes the end states of the trajectories into account
and not the states reached before the end of the time horizon. For example a trajectory with
its end state in the trim set might have explored the flight envelope further away towards
the boundary before moving back to the trim set, then this trajectory could have provided
more valuable information than the state it reached at the end. This may be applied for more
efficient exploration by simulating a series of trajectories that have identical initial sequences,
which the numerical simulation of the initial part need to be only performed once.

Campbell et al. conducted a study on existing flight envelope prediction techniques that could
be applied to quadrotor drones, in which they raised three shortcomings of the flight envelope
prediction method of Yin et al. [44]. First, the framework initiates with an optimisation
problem to determine the trim point, which limits the exploration of the trim set and requires
significant amount of computing time. Second, the MC sampling approach introduces uncer-
tainty with the required search completion time. Finally, the construction of the flight envelope
is done with kernel density estimation, which limits the dimensionality of the estimator and
assumes that the forward reachable set has been estimated with high confidence. In terms of
taking a probabilistic approach using MC simulations, the second point raised by Campbell et
al. is a highly relevant issue. Further improvement on the efficiency of the sampling strategy
may alleviate this issue, which Campbell et al. suggest to consider employing machine learning
techniques, such as continuous reinforcement learning techniques, which may enable further
reduction the required number of simulations to predict reachable sets [44]. Such techniques
may enable sampling strategies that only samples trajectories that drives the system further
away from the trim set regions that have not been explored by previous samples.

Although MC simulation has been extensively used for validation purposes, less attention
was paid on using it as the primary method to compute reachable sets. A large contribution
to why MC method has not been used for flight envelope prediction outside of validation
is the lack of ways to quantitatively assess the accuracy of the prediction. This made the
flight envelopes to be only predicted with “large enough” sample sizes such that the prediction



4.3. Summary of previous works and knowledge gaps 19

converges “enough” to the true envelope. Yin et al. [14] and Sun and de Visser [15] showed that
it is possible to reduce this required number of samples by reducing the sample space and by
using an efficient sampling strategy. However this could be further improved by only sampling
control sequences that can be used to efficiently construct reachable sets. To summarise, the
MC approach is only able to predict a meaningful flight envelope with a large sample size,
which this number may be further reduced with the help of machine learning techniques.



5
Machine learning techniques for enhancing

the Monte-Carlo approach

Machine learning is a type of artificial intelligence that involves training a machine or a software
to produce desired outcomes. There are a variety of tasks that can be performed with machine
learning techniques such as classification, regression, optical character and speech recognition,
machine translation, denoising and density estimation to name a few [50]. In this section, some
of the machine learning techniques that could be used for flight envelope prediction using MC
simulation are introduced in which one particular technique is described in further detail.

In Section 5.1 relevant types of tasks that machine learning techniques can be used are
mentioned and their relations to flight envelope prediction are discussed. In Section 5.2 different
types of machine learning algorithms and relevant models are discussed for their applicability
for flight envelope prediction. In Section 5.3 the working principles of artificial neural networks
are described in further detail.

5.1. Relevant machine learning tasks for flight envelope predic-
tion

Among different types of machine learning tasks, some are more relevant for flight envelope
prediction with the MC approach. In this section, relevant tasks are presented together with
how they could be used to enhance the flight envelope prediction process.

Classification
Classification is a task where the machine is asked to classify the input x into a predefined set
of categories. A classification function f with k categories with an n dimensional input can be
expressed as f : Rn −→ {1, 2, ..., k}, while it is also possible to construct a function that return
the probability distribution over each category [50]. A common application for this type of
task is object recognition, for example identifying whether a given image has either a dog or a
cat in it.

This type of task could be used in the process of MC simulations, for example by classifying
input sequences that are more likely to stay near the initial state and those that are more likely
to drive the system towards the boundary of the reachable set. This classification function may
be used as a filter to omit spending computational time on simulating control sequences that
do not contribute to estimate the reachable set boundary.

20
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Regression
Regression is a task where the machine is trained to predict a numerical value to a given input
with a function f : Rn −→ R [50]. This is similar to the classification task, but the output format
can be any real scalar value. An example of its applications is parameter estimation in system
identification which approximates the relationship between the dependent and independent
variables.

Regression could for example be used to train an inverse model that returns a corresponding
input sequence to a specified target state, which could be used to effectively explore the state
space to form reachable sets.

Density estimation
With this task the machine is asked to learn a function p : Rn −→ R that represents a probability
density function [50]. The machine must learn where in the state space some event is likely
to occur, which in the case of reachability analysis this could be used to describe where the
system can certainly reach (p(x) = 1) and where the system certainly cannot reach (p(x) = 0)
in a given time horizon, like how Yin et al. [14] constructed a fuzzy representation of the
reachable set using kernel density estimation.

This could be used to study the effectiveness of a given control sequence sampling strategy.
This can for example be done by monitoring the convergence of the estimated probability
density representing the reachable set. The probability density estimated using an efficient
sampling strategy should statistically converge with smaller number of simulation samples
compared to the one estimated using random samples.

5.2. Suitable types of learning
There exists mainly three branches of learning strategies. These are unsupervised learning,
supervised learning and reinforcement learning. The main differences between them are the
amount of feedback given to the machine in their learning processes. In unsupervised learning
the machine does not receive any feedback and learns by itself, in supervised learning the
machine has access to the explicit solution it is expected to replicate, while in reinforcement
learning the machine receives feedback on their performance in the form of reward. Out of
these types of learning strategies, unsupervised learning is not suitable for application as there
exists, although not explicitly defined quantitatively, a clear objective in this research which
is to reduce the sample trajectories in flight envelope prediction using the MC approach.

In the remainder of this Section, supervised learning and reinforcement learning are de-
scribed in detail and their potential applications to flight envelope prediction are discussed in
Subsections 5.2.1 and 5.2.2. In Subsection 5.2.3 some common machine learning algorithms
and models are introduced, in which a suitable algorithm and the model type are selected.

5.2.1. Supervised learning
Supervised learning (SL) is a type of machine learning technique in which a machine is tasked
to map a given input to either a specific target output or a label. A SL algorithm analyses the
training data and produces a function that can model the relationship between the inputs and
the outputs. This function can then be used to approximate the output of the corresponding
relation for an unseen input. SL algorithms can be used to perform classification and regression
tasks, where the expected label or output are known.

In the case of flight envelope estimation, SL algorithms could be used to approximate the
value of a given control sequence according to some function that quantitatively describes its
corresponding trajectory’s value. For example each end state of a trajectory can be assigned a
scalar value v to describe its contribution in constructing the reachable set boundary, in which
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SL algorithm can be used to perform regression to map the corresponding control sequence
δ to this scalar value to learn the function f : RN×m −→ R such that f(δ) = v̂. It is also
possible to perform classification by setting a label to each control sequence as “valuable” or
“not valuable”, for example according to the said scalar value. To summarise, SL algorithms
could be used to construct the function that directly predicts the value of a given control
sequence without performing numerical simulation nor explicitly calculating the value from
the reached end state, which an illustration of it is shown in Figure 5.1. Such a machine can
be used to filter out control sequences that are unlikely to contribute towards construction of
the reachable set construction and to speed up the prediction process by saving computations.

There are two foreseeable challenges in this approach. The first challenge is the establishment
of the criteria in judging how valuable a given end state is. When estimating the reachable set,
the true reachable set is unknown which makes it extremely difficult to assess whether a given
point in the state space is relatively far from the trim set or not. Furthermore, the value of a
trajectory can also change depending on which end states have already been sampled. Even
if a sampled control sequence drives the system near the boundary of a reachable set, it is of
less value when there has already been a sample that drives the system in a neighbourhood.

The next challenge is determining a suitable representation for the input sequence. The
most straightforward approach is to set the number of inputs as T/dt where T is the time
horizon and dt is the time interval forming a whole sequence of control inputs. However this
formulation can become very large depending on the problem. There may be a more efficient,
compact representation of control sequences which helps the machine to learn with a higher
accuracy and with a shorter training time.

Figure 5.1: A diagram that illustrates how SL algorithms could be used to train
machines that directly computes the approximate value v̂ of the corresponding

trajectory for a given control sequence δ.

5.2.2. Reinforcement learning
Reinforcement learning (RL) is a type of machine learning technique that can be used to
train machines to perform various tasks, where an agent learns according to the reward which
describes the performance. A trained agent performs some action u depending on the feedback
state x from the process. How well the machine performed is assessed by the reward function
that considers the state and or the action.

The goal of RL is to find the optimal policy π∗(x) that maps the optimal action u∗ to a given
state x. Conventional RL method requires the action and the state spaces to be discretised,
so that the policy can be described as π(x) : X −→ U where X and U are discretised state and
action spaces respectively. How well an agent is performing can be measured with the output
of the reward function ρ(x,u), which can be classified into immediate reward and total reward.
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As the name suggests, former only considers the achieved state in the next time step while the
latter considers the rewards in the long run. It is possible to express the total reward with the
discounted return Rπ for the optimal policy as shown in Equation 5.1, where γ is the discount
rate which can adjust how much of the future reward is considered at each time step.

Rπ(x0) =
∞∑
k=0

γkρ(xk, uk), where uk = π(xk) (5.1)

In RL optimality is measured based on the expected return which can be defined in two
ways, either as a state value function V π(x0) = Rπ(x0) or as a state-action value function
Qπ(x0,u0) = ρ(x0,u0) + γRπ(x0). When training an agent with state-action value function,
not only the achieved states but the actions are also considered when assessing the performance.

An example in which RL algorithms could be used to improve flight envelope prediction is
to train a machine that can find the control inputs at a given state to move further away
from the trim set. This was also suggested by suggested by Campbell et al. [44], which
could make the sampling process in the work of Yin et al [14] more efficient which employed
completely random sampling. Although RL require training time, which may be significantly
longer than randomly generating control sequences and simulating them, the trained machine
may be used for other quadrotor models. With RL algorithms it may be able to teach the
agent an “intuition” in which humans may have to make quadrotor drones perform more
extreme manoeuvres. Although this approach goes outside the scope of the MC approach
which primarily uses random samples, this may be an effective alternative method to generate
control sequences for simulation-based reachability analysis.

5.2.3. Common machine learning algorithms
In the previous Subsections, possibilities of integrating SL or RL algorithms into flight envelope
prediction using the MC approach were considered. While RL algorithms may be able to
enhance simulation-based reachability analysis it deviates beyond the scope of flight envelope
prediction in the MC approach, it was seen that SL algorithms may be used in conjunction with
the MC approach. In this section, suitable SL algorithms that could be implemented to fill the
identified knowledge gaps are discussed. These are for example support-vector machine (SVM),
decision tree (DT) and artificial neural network (ANN) which all can be used to perform both
classification and regression tasks.

SVM maps the input vector into a high dimensional feature space, which a linear surface is
constructed in this space that separates the data with the largest margin [51]. DT categorises
a given input by passing through a series of tests that split inputs depending on their features,
which can produce an intuitive classification function but are difficult to be trained [51]. ANN
can be used as a nonlinear model which can be trained to approximate the relation between
arbitrary sized input and output vectors [50].

Another technique that could potentially be used for in a simulation-based reachability
analysis is genetic algorithms (GA), which is a metaheuristic technique inspired by the process
of natural selection. The basic elements of GA are points in the solution space represented
as chromosomes, fitness selection and biological-inspired operators (crossover, mutation and
selection). GA is known to have two main advantages, which are its ability to deal with
complex problems and being able to explore search spaces in parallel [52]. These are relevant
for simulation-based flight envelope prediction as it most likely involves complex, nonlinear
dynamic systems in which a collection of sample trajectories are needed to formulate a reachable
set. GA may be used to generate and develop a population of control sequences that can be
used to effectively estimate the reachable set.
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One disadvantage of GA is that inappropriate choices of population size, fitness function
and parameters of biological-inspired operators can lead the algorithm to not converge or to
not produce any meaningful result [52]. Tied to the property of simulation-based reachability
analysis that there exists no explicit “optimal” trajectories and how reachable sets can only be
constructed with multiple samples of trajectories, application of GA to aid the MC sampling
may need to be performed mostly in a trial-and-error manner.

Application of supervised learning techniques for classification or regression tasks on sequences
of control inputs for simulation-based reachability analysis could not be found in literature
at the time of writing. Within these different options, ANN may be a suitable model that
has a high approximation power while there also exists specialised network architectures for
processing sequential data. The working principles of ANN, training processes and different
variations are described in more detail in the next Section.

5.3. Artificial neural network
ANN is a type of model that mimics how a human brain operates with biological neural network,
which consists of interconnected neurons sending electrical signals to each other. ANN takes
in some input which is passed on to a layer of neurons, which are contain nonlinear functions,
which the weighted sums of the neuron outputs are the outputs of the model.

5.3.1. Artificial neuron
An illustration of how each artificial neuron passes on its inputs to the next layer is described
in Figure 5.2. Each neuron takes in a weighted sum of the inputs from the previous layer
which then passes through the activation function σ(z), which is often a nonlinear function.
The activation function can take many forms, which can be classified as a projection function
when it has a global effect across z or a kernel function which only has local effects [50]. Some
examples of activation functions are sigmoid function, rectified linear unit (ReLU) function and
exponential linear unit (ELU), which are shown in Equations 5.2 to 5.4 where α is a constant
in Equation 5.4. An example of a kernel function is a Gaussian radial basis function, shown in
Equation 5.5. Each activation function has unique shapes that may be favourable for certain
modelling applications.

σ(z) =
1

1 + e−z
(5.2)

σ(z) =

{
0 if z < 0

z if z ≥ 0
(5.3)

σ(z) =

{
z if z > 0

α(ez − 1) if z ≤ 0
(5.4)

σ(z) = e−z2 (5.5)

5.3.2. Network of neurons
An artificial neuron does not serve a lot of purpose when considered by itself, however when
multiple neurons are inter-connected into a network they can together form a very versatile
model. ANN is an extremely powerful function approximating tool which can also be seen
from the famous theorem by Cybenko [53] which states that a feedforward ANN with at least
one hidden layer with sigmoid activation functions can approximate any continuous nonlinear
function arbitrarily well on a compact set, provided that a sufficient number of hidden neurons
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Figure 5.2: An illustration describing the mathematical
operation performed at each artificial neuron in an ANN.

are available. A feedforward ANN with one hidden layer is one of the most generic architectures
of ANN, yet it has the capability to model any nonlinear functions. Furthermore different types
of architectures are available, that may be more suitable to model certain forms of functions.
In the remainder of this subsection, different architectures of ANNs that could be used to
classify MC samples of control sequences for predicting flight envelopes are presented.

Feedforward neural networks
This is an architecture which an input is fed through the layer of neurons and fed out of the
network as an output without being redirected back into the network. An illustration of a
feedforward ANN is shown in Figure 5.3 where the input x flows through the network from left
to right which at the end gets fed out as the output y. The architecture consists of three layers,
in which nonlinear activation functions are only used in the neurons inside the hidden layer,
meaning that the input layer and the output layer have neurons that simply feed out weighted
sums of the previous layer outputs. The main parameters that can be adjusted during the
training process is the weights before layers, denoted as W h for the hidden layer weights and
W o for the output layer weights. This ANN architecture can be modified with the number of
neurons inside the hidden layer and the type of activation functions. It is also possible to have
multiple hidden layers, which are referred as “deep” feedforward networks.

Figure 5.3: Diagram representing a feedforward neural network
architecture, which consists of three layers of neurons.

Recurrent neural networks
Recurrent neural network (RNN) is an architecture which is suitable for processing sequential
data in the form of x(1), x(2), ...x(n). The architecture formulation exploits a network that share
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same model parameters, where the output of a neuron layer is fed back to itself as shown in
Figure 5.4. With this formulation, it is possible to reduce the number of model parameters,
namely the weights, to achieve highly compact formulations.

Figure 5.4: Diagram describing the structure of a recurrent
neural network architecture, which two architectures on the left

and the right are equivalent.

There are variations within RNNs, distinctions include whether the output of the network is
produced after every time step or only at the end of the sequence, and whether the recurrent
connection to the next time step is made before or after passing through activation functions.
A variation in RNN called the gated RNNs are one of the most effective models used in
practical applications such as the long short-term memory (LSTM) and networks based on
gated recurrent unit (GRU) [50]. Gated RNNs can are formed with cells that replace the
hidden neuron unit of ordinary RNNs, which is able to accumulate information in itself that
is also able to forget them whenever that becomes redundant with the help of gate units. A
gate unit is an unit which sets the weight between the new information and the recurrent
information via a sigmoid function, which can be used to control the dependencies of the
recurrent information of the input, output and the accumulated information in the self-loop
[50].

5.3.3. Training process
The aim of the training process is to tune the parameters θ of the ANN such that it minimises
the cost determined by the cost function of the model J(θ), which can for example be the sum
of the Euclidean norms between the ANN outputs and the expected outputs. Typically the
weights are tuned using the gradients of the cost function with respect to the weights ∇J(θ)
found using for example using back-propagation for feedforward ANN and back-propagation
through time for RNN [50]. The weight can be updated in the n + 1th iteration using the
information from the nth iteration as shown in Equation 5.6, where α is the learning rate.

θn+1 = θn − αn∇J(θ) (5.6)
There exists different ways to use the information of the cost J and its gradients to train the
model to improve its performance. One example is the stochastic gradient descent, which mod-
ifies the weights according to the approximate gradient ∇̂J(θ) found with randomly selected
subset of data [50]. This is an effective alternative to computing the true gradient using the
entire dataset at every iteration, which can be very computationally expensive. There exists
different design choices for the selection of the learning rate α, which can also change after



5.3. Artificial neural network 27

each iteration designed to speed up the learning process. Examples include the momentum
algorithm, root mean squared propagation (RMSProp) and the ADAM optimiser [50].

As discussed earlier, ANN can have a very high approximation power through appropriate
choices of model parameters and the training scheme. However this may lead to overfitting,
when the parameters are excessively tuned which shows a good performance with the training
set but a deteriorated performance with unseen data. This could be for example caused
by fitting the model to not only the process but to the noise included in the data. There
exists strategies to counteract overfitting through regularisation, for example applying weight
penalties to minimise the overall weight of the model and to randomly disregard some neurons
in a training to avoid overdependencies on certain neurons [50].



6
An overview of quadrotor drones

In recent years, unmanned aerial vehicles (UAVs) have gained a lot of attention due to their
wide range of applications. Among different types of UAVs the quadrotor configuration, the
configuration with four independent rotors, is a popular choice. In this section, a brief overview
of different applications of quadrotor drones and difficulties faced in their operations are pre-
sented. In Section 6.1, a general description of quadrotor drones and their applications are
presented. In Section 6.2, different characteristics of this configuration, the difficulties that
arise from them are discussed and recent researches to address them.

6.1. The quadrotor configuration
Multirotor configuration is a common configuration for UAVs that have multiple rotors with
their rotation axes aligned vertically, which are used for both propulsion and control. This
grants them the ability to vertically take-off and to hover in place, which enable them for many
different applications. Their applications include reconnaissance, package delivery, agriculture
monitoring and filming to name a few [49]. Multirotor drones can be used to enter and to hover
in otherwise dangerous areas, for example they can be used to autonomously inspect blades of
off-shore wind turbines [54]. Multirotor drones are still seeing much development with various
research being performed, while there are also drone racing competitions that push the limits
of the capabilities of quadrotor drones [55].

The quadrotor configuration with four individual rotors is popular among different multi-
rotor configurations because of their high manoeuvrability, simplicity in design, light weight,
low cost and low maintenance [56]. The quadrotor configuration is inherently unstable [15],
which grants high manoeuvrability but makes them more challenging to control as a side effect.
Due to its popularity in both practical applications and academic fields, this research project
considers the quadrotor configuration among other multirotor configurations.

6.2. Current challenges
Despite the advantages the quadrotor configuration brings, the configuration also has chal-
lenges that are still actively being researched today. Emran and Najjaran performed a review
on challenges in controlling quadrotor systems in which they categorised them into three: un-
deractuated dynamics, model uncertainties and actuator failure [56]. These challenges are
addressed in recent research in light to make their operations safer and more robust, which are
also relevant for flight envelope prediction and protection techniques for quadrotor drones.

28
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Underactuated nature
Advantages of the quadrotor configuration such as simplicity in design come at a cost. A
quadrotor drone is an underactuated system which means that it has more degrees of freedom
to be controlled than the number of actuators that can be independently controlled [56]. In
the case of quadrotor drones, the degree of freedom to be controlled are three translational
velocities in x, y and z directions (u, v and w) and three rotational rates in x, y and z
directions (p, q and r). Unlike the conventional helicopter configuration, the rotors on the
quadrotor drones have fixed pitch rate which leaves only the actuators to control the rotor
speeds of each rotor as control elements. This makes the number of states to be controlled as
six and the number of control inputs as four.

Underactuated nature of the quadrotor configuration highly complicates navigation and
stabilisation tasks [56], which are crucial for operation for application examples raised in Sub-
section 6.1. Hence, different control strategies have been researched in the last decades to effec-
tively control quadrotor drones. Control methods of quadrotor drone range from traditional
feedback control, backstepping approach that stabilises the system recursively in a step-by-
step manner [57] and incremental nonlinear dynamic inversion that transforms the nonlinear
dynamics into a linear input-output map [58]. Artificial intelligence has also been used for
quadrotor controls, for example by approximating the nonlinear dynamics and self-tuning of
fuzzy PID controller gains [56].

Actuator failures
Another challenge in operation of quadrotor drones exist in the cases of actuator failures, which
can make already underactuated, unstable quadrotor drones to be even more difficult to control.
However they often perform their tasks close to obstacles or other vehicles, which make them
more susceptible to such failures. With one or more of actuator failures, the control strategies
for the nominal condition is no longer appropriate to maintain safe flight, for example that it
needs to rapidly spin in the yaw direction to maintain altitude.

Identifying the failure during a flight is a challenging task, as well as designing control
strategies in different failure modes. Hardware redundancies are often employed that enable
them to still operate in some failure modes [56]. Identifying the severity of the failure during
operation can be performed with system identification techniques, which are still being devel-
oped today for example using advanced variants of Kalman filters [59]. There exist ways to
cope with actuator failures in the software side as fault tolerant control. An example is incre-
mental nonlinear dynamic inversion which was shown that it can be used to control quadrotor
drones with one actuator failure by Lu and van Kampen [1], or two opposing actuator failures
by Sun et al. [2]. When a quadrotor experiences actuator failures, its dynamics change dras-
tically which also affects its flight envelope. A safe state in the nominal flight condition may
no longer be safe after actuator failures, which makes flight envelope prediction of quadrotor
drones under failure a highly relevant field of research.

Difficulty in modelling the dynamics
Modelling of a system can be highly beneficial in different ways, for example being able to
employ advanced control strategies like model based methods and being able to simulate the
dynamics of the system without the need for the physical system. Modelling of quadrotor
drones has also been a great challenge resulting in discrepancies in the behaviour of the physical
drone and its model, called the model gap. For example when a drone is carrying a payload
with unknown mass, which may frequently happen during for example package delivery tasks,
this causes what is known as parametric uncertainty [60] which is also a form of a model gap.
There also exists non-parametric uncertainties, which are model gaps caused by unmodelled
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nonlinearities like the effects of gust and wind [56]. These model gaps can also have a significant
effect on the predicted flight envelope using this model, which may cause large discrepancies
between the true and the predicted flight envelopes.

Furthermore, the aerodynamic effects around quadrotor drones are highly complex as shown
in researches by for example Foster and Hartman [18] and Sun et al. [49]. Modelling with
failure adds another complication, where there may be a need for a different model structure
that is more suitable in the off-nominal flight condition, for example while rapidly spinning in
the yaw direction as shown by Sun and de Visser [2]. Coupled with the complex aerodynamic
effects that can change in different flight conditions, there is a need for more robust or adaptive
solutions [56].



7
Dynamic models for investigation

In this chapter, the dynamic systems and their models that could be used to analyse the
performance of a flight envelope prediction method are presented. The considered systems
vary in their complexities and the number of dimensions, in which the goal is to apply the
method to increasingly more complex models and finally to a quadrotor drone model. In
Sections 7.1, 7.2 and 7.3 a double integrator problem, an inverted pendulum problem and a
quadrotor dynamic model are described, respectively.

7.1. Double integrator problem
A double integrator problem is perhaps the simplest dynamic system, which can also be seen
as a “cart on rail” problem. A cart is on a rail which can be pushed to the left or to the right
with an external force F . A schematic drawing of the system is shown in Figure 7.1, where it
is assumed that the surface is friction-less. The equation of motion of this system is as shown
in Equation 7.1, where x1 is the position of the cart, x2 is the velocity of the cart, F is the
external force in and M is the mass. Now let input u be F/M and define the state vector
x = [x1 x2]

T then the system can be written as a state space system as shown with Equation
7.2, where the output vector is the state vector.

Figure 7.1: Schematic drawing of a double integrator (cart on rail) problem.

f(x) =

{
ẋ1 = x2

ẋ2 =
F

M

(7.1)

[
ẋ1
ẋ2

]
=

[
0 1
0 0

]
x+

[
0
1

]
u (7.2)

When considering reachability analysis on this system, one of the main advantages is that the
system is linear and simple which its motions are intuitive. For instance, one can expect the
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reachability set to shrink in size when the mass M increases because that makes the mass
more resistant to be moved around. Furthermore the system only has two state variables,
which makes its reachable set representation to be a more comprehensible, two-dimensional
region.

Another advantage of testing reachability analysis methods on this system is that there
exists an analytical solution of the reachable sets in terms of the time to reach function starting
from the origin with a bounded input space [−1, 1] by Athans and Falb [61]. The analytical
value function for the forward ϕf (x) and the backward reachable ϕb(x) sets are shown in
Equations 7.3 and 7.4, respectively. Figure 7.2 shows the surface plot (left) and the contours
with different time horizons (right) of ϕf (x), together with the switch curve in red which
indicates the border in which the optimal control changes its sign [62]. Having access to
the analytical solution makes it possible to quantitatively study the accuracy of estimated
reachable sets, which is not possible with many nonlinear problems.

ϕf (x) =

{−x2 +
√
4x1 + 2x22 if x1 >

1
2x2|x2|

x2 +
√
−4x1 + 2x22 if x1 <

1
2x2|x2|

|x2| if x1 =
1
2x2|x2|

(7.3)

ϕb(x) =

{ x2 +
√
4x1 + 2x22 if x1 > −1

2x2|x2|
−x2 +

√
−4x1 + 2x22 if x1 < −1

2x2|x2|
|x2| if x1 = −1

2x2|x2|
(7.4)

Figure 7.2: The surface plot (left) and the contour plot (right) of the analytical forward reachable set time
to reach function of the double integral problem shown in Equation 7.3 [62].

This problem can also be extended by for example including nonlinear terms such as friction
force and or aerodynamic drag. It is then possible to compare the reachable set with the original
linear problem and to study the effects of nonlinearities on the reachable sets. Therefore this
problem is an intuitive problem, which serves as a good starting point to test reachability
analysis methods which can be compared to the analytical solutions, while nonlinearities can
easily be added to the problem if needed.
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7.2. Inverted pendulum problem
An inverted pendulum problem has a simple set up with a complex, nonlinear dynamics. A
pendulum with a point mass m is attached to a mass M with a mass-less rod of length l, which
a schematic drawing is shown in Figure 7.3. The pendulum is free to swing for any value of
angle θ. There is an external force F applied to the system which acts on mass M , where it is
assumed that there is no friction between mass M and the surface.

The system has two degrees of freedom, which are the translational motion of mass M
and the rotational motion of the pendulum mass m, as shown in the schematic drawing as x
and θ respectively. The equation of motion of the pendulum can be derived using Lagrangian
mechanics. The kinetic energy EK and the potential energy EP of the system can be described
as shown in Equations 7.5 and 7.6 respectively.

Figure 7.3: Schematic drawing of an inverted pendulum system.

EK =
1

2
(M +m)ẋ2 −mlẋθ̇ cos(θ) + 1

2
ml2θ̇2 (7.5)

EP = mgl cos(θ) (7.6)
The generalised coordinates of this system are x and θ, where for a generalised coordinate q
and its derivative q̇, the equation of motion in that mode can be represented as d

dt
∂L
∂q̇ −

∂L
∂q = Q

with the Lagrangian L = EK − EP , where Q is the generalised force or moment. With this,
the equations of motion in the two degree of freedom (translational and rotation) are shown
in Equations 7.7. These equations can be reorganised into a set of four ODEs each describing
the time derivative of the states x = [x, ẋ, θ, θ̇]T in which the non-trivial EOMs are shown in
Equations 7.8 and 7.9.

(M +m)ẍ−mlθ̈ cos(θ) +mlθ̇2 sin(θ) = F

lθ̈ − ẍ cos(θ) = g sin(θ)
(7.7)

ẍ =
lθ̈ − g sin(θ)

cos θ (7.8)

θ̈ =
F cos(θ) + (M +m)g sin(θ)−mlθ̇2 sin(θ) cos(θ)

l
(
(M +m)−m cos2(θ)

) (7.9)

The initial condition can greatly affect the behaviour of the motion of the system. For instance,
when the system starts with θ = π the system is at its most stable position with the lowest
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potential energy, while when the system starts at θ = 0 the system quickly converts its high
potential energy to kinetic energy even with small disturbances. Although also dependent on
the choice of model parameters, the system with former initial condition has relatively smaller
effects from the nonlinearities which it can be expected that its reachable sets are similar
to those of the double integrator problem discussed in Section 7.1. On the other hand, the
reachable sets with the latter initial condition can be expected to be more complex and less
intuitive. This also means that it is possible to control the “intensity” of the nonlinearities that
can be incorporated in the system dynamics to some extent by adjusting the initial condition
and model parameters.

Unlike the double integrator problem, there is no analytical solution of the reachable set for
this problem. However this is a widely known nonlinear problem which reachability analysis
has been performed in many research. Furthermore, the number of dimension of this problem
is four, which makes it possible to compare reachable sets with those computed with the level
set method which is still tractable [10].

The inverted pendulum problem has a simple setup where its states are relatively intuitive to
grasp, while its dynamics can be complex due to its nonlinearities. Furthermore, the effect of
the nonlinearities can be adjusted to some extent with initial conditions and model parameters.
Additionally, like the quadrotor dynamics, this is an underactuated system which only has one
individual control F with four states. This makes it a good problem to test reachability analysis
methods before applying to quadrotor drone models.

7.3. Quadrotor drone dynamics
The main objective of the research is to apply a novel flight envelope prediction technique to
quadrotor drones, in which application to a dynamic model of a quadrotor drone serves as the
last step of this research. Typically, flight envelopes are predicted separately in longitudinal
and lateral modes by using decoupled dynamics to reduce dimensionality. In order to test the
flight envelope prediction capability of a method in such cases, testing it on either of them
suffices. In this research, a longitudinal dynamic model is considered, which the equations
of motion are shown in Equation 7.10 [15], where the states are the longitudinal velocity Vx,
vertical velocity Vz, pitch angle θ and pitch rate q in all in the body axis of the quadrotor as
depicted in Figure 7.4. mv is the vehicle mass, Iyy is the moment of inertia around the y axis
in and g is gravitational acceleration.

V̇x =
Fx

mv
− gsin(θ)− qVz

V̇z =
Fz

mv
+ gcos(θ) + qVx

θ̇ = q

q̇ =
My

Iyy

u̇1 = −1

τ
u1 +

1

τ
u1,ref

u̇2 = −1

τ
u2 +

1

τ
u2,ref

(7.10)

The aerodynamic forces and moments (Fx, Fz and My) are computed using aerodynamic
models identified by Sun et al. a stepwise regression method shown in Equation 7.11 where
C(·) are the coefficients, which their parameters are shown in Equation 7.12 [15]. u1 and u2
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Figure 7.4: The body frame coordinate system and the numbering of rotors
of a quadrotor [15].

are to the sum of square of front and back rotor speeds (see Figure 7.4) respectively as shown
in Equation 7.13.

Fx = Cd,1Vx + Cd,2V
2
x + Cd,3V

3
x + Cd,4Vz

Fz = Cz,0 + Cz,1u1 + Cz,2u2

My = Cm,0 + Cm,1u1 + Cm,2u2

(7.11)

Cd,1 = −2.17× 10−1

Cd,2 = 1.84× 10−2

Cd,3 = −9.61× 10−4

Cd,4 = 6.170460× 10−2

Cz,0 = 2.98× 10−2 |Vz|Vz − 3.77× 10−3V 3
z

Cz,1 = 1.67− 8.58× 10−2Vx + 2.20× 10−3V 2
x

Cz,2 = 2.15 + 1.97× 10−2V 2
x + 7.28× 10−2Vz − 6.84× 10−4V 3

x − 1.97× 10−4V 3
x Vz + 4.34× 10−3V 2

x Vz

Cm,0 = 1.03× 10−2Vx − 6.77× 10−4V 2
x + 8.64× 10−3Vz + 7.17× 10−5V 2

x Vz + 2.63× 10−4VxV
2
z

Cm,1 = 1.52× 10−1 + 1.04× 10−3V 2
x + 1.66× 10−3VxVz − 1.86× 10−3Vx

Cm,2 = −1.63× 10−1 + 8.04× 10−3Vx − 2.11× 10−4VxVz − 6.31× 10−4V 2
x

(7.12)

[u1, u2] = [Ω2
1 +Ω2

2,Ω
2
3 +Ω2

4] (7.13)

The latter two equations in Equation 7.10 model the rotor actuator dynamics, which their
inclusion was shown to have a significant effect on the predicted reachable set as discussed in
Chapter 4. τ is the time constant of the actuator dynamics modelled as a first order system
mapping the commanded rotor speed uref to the actual rotor speed u. This makes the system
to have six degrees of freedom, making the level set method unsuitable to predict reachable
sets. To this date, the only method proved to be tractable for flight envelope estimation of
quadrotor drones with actuator dynamics is the MC approach by Sun and de Visser [15]. Hence,
developing a faster or more accurate strategy to construct flight envelopes of this problem is
the ultimate goal of this research.
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Efficient Monte-Carlo based Quadrotor Flight
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Abstract

Flight envelope prediction is a challenging task where one of the difficulties is that widely used methods,
like the level set methods, are impractical for systems with more than four coupled state dimensions due
to the ‘curse of dimensionality’. Monte-Carlo simulation based approach suffers less from this, however
a large number of simulations is needed to predict a flight envelope, while not all simulations directly
contribute towards estimating its boundary. This paper proposes a new approach to alleviate this with the
use of machine learning techniques that can distinguish more valuable control sequences within the random
samples; this knowledge could be used to reduce the number of simulations required to predict the boundary.

An artificial neural network containing a long short-term memory is trained to map a randomly sampled
control sequence to the relative position of the resultant end state of the trajectory compared to a predeter-
mined reference reachable set. This trained network is applied for Monte-Carlo based reachability analysis
of a dynamic model with model parameter changes compared to the reference model, which is able to reject
50% of randomly sampled sequences while at most 95% of the rejected samples would not have contributed
towards reachable set boundary estimation.

1 Introduction

Ensuring the safety of multirotor drones is still one of
the most challenging tasks despite their continuous de-
velopment, which has enabled them to perform increas-
ingly more complicated tasks. One way to enhance op-
erational safety is through an accurate knowledge of
system’s health and safety in the form of a flight enve-
lope. A flight envelopes is defined as the region in the
state space of an aircraft in which the aircraft can op-
erate safely [1]. As long as the aircraft states are within
these bounds the aircraft has no risk of entering loss of
control in flight (LOC-I), which is the dominant cause
of fatal accidents for the past decades [2, 3]. Not only
can a flight envelope be used as a reliable, quantita-
tive indication of LOC-I [4], more sophisticated appli-
cations of flight envelopes include flight envelope pro-
tection. For instance, a flight controller can limit the
control inputs to avoid violation of the flight envelope.
These techniques are developed for fixed-wing aircraft
[5, 6, 7] as well as for multirotor drones [8].

Flight envelopes are typically determined off-line
prior to operations. There has been research on dif-
ferent methods for estimating the flight envelope of
fixed-wing aircraft. Straightforward methods include
wind tunnel testing, physical flight tests and high-
fidelity model-based computations [9]. More sophisti-
cated methods include formulating flight envelope pre-
diction as a reachability analysis problem [10], esti-
mating the stability margin through frequency domain
analysis [11] and a probabilistic approach with Monte-

Carlo simulation [12].

Sun and de Visser [13] have shown that the prob-
abilistic flight envelope prediction approach demon-
strated with an unstable fighter jet model by Yin et al.
[12] using Monte-Carlo simulation (MCS) can also be
applied to quadrotor drones. This allowed prediction
of the flight envelope of a longitudinal quadrotor drone
model including actuator dynamics, an augmented six-
dimensional coupled nonlinear dynamic system, which
is greater than the number of dimensions of a tractable
problem for the level set approach [8], a widely used
reachability analysis method. While the sampling
strategy by Sun and de Visser [13] achieved reduc-
tion in the samples size of the MCS through tuning a
parameter for the sampling process, further reduction
may be possible by integrating more sophisticated tech-
niques such as artificial neural networks (ANN). The
high prediction power of ANN may allow further re-
duction of simulations through eliminating superfluous
input samples that could not be removed with purely
probabilistic approaches.

In this paper, an improved input sampling strat-
egy for MCS-based reachability analysis is proposed
that can be used to estimate the flight envelope with
a smaller number of numerical simulations, which can
be computationally expensive. This is performed by
training an ANN to predict the “score” of a simula-
tion output for constructing the reachable set bound-
ary with a given randomly sampled input, which can
be used as a reference to circumvent performing unnec-
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essary numerical simulations. First the reachable set
of a the system is estimated through a large number of
MCS, where each control sequence is assigned a score
that describes the relative position of the correspond-
ing trajectory end state with the estimated boundary.
An ANN can be trained to map the sampled control
sequence to this score, which can serve as a reference
to prune control sequences to only perform numerical
simulations that results in end state near the reachable
set boundary.

This paper is organised as follows. Section 2 de-
scribes the flight envelope prediction in a reachability
analysis framework using MCS. Section 3 describes the
methodology for performing MCS, constructing the ref-
erence reachable sets and training the ANNs. Section
4 presents the experimental results together with de-
tailed discussions. Finally, a conclusion is drawn along
with future recommendations in Section 5.

2 Safe flight envelope estimation
through reachability analysis

In this section, the relationship between flight enve-
lope estimation and reachability analysis is introduced,
which is the foundation of the proposed framework of
MCS-based reachability analysis. Subsection 2.1 intro-
duces the flight envelope estimation in a reachability
analysis framework and Subsection 2.2 describes reach-
ability analysis using MCS.

2.1 Reachable sets
The safe flight envelope is defined as “the region of the
aircraft’s state space in which the aircraft can be safely
controlled and no loss-of-control events can occur” [1].
One of the ways to represent the safe flight envelope is
as an intersection between the forward and the back-
ward reachable sets. For a dynamic system ẋ = f(x),
the forward reachable set from an initial set K is de-
fined as Equation 1 [10] where δ is a control sequence
in the input domain U , T is the time horizon and ξ is
the trajectory. The backward reachable set of the same
system can be obtained by analysing the reachable set
with the reverse dynamics ẋ = frev(x). The reverse
dynamics can be described as frev(x) = −f(x) assum-
ing that the system is continuous where there exists a
unique trajectory for given initial state, time and input
signal [14].

R(T,K) = {x ∈ Rn | ∃δ(t) ∈ U ,∃τ ∈ [0, T ],

ξ(τ ; t,x, δ) ∈ K}
(1)

The intersection of the forward and backward reach-
able sets represents a set of state were the dynamic
system can reach from the initial state within a time
horizon T , and also able to return to the initial state
within T . By defining the set K as a known safe set

and with an appropriate choice of time horizon T , this
intersection satisfies the aforementioned definition of
the safe flight envelope.

2.2 Reachability analysis using MCS
MCS is one of the methods for estimating the reachable
set of a system. MCS is an algorithm used to estimate
probability distributions of the system output by cal-
culating outputs using randomly sampled inputs [15].
This can be applied to reachability analysis by defining
the input and the output of this system as the control
sequence of length T and the state reached at the end of
a numerical simulation performed with the said control
sequence, respectively. MCS has an important advan-
tage over the level set approach that it can be applied
to dynamic systems with a large number of dimensions,
where practical application of the level set approach is
restricted to dimension of four [8].

In the field of flight envelope prediction MCS has
been mainly used for verification and validation pur-
poses [16, 17]. While the end state samples are guar-
anteed to be contained within the reachable sets as-
suming no model gap, the MCS-based approach suffers
from a problem that a very large number of simula-
tions is needed for accuracy while the required number
of samples for a certain level of accuracy remains un-
known [18]. Research by Yin et al. [12] and Sun and
de Visser [13] both aimed to make reachability analysis
with MCS-based approach more efficient, by reducing
the sample space using the extreme control effective-
ness method [12] and by employing an efficient sam-
pling strategy that has a higher probability of yielding
trajectories that travel further from the initial set, re-
spectively.

After a series of numerical simulations, another process
is required to formulate a continuous reachable set from
the cloud of end state samples. One option is to create
an outer contour of the point cloud for example using
α-shapes which can be applied in two-dimensional [19]
and three-dimensional spaces [20]. α-shape is a poly-
tope formed from a cloud of points, which may not be
necessarily convex nor bounded as a single region, in
which its extent of non-convexness is defined by the
parameter α. α is a real number 0 < α < ∞, where
when α = ∞ the resultant α-shape is a convex hull and
with decreasing α the corresponding α-shape becomes
more non-convex in an incremental manner [20].

Another option is to estimate a probabilistic reach-
able set described by a multivariate probability density
function (MPDF), demonstrated by Yin et al. [12].
The safety of a given state x can be described by the
degree of membership of the probabilistic flight enve-
lope Ẽ shown in Equation 2. fXf

(x) and fXb
(x) are

MPDF of the random variable Xf and Xb, which are
respectively the end states of the forward and backward
numerical simulations with randomly sampled control
sequences.
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µẼ(x) =
fXf

(x) · fXb
(x)

maxx∈Rn fXf
(x) · fXb

(x)
(2)

Estimation of fXf
(x) and fXb

(x) can be performed
using kernel density estimation (KDE) [21]. Suppose
an n dimensional random vector X = (X1, X2, ..., Xn)
and N samples from it where ith sample is denoted
as yi = (yi,1, yi,2, ..., yi,n)

T . Then with these samples,
the kernel density estimator is shown as in Equation
3. KH() and k() are the kernel and the normalised
kernel function respectively, where hj are bandwidths.
The MPDF are estimated and stored in a grid, which
the degree of membership of a given state inside the
gridded space can be estimated through interpolation.

f̂(x) =
1

N

N∑
i=1

KH(x− yi)

=
1

N · h1 · h2...hn

N∑
i=1

n∏
j=1

k(
xj − yij

hj
)

(3)

3 Methodology

In this section, the methodologies of the experiments
performed in this research are presented, which the
general framework is described in Figure 1. The ex-
periments performed to train the ANN can be split
into four phases as depicted on the left side of Fig-
ure 1. First, MCS is performed by producing a large
number of random control sequences with a sampling
strategy, which are used to simulate the dynamic model
to find the state reached at the end of each simula-
tion. These random samples are used to construct a
representation of the reachable set, which is used as
a reference to assess the value of the trajectory from
each simulation for estimating the reference boundary.
Finally, an ANN is trained as a trajectory value pre-
diction system that maps a given control sequence to
the value of the end state of the corresponding simula-
tion trajectory. This trained ANN can be implemented
in MCS-based reachability analysis to reject sampled
control sequences which are unlikely to drive the sys-
tem further towards the boundary of its reachable set,
as depicted on the right side of Figure 1.

The experiments are performed with a simple longi-
tudinal dynamic model of a quadrotor drone in hover,
which is described in detail in Subsection 3.1. Subsec-
tion 3.2 describes the methodology of the MCS process.
Subsection 3.3 describes the methodologies of convert-
ing the cloud of end state samples from the MCS pro-
cess into continuous representations of reachable sets.
Finally in Subsection 3.4 the ANN architectures con-
sidered are described as well as the training methods.

3.1 Dynamic system

In this research, MCS with the ANN integrated to
avoid unnecessary simulations is applied to a simpli-
fied, longitudinal quadrotor model in hover. The sys-
tem has four states, which are the horizontal velocity
Vx, vertical velocity Vz, pitch angle θ and pitch rate q
in all in the body axis of the quadrotor. The equation
of motion in the form of the set of ordinary differential
equations are shown in Equation 4.

V̇x =
Fx

mv
− gsin(θ)− qVz

V̇z =
Fz

mv
+ gcos(θ) + qVx

θ̇ = q

q̇ =
My

Iyy

(4)

The longitudinal aerodynamic forces and moments dur-
ing hover are shown in Equation 5, where Ωi is the ith
rotor speed. i = 1, 2 correspond to the front rotors
and i = 3, 4 to the rear rotors. The system model also
includes the actuator dynamics for each of the rotors,
where the ith rotor speed Ωi is modelled as first order
system mapping from the reference speed Ωiref to ac-
tual speed with a constant time constant τ as shown in
Equation 6, where the numerical value is shown in Ta-
ble 1. The numerical values of thrust coefficient during
hover κ0, moment arm l, vehicle mass mv and mass mo-
ment of inertia around y axis Iy are tabulated in Table
1, which are of Parrot Bebop 1 [22, 23].

Fx = 0

Fy = −κ0

∑
Ω2

i

My = lκ0(Ω
2
1 +Ω2

2 − Ω2
3 − Ω2

4)

(5)

Ω̇i =
1

τ
(Ωiref − Ωi) (6)

Table 1: Parameters of longitudinal quadrotor drone
model in hover condition [22, 23] of a Parrot Bebop 1

m [kg] Iyy [kg m2] l [m] κ0 [N s2] τ [s]
0.389 0.001242 0.0975 1.58e-6 1/30

Since the aerodynamic model used assumes flying in
the hover condition, while a fast manoeuvrable system
like a quadrotor drone which are likely to deviate from
hover even after a brief time, this makes the model
less valid with the considered time horizon of 0.15 sec-
ond. This may cause the reachable sets found with this
model to have discrepancies when compared with the
true reachable sets of a Parrot Bebop 1. However the
main aim of the research is to investigate whether an
ANN is able to accurately assess the value of simulating
a given trajectory towards constructing the reachable
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Figure 1: General framework of the proposed MCS-based reachability analysis with ANN pruning. The left side
and the right sides, indicated with dotted boxes, describe the training phase and the expected implementation of
the trained ANN respectively.

set boundary, hence the accuracy of obtained reach-
able sets themselves is of low importance. The sim-
ple aerodynamic model is selected to reduce necessary
computation times while maintaining the number of
dimensions of the dynamic system.

3.2 Monte-Carlo simulation
The control sequences are sampled with extreme con-
trol effectiveness method (ECEM) [12] which only con-
sists of the most extreme control actions in the control
space U , while also employing the sampling strategy
demonstrated by Sun and de Visser [13]. The strategy
makes use of the parameter pc, which is the probability
of sampling a constant sequence, used to control the ex-
tent of how extreme the control sequence samples tend
to be. It is described as pc = (1 − ps)

N where N is
the length of the sequence and ps is the probability of
switching the input in ith dimension moving from time
k to k+h as described in Equation 7. Since the consid-
ered quadrotor drone model’s control space is two di-
mensional, rear and forward rotor speeds, the sequence
is sampled twice in each simulation corresponding to
each of the control dimension.

ps = 1− P (ui(k + h) = ui(k)) (7)

With randomly sampled sequences, the system is sim-
ulated through numerical integration of Equation 4.
The integration scheme used is the classical 4th or-
der Runge-Kutta scheme. For forward and backward
reachable set estimations, the numerical integration
can be performed forward in time and backward in time
respectively. Numerical integration backwards in time
can be performed by multiplying the right hand side
of Equation 4 by -1. However when considering ac-
tuators modelled as first order systems this cannot be
directly applied. When the actual control is very close

to the commanded control forward in time the gradi-
ent approaches zero until the difference between them
are so small they can be treated to be equal. However
in this situation reverse in time the knowledge of the
past reference control, equivalent to the future when
the time propagates forward, is required to accurately
simulate the actuator dynamics in such a way the tra-
jectory can be traced forward in time. Hence for the
backward simulations the sampled control reference se-
quences are first flipped in time, to which then the first
order lag is applied before flipping the resultant control
sequence back in time. This ensured that each of the
backward trajectories could be traced forward in time
with the same actuator dynamics used for the numeri-
cal simulation. However as a side effect, the backward
reachable set becomes relatively larger than the for-
ward reachable set because at t = 0 the actual control
inputs are not necessarily at trim.

After each numerical simulation, the aircraft states
reached at the end of the simulation are recorded.
These aircraft states are converted from [Vx, Vz, θ, q]
as shown in Equation 4 to [V , γ, θ, q] where V is the
airspeed and γ is the flight path angle, which are more
suitable for describing the safety of a given aircraft sys-
tem.

3.3 Reference set construction and
score labelling

The end state samples resulting from MCS are synthe-
sised to form a continuous reachable set as a reference,
represented as an α-shape or as a MPDF. Then the end
state samples are labelled according to the reference,
which is assumed as the true reachable set with a large
enough sample size. Methodologies for set construction
and labelling for each of the representation types are
described below.
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α-shapes

One of the ways to construct a continuous set from
a cloud of points is by generating a boundary by con-
necting points with lines in two-dimensional spaces and
with faces in three-dimensional spaces, for example as
a convex hull. However assuming that the reachable
set of nonlinear systems can be non-convex [24], con-
vex hull may generate an overestimate of the safe set
which is unfavourable in a real-life operation. Hence
in this research the α-shape is employed as one of the
set representations which can be generated from point
clouds that allows the shape to be also non-convex de-
pending on the choice of the parameter α.

While overly convex sets are unfavourable, overly
non-convex, underestimated sets are equally un-
favourable which can form discontinuities like holes.
Therefore a separate end state samples are prepared to
judge the extent of under- or overestimation of the set.
The α-shape is constructed with 8000 end state sam-
ples, with the parameter α selected as the minimum
value such that 80% of 2000 end state samples from
a separate data set are contained within the resultant
α-shape. Using a lower ratio than 80% may cause the
resultant α-shapes with very small values of α that re-
sults in α-shapes with discontinuities like holes, where
higher ratio may result in an almost completely con-
vex α-shape. The end state samples are collected us-
ing randomly sampled control sequence as described in
Subsection 3.2 with pc = 0.3.

The end states are labelled with a score value described
in Equation 8 which reward end states xend that are
closer to the boundary while penalising being too close
to the initial state x0. An end state labelled with a
smaller Sα is located closer to the reference boundary
and hence more valuable as a sample for estimating
the reachable set. The distance between a given end
state and the boundary is approximated as the distance
between the end state and the closest vertex of the α-
shape boundary, xboundary. A maximum cap Sαmax

is
set to avoid explosions of the score values, which may
occur when the end state is located very close to the
initial state. xend labelled with the score value Sαmax

or larger are treated as equally valueless for construct-
ing the reachable set boundary, which this value is set
to 10. It is furthermore also possible that xend lies
outside the reference set boundary Rref, since the ref-
erence set is not the ground truth. When this is the
case a minus sign is multiplied to the score as shown
in the second part of Equation 8.

Sα(xend) =



min
(
Sαmax ,

|xend−xboundary|
|xend−x0|

)
if xend ∈ Rref

− |xend−xboundary|
|xend−x0|

if xend /∈ Rref

(8)

Probabilistic flight envelope with KDE

The MPDF representing the probabilistic reachable
sets are constructed on a gridded space, for which the
domain is set as the smallest hyperrectangle that cov-
ers the end state samples expanded by 20% in each
dimension around its midpoint. The number of grid
cells per dimension is chosen as 31, which may be in-
creased with the cost of increased computation times
for both estimation of the MPDF as well as interpola-
tion to compute the membership function. A Gaussian
kernel is considered, where the bandwidths are chosen
according to Silverman’s rule of thumb for a standard
multivariate normal density function as described in
Equation 9 [21]. For the jth dimension, the bandwidth
hj depends on the standard deviation σj , the number
of dimensions d and the number of samples N .

hj = σj

[ 4

(d+ 2)N

] 1
d+4

(9)

The probabilistic reachable sets are estimated using
KDE, with 10000 MCS end state samples collected
with a lower value of pc = 0.001 compared to samples
collected for α-shapes. This is to ensure that the states
around the initial state are considered ‘safe’, which
is determined by the degree of membership of these
states. When a larger value of pc is used the sampled
control sequences are relatively more aggressive lead-
ing to less samples around the initial state, resulting in
a probabilistic reachable set where the trim condition
is also considered relatively ‘unsafe’.

When labelling the end states according to the proba-
bilistic reachable set, the degree of membership shown
in Equation 10 itself can serve as an indication of how
close the end state is towards the boundary. Although
this representation of the reachable set does not have
an explicit definition of the boundary, the membership
function µfX has an appropriate characteristic such
that the smaller the degree of membership, the further
into the state space the end state lies from the initial
state. Since the MPDF fX is computed in a grid, the
degree of membership of a state inside the domain is
interpolated linearly.

SKDE(xend) = µfX (xend) =
fX(xend)

maxx∈Rn fX(xend)
(10)

3.4 Artificial Neural network training

In this subsection, the methodology of ANN construc-
tion and training are described. First two types of
ANN architectures are introduced, which are feedfor-
ward neural networks and long short-term memory net-
works. Next, the details of the considered architectures
and their training processes are described.
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Feedforward neural network

The feedforward neural network (FFNN) is the sim-
plest form of ANN, which typically consists of an input
layer, an output layer and hidden layers. The neurons
in each layer are densely connected to neighbouring
neurons with corresponding weights, which is mathe-
matically shown in Equation 11. z, v and y are outputs
of the input, hidden and output layers respectively.
W and b are weight vectors and the bias respectively,
where the superscripts h and o denote hidden and out-
put layers respectively. The input vector x enters the
network through the input layer, which flows to densely
connected hidden layer neurons. z, the weighted sum
together with the bias passes through the activation
function σ and exists the hidden layer as v. v then
flows to the densely connected output layer neurons,
which their weighted sum is computed as the network
output y.

z = Whx+ bh

v = σ(z)

y = W ox+ bo
(11)

Long short-term memory

Recurrent neural networks are a type of network that
are able to accept sequences of inputs, where the infor-
mation is fed into the network in a recurrent manner.
A common disadvantage of recurrent network archi-
tectures is that the internal states may either grow or
shrink indefinitely as they flow through the system.
Long short-term memory (LSTM) with forget gates
are able to adaptively forget internal states prevent-
ing them to explode [25].

LSTM networks contain LSTM cells, in which the
mathematical processes are described in Equation 12,
where ⊙ denotes element-wise multiplication, σact is
the activation function and σgate is the gate activation
function. An LSTM cell takes in the input of the cur-
rent time step, the output of the LSTM cell from the
previous time step and the internal state denoted as x,
h and s respectively. Each cell contains an input gate,
an output gate and a forget gate which their outputs
are denotes as g, q and f respectively. Each gate is
characterised by the input weights U and the recur-
rent weights W , which passes through σgate, which is
typically a sigmoid function bounding their outputs in
[0,1]. These values determine how much of the corre-
sponding information is used to compute h and s.

h(t) = σact(s
(t))⊙ q(t)

s(t) = f (t) ⊙ s(t−1) + g(t) ⊙ s̃(t)

s̃(t) = σact(b+ Ux+Wh)

g(t) = σgate(b
g + Ugx+W gh)

f (t) = σgate(b
f + Ufx+W fh)

q(t) = σgate(b
o + Uox+W oh)

(12)

Training ANN for trajectory pruning in MCS

In the MCS process, in order to only simulate sampled
inputs that result in a valuable end state to construct
the reachable set, an ANN is considered to predict the
score values introduced in Subsection 3.3 of resultant
end state for a given control sequence sample. Four
networks are trained through a supervised learning pro-
cedure with the control sequence and the labelled score
of the corresponding end state as the input and the
output, respectively. Two FFNN are trained with the
training data sets collected using α-shape as the ref-
erence and using MPDF as the reference. Similarly,
two LSTM networks are trained with these separate
training data sets.

Training input and output data are prepared with
the following procedure. First MCS is performed with
the quadrotor model from Subsection 3.1 for which
the input samples are randomly generated with pc =
0.1. The resulting end states are labelled according
to Equations 8 or 10 with the reference sets described
in Subsection 3.3. The scores Sα and SKDE are nor-
malised by dividing them by the maximum value ob-
served in the prepared data set. The sampled control
sequence and the normalised scores are the input and
the output data for the neural networks. 6400 input-
output pairs are collected, in which 80% of them are
used for training while the remaining pairs are used for
validation.

The architecture of the FFNN considered is as follows.
The network consists of an input layer, an output layer
and one hidden layer. The number of hidden neurons is
set to 32 with a tanh activation function. The input of
the FFNN is control sequence in each of the two control
space, which are flattened from Ntraj × 2 to 2Ntraj × 1
where Ntraj is the length of the control sequence. The
output of the network is a scalar value, which is the
normalised value of Sα or SKDE . The input and the
hidden layers use biases, resulting in a total number
of trainable parameters of 6465. The loss function is
selected as the mean squared error (MSE) where an
ADAM optimiser is applied, in which training is per-
formed with a batch size of 128 which is shuffled in
every epoch with 100 epochs.

Another architecture considered has a similar struc-
ture as FFNN, where the hidden layer is replaced by a
LSTM cell. The number of neurons of the hidden layer
and the gates are all selected as 32, where the gates
are a sigmoid function and the activation function is
a tanh function. Unlike FFNN, LSTM cells can take
in sequences of inputs. Hence the control sequences
are fed into the network directly as a two-dimensional
vector in each time step without being flattened first.
Each of the gates, the hidden layer for the internal
state as well as the LSTM cell output use biases, re-
sulting in a total of 4513 trainable parameters. Simi-
larly to FFNN, LSTM networks are trained to optimise
the MSE of the predicted scalar value with the ADAM
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optimisation scheme, with 200 epochs with a batch size
of 128 which is shuffled in every epoch. Since both the
training and validation data are collected through the
same random sampling strategy, there is a possibility
that there are duplicates among these samples. How-
ever the control sequences for the forward and the rear
rotors were sampled independently, hence the proba-
bility that there exist duplicates in the sampled data
sets are assumed to be negligible.

The number of computations required to analyse a
given input to predict the output using a LSTM is
proportional to the length of the input sequence fed
into the network. This is a favourable characteristic
when using this network to act as a filter to reduce the
number of numerical simulations of a dynamic model.
This is because while the number of time steps for a
numerical integration is bounded to ensure stability,
the length of the input fed into the LSTM is that of
a commanded control sequence which can be chosen
arbitrarily. Using a more advanced, nonlinear system
like the quadrotor drone may require a very short time
steps for numerical integration. Therefore if LSTM
networks are able to accurately predict the value of
each of the control sequences, they may enable both
reduction in the number of simulations as well as re-
duction in the overall computation time.

4 Results and discussions

In this section the results obtained during the exper-
iments described in Section 3 are presented together
with their discussions. The results of construction of
the reference reachable sets are presented in Subsec-
tion 4.1. The verification results of the scores labelled
to the end state samples are presented in Subsection
4.2. The performance of the trained ANN are pre-
sented in Subsection 4.3. The system performance of
integrating the trained ANN into a MCS-based reacha-
bility analysis is presented and discussed in Subsection
4.4. Finally, the validation results using off-nominal
dynamic models are presented in Subsection 4.5.

4.1 Reference set and value assignment

Before performing MCS on the quadrotor drone model,
verification is performed using a double integrator sys-
tem shown in Equation 13. The states variables are
x1 and x2, with the input u. With the input range
u ∈ [−1, 1] and the initial state of x1 = 0, x2 = 0, the
analytical expression of the reachable set for a given
time horizon T is ϕ = T , where ϕ is shown in Equation
14 [26].

ẋ1 = x2

ẋ2 = u
(13)

ϕ(x) =

{−x2 +
√
4x1 + 2x2

2 if x1 > 1
2x2|x2|

x2 +
√
−4x1 + 2x2

2 if x1 < 1
2x2|x2|

|x2| if x1 = 1
2x2|x2|

(14)

Figure 2 shows 3000 end states after simulating the
double integrator system with randomly sampled con-
trol sequences of lengths of 1 second plotted in blue,
together with the isocontour of ϕ = 1 shown in Equa-
tion 14. The control sequences are sampled as bang-
bang controls, using the sampling strategy by Sun and
de Visser [13]. It can be observed that the cloud of end
state samples converges to form the theoretical reach-
able set of the system. This suggests that MCS is an
effective reachability analysis approach given a large
enough sample size.

Figure 2: States reached at the end of simulating the
double integrator system with randomly sampled control
sequences with the lengths of 1 second (blue) starting
from the initial state (green) plotted together with the
analytical reachable set (red).

Figure 3 shows the end state samples of MCS for two of
the three-dimensional slices in the state space, V −γ−θ
and γ − θ − q. Each point indicates the state reached
starting from the initial state being the hover condition
(V = 0, γ = 0, θ = 0, q = 0) shown in green, after for-
ward and backward simulations shown in blue and red
respectively. 3000 samples are shown for both the for-
ward and backward end states, with the input control
sequence were sampled with pc = 0.1. The point clouds
are forming V-like shapes, that are most likely converg-
ing towards the theoretical reachable sets as observed
with the double integrator system. The point clouds
include very extreme states with large deviations from
the initial state. For example the forward reachable
set ranges from about -2.5 rad to 2.5 in θ and from
about -3 rad to 4.5 rad in γ. These states are far from
the hover condition which is an assumption made with
the dynamic model shown in Equation 4, although the
validity of the model itself is of less importance in this
research. It can also be observed that the region in
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which the backward simulations can cover is relatively
larger than the forward simulations. This is most likely
because in the process of applying the actuator dynam-
ics reversed in time, the actual input is not necessarily
at the trim control at the initial condition.

From the point clouds, the forward reachable sets are
presented as an α-shape in Figure 4 and as an isocon-
tour of the MPDF estimated with KDE in Figure 5.
The isocontour of kσ corresponds to µ(x) = e−k2/2.
The backward reachable sets can also be represented
in a similar manner, using the point cloud from the
backward simulations. It can be seen that both repre-
sentations share similar shapes already visible in Figure
3.

Representing the reachable set as a MPDF has an
added benefit over the α-shape that the reachable set
can be made in higher-dimensional spaces. The plot
shown in Figure 5 are isocontours of three-dimensional
projection of a four-dimensional PDF, these dimen-
sions being the longitudinal states [V γ θ q]. While
α-shapes are constructed with simulations with all of
these states into consideration, the safety of a given
state cannot be guaranteed even if it lies within the α-
shape in one of the projections as the state not shown
in this space may be outside the safe region. Further-
more, a MPDF is also able to describe the level of safety
which can also be seen from Figure 5. The inner shapes
are isocontours with 2σ while the outer shapes are iso-
contours with 3σ, meaning that the states inside the
inner contours are relatively safer than that inside the
outer contours.

However the α-shapes can be theoretically be drawn
with a smaller number of end state samples which lie
on the surface of the boundary. For example, the α-
shapes shown in V −γ− θ and γ− θ− q have 2170 and
2620 sample points used to construct the boundary it-
self, while in both cases 8000 samples are available. On
the other hand reproducing the MPDF with a reduced
number of samples most likely results in degradation
of the accuracy. Furthermore sampling strategies that
favour excessively aggressive control sequences, which
may be beneficial for constructing the boundary to
sample more end states that reach further out into
the state space, is not suitable for MPDF construc-
tion. This may result in an envelope where the region
around the a-priori known safe set, possibly the safe set
itself, to be considered ‘unsafe’ which is not an accu-
rate representation of the reachable set hence the safe
flight envelope. Having to use a more modest sampling
strategy results in an increasing number of simulations
needed to collect end state samples which are possible
to reach but relatively more difficult to reach.

4.2 Verification of the score labels
The labelled scores of the end state sample points
are verified by constructing convex hulls in three-
dimensional projections of the state space using differ-

ent selections of end state samples depending on their
labelled scores. A convex hull has the largest volume
within the family of polytopes that can be formed with
a given point cloud, therefore these volumes can serve
as the upper bounds of the volumes of the reachable
sets. It can be expected that the end states with rela-
tively better scores are able to form convex hulls with
larger volumes, that encapsulates convex hulls formed
with end state samples with worse scores. An example
is shown in Figure 6, where the best 20% and the worst
20% out of 10000 end state samples according to the
score labelled using Equation 8 are plotted in green and
in red respectively. The contours in lighter blue and in
darker blue are convex hulls formed with respective
groups of end state samples. While both convex hulls
are formed with the same number of samples of 2000,
collected with the same MCS sampling strategy, green
end state samples form a relatively larger contour than
that formed with the red samples.

Considering the scores labelled according to the an
α-shape shown in Figure 6, there exists a small portion
in the state space which the darker convex hull covers
while the lighter convex hull does not. This can be ob-
served in for example the V − γ − θ projection shown
in Figure 6(a) with relatively higher values of V . This
may be caused by the fact that while the states are four
dimensional, the scoring results shown in Figure 6 were
made with an α-shape in γ−θ−q. On the other hand,
such observation cannot be made in γ−θ−q projection
shown in Figure 6(b), where the darker convex hull is
completely encapsulated in the lighter one. However in
general the volume covered by the lighter convex hull is
relatively larger. This suggests that the score labelling
system shown in Equation 8 rewards samples further
out in the state space, which is favourable in collecting
samples that are more likely to reach the boundary of
the reachable set.

A similar set of plots are shown in Figure 7, where
the end state sample points labelled according to Equa-
tion 10 with a MPDF as a reference reachable set.
A similar trend can be observed that the end state
points labelled with better scores form larger convex
hulls compared to those with worse scores. However
a relatively large number of end state points labelled
with worse scores lie outside the convex hull formed
with the best samples, in the region with large values
of γ as can be observed in Figures 7(b) and 7(c). This
reflects how the scores are labelled according to Equa-
tion 10 where the score represents how likely a given
end state can be reached not necessarily its relative
position in the state space from the initial state. The
projected space V − γ − θ is bounded in dimension V
as it cannot be smaller than zero, which results in a
space where the boundary of the reachable set is not
necessarily unlikely to be reached, for example the ini-
tial state also lies on the boundary of the reachable set.
This suggests that more samples are needed than the
best 20% of the MCS samples when using the scoring
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(a) (b)

(c) (d)

Figure 3: States reached at the end of forward (blue) and backward (red) simulations of 0.15 seconds of a lon-
gitudinal quadrotor drone model from initial condition (green) with randomly sampled control sequences plotted
in: (a) V − γ − θ (b) γ − θ − q (c) γ − θ and (d) θ − q. 3000 end state samples are shown for both the forward
and the backward reachable end states.

(a) (b)

Figure 4: Reachable set boundary represented as α-shapes using end state samples from MCS (blue) from the
initial state at hover (green) in (a) V − γ − θ and (b) γ − θ − q projections.
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(a) (b)

Figure 5: Isocontours of the reachable set represented as MPDF using end state samples from MCS (blue)
from the initial state at hover (green) in (a) V − γ − θ and (b) γ − θ − q projections. The darker inner hull is
the isocontour of 2σ and the lighter hull is of 3σ.

system shown in Equation 10 in order to reconstruct
the boundary of the reachable set.

Table 2 shows the verification results of the scores la-
belled on each of the end state samples, which indicate
how valuable the given end state is towards estimating
the reachable set boundary. The values in the table
indicate the volumes of the three-dimensional convex
hulls formulated with end state samples labelled with
the scores in the corresponding percentiles. The left
two columns describe which of the three-dimensional
projections the convex hulls are constructed in and the
type of the reachable set representation used as the ref-
erence in order to label the end state samples. Each
column corresponds to a selected percentile of 10000
sampled MCS end state points, when their labelled
scores in ascending order. For example when collect-
ing end state samples with between the lowest and the
2000th lowest scores in the 10000 samples (0-20 per-
centile) according to Equation 8 using an α-shape as a
reference, they formulate a convex hull in the V −γ−θ
projection with the volume of 15.5 [m/s rad2].

It can be observed that with the end states in lower
percentiles, which correspond to lower scores hence
closer to the reference set boundaries, the convex hulls
formed have larger volumes compared to those formed
with higher percentile end state points. For example
convex hulls with the best 20% (0-20 percentile) and
the worst 20% (80-100 percentile) of end state sam-
ples, which are shown in Figures 6 and 7, the ratios
between their volumes can be up to 5. It can be seen
that for both V −γ−θ and γ−θ−q projections the end
states with the scores in the 0-20 percentile according
to the α-shape covers 94% and 100% of the volumes
in the respective projections made with all of the end
state samples. On the other hand, with the MPDF
the volume covered with the same number of samples

have volumes of about 87% and 86%. However the
scoring system using MPDF shows comparable perfor-
mance with that with α-shape when considering the
percentile of 0-40 in the V − γ − θ projection. This
agrees with the observation made from Figure 7 that
when using the scores according to Equation 10 with
MPDF as the reference set, relatively more samples
may be needed to replicate the boundary compared to
the scores according to Equation 8 with an α-shape as
a reference.

Furthermore it can be observed that the increase
in the volumes of the convex hull with additional end
state samples with relatively worse scores, for exam-
ple comparing the volumes with 0-40 percentile and
0-80 percentile which has double the amount of points,
is limited. This means that a large portion of the end
state samples with relatively worse scores are contained
within the convex hull formed with the better scoring
samples, suggesting that they are less likely to con-
tribute towards constructing the reachable set bound-
ary.

These results suggest that the scores using both
α-shapes and MPDF, shown in Equations 8 and 10
respectively, are in general able to describe the posi-
tion of corresponding end states relative to the refer-
ence reachable set boundary as well as the initial state,
favouring samples closer to the boundary and further
away from the initial state as intended.

4.3 Neural network performance

Table 3 summarises the prediction performance of the
trained ANNs as described in Section 3, which tabu-
lates the mean squared error (MSE), the standard de-
viation of the squared error (std SE) and the cross-
correlation between the predicted and the expected
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(a) (b)

(c) (d)

Figure 6: Top 20% (green) and bottom 20% of 10000 end states of MCS on quadrotor drone system according
to the scoring system in Equation 8 with an α-shape in γ − θ − q as the reference, together with convex hulls
formed with respective samples (darker blue and lighter blue). Projections in (a) V − γ − θ space (b) γ − θ − q
space (c) in γ − θ space (d) in θ − q space.

Table 2: The volumes of the convex hull constructed in respective three-dimensional slices of the state space with
MCS end states labelled with scores according to Equations 10 or 8, with scores in the corresponding percentiles
when sorted in an ascending order.

Projected
space

Reference
type

Percentile
0-20 20-40 40-60 60-80 80-100 0-20 0-40 0-60 0-80 0-100

V − γ − θ
α-shape 16.7 14.1 13.3 11.2 8.7 16.7 16.9 17.1 17.4 17.7
MPDF 15.4 13.6 10.8 8.1 5.2 15.4 17.4 17.6 17.7 17.7

γ − θ − q
α-shape 444.0 314.4 308.6 239.2 127.7 444.0 444.0 444.0 444.0 444.0
MPDF 382.1 418.9 334.5 247.0 166.7 382.1 439.0 443.8 444.0 444.0
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(a) (b)

(c) (d)

Figure 7: Top 20% (green) and bottom 20% of 10000 end states of MCS on quadrotor drone system according
to the scoring system in Equation 10 with a MPDF as the reference, together with convex hulls formed with
respective samples (darker blue and lighter blue). Projections in (a) V − γ − θ space (b) γ − θ − q space (c) in
γ − θ space (d) in θ − q space.
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outputs together with the score range indicating the
minimum and the maximum values of the expected
outputs. The percentages inside the parentheses de-
scribe the relative values compared to the difference
between the maximum and the minimum scores of the
corresponding data set. All the values are computed
with the validation data sets generated with the same
procedures as the training data but are not used during
training. The different ANN models are characterised
by following factors:

• The type of ANN used, either FFNN or LSTM.

• The reference set construction method, either as
α-shape or as MPDF.

• The state (sub)space which the reference sets
are constructed in, as α-shapes are restricted to
three-dimensional spaces.

It can be observed that in general LSTM models have
higher prediction power compared to the FFNN coun-
terparts, with lower MSE and higher correlations. This
is especially true when considering the reference reach-
able set as a MPDF, where the FFNN yields a MSE
three times larger than that of the LSTM, while also
being more consistent which can be seen from the lower
std SE value.

There exist discrepancies in the performance of the
ANN models with the type of set representation of
the reference reachable set among the same type of
ANN architecture. This is most evident with the cross-
correlation values, where the ANNs trained with the
MPDF show higher correlation than the ANNs trained
with α-shapes.

Furthermore, the performance of the ANNs de-
pends on the selected three-dimensional space the ref-
erence α-shape is constructed. Both the FFNN and
LSTM trained with α-shapes in V − γ − θ relatively
larger MSE and std SE than that with α-shape in
γ−θ−q, suggesting they are less accurate and more in-
consistent. These discrepancies are most likely caused
by the difference in the distributions of the scores de-
scribed using respective reference sets. The definition
of the scores with an α-shape as a reference shown in
Equation 8 results in a larger range in the normalised
score including more extreme values when the end state
is closer to the initial states even with the score caps
applied. Which is more prominent with α-shape in
V − γ − θ which yielded a score as low as -4.62, sug-
gesting that there were end state samples outside the
reference boundary relatively further away from both
the boundary and the initial state. Such data may
negatively influence the prediction power of the ANN,
either resulting in large errors when trying to predict
these extreme outputs or globally skewing the model
when training with these data points.

No explicit regularisation was applied to the networks
such as dropouts, however both the histories of train-
ing and validation losses were tracked throughout the

training process. Figure 8 shows the histories of the
training losses and the validation losses against the
number of epochs during training for each of the ANN
models considered. The top row (8(a), 8(b) and 8(c))
presents the loss histories of the FFNNs, while the bot-
tom row (8(d), 8(e) and 8(f)) presents the loss histories
of the LSTMs. Each row corresponds to the type of ref-
erence set and the state (sub)space they are defined in;
the left column corresponds with α-shape in V −γ− q,
the middle column with α-shape in γ − θ − q and the
right column with MPDF in V − γ − θ − q.

Some evidence of overfitting can be observed in
some of the trained ANNs where there are larger dis-
crepancies between the training and validation losses,
for example in Figures 8(a) and 8(d) which correspond
to FFNN and LSTM trained with α-shape in V −γ−θ,
respectively. Similar observation can be made for Fig-
ure 8(e) which corresponds to LSTM trained with α-
shape in γ−θ−q, but to a lesser extent. These models
may benefit more from regularisations in order to gen-
eralise the models. On the other hand the remaining
ANN models are less susceptible to overfitting, where
with an appropriate choice of the number of epochs the
gaps between the training and the validation losses can
be reduced.

In summary, for the application of pruning control sam-
ples of MCS-based reachability analysis of a dynamic
system, LSTM is more suitable than FFNN with its
higher prediction power observed from both the MSE
and the correlation between the prediction and the ref-
erence data. Considering the type of representation
for the reference reachable set, the MPDF described
in the full four-dimensional state space results in more
accurate and consistent predictions, also showing rela-
tively less signs of overfitting. Another candidate is the
LSTM using α-shape described in γ − θ− q projection
with comparable prediction power as with the MPDF,
although showing some signs of overfitting.

4.4 System performance with nominal
model

Based on the results shown in Subsection 4.3, follow-
ing two ANN models are analysed further for their per-
formance when integrated in the reachability analysis
using MCS.

• LSTM with MPDF in V −γ−θ−q as the reference
set

• LSTM with α-shape in γ− θ− q as the reference
set

Figures 9 and 10 show the results of MCS represented
as scatter plots, where each point represents a state
reached at the end of a forward numerical simulation
performed on the dynamic model with a randomly sam-
pled control sequence. The points are labelled with
different colours depending on the predicted score with
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Table 3: Performance analysis result of the ANNs trained to map the commanded control sequence to the score
of the corresponding end state, presented as mean squared error (MSE), standard deviation of the squared error
(std SE) and the cross-correlations between the reference outputs and the predicted outputs together with the
minimum and the maximum values of the expected scores in the data set.

ANN
type

Reference
set type

Projected
space

MSE
(relative to score range)

std SE
(relative to score range) Correlation Score

range
FFNN α-shape [V γ θ] 3.01E-02 (0.5%) 4.32E-01 (7.7%) 0.50 [-4.62, 1]
FFNN α-shape [γ θ q] 3.43E-03 (0.3%) 3.24E-02 (2.4%) 0.48 [-0.34, 1]
FFNN MPDF [V γ θ q] 9.29E-03 (0.9%) 2.07E-02 (2.1%) 0.87 [0, 1]
LSTM α-shape [V γ θ] 2.92E-02 (0.5%) 4.33E-01 (7.7%) 0.52 [-4.62, 1]
LSTM α-shape [γ θ q] 2.55E-03 (0.2%) 2.76E-02 (2.1%) 0.65 [-0.34, 1]
LSTM MPDF [V γ θ q] 2.84E-03 (0.3%) 8.04E-03 (0.8%) 0.96 [0, 1]

(a) (b) (c)
’

(d) (e) (f)

Figure 8: Histories of the loss functions of the trained ANNs after every epoch computed using the training
data set (orange) and the validation data set (blue). The ANN architectures are (a),(b),(c): FFNN (d),(e),(f):
LSTM. The reference sets are (a),(d): α-shape in V − γ − θ (b),(e): α-shape in γ − θ − q (c),(f): MPDF in
V − γ − θ − q.
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the ANN trained with a MPDF and with an α-shape in
Figures 10 and 9 respectively, which the thresholds of
the colour labels are tabulated in Table 4. For Figure
10 where the reference set is a MPDF, the thresholds
are selected as 2σ and 3σ. This can be interpreted as
that the red points lie inside the darker contour in Fig-
ure 5, blue points inside the lighter contour but out-
side the darker contour and green points lie outside
the lighter contour. In the case of the network with
α-shape as its reference, the score smaller than 0 cor-
responds to an end state point predicted to lie outside
the α-shape boundary in Figure 4, as described in Sub-
section 3.3.

In Figures 10 and 9, all control sequences are nu-
merically simulated regardless of the prediction made
by the ANN. However it is possible to also avoid simu-
lations with control sequences that are likely to not
yield a meaningful information about the reachable
set boundary described by the predicted score, sav-
ing simulation time. For example it is possible to use
the LSTM trained with the MPDF to only simulate
control sequences predicted to have ‘good’ and ‘excel-
lent’ scores out of 10000 randomly generated sequences.
This results in rejecting 49.71% of the sequences which
correspond to end states in red in Figure 10, yielding a
more compact end state sample data set only consisting
of blue and green points.

Although the general shapes of the point clouds in Fig-
ures 9 and 10 are similar, there exist discrepancies in
the distribution of the scores labelled to the end states.
It can be seen that while in Figure 10 the ‘bad’ sam-
ples indicated in red are more spread out surrounding
the initial state, in Figure 9 the red points are more
concentrated which is the most prominent in the θ− q
projection shown in Figures 9(d) and 10(d).

The same observation about the scores derived us-
ing α-shapes from Figure 6 can be made from Figure
9 that there are regions in the V − γ − θ projection
where the edges of the point clouds are labelled as
‘bad’, which can be found with larger values of V as
can be seen in Figure 9(a). On the other hand with the
ANN trained with a MPDF the scores labelled on the
end states are more homogeneous, that there are not
clear separations in the labelled scores. For example in
the θ−q projection shown in Figure 10(d) only a small
portion of the ‘excellent’ end states are on the edge of
the point cloud. However the same set of ‘excellent’
end states in the V − γ − θ projection they indeed lie
on the edge of the point cloud. This reflects how the
MPDF is described in a four-dimensional space and not
in a specific projection in the state space.

Table 5 presents the performances of the trained ANNs
for pruning control sequence samples when integrated
in a MCS-based reachability analysis for a quadrotor
drone system. The left most column indicates which of
the two types of reference reachable set representations
is used to train the ANN as presented in Subsection

4.3. The second column describes different thresholds
selected for the pruning system that divides control
sequence samples to be rejected or to be simulated ac-
cording to the score predicted by the ANN. The re-
jection rate presented in the next column describes
the percentage of the sampled control sequences with
worse predicted scores than the corresponding thresh-
olds. The two right columns present the coverage repre-
senting the ratio of the rejected end states lying inside
the convex hull formed with the accepted end state
samples. The values computed with the true scores
computed using Equation 10 instead of the predicted
scores from the ANN are shown in side parentheses.
Higher rejection rate leads to less simulations yielding
a reduced computation time used for numerical inte-
gration, while the coverage can be used as an indica-
tion of how much of the rejected samples may have
contributed towards estimating the boundary of the
reachable set.

Comparing the rejection rates of the ANN against
the true values in the parentheses, it can be observed
that the rejection rates when using the ANN trained
with an α-shape as a reference are lower for score
thresholds of 0.03 and 0.01 than the scores computed
using Equation 8, while the opposite is true with a
stricter threshold of 0.005. This means that the ANN
trained with an α-shape generally overestimates the
score when the true score is above 0.01 and underes-
timates when the true score is below 0.005. On the
other hand, the ANN trained with a MPDF tends to
reject more samples regardless of the threshold sug-
gesting that the predicted scores are in general higher
hence worse than the true value.

The coverage of the convex hull in the three-
dimensional projections using the ANNs are almost
always lower than the end states selected with the
true scores, which the differences become larger with
stricter score thresholds. This means that selecting a
score threshold to reject more samples lead to an in-
creased risk of the ANN incorrectly classifying the score
of a given control sequence. It can also be observed
that the ANN trained with an α-shape shows the high-
est performance in the γ− θ− q, where the coverage of
the convex hull using the ANN is comparable to that
with that using the true scores. On the other hand
the performance is poor in the V − γ − θ projections,
which the coverage with the most lenient threshold is
0.849, which means that out of the 22% of the rejected
samples 15% of them lie outside the convex hull formed
with the accepted samples. Assuming a reachable set of
a dynamic system is not necessarily convex, this means
that by saving 22% of simulation time at least 15% of
the ignored samples were potentially valuable in esti-
mating the boundary of the reachable set. As for the
ANN trained with the MPDF, relatively high cover-
age can be observed with thresholds of 1.5σ and 2σ for
both V − γ − θ and γ − θ − q projections.

From data presented in Table 5, it can be concluded
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Table 4: Classification thresholds for labelling the end state points as ‘bad’, ‘good’ and ‘excellent’ presented in
Figures 10 and 9.

Figure ‘Bad’ (red) ‘Good’ (blue) ‘Excellent’ (green)
Figure 9 Ŝα > 0.01 0 ≥ Ŝα > 0.01 Ŝα ≤ 0

Figure 10 ŜKDE > e−22/2 e−22/2 ≥ ŜKDE > e−32/2 ŜKDE ≤ e−32/2

(a) (b)

(c) (d)

Figure 9: 10000 MCS end state samples of a longitudinal quadrotor drone with parameters in Table 1, labelled
according to the score predicted by LSTM network trained with an α-shape in γ− θ− q as its reference reachable
set shown in V − γ − θ and γ − θ − q slices. The points are labelled ‘bad’ in red, ‘good’ in blue and ‘excellent’
in green.

Table 5: Performance analysis result of the trained ANN in pruning control sequence samples to construct the
reachable set boundary of a quadrotor drone system, compared against values calculated using the true scores
shown in between parentheses.

Reference type Score threshold Rejection rate Coverage of convex hull
V − γ − θ γ − θ − q

α-shape
0.03 22.44% (27.08%) 0.849 (0.904) 0.998 (1)
0.01 49.52% (56.98%) 0.882 (0.937) 0.991 (1)
0.005 73.05% (70.96%) 0.849 (0.946) 0.952 (1)

MPDF
1.5σ 22.78% (21.46%) 0.993 (1) 0.998 (0.999)
2σ 49.71% (47.33%) 0.971 (0.974) 0.979 (0.971)
2.5σ 75.04% (71.98%) 0.892 (0.928) 0.89 (0.923)
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(a) (b)

(c) (d)

Figure 10: 10000 MCS end state samples of a longitudinal quadrotor drone with parameters in Table 1, labelled
according to the score predicted by LSTM network trained with a MPDF as its reference reachable set shown in
V − γ − θ and γ − θ − q slices. The points are labelled ‘bad’ in red, ‘good’ in blue and ‘excellent’ in green.
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that the ANN trained with a MPDF is generally able to
predict the value of a control sequence better than the
ANN trained with an α-shape for constructing a reach-
able set in the whole state space, not restricted to cer-
tain projections. In the following Subsection, the ANN
trained with a MPDF is further validated for perform-
ing MCS-based reachability analysis with off-nominal
systems with different model parameters compared to
the nominal system used for training the ANN.

4.5 Validation with off-nominal sys-
tems

In order to assess the usefulness of the trained model
in a real life application, the sensitivity of the perfor-
mance of the ANN as a prediction tool to reduce the
number of numerical simulations for reachability anal-
ysis is studied. This is performed by integrating it
to a MCS of a quadrotor drone model with parame-
ter changes compared to the values shown in Table 1.
Two model parameters are selected for the sensitivity
analysis, which are the time constant τ of the actuator
dynamics and the vehicle mass m.

Table 6 tabulates the performances of the trained
ANNs for pruning control sequence samples when in-
tegrated in a MCS using off-nominal dynamic systems.
The types of data presented in Table 6 are identical
to those in Table 5, except each row corresponds to a
different dynamic model considered for the MCS. The
nominal system is the quadrotor drone model to the pa-
rameters as presented in Table 1, where the remaining
rows describe the differences compared to the nominal
parameters.

When studying the general trend of the perfor-
mance of the ANNs with varying score thresholds, it
can be observed that the rejection rates with the same
score thresholds using different simulated systems are
almost identical. This is because the ANN only re-
gards the control sequences sampled before simulating
the dynamic system.

With the changes made to the actuator speed, by mod-
ifying the time constant of the first order system rep-
resenting the actuator dynamics, changes in the per-
formance can be observed. With a more lenient score
threshold of 1.5σ, minimal changes can be observed in
the coverage for both models with the slower and the
faster actuators. However with stricter score thresh-
olds, the model with the slower actuator yields end
state samples that result in lower coverage than the
nominal, where the differences are the largest with the
score threshold of 2σ. The end states plots of sim-
ulations performed on the model with the slower ac-
tuators labelled according to the predicted scores are
shown in Figure 11. It can be observed that the reach-
able set is smaller compared to Figure 10, which can
be explained by how the actuators are slower hence the
movement of the quadrotor is relatively more limited in

a given time. However considering the distribution of
the scores among the end state points, minimal changes
can be observed compared to the nominal case in Fig-
ure 10.

With the changes in the vehicle mass, limited changes
in the coverage are observed with more lenient score
thresholds of 1.5σ and 2σ. With a stricter score thresh-
old of 2.5σ large reductions in the coverage can be
observed with the model with lighter mass. On the
other hand, the rejection rate with the model with
larger mass is comparable with that with the nomi-
nal model. The plots of the end states of the model
with 20% lighter mass labelled according to the pre-
dicted scores are shown in Figure 12. The lighter mass
enables the system to achieve states further away from
the initial hover condition, which results in a relatively
larger reachable sets. However the general shapes and
the distributions of the labelled scores are similar to
those with the nominal model.

Although deterioration of the coverage is observed
when the pruning system is integrated to off-nominal
systems, it can be seen that with an appropriate choice
of threshold for the predicted score the ANN can be
used to prune trajectories as intended. This can be
seen from the relatively high values of coverage shown
in Table 4, which represents the ratio of the end states
samples rejected by the ANN lying inside the convex
hull formed with the accepted samples. For example
with the score threshold of 2σ, the ANN is able to
reduce the number of simulation using off-nominal sys-
tems by about 50% while at least 95% of the rejected
samples lie within the convex hull formed by the re-
maining samples. The model parameter changes con-
sidered are 3 times slower actuators, 3 times faster ac-
tuators, 20% smaller vehicle mass and 20% larger mass
than the nominal quadrotor drone model parameters
shown in Table 1.

5 Conclusions
This paper presents a novel approach for integrating
ANNs to reduce the number of simulations for flight
envelope prediction of a quadrotor drone model using
MCS by pruning randomly sampled control sequences.
This is performed by training ANNs with supervised
learning to map a randomly sampled control sequence
to a scalar value that describes how close the corre-
sponding trajectory leads towards the reference reach-
able set boundary, described as an α-shape or a MPDF.
An LSTM network trained with a MPDF as its refer-
ence reachable set shows a high performance in iden-
tifying which sampled control sequences lead the dy-
namic model towards the boundary, which allows to
reduce the number of numerical simulations.

The ANN can be integrated in a MCS-based reacha-
bility analysis with different values of thresholds which
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(a) (b)

(c) (d)

Figure 11: 10000 MCS end state samples of a longitudinal quadrotor drone with parameters in Table 1 except
the time constant being 1/10, labelled according to the score predicted by LSTM network trained with a MPDF
as its reference reachable set shown in V − γ− θ and γ− θ− q slices. The points are labelled ‘bad’ in red, ‘good’
in blue and ‘excellent’ in green.
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(a) (b)

(c) (d)

Figure 12: 10000 MCS end state samples of a longitudinal quadrotor drone with parameters in Table 1 except
the vehicle mass being 20% lighter, labelled according to the score predicted by LSTM network trained with a
MPDF as its reference reachable set shown in V − γ − θ and γ − θ − q slices. The points are labelled ‘bad’ in
red, ‘good’ in blue and ‘excellent’ in green.
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Table 6: Performance analysis result of the trained ANN in pruning control sequence samples to construct the
reachable set boundary of a quadrotor drone with model parameter changes compared to the nominal model.

Simulated system Score threshold Rejection rate Coverage of convex hull
V − γ − θ γ − θ − q

Nominal 1.5σ 22.78 0.993 0.998
Nominal 2σ 49.71 0.971 0.979
Nominal 2.5σ 75.04 0.892 0.89
3 times slower actuator 1.5σ 22.33 0.99 0.994
3 times slower actuator 2σ 49.42 0.947 0.948
3 times slower actuator 2.5σ 74.56 0.906 0.876
3 times faster actuator 1.5σ 22.79 0.995 0.997
3 times faster actuator 2σ 49.63 0.975 0.99
3 times faster actuator 2.5σ 74.13 0.929 0.886
20% smaller mass 1.5σ 23.09 0.979 0.993
20% smaller mass 2σ 49.92 0.966 0.981
20% smaller mass 2.5σ 74.33 0.635 0.777
20% larger mass 1.5σ 22.51 0.995 0.996
20% larger mass 2σ 50.03 0.98 0.98
20% larger mass 2.5σ 75.39 0.903 0.896

controls how much of the randomly sampled control
sequences are rejected. Experiments show that with
the threshold set to 2σ, the number of simulations to
estimate the reachable set boundary can be reduced by
approximately 50%, in which at most about 97% of the
rejected end states lie within the convex hull formed
with the accepted samples in three-dimensional pro-
jections of the state space. This suggests that at most
97% of the rejected samples do not contribute towards
estimating the reachable set boundary. Further reduc-
tion in the numerical simulation can be achieved with
a stricter threshold of 2.5σ resulting in a rejection rate
of 75%, which comes at a cost of rejecting more of po-
tentially valuable samples for boundary estimation.

The trained ANN shows a comparable performance
when adapted to MCS on dynamic models with model
parameter changes. These changes include three times
slower and three times faster actuator dynamics, con-
trolled by the time constant τ of the actuator dynamics
modelled as first order systems, and 20% smaller and
20% larger vehicle mass. With all considered model
parameter changes, the integrated ANN is able to re-
ject about 50% of numerical simulations while at least
95% of the rejected end states lie within the convex
hull formed with the accepted samples in two of the
three-dimensional projections of the state space. This
suggests that the ANN trained with this approach may
also be effective in reducing the number of MCS sam-
ples to estimate the reachability set boundary of off-
nominal dynamic systems with differences in the model
parameters.

To draw conclusions about the effectiveness of this
approach to reduce computation time for MCS reacha-
bility analysis, further research is recommended includ-
ing an in-depth analysis of the computation cost com-
parison between a numerical simulation and an analysis
of the LSTM network for a given sampled control se-

quence, as well as application of this method to more
complex quadrotor drone dynamic models which mod-
els the dynamics of the system with higher accuracy.
Further research for more optimal ANN architectures
and training procedures is also recommended to further
study the usefulness of the novel approach.
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8
Conclusions and recommendations

This thesis was aimed to contribute towards enhancing the safety of multi-rotor drone oper-
ations by improving existing methods of flight envelope prediction using MCS by integrating
ANN. The research objective and the corresponding research questions to be answered were
established and discussed in detail in Chapter 2. The results presented in the scientific paper
in Part II were made with the aim to answer these research questions, in which the conclusions
and the list of recommendations are summarised and discussed in this chapter.

8.1. Conclusions
First, the research questions presented in Chapter 2 are revisited and assessed to what extent
they have been answered. The first question was regarding the ways to represent the theoret-
ical reachable set where there is no analytical solution for. Two methods of representing the
reachable sets were considered using MCS end state samples, which are the outer contour repre-
sented as α-shapes and MPDF estimated using KDE. Both methods had their own advantages
and disadvantages, for example α-shape being able to construct reachable set boundaries with
relatively less samples, but were restricted in two-dimensional and three-dimensional spaces.
On the other hand MPDF is able to quantitatively describe how safe or unsafe a given state
is, while also suffering from the curse of dimensionality due to it being defined on a grid.
Both these representations of the reachable sets were able to describe the reachable sets with
comparable accuracy as the level set method, a well established reachability analysis method,
which results are shown in Appendix B. Although direct comparison to the level set method is
not possible with the six-dimensional longitudinal quadrotor drone system including actuator
dynamics, the MCS-based approach for reachability analysis is most likely also valid for higher
dimensional spaces.

The second question was regarding the measures that could be used to distinguish trajecto-
ries that reach further towards the boundary of the reachable set. In this research the ‘score’,
defined using either of the reachable set representation methods, was employed as this measure.
With α-shape references the trajectories were labelled as a function of the euclidean distances
from the end state to the reference boundary and to the initial state, rewarding for reaching
further towards the boundary and penalising for staying close to the initial state. With the
MPDF reachable set representations, the degree of membership was directly used as the score.
Both scores showed the desired characteristic that a trajectory with a better score tend to be
positioned further into the state space from the initial state.

The third question was considering the type of machine learning technique suitable for
predicting the relative value of a sampled control sequence in estimating the reachable set
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boundary. Through a literature review, ANN was deemed to have a high potential in achieving
this where two variations were considered in this research, FFNN and networks containing
LSTM cells. Through experiments it was shown that the trained ANNs were able to accurately
predict the value of the sampled control sequence, which were defined as the derived score.
While LSTM is slower than FFNN, it presented higher accuracy due to its recurrent nature.
Furthermore, LSTM has added benefit that it can be used with input sequences of various
lengths, while FFNN is only compatible with input sequences with the same lengths as they
need to be flattened first. Therefore there exists a trade-off between implementing LSTM for
higher accuracy against implementing FFNN which is less accurate and less flexible but has
both faster training and computation times.

The fourth question is regarding the overall computational complexity and the computa-
tional time saved through integrating the ANN to prune input samples for MCS-based reacha-
bility analysis. This highly depends on the implementations of the numerical integration and
the ANN computation, as well as the level of complexity of the considered dynamic model. For
example implementation of ANN to reachability analysis of a simple system like the double in-
tegrator system does not benefit in terms of computational time, as the numerical simulations
are less computationally expensive which can be performed with larger time steps. However
the inputs of the ANN are the commanded control sequence which its sampling rate can be
determined arbitrarily, while the time step for a numerical integration of a dynamic system
is bounded to ensure stability. Therefore it can be argued that for more complex systems
the implementation of ANN may result in an increased efficiency of MCS-sampling, as it was
shown that the ANN is able to accurately prune control sequences using a simple longitudinal
quadrotor drone model. In order to fully answer this question, an in-depth analysis of the costs
of computation actions in question is essential as well as a study on how these change with an
increase in complexity, for example the number of dimension, of the dynamic system.

The research questions discussed were derived from the main research question, which reflects
the main motivation of this research. The research question is restated below:

Main research question
“Is it possible to reduce the number of required sample trajectories to predict flight
envelopes using the MCS approach by integrating machine learning techniques?”

It was shown that it is indeed possible to train an ANN to predict whether or not for a
given control sequence the corresponding end state reaches near the reachable set boundary,
which can be used to reduce the number of numerical simulations to estimate the reachable
set boundary. It was also shown that the trained ANN is still effective in pruning control
sequences for off-nominal dynamic systems, with changes to the system parameters compared
to the nominal system used for training the ANN. Furthermore an argument was made that this
approach for reachability analysis is also able to reduce the computational time in collecting
end state samples to estimate reachable set boundaries.
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8.2. Discussions and recommendations
A list of recommendations is presented that are aimed to further realise the research objective
presented in Chapter 1. These are derived through analysing the limitations of the proposed
approach and by considering the necessary steps to make the novel approach more useful in
real life applications.

Benefits and limitations of the proposed approach
The core idea of the proposed approach is that the each numerical simulation performed for
a MCS-based reachability analyses varies in its usefulness when constructing the boundary of
the reachable set, described by the scores labelled on each of the simulation samples. Which
the proposed approach uses this idea to circumvent performing numerical simulations that are
likely to be of less importance when estimating the reachable set boundary, by associating each
sampled control sequence to the scores using ANNs.

The main added benefit of this approach over purely probabilistic approach, for example
by Yin et al. [14] and Sun and de Visser [15], is that information about the usefulness of the
sample can be derived from the control sequence before performing computationally expensive
numerical simulations. This information can be used as a reference to ignore a large portion
of simulations as presented in this research, or the scores themselves may also be used to
reconstruct the reachable set estimation. With the reachable set described as a MPDF, the
resultant end state and the predicted score (the membership function) of the control sequence
together form an input-output pair of the MPDF itself. This may for example be used to
adaptively estimate the probabilistic reachable set represented as a MPDF.

Another benefit is by training an ANN using the MCS results of a specific dynamic system,
reduction in the number of simulations can be achieved which is specific to that system opposing
the purely probabilistic approach which reduces the number of simulations in a more general
way. This is motivated by how a specific control sequence can have largely different scores
depending on the dynamic system, as observed between the double integrator problem and the
inverted pendulum problem shown in Appendix B. Furthermore the ANNs have high flexibility
in its input and output formats, compatible with for example a non-bang-bang control which
may be more optimal than bang-bang controls for nonlinear systems.

On the other hand, the proposed approach has several limitations. First, the achieved re-
duction in computation time and complexity from the integration of an ANN may not be
as significant since ANNs can also be relatively computationally expensive. Simply storing
sequences with relatively good scores may be sufficient to reduce the number of simulations.
Further development of the proposed approach is recommended to benefit from the prediction
power of the ANN, for example for an adaptive reachability analysis where the dynamics of
the system changes over time.

Another limitation is that this approach requires a step to generate the reachable set before
labelling end state samples. This requires an accurate knowledge of the dynamic model as well
as time and resources to collect simulation samples and to train the ANN. The resultant
ANN may be used in the future reachability analyses on the same or similar dynamic systems,
however this approach cannot be directly applied to an unknown system.

Finally, the expected outcome of employing the proposed framework is a more compact end
state samples that lie near the reachable set of the dynamic system. However these end state
samples need to be synthesised as a continuous set to formulate the flight envelope which can
be used for flight envelope protection, which is also a challenging process. A MPDF derived
from this compact data set cannot be used as an indication of the safety of the system, as
the samples in the regions likely to be reached are eliminated making them relatively ‘unsafe’.
Outer contours may be constructed with for example α-shapes, however there are risks of
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under- or overestimating the reachable set which are difficult to identify when the theoretical
reachable set is unknown.

The framework of MCS-based reachability analysis also has unsolved problems. One significant
element is the choice of the time horizon. With a time horizon that is too short the correspond-
ing reachable set may only cover a very small range around the a-priori known safe set. On
the other hand with a time horizon that is too long the reachable set becomes so large that
no meaningful knowledge about the safety of the system can be derived, especially for highly
manoeuvrable systems like the quadrotor drones. Development of more systematic methods of
choosing an appropriate time horizon to determine the safe flight envelope of a given system
is of high importance, yet to this date not a large body of literature can be found.

Another crucial aspect to consider is the validity of treating flight envelopes as probabilistic
sets. Employing the MCS is performed by randomly generating a control sequence, which is
not how an actual control sequence is commended to the systems. This means that there
exist control sequences that are technically possible but are almost never performed during
flight. In order to derive an accurate probabilistic safety of a given state during flight, a
more sophisticated sampling strategy may need to be developed that resembles the probability
distribution of control sequences performed during flight either by a flight controller or a pilot.

Optimising the current approach
There are different aspects in the current approach which its efficiency and accuracy in reducing
simulation samples in MCS can be improved, but could not be fully addressed due to the time
constraint. One of them is the optimisation of ANN architecture design and training processes.
In this research the main design choice considered in the architecture design is whether or not
the ANN has a recurrent characteristic, while comparatively less attention was paid on the
effects of the choices of hyper-parameters. These include but are not limited to the number
of neurons, number of hidden layers and the choice of activation functions. Research on the
effects of design choices of the training process such as the loss function, number of epochs and
different regularisation methods are also recommended.

Another aspect that may be optimised is the definition of the scores labelled on each end
state. This process has a great amount of freedom from the choice of the representation method
of the reachable set to choices on which elements of the end state to reward or penalise. It may
also possible to define a score metric that considers multiple representations of the reachable
sets. For example in a four dimensional state space, the reachable set may be constructed
from MCS samples as outer contours in two three-dimensional projections, where the score of
an end state can be derived as the weighted average of the distances of the end state to the
boundaries in these two projections.

Further analysis of the usefulness of the proposed approach
The usefulness of the proposed approach is presented in the scientific paper, which may be
verified further by applying it to more sophisticated systems. The dynamic model of the
quadrotor considered in this research is simplistic, while more complex models with for example
look up tables are available with higher accuracy. Application of the proposed approach to
such systems is recommended to study the effectiveness of the proposed approach.

The effect of the stochasticity on the performance of the proposed approach may also
be of high value for applications in real life situations. Introduction of stochasticity in this
approach is relatively straightforward, for example adding noise to the states during numerical
simulations and to add noise to model parameters in every simulation.

It is expected that with more complex dynamic systems the training of ANN becomes more
challenging to maintain certain level of accuracy. This may require more sophisticated ANN
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architectures, increased size of training data sets and longer training times. The extent of these
required changes compared to the increase in the complexity of the model is recommended to
be studied to further analyse the usefulness of the novel approach.

Extension of the approach
There are a number of ways which the proposed approach can be extended upon to further
realise the research objective. One way is to develop a training scheme that can be performed
on an already trained ANN. This can be used for example to speed up the training process of
the ANN using dynamic systems with similar characteristics as the nominal system. Another
extension to the ANN training process is to also consider model parameters of the dynamic
system as an input for the ANN. This means that the ANN predicts the value of a given
random control sequence sample for estimating the reachable set boundary of the dynamic
system with specific model parameters. This ANN can be used for different dynamic systems,
for example different quadrotor drone models or different failure modes of the system.

One way to effectively use the benefits brought by the novel approach is to develop a way
to adaptively modify the reachable set representation as new simulations are made. If the
basic knowledge of the reachable set, such as its general shape, an accurate representation of
the reachable set may be estimated quickly by combining the a-priori known information and
the compact set of end states collected through the proposed approach. In this process the
predicted score of the system may also be used to reevaluate the reachable set. For example
with an ANN predicting the score using a MPDF, which is the membership function of the
MPDF, the new end state sample and its score together form an input-output pair of the
MPDF itself.
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A
Documentations

The MCS-based reachability analysis and the ANN training were implemented in Python and
MATLAB. In this chapter the implementations are briefly described.

A.1. Monte-Carlo simulation implementations
save_random_sequence.py
Generates and saves random sequences consisting of 0 and 1, corresponding to minimum and
maximum commanded input to be used for MCS. Parameter pc can be changed to control the
extremeness of generated control sequences.

QD_hov.py
The main code for numerically simulating quadrotor drone models based on the simulation
environment developed by Jasper van Beers. Within the code, the dynamic model, equations
of motion and actuator dynamics are defined. This code takes in randomly generated sequences
from save_random_sequence.py, performs numerical integration with each of the sequences
and saves the final states reached after each simulation. Similar codes named DI.py and IP.py
were used to simulate double integrator and inverted pendulum systems respectively.

A.2. Set construction and score assignment implementation
genAlphaShape.m
Using the end states data, α-shapes are created in three-dimensional projections of the state
space as alphaShape objects using the alphaShape function in MATLAB. This code adjusts
the parameter α as a minimum value where a specified ratio of the validation end states lie
within the resultant α-shape.

save_alphashape.m
The genAlphaShape.m is called to create and save α-shapes. The α-shapes are saved as
alphaShape objects.

save_KDE.m
Using the end state data, MPDF are created on a gridded four-dimensional space using the
mvksdensity function in MATLAB. The MPDF is saved as a multi-dimensional grid and a
multi-dimensional array of the MPDF values of the corresponding grid points.
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save_alpha_score.m
This code regards the end state of a trajectory and assigns the score using the reference α-shape
to the corresponding control sequence, using the equation shown in the scientific paper.

save_KDE_score.m
This code regards the end state of a trajectory and assigns the score using the reference MPDF
to the corresponding control sequence, using the equation shown in the scientific paper.

LS_Two_dcart.m
The code to compute the reachable set as a level set of the double integrator (2D cart), using the
toolbox developed by Prashant Solanki based on the toolbox by Mitchell. Similarly, LS_IP.m
generates the level set of the inverted pendulum system.

A.3. ANN training and trajectory pruning
train_score.py
The main code to perform ANN training, where the ANNs are constructed and trained using
Keras [63]. The ANN model is constructed in the class NeuralNetClass.py and the training
data is loaded and pre-processed with the class TrainingDataClass.py. Each trained ANN
is saved as a Keras Model class together with model description, training data description and
a log of loss function after each epoch.

analyse_performance.py
The code to analyse the performance of the trained ANN. This code analyses the mean and
the standard deviation of the loss function (squared error) and the cross correlation using the
validation data set. This code also creates plots of the loss function histories.

NN_filter_QDhov.py
The code that integrates the trained ANN to MCS-based reachability analysis. A random
sequence is generated then fed to the imported trained ANN, which then is numerically sim-
ulated using QD_hov.py. The end state samples are saved together with the predicted score.
By applying a threshold the code ignores randomly generated sequences with worse predicted
score than the threshold.



B
Additional results

B.1. Monte-Carlo simulation
Figure B.1 shows how the randomly sampled control sequence is converted to the actual control
of the quadrotor drone model with the effect of the actuator dynamics. It can be seen that for
the forward simulation the actual control starts from the trim speed shown with blue dotted
lines. On the other hand, with the reverse simulation the control at t = 0 is not necessarily at
trim as described in the main paper. However this ensures that the reverse trajectory can be
traced exactly forward in time with the actuator dynamic modelled with the same first order
system.

(a) (b)

Figure B.1: Actual control sequence of the quadrotor drone with actuator dynamics for (a) forward and (b)
reverse simulations, subject to the same reference control signal.

Figure B.2 shows the history of the states of a quadrotor drone simulation performed with a
randomly sampled control sequence. The states shown are those of the EOM of the quadrotor
drone Vx − Vz − θ − q, before being converted to the V − γ − θ − q space. The states reached
at the end are collected to form a point cloud, in which a continuous set can be derived which
serves as an estimation of the reachable set.

The numerical integration is performed using the 4th order Runge-Kutta scheme, where the
reference sequences have lengths of 100 where integration step is set as 15 times that resulting
in 1500 integration steps. This number is chosen by comparing the forward simulations of 0.15
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seconds with randomly sampled sequences and then performing reverse simulations from their
end states with the identical control sequence flipped in time, in which the reverse simulations
should end at the initial state. With larger integration steps the end state of the reverse
simulation yielded large deviations from the initial state of up to 10% of the largest deviation
observed in the trajectory in either of the four states. Same experiment was performed for
both the double integrator and the inverted pendulum problems, however the same number
of integration steps as the length of the control sequence yielded very small error between the
forward and the reverse trajectories.

(a) (b)

Figure B.2: State trajectory of a quadrotor drone model subject to a randomly sampled control sequence
from (a) forward and (b) reverse simulations.

B.2. Reference set construction
Figure B.3 shows a set of plots resulting from the MCS-based reachability analysis performed
on the double integrator system, presented in Chapter 7. The sampled end states and the
resultant reachable set estimations are verified and validated using the level set method and
the analytical solution. The reachable set of the double integrator system estimated using the
level set method is shown in Figure B.3(c), which presents the initial level set and propagated
level sets after 0.5, 1.0 and 1.5 seconds. Since the level set method is performed on a gridded
space, the initial set is not a point set but a very small continuous set formed by points on
the gridded space. It can be observed from Figure B.3(c) that the reachable set changes its
shape with increasing length of time horizon, not simply expanding in size about the origin like
in Figure B.3(b). This suggests that the different levels of contour obtained with the MPDF
cannot be used to interpolate nor extrapolate the reachable set with a different time horizon,
at least with the sampling strategy of the MCS used in this research.

Figure B.3(d) shows the MCS end state samples together with the contour of the analytical
solution at ϕ = 1. The contour fully encapsulates the end state samples, meaning that each
numerical simulation performed on the dynamic system yields an end state sample that is
strictly conservative. Furthermore, It can be observed that the contour is almost identical to
the convex hull shown in Figure B.3(a). For the double integrator system the MCS is able to
produce a reachable set boundary estimate with a comparable or even higher accuracy than
the level set method with the considered grid size.
Figures B.4, B.5 and B.6 show the MCS-based reachability analysis results of the inverted
pendulum system using α-shape with MCS samples, MPDF with MCS samples and the level
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(a) (b)

(c) (d)

Figure B.3: Representations of the reachable set of double integrator problem of time horizon of 1 second
using: (a) convex hull of MCS samples (b) MPDF isocontours of MCS samples (c) the level set method (d)

analytical solution

set method respectively. The initial set is relatively larger compared to Figure B.3(c), while
the MCS end states are sampled with simulations starting from the initial point at [0,0,π,0].
However it can be seen that the MCS end state point cloud forms a similar shape as the level
set.
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(a) (b)

(c) (d)

Figure B.4: Reachable set boundary estimated as an α-shape of MCS samples of the inverted pendulum
system with time horizon of 1 second.
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(a) (b)

(c) (d)

Figure B.5: Reachable set estimated MPDF of MCS samples of the inverted pendulum system with time
horizon of 1 second, visualised as isocontours.



B.2. Reference set construction 73

(a) (b)

(c) (d)

Figure B.6: Reachable set boundary estimated of MCS samples of the inverted pendulum system with time
horizon of 1 second using the level set method.
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B.3. Trajectory labelling

(a) (b)

Figure B.7: Verification result of the scoring system applied on the double integrator system using: (a)
α-shape reference set (b) MPDF reference set
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(a) (b)

(c) (d)

Figure B.8: Verification results of scores applied on the inverted pendulum system using α-shape reference
set in three-dimensional projections.
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(a) (b)

(c) (d)

Figure B.9: Verification results of scores applied on the inverted pendulum system using the MPDF
reference set shown in three-dimensional projections.
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B.4. Artificial neural network training
Tables B.1 and B.2 tabulate the performance results of ANNs trained for the double integra-
tor and the inverted pendulum systems respectively. The ANNs are trained with the same
methodology as the quadrotor drone, except with different numbers of epochs. The number of
epochs for the ANNS using the double integrator and the inverted pendulum systems are 50
and 100, respectively. The histories of loss functions during training of the ANNs are shown
in Figures B.10 and B.11. Highest correlation is observed with LSTMs trained with MPDF
reference sets, as also observed using the quadrotor drone system.

Table B.1: Performance analysis result of the ANNs trained to map the commanded control sequence to the
score of the corresponding end state of the double integrator system

ANN
type

Reference
set type

Projected
space

MSE
(relative to
score range)

std SE
(relative to
score range)

Correlation Score range

FFNN α-shape x1 − x2 2.58E-03 (0.3%) 4.02E-01 (39.7%) 0.56 [-0.013,1]
FFNN MPDF x1 − x2 1.85E-03(0.2%) 5.33E-02(5.4%) 0.99 [0.011,1]
LSTM α-shape x1 − x2 1.82E-03(0.2%) 5.76E-01(56.9%) 0.71 [-0.013,1]
LSTM MPDF x1 − x2 6.15E-04(0.1%) 1.19E-02(1.2%) 1.00 [0.011,1]

Table B.2: Performance analysis result of the ANNs trained to map the commanded control sequence to the
score of the corresponding end state of the inverted pendulum system

ANN
type

Reference
set type

Projected
space

MSE
(relative to
score range)

std SE
(relative to
score range)

Correlation Score range

FFNN α-shape x1 − x2 − x4 5.98E-04 (0.06%) 2.83E-03 (0.27%) 0.44 [-0.05,1]
FFNN α-shape x2 − x3 − x4 5.00E-04 (0.05%) 3.12E-03 (0.30%) 0.37 [-0.03,1]
FFNN MPDF x1 − x2 − x3 − x4 5.60E-03 (0.57%) 1.36E-02 (1.38%) 0.91 [0.01,1]
LSTM α-shape x1 − x2 − x4 4.75E-04 (0.05%) 3.99E-03 (0.38%) 0.37 [-0.05,1]
LSTM α-shape x2 − x3 − x4 3.53E-04 (0.03%) 3.19E-03 (0.31%) 0.47 [-0.03,1]
LSTM MPDF x1 − x2 − x3 − x4 2.89E-03(0.29%) 9.78E-03 (0.99%) 0.96 [0.01,1]
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(a) (b)

(c) (d)

Figure B.10: Histories of the loss functions of the trained ANNs after every epoch computed using the
training data set (orange) and the validation data set (blue). The ANN architectures are (a),(b): FFNN

(c),(d): LSTM. The reference sets are (a),(c): α-shape in x1 − x2 (b),(d): MPDF in x1 − x2.

(a) (b) (c)

(d) (e) (f)

Figure B.11: Histories of the loss functions of the trained ANNs after every epoch computed using the
training data set (orange) and the validation data set (blue). The ANN architectures are (a),(b),(c): FFNN
(d),(e),(f): LSTM. The reference sets are (a),(d): α-shape in x1 − x2 − x4 (b),(e): α-shape in x2 − x3 − x4

(c),(f): MPDF in x1 − x2 − x3 − x4.
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B.5. Trajectory pruning
Figure B.12 and B.13 show the pruning result of the LSTM network trained with MPDF
reference reachable sets of the double integrator and the inverted pendulum system. The same
categorisation thresholds for scores are applied as presented in the scientific paper.

It can be observed for the inverted pendulum system the edges of the point clouds are
classified as ‘bad’, with larger magnitudes of x1. This may be caused by the choice of pc = 0.001
being too high that has too much bias towards the corresponding regions in the state space. A
lower choice of pc may be more appropriate for the inverted pendulum, with relatively lower
complexity compared to the quadrotor drone, to ensure that the ‘safest’ region according to
the score is around the initial state.

Figure B.12: MCS result on the double integrator system pruned using a LSTM trained with MPDF
reference reachable set.
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(a) (b)

(c) (d)

Figure B.13: MCS result on the inverted pendulum system pruned using a LSTM trained with MPDF
reference reachable set, shown in three-dimensional projections.

B.6. Results for further discussions
Figure B.14 shows the pruning result of the MCS on the double integrator system using an ANN
trained for the inverted pendulum system. Although a large portion of the ‘Good’ samples
are near the reachable set boundary, most of the ‘Excellent’ samples are contained within the
set. Furthermore the most extreme regions of the reachable sets are labelled as ‘Bad’. This
suggests that a valuable trajectory in one system may not be as valuable in another dynamic
system, even though the inverted pendulum system is an extension of a double integrator (cart
on wheel) system. Hence the introduction of the scores labelled to the end states allows to
prune trajectories which a more general purely probabilistic approach cannot fully eliminate.

However it is also presented in the scientific paper that the trained network is able to prune
trajectories with comparable accuracy when subject to model parameter changes. This means
that there is a trade-off to be considered when applying this novel approach to off-nominal
systems, that if the changes in the model parameters are too large the ANNs may not be
useful in reducing MCS samples.

Figure B.15 shows 100 MCS end states of the double integrator system sampled with very high
pc of 0.8, in which duplicates of the constant inputs are rejected. A large portion of the end
states coincide with the analytically derived reachable set. This is a simple yet effective way
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to sample more extreme control sequences.
With the current implementation of the ANN integrated to MCS-based reachability analy-

sis, such simpler approaches may still be more efficient for a faster flight envelope estimation.
However the high prediction power and the flexibility of ANN may see advantages over them
when implementing this approach in for example a more adaptive manner or for more dynam-
ically complex systems.

Figure B.14: MCS result on the double integrator system pruned using a LSTM trained with MPDF
reference reachable set of the inverted pendulum system.

Figure B.15: 100 MCS end state samples using the double integrator problem with pc = 0.8 while duplicates
of the constant control sequences are ignored, shown together with the analytical reachable set.
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