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 Abstract 

Undesired, human behavior in public environments is an increasing issue in today’s 
society. The overload of security operators and law enforcement addresses the need for 
automatic detection of anomalous behavior. The EU-project ADABTS aims to facilitate 
the protection of EU citizens, property and infrastructure against threats of terrorism, 
crime and riots, by the automatic detection of abnormal human behaviour. At the 
Acoustics & Sonar department of TNO Defence and Safety, part of this problem is 
addressed by means of acoustical detection of anomalous events.  
     The approach is based on ‘scanning’ public environments by applying beamforming 
on the outputs of an acoustical sensor array and applying classification algorithms for 
detecting specific sources. In this Master’s thesis, an initial step is taken with the 
development of a real-time beamforming system that delivers required sound 
parameters used in sound classification. 
 
A number of different beamforming methods have been considered, differing in 
performance and computational complexity. Conventional methods like Delay and Sum 
(DAS), possibly combined with the use of static, frequency-invariant windows, lack 
spatial resolution at especially lower frequencies and are unable of coping with multiple 
interfering sources. Other methods provide an improved performance on the cost of 
increased complexity.  
   The method known as Minimum Variance Distortionless Response (MVDR) 
beamforming maintains a high spatial resolution at lower frequencies. Two main 
versions of this method are frequently used: a static (non-input-based) one and a 
dynamic (input-based) one. Static MVDR (SMVDR) is able to maintain performance at 
lower frequencies, but due to its static nature it does not add any extra value in multi-
source environments. Dynamic MVDR (DMVDR), on the other hand, is partly capable 
of filtering away undesired coherent interferers and also has an improved spatial 
response in single-source environments. Its computational complexity, still, is an 
important bottleneck.  
    The search for less intensive beamforming methods leads to a way of adaptive 
beamforming. Beamformers in which static beamforming and dynamic filtering are split 
in two different parts, are able to alleviate complexity. However, the need for adding 
extra elements to account for target-signal cancellation in multi-source environments 
destroys the computational advantages, making it unsuitable. 
 
The developed real-time application takes into account the intensive routines of 
DMVDR. Since the properties of the deployment platform are not known in advance, it 
is supplied with a mechanism for adapting to different and changing, available hardware 
resources such as available CPU-time, arithmetic units and memory. In this way it will 
always deliver the best possible solution, based on what the user is offering. Still, an 
extensive implementation process has led to a relatively fast execution of the algorithm.  
 The system is supplied with a user interface for controlling a number of parameters 
and for obtaining the first visual effects. Furthermore, it is provided with a user-friendly 
mechanism for calibrating the system for each possible deployment environment. 
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Samenvatting 

Ongewenst, menselijk gedrag in publieke omgevingen is een toenemend probleem in de 
huidige maatschappij. Overbelasting van operators van beveiligingscentrales en 
wetshandhavers vergroot de vraag naar automatische detectie van afwijkend gedrag. 
Het EU-project ADABTS heeft als doel burgers, eigendommen en infrastructuur te 
beschermen tegen terroristische acties, criminaliteit en rellen, door middel van 
automatische detectie van afwijkend, menselijk gedrag. Op de afdeling Akoestiek & 
Sonar van TNO Defensie en Veiligheid, wordt een deel van dit probleem behandeld 
door middel van akoestische detectie van afwijkende gebeurtenissen. 
    De aanpak is gebaseerd op het akoestisch ‘scannen’ van publieke omgevingen door 
het toepassen van bundelvorming op de uitgangen van een akoestisch sensor array en 
het toepassen van geluidclassificatie algoritmen voor de detectie van specifieke 
bronnen. In deze Master thesis wordt een eerste stap genomen met de ontwikkeling van 
een real-time bundelvormingssysteem dat de eerste vereiste parameters levert voor de 
uiteindelijke geluidclassificatie.  
 
Een aantal manieren van bundelvorming is beschouwd, elk verschillend in prestatie en 
rekencomplexiteit. De resolutie van standaard methoden als Delay and Sum (DAS), 
eventueel gecombineerd met een statisch, frequentie-invariant window, verslechtert 
vooral bij lagere frequenties. Bovendien presteren dergelijke methoden minder goed bij 
de aanwezigheid van een of meerdere stoorbronnen. Alternatieve methoden bieden 
voordelen ten koste van toenemende complexiteit. 
   Minimum Variance Distortionless Response (MVDR) bundelvorming behoudt een 
hoge resolutie bij lagere frequenties. Twee veelgebruikte versies van deze methode zijn 
een statische (niet input-afhankelijke) en dynamische (input-afhankelijke) versie. Static 
MVDR (SMVDR) behoudt de prestatie van conventionele bundelvormers bij hogere 
frequenties, ook bij lagere frequenties. Door de onafhankelijkheid van sensor input 
levert de methode echter geen toegevoegde waarde bij de aanwezigheid van 
stoorbronnen. Dynamic MVDR (DMVDR) is deels in staat om coherente stoorbronnen 
weg te filteren en heeft standaard een hogere resolutie bij de aanwezigheid van slechts 
één bron. De rekenintensiteit is echter iets waar rekening mee gehouden moet worden. 
    De zoektocht naar een minder complex bundelvormingsalgoritme leidt tot adaptieve 
bundelvorming. De bundelvormer wordt in dit geval gesplitst in een statische 
bundelvormer en een adaptief filter om stoorbronnen en ruis weg te filteren om 
zodoende de complexiteit te verlagen. Echter, de maatregelen die dienen te worden 
genomen om het wegfilteren van het gewenste bronsignaal te voorkomen, hebben een 
dusdanig negatief effect op de rekencomplexiteit dat dit algoritme geen toegevoegde 
waarde levert. 
 
Het ontwikkelde real-time systeem houdt rekening met de rekenintensieve routines van 
DMVDR. Omdat de eigenschappen van het platform van het systeem van tevoren nog 
niet bekend zijn, is het voorzien van een mechanisme dat zich aanpast aan verschillende 
en veranderende, beschikbare hardware voorzieningen zoals beschikbare CPU-tijd, 
rekeneenheden en geheugen. Op deze manier levert het systeem altijd de best mogelijke 
oplossing, afhankelijk van wat de gebruiker aanbiedt. Ondanks dit, heeft een uitgebreid 
implementatieproces geleid tot een relatief snel en efficiënt algoritme.  
     De applicatie is voorzien van een gebruikersinterface voor het instellen van een 
aantal parameters en voor de weergave van de eerste visuele effecten. Bovendien is een 
gebruiksvriendelijk mechanisme toegevoegd voor de kalibratie van het systeem in 
iedere mogelijke omgeving.  
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Nomenclature 

Symbols 
 

(.)f   Frequency-domain representation if not clear from context 
(.)t   Time-domain representation if not clear from context 
(.)H    Complex conjugate transpose 
(.)T   Transpose 
(.)*

   Complex conjugate 
|.|    Absolute value 
||.||    Euclidian norm 
0M    Zero-vector of length M 
an    Attenuation between source and sensor n 
B    Number of beams 
B    Blocking matrix 
Bf    Blocking matrix at frequency index f 
c Speed of sound in [m/s] 
c Constraint vector 
C Constraint matrix 
Cf Constraint matrix at frequency index f 
d    Inter-sensor distance in [m] 
e    Noise plus interference 
ê    Estimated noise plus interference 
E{.}   Expectation operator 
f Response vector 
F Number of frequencies 
Fc Centre frequency in [Hz] of frequency band to which beamforming is applied 
Fl Minimum allowed frequency in [Hz] of signal 
Fh Maximum allowed frequency in [Hz] of signal 
FN Nyquist frequency in [Hz] 
Fs    Sampling frequency in [Hz] 
FT    Source/target frequency in [Hz] 
J    Cost function 
k    Frame index 
K    Constant norm of NCAF filter 
L    Filter length 
m    Discrete time index 
n=1..N  Number of sensors 
p Proportion of centre frequency defining difference between centre frequency 

and lowest frequency of a frequency bin. 
P    Power 
Q    Eigenvector matrix 
rex    Correlation between scalar e and vector x 
r(t)   Continuous-time source signal at time t 
r[m] Discrete-time source signal at time sample m 
ř[m] Estimated, discrete-time source signal at time sample m 
Rxx   Signal autocorrelation matrix between sensors 
Ruu   Noise autocorrelation matrix between sensors 
s Frequency-domain source signal 
ŝ Estimated frequency-domain source signal 
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ŝf Estimated frequency-domain source signal at frequency index f 
sc,f   Output vector of constrained FBF at frequency index f containing all sensors 
sb,f Output vector of unconstrained ANC at frequency index f containing all 

sensors 
Ts    Sampling period in [s] 
vn(t)   Continuous-time noise at sensor n at time t 
v    Gradient vector or frequency-domain noise vector containing all sensors  

    Estimated gradient vector 
wl    Filter coefficient of tap l 
w    Weight/filter vector in time or frequency domain 
wc,f   Constrained weight/filter vector at frequency index f containing all sensors  
wu,f   Unconstrained weight/filter vector at frequency index f containing all sensors 
xn(t)   Continuous-time signal at sensor n at time t 
xn[m]  Discrete-time signal at sensor n at time sample m 
x    Frequency-domain signal containing all sensors 
zf    Output vector of BM at frequency index f containing all sensors 
z-L 

   Delay of L samples 
α    Filter adaptation constant 
αn    Filter weight of sensor n 
ГVnVp(e

jΩ) Noise coherence between sensor n and p at frequency F = ΩFs 

ГVV Noise coherence matrix 
δ (t)   Value of Dirac-function at time t 
ε     Error signal 
θ0    Azimuth viewing angle in [°] perpendicular to array axis 
θs    Azimuth source angle in [°] perpendicular to array axis 
λ    Lagrange multiplier; eigenvalue or wavelength, depending on context 
Λ    Eigenvalue matrix 
µ    Constant 
ξ Phase shift for look direction 
ς Phase shift for source direction 
τ    Time delay constant 
φn Lower coefficient limit of CCAF filter 

0φ    Elevation viewing angle in [°] perpendicular to array axis 

sφ    Elevation source angle in [°] perpendicular to array axis 

ψn Upper coefficient limit of CCAF filter 
 
Abbreviations 
 
ABM  Adaptive Blocking Matrix 
ADABTS Automatic Detection of Abnormal Behaviour and Threats in crowded Spaces 
AGSC   Adaptive Generalized Sidelobe Canceller 
ALU   Arithmetic Logic Unit 
ANC   Adaptive Noise Canceller 
BM   Blocking Matrix 
CCAF  Coefficient-constrained Adaptive Filter 
CMMSE Constrained Minimum Mean Square Error 
CMSINR Constrained Maximum Signal to Interference plus Noise Ratio 
CPU   Central Processing Unit 
CUDA  Compute Unified Device Architecture 
DAS   Delay and Sum 
DCT   Discrete Cosine Transform 
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DFT   Discrete Fourier Transform 
DI    Directivity Index 
DMVDR Dynamic Minimum Variance Distortionless Response 
FBF   Fixed Beamformer 
FDAF  Frequency-domain Adaptive Filter 
FFT   Fast Fourier Transform 
FPGA  Field Programmable Gate Array 
GCC   GNU C Compiler 
GJBF  Griffiths-Jim Beamformer 
GPU   Graphical Processing Unit 
GSC   Generalized Sidelobe Canceller 
IFFT   Inverse Fast Fourier Transform 
LCMV  Linear Constraint Minimum Variance 
LE   Logic Element 
LMS   Least Mean Squares 
MFCC  Mel-frequency Cepstral Coefficient 
MIC   Multiple Input Canceller 
MMSE  Minimum Mean Square Error 
MSE   Mean Square Error 
MVDR  Minimum Variance Distortionless Response 
NCAF  Norm-constrained Adaptive Filter 
NLMS  Normalized Least Mean Squares 
PC   Personal Computer 
PSD   Power Spectral Density 
RMS   Root-Mean-Square 
SGD   Steepest Gradient Descent 
SMVDR Static Minimum Variance Distortionless Response 
ULA   Uniform Linear Array 
WNG  White Noise Gain 
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1 Introduction 

1.1 Background 

The ADABTS project, started in 2008, tries to address the increasing need for the 
protection of citizens and infrastructure against threats of terrorism and crime. Due to 
the increase of terrorism and aggression in general, security operators and law 
enforcement experience a growing inability of ensuring the safety of our society. Also 
verbal aggression in soccer stadiums is becoming an increasingly important issue 
nowadays. The ADABTS project, which stands for Automatic Detection of Abnormal 
Behavior and Threats in crowded Spaces, aims to automatically detect anomalous, 
human behaviour. The desired strength of the project is achieved by combining the 
added value of multiple audio-visual disciplines such as emotion and movement 
detection (video) as well as the detection of anomalous sounds (audio) such as breaking 
glass, gun shots and screaming.  

1.2 Goal 

The Acoustics & Sonar department of TNO Defence and Safety is involved in the 
acoustical part of the ADABTS project. Goal is to automatically detect specific, pre-
defined, anomalous sounds. This Master’s thesis forms the initial step by providing an 
initial set of acoustical parameters for (i) providing initial operator support and (ii) 
supporting the application of sound classification algorithms, by means of beamforming 
and parameter generation. The aim of this graduation project therefore can be defined 
as: 
 
“Developing a real-time, portable, multi-beamforming system, capable of delivering 
sound classification parameters and preliminary operator support in public 
environments.”  
 
This goal can be specified with regard to some definitions and required parameters. The 
aim is to continuously obtain a complete acoustical image of the environment the 
system is deployed in. This means that a number of acoustical beams have to be created, 
as depicted in Figure 1-1, covering a complete 2D-grid in real-time. Real-time in this 
sense is defined as: 
 
Real-time: the ability of the system to keep up with all incoming data without the build-
up of an increasing input-output delay and with a maximum average input-output delay 
of 500 [ms]. 
 
The following, pre-selected, sound parameters have to be generated: 
  

- Mel-frequency Cepstral Coefficients (MFCCs). 
 - Pitch frequencies. 

- Root Mean Square-values (RMS-values). 
 

These values have to be generated for each constructed beam. The easiest way of 
computing these parameters is by using the frequency domain representation of the 
signal. This means all beams are required to be (transformed to) a frequency domain 
representation. Appendix E describes the way in which the parameters are computed. 
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Furthermore, a requirement is that the user is able to select one specific 2D-point in 
the grid to which the user can listen, meaning that for this particular point the complete 
audio signal has to be reconstructed in time domain and played on the platform. 

 
 

 
 

Figure 1-1 Overview of an acoustical cross-array constructing beams for covering the source surface. 

 
In the final system, the purpose is to make use of a 2D-cross array which is already 
present. Since the array is two-dimensional, only a surface can be scanned instead of a 
complete 3D-space, which must be taken into account in positioning. The array contains 
24 equidistant microphones with 4 side branches, each consisting of 2 microphones (see 
appendix A) adding up to a total of 32 microphones. The microphones of the two main, 
linear branches are located at a distance of 0.13 [m] from each other. The array is 
supplied with a NIOS II development board connected to an Altera Stratix II FPGA 
(EP2S60F672C3N). The array contains 16 AD-converters, each connected to two 
microphones, which read out the 24-bit samples at a rate of 10 [kHz]. The FPGA 
buffers the data to packets of 10 [ms] after which the NIOS II board sends them over 
Ethernet to a connected PC. At the PC-side, an interface is present that simply writes all 
received characters to a file. A timeserver running on the PC takes care of 
synchronizing the array with the PC.  
 
Because of the early start of the acoustical part of the total ADABTS project, not much 
is known about the final deployment platform yet. The only thing known is that the 
final system will be a non-real-time, windows-based, 32-bit system on which other 
parties may run their application or at least connect to. This must be born in mind. 
Further, interest of other companies outside the scope of this project gives reason for 
using this acoustical part of the ADABTS project as a stand-alone system. This will also 
be taken into account by means of providing dedicated user interfaces. 
 
Due to the presence of an FPGA at the array, this might be a considerable option as an 
implementation platform. An assessment must be made to estimate the required and 
available amount of logic and memory, but also implementation time and flexibility. 
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1.3 Approach 

The first step in the whole process is to carry out a study on beamforming. 
Beamforming is a thoroughly studied topic and is used in all kinds of different contexts. 
It is important to emphasize the fact that a large number of beams have to be 
constructed in a real-time fashion. A very advanced algorithm may yield impressive 
results but may not at all be suited in our context due to its computational complexity. 
The first part of this report will describe the principle of beamforming based on 
conventional Delay and Sum beamforming. Furthermore, other, more advanced 
algorithms will be described and evaluated based on their performance and complexity. 
Finally, after an evaluation, some constraints will be imposed derived from the 
particular structure of the array used in this project. 
 
The second part of this report will mainly focus on turning the requirements of the 
project and the results of the beamforming evaluation in a working, real-time solution. 
A system overview will be given, together with more detailed decisions and 
descriptions of implemented mechanisms. Attention will also be given to user 
interfacing and some optimizations used to speed up executions. 
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2 Beamforming 

Beamforming is a signal processing technique that provides the ability for a sensor 
(actuator) array to focus on a specific source (destination) with a particular angular 
position with respect to the array. The fundamental methodology is based on the 
constructive and destructive interference the array elements experience, caused by the 
difference in length of the propagation paths between the array elements and the source 
(destination), leading to spatial filtering. For this particular project, the case of a 
microphone array, focusing on a point in space from which specific sounds may be 
emitted, is considered. 

In essence we can distinguish two approaches for beamforming: one approach in 
which the spatial filtering coefficients are computed statically, in advance, regardless of 
the sensor signals and one that dynamically determines its coefficients by taking into 
account the sensor signals. 

First, the basic technique of beamforming will be discussed using the most general 
Delay and Sum-method. After this, other possible (dynamic) techniques are outlined 
and compared with each other after which a decision for a beamforming method is 
made, based on the properties of the different techniques and the requirements and 
constraints for this project. 

In the following discussion, a uniform linear array (ULA) is considered, consisting of 
a line of N equidistant microphones, unless other indicated. 

2.1 Static beamforming 

2.1.1 Delay and Sum 
Microphone arrays exploit the differences in travel times between source and 
microphones, as illustrated in Figure 2-1.  
 

 

Figure 2-1 Travel time difference representation. 
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The continuous-time signal received at sensor n=0,..,N-1 is a delayed and attenuated 
version of the original signal r(t) originated at the source, polluted by interference plus 
noise )(tvn : 

 
)()()( tvntratx nnn +−= τ   (2.1) 

 
In which an is the attenuation factor between the source and sensor n and time 
constantτ is defined as: 
 

( )sc
d θτ sin=  

 
[s] 

(2.2) 

 
With c the speed of sound in [m/s], d the distance between two neighbouring sensors in 
[m] andθ s the angle between the source and the array axis in [°], as illustrated in Figure 
2-1. 

 Assuming the signal is sampled with a sampling frequency of 
s

s T
F

1
=  such that for 

each sensor we can write )(][ snn mTxmx = , Figure 2-2 depicts the structure of a 

conventional beamformer in which nα are the beamformer weights per sensor n.  

 

+

 

Figure 2-2 General structure beamformer. 

 
This leads to the discrete-time output signal: 
 

∑
−

=

−−−=
1

0

)]1[(][][
N

n
nn nNtmxmr τδα(

 
 (2.3) 

 
The signals nx are time shifted, leading to a change in phase depending on the position 

of the sensor. Generalizing (2.3) with vector notation and translating time shifts in the 
time domain to phase shifts in the frequency domain, the frequency domain 
representation ][̂ks of frame k of the output signal ][̂mr  of frequency cF  is defined as:  
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][][ˆ kks H xw=   (2.4) 

 
With [18]: 
 

TNj
N

j ee ],,,[ )1(
110

ξξ ααα −−
−

−= Lw   (2.5) 

   
][][],,1[][ )1( kkseek TNjj vx += −−− ςς L   (2.6) 

   

)sin(
2

0θ
πξ

c
dFc=  

 (2.7) 

   

)sin(
2

s
T

c
dF

θ
π

ς =  
 (2.8) 

 
In which (.)T denotes the transpose and (.)H the complex conjugate transpose. nα is the 

amplitude weight for sensor n, cF is the centre frequency in [Hz] of the frequency band 

considered, TF the frequency in [Hz] of the source/target signal, 0θ represents the angle 

in [°] from which a maximum gain is obtained, i.e. the ‘look’ direction and sθ is the 

angle in [°] of the incoming waves from the source.  The frequency domain 
representation of the time domain source signal ][mr  at centre frequency cF is again 

defined by ][ks . 
 
 Based on above formulas, the total gain of the array in the look-direction 

equals∑
−

=

1

0

N

n
nα .  For the particular case of Delay and Sum (DAS) beamforming, the 

amplitude weights nα all equal
N
1

. In other words: only a phase shift per sensor is 

performed to focus on the look direction 0θ . Other beamforming methods, assign 

different amplitude weights to each sensor, leading to an improved spatial response. A 
few of those methods will be discussed in the coming paragraphs. 

2.1.1.1 Aliasing 
Beamforming is subject to two types of aliasing: frequency and spatial aliasing. 
Frequency aliasing occurs when the highest frequency Fh of the signal is larger than or 
equal to half the sample frequency Fs [21], such that this constraint to avoid frequency 
aliasing can be defined as: 
 

Nsh FFF =<
2
1

 
  

 
With FN  representing the Nyquist frequency.  

Spatial aliasing, on the other hand, occurs when the inter-sensor distance d is larger 
than half the minimum wavelength minλ that is evaluated, leading to the constraint [22]: 
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Figure 2-3 depicts the beam responses as polar plots of a two-sensor linear array with 
varying sensor distances in relation to the wavelength to show the influence of spatial 
aliasing. When obeying the spatial aliasing constraint (left image), no sidelobes appear. 
Asλ decreases with respect to the sensor distance, more and more sidelobes appear. 
 

 

Figure 2-3 Polar plots of spatial aliasing with different ratios of sensor distance and wavelength. 

2.1.1.2 Far-field assumption 
In the above elucidation, the source is considered to be in the ‘far-field’: the distance 
between source and array is large enough for assuming the waves impinging on the 
array to be planar opposed to spherical. This is, however, not per definition correct.  

Planar waves are waves of which the wave fronts are normal to the direction of 
propagation [12], so in this case parallel with respect to every sensor in the array. A 
point-source in essence generates spherical waves, but when it is located far enough 
from the array, the waves may be considered planar on arrival at the sensors [1]. 
Reconstructing the original signal by using only the angle between the source and the 
center of the array for every sensor then will suffice. 

Figure 2-4 gives a visual impression of this matter by means of an image of the 
wavefield of a sine source operating at different frequencies and at different distances 
from an array consisting of 12 equidistant (0.13 [m]) sensors. 
 
It is clear that a larger source-array distance and a lower source frequency will lead to 
less influence caused by the planar wave assumption. To finalize this discussion, the 
actual influence of the planar wave assumption on non-planar waves in terms of the 
spatial response is simulated and shown in Figure 2-5. The planar wave plot shows the 
response when the source is assumed to emit waves that are planar on arrival at the 
array. The spherical wave plot on its turn correctly assumes these waves to be spherical. 
 
Ignoring spatial aliasing, it is easy to see that for a small source-array distance the 
assumption will have a large effect on the spatial response at angles near the source 
direction. However, at the operating distance of 12-16 [m] applied in this concerning 
project, the effect is almost negligible.  

 A question that may arise is, why not assume all waves to be spherical? The 
problem in this case is that the source distances have to be known in advance, which is 
not per definition the case. Furthermore, it reduces generality when source distances for 
every look direction have to be incorporated per application site.   
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Figure 2-4 Wavefield of sine source. Upper left: F = 1000 [Hz], distance = 2,75 [m]. Upper right: F = 2000 
[Hz], distance = 2,75 [m]. Below: F = 1000 [Hz], distance = 15 [m].  

 

Figure 2-5 Responses different wave assumptions. Upper left: F = 750 [Hz], distance = 4 [m]. Upper right: 
F = 1500 [Hz], distance = 4 [m]. Lower left: F = 750 [Hz], distance = 15 [m]. Lower right: F = 
1500 [Hz], distance = 15 [m]. 
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2.1.1.3 Narrowband assumption 
As discussed in paragraph 2.1.1 Delay and Sum, a source signal can be spatially filtered 
by computing the weight coefficients based on phase shifting the sensor outputs. This 
phase shift is dependent on the frequency that is considered. A weight vector designed 
for signals with a frequency of, for example, 500 [Hz] will apply different, incorrect 
phase shifts for signals with a frequency of 2000 [Hz]. This would mean that for every 
frequency a different weight vector has to be computed. However, this would 
tremendously increase the computational complexity of the system and therefore is 
undoable. Still, we can limit the number of weight vectors by using one weight vector 
for a small range of frequencies; a narrowband frequency bin such that the introduced 
phase error is acceptable. 

To visualize this, again a plot is given (Figure 2-6); this time of the spatial response 
of an array with a source present at an angle of 40 [°] which exerts a signal of a 
particular frequency Fl. One spatial response is computed using a weight vector 
designed for the frequency Fl. The other response is computed using a weight vector 
designed for the centre frequency FC of the frequency bin to which the frequency Fl 

belongs, with the relation: 
 

pFFF ccl ×−=  [Hz] (2.9) 

 
With p begin a scalar value representing the proportion of the centre frequency that 
defines the bin width. Plots are given for p-values of 0.05 and 0.12.  

 

 

Figure 2-6 Influence of frequency bin widths on dislocated spatial response. Left: p = 0.05. Right: p = 0.10. 

It is clear the look direction is dislocated with a few degrees when using the same 
steering vector for multiple frequencies. This angle shift of the main beam of a signal 
with a centre frequency proportion of p, can be calculated directly by using the formula 
for the delay vector of the signal. Recall Eq. (2.4) to (2.8). In the formula forς , the 

value for the source/target frequency, TF , which represents lF in  (2.9), is replaced by 

cFp)1( − . By equating the steering phase shift and the source phase shift, the angle 

difference of the main beam for the frequency lF can be determined: 
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This leads to an angle difference for the main beam of: 
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(2.11) 

 
So the angle difference depends only on the focus angle and the proportion between 

the bin limits and the centre frequency of the bin. In practice this means that the 
absolute frequency bin width can be enlarged at higher frequencies. Furthermore, for 
smaller focus angles, wider and thus fewer bins can be used to calculate the weight 
vectors spanning the whole frequency range we would like to consider. This can save 
calculations when beamforming is performed in frequency domain. 
 Finally, to visualize the above, a plot is given that relates the proportion p to the 
beam angle deviation in [°] for focus angles of 0 to 90 [°]. 
 

 

Figure 2-7 Angle deviations of main beam related to p. 

2.1.2 Fixed windowing  
Opposed to the conventional DAS beamformer, methods exist to assign a value to the 
amplitude weight nα of sensor n. Some methods define weights dependent on 

frequency. Others, like the weight windows discussed in this paragraph, are frequency-
invariant. These fixed windows all have their advantages and disadvantages concerning 
main lobe width, sidelobe height etc. There is no window that possesses the best 
properties for all criteria. Therefore it is good practice to formulate some criteria to 
which the frequency response should be optimized for this particular application. 
 
As the project description already indicates, the system will be deployed in crowded 
spaces with interferers from many unknown directions. To this extent, the use of a 
spatial filter, possessing a frequency response containing very large attenuation at 
specific points with the additional disadvantage of having one or more larger sidelobes, 
is useless. As the position of strong interferers is unknown, noise preferably should be 
suppressed evenly in all directions, which makes the presence of deep nulls at random 
look directions useless. These degrees of filtering freedom can come to better use for 
overall suppression.  
 Furthermore, the desire for a small main lobe width still is present to achieve high 
spatial resolution. But as mentioned before, every optimization comes with its 
compromises, which requires finding a balance between these two properties. 
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Taking above requirements into consideration, three windowing methods are selected to 
compare with each other and with the DAS beamforming method. Figure 2-8 shows the 
frequency responses of a simulated beamformer using a sinc-, Dolph-Chebyshev- [19], 
Kaiser-Bessel- [23] and rectangular DAS-window at two frequencies. To obtain a better 
overview, the responses are plotted in a square plot instead of the circular, polar plot. 

 

Figure 2-8 Reponses of different fixed window beamformers. Left: F=1000 [Hz]. Right: F = 2500 [Hz]. (12  
sensors, look angle = 0 [°]). 

It is clear from the plots that applying the sinc-window does result in stronger 
attenuation of sources from other directions but also leads to a much wider main lobe. 
The Kaiser-window performs better than the rectangular DAS-window relating to lower 
sidelobes while having only a slightly larger main lobe width. The Dolph-Chebyshev-
window, finally, provides sidelobes with equal height and also only a slightly 
broadened main lobe, making it useful in this particular beamforming application. 
 

2.2 Dynamic beamforming 

The discussed methods of static beamforming do not take into account the sound 
environment. This makes them on the one hand computationally non-intensive because 
all spatial filter coefficients can be computed in advance. On the other hand, they lack 
performance referring to spatial resolution at lower frequencies due to a wider main 
lobe width and, in the presence of strong interferers, due to a constant spatial response. 
Dynamic beamforming aims to overcome both these shortcomings by using the sensor 
outputs in the computation of the weight vectors and therefore obtain time-varying 
(dynamic) filter responses. Because of the additional computational complexity 
involved with these methods; the necessity of a large number of beams and the real-
time requirement for the system, from now on a rough estimation of the computational 
complexity will be incorporated at the description of each method. This will be done by 
indicating the required number of real additions, multiplications and divisions per frame 
of samples. 

2.2.1 Minimum Variance Distortionless Response 
The proposed method(s) for frequency-invariant weight vector computation all possess 
an important disadvantage: the frequency responses at low frequencies (<1000 [Hz]1) 
experience significant deterioration compared to higher frequencies. A method that tries 
to intercept this problem is the Minimum Variance Distortionless Response (MVDR) 
beamforming method, also known as superdirective beamforming. This paragraph will 

                                                        
1 Frequency related to linear array structure used in the examples. 
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describe two types of MVDR beamforming: (input-based) dynamic MVDR (DMVDR) 
and (non-input-based) static MVDR (SMVDR). Though this paragraph is about 
dynamic beamforming, SMVDR is discussed to point out the strength of DMVDR and 
to use as a step-up to a robust version of DMVDR. Furthermore, in the case of 
processing limitations it could be used as a back-up method. 

2.2.1.1 Dynamic MVDR 
The MVDR beamformer aims to minimize the total output power, while maintaining 
unit gain in the look direction, leading to a constrained minimization problem. First, the 
equation for the weight coefficients will be derived in this paragraph after which the 
method will be compared to the conventional DAS beamforming method by means of 
simulating responses in frequency domain. 
 

 

Figure 2-9 System representation of the beamforming filter. 

To derive the expression to determine the constrained weight vector wc, first consider 
Figure 2-9 which is a simple representation of our system. In this figure, ][ˆ ks f  

represents the estimated signal of frame k and frequency index f from the position that is 
focused on. We would like to minimize the average output power in order to reduce the 
contributions of interferers and noise from other directions. To keep a better overview, 
frame and frequency indices are discarded from now on, without loss of generality. The 
total output power per frequency bin f and frame k is defined as: 
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 When minimizing this equation by setting the derivative equal to zero, we would 

obtain a vector wc containing only zeros, which in essence is correct as the output 
power is minimized. However, as mentioned before, MVDR beamforming is designated 
to preserve unit gain in the look direction. Hence, a constraint has to be included in the 
minimization problem. 

 
Let the constraint angle vector be defined as [3, 18] 

( )TNjj ee 00 )1(,1 ξξ −−−= Lc containing the phase shifts per sensor for the desired look 
direction. To obtain unit gain in the look direction, the constraint can be defined as [3]: 

 

1=c
H wc   (2.13) 

 
Leading to the final definition of the constrained minimization problem [18, 24]: 
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To solve the above equation, Lagrange multipliers are used. Lagrange multipliers are 
designated to perform a minimization, subject to one or several constraints. When 
including the constraints in the equation for the output power, we obtain [24]: 

 

)1( −+= c
H

c
H

c HP wcwRw
xx

λ   (2.15) 

 
In whichλ is the concerning Lagrange multiplier. When setting the derivative of (2.15) 
to wc equal to zero, the optimal, constrained weight vector is obtained: 
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λcRw
xx

1−−= Hc   (2.17) 

 

Using Eq. (2.13), both sides of Eq. (2.17) can be multiplied on the left with Hc after 

which the left-hand side can be set equal to 1. The equation forλ  then is obtained from 
Eq. (2.17). The final optimal value for the constrained weight vector is determined by 
substitution of λ  in Eq. (2.17) [3, 18, 24, 25]: 
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What is visible immediately is that the above equation needs the inverse of the 

autocorrelation matrix of the input signal. This involves two important issues. (i) The 
autocorrelation matrix must be full rank in order for inversion to be possible. As the 
input signal is not deterministic, an invertible autocorrelation matrix is not per 
definition guaranteed. (ii) Furthermore, one of the limitations of the beamforming array 
is that the used microphones are low-cost and unstable. The matrix inversion makes the 
spatial filter very sensitive to small fluctuations of the output signals of the 
microphones. This has a negative influence on the constructed output signal of the 
beamformer.  

 
These two issues may be a burden for making use of this autocorrelation matrix. Further 
in this report this possibility will be reconsidered. For now, an alternative, static 
solution of MVDR (SMVDR) will be described.  

2.2.1.2 Static MVDR 
With static MVDR (SMVDR), the autocorrelation matrix is constructed by making use 
of the noise coherence function of the sound field, which is defined as [3]: 
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In which the noise coherence between sensors n and p is defined as [3, 25]: 
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φ  represents the Power Spectral Density (PSD) of the noise coherence 

between sensors n and p for Ω = [0-2π]. As the pure noise signal is not present by itself 
and the accuracy of the microphones is still involved, instead of using Eq. (2.20), an 
assumption can be made about the environment. Assume measurements are performed 
in a diffuse noise field: all microphones receive equal-variance and random-phase noise 
signals from all directions [2]. The noise coherence between two sensors then can be 
written as [3, 4, 25]: 
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(2.21) 

 
In which ln,p

 is the distance between the sensors n and p in [m], c the speed of sound in 
[m/s] and sFF Ω= the frequency of interest in [Hz]. The definition of the weight vector 

then becomes [3, 4, 25]: 
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c         (2.22) 

 
The performance of the SMVDR beamformer can be compared with that of the 
traditional DAS beamformer, observing multiple different characteristics. One of them 
is the generated beampattern for a particular look direction. Figure 2-10 shows the 
responses for two frequencies for both methods simulating one (linear) branch of the 
used array, with 12 sensors placed as depicted in appendix A. 
 

Figure 2-10 Plots of reponses SMVDR and DS beamformer. Left: F=2000 [Hz]. Right: F=100 [Hz]. (12 
sensors, look angle = 0 [°]) 

It is clear that the SMVDR beamformer provides a better spatial response compared 
to the DAS beamformer: the highest sidelobes are attenuated more and especially at 
lower frequencies it keeps its performance, though still deteriorated.  
  
To gain a better overview of the advantages of the SMVDR beamformer over a 
continuous frequency range, Figure 2-11 provides more insight. The spatial responses 
for all frequencies in the range of F = 0-3000 [Hz] are computed and plotted with the 
colour indicating the attenuation.   
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Figure 2-11 Plots of attenuation over whole frequency range. Left: DAS beamformer. Right: SMVDR 
beamformer. (12 sensors, viewing angle = 0 [°]). 

From the plots it is clear that the SMVDR beamformer has a better resolution for 
frequencies below 1000 [Hz]. However, for frequencies below approximately 400 [Hz], 
a highly distorted response is observable. The explanation for this lies in the inversion 
of the coherence matrix: for low frequencies the correlation between the sensors 
becomes higher. This makes the columns of the coherence matrix become (almost) 
linearly dependent, leading to an (almost) non-invertible matrix. As a result of this, the 
entries of the inverse - and therewith the weight coefficients - take on extremely high 
values, leading to extreme amplifications of spatially uncorrelated signals, i.e. white 
noise. A measure for this particular property is the White Noise Gain (WNG) which is 
shown for both beamforming methods (Figure 2-12) and is defined as [26]: 
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Figure 2-12 White Noise Gain for DAS and MVDR. 

The above figure confirms the expectation: frequencies up to 400 [Hz] and even higher 
experience a low WNG. Note that the DAS beamformer has a constant WNG due to the 
fact that sensor weights are uniform and independent of frequency. 
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A measure to partly intercept this problem is adding a constant µ to the diagonal of 
the noise coherence matrix. In this way, the columns (and rows) reduce their 
interdependency which results in lower valued entries in the inverse matrix and along 
with that: lower valued weight coefficients. The equation for the constrained weight 
vector then becomes [3, 25]: 
 

11 ))(()( −− +Γ+Γ= cIccIw VVVV µµ H
c            (2.24) 

 
The disadvantage of this adjustment is the degradation of the performance of the 

beamformer. This can be evaluated by assessing the Directivity Index (DI) which is 
defined as [3]: 
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Figure 2-13 shows the relation between the constant µ and the WNG and DI. 
What is clear is that an improvement of the WNG leads to a deterioration of the DI. A 
balance between these two properties gives a reasonable solution.  
 

 

Figure 2-13 Relation between µ and White Noise Gain (l) and Directivity Index (r) SMVDR. 

To end this discussion, Figure 2-14 shows the full response of the SMVDR 
beamformer for µ=0.001. 

 
Though the SMVDR beamformer is an improvement referring to the conventional 
beamforming methods, the use of an assumption of the noise field possesses some 
important disadvantages for this particular application. As the final system will be 
applied in crowded spaces, the assumption of a diffuse noise field will not always hold. 
A substantial amount of interferers may be present, which is not taken into account in 
weight vector computation. To illustrate this, Figure 2-15 shows plots of spatial filter 
responses of SMVDR and DMVDR beamformers, when equal-strength interferers are 
present at -20 and 60 [°] and when creating a beam for an angle of 20 [°]. In all three 
plots the relation in strength between interference and noise variance differ. 
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Figure 2-14 Plot of SMVDR response over whole frequency range (12 sensors, µ = 0.001, look direction = 
0 [º]). 

 

 

Figure 2-15 Plots of beamresponses for noise field assumption and actual input autocorrelation with 
decreasing interference variance to noise variance relations. 

When using a noise field assumption, the spatial filter is designed solely to suppress 
white noise, regardless of the presence of interferers. When white noise is present as the 
main interference source, like in the last plot, this is a reasonable solution. However, 
when one or more strong interferers distort the source signal, the obtained results 
worsen significantly. 
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2.2.1.3 Robust Dynamic MVDR 
The results of the comparison between the static and input-based MVDR beamforming 
methods indicate the need for the input-based approach. It may be possible to cope with 
its pitfalls mentioned earlier: non-deterministic input signals and the combination of 
noisy sensors. Namely, the same scheme for increasing white noise gain when 
computing filter coefficients by making a noise field assumption as discussed before, 
can be applied to the problems of input-based MVDR beamforming as well. Loading 
the main diagonal with a constant, increases invertibility regardless of sensor inputs and 
therewith also decreases the influence of interdeviant sensor noise levels due to its 
generation of lower absolute filter coefficients. Figure 2-16 shows the improvement of 
input-based robust DMVDR beamforming as opposed to conventional DAS 
beamforming. As opposed to Figure 2-15, now a complete, linear grid scan of 180 [°] is 
performed for locating sources. The left figure shows the measured signal strength at 
each point when one source is located at -20 [°]. In the right figure, an extra, coherent 
source is added at 40 [°]. 
 

 

Figure 2-16 Responses DMVDR and DAS with 1 source (left) and 2 coherent sources (right). 

It is clear DMVDR outperforms DAS, though it must be admitted that in the case of 
multiple coherent sources, its performance also degrades. 

2.2.1.4 Computational complexity 
To finish the description of this method, an estimate will be made on the computational 
cost of DMVDR beamforming. 

First, the final equation for the weight vector can be combined with its multiplication 
with the frequency representation of the sensor signals. By doing this, we can see the 
complexity can be reduced a bit more. As indicated in the problem description, we only 
need the power of the beamformed signals per frequency bin.  

Using Eq. (2.18), the output power can be written as: 
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This can be rewritten to: 
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The required number of operations per type of operation for a frame of M samples is 
given in Table 2-1 in which (R) and (C) stand for a real and a complex operation 
respectively. It is assumed that an M-point Fast Fourier Transform (FFT) requires 

( )MM 2log  real multiplications and additions when using real input data [9]. An 

NxN-matrix inversion is assumed to require approximately 23 NN + complex 

multiplications and additions and 2N complex divisions when applying Gauss-Jordan 
elimination (see appendix B). 
 
Operation MUL ADD DIV 
FFT NMlog2(M)  (R) NMlog2(M)  (R) - 
Inverse F(N3+N2)  (C) F(N3+N2)  (C) FN2  (C) 
Output FB(N²+N)  (C) FB(N²+N)  (C) FB  (C) 
    
Total  (R) F[4(N3+N2)+8N2+ 

4B(N2+N)+8B]+NMlog2(M) 
F[4(N3+N2)+3N2+ 

4B(N2+N)+3B]+NMlog2(M)
 
F(B+N2) 

Table 2-1 Number of operations for computing MVDR coefficients. 

F represents the number of frequency bands, B the number of beams and N the number 
of sensors. To strip the operations further down to basic operations, a complex 
multiplication consists of four real multiplications and two real additions, when keeping 
the real and imaginary part separated, according to: 
  
( )( ) ( ) ( )ibcadbdacdicbia ++−=++                     (2.28) 

 
A complex division, on its turn, corresponds to eight real multiplications, three real 
additions and one real division according to: 
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A complex addition, finally, corresponds to two real additions. Table 2-1  also lists the 
final number of real operations. 

2.2.2 Constrained Maximum Signal to Interference Plus Noise Ratio 
After having discussed a method that is derived based on the criterion to obtain minimal 
output power (MVDR), constrained to obtain unit gain in the look direction, this 
method is developed in order to obtain a Maximum Signal to Interference Plus Noise 
Ratio (MSINR).  
 
Consider the input signal vector x of a beamformer, ignoring frame and frequency 
indices for surveyability, which consists of the original source signal, interfering 
sources and noise: 
 

nidx ++= s   (2.30) 

 
With d containing the transfer functions between the source and each sensor, i being the 
vector containing the interferences from other signals on each sensor and n containing 
the noise at each sensor, all applying for one frequency bin. Applying the weight vector 
of the beamformer on its input vector results in the following output signal: 
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The Signal to Interference Plus Noise Ratio (SINR) then can be defined as [27]: 
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With S2 representing the average signal power. As the nominator remains constant, the 
SINR can be maximized by minimizing the denominator, while at the same time 
preserving the constraint in the look direction, leading to the following minimization 
problem:  
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ww

+== H
cc ESINR

cc

   subject to 1=wcH  
 (2.33) 

 
When again solving this problem using Lagrange multipliers the solution for the 
optimal weight vector to minimize the SINR becomes [27]: 
 

111 )( −−−= cRccRw
uuuu HH

H
c       (2.34) 

 
In which Ruu

H represents the autocorrelation matrix of the interference plus noise. A 
direct issue is that this autocorrelation matrix is not present and therefore making this 
method impractical for implementation purposes. 
 
Two methods have been discussed and derived now. Both of them try to solve a 
different minimization problem subject to a constraint. The resulting formulas for the 
weight coefficients look similar; the only difference is the use of a different 
autocorrelation matrix in the formula for the weight coefficients. [28] provides a proof 
of the equivalence of these formulas. The use of the autocorrelation matrix of the 
interference plus noise in the CMSINR method makes it very impractical. The DMVDR 
method provides an easier implementable solution. Therefore CMSINR will be 
discarded from now on. 

2.2.3 Linear Constraint Minimum Variance 
The MVDR beamformer discussed earlier, is a special form of the method known as 
Linear Constraint Minimum Variance (LCMV). This method aims to minimize the 
average output power subject to a number of constraints. These constraints are 
formulated for a specific spatial angle and define an exact gain in that direction. In this 
way, it is possible to create nulls (very high attenuation) at directions from which 
unwanted sources are interfering. On the other hand it is possible to obtain unit gain in 
one or more directions. The difference with regard to the MVDR beamformer is that 
multiple constraints can be postulated instead of only one for the look direction. 
 

Consider a number of M constraint direction vectors that together form the MN ×  

matrix ( )110 , −= McccC L  with [18] ( )TNjj
m

mm ee ξξ )1(,1 −−−= Lc  and 
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)sin(
2

m
c

m c
dF

θ
π

ξ = . mθ represents the angle for which we would like to apply a 

constraint. The constraint equation then can be written as [18]: 
 

    fwC =c
H   (2.35) 

 
With f being the M-vector containing the desired gain value for each particular 
direction, from now on called the response vector. The final constrained optimization 
problem that has to be solved conclusively becomes: 
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minmin =    subject to fwC =c
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Solving this problem in a similar way as for the MVDR beamformer, the equation for 
the output power becomes: 

 

)( fwCwRw
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H

c HP λ   (2.37) 

 
When setting the derivative of (2.37) to wc equal to zero again and solving it, the final 
equation for the constrained weight vector becomes [18, 29]: 

 
fCRCCRw

xxxx
111 )( −−−= HH

H
c   (2.38) 

  
The constraint matrix of the LCMV beamformer provides the ability to impose 
constraints in multiple directions, depending on the number of microphones. These 
directions, however, are not known in advance for this particular application. This could 
require active interference tracking. However, with relation to memory, required 
amount of hardware and processing time to achieve this in real-time for all possible 
directions of a scanned surface by means of a portable implementation, this seems 
unachievable. Furthermore, time limits the possibility of an extensive implementation 
process. As mentioned in the requirement which the beamformer should meet and 
referring to the above, these degrees of freedom in the LCMV beamformer can come to 
better use for overall suppression of interfering signals like illustrated for the DMVDR 
beamformer, using actual input signals. Computational complexity therefore will not be 
considered here. However, it must be emphasized that in a future combination with 
other systems, the other applications might be used to advantage in providing 
interference locations.  

 
The next paragraph will discuss a slightly different method than DMVDR/LCMV that 
tries to reduce the complexity of the DMVDR beamformer. 

2.2.4 Generalized Sidelobe Canceller 
A disadvantage of the LCMV/MVDR beamformer is that on every new computation of 
the weight vector, the full, constrained formula has to be considered, leading to a high 
computational complexity as indicated in Table 2-1. An easier way to recompute weight 
coefficients, provided by the Generalized Sidelobe Canceller (GSC), is outlined in this 
paragraph. Goal of the proposal of this method is trying to reduce computational 
complexity by finding an easier way of computing the filtering coefficients. 

 
A GSC turns a constrained minimization problem, like that of the LCMV/MVDR 
beamformer, into an unconstrained one by dividing the constraint matrix in a 
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constrained and an unconstrained part. Consider Figure 2-17, where the system 
representation is given for the problem that is addressed. In this figure, Bf represents the 

so-called Blocking Matrix (BM), H
fc,w the weight vector for the specified constraint(s) 

and ][, kH
fuw the unconstrained weight vector. Note the frame independency of the 

constrained weight vector, which is the principle of the GSC beamformer. 
][, ks fc represents the output of the fixed, constrained beamformer and ][, ks fb  is the 

estimated noise and interference that is going to be removed. ][kfz , finally, must 

contain solely interference and noise. 
Assume a number of NM ≤  independent constraints, together constructing the 

constraint matrix Cf, leading to the constraint equation formulated as in Eq. (2.35). To 
exploit the number of degrees of freedom, determined by the number of sensors, Bf can 
be filled with )( MN −  independent, unconstrained vectors.  
 

 

Figure 2-17 System representation GSC. 

Ignoring frequency index f and frame index k, without loss of generality, the optimal 
weight coefficients then are constructed by [30]: 
 

uuc wBvCwBww −=−=                                 (2.39) 

 
Using (2.35), this leads to [30]: 
 

u
HHH wBCvCCwCf −==                                                                       (2.40) 

 
With f representing the response vector of the complete system and v being a temporary 
vector. As the blocking matrix B should block the desired signal ][ks , it must be 
constructed such that it is orthogonal to the constraint matrix C to avoid blocking (part 
of) the signal from the desired look direction: 
 

0BC =H   (2.41) 

 
Using (2.40) together with (2.39) and (2.41) the constrained weight vector becomes: 
 

( ) fCCCvCw
1−

== H
c               (2.42) 

 
To solve the system for wu, we again solve the minimization problem, but now 
unconstrained and to wu, using Eq. (2.39): 
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Setting the derivative equal to zero: 
 

022 =+−= u
H
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d
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 (2.44) 

 
This leads to the final solution for the unconstrained weight vector wu [30]: 
 

c
HH

u HH wRBBRBw
xxxx

1)( −=   (2.45) 

 
Note that, when comparing this method to MVDR beamforming, the actual noise 
reduction performances of these two methods can be proven to be equivalent [4, 29]; it 
is solely the coefficient computation that differs. 

 
There are several ways of constructing the blocking matrix B. One of them is provided 
by the well-known Griffith-Jim Beamformer (GJBF) [4, 10,16], In the GJBF the 
blocking matrix is created by subtracting each two adjacent channels after they are 
phase-aligned for the target direction in order to create a null in that target direction. For 
a 4-sensor ULA the blocking matrix then looks like: 
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(2.46) 

 

With again )sin(
2

0θ
πξ

c
dFc=  according to Eq. (2.7). An other example is the Walsh 

blocking matrix [4, 31] which utilizes multiple sensors per constraint for steering a null 
in the target direction. Multiple combinations are possible as long as all the columns are 
linearly independent and sum up to zero. For the same 4-sensor ULA, an example of 
this matrix is: 
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(2.47) 

 
When trying to block the signal, all of these matrices, however, contain an important 

disadvantage. Due to the sharpness of the created null in the blocking response (see 
Figure 2-18), a slight mismatch between steering direction and actual target direction 
will at least partly filter away the requested target signal. Especially in speech 
enhancement and speaker tracking algorithms, this is an unacceptable disadvantage due 
to the establishment of only a single beam. Still, in our particular application this 
disadvantage is not of that much influence: if the target is accidentally filtered away in 
one steering direction, it will be detected in one of its adjacent steering directions. A 
thing that is often neglected, however, is the presence of coherent2 sources or the 
creation of virtual, coherent sources due to a reverberant environment. In most 

                                                        
2 Sources of which the exerted waves possess a constant phase difference between each other. 
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applications the standard version of the GSC namely is utilized solely to suppress 
background noise. Figure 2-18 depicts two plots of the outputs of the Griffiths-Jim 
blocking filter. The left image reflects the situation in which only one source is present, 
the right image shows the pitfall addressed in the case of a second, equal-strength, 
coherent source. It is clear the blocking matrix in the latter case is not able to place 
adequate nulls in the target directions. 
 

 

 

 
 
 
 
 

 

Figure 2-18 Output responses GJBF blocking filter. Left: one source. Right: two sources. 

Other blocking matrices provide somewhat better results, but still more than far from 
acceptable. As the system is required to be applied in public, crowded environments 
like, for example, soccer stadiums, the presence of coherent sources may be considered 
a certainty. When still wanting to search for an improved beamforming algorithm with 
regard to relaxed computational demands, in the next paragraph a solution is tried to be 
found by means of an adaptive and more robust construction of the GSC. 

2.2.5 Adaptive Generalized Sidelobe Canceller 
The previous paragraph gave an introduction on the principle of the GSC and its 
accompanying disadvantages for this particular application. A way of coping with the 
mentioned problems, while keeping the goal of alleviating computational complexity in 
mind, is to use a form of adaptive beamforming. The slightly changed system 
representation of this beamformer in its frequency-domain implementation is depicted 
in Figure 2-19. 
 

 

Figure 2-19 System representation of an adaptive beamformer. 

The complete beamforming system can be divided into two paths. The upper path 
still is constituted by the constrained, fixed beamformer (FBF), delivering the 
output ][, ks fc . The lower path consists of two parts. The first part remains containing 



 

 

 

TNO report | TNO-DV 2012 S007 | 1 February 2012  34 / 81

the blocking filter defined by its filter coefficients ][, kfbw  , but now in an adaptive 

fashion. The blocking matrix coefficients will be updated using a cost function that will 
try to remove correlation between the output of the FBF and the output of the BM. The 
right filter, defined by its filter coefficients ][, kfuw is still designed to filter away 

interference from the output of the FBF but also in an adaptive fashion. By using an 
update mechanism, it is possible to reduce computational intensity by calculating a new 
(adaptive) unconstrained weight vector for frame index k+1, based on the weight vector 
of frame k and an adaptation criterion. There are several algorithms that provide an 
equation for this last criterion, all having their advantages and disadvantages related to 
performance and computational complexity. A few familiar ones will be discussed here. 
 
Until now, beamforming has been discussed in a frequency domain context, which is 
most common and clarifying for the considered methods. Adaptive filtering, however, 
is a method that finds its applications executed in frequency domain as well as in time 
domain. In order to obtain the best overview regarding complexity, both domains will 
be considered. First, a time domain filter derivation and elaboration will be done after 
which the scheme will be translated to frequency domain for assessing the quality and 
complexity of both approaches.  

2.2.5.1 Time-domain adaptive filtering 
In the next paragraphs an introduction is given on adaptive filtering. Several schemes 
will be described, leading to a final basic method of filtering applied in the AGSC. In 
the first discussions, only a single-channel filter is considered to derive the filtering 
equations. In these discussions, Figure 2-20 will be used, representing the schematic of 
adaptive filtering applied to the ANC in Figure 2-19 in which ][̂me  represents the 

estimated noise plus interference, ][me the actual noise plus interference and ][mε the 
difference between these two. 

 

Figure 2-20 Adaptive filtering structure. 

2.2.5.1.1 Steepest Gradient Descent 
Consider the model in Figure 2-20 which represents a single channel time-domain filter. 
The input is considered to be real-valued. Each time instant m, an extra sample x[m] is 
added to the filter input vector: 
 

[ ]1[],...,1[],[][ +−−= Lmxmxmxmx
 

 (2.48) 

 
With L being the filter length. Using input vector ][mx and by updating the filter 
coefficient vector: 
 

[ ][],...,[],[][ 110 mwmwmwm L−=w  (2.49) 
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there is tried to estimate each sample ][me by computing: 
 

][][][̂ mmme Twx=          (2.50) 

 
The remaining error is then defined as: 
 

][][̂][ memem −=ε                 (2.51) 

 
The Steepest Gradient Descent algorithm is a method to update the weight vector for 
the following time instant m by adjusting it with a computed gradient vector v of the 
weight vector curve [32]: 
 

vww α−=+ ][]1[ mm       (2.52) 

 
In which α denotes a factor that represents the adaptation speed. The gradient vector is 
defined as the derivative of a cost function, J[m], to the weight vector. A commonly 
used criterion for this cost function is the MSE such that (2.52) can be rewritten as 
(considering Figure 2-20) [32]: 
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When proceeding with the last part of (2.53), we can rewrite this as: 
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Writing out the expectation operator leads to: 
 

{ } ( ){ } T
e

T mmmmeEmmE wRrxwxx xxx −=−= ][][][][][][ε              (2.55) 

 
Combining these formulas, we obtain the final weight vector update equation: 
 

( )T
e Hmm wRrww

xxx −+=+ α2][]1[                (2.56) 

  
An issue that can be seen directly is that we require the cross correlation between the 

input vector x[m] and the actual interference plus noise signal e[m] of which the last one 
is not present. A measure to solve this issue is by making use of an instantaneous 
estimate of the gradient. The Least Mean Squares (LMS) algorithm, outlined in the next 
paragraph, defines an often used method. 
 
Before elaborating on the LMS algorithm, it is useful to determine how to estimate a 
value for α as this parameter will also return in the LMS algorithm. To start with, a 
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large value of α will increase the convergence speed to an optimal weight vector. When 
choosing this value too large, however, convergence will not be guaranteed. When 
wanting to ensure convergence, α must be limited to a maximum value for which 
convergence still is achieved.  

 
The derivation of this maximum starts from the principle that the error between the 
computed weight vector and the optimal weight vector must reduce every iteration. 
When this error is defined as: 

 

omm wwd −= ][][               (2.57) 

 
with ow  being the optimal weight vector, the error at the next iteration can be 

recursively defined by [33]: 
  

( )][2][]1[ mmm T
e wRrdd xxx −+=+ α                          (2.58) 

 

Writing out this equation leads to: 
 

( )][2][]1[ mmm TT
o wRwRdd xxxx −+=+ α

 

  

                  ][2][ mm dRd xxα−=    

                  ( ) ][2 mI dR xxα−=   (2.59) 
 

An eigenvalue decomposition on xxR such that TQQR xx Λ=  gives [33]: 
 

( ) ( ) ][2][2]1[ mImIm TT dQQdQQd Λ−=Λ−=+ αα                    (2.60) 

 
This can be rewritten to: 
 

( ) ][2]1[ mIm TT dQdQ Λ−=+ α                           (2.61) 

 
When defining:  
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We can rewrite (2.61) recursively as: 
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The direct formula becomes: 
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The maximum eigenvalue in this case determines the allowable value of α in order to 
ensure convergence: 
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121 max <− αλ        =>      
max

1
0

λ
α <<  

 (2.65) 

2.2.5.1.2 Least Mean Squares 
One of the most familiar and widely used adaptation schemes is the Least Mean 
Squares (LMS) algorithm. As we will see, it is especially famous due to its low 
computational complexity and easy implementation. 
 
The difference in approach of the LMS algorithm compared to the SGD algorithm is 
that in its cost function J[m], the LMS algorithm does not make use of the expectation 
of the MSE but the instantaneous least-squares error, i.e. an estimation of the MSE, 
leading to a simplified expression [34]: 
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Hence the update equation of the weight vector is defined as [11, 17, 34]: 
 

][][2][]1[ mmmm εαxww +=+                     (2.68) 

 
Considering the update equation of the weight vector, an important characteristic is 

the easy computation of the weight vector for the next time instance: only L+1 
multiplications and L additions are required to compute the next weight vector. Still, 
everything comes with its compromises and hence the convergence rate to the optimal 
weight vector wo is relatively low.  
 
An issue encountered is that the convergence strongly depends on 2

zσ : the power of the 
input vector x[k]. Non-stationary input signals, which are very common for this 
particular application, can lead to amplification of gradient noise when possessing 
substantial power. I.e. the absolute values of the weight coefficients can increase 
strongly, leading to noise amplification. The next paragraph explains the widely used 
solution to this problem. 

2.2.5.1.3 Normalized Least Mean Squares 
The Normalized Least Mean Squares method is a slightly modified version of the LMS 
algorithm. In order to avoid explosion of the weight coefficients, the weight update 
parameter α is normalized with the norm of the power of the input signal of the adaptive 
filter, leading to the following update equation of the weight vector [6, 16, 17, 34]: 
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With µ being a small constant to avoid divergence when the input power is zero. The 
constraint for α now changes to: 
 

10 << α   (2.70) 
 
It would be an intuitive decision to choose a high value of α in order to achieve fast 
convergence. A higher value of α, however, leads to a larger offset in the steady state of 
the output of the filter. Based on the type of application a balance must be found 
between these two properties: for relatively non-stationary input signals the final filter 
output will profit more from a higher convergence rate while, on the other hand, with 
stationary input signals a more accurate long term steady-state of the output signal will 
lead to better performance. Of course the decision for this factor will also be influenced 
by the update rate of the filter coefficients as a filter may not have to be updated at each 
time sample which will be seen in the following paragraphs. 

2.2.5.2 Time-domain NLMS-NLMS Noise Canceller 
After having discussed the derivation and properties of a single-channel NLMS filter, it 
is incorporated in the complete AGSC structure as according to Figure 2-21 [10]. Note 
that we are still considering a time domain implementation. 
 

 

Figure 2-21 Overview of AGSC beamformer with NLMS adaptive filters. 

The structure still consists of a fixed beamformer (FBF) and an adaptive noise canceller 
(ANC). The ANC contains the two before-mentioned filters but now in an adaptive 
fashion: the adaptive blocking matrix (ABM) and the multiple input canceller (MIC). 
Both of these two adaptive filtering structures contain NLMS-filters. The ABM tries to 
filter away all correlation between every sensor output ][]...[ 10 mxmx N−  and the output 

][msc  of the FBF. The MIC uses all of the outputs ][]...[ 10 mzmz N−  of the ABM as 

inputs in order to filter away correlation between these inputs and the total output ][̂ms  
of the complete AGSC. The number of sample delays L1 and L2 are incorporated for 
causality. 
 
Based on Figure 2-19 and Eq. (2.69), the NLMS equations of the ABM become as 
follows: 
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With n=0...N-1 being the channel number. The equations for the MIC are: 
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When applying this approach to the same situations as depicted in Figure 2-18, the 
outputs of the ABF show a significant improvement (Figure 2-22).  
 

 

Figure 2-22 Output responses NLMS-NLMS blocking filter. Left: one source. Right: two sources. 

Important to notice, still, is that the created nulls are very sharp. Again, this forms a 
problem in the situation of coherent sources (right figure): the exact position of the null 
is slightly displaced, making the ABM leak part of the target signal into the MIC. 
Furthermore, noise exerted from a source right next to the viewing direction is 
amplified. This on itself would not seem a bad thing as it is used for removing 
correlation from the output of the AGSC. The amplification, however, causes artifacts 
in the final output. Hoshuyama and Sugiyama [10] came with a solution directly 
addressing both problems at once. Next paragraph will outline this solution. 

2.2.5.3 Time-domain CCAF-NCAF Noise Canceller 
The issues listed in the previous paragraph are attempted to be diminished by a slightly 
different filter construction in the AGSC.  

2.2.5.3.1 Description 
Firstly, by constraining the value of the filter coefficients of the BM, a specific target 
direction error can be allowed. By doing this, filter coefficients will not explode to 
extremely high values, thereby avoiding the mentioned noise amplification and 
restraining null depth. In addition to this, the influence of remaining target signal 
leakage into the MIC, is diminished by applying a norm constraint to the filter 
coefficients of the MIC. Of course there is a disadvantage: due to enforcing a wider 
allowable target direction, and thus blocking a larger angle interval, less noise remains 
to be filtered away by the MIC.  
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 The layout of the AGSC now changes to the one in Figure 2-23. The NLMS filters in 
the ABM are replaced by so-called Coefficient Constrained Adaptive Filters (CCAF) 
[10, 13]. The filters in the MIC are replaced by Norm Constrained Adaptive Filters 
(NCAF) [10, 13].  
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Figure 2-23 Overview of AGSC beamformer with CCAF and NCAF adaptive filters. 

For both the ABM and the MIC, the update of the filters is slightly changed in order to 
meet the proposed constraints. For the ABM the filter coefficients for the next iteration 
now are defined by [10]: 
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With: 
 

[ ]11.1.0. ,...,, −= Pnnnn
ψψψψ   (2.77) 

 
[ ]11.1.0. ,...,, −= Pnnnn

ϕϕϕϕ   (2.78) 

 
And P1 being the ABM filter order. The values of these constraint vectors are derived 
based on applying a sinc-window with respect to the target direction interval, mapping 
the values of this window to the filter coefficients. This means a larger allowable target 
direction error corresponds to lower absolute filter coefficients. In mathematical 
notation this translates itself to [14]: 
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 (2.79) 

 
With p=0…P1-1 representing the filter tap and Tn being defined as [14]: 
 

( )θ∆= sin
c
Fd

T sn
n  

 (2.80) 

 
In which Fs is the sampling frequency in [Hz], dn the distance in [m] between sensor n 
and a reference point (e.g. the array centre or a reference sensor), c the speed of sound 
in [m/s] and θ∆  the allowed target direction error in [º]. Note the similarity with Eq. 
(2.7) which defines the phase shift in frequency domain for a particular sensor. Eq. 
(2.80) defines the maximum allowable time error/shift in time domain. Eq. (2.79) 
translates this maximum allowable time error to a maximum value of the filter 
coefficients such that sources at positions of which the inter-sensor signal arrival time 
differences are within this maximum time window, are not filtered away. The extra 
value of 0.1 in Eq. (2.79) makes sure filter coefficients will not diverge. 
 For our particular application, the goal is to avoid the problem that is introduced in 
the situation of multiple coherent sources. The maximum allowable target direction 
error is not dependent on a target direction error in the case of a single source: as long 
as the complete scanned grid/area is fully covered by all constructed steering vectors, it 
will be observed. The maximum allowable target direction error therefore is dependent 
on the influence of the summation of multiple coherent sources. When defining this 
maximum allowable steering error equal to the maximum angular resolution3 of a beam, 
a possible target signal cancellation for a particular beam will be ‘picked up’ at one of 
its adjacent beams. 
 The resolution of the beamformer is dependent on signal frequency and number of 
sources, as well as array structure and steering angle. Sources with higher frequencies 
can be resolved with a higher resolution (keeping in mind the maximum allowable 
frequency with respect to spatial aliasing). Furthermore, small4 steering angles achieve 
higher spatial resolution than large steering angles. In either case, the worst-case 
situation has to be dealt with, which is a single-source situation with a frequency of 
F=1500 [Hz] at a steering angle of 0 [º]. Due to the non-regular structure of the used 
cross-array, this maximum resolution5 is determined by measurements as opposed to 
deriving a complex resolution equation using an exact geometric model of the array. 
 

                                                        
3 The resolution of a beam is defined as twice the angular offset of the main beam and the -3dB cut-off point 
in the spatial filter response. 
4 Small when the steering angle is defined as the offset from the line perpendicular to the axis of a broadside 
array. 
5 Measured maximum resolution of used cross-array under mentioned conditions is 5 [º]. 
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Figure 2-24 Output responses CCAF-NCAF blocking filter. Left: one source. Right: two sources. 

 
Figure 2-24 shows the output of the ABM using the same multi-source example 
when applying a steering vector error of +/-3 degrees. 
 
The modified equation for the NCAF coefficients is defined by [10]: 
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With: 
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,, ++= mmP T
nunu ww   (2.83) 

 
K is a constant, the norm, which is defined by trial and error. It defines the maximum 
allowed power of a filter coefficient. A filter coefficient with a power exceeding this 
value is scaled down to have the maximum allowed power K. In this way, noise is 
filtered away up to a certain level which is a flaw of this method. The advantage of 
course is that a possible, slight, target signal leakage will not tremendously affect the 
obtained target signal estimation in the final output signal of the AGSC.  

2.2.5.3.2 Computational complexity 
As mentioned in the introduction of the AGSC, the search for a different approach is 
driven by the possibility of finding an algorithm with a lower complexity compared to 
data-driven MVDR beamforming. In order to assess the improvement or deterioration, 
an estimate is made on the computational complexity in the sense of the number of 
mathematical operations, similarly as done for MVDR beamforming. 
 
To be able to compare this analysis to the frequency domain MVDR implementation, 
again consider a frame of M samples per each of N sensors used to create B beams. First 
of all, no FFTs on the sensor outputs have to be computed. As mentioned in the 
introduction of this report, however, the final beamformed output is required to be a 
frequency domain representation for simplifying the computation of sound parameters. 
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This means FFTs have to be computed for all B beams, which is less efficient because 
the number of beams will definitely exceed the number of sensors. Still, computational 
advantages may lie in other parts of the algorithm. Eq. (2.71) to (2.74) correspond to 
ABM convolution and output/error, ABM correlation and update, MIC/AGSC 
convolution and output/error and MIC/AGSC correlation and update in Table 2-2, 
respectively. Note that each equation has to be performed on each sensor channel and 
for each beam. For now, constraining the coefficients will be left out of analysis due to 
the non-deterministic number of operations. Consider a filter order of P and an FBF that 
applies conventional Delay and Sum beamforming; so without weighing the sensor 
channels. 
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Operation MUL ADD DIV 
FBF  - BNM  (R) - 

 
ABM  
Convolution BNMP (R) BNMP  (R) - 
Output/error - BNM  (R) - 
Correlation BNM(P+2) (R) - BN  (R) 

Update - BNMP  (R) - 

 

MIC/AGSC  

Convolution BNMP  (R) BNMP  (R) - 

Output/error - BM(N+1)  (R) - 
Correlation  BNM(P+2) (R) - BN  (R) 

Update - BNMP  (R) - 

 
FFT BMlog2(M)  (R) BMlog2(M)  (R) - 

 
Total (R) BM[4NP+4N+log2(M)] BM[4NP+3N+log2(M)+1] 2BN 

Table 2-2 Computational complexity of time-domain AGSC. 

The formulas do not provide a clear overview yet so the comparison with MVDR 
beamforming will be supported with a realistic example. The number of sensors in the 
used array is fixed to 32. With relation to the frequency bandwidth of the output of the 
FFT, used in MVDR in order to avoid a large steering vector error discussed in 
paragraph 2.1.1.3 Narrowband assumption, the number of samples M is chosen to be 
512. The number of beams B is set to 225 (15 x 15) for now, for scanning a complete 
grid. The decision for this will be explained in more detail later in this report. The time-
domain filter order P is defined as twice the number of frequencies F processed by the 
MVDR beamformer. To process all the frequencies of the FFT-output, F equals ½M, 
making P equal M. In this example a 32-bit real floating point multiplication is assumed 
to take twice as long as an addition [43]. A division is assumed to take five times as 
long as an addition. Filling in these example numbers, DMVDR needs about 4% the 
number of normalized operations the time-domain AGSC needs. 
 
Conclusively, it is embarrassingly clear the time-domain AGSC does not at all 
contribute to a computational speed-up. But, using this as an intermediate step, there 
still might be a way to reduce the complexity of the AGSC by considering a frequency 
domain implementation. In the search for finding a more efficient algorithm, we keep in 
mind that the time-domain version of the AGSC must be speeded up about twenty-five 
times in order to be a reasonable competitor for DMVDR beamforming. 

2.2.5.4 Frequency-domain adaptive filtering 
Before considering a frequency-domain version of the AGSC, two schemes of 
frequency domain adaptive filtering (FDAF) will be discussed. To change from a time-
domain implementation of adaptive filtering to a frequency-domain implementation, an 
intermediate step will be taken to provide an algorithm readily transferrable to the 
frequency domain. This step translates the standard NLMS algorithm to a block NLMS 
version. 
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2.2.5.4.1 Block NLMS adaptive filtering 
The standard NLMS algorithm is not directly suited to transform to a frequency domain 
version. This paragraph will very briefly describe the change to a block NLMS 
algorithm. 
 
Remind the equations that define the output error and filter update of the standard 
NLMS algorithm of a single-channel filter, which are repeated here for convenience: 
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With L being the filter length. A first step is to write out the recursive version of the 
filter update to an update over an interval of M time samples [5, 11, 35]:   
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The subscript w[m+1] added to the output error means the error is computed with the 
filter vector computed at time instant m+1. The principle behind block based filtering is 
assuming the filter vector will only change slightly within a certain time interval, so 
therewith keeping the filter vector constant for a number of M samples. This means 
there will be an update of this vector every multiple of M samples. The value of M is 
almost always chosen equal to the filter length L. So the output errors of intermediate 
samples are computed using the latest update k of the filter coefficients, or in 
mathematical form [5, 11, 35]: 
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Note the change of the subscript of the output error. As the coefficients are only 
changed at every time instant kM, above equation can be written as [34]: 
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               Mk vw ˆ2][ α+=   (2.87) 

 
The output of the filter remains updated every time instant n but with an older version 
of the filter vector: 
 

][][][̂ knkMnkMe Twx +=+   (2.88) 

 



 

 

 

TNO report | TNO-DV 2012 S007 | 1 February 2012  46 / 81

The change to a block-based algorithm involves a property that must be taken into 
account. Because the filter is updated only every M samples, the response time of the 
filter to variations in the input signal is extended to a maximum of M samples. In other 
words: it is harder to keep track of non-stationary signals because the filter is only 
updated after a fixed time. The degree of stationarity of the input signal together with 
the filter length determines the ability to keep track of the signal. Still, for more wide-
sense stationary signals, the steady-state response is proven to remain the same [5]. 

2.2.5.4.2 Overlap-save method  
 
Description 
The implementation of a frequency domain adaptive filter starts with being aware of the 
difference between the properties of a time-domain (N)LMS filter and a Discrete 
Fourier Transform (DFT). The time-domain filter applies a linear convolution and 
linear correlation for the computation of the output of the time-domain (N)LMS filter 
and update of the filter coefficients respectively, by multiplying the appropriate 
vectors/scalars. A multiplication of two DFT sequences, on the other hand, results in a 
circular convolution or circular correlation between the vectors/scalars in time domain. 
There is an overlap, however, between circular and linear convolution/correlation as 
illustrated in Figure 2-25. In the plots, an eight-point and a four-point sequence are 
correlated and convolved in a circular (periodic) and linear way. The plots show the 
differences between the linear and circular operations, but also show an overlap in 
values, indicated by the green, solid bars. 

 

Figure 2-25 Matching values between linear and circular correlation (left) and linear and circular 
convolution (right) of an eight-point and four-point sequence. 

If the lengths of the sequences are defined as S1 and S2, with S1≥ S2, the number of 
overlapping values for both operations is: 
 

121 +−= SSM   (2.89) 

 
The overlap between a circular and linear correlation applies for the first part of the 
output of the circular correlation. Because a convolution applies the same operation as a 
correlation, but with a reversely ordered sequence, the overlap between a circular and 
linear convolution applies for the last part of the output of the circular convolution. 
Knowing this relation, it can be used to our advantage in the frequency-domain filter 
implementation: by constructing a 2M-input data frame with the first half being a new 
part of data and the second half being the last half of the previous frame, we can work 
in the frequency domain while still obtaining the required linear 
correlation/convolution.  
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Figure 2-26 shows the complete diagram of this approach. Because of the use of both 
time- and frequency-domain signals in this method, variables will be denoted with the 
subscript (.)t or (.)f respectively. As already mentioned, the frequency domain input of 
frame k of length 2M is constructed by overlapping two frames and applying an FFT 
[17]: 
 

[ ] [ ] [ ]( )1,...1,][ −++−−= MkMxMkMxMkMxFFTk tttfx
 

 (2.90) 

 
In which FFT(.) stands for the Fast Fourier Transform.  
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Figure 2-26 Overview FDAF filter structure of overlap-save method. 

To match the linear correlation of the computation of the weight vector in time domain 
with the circular correlation of that same operation in frequency domain, the time 
domain weight vector is extended with zeros [17, 35], in accordance with Figure 2-25: 
 

[ ]( )Mtf kFFTk 0ww ,][ =   (2.91) 

 
With: 
 

]0,...,0,0[ 110 −= MM0   (2.92) 

 
The frequency-domain output then is defined by [7, 11, 17, 35]: 
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][][][ˆ kkk T
fff wxe ×=   (2.93) 

 
Where ×  stands for element-wise multiplication. The opposite holds for the time 
domain output vector: to account for the linear correlation, the time domain output 
signal is defined by the last part of the inverse FFT (IFFT) of the output ][ˆ kfe  [17, 35]: 

 
[ ]]1[ˆ],...,[ˆ][ˆ −+= MkMkMk ttt eee   (2.94) 

          =  last M components of ( )][ˆ kIFFT T
fe   (2.95) 

 
The error ][ktε  then becomes: 
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For the same before mentioned reasons, the error vector is augmented with zeros such 
that the frequency-domain error becomes [7, 17, 35]: 
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Following Figure 2-26, the gradient vector estimation ][ˆ ktv becomes [7, 35]: 
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Leading to the final weight vector update [7, 35]: 
 

( )Mtff kFFTkk 0vww ],[ˆ2][]1[ α+=+    (2.100) 

 
To assess the advantage of this method with respect to the time-domain implementation, 
in the next paragraph again an estimate will be made on the computational complexity. 
 
Computational complexity 
For the computation of the complexity of the complete beamformer, Figure 2-23 of the 
time-domain CCAF-NCAF Noise Canceller will be reused, but now considering the 
frequency domain implementation. Each time-domain filter channel will be replaced by 
its frequency-domain equivalent, meaning the structure will only change inside the 
filters themselves. 
 
Table 2-3 lists the number of operations per component with M being the frame length, 
N the number of sensors and B the number of beams. The number of output frequencies 
is ½M, making the comparison equal to the example comparison between DMVDR and 
time-domain AGSC beamforming in paragraph 2.2.5.3.2 Computational complexity. 
 
Using the same parameters as in this example, the frequency-domain implementation 
turns out to be an improvement of the time-domain variant: it is about 10 times faster. 
Still, it not yet outperforms DMVDR which remains 2½ times more efficient. A last 
attempt to speed things up will be made in the next paragraph. 
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Operation MUL ADD DIV 

FBF - BNM  (R) - 
 

ABM  
(I)FFTs 10BNMlog2(2M)  (R) 10BNMlog2(2M)  (R) - 

Convolution BNM  (C) - - 
Output/error - BNM  (R) - 
Correlation BNM  (C) - - 

Normalization BNM  (R) BNM  (R) BN  (R) 
Filter update - BNM  (C) - 

 

MIC/AGSC    
(I)FFTs 10BNMlog2(2M)  (R) 10BNMlog2(2M)  (R) - 

Convolution BNM  (C) - - 
Output/error - BM(N+1)  (R) - 
Correlation BNM  (C) - - 

Normalization BNM  (R) BNM  (R) BN  (R) 
Filter update - BNM  (C) - 

 
FFT Output BMlog2(M)  (R) BMlog2(M)  (R) - 

 
Total  (R) BM[18N+(20N+1)log2(M)] BM[13N+(20N+1)log2(M)+1] 2BN 

Table 2-3 Computational complexity linear convolution AGSC. 

2.2.5.4.3 Circular Convolution method 
The linear convolution method delivers a scheme for applying adaptive filtering in 
frequency domain. It does not yet provide the desired reduction of computational 
complexity though. The circular convolution method disobeys the property of linear 
convolution in the update of the filter coefficients [8]. In this way it wins in on 
computational relaxation but at the cost of performance degradation related to 
convergence and steady-state. This paragraph will describe the changes compared to the 
linear convolution method and evaluate the decrease in complexity together with its 
performance degradation. 
 
Figure 2-27 shows the reduced diagram of the circular convolution method. A couple of 
things have changed as a consequence of applying circular convolution in the filter 
update. Because the time domain representation of the filter is not extended to twice the 
frame length M for enforcing linear convolution, the filter update can be performed 
directly in frequency domain without intermediate conversions from time domain to 
frequency domain and vice versa. This means an input frame of N samples corresponds 
to an output frame of N samples. The most important change in the filter update is [8]:  
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Figure 2-27 Overview FDAF filter based on circular convolution method. 

Computational complexity 
Figure 2-27 indicates a number of three (I)FFTs required to implement the filter. This is 
already a significant reduction compared to the linear convolution method which uses 
five. The filter assumes the reference signal to be a time domain sequence that has to be 
converted to frequency domain. Applying the filter in the adaptive beamforming 
scheme learns that the reference signal is the output of the FBF which already can be 
computed in frequency domain. This saves one FFT, but because we will then have the 
reference signal (the sensor output) also already in frequency domain, the last FFT can 
be removed as well. Moreover, the output of the filter also was assumed to be converted 
to time domain. For our particular use, the input of the NCAF-filter must be transferred 
to frequency domain as well, meaning we can remove the output IFFT from the CCAF-
filter and the input FFT of the NCAF-filter. Because we require the output of the 
complete AGSC to be in frequency domain, we can also remove the remaining two 
(I)FFTs from the NCAF-filter. This means the only FFT that rests is the one on the 
sensor outputs. In Table 2-4 the complexity is listed by means of the amount of required 
operations. 
 
Operation MUL ADD DIV 
FFT sensors NMlog2(M)  (R) NMlog2(M)  (R) - 

 
FBF ½BNM  (C) ½BNM  (C) - 

 
ABM  

(I)FFTs - - - 
Convolution ½BNM  (C) - - 
Output/error - ½BNM  (C) - 
Correlation ½BNM  (C) - - 

Normalization ½BNM  (C) ½BNM  (C) BN  (C) 
Filter update - ½BNM  (C) - 

 

MIC/AGSC    
(I)FFTs - - - 
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Convolution ½BNM  (C) - - 
Output/error - ½BM(N+1)  (C) - 
Correlation ½BNM  (C) - - 

Normalization ½BNM  (C) ½BNM  (C) BN  (C) 
Filter update - ½BNM  (C) - 

 
Total  (R) NM[14B+log2(M)]+16BN NM[14B+log2(M)]+BM+6BN 2BN 

Table 2-4 Computational complexity circular convolution AGSC. 

Applying the example used throughout this paragraph, confirms the seemingly reduced 
complexity in Table 2-4: the circular convolution method achieves a speed-up of 
approximately 14 times with respect to the linear convolution method. Moreover, the 
new method is about 6 times as fast as DMVDR. The question remains whether this is a 
fair comparison.  
 
Degradation 
Because the gradient ][kfv  is estimated in frequency domain now, wrap-around effects 

are introduced due to the assumption of a periodic input, because of the application of 
circular convolution. Since the application environment of the system is not at all long- 
nor short-term stationary, this will lead to poorer convergence. The CCAF blocking 
filter must ensure reasonable convergence, however, to remove as much target signal as 
possible. The convergence of the MIC is of lower interest: less convergence will just 
lead to a decreased ability of filtering away interference. But, a combined use of both 
methods (circular and linear convolution) will still not contribute to a speed-up of 
DMVDR.  

Though it took a lot of effort in coming to a computationally relieved solution, it has 
to be concluded that this method can not be used as a substitute method in dynamic 
beamforming. 

2.3 Evaluation 

In the previous paragraphs the principles and aspects of beamforming have been 
discussed. Several methods have been outlined and evaluated, all having their 
advantages but also their flaws. This paragraph will shortly describe the decision for a 
suitable method that will be used for implementation and will define some restrictions 
that apply for the array used in this particular project. 

2.3.1 Conclusion beamforming methods 
The application of conventional DAS beamforming provides a reasonable solution but 
lacks directivity at lower frequencies. Conventional, static, frequency-invariant window 
functions are able to change the response pattern to create a flatter pattern or one with 
deeper nulls. This does not improve the response at lower frequencies though. Neither 
will it be able to assist in active noise and interference suppression.  

SMVDR beamforming is able to solve the first problem by deriving filter coefficients 
based on an assumption of the noise coherence matrix at a certain frequency. In this 
way it is able to preserve the spatial response of the DAS beamformer over a larger 
frequency interval. The cost of a decreased WNG can be diminished by making the 
autocorrelation matrix more robust, leading to a balance between directivity and noise 
amplification. Furthermore, it still provides equal complexity due to its static nature. A 
negative characteristic, still, is the inability of active interference suppression and the 
fact that the angular beam resolution at higher frequencies is not an improvement 
compared to DAS.  
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DMVDR beamforming is able to cope with both problems: it has high resolution at 
both high and low frequencies in the presence of a single source and also delivers a 
reasonable improvement in a coherent, multisource environment. This will be one of the 
most suitable methods to use, though we have to take into account its computational 
complexity.  

Finally, an attempt has been made to find an adaptive beamforming algorithm of 
which the spatial performance approaches that of DMVDR but with a decreased 
complexity. A couple of adaptive implementations have been discussed, but the 
sacrifices that have to be made in order to reach a more efficient solution are not 
considered acceptable. The next chapter will discuss how the system is going to deal 
with the complex algorithms. 

2.3.2 Array specific constraints 
The beamforming methods and examples were applied for linear arrays in order to keep 
comparisons easy. The array used for this project, however, is a 2D-cross with four side 
branches (see appendix A). The array was originally designed for speech detection and 
therefore has a linear sensor spacing of 0.13 [m]. The side branches were added to 
improve the spatial resolution in the corners of a grid. Some constraints will be imposed 
on the frequency range that can be accurately covered with this array. Due to the 
unusual structure, this will be done based on simulation instead of computation.  

2.3.2.1 Cut-off frequencies 
According to paragraph 2.1.1.1 Aliasing, the sensor spacing of 0.13 [m] would suggest 
an upper cut-off frequency of approximately 1310 [Hz], in order to avoid spatial 
aliasing. The side branches, however, all have an added value due to their virtual 
projection on the main branches (appendix A). By taking one main branch with the 
projected sensors of the side branches, the required upper cut-off frequency can be 
slightly increased to 1500 [Hz].  
 Because the array has a fixed aperture, there is also a lower bound on the allowed 
frequency range. Below this limit it is not possible anymore to locate multiple sources 
at their actual position. Figure 2-28 illustrates this using the conventional DAS method. 
Still, a linear array is considered, but now with the mentioned projection of the side 
branch sensors; so a realistic example. In the left plot, only one source is present. 
Though the spatial response is worse for lower frequencies, the source location is 
correct. The right plot shows the case in a multi-source environment. For lower 
frequencies (< 300 [Hz]) it is clear the coherence between the two sources and the 
limited array aperture make the array ‘see’ the two sources as a combined source in the 
middle of the two actual sources and slightly amplified. 
 

 

Figure 2-28 Responses DAS at multiple frequencies with 1 source (left) and 2 coherent sources (right). 
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Figure 2-29 gives a better overview of the multisource situation. Here, the response for 
all frequencies is illustrated. The array is able to distinguish two sources starting at 
approximately 350 [Hz]. This value will be used as the lower cut-off frequency. A thing 
that must be emphasized, however, is that for this example two sources with an angular 
distance of 60 [°] have been used. When this difference decreases or when multiple 
coherent sources are present, it will become harder to distinguish them. Ideally, one 
would like to increase the cut-off frequency up to the point where the ability of the 
array in distinguishing two sources approaches the maximum angular beam resolution. 
This would drastically reduce the frequency range available for sound classification; 
therefore a balance between the two properties is chosen. A realistic conclusion actually 
is that this array may not be really suited for this purpose. Testing must point out 
whether it will still provide an acceptable solution. At the end of this report a 
recommendation for a different array structure will be given. 
 

 

Figure 2-29 Full response plot DAS with two coherent sources. 

2.3.2.2 Resolution 
The resolution of the array is a measure for the sharpness of a constructed beam. Here it 
is defined as the absolute angular interval around the target direction where the 
attenuation is less than 3 [dB]. The resolution is highest at the maximum beamforming 
frequency (1500 [Hz]) in a single-source environment with a target direction of 0 [°] 
(perpendicular to the array). By means of simulation, the maximum resolution is 
determined to be approximately 5 [°]. For covering a complete 2D-grid, this is the safe 
value that must be used for computing the number of required beams in order not to 
miss any spot in the grid. Figure 2-30 shows a grid covered by all required adjacent 
beams. 
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Figure 2-30 Area coverage of a complete grid of beams. 

We must be aware that the resolution of DMVDR in a single-source environment is 
higher than that of DAS. This could mean a source is missed when using the number of 
beams, determined based on a DAS approach. The maximum resolution of DMVDR is 
approximately 1 [°]. For an average grid with an angular focusing interval of the array 
of 90 [°], this would require a number of 8100 beams to construct, which is 
computationally undoable. The diagonal of the autocorrelation matrix in robust 
DMVDR beamforming therefore is loaded with a higher value for higher frequencies to 
stick to the resolution of 5 [°]. This seems like destroying the advantage of DMVDR, 
but the slopes of the main beam remain significantly steeper than those of DAS. Also 
the directivity (suppression of interference over the whole angular range) remains a 
great improvement. Furthermore, for lower frequencies the loaded value is chosen to be 
lower such that the maximum resolution is retained over a considerably larger 
frequency interval than for DAS.  
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3 Implementation 

Now a number of different beamforming methods have been discussed and compared, 
the chosen algorithms are implemented and incorporated in a real-time application. This 
final system must comprise all functionalities like data streaming, synchronization, 
beamforming and user interfacing in such a way that a robust design is obtained. This 
chapter will discuss the architecture of the system and things that are involved in 
heading to such a solution. 
 First, an implementation platform will be determined, after which an overview of the 
system will be given to refer to in the rest of this chapter. Specific parts of the system 
will be outlined in more detail. 

3.1 Implementation platform 

The array comprises, besides microphones, a NIOS II development board, connected to 
an Altera Stratix II FPGA. On the FPGA, a design is already present that just samples 
the AD-converters and fills the appropriate buffers. We may consider an 
implementation of the system directly on this FPGA, with the goal of achieving a high-
speed solution. A few things have to be taken in consideration then. 
 First of all, let us look at the type of operations that have to be performed. Only for 
DMVDR-beamforming itself, 32 FFTs must be computed; a 32x32 complex matrix 
inversion is needed per frequency bin and a number of complex vector multiplications 
have to be executed. The computation of MFCCs involves matrix multiplications for 
creating the mel-scale spectrum; taking a logarithm and computing a discrete cosine 
transform (DCT). Considering only the required amount of hardware while not yet 
focusing on memory constraints, the number of required logic elements (LEs) and fixed 
hardware blocks may increase the amount provided by the FPGA. Table 3-1 and Table 
3-2 list the available amount of hardware at the Stratix II EP2S60 [41] and the required 
amount of hardware for the mentioned types of single-precision floating-point 
operations [40], respectively. 
 
Stratix II EP2S60 
LEs M4K RAM bits DSP – 18x18 
60.440 255 2.544.192 144 

Table 3-1 Available hardware and memory resources at FPGA. 

 
Operation LEs M4K RAM bits DSP – 18x18 
Sine/cosine 1.830 - 2.190 16 
Logarithm 1.387 - 1.904 8 
FFT (512-pnt) 60.440 255 2.544.192 128 
Real inverse (32x32) 15.655 200 699.164 118 

Table 3-2 Required hardware and memory resources of basic elements. 

It is clear that the amount of required hardware does not match the properties of the 
used FPGA, left aside the fact that the current design already uses 24% of the available 
hardware resources. Of course it is possible to look for a different FPGA that does meet 
the required properties. However, the limited time to come with a working solution 
provides very little space in overheads like ordering time, conversion of the current 
design to a different FPGA etc. Also note that the hardware requirements are highly 
related with the beamforming algorithm and therefore were known in a later stadium of 
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this project. Another issue is the ability of applying changes to the design. The 
generated sound parameters, for example, are a preliminary set of parameters used for 
sound classification. If other parameters seem to be more useful in a later stadium, 
changing the design is a time demanding process. The FPGA implementation reduces 
flexibility, which can be an important criterion in the development of the classification 
algorithm.  
 Taking above arguments into consideration, the FPGA as a platform for developing 
the system would be a rather inconvenient choice. A PC implementation seems the best 
solution referring to flexibility. When choosing a PC implementation, for this particular 
project we have to take into account the possible deployment of the application on a 
master system. As mentioned in the introduction, this master will deal with a number of 
other applications. Though we may require certain hardware facilities, this might not 
guarantee a fixed amount of memory and CPU resources for our application as this is 
dependent on the hardware utilizations of the other running applications, which might 
not be that strictly formulated. Further, it is possible the application may be used 
independently for other goals, outside the purpose of the project it is dedicated to. 
Conclusively, to still meet the real-time requirement without demanding strict hardware 
facilities, a flexible, robust system must be designed that takes care of changing 
processing circumstances. A system is developed taking this requirement into account. 
The next paragraph describes the architecture and composition of the system. 

3.2 System overview 

To get an overall picture of the different elements in the application, this paragraph will 
briefly describe the functionalities of the different parts in the final solution. Parts with 
more significant functionality will be described in more detail in their own paragraph. 

Figure 3-1 depicts a rough overview of the system. 
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Figure 3-1 System overview. 
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3.2.1 Array 
The 32-element array comprises an FPGA that samples audio with a sample frequency 
of 10 [kHz] and a resolution of 24 bits per sample. It buffers data packets of 100 
samples per microphone using a ping-pong6 buffer and signals the microcontroller on a 
full buffer. The microcontroller, on its turn, sends the data in the buffer to the audio 
slave over an Ethernet connection. 

3.2.2 TimeServer 
The TimeServer synchronizes the time of the array with the time of the audio slave. 
Every ten seconds it sends a timestamp to the array with which the array corrects its 
clock. In this way, an accurate sample frequency of 10 [kHz] is met. The TimeServer is 
implemented in C++. 

3.2.3 AudioSink 
The AudioSink represents the audio data interface between the array and the audio 
slave. It continuously listens to the Ethernet connection established with the array and 
receives its data packets. On every reception of a data packet, it writes the raw data to a 
harddisk for permanent storage and to the raw data buffer that is meant for using in the 
beamforming and calibration application. The AudioSink is implemented in C++.  

3.2.4 Raw data storage 
The raw data storage ensures that all data is saved in order to be able to reprocess all the 
recorded audio data afterwards. In this way, it is possible to look/hear back any events 
that occurred during a recording session. Also, there is the opportunity of reprocessing 
the data with a different beamforming algorithm than the one used during the real-time 
execution. 

3.2.5 Raw data buffer 
The raw data buffer temporarily stores 32 streams of raw audio data, one for every 
sensor. The AudioSink writes every newly received data packet and signals its reception 
by updating the latest received stream number in the buffer. In this way the applications 
using this data, get notice of the arrival of a new stream. The buffer has a length of two 
seconds; after this, old data is overwritten. By choosing a length of two seconds, the 
calibration and beamforming applications are able to fetch ‘older’ data when they might 
not be able to keep up with the data stream due to a decrease in execution speed. This 
decrease can be caused by other applications temporarily requiring more CPU-usage.  

3.2.6 Calibration and visual interface 
The calibration takes care of delivering the correct filter vectors for the beamforming 
application. This procedure is executed only once for every deployment location. It 
consists of an interface with which the user is able to determine all the relative delays 
between the sensors and each position in the area to scan. Due to the highly interfaced 
structure of the calibration procedure, it is implemented in MatLab. Later in this 
chapter, a more detailed description on this procedure is given. 

                                                        
6 A buffer construction using two buffers of which only one is filled at a time. After one buffer is full, it is 
ready for getting its data transmitted while the other of the two buffers is filled. In this way there is always a 
complete version of the data and possible transmission delays (up to a certain level) do not cause data loss. 
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3.2.7 Calibration parameters 
The calibration parameters are stored in a file that is used by the beamforming 
application. The parameters consist of all relative sensor-delays of the complete scan 
area, together with the grid size. A user can decide to use these parameters or overwrite 
them to recalibrate for a new location. 

3.2.8 Beamforming and visual interface 
The beamforming application contains the major part of the system. It consists of a user 
interface and the implementations of the applied beamforming algorithms. It constructs 
all the beams for the complete scan-area and computes the required sound classification 
parameters based on this information. This all is packed in a developed shell that takes 
care of its real-time operation. The entity contains a user interface that is able to show 
an overlay of the acoustic field and camera images and lets the user set a number of 
parameters. Moreover, it keeps the user up to date about the performance of the system. 
The beamforming application also writes the constructed beam of one specific, user-
selected location or the output of one sensor to an audio stream buffer and signals it 
with the new stream number. Control and (user) interfacing is implemented in MatLab 
for convenient interface control. The demanding beamforming algorithms, on the other 
hand, are implemented in C-functions and are provided a MatLab interface. Later in this 
chapter, the beamforming application will be discussed in more detail. 

3.2.9 Audiostream buffer 
The audio stream buffer contains a single-channel 16-bit audio stream that represents 
the reconstructed audio data of a beam or a sensor. It is a buffer of only 100 
milliseconds that is updated by the beamforming application.  

3.2.10 AudioPlayer 
The developed AudioPlayer is provided an interface with the sound card of the audio 
slave. It continuously checks the audio stream buffer for a change in stream number. On 
every change of stream number, it reads the data from the file together with the 
accompanying requested playing volume. Based on the requested playing volume and a 
clipping value, it scales the audio and fills the audio buffer of the sound card, which 
plays the sound with a sample frequency of 10 [kHz].  

3.2.11 Camera 
The connected Ethernet-camera delivers camera images that are used in the calibration 
and beamforming procedures. The camera is not a required part of the system but is 
indispensable in calibration and provides a visual advantage in the beamforming user 
interface. It has a user-defined resolution which is downgraded in the beamforming 
application for performance reasons.  
 

3.3 Calibration and visual interface 

As indicated in the system overview, calibration of the array with respect to the 
deployment location is necessary before actual beamforming can be applied. Calibration 
in this sense means that the inter-sensor delays have to be determined for every grid 
point. We derive and compare two methods for doing this, after which the calibration 
user interface for the chosen method will be described. 

3.3.1 Approach 
It is possible to determine the calibration delays geometrically. Figure 3-2 [15] depicts 
the Cartesian coordinate system with a beam of length R that is defined with an azimuth 
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and elevation angleθ andφ  respectively. In this figure, the array is located in the XZ-
plane.  
 

 

Figure 3-2 Azimuth and elevation in Cartesian coordinate system. 

Again, the purpose is to determine the delays like done for a ULA in paragraph 2.1.1 
Delay and Sum but now for a 2D cross-array scanning a surface instead of a line. By 
using the discussed far-field assumption, only the beam angles with respect to the center 
of the array are used. Define a sensor position as an x-, y- and z-coordinate with, for our 
2D-array, the y-coordinate being zero for each sensor. To determine the relative inter-
sensor distance, we project the sensors on the beam from the source through the center 
of the array. The virtual, 1D sensor position on this beam then is given by: 
 

φφθ sincoscos zxpos +−=   (3.1) 

 
Applying above formula comes with a practical issue. To determine the mentioned 
projections, the exact sensor positions have to be known. Small differences between the 
assumed and actual positions will have a negative influence on the spatial response. The 
same goes for a possibly fixed phase offset between sensors. Moreover, the exact 
position and orientation of the array have to be known, making the system less portable 
for, for example, hanging constructions.  
 A solution to this is to actively determine the delays in-field. In this case the array 
can be maneuvered in any position and orientation as long as it stays fixed during 
application. Phase differences between the sensors are directly taken account for. The 
idea is that a sound source located at a grid point creates a sharp impulse that is detected 
by the sensors. By determining the differences between the arrival times of the signal 
peak between the sensors, the grid point can be associated with that set of delays. By 
doing this for a number of grid points and interpolating the delays for the rest of the 
grid, the complete area can be covered. Note that a possible echoic environment does 
not influence this type of calibration as the signal peak/trigger in the (fastest) direct path 
is detected first. Figure 3-3 shows the signals and trigger points of three sensors on 
exertion of an impulse from a grid point; the derivation of the delays speaks for itself. 
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Figure 3-3 Triggers of three sensors when generating impulse at a random grid point. 

The sharp peak is generated by hitting two triplex plates onto each other. 

3.3.2 Procedure 
The method used for generating a calibration peak is integrated in a real-time user 
interface that combines the detection of the peaks and the association with grid points 
by the provision of camera images. This procedure will be discussed using the interface 
screenshot in Fig. C-1 in appendix C.  
 
The software provides a continuous audio stream of all 32 sensors. In A, a single 
channel (sensor output) is plotted to get an idea of how the sensor signal looks like and 
to verify whether there are non-functioning sensors. The sensor that is plotted can be 
selected by the user. Together with the sensor output, the current threshold level of that 
particular sensor is plotted.  

The software continuously checks for each sensor stream whether it exceeds its 
threshold level. If this is the case, it locates the exact peak and generates a trigger for 
this particular sensor. A generated trigger will be indicated as a green bullet in B. Here, 
the total number of triggered sensors is visualized. The user is able to define the 
minimum number of triggered sensors before a ‘complete trigger’ is forced. This 
number is not fixed to the total number of sensors, because this allows ignoring defect 
sensors. If no complete trigger is forced, the interface reminds the triggers for a few 
seconds to enable the user to observe which sensors are lagging. The sensor number 
indicated in red is the so-called reference sensor. All delays are computed relative to 
this sensor. This sensor is selected by the user in advance. This means that an extra 
requirement for a complete trigger, is that at least the reference sensor has to be 
triggered; otherwise no relative delays can be computed.  

A thing already mentioned before, is that the array consists of low-cost sensors. A 
consequence of this is that they differ in sensitivity. To account for this and for the 
overall generated calibration sound level, the user can adjust the threshold level for all 
sensors or for only one particular sensor in C. If one or more sensors do not get 
triggered, in A it is easy to see how high the threshold level should be.  

If a trigger is detected, the application is ‘frozen’ and the screen in Fig. C-2 in 
appendix C will show up. This screen shows plots of all the sensor outputs in the near 
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vicinity of the timestamp of its trigger, together with the assumed trigger point. This 
extra screen is added for safety purposes: the user can verify whether the triggers have 
been detected correctly and decide to use or ignore the trigger.  

The possibility exists that a clap with the sound source exceeds the maximum output 
range of a sensor. The application notifies the user with the sensors that clipped. Figure 
3-4 shows why an overshoot makes the exact determination of the trigger time 
inaccurate: the location of the exact peak cannot be determined, leading to an offset in 
the relative delays. 

 

Figure 3-4 A clipping sensor with its detected trigger point. 

If the user confirms the trigger, it can assign the exact location of the calibration 
point in the frozen camera screen D. The application then saves the coordinates of the 
calibration point, indicated by the red cross, and computes all the relative sensor delays. 
For convenience, all the calibration points remain plotted on the camera screen to obtain 
a clear overview of the calibrated grid.  

E is added to account for a slightly delayed camera stream. On a trigger, the software 
creates a one-second buffer of camera images. With this buffer, the user can forward the 
camera stream to the exact point of triggering to obtain the correct calibration location.  

 
After a number of calibration points have been obtained, the user can decide to finish 
calibration. At this point, the software will compute the relative delays of all the other 
points in the grid by means of interpolation. The grid will match and cover the complete 
camera screen. This means the grid points and therewith the beams are related to the 
camera position and orientation used with calibration. It may be possible to relate them 
with a camera in an other position by projecting the grid points on a virtual surface with 
known, fixed locations and translating it to an other camera.  

When the calibration is finished, the real-time beamforming application is ready to 
start. 

3.4 Beamforming and visual interface 

3.4.1 Implementation and interfacing 
 
The execution of real-time beamforming is the main element in the system. It uses the 
computed delay vectors of the calibration procedure for reconstructing the power 
spectra of the sound emitted from every grid point in the scan area. The current 
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application uses 225 (15 x 15) filter vectors to recover the sound field of a 2D-grid. 
With the obtained power spectra, the MFCC-coefficients, pitch- and RMS-values are 
computed for every beam. These parameters will be the input of the sound classification 
algorithms that will be developed in a later stage of the project. This paragraph will give 
a more detailed description of the beamforming module.  
 
Besides the software that takes care of all the computations and control, a simple user 
interface is integrated with the application to provide some user interaction and audible 
and visual information. Like in the description of the calibration procedure, this 
interface, depicted in appendix D, is used along with the explanation of the 
beamforming module.  
 
The application provides three beamforming methods: Delay and Sum (DAS), static 
MVDR (SMVDR) and dynamic MVDR (DMVDR), having increased resolution 
respectively. DAS and SMVDR both have equal execution time as the appropriate filter 
coefficients are computed independent of data and therefore can be computed in 
advance. DMVDR has the highest computational demand. In A, the user is able to select 
the desired beamforming method. Applications or test sites that require only little 
spatial resolution or of which only information of higher frequencies is necessary, can 
make use of only DAS beamforming. If particular sound classification algorithms, for 
example, need higher resolution at lower frequencies, one could decide to enable 
SMVDR or DMVDR beamforming.  
 The software continuously checks the buffer file for incoming, raw audio streams. 
The streams are cut in frames; decoded to reconstruct the actual audio data and finally 
an FFT is performed to translate them to a frequency domain representation after which 
they are cut off to a frequency range of 350 to 1500 [Hz]. The length of a used audio 
frame is fixed to 100 milliseconds. It is cut in two frames of 50 milliseconds on which 
the FFT is performed. The spectra then are added together to form the spectrum of the 
100 millisecond audio frame. The decision for this length is based on a balance between 
execution time and signal stationarity. As discussed earlier, DMVDR beamforming is a 
computationally complex algorithm. By increasing the frame length, there is more time 
for executing the algorithm. Because an increase in the amount of samples also gives an 
increase in the number of frequencies, the frame is split and added afterwards to remain 
with the same frequency resolution. This frequency resolution or bandwidth is chosen in 
accordance with an allowable maximum absolute beam angle deviation of 1.5 [º], as 
discussed in paragraph 2.1.1.3 Narrowband assumption. This deviation accounts for the 
worst case: the lowest processed frequency at the maximum absolute viewing angle of 
45 [º].  

Using a frame of 100 milliseconds is not optimal. It depends on the type of sounds 
we are interested in, but, for example, speech would rather be considered stationary for 
an interval of 25 to 50 milliseconds. The same goes for other sounds like, for example, 
breaking glass. The effect of using a processing interval that is too long is that the 
obtained frequency spectrum is less specific/detailed. In other words: the influence of a 
frequency that is present for only 50 milliseconds is diminished in the obtained, 
beamformed signal due to the decrease in relative share in the complete frequency 
spectrum. This decreases the differentiation of a specific signal which will influence the 
anomaly detection in a negative way. Still, preliminary results have shown that the 
obtained frequency spectra of beamformed audio frames containing anomalous sounds, 
do possess sufficient differentiation with regard to non-anomalous sound frames. Extra 
research and testing must point out the validity of this decision. An option is to utilize a 
platform with more processing power to compensate for the loss in execution time. 
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Returning to the user interface, in B the user can select to plot the incoming video 
stream in C, possibly overlaid with a transparent plot of the reconstructed, acoustic 
field. The plotted acoustic field is represented by the RMS-values of the beams plotted 
in a dynamically regulated color distribution, ranging from red (high value) to blue (low 
value).  
 The slide bars in D are assisting in user-specific desires by defining the color scale 
interval. The threshold slide bar defines the default upper scale limit. This means that 
RMS-values equal to this limit will get the highest (red) intensity. The lowest intensity 
(blue) then is defined by this limit minus the user-defined range. RMS-values in 
between will be plotted by a color matching linearly with the color scale. RMS-values 
lower than the lower limit will all be plotted with the lowest intensity. RMS-values 
exceeding the upper level will dynamically lift the scaling interval. The new scaling 
interval then will be reminded for one extra frame to visually distinguish lower-
intensity echoes. A higher RMS-value, however, will still overrule the reminded scale. 
Choosing a small range will narrow the visual area of a source, but also reduce the 
ability to see lower-intensity sources. Figure 3-5 summarizes above elucidation. 
 

 

Figure 3-5 Dynamic RMS-colour scaling. 

Dynamic scaling is applied to obtain more visual information, while on the other hand 
provide the ability to filter away ambient noise levels and only visualize very 
exceptionally high sound intensities. Up till now, this is the only visual part. After 
incorporating sound event detection, extra visual effects can be added in, indicating the 
occurrence and location of an event. 
 
In the beginning of this chapter, we already introduced that the decision for a PC as 
implementation platform involves the possibility of a changing amount of available 
processing hardware and memory; both platform-varying and time-varying. Consider 
the use of DMVDR beamforming and the sudden decrease in available memory and/or 
assigned CPU-time due to other applications with (temporarily) increased demands. If 
the application would continue with its intensive tasks, it would not be able to keep up 
with the data rate and data would be lost after a while. Of course, the data buffer could 
be enlarged, but this would mean we would build up an increasing input-output delay, 
which is not allowed according to the system requirements. A solution to this could be 
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to switch to DAS or SMVDR beamforming. A more elegant way, however, is to 
dynamically adjust the number of frequencies processed by DMVDR and leave the rest 
to a simpler beamforming method. In this way, the system will deliver the best possible 
solution with the current provisions, instead of applying a binary decision for 
processing all frequencies with DMVDR or none. In addition to this, the system can run 
on almost every system, regardless of its hardware constraints. Of course, if a user 
provides a system meeting the proposed hardware constraints, the application can 
provide full DMVDR if the user prefers that. 
 Block E in the user interface shows the frequencies that are processed by DMVDR, 
defined as an interval Fl  - Fh in [Hz]. The user can choose a fixed frequency interval by 
hand or decide to let the application drive the number of frequencies to its maximum. In 
the latter case it is still possible to shift the interval. In either case, the application is 
always in control of the number of processed frequencies. By determining the ratio 
between execution time and data rate, it is able to assess its performance. Performance 
ratios up to a certain limit will allow or enforce the addition of frequencies that are 
processed by DMVDR. When exceeding an upper limit, it will automatically switch 
back the number of frequencies. The system will drive the performance ratio up to 
about 90% to obtain some interaction time on changing circumstances. A ‘rest’ interval 
is used to avoid oscillation (see Figure 3-6). If the user does not select a fixed interval, 
the application will start adding in low frequencies because here the advantage of 
DMVDR is biggest. For user convenience, the ratio between execution time and data 
rate is visible in F. 
 

 

Figure 3-6 DMVDR frequency processing scheme. 

With the last part of the interface, block G, the user is able to determine the type and 
volume of the audio stream that is constructed for the AudioPlayer. The usage speaks 
for itself. When deciding to listen to a beam, the user can press a point in the screen, 
indicated by the red cross. The reconstruction of the complete audio signal is performed 
by beamforming over the complete frequency spectrum (up to the Nyquist frequency) 
for that particular beam, disobeying the spatial aliasing constraint. The reason for this is 
the appearance of audible artifacts when cutting the signal at 1500 [Hz]. Still, 
alleviation is that listening to a beam is introduced for providing the ability of 
eavesdropping persons, i.e. listening to speech. Because most speech is within a 
frequency range of 500-1500 [Hz], the speech signal will only be marginally distorted 
by other speakers. Of course, there remains the possibility of interference by higher 
frequency sources at spatial aliasing positions. DAS is used as the beamforming method 
for audio reconstruction. The high resolution of DMVDR beamforming can filter the 
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desired speaker signal completely away on small speaker movements. Furthermore, the 
relatively low resolution of DAS beamforming allows listening to a small group of 
adjacent people which was indicated to be more useful than listening to only one 
person. 

3.4.2 Performance and speed-up 
Although the system is able to cope with an undesired or changing availability of 
hardware facilities, we still would like to provide an adequate solution on systems with 
‘average’ hardware properties. Average properties in this sense can be defined as the 
properties of a relatively conventional personal computer. As a baseline platform, the 
complete system is tested independently on a 2.99 [GHz] dual-core Intel E6850 
computer with 3.25 [GB] of RAM and on an Intel E8600 computer with a slightly faster 
dual-core of 3.33 [GHz]. On the ‘slowest’ of the two, the Intel E6850, the system was 
able to process the full beamforming spectrum using DMVDR and to still provide all 
user interfacing (plotting camera stream, plotting acoustic fields etc.) as outlined before. 
At this point, the system uses 74% of its maximum allowed execution time. Achieving 
such a performance can not be called quite effortless. Therefore, this paragraph will 
outline a few optimization highlights. 
 
The part of the software that is most demanding is the beamforming procedure itself, 
which accounts for about 90% of the mentioned execution time. Therefore, the 
discussed optimizations will relate to this part. The DMVDR algorithm is implemented 
in C for speed-up purposes as MatLab as a script language lacks performance. In the 
discussion about complexity of DMVDR beamforming in paragraph 2.2.1.4 
Computational complexity, an estimate of computational complexity was made. To 
make this more concrete, in the current application we need about 

7108× multiplications, 7108×  additions and 4103× divisions to process the frame of 
100 milliseconds, neglecting the FFTs. The trick is to remove as much overhead as 
possible; make the operations that are executed most, take the least number of execution 
cycles and to make optimal use of the arithmetic facilities of the CPU. Furthermore, 
attempting to make efficient use of cache memory can considerably reduce memory 
latencies. Here are a few optimizations. 
 
Loop unrolling 
A simple way of reducing the amount of control overhead is (partly) unrolling for-
loops. In this way loop-index incrementation and the number of checks for re-entering 
the loop are diminished. To remain having a balance between generality and 
optimization, a loop that has to be traversed 32 times, one time for each sensor, is 
unrolled to be traversed two times: one time for each 16 sensors. This makes the use of 
larger, acoustic arrays easier, though still requiring the array to contain a multiple of 16 
sensors. Code 3-1 shows an example code snippet. 
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Code 3-1 Change from generic loop (above) to unrolled loop (below). 

Enforcing column-major accessing 
The delay vector matrix used for filtering has three dimensions: the number of sensors, 
frequencies and beams. They are passed through a MatLab interface to the C-function 
where the other side of the interface treats them as one long array. By choosing a 
convenient arrangement of the dimensions of the matrix in advance, we can step 
through the array without performing index translations. This saves index computations, 
but also makes efficient use of cache memory as almost all caches fetch complete 
blocks of memory-adjacent variables from memory.  
 
Output pre-allocation 
Instead of allocating memory for the DMVDR output in the C-function on every call, 
memory is pre-allocated at start-up of the system and the (empty) output variable is 
passed to the C-function by reference. This relieves the processor from searching for 
and allocating available memory on every function call. 
 
Arithmetic distribution 
The processor contains multiple units in the ALU (Arithmetic Logic Unit) that can 
perform the same specific operation, e.g. multiplication, addition etc. Ideally one would 
like all the necessary ALUs to be filled continuously. It may be possible that the 
compiler optimizes the code in such a way that this is already achieved. Still, the code 
tries to enforce this in two ways: by enforcing operation parallelism and at the same 
time avoid pipeline stalling due to structural7 and data hazards8. Operation parallelism is 
enforced by including multiple operations of the same type in one statement. Finally, by 
mixing different types of operations in one statement, all the different types of ALU-
units are used at the same time. If, on the other hand, first all additions would be 
executed, the addition units would be overloaded (structural hazard) and the other units 
must wait for the results of those operations to use as their inputs (data hazard). 
 
 

                                                        
7 Structural hazards are hazards that occur when part of the hardware is needed by multiple instructions at 
the same time. 
8 Data hazards are hazards that occur when one or more instructions have to wait for data generated by a 
previous instruction. 

for(n=0; n<numberOfSensors; n++){ 
 <operation>; 
} 

assert(numberOfSensors%16==0); 
 
for(n=0; n<numberOfSensors/16; n++){ 
 <operation>; /*1*/ 
<operation>; /*2*/ 

… 
<operation>; /*16*/ 

} 
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Code 3-2 Enforcing execution parallelism and avoiding data hazards. Above: before. Below: after. 

Code 3-2 gives a very simple example to point out the approach to achieve this.  
 Depending on the type of processor, this may already be partly taken care of by static 
and dynamic instruction scheduling9. Still, to try to make the execution time 
independent of processor type (except for the amount of hardware facilities), this is 
already tried to be manipulated. 
 
Compiler type 
The integrated compiler of MatLab is able to compile C-functions with a MatLab-
interface. It is not very good in performing code optimizations though. The use of a 
different compiler provides the ability to scrape away the last code deficiencies, though 
the influence is not very significant anymore. The GCC-compiler with MatLab 
integration and a preset maximum optimization level is used for this purpose. A 
compiler dedicated for the type of processor can optimize the code even further, but is 
deliberately not chosen. A negative property of these compilers is that when deploying 
the compiled code on a different type of processor, execution time can increase 
dramatically. Because we are not yet aware of the final deployment platform and to 
keep the solution available for other platforms in a later stadium, this could be risky. 

3.5 Evaluation 

The developed system has been verified and tested in three different environments: in 
an anechoic room, on the street and in a reverberant foyer. This paragraph will first 
briefly reflect on the requirements, postulated in the introduction and will finally 
summarize the observations made concerning beamforming performance. 
 
The delivered system meets the requirements mentioned in the introduction, by 
providing MFCCs, pitch frequencies and RMS-values, considering the complete 
beamforming frequency spectrum of 350-1500 [Hz]. All these parameters are computed 
10 times per second for every one of 225 beams, covering a grid defined by the position 

                                                        
9 Instruction scheduling is used to put the instructions in such an order that control, structural and data 
hazards are avoided. It can be performed statically (by the compiler) or dynamically at runtime (by the 
processor). 

for(n=0; n<noIters; n++){ 
 value1 = a[n] * a[n]; 
 value2 = b[n] * b[n]; 
   …       … 
 value12 = m[n] * m[n]; 
 
 out[n] = value1 + value2; 
 out[n] += value3; 
   …   … 
 out[n] += value13; 
} 
 

for(n=0; n<noIters; n++){ 
 out[n] = a[n] * a[n] + b[n] * b[n] + .. + h[n] * h[n]; 
 out[n] += i[n] * i[n] + j[n] * j[n] + .. + m[n] * m[n]; 

} 
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of the array in combination with an acoustical (and visual) azimuth and elevation 
opening angle of 90 [º].  
 The user is provided with an interface, showing a continuous stream of camera 
images, overlaid with the acoustic field, constructed by the computed RMS-values. The 
user has the ability to select a sensor output or a specific point in space to which it can 
listen. Extra interface buttons provide audio volume control and visual acoustic field 
scaling capabilities.   
 Finally, referring to the important real-time aspect, the system is able to keep up with 
all incoming data from the array used for this particular project. Regarding the 
maximum allowed average input-output delay of 500 [ms], the system meets the 
requirements as can be seen in Table 3-3.  
 
Availability of: Average I/O delay [ms] Maximum I/O delay [ms] 
Parameters  170 360 
RMS- and camera-plot 190 380 
Audible audio signal 390 580 

Table 3-3 Measured average and maximum input-output delays. 

The delays are measured on the reference systems, listed in paragraph 3.4.2 
Performance and speed-up. The maximum input-output delays listed in the table, are 
observed very rarely due to the non-real-time properties of the deployment platform. 
This maximum delay may slightly increase and may occur more frequently on systems 
running other applications with strongly varying processing demands. Still, because the 
system dynamically increases the number of frequencies processed by DMVDR up to a 
‘safe’ execution time limit, the influence of this is decreased to a minimum. Due to the 
adaptive structure of the system, the average delay will not increase when deploying the 
application on systems possessing less optimal hardware conditions.  

 
The system is tested in an anechoic room. Scenarios with one and multiple coherent and 
non-coherent sources have been demonstrated giving beamforming results similar to 
those obtained in simulations. The only observed difference is that, due to the use of 
slightly noisy sensors, the maximum angular resolution decreases from 5 [º] to 
approximately 5.5 [º]. 
 The application of the system in an asphalted area introduced one or two 
reverberation paths, depending on source position. The beamforming algorithms are 
still able to separate this total of three, possibly virtual, sources depending on source 
location, signal frequency and signal stationarity. 
 The application of the system in a foyer with a large number of reflective elements 
such as walls, floor and ceiling, deteriorate the ability of spatial filtering. The type of 
signal seemed to play an important role: highly stationary signals cause large variations 
in constructive and destructive interference between the direct source signal and 
reflections at particular points in space, sometimes making the created virtual source 
stronger than the original source. On the other hand, for less stationary signals like, for 
example, breaking glass, this effect vanishes. Reverberations are still noticeable, but 
highly attenuated and at a later point in time, providing the ability of filtering them 
away in sound classification and detection. 
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4 Conclusions and recommendations 

This chapter will describe the conclusions that can be drawn from the previous chapters 
and will address some possible recommendations for future work. 

4.1 Conclusions 

A number of beamforming methods have been outlined and evaluated with respect to 
performance, complexity and practical implementation.  These are some conclusions 
that can be drawn: 
 
• Compared to conventional, frequency-invariant beamforming methods like DAS, it 

is clear that MVDR beamforming delivers a significantly increased, spatial 
resolution, especially at lower frequencies (<1000 [Hz]).  

 
• Static MVDR has the advantage of having an equal computational complexity as 

conventional DAS beamforming, but at the cost of less interference reduction in 
noisy or multi-source environments.  

 
• Dynamic MVDR actively tries to filter away interference by making use of the 

output signals of the sensors. This dynamic filter increases spatial resolution but 
also increases computational complexity.  

 
• LCMV beamforming can deliver a contribution in actively filtering away 

interfering noise sources, but needs additional information on interferer locations 
which, in this application, is an impractical requirement.  

 
• The use of adaptive filtering methods (AGSC) in order to alleviate complexity is 

not suitable: measures that have to be taken for reducing computational complexity, 
have a substantial negative effect on required convergence rates, making the 
application of it unacceptable. Especially with regard to the blocking filter, used as 
a first step in adaptive noise cancelling, high convergence must almost be a 
certainty for avoiding target signal cancellation.  

 
The spatial structure of the current array limits the application of beamforming and 
parameter generation to a frequency bandwidth of 350-1500 [Hz]. The upper cut-off 
frequency is derived from the spatial aliasing constraint. The lower cut-off frequency 
relates to the ability of the array of distinguishing multiple coherent sources. 
 
The developed system uses the optimal DMVDR method for beamforming, taking into 
account its complexity and the varying amount of available hardware resources by 
dynamically changing the number of frequency bands that are processed with this 
algorithm. Still, tests on a regular, 4 GB, 2.99 [GHz] dual-core PC, show full bandwidth 
processing ability with DMVDR beamforming, while still providing all user interfacing 
and parameter generation.  
 
In-field system calibration avoids dependencies on array structure, positioning and 
orientation and consequently increases system portability. Also, the negative influence 
of flaws in future array designs, with respect to exact sensor positioning and phase 
differences between sensors, is prevented by using in-field calibration.  
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Finally, a system is delivered that meets the requirements postulated at the start of the 
project and is ready for use. It has retained both deployment flexibility and extendibility 
to specific purposes, making it a solid base for further development. The initial 
prototype with the present functionality already provides sufficient user information for 
utilizing it in a range of applications that solely aim at obtaining a preliminary image of 
the acoustic field and its parameters and require the ability of eavesdropping. 
 

4.2 Recommendations 

As indicated in the evaluation of the beamforming methods reflected on the currently 
used array, the structure of the array is not optimal. The spatial aliasing frequency of 
1500 [Hz] may be too low for sufficiently supporting the classification of specific 
sounds. To increase this frequency, the sensor spacing must be decreased. A 
disadvantage of this is that the total array aperture will also decrease when the same 
number of 32 sensors is used. This will decrease resolution at lower frequencies. To 
keep a balance between the resolution at higher and at lower frequencies, a logarithmic 
sensor distribution is recommended: smaller sensor spacings near the center of the array 
and larger spacings towards the outside of the array. The required distance between the 
sensors at the center of the array of course depends on the desired upper cut-off 
frequency.  
 
The application of the system in reverberant environments will have a negative effect 
on the spatial filtering ability. Signals exerted from one source will arrive at multiple 
time instances at the array and from different directions. This means that the same 
signal is detected from multiple directions at different points in time, depending on the 
room impulse response. It is also possible that the reverberations of relatively stationary 
signals will amplify or attenuate each other, such that one or more (possibly stronger) 
virtual sources are created at different locations. 

To slightly diminish this effect, the use of directional microphones is advised. The 
current microphones are omni-directional, which introduces spatial aliasing at the 
backside of the array and increases the sensitivity to reverberations from the backside of 
the array. If there are no reflective elements behind the array, the use of omni-
directional microphones will not cause any problems. In other cases, reducing the 
opening angle of the microphones to about 90 [º], will contribute in the decrease of the 
influence of reverberations. When doing this, it must be kept in mind that the array 
position and orientation still ensure coverage of the complete surface to scan.  

If reverberations are still an issue, special anti-reverberation beamforming algorithms 
may provide a solution. These methods, however, mostly are computationally intensive, 
which is a burden for this particular application. 
 
The current system is able to process the complete frequency spectrum with DMVDR 
on a regular PC and to provide all user interfacing and parameter generation. A possible 
reformation of the array will increase the total frequency bandwidth and therewith the 
required amount of computations. Also, routines added for sound classification and the 
possible reduction of the processing window of 100 [ms] will increase computational 
demands. If the application of one or more of these measures will significantly increase 
required execution time, with the consequence of a decreased number of frequencies 
processed by DMVDR, the beamforming algorithm can possibly be speeded up. The 
way of doing this is by making use of the Graphical Processing Unit (GPU). The GPU 
architecture is strongly structured towards parallel computing. It is used in applications 
that need to perform large amounts of the same operations as in, for example, video 
processing. The important difference with regard to a CPU is that a CPU uses more 
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hardware for memory as opposed to arithmetic while a GPU is structured oppositely 
(Figure 4-1 [42]). 
  

 

Figure 4-1 Processing architectures. Left: CPU. Right: GPU.  

Compute Unified Device Architecture (CUDA) is a general purpose computing 
architecture that supports the use of the GPU for compute-intensive tasks. Dedicated 
libraries provide the interface between CUDA and applications written in C, C++, 
Fortran etc. 

The early and experimental stage of this project did not yet allow the somewhat more 
complicated use of GPU programming. The currently achieved processing performance 
for this particular application neither demands a faster solution yet. However, in a future 
stage this may be desired.  
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A   Array structure 

2D (front sight)

1D
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L = 1.56 [m]

0.26 [m]

 
 

Figure D-1 Array structure. Above: complete 2D structure. Below: 1D-projection. 



 

 

 

TNO report | TNO-DV 2012 S007 | 1 February 2012  76 / 81

B Gauss-Jordan inversion complexity 

Gauss-Jordan elimination for the construction of a matrix inverse is performed by 
applying a set of elementary row operations both on the matrix to invert and the identity 
matrix, such that the original matrix is transformed to the identity matrix. 
Mathematically: 
 
( ) ( )BIIA →  with 1−= AB   (B.1) 

 
With A being the matrix to invert, I the identity matrix and B the inverse of A, all having 
the same (square) dimensions. To derive the number of operations involved, an example 
will be described. Consider the inversion of matrix A like in Eq. (B.1) such that the 
initial augmented matrix is defined as:  
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With B[n] denoting the augmented matrix after step n. For every step, the number and 
types of operations will be given next to the equation. To reduce the number of 
operations in the next step, the first step is to divide row R1 by its main diagonal entry. 
Though this diagonal entry is equal to one in this particular example, this is always the 
initial step and has to be catered for: 
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(B.3) 

 
The second step is to obtain zeros at the entries in the first column that are not on the 
main diagonal: 
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Again, the next row is divided by its diagonal entry:  
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By dividing the last row by its diagonal entry, the row echelon form becomes: 
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To generalize the above for an NxN-matrix, the number of additions equals the number 
of multiplications, defined by: 
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The number of divisions up till now can be defined by: 
 

2NDIV =    (B.9) 

 
To reduce matrix B[n] further to the reduced row echelon form, first the non-diagonal 
entries of column C3 are forced to zero: 
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The same step is applied for column C2: 
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The total number of multiplications and additions for this second part is then again 
defined as: 
 

( )
22

/
231

1

NN
nNNADDMUL

N

n

+=−= ∑
−

=

  
 (B.42) 

 
The combined total number of multiplications and additions then becomes: 
 

23/ NNADDMUL +=    (B.53) 
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The combined total number of division remains: 
 

2NDIV =    (B.64) 

 
This example is illustrated using real numbers and real operations. The possibility of 
complex numbers and operations has to be taken into account. 
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C   Calibration interface 

 
Figure C-1 User interface calibration screen. 

 

 
Figure C-2 Pop-up screen with generated triggers. 
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D Beamforming interface 

 
Figure D-1 User interface beamforming. 
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E Parameter computation 

Mel-frequency Cepstral Coefficients  
Mel-frequency Cepstral Coefficients (MFCCs) are coefficients that are based on 
exploiting the logarithmic property of the human auditory system. They are often used 
in speech and speaker recognition [36, 38]. For a general time-domain (windowed) 
audio frame, they are computed as follows [36, 38, 39]: 
 
1. Take the Fast Fourier Transform. 
2. Map the powers of (1) onto the Mel-scale, by filtering them with triangular 

overlapping windows with a logarithmic distribution as depicted in Fig. E-1. 
Integrating the outputs per filter delivers the Mel-scale powers. 

3. Take the logarithm of the powers of (2). 
4.  Take the Discrete Cosine Transform of (3). 
5. The amplitudes of (4) are the MFCCs. 
 

 
Figure E-1 Representation of the Mel-scale filters. 
 
Pitch frequencies 
The pitch frequency indicates the frequency with the highest power within the 
considered range of frequencies.  
 
Root Mean Square-values 
According to Parseval’s theorem [37], the RMS-value of a signal can be determined in 
frequency domain according to: 
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 (E.1) 

 
With Nf being the number of outputs of the Fourier Transform and X(fn) being the output 
of the Fourier Transform of the signal at frequency fn . 
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