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Abstract: Action statistics in sports, such as the number of sprints and jumps, along with the details
of the corresponding locomotor actions, are of high interest to coaches and players, as well as
medical staff. Current video-based systems have the disadvantage that they are costly and not
easily transportable to new locations. In this study, we investigated the possibility to extract these
statistics from acceleration sensor data generated by a previously developed sensor garment. We used
deep learning-based models to recognize five football-related activities (jogging, sprinting, passing,
shooting and jumping) in an accurate, robust, and fast manner. A combination of convolutional
(CNN) layers followed by recurrent (bidirectional) LSTM layers achieved up to 98.3% of accuracy.
Our results showed that deep learning models performed better in evaluation time and prediction
accuracy than traditional machine learning algorithms. In addition to an increase in accuracy, the
proposed deep learning architecture showed to be 2.7 to 3.4 times faster in evaluation time than
traditional machine learning methods. This demonstrated that deep learning models are accurate as
well as time-efficient and are thus highly suitable for cost-effective, fast, and accurate human activity
recognition tasks.

Keywords: artificial neural networks; convolutional neural networks; deep learning; football; HAR;
human activity recognition; IMU; LSTM; machine learning; soccer

1. Introduction

The world of sports has seen a continuous and rapid increase in the usage of technology
in both competition and training during the last decades. Specifically in football (soccer),
it is nowadays common to see players training and even playing competitive matches
wearing vests with GPS trackers below their shirts. These vests can track the players during
the whole training or match and give information about their location, distance traveled,
speed, power, intensity, and heart rate, among others. These values can be processed
to give the players, trainers, and journalists a very detailed analysis of each player’s
performance. During the last decade, the scientific community has shown important
advancements in Human Activity Recognition (HAR) and, since technology and sports
have developed a mutually beneficial relationship, there is a higher demand for systems
capable of recognizing specific football-related activities.

If a coach, team, or player has information about which activities the player performs
during a match or training, it enables a more detailed analysis of the player’s performance.
A more complete assessment of the player’s movements and loads gives the teams the
possibility of better training planning, a personalized follow-up to each player, and even a
potential way to prevent, treat, and understand injuries. Nowadays, activity classification
is done either manually or with the aid of cameras. To this end, it is required to have a
large number of high-quality cameras equipped with artificial vision technologies or a
considerable number of human labelers. Both of these two options are very expensive and
can only be afforded by elite teams. This problem calls for the usage of a low-cost activity
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recognition system that is also affordable for smaller teams. Sensors are continuously being
developed to be smaller, cheaper, and highly accurate (for example, [1]), so their use is a
clear solution to this problem. They can be incorporated into the player’s sportswear and
provide reliable, real-time measurements of different body parts.

This paper studies the usage of deep learning-based models for football (soccer)
activity recognition based on acceleration and angular velocity signals obtained from
Inertial Measurement Unit sensors (IMUs). This is done in contrast to traditional machine
learning approaches, in which a non-neural network-based model, such as k-nearest
neighbors (kNN), decision tree, or support vector machine (SVM), is used to recognize
an activity. Traditional methods require a manual process of feature extraction, while
the deep learning models take this part into account by themselves. Furthermore, with
this work, it is intended to use the raw signals from the IMUs and evaluate how robust
the deep models are with respect to the signals acquired on different players. This is
why little or no preprocessing will be applied to the sensor outputs, trying to recreate
real-life scenarios. Different deep architectures will be proposed for the models and their
performance and evaluation time will be examined. Furthermore, a complete training and
evaluation pipeline will be designed, in which also the preparation of the training dataset
and the strategy for the evaluation phase via a sliding window approach will be taken
into account.

The way this paper is structured is as follows. A literature review of the state of the art
of methodologies based on sensors in the field of Human Activity Recognition is presented
in Section 2. In it, both traditional machine learning and deep learning approaches are
shown with their comparison of results, best practices, and challenges. Section 3.1 presents
the dataset that was used for training and validating the models. An activity detection
algorithm is presented, which is needed for the training phase. In Section 3.2, the training
of several deep learning models is thoroughly explained and discussed; and in Section 3.3,
the proposed evaluation pipeline is presented, with which the activities present in a given
recording can be effectively recognized. The results of the training scenarios and the
complete pipeline are shown in Section 4, which are then discussed in Section 5 with the
conclusive remarks and future research recommendations.

2. Related Work
2.1. Machine Learning for Football Activity Recognition

Identifying and recognizing human activities using signals obtained from Inertial
Measurement Sensors (IMUs) is an area of machine learning and signal processing that has
recently been studied by several authors. Recognition of daily activities, such as walking,
climbing stairs, or sitting is especially popular amongst researchers, due to the availability
of public domain datasets composed of these types of movements, and the possibility
to easily compare the results with previous works [2–9]. On the other hand, studies on
recognition of sport-specific activities (such as football, tennis, table tennis, or golf) are less
frequent because building these types of datasets is difficult due to the costs involved in
resources and time [10–16]. However, since the nature of the signals is in many cases the
same, it is possible to build upon the works of authors who have studied Human Daily
Activity Recognition to build accurate and efficient methods designed for an application in
a specific sport. The focus of our study is the application in football (soccer).

2.2. Traditional Machine Learning Approaches

Human Activity Recognition applications can be developed based on two types of
algorithms. The first one will be referred to as traditional machine learning approaches,
in which the input features from the signals are manually defined and extracted. This
process is not only heavily manual and subjective but is also extremely time-consuming [3].
Common choices of those features are the mean, standard deviation, maximum, minimum,
kurtosis, and coefficients of the Fast Fourier Transform [2]. After that, classification is
performed using traditional (non-neural network based) algorithms, such as Support
Vector Machines (SVM), Decision Trees (DT), k-Nearest Neighbors (kNN), among others.
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Several research papers have been written in which Human Activity Recognition is
made with these approaches. In all of them, a manually selected set of features is extracted
from the signals, usually containing a combination of time- and frequency-domain metrics.
The majority of those works focus on daily human activities [3–9]. Others consider specific
sports, such as table tennis [10], tennis [11], skateboarding [12], or volleyball [13]. Among
the reviewed articles, ref. [14] studied Human Activity Recognition with application on
football. They reported an accuracy of 88.6% on their dataset when using linear SVM.
Some years later, ref. [17] developed other algorithms to further explore Football Activity
Recognition. In that work, they developed a hierarchical architecture to recognize full-
instep kicks, side-foot kicks, or null activities (other movements different from kicks, such
as dribbling or running). Their method includes an initial filtering of the signals followed by
a peak detection algorithm. The detected peaks are then isolated, a set of several manually
selected features are extracted for each peak, and finally, the movement is classified as
either a kick or not. They achieved an accuracy of 94% using a Naive Bayes classifier.

Traditional machine learning algorithms require direct human input. Not only for the
extraction of relevant features from the input signals but also because in many cases, those fea-
tures are scale-dependent and sensitive to noise. Hence, performing additional preprocessing
is necessary. Various preprocessing techniques are used: filtering [4,10,13–15], normalization,
standardization [10,13,15], and the usage of norms [4,10,13,14] are common practices. Stroke
detection is also frequently used in sports-related applications [10,11,13,15].

2.3. Deep Learning Approaches

“The traditional feature engineering methods are becoming more and more incapable” [18].
The second approach for Human Activity Recognition is based on neural networks. One
of the most powerful and interesting capabilities of the deep learning approaches is their
ability to perform feature extraction without direct human input. This is one of the reasons
why recent researchers in areas such as Human Activity Recognition have abandoned
traditional approaches in favor of deep learning architectures [19]. An additional important
consideration is the general lack of a preprocessing phase of the sensor signals prior to their
input into the deep networks. When working with deep learning architectures, the raw
signals from the sensors can be used directly. The feature extraction process done by the
convolutional and/or recurrent layers can be robust enough to work without any signal
preprocessing step.

Moreover, recent works have shown that the use of deep learning approaches for
Human Activity Recognition is not only beneficial in terms of feature extraction, but also in
achieving high accuracies. The study performed in [2] does an extensive review of different
approaches for Human Activity Recognition, and concludes that, on average, traditional
machine learning algorithms obtain an accuracy of 83.3%, while systems based on deep
learning achieve a much better 94.9%. They also expressed that there are more studies
around traditional machine learning algorithms in comparison to deep learning ones, which
shows that the use of the latter in Human Activity Recognition tasks is promising, but not
yet fully explored.

No relevant scientific publications related to the use of deep learning approaches
with sensor data for football activity recognition were found, whereas a large amount of
works where these types of algorithms are used for Human Daily Activity Recognition
is available. Since the nature of the signals and the ultimate goal of those studies are
very similar to the objective of this paper, their methodology and results were considered.
Convolutional Neural Networks (CNNs) are very popular because “CNN-based models are
able to extract and leverage latent feature representations in time series with high tolerance
of time translation; thus, results outperform methods based on hand-crafted features” [16].
In that paper, many different deep architectures were reviewed: from CNN composed
of consecutive convolutional layers to more complex and modern possibilities, such as
inception CNN and residual CNN. However, “ (...) CNN lacks the capability to capture
temporal dependency in time-series sensory data. RNN (Recurrent Neural Network) is
designed to model time series data, and it is suitable for discovering relationships in
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temporal dimension” [20]. This is the reason why the usage of Recurrent Neural Networks
was also evaluated by other authors, mainly using Long Short-Term Memory (LSTM) units.
A very interesting approach is the combination of CNNs and RNNs to build a larger and,
according to the authors of such papers, better performing network. Examples of such
architectures are the ones proposed by [18–21], where usually an RNN (mainly composed
of LSTM units) extracts temporal relations of the signals following a feature extraction
process made by a CNN.

2.4. Background on Deep Learning

Unlike traditional machine learning algorithms, deep learning refers to the use of
models based on stacked layers of artificial neural networks. By using multiple layers, it is
possible to train the model to progressively extract and learn complex features from the
inputs. This has a huge advantage over traditional machine learning algorithms since deep
learning models perform both feature extraction and the specific machine learning task.
There are many different types of neural networks based on variations of the basic structure
of artificial neurons. In particular, this work focuses on two of those types: Convolutional
Neural Networks and Recurrent Neural Networks (specifically LSTMs).

2.4.1. Convolutional Neural

Convolutional Neural Networks (CNNs) are a type of deep learning models that were
originally designed to tackle artificial vision and image processing problems. Studies on
vision and perception of shapes in the human brain showed that the neurons responsible
for those tasks have receptive fields. This means that each cell responds to a certain pattern.
The combination of these simple patterns generates more complex ones that are furthermore
combined so that the brain can finally interpret and understand the image. Convolutional
neural networks try to replicate this behavior and have shown impressive results in a huge
variety of machine learning applications. Although originally designed for recognizing
shapes and figures in images, CNNs can also be used to extract patterns from signals.

The general idea of CNNs is based on two types of operations [22]:

• Convolution
In a convolutional layer, the input data are convolved with a certain number of kernels
or filters. A filter k is traversed through all the points of the input image (or signal)
and on each location, the convolution between the filter and the overlapping area of
the data is calculated. The usage of each filter results in a new convolved image (or
signal) called a feature map. The combination of all the k filters with different weights
then generates a set of k feature maps.

• Pooling
It is a common practice to include pooling layers after convolutional ones. These types
of layers condense information from spatially or temporally close points to reduce the
data size. In neurology, a receptive field of a neuron is defined as the region in which
the presence of a stimulus triggers the response of that particular neuron [23]. Pooling
layers introduce the concept of receptive fields into CNNs because they condense
information of neighboring points of the convolved data into a single value. Many
types of pooling layers can be used, but one of the most common is the max pooling
layer. This operation defines a small block (also called a filter) and runs it on top of the
input data of the layer. At each point, the maximum of the values contained on the
overlapping area of the data and the filter is extracted and the output image (or signal)
is built with those maximum values. Pooling layers have the additional property that
they reduce the size of the feature maps, which translates into fewer weights to be
learned by the model. The outputs of these layers are smaller feature maps, but each
element of those maps has information about its neighbors from the previous layer.
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2.4.2. Recurrent Neural Networks and LSTM

Recurrent Neural Networks (RNN) are a type of deep learning models that are espe-
cially designed to work with data that have an underlying temporal sequence. Because of
that, they are typically used for Natural Language Processing and Signal Understanding.
With this type of data, it is important to take into account past information since the infor-
mation is treated as a sequence and what has happened in the past has influence on what
will happen in the future. Based on this idea, RNNs have the ability to “remember” prior
inputs when generating the output. They produce outputs not only based on the current
input vectors, but also on the so-called hidden state vectors that carry information about
prior data [22,24].

A major drawback is found when training RNNs due to a problem called “vanishing
gradients”. Basic RNNs are unable to remember long-term dependencies because the
gradients (how the weights of the neural network change with respect to the loss function
that wants to be optimized) that are used to train the model tend to disappear as the input
sequence grows in length [25]. When training deep learning models, small gradients are
undesirable as the training takes longer and, as a result, becomes less effective.

When working with sequence data such as signals produced by a set of sensors, it is
important to have a model able to handle long-term dependencies. This is the reason why
more complex RNN cells were developed. Long Short Term Memory (LSTM) cells are one
of the most common RNN networks that are used to overcome that problem [24]. They are
built upon the basic RNN cells in which prior information is captured in hidden cells and
used to generate outputs.

In order to understand how LSTMs work, it is easier to analyze them by parts. One of
the most important properties of LSTMs is their capacity to easily propagate information
from one cell to another. This is implemented by the cell state ct, which can run through the
cell with only minor linear modifications. The cell state is the heart of the LSTM and is what
carries past information of the input sequence. LSTMs can add or remove information from
the cell state by using structures called gates, which are themselves regular feed-forward
neural networks operating mainly with an input tensor x and a hidden tensor h. There are
three gates in an LSTM unit:

• Forget gate
This gate is responsible for deciding what information must be forgotten (removed)
from the cell state. To do so, it concatenates the hidden state at time t− 1 (ht−1) and
the current input xt and calculates a value between 0 (forget) and 1 (keep) for each
element of the cell state ct−1.

• Input gate
This gate is responsible for deciding what new information will be stored in the cell
state and where. It is composed of two parts. The first part calculates candidate values
to potentially update the cell state, and the second part decides which parts of the cell
state must be updated with those candidate values. This completes the update of ct−1
into ct determined by the forget and input gates.

• Output gate
This gate is responsible for deciding which elements of the cell state will be given as
the output of the LSTM unit. Only the desired parts of the cell state are output as the
new hidden state values ht.

3. Materials and Methods
3.1. Data and Preparation
3.1.1. Data Collection Procedure

This work used data acquired by [26] for the training phase and an initial evaluation.
For more information and details on the data collection procedures, refer to [26]. The
experiments there conducted included 11 male soccer players with 5 IMUs (Ivensense
MPU-9150) attached to their bodies in the following locations: pelvis, right thigh, left thigh,
right shank, and left shank, as shown in Figure 1. Each one of the IMUs had a tri-axial
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accelerometer, gyroscope, and magnetometer. The range for the accelerometers was set to
±16 g and for the gyroscopes to ±2000◦/s (the magnetometers’ range was not specified.
However, they were not used in this work). The sampling frequency of the signals was set
to 500 Hz. The sensitivity (with 16 bits) of the accelerometers was set to 2048 LSB/g and of
the gyroscopes to 16.4 LSB/(◦/s). For detailed information of the sensors, refer to [27]. Each
one of the participants executed a set of well-specified football-related activities, including
passes, shots, jumps, sprints, among others. The experiments were designed in order to
simulate an actual football match to have reliable and real movements. The most common
football activities were used as the different classes to be recognized: pass, shoot, jump,
sprint, and jog.

(a) (b) (c)

Figure 1. (a,b): Location of IMUs in experiments. Taken from [28]. (c): New sensor tights prototype
with fully embedded sensors. Taken from [29].

The use of those 5 IMUs allowed the measurement of the tri-axial accelerations and
velocities of the 5 respective body parts related to each one of the activities performed
by the subjects. This resulted in several signals representing the movements, each one of
them with their manually annotated category (activity). It is important to note that in each
experiment, before and after performing an activity, the subject walked or stood still for
some time. In order to more effectively train the models, a process of activity isolation was
performed in which those low activity intervals were removed prior to training.

3.1.2. Activity Isolation

As explained before, the recordings that were to be used to train the model included
activities that were not isolated from surrounding noise and, in order to build a more
reliable model, the signals were cleaned so that only the desired activities were present.
This follows the logic that the deep learning model learns to extract features by itself. If a
lot of irrelevant information would be present in the training phase, it could be possible
that the model would learn some features from the low activity patterns and not from the
actual activities. Therefore, to make sure that the model learns to recognize accurately
the football-related movements, a procedure called activity isolation was developed. It
prepared the recordings for the training phase by isolating the important activities from the
aforementioned low-activity intervals.

A low-activity measurement is characterized, as its name suggests, by signals with low
magnitude and variance which lies in contrast to the behavior of the signal during a high-
activity movement. This is especially true when we focus on the acceleration values. When
a football player moves from being still or relaxed, the lower limbs accelerate quickly. This
is the reason why only the accelerometer signals (and not gyroscope and magnetometer)
were used for the activity isolation phase. On the other hand, this big change in acceleration
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between a low-activity interval and a high-activity one can happen in any of the measured
body parts. A standing player can start to run with the right leg while another player
can move the left leg first. This is also true with the axes (X, Y, and Z): when jumping the
movement is primarily vertical, but when passing we expect the longitudinal component to
be more present. In other words, the transition between a low- and a high-activity interval
can be detected with any of the body parts and on any axis. This is the reason why the norm
of X, Y, and Z axis of each sensor location is used. Each sensor is treated independently
and, at the end of the process, they are combined for the final result.

In order to identify when a high activity happens, a baseline value for each signal is
obtained: the mean value. When the player is still or walking, the norm of the signal is
usually smaller than its mean. However, when the player performs a more intense activity,
the norm of the signal presents peaks larger than its mean value. So, the beginning of a
high-activity measurement can be found by identifying the moment when the norm of the
signal exceeds a threshold based on the mean value. To avoid small meaningless peaks,
the algorithm looks for the window of fixed size (based on domain knowledge, we chose
50 timesteps = 0.1 s) in which the norm of the signal exceeds the threshold for each of the
timepoints of such window. Similarly, the end of the high-activity interval is identified by
placing the window in the opposite direction.

We found that activities such as sprints and jogs required the mean of the signal to be
the aforementioned threshold, while movements, such as shots, jumps, and passes, were
better isolated when using 1.5 times the mean as the threshold. By understanding the nature
of these two groups of movements, the former group was called periodic activities, in which
the activity is performed in a periodic manner; and the latter explosive activities, in which
the activity is performed only once without repetition. Since explosive activities tend to be
shorter and without repetitive patterns, the Interquartile Range (IQR) was proposed as the
metric to use to discriminate between both groups of movements. To classify an activity as
periodic or explosive, the Euclidean norm of all the accelerometer signals of the recording
was taken, then this resulting signal was normalized between 0 and 1, and finally, the IQR
was calculated. In Figure 2, the distribution of the IQR values for periodic and explosive
activities can be seen. This plot shows that the IQR is a good metric to distinguish between
both types of movements if a threshold is chosen. It was defined that if the IQR exceeded
0.12, the recording was considered as a periodic movement or, otherwise, as an explosive
movement. This IQR-based classifier showed to have an accuracy of 99.42%, as shown in
the confusion matrix on the top right of Figure 2.

Figure 2. IQR distribution of explosive and periodic movements. On the top right, the confusion
matrix of the periodic- vs. explosive-activity classifier based on a threshold of 0.12 on the IQR.

Algorithm 1 presents the full procedure of activity isolation. Its application showed to
be very effective in isolating high activities from low-activity periods. Some examples of
results obtained with this algorithm are shown in Figure 3. In these images, all the signals
are superimposed for visualization purposes. The isolated high activities are shown with
white background, while the low-activity periods are grayed out.
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Algorithm 1: Threshold-based activity isolation
Result: Initial and final times of a detected activity isolated from low intensity

periods.
Take one recording with an activity present;
Take only the accelerometer data of the 5 locations: pelvis, right shank, right thigh,

left shank, and left thigh;
Take the Euclidean norm of the 5 signals. Name it s5;
Calculate the IQR of s5;
if IQR ≤ hIQR then

Mark the recording as an explosive movement
else

Mark the recording as a periodic movement
end
Take the Euclidean norm of the X, Y, and Z axis of each one of the 5 locations.

Name those 5 signals sp, srs, srt, sls, slt;
for s ∈ {sp, srs, srt, sls, slt} do

Calculate the mean value µ of the signal;
if The respective s5 was classified as a periodic movement then

Set thr = µ
else

Set thr = 1.5µ
end
Find the first timestep where the signal and the following 50 timesteps are

larger than the previously defined threshold. Take that timestep as the start of
the activity for that bodypart s;

Find the last timestep where the signal and the previous 50 timesteps are larger
than the previously defined threshold. Take that timestep as the end of the
activity for that bodypart s;

end
Take the minimum among the starts of activity from the previous step. Subtract

250 timesteps (if possible). This is the overall start of the activity. Call it t0;
Take the maximum among the ends of activity from the previous step. Add 250

timesteps (if possible). This is the overall end of the activity. Call it t f ;
return t0, t f

Figure 3. Examples of periods of high activity (white background) obtained after applying Algorithm 1.
The examples show accelerometer data related to a shot, pass, pass, jog, sprint, and jump.
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3.2. Neural Network Architecture

After the high activities were effectively isolated from low-activity periods, the training
and validation datasets were built. The five most common activities in football practice
were selected as the classes to be recognized by the deep learning models: shot, pass,
jump, jog, and sprint. Since the data were recorded for activities following a well-defined
script (e.g., 10 jogs each followed by a shot), the movements were manually labeled. All
the examples of those activities were isolated from the original dataset and a window
segmentation process was applied to them to extract the training and validation examples.
This process consisted of a 1-s-long window traversing through the recordings, extracting,
at each time, the respective interval from the original signal. In order to capture temporal
dependencies, an overlap of 75% was used when extracting the 1-s-long windows, meaning
that every 250 ms of a recording, a new interval of 1 s was extracted.

This set of 1-s-long windows was divided in two via the technique of random subsam-
pling cross-validation: a train dataset, composed of a random 70% set of the samples; and
a test dataset, with the remaining 30%. The former was used to train the models and the
latter to evaluate them with unseen samples. This train-test split was made by randomly
sampling among the recordings of all the subjects. In order to obtain robust results, this
procedure was repeated five times (which resulted in five different randomly selected train
and test datasets), so that at each time each train and test dataset contained samples from
different subjects. The accuracy metrics presented in this paper are the averages of the
five repetitions. In other words, the train-test split was performed using a 5-fold random
subsampling validation [30]. Additionally, only accelerometer and gyroscope data were
used. Magnetometer data were ignored to reduce the dimensionality of the problem. The
datasets were balanced via undersampling of the most frequent classes.

As explained before, HAR tasks could benefit from the usage of Convolutional Neural
Networks and Recurrent Neural Networks. The former would be responsible for extracting
relevant patterns of features from signals and the latter would use those features and give
them temporal meaning by understanding the signals as a time series. A combination of
both types of layers would be, in theory, very powerful.

The networks proposed follow the same general architectures shown in Figure 4. This
paper explored models based solely on CNNs (Figure 4a), RNNs (Figure 4b), and on a
combination of CNNs and RNNs (Figure 4c). In Figure 4c, the connections referred as CNN
sub-network and RNN sub-network are shown in Figure 5 and they consist of specific
types of convolutional and/or recurrent layers that will be explained below.

One of the most important elements of this paper is the evaluation of different varia-
tions of convolutional layers. In Figures 4 and 5, the asterisks in the convolutional parts
represent the implementation of the different types of convolutional layers proposed. It
is important to note that, even if all the convolutions are theoretically one-dimensional
(because the convolution only happens across the temporal dimension), some of them are
referred to as one-dimensional and some others as two-dimensional to distinguish among
them. By one-dimensional convolution, we refer to convolutions in which the spatial
dimension of the filter is 1, so that each signal is processed independently and the filters
do not process more than one signal at the same time. By two-dimensional convolutions,
we refer to convolutions in which the spatial dimension of the filter is more than 1, so that
several signals are convolved simultaneously. The following variations of convolutions
were built:

• 1DCNN weight sharing:
One-dimensional convolutions with the same filters for all the signals. In this type
of convolution, filters of size 1 × m are used, where m is a hyperparameter that
determines the timesteps used in the convolution. The 1 implies that each signal is
convolved alone. Additionally, weight sharing means that the same filters are used for
all the signals. Figure 6 explains this logic. Note that each sensor is composed of three
signals (X, Y, and Z axis of the sensor). The convolutions are made for each signal
using the same set of k filters (represented in red).
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(a)

(b)

(c)

Figure 4. General architectures of the different types of models built. Three types of models were
evaluated: using only CNN, only RNN, or a combination of both. The asterisks on the Conv layers
mean the usage of a variation of a convolutional layer. The asterisks on the RNN layers represent
either LSTMs or bidirectional LSTMs. (FC = Fully Connected Feed Forward Neural Network).
(a) General architecture for models based on CNNs, (b) general architecture for models based on
RNNs, (c) general architecture for models based on combination of CNNs followed by RNNs.
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(a)

(b)

Figure 5. General CNN and RNN sub-networks for the models that combine CNNs and RNNs. The
asterisks on the Conv layers mean the usage of different variations of CNNs. The asterisks on the
RNN layers represent either LSTMs or bidirectional LSTMs. (FC = Fully Connected Feed Forward
Neural Network.) (a) General CNN sub-network for the models that combine CNNs and RNNs,
(b) general RNN sub-network for the models that combine CNNs and RNNs.

Figure 6. 1DCNN weight sharing convolution logic.

• 1DCNN per sensor:
One-dimensional convolutions with the same filters for all the signals of the same
sensor, but different filters for each sensor. In this type of convolution, filters of size
1×m are used, where m is a hyperparameter that determines the timesteps used in
the convolution. The 1 implies that each signal is convolved alone. However, each
sensor has its own set of k filters, meaning that the filters are not shared among the
sensors. Figure 7 shows this logic. The convolutions are made for each sensor using,
for each one of them, a different set of k filters (but the same set of filters are used for
the three axis of the same sensor). The different sets of filters are represented with
different colors in the figure.
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Figure 7. 1DCNN per sensor convolution logic.

• 1DCNN combined:
Combination of 1DCNN weight sharing and 1DCNN per sensor. Both types of
convolutions are performed and their results (feature maps) are concatenated one on
top of the other. Figure 8 shows this logic.

Figure 8. 1DCNN combined convolution logic.

• 2DCNN weight sharing:
Two-dimensional convolutions with the same filters for all the sensors. In this type
of convolution, filters of size 3 × m are used, where m is a hyperparameter that
determines the timesteps used in the convolution. The 3 means that the 3 axes of the
same sensor are used together in the convolution. In order to convolve each sensor
by itself so that specific patterns can be extracted by combinations of the X, Y, and Z
signals of the same sensor, a spatial stride of 3 is used. Additionally, weight sharing
means that the same filters are used for all the sensors. Figure 9 explains this logic.
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Figure 9. 2DCNN weight sharing logic.

• 2DCNN per sensor:
Two-dimensional convolutions with different filters for each sensor. In this type of
convolution, filters of size 3×m are used, where m is a hyperparameter that determines
the timesteps used in the convolution. The 3 means that the 3 axes of the same sensor
are used together in the convolution. In order to convolve each sensor by itself so that
specific patterns can be extracted by combinations of the X, Y, and Z signals of the same
sensor, a spatial stride of 3 is used. Figure 10 explains this logic. The convolutions are
made for each sensor using, for each one of them, a different set of k filters. The different
sets of filters are represented with different colors in the figure.

Figure 10. 2DCNN per sensor logic.

• 2DCNN all sensors:
Two-dimensional convolutions made across all the sensors (thus also signals) at once.
In this type of convolution, filters of size NumSensor × m are used, where m is a
hyperparameter that determines the timesteps used in the convolution. Figure 11
explains this logic.

Figure 11. 2DCNN all sensors logic.
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• 2DCNN combined:
Combination of 2DCNN weight sharing, 2DCNN per sensor, and 2DCNN all sensors.
The three types of convolutions are performed and the resulting feature maps are
concatenated one on top of the other. Figure 12 shows this logic.

Figure 12. 2DCNN combined logic.

Specific details of the convolutions used on the different CNN sub-networks are shown
in Table 1. There, the following convention is used:

Conv(f, (m, n), s): Convolutional layer with f filters of size (m, n) with s strides in the
vertical (spatial direction) followed with act activation function. In all the cases, a ReLU
activation function ( f (x) = max (0, x)) is used to include nonlinearities.

MaxP(m, n): Max Pooling layer with filters of size (m, n), as explained in Section 2.4.1.
d: Number of spatial dimensions of the output tensor of the previous layer.

Table 1. Details of layers used on different CNN sub-networks. Recall that the convolutions named
weight sharing use the same kernels for all the sensors and signals, while the convolutions named per
sensor use independent kernels for each sensor.

CNN
Sub-Network Layer 1 Layer 2 Layer 3 Layer 4

1DCNN
weight sharing Conv(16, (1, 5), 1) MaxP(1, 4) Conv(32, (1, 5), 1) MaxP(1, 4)

1DCNN
per sensor Conv(16, (1, 5), 1) MaxP(1, 4) Conv(32, (1, 5), 1) MaxP(1, 4)

1DCNN
combined Concatenation of 1DCNN variations

2DCNN
weight sharing Conv(32, (3, 5), 3) MaxP(1, 4) Conv(64, (1, 5), 1) MaxP(1, 4)

2DCNN
per sensor Conv(32, (3, 5), 1) MaxP(1, 4) Conv(64, (1, 5), 1) MaxP(1, 4)

2DCNN
all sensors Conv(32, (d, 5), 1) MaxP(1, 4) Conv(64, (1, 5), 1) MaxP(1, 4)

2DCNN
combined Concatenation of 2DCNN variations

The last convolutional layer (which occurs just before the RNN sub-network) is defined
as Conv(128, (d, 1), 1). The LSTM and bidirectional LSTM (bLSTM) layers are, in all cases,
composed of 128 units. The fully connected layers after the sub-networks are also built with
128 units with ReLU activation function except for the final fully connected layer, which has
5 units (one per each class) and uses a softmax activation function instead. Additionally, to
reduce possible overfitting, dropout layers (not shown in the figures) are applied before
each fully connected layer.
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All of the different architectures were trained using both accelerometer and gyroscope data
or only accelerometers to evaluate the influence of gyroscopes on the classification of movements.

To train the models, the ADAM optimization algorithm [31] was used to optimize a
categorical cross-entropy loss function. In all cases, the chosen parameters were β1 = 0.9,
β2 = 0.999, ε = 10−8. The learning rate (α) was set to decay during the learning phase using
a learning rate scheduler. By doing this, the model was able to take large steps towards
the optimum during the initial phases of the training, and, as the model approached this
point, the steps taken were smaller. This resulted in a better and faster training scheme.
The learning rate schedulers for the models were defined as:

• For all the models without any LSTM or bLSTM component, the learning rate was
initialized at 10−3. After every 10 epochs of training, it was reduced to its 75%.

• For all the models with only LSTM or bLSTM (no convolutional part), the learning rate
was initialized at 10−4. After every 10 epochs of training, it was reduced to its 50%.

• For all the models that combined a CNN part with a LSTM or bLSTM part, the learning
rate was initialized at 5 · 10−5. After every 10 epochs of training, it was reduced to its 75%.

The training was made with batches of 32 samples for at most 200 epochs. Additionally,
an early stopping criterion was defined in order to reduce overfitting and unnecessary training:
the validation loss was monitored and if it did not improve (reduce) for 5 consecutive epochs,
the training was halted. Each model was trained 5 times using different train-test partitions so
that every case used a different subset of data for training and testing. The resulting accuracies
of the trainings of each model were averaged to obtain their overall performance.

3.3. Postprocessing and Evaluation

Once the models were successfully trained, the next step consisted in using the model
to actively recognize and classify the activities present in a recording. A sliding window
approach was followed: a window of 1 s (500 timesteps) is swept through the recording and,
for each position of the window, a prediction of the activity is made. By doing this, several
windows will have periods where no relevant activity is performed because the player is
just standing or walking passively. Therefore, the model also needs to be able to recognize
these low-activity periods and classify them as such. To allow the model to recognize these
low-activity periods, a binary classifier on top of the already trained deep learning-based
model was built. That binary classifier was responsible for recognizing whether a window
captured a low activity period or not. The low activity class could also be included as
another class in our models, however, we opted for detecting low activities using a binary
classifier before applying the deep model. This is due to the significant differences between
low and high activities, which can be exploited to accurately distinguish them.

The sliding window evaluation phase is shown in Figure 13. A window of the same
length as the one used for the training phase (1 s = 500 timesteps) is traversed through
the recording, extracting at each time a window of such length. The extracted window
is first classified by the binary classifier as either a high or low activity window. If the
classification returns low activity, the window is understood as such. However, if the binary
classifier predicts that the window corresponds to a high activity, then the window is
passed through the deep learning model that further classifies the interval as one of the
activities: shot, sprint, jump, jog, or pass. This means that, at the end of this process, the
window is classified as either shot, sprint, jump, jog, pass, or low activity. This is what
we call a prediction. The sliding window moves and a new window is extracted and then
classified following the same process.
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Figure 13. Sliding window evaluation diagram.

To build the binary low- vs. high-activity classifier, different metrics were extracted
from low- and high-activity windows and evaluated for their discriminant power be-
tween both classes. The following values were evaluated for the Euclidean norm of the
accelerometer signals:

• Mean;
• Standard deviation (std);
• Coefficient of variation (CV);
• Interquartile range (IQR);
• Range.

The distributions of the metrics for those two groups were examined to identify which
one of the statistics would have more discriminatory power between both categories.
Additionally, a two-sample Kolmogorov–Smirnov (KS) test was used to evaluate the
similarity of these high- and low-activity distributions. The larger the KS value, the more
certain we are that both samples come from different distributions. The resultant KS values
for the selected metrics are summarized in Table 2.

Table 2. Two-sided KS values for the metric distributions of high- and low-activity window.

Metric KS Value
Mean 0.9185
Std 0.9302
CV 0.7997
IQR 0.9237
Range 0.9155

The standard deviation was chosen as the metric to build the binary classifier since its
KS value was the largest. Additionally, the distribution plots of the standard deviation of
both categories (high- and low-activity windows) could be separated using a threshold, as
seen in Figure 14.
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Figure 14. Standard deviation distribution of low- and high-activity windows. Both distributions can
be separated using a threshold value.

To define the threshold that should be used for the standard deviation so that the
separation between low and high activity was as clean as possible, different values were
used to classify a set of new unseen windows with high or low activities: if the standard
deviation of the Euclidean norm of the accelerometer signals was larger than a given
threshold, the window would be classified as a high activity, and as a low activity otherwise.
The F1 score was calculated for each one of the thresholds for the standard deviation and
the value where the F1 score was the largest was taken as the optimal threshold. This
experiment is depicted in Figure 15 and shows that a threshold of 8.5 gives the best F1 score
of 96.67% (and accuracy of 96.56%), which is high enough to consider this binary classifier
as good performing.

The complete sliding window evaluation diagram is shown in Figure 13. As it can be
seen, the low- vs. high-activity binary classifier lies on top of the deep learning model. We
recommend using sliding steps between 10 ms and 100 ms for the windows (windows of
99% and 90% overlap, respectively). It is important to note that, even if the training of the
model was made with windows of 75% overlap, this value does not need to be the same as
the one chosen for the evaluation phase. The length of the window (1 s = 500 timesteps), on
the other hand, must be exactly the same as the one used for the training.

Figure 15. F1 scores for different standard deviation thresholds when classifying high- and low-
activity windows. The red dot indicates the chosen threshold.

The sliding window approach at the evaluation phase has the issue that there are
fewer predictions than timesteps of the recording since the windows are not evaluated at
each time point. Furthermore, since there is an overlap between the sliding windows, all
the timesteps are evaluated (and therefore predicted) several times by different windows.
To solve this problem, the proposed best-score postprocessing method postprocesses the
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predictions so that we can associate a unique activity to each moment of the recording.
The proposed method initially assigns all the timesteps of window i to the prediction of
window i. Then, the final prediction for each timestep is the prediction with the largest
confidence among the ones of all the windows that contained that particular timestep.

The softmax activation function at the last layer of the neural network was used to
calculate the confidences of the predictions. Since the problem is a multiclass classification
task, the last layer of the model includes a softmax function. The output of this activation
function can be understood as the probability distribution over all the possible categories.
The maximum among these probabilities can be taken as the confidence of the predicted
class. Therefore, it was defined that a window was considered as “other high activity” if
it had confidence lower than a certain threshold (in this work, it was defined as 95%), no
matter the prediction that it initially had. With this addition, it was possible to identify
movements different from the five predefined ones, such as turns.

Figure 16 explains the previously explained process in a graphical, simplified way
with a toy example. Suppose that the multicolored horizontal bar on the top of the image
represents the recording. That recording is traversed with a sliding window and, for each
position of the window, a prediction of the activity is made. Those windows are depicted in
the figure as rectangles with thick borders and are named W1, W2, W3, . . . The prediction
made for each window is represented by a color: blue, red, or green. Then, the horizontal
bar on the top shows the predictions made by the sliding windows using that color code.
That bar is the output of the evaluation pipeline explained in Figure 13. The best-score
postprocessing method assigns the prediction of the window to all the timesteps contained
in that window, as it can be seen with the small horizontal colored bars in the middle of the
figure. Each one of those predictions is composed of the recognized activity (red, blue, or
green in the figure) and the confidence of the prediction (light to dark tone of the color).
Then, as it was mentioned, for each timestep of the recording, the prediction with the
largest confidence is taken as the final prediction of the respective timestep. The horizontal
bar at the bottom of the figure shows the resulting predictions obtained with the best score
postprocessing method. This postprocessing option gives more importance to predictions
with high confidence. It has the additional ability of “cleaning” the results of short, isolated,
low-score predictions surrounded by predictions with larger confidence.

Figure 16. Best-score postprocessing option. The darker the color, the larger the confidence of the prediction.

After postprocessing, an outlier removal procedure is applied to the predictions. Even
if the predictions are cleaned with the postprocessing phase, there is still a chance that
short peaks of isolated activities remain. An activity performed by a player cannot last less
than a certain amount of time in real life. So, if a prediction of a movement lasts less than
τ ms, the predicted activity of that interval is replaced with the predicted activity of the
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next interval that lasts at least τ ms. Good results were obtained when choosing τ to be
between 100 and 300 ms.

The whole sliding-window evaluation process can be summarized with the diagram
shown in Figure 17. Each position of the sliding window is classified, then the prediction is
postprocessed, and, finally, the outliers are removed. The block called Activity Classifier in
the diagram is the activity classification process, depicted previously in Figure 13.

Figure 17. Complete sliding-window evaluation procedure.

4. Results
4.1. Training Results

As explained before, deep learning models composed of a combination of CNNs and
RNNs were proposed, built, and trained to recognize shots, passes, jumps, jogs, and sprints
(Figure 4). The training and validation datasets were balanced via undersampling, so that
the accuracy could be used as the metric to evaluate the performance of the model. The
prediction accuracy is defined as:

Accuracy =
Number of correctly classified samples

Number of samples

When working with deep neural networks, it is a good practice to perform a normal-
ization or standardization of the input data. This has mainly two benefits: the model can
be trained faster, and the model can learn to better generalize from the input data [32].
Therefore, the models were trained with and without an initial normalization/scaling of the
input signals. Since the signals have both positive and negative values and we wanted to
capture information about their positiveness and negativeness, instead of using a min-max
normalization, we used a max-abs scaler: we divided by the maximum absolute value
of the signal. This process brings all the values to the range [−1, 1]. In particular, if the
maximum absolute value is found in the positive range, then the values are transformed
to the range [−x, 1] where x ≤ 1. Similarly, if the maximum absolute value is found in
the negative range, the transformed range is [−1, x]. The resulting series has the same
shape and structure as the original, but its values lie between −1 and 1 without losing the
positive-negative relationship. The max-abs scaling does not shift the data nor destroys the
sparsity between positive and negative values. This type of scaling was applied to each
one of the signals and the models were trained with these new scaled windows. To have a
fair comparison with the non-scaled models, all the models were trained with the same
architectures, parameters, and algorithms as the ones previously built. Only the initial
learning rate of the models had to be increased 10 times due to much smaller absolute
values for the scaled signals. Note that in real-life applications, it would be necessary to
perform this scaling with respect to a calibration recording: the player would perform a
certain sequence of activities before the competition or training and that recording would
be used to scale the subsequent data.
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We trained several models based on the proposed convolutional operations and their
combination with recurrent layers. The mean and standard deviation of the accuracies of
the five trainings of each model can be seen in Tables 3 and 4. In those tables, a red-to-blue
color code was used to visualize the accuracies on the test dataset, where red is worse and
blue is better. No color code was given for the train dataset for visualization clarity.

Table 3. Comparison of mean prediction accuracies between the original unnormalized models and
the normalized ones. Five runs. A red-to-blue color code is used to facilitate the visualization of the
values on the test dataset, where red is worse and blue is better.

Acc + Gyro
Normalized Unnormalized

Train Test Train Test
1D CNN weight sharing 99.93% 97.53% 99.13% 94.36%
1D CNN per sensor 99.34% 97.26% 98.35% 93.92%
1D CNN combined 99.46% 97.21% 98.66% 93.97%
2D CNN weight sharing 99.29% 96.44% 98.80% 93.59%
2D CNN per sensor 99.44% 96.55% 99.32% 94.79%
2D CNN all signals 99.76% 97.81% 97.58% 92.88%
2D CNN combined 99.44% 98.08% 99.34% 95.34%
1D CNN weight sharing + LSTM 97.81% 96.11% 99.01% 96.05%
1D CNN per sensor + LSTM 99.20% 97.10% 98.31% 95.95%
1D CNN combined + LSTM 98.54% 97.04% 98.87% 96.55%
2D CNN weight sharing + LSTM 98.54% 96.71% 98.87% 96.27%
2D CNN per sensor + LSTM 98.31% 96.71% 99.32% 96.71%
2D CNN all signals + LSTM 98.87% 97.32% 98.94% 95.45%
2D CNN combined + LSTM 99.08% 97.53% 99.32% 96.71%
1D CNN weight sharing + bLSTM 99.39% 98.03% 99.08% 96.55%
1D CNN per sensor + bLSTM 99.51% 97.86% 98.66% 96.38%
1D CNN combined + bLSTM 99.44% 98.25% 99.22% 96.71%
2D CNN weight sharing + bLSTM 99.39% 97.48% 99.20% 96.22%
2D CNN per sensor + bLSTM 99.48% 97.04% 98.99% 96.11%
2D CNN all signals + bLSTM 99.13% 97.26% 98.45% 94.96%
2D CNN combined + bLSTM 99.46% 97.32% 99.29% 96.00%
LSTM 63.51% 60.44% 91.48% 77.48%
bLSTM 80.49% 76.71% 99.65% 87.07%
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Table 4. Comparison of standard deviation of the prediction accuracies between the original unnor-
malized models and the normalized ones. Five runs. A red-to-blue color code is used to facilitate the
visualization of the values on the test dataset, where red is worse and blue is better.

Acc + Gyro
Normalized Unnormalized

Train Test Train Test
1D CNN weight sharing 0.09% 0.87% 0.81% 1.33%
1D CNN per sensor 0.41% 0.74% 1.68% 1.78%
1D CNN combined 0.44% 0.70% 0.33% 1.48%
2D CNN weight sharing 0.20% 0.81% 0.49% 1.60%
2D CNN per sensor 0.29% 0.37% 0.46% 1.42%
2D CNN all signals 0.15% 0.67% 0.87% 1.38%
2D CNN combined 0.55% 0.35% 0.44% 1.42%
1D CNN weight sharing + LSTM 0.79% 0.56% 0.52% 1.21%
1D CNN per sensor + LSTM 0.58% 1.44% 1.22% 0.87%
1D CNN combined + LSTM 0.54% 0.56% 0.62% 1.60%
2D CNN weight sharing + LSTM 0.50% 0.65% 0.92% 1.00%
2D CNN per sensor + LSTM 0.76% 1.47% 0.39% 1.31%
2D CNN all signals + LSTM 0.75% 0.66% 0.58% 1.02%
2D CNN combined + LSTM 0.30% 0.83% 0.37% 1.05%
1D CNN weight sharing + bLSTM 0.44% 0.63% 0.34% 0.73%
1D CNN per sensor + bLSTM 0.53% 0.68% 0.60% 0.53%
1D CNN combined + bLSTM 0.27% 0.66% 0.53% 1.54%
2D CNN weight sharing + bLSTM 0.65% 0.97% 0.41% 0.96%
2D CNN per sensor + bLSTM 0.35% 1.17% 0.75% 1.10%
2D CNN all signals + bLSTM 0.55% 0.62% 0.96% 0.99%
2D CNN combined + bLSTM 0.92% 0.82% 0.36% 1.50%
LSTM 19.13% 18.19% 2.17% 3.36%
bLSTM 24.22% 20.14% 0.24% 2.25%

The main goal of this research was not only to have a highly accurate model when
recognizing football activities, but it was also desired that those classifications could be
made in a short time. To demonstrate the computational efficiency of the proposed deep
learning models, traditional machine learning models were trained, and the evaluation
times for both types of models were computed. In particular, the following classifiers were
built: k-Nearest Neighbors (kNN), Naïve Bayes (NB), Quadratic Discriminant Analysis
(QDA), Decision Tree (DT), Random Forest (RF), SVM with linear kernel version ECOC
(Error Correcting Output Codes) (SVM-l ECOC), SVM with Gaussian kernel version ECOC
(SVM-rbf ECOC), SVM with linear kernel version One-vs-One (SVM-l OvO), SVM with
Gaussian kernel version One-vs-One (SVM-rbf OvO), SVM with linear kernel version One-
vs-Rest (SVM-l OvR), and SVM with Gaussian kernel version One-vs-Rest (SVM-rbf OvR).
For all of them, the following manually selected features were extracted: mean, median,
standard deviation, maximum, minimum, skewness, kurtosis, sum of real coefficients
of Fast Fourier Transform, and maximum of real coefficients of Fast Fourier Transform.
The evaluation times and accuracies of these models in comparison to a particular deep
learning-based model (2DCNN per sensor + bLSTM, abbreviated as DNN in the graph)
are presented in Figure 18. For the traditional methods, these times include the manual
feature extraction process. In general, the deep learning models required about 0.15 s to
evaluate 365 samples, while this process took from 0.4 to even 0.8 s with the traditional
methods. In addition to this, the best performing deep learning model had the highest
accuracy (∼98%), whereas traditional models showed accuracies between 40% and 90%.
Deep learning models, thus, perform better on both evaluation time and accuracy.
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Figure 18. Prediction accuracy and evaluation time for traditional models in comparison to a deep
learning-based model (DNN). The blue bars (left vertical axis) represent evaluation time and the red bars
(right vertical axis) the prediction accuracy. The names of the models can be found in the main text.

4.2. Complete Pipeline Results

The complete activity recognition pipeline was presented in Figure 13, where a sliding
window approach is used to first classify each window of the recording, then postprocess
those predictions, and, finally, remove the outliers. Here, some examples of results obtained
with the full pipeline are shown. These examples correspond to recordings that were
not seen previously by the models, neither during the training nor the validation phase.
The figures in this section are composed of four graphs. The one on the top is called the
predictions and has the predictions obtained by the model (outputs of Figure 17). The
second one is called the postprocessed predictions and is the result of postprocessing the
predictions. The third graph is called the final predictions and contains the final predictions
after the postprocessed predictions are passed through the outlier removal process (outputs
of Figure 17). Finally, the bottom graph is for reference and contains only three of all the
sensor signals of the original recording. The horizontal axis (time) is shared among the
four graphs. For the top three graphs, the vertical axis corresponds to the predictions made
by the model and the orange-black color code represents the confidence of the predictions,
where orange means low confidence and black high.

Figures 19–21 present results of the complete pipeline on three different recordings.
The true labels of the recordings can be seen in their respective captions.
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Figure 19. Example 1 of final results. True labels (in order): jog, jump, sprint, pass, and sprint with
low activity periods in between each one of them. For the activity prediction plot, the orange-black
color code of the dots and lines in the predictions represents the confidence of the predictions, where
orange means low confidence and black high.

Figure 20. Example 2 of final results. True labels: jog and turn 5 times with a final jog.
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Figure 21. Example 3 of final results. True labels: 6 jumps-passes followed by 6 shots. Fast, unplanned
movements are identified before and after the shots.

5. Discussion and Conclusions

This paper explored the usage of deep learning models to accurately and rapidly
recognize football activities based on IMU measurements from different body parts. The
literature review showed that, for Human Activity Recognition, these types of techniques
have been taking over the use of traditional machine learning algorithms, such as kNN,
decision trees, and SVMs, where a manual process of feature extraction is required. The
majority of reviewed articles focused on deep learning models to recognize daily human
activities, but this study included explosive and repetitive activities typical of football
practice. The possibility of building deep learning-based models on raw, not preprocessed
IMU signals was one of the main goals.

A robust and end-to-end pipeline was proposed. It included activity detection and
isolation in order to prepare the required datasets, train the models, evaluate a recording via
a sliding window approach, and postprocess the results to obtain the final ones. Although
the built deep models were trained to recognize the five most common football activities
(sprints, passes, shots, jumps, and shots), the proposed methodology can be used to train
models to consider additional activities, provided that there are enough training samples
of those movements.

A dynamic activity detection algorithm was proposed to isolate activities in record-
ings from low activity periods. Internally, this algorithm uses a simple classifier that
distinguishes between periodic (sprints and jogs) and explosive (shots, passes, and jumps)
activities. Then, several deep learning architectures were built, trained, and evaluated in
terms of prediction accuracy, overfitting, and evaluation time. Those architectures were
based on novel variations of convolutional layers acting across signals, sensors, and/or
a combination of them with and without weight sharing. Recurrent layers (LSTMs and
bidirectional LSTMs) implemented after the convolutional layers were used to further
give temporal meaning to the features previously extracted by the CNNs. The proposed
models obtained high accuracies (up to 98.25% in the test set). Compared to traditional
machine learning algorithms, deep learning models achieved better accuracies and faster
evaluation times, showing that their use is recommended for HAR tasks. The combination
of CNNs and bLSTMs was beneficial and achieved better results than the use of only CNNs.
Furthermore, models with only bLSTMs did not generate good results, implying that
convolutional operations are critical to extract relevant features. Further experimentation is
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encouraged regarding the training of the models, not only with respect to proposed archi-
tectures but also around fine-tuning of architecture and training variables, such as number
of layers, number of convolutional filters, type of convolutional operations, learning rate,
optimization algorithm, among others.

A sliding window approach for the evaluation phase was implemented following
recommendations and best practices found in the literature. With this approach, a complete
recording can be evaluated by the models. Postprocessing of the predictions made by
the model was necessary, thus the best-score postprocessing method was proposed. This
algorithm acts analogous to the non-max suppression algorithm for object detection on
computer vision applications. It not only aligns the predictions to the original recording
but also filters out short-lived, undesired activities. An outlier removal process was
implemented at the end of the pipeline to further refine the final recognized activities from
short-lived, unnatural predictions.

Even if the obtained accuracies were high, it is recommended to acquire more data
and retrain the models, especially with measurements taken from real matches. The more
relevant data that a model can be trained with, the better the learning will be. The literature
review showed that HAR is an active research area in the field of deep learning, with
several open-source datasets present online ([33–35], to name a few). Although the majority
of them are about daily human activities, such as walking, sitting, or standing, those large
datasets could be used to build a base model, and then use transfer learning to fine-tune it
with football data and allow it to recognize specific football activities. The use of transfer
learning in deep learning applications has shown to be very effective when building models
for tasks that do not have large training datasets and it is expensive or time-consuming
to build them. Hence, it is highly recommended to explore this approach to potentially
improve the proposed models.

Finally, it is encouraged to use this work as input to future research topics and use-case
scenarios such as injury prevention, tracking of activity statistics during competition and
training, monitoring physical load, and personalized training. This work is focused on
football, but the proposed methodology and pipeline can also be applied to other sports.
Recognizing the activities that a player does while playing a sport is just one of the steps
that must be done in order to analyze their movements. The recognized activities can
be combined with additional data sources such as video recordings and biomechanical
analysis to study the prevalence and early detection of injuries. This would help obtain a
better understanding of the players’ performance and development.
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