

Delft University of Technology

Fixing Continuous Integration Tests From Within the IDE With Contextual Information

Boone, Casper; Brandt, Carolin; Zaidman, Andy

DOI
10.1145/3524610.3527908
Publication date
2022
Document Version
Accepted author manuscript
Published in
Proceedings - 30th IEEE/ACM International Conference on Program Comprehension, ICPC 2022

Citation (APA)
Boone, C., Brandt, C., & Zaidman, A. (2022). Fixing Continuous Integration Tests From Within the IDE With
Contextual Information. In Proceedings - 30th IEEE/ACM International Conference on Program
Comprehension, ICPC 2022: Proceedings (pp. 287-297). Article 9796168 (IEEE International Conference
on Program Comprehension; Vol. 2022-March). IEEE. https://doi.org/10.1145/3524610.3527908
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3524610.3527908
https://doi.org/10.1145/3524610.3527908

Fixing Continuous Integration Tests FromWithin the IDE With
Contextual Information

Casper Boone
Delft University of Technology

The Netherlands
mail@casperboone.nl

Carolin Brandt
Delft University of Technology

The Netherlands
c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

ABSTRACT

The most common reason for Continuous Integration (CI) builds to
break is failing tests. When a build breaks, a developer often has
to scroll through hundreds to thousands of log lines to find which
test is failing and why. Finding the issue is a tedious process that
relies on a developer’s experience and increases the cost of software
testing. We investigate how presenting different kinds of contex-
tual information about CI builds in the Integrated Development
Environment (IDE) impacts the time developers take to fix a broken
build. Our IntelliJ plugin TestAxis surfaces additional information
such as a unique view of the code under test that was changed
leading up to the build failure. We conduct a user experiment and
show that TestAxis helps developers fix failing tests 13.4% to 48.6%
faster. The participants found the features of TestAxis useful and
would incorporate it in their development workflow to save time.
With TestAxis we set an important step towards removing the
need to manually inspect build logs and bringing CI build results
to the IDE, ultimately saving developers time.

KEYWORDS

Software Testing, Continuous Integration, Developer Assistance,
IDE Plugin, User Experiment

ACM Reference Format:

Casper Boone, Carolin Brandt, and Andy Zaidman. 2022. Fixing Continuous
Integration Tests From Within the IDE With Contextual Information. In
30th International Conference on Program Comprehension (ICPC ’22), May

16–17, 2022, Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3524610.3527908

1 INTRODUCTION

Continuous Integration (CI) is a wide-spread practice in both in-
dustry and open-source projects [20, 32, 43]. Its goal is to detect
issues as soon as possible by providing feedback before a change
makes it to production. This avoids defects but also increases devel-
oper productivity [24], accelerates release frequency [18, 20], and,
improves communication of changes [16].

A typical CI build comprises building the application to en-
sure the code compiles, executing the tests to check whether the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527908

application still works as expected, and running static analysis
tools [4, 35, 36] to safeguard the quality of the codebase [17]. If
any of these steps fail, the whole CI build is considered to be
“broken”. Failing tests are the most common reason for build fail-
ures [8, 26, 38].

When a build breaks, the developer has to find and investigate
the cause of the build failure. The typical steps for a developer en-
countering a build failure are: inspecting the build log, developing
a hypothesis about why the build is failing [41], confirming this
hypothesis in their local development environment, and finally im-
plementing a fix [37]. CI build logs typically consist of hundreds to
thousands of lines and contain a lot of irrelevant information [13],
which leads to developers feeling overwhelmed by the amount of
detail [2], and through the verbosity it becomes hard to pinpoint
bugs and their causes [40]. This makes finding the root cause of
the failure a tedious and challenging process that relies on a devel-
oper’s experience and intuition [19, 37] which increases the cost of
software testing [33].

CI platforms offer limited inspection and debugging function-
ality compared to a local development environment [20]. After
developing an intuition with the build log on the CI platform, the
developers have to switch to the context of their integrated devel-
opment environment (IDE) for further investigation. Debugging
assistance that obviates the need for manual build log inspection
would support developers in the build-fixing process [19].

We conjecture that developers could fix broken builds faster if we
provide richer, contextual information about their CI builds directly
in their IDE. One advantage is that this can combine the information
available to the CI server with the local information and presen-
tation in the Integrated Development Environment (IDE) to give
powerful insights about the test failures to developers. In this paper,
we investigate three different types of contextual information and
measure how they influence the developer’s failure-fixing behavior.
In particular we look at three kinds of contextual information:

(1) Test Outcomes and MetadataWe investigate showing in
the IDE which CI tests failed.

(2) Test CodeWe study showing the code of the test that failed.
(3) Changed Code Under Test Lastly, we explore showing the

production code targeted by the test that changed since the last
successful test run.

These three types of contextual information lead to these analo-
gous research questions:

RQ1

What is the influence of presenting the test outcomes and

metadata on the time a developer needs to fix a failing test?

https://orcid.org/0000-0001-7623-1970
https://orcid.org/0000-0003-2413-3935
https://doi.org/10.1145/3524610.3527908
https://doi.org/10.1145/3524610.3527908
https://doi.org/10.1145/3524610.3527908

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

RQ2

What is the influence of presenting the test code on the time a
developer needs to fix a failing test?

RQ3

What is the influence of presenting the code under test, where

the changed code is highlighted, on the time a developer
needs to fix a failing test?

Apart from the impact on failure fixing time, we study how useful
developers rate the different kinds of contextual information with
the following research question:

RQ4

To what extent do developers consider contextual CI informa-

tion in the IDE useful?

We develop TestAxis, a plugin for the IntelliJ IDE that presents
CI build and test results. During CI builds, TestAxis captures in-
formation about test executions and coverage. The plugin notifies
the developer about the build outcome, shows all failing tests with
the name of the test, the failure message, and the corresponding
stack trace, obviating the need to look at the build log (RQ1). We
show the test code to help the developer understand the intent of
the failing test (RQ2). TestAxis also features an overview of the
relevant code under test (RQ3) by combining information about
which code was executed by a test and which code was changed
leading up to the build failure. We create a proof-of-concept imple-
mentation of TestAxis that we use to evaluate its effectiveness and
perceived usefulness. A demonstration of the plugin is available at
https://youtu.be/4sfnKsvqwKw.

In order to provide an answer to our research questions, we
perform a within-subjects experiment. After opening questions, we
ask participants to fix eight failing tests with and without the help
of TestAxis. The closing questionnaire asks participants about
the aspects they found most useful (RQ4). Our results show that
TestAxis helps developers fix tests failing on CI 13.4% to 48.6%
faster. The participants found the features of TestAxis useful and
would incorporate it in their development workflow to save time.

In summary, we contribute:

• An evaluation of the effect of providing CI test results with ad-
ditional context (such as the test code or the code under test) in
the IDE on the failure-fixing time performance.

• TestAxis: An IDE plugin for IntelliJ Platform IDEs that presents
and visualizes build and tests results with additional context to
the developer1.

• A publicly available dataset containing the data collected during
the experiments [10].

2 TESTAXIS

In this section, we lay out the design of TestAxis and illustrate
how it presents contextual information about the CI build and its
tests directly in the developer’s IDE.

1Available at https://github.com/testaxis/testaxis-intellij-plugin

Figure 1: An example of a build notification in TestAxis.

Figure 2: An example of the presentation of CI build test

results in the IDE implementation of TestAxis.

2.1 Build Notifications

When a CI build finishes, TestAxis pings the developer with a noti-
fication inside their IDE, eliminating the need for a context switch
to the CI platform and back. From the notification messages, the
developer is immediately guided to the other features of TestAxis
that may help solve the build failure. Figure 1 shows an example of
a build notification in TestAxis.

2.2 Presentation of Test Results

A core feature of TestAxis is presenting the CI test results in a
more accessible format than raw build logs, obviating the need to
inspect the build log manually. Figure 2 shows an example of how
TestAxis displays the test case executions grouped by their class,
similar to the IDE’s built-in test runner. This provides a familiar
experience and structure to the results, making it easier to identify
where in the system the failure occurs. For builds that fail due to
something other than tests, TestAxis indicates that the build has
failed due to a reason outside the scope of the tool.

2.3 Test Outcomes, Metadata and Test Code

When a developer inspects a failing test, TestAxis shows the test
name, whether the test passed, the run time, and the execution date.
As presented in Figure 3, TestAxis also shows the failure message
and the stack trace. The stack trace includes links to the mentioned
files or classes, which allows for quick navigation to the code which
is not available from a CI build log.

TestAxis presents the source code of the test, obviating the
need for manual search and navigation. Reading the test code may
help developers understand the intent of the test or spot obvious
mistakes quickly. Figure 4 shows an example of what this looks
like.

https://youtu.be/4sfnKsvqwKw
https://github.com/testaxis/testaxis-intellij-plugin

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 3: An example of the presentation of test failure details

in the IDE implementation of TestAxis.

Figure 4: An example of the presentation of test source code

in the IDE implementation of TestAxis.

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

A) Covered B) Changed C) Covered and Changed

Figure 5: An example of how combining coverage and change

information leads to more focused potential issues that re-

quire attention.

2.4 Changed Code Under Test

The goal of the changed code under test feature is to highlight the
parts of the production code that are likely to contain the issue
causing the test to fail. For each test, TestAxis separately collects
code coverage information during the CI build, a rather cheap
operation since most CI builds run the whole test suite already.

As most tests interact with multiple parts of a codebase [34], the
amount of covered code could still be too large for a developer to
investigate. Assuming that the test fails due to an intrinsic issue in
the code [27, 28], it is likely that the issue is located in a part of the
production code that was changed in the commits leading up to the
build failure. Since CI builds are commonly triggered after pushing
new commits, TestAxis makes use of the full change information
that is available through the version control system. Figure 5 shows
how TestAxis intersects code coverage and change information to
identify locations of interest to the developer. See Figure 6 to see
how these locations are presented within TestAxis.

Figure 6: An example of the changed code under test feature

in the IDE implementation of TestAxis.

Communicate
Build Results

Backend

Upload
Build Reports

CI Build Provider
Inspect

Build Results

IDE Plugin

User

1 2 31

Figure 7: System Overview of TestAxis.

2.5 Implementation

We created a prototype of TestAxiswhich we use as part of our ex-
periment. TestAxis consists of two main parts: the backend and the
IDE plugin, see Figure 7.TestAxis receives, processes and stores the
CI build results in the backend application and provides the results
to the IDE plugin that presents the results to the user. A demonstra-
tion of the plugin is available at https://youtu.be/4sfnKsvqwKw.

A developer can set up TestAxis by installing the IntelliJ IDE
plugin and signing in through GitHub or a TestAxis account. They
configure the provided build result upload script to be run as the
last step of their CI build. The upload script collects the test results
and coverage results of individual tests and uploads them to the
backend. By providing such a script, TestAxis does not depend
on particular CI build providers. The IDE plugin presents the user
with an access token that they can include in the new build step.

Both the backend and the IDE plugin are available open-source
on GitHub2.

3 STUDY DESIGN

TestAxis attempts to improve the time needed to fix broken builds
by presenting contextual information about the CI build in the de-
veloper’s IDE. We conduct a within-subjects experiment in which
developers try out TestAxis. Our goal is to measure how the time
needed to fix a failing test in a CI build is influenced by presenting
different kinds of contextual information in the IDE: the test result
RQ1, the test code RQ2, and the changed code under test RQ3. Fur-
thermore, we elicit whether developers consider TestAxis useful
RQ4.

3.1 Experiment Overview

Before the participants start the assignments, we ask them about
their demographics and show two instruction videos. One presents
the architecture and structure of the codebase of our example
project JPacman and the other one explains the functionality of
2Available at https://github.com/testaxis

https://youtu.be/4sfnKsvqwKw
https://github.com/testaxis

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

TestAxis. During the experiment, the participants solve four as-
signments with and four assignments without TestAxis. We design
assignments in four different categories that target the kinds of
contextual information we investigate in our study. Per category,
we divide the participants into two groups so that each participant
conducts one assignment per category without and one assign-
ment with TestAxis. For each assignment, we present a CI build
that failed due to failing tests. The participants have to find out
which tests fail and why. Then, they have to come up with a fix.
The researcher measures the time in seconds until the participant
successfully fix the failing test. After each assignment, they filled
out a post-assignment questionnaire where we asked about what
they felt they spent the most time on. After the experiment, the
participants filled out a questionnaire asking about the usefulness
of TestAxis and its features.

3.2 Example Project

The assignments of the experiment ask participants to fix failing test
cases that attempt to mimic test failures that occur while working
on real software projects. The simulation of realistic test failures
requires that the designed test cases are part of a software project
that is sufficiently complex and close to real-life projects. We picked
JPacman, a simple Pacman-style game implemented in Java that is
written for software testing education. The codebase of JPacman is
small enough to be easy to understand within a short time. However,
it does not have a trivial implementation to ensure that developers
do not deviate from their usual behavior. The project has a variety
of unit tests, integration tests, and system/end-to-end tests that are
of a quality level comparable to an industry project. The project is
available open-source on GitHub3.

3.3 Assignment Design

We designed eight assignments in four categories. The categories
evaluate different aspects of the feature set of TestAxis. To keep
the maximum length of each experiment session reasonable, the
first three categories have a time limit of five minutes, while the
last has a time limit of ten minutes. The participants execute all
eight assignments, for each category one with and one without
TestAxis. In the overall experiment, each assignment is executed
eight times with and eight times without TestAxis.
Category 1: Test Outcomes and Metadata. For the assignments

in this category, the reason for the failure can be spotted
from the test failure metadata (the name of the test and the
stack trace). Figure 3 shows how TestAxis presents this
information. Figure 8 illustrates how one assignment from
this category is presented in both GitHub and TestAxis.

Category 2: Test Code. For the assignments in this category, the
reason for the failure can be spotted in the test code (Fig-
ure 4).

Category 3: Code Under Test – Simple. For the assignments in
this category, the reason for the failure can be spotted in the
code under test (Figure 6). In Figure 9 we present how an
assignment from this category is presented in both GitHub
and TestAxis.

3Our JPacman fork is available at https://github.com/testaxis/jpacman

Category 4: Code Under Test – Advanced. For the assignments
in this category, the reason for the failure can also be spotted
in the code under test. However, these assignments are more
advanced.

To mitigate learning or order effects, we randomize the order in
which the participants solve the assignments. For each of the eight
assignments, we compare the performance of both groups (with
and without TestAxis). To prevent any effects of the randomized
group selection, we use a crossover design: For each category, we
only determine an overall trend if both assignments show the same
trend when comparing the times with and without TestAxis. The
complete assignments are available in our replication package [10].

3.4 Participants

To conduct the experiment and gain useful insights about the results,
we needed to recruit a large enough number of participants. We
required participants to have experience with Java and CI. This
ensures a somewhat equal baseline and the ability for participants
to reflect on their CI build-fixing workflows. At the same time, we
wanted a diverse group of participants and therefore used a phased
participant recruitment process with different target audiences per
step. We first reached out to acquaintances, which are mostly (PhD)
students. Then, we placed a message on the internal messaging
platform of Computer Science teaching assistants of our institution,
with a similar target audience. To target industry developers, we
posted a collection of tweets on Twitter illustrating the capabilities
of TestAxis and asking for a developer’s help to improve the
project. Finally, we also posted on LinkedIn with the same target
audience in mind. To thank the participants for their time and to
increase engagement, we raffled four 15 euro gift cards among the
participants.

In total, 16 participants signed up for the experiment. The most
experienced participants have programmed for 12 years. The other
participants are relatively equally distributed between 4 and 12
years. 31.3% of the participants work in industry as a software en-
gineer, while the main occupation of the remaining participants is
student or PhD student. All participants have an academic back-
ground. The current or highest education level of most participants
is MSc (56.3%). The other participants were either BSc (25%) or PhD
students (18.8%) at the time of the experiment.

The 16 participants consider themselves to be experienced soft-
ware developers (● 4.0 4). They are experienced with develop-
ing Java applications (● 3.8) in IntelliJ (● 3.9). Some of the
participants have experience developing software applications pro-
fessionally (● 3.4), whereas others do not have any experience
in this area.

The participants are less experiencedwith software testing (● 3.6).
We observe that some of the participants indicated to be very expe-
rienced in testing, while others indicated to not be experienced at
all. The results on the experience with CI show a different trend.
The participants rate themselves as highly experienced in using CI
build tools (like Travis CI, GitHub Actions, or Jenkins; ● 4.2)
and inspecting the output logs when a build fails (● 3.9).

4To present the Likert-scale results we show the average score indicated by the purple-
colored dot. The small bar chart gives a rough indication of the distribution of the
answers that the participants gave.

https://github.com/testaxis/jpacman

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 8: Illustration of Assignment 1b, where the issue to be found can be spotted from the stack trace of the failing test: The

invalid character “!” in the map definition. On the left, the long stacktrace on GitHub that points to the failing test, on the

bottom the failing tests and error messages as TestAxis presents them.

Figure 9: Illustration of Assignment 3a, where the issue to be found is in the code under test. On the left, the long unfiltered list

of changes as presented in GitHub, on the bottom the prioritized list of covered changes as presented in TestAxis.

A minority of the participants have some previous experience
with the software project (● 2.4).

3.5 Experiment Execution

The experiment is approved by the Human Research Ethics Com-
mittee of our university and follows the guidelines set by the com-
mittee. At the start of the experiment, participants read and sign
an informed consent form indicating that they understand what
data will be collected and how it will be used. Before we conducted
the experiment, we first ran a pilot to evaluate the design of the ex-
periment and improved several aspects of our design and the tools

we used. We conducted the experiment in March 2021 for three
weeks in multiple sessions per day. Due to the COVID-19 pandemic,
the experiment was fully remote. All sessions were individual and
guided by an observer. During a session, the observer took notes
of interesting things that happened or were said during the experi-
ment and timed the assignments. A session took about 90 minutes,
depending on the time needed to fill out the questionnaires or solve
the assignments.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

1a 1b 2a 2b 3a 3b 4a 4b

0

50

100

150

200

250

300

350

400

450

500

550

600 Assignment Variant
Without TestAxis
With TestAxis

Assignment

D
ur

at
io

n
(s

)

Figure 10: The failure-fixing time in seconds of both the

without and with variant of all assignments. The first six

assignments have a time limit of 5 minutes. For the last two

assignments, the limit is 10 minutes.

4 RESULTS

In this section, we present the results of our within-subjects experi-
ment.

4.1 Time to fix failing tests

Each of the 16 participants conducted one with/without TestAxis
variant of all eight assignments. Each variant was thus solved by 8
participants. The observer measured the time between starting an
assignment variant and fixing the issue. Figure 10 shows the results
per assignment per variant. In all cases except 4a, we see that the
median time to fix the issue is lower for the with variant than the
without variant. For the assignments in the second and the fourth
category, we observe a high variability in the results. For category
one, where the issue can be spot in the test metadata (Figure 3), we
see an overall improvement of 13.4%. For category two, with the
issue in the test code (Figure 4), this is 13.8%. The assignments in
category three (simple issue in code under test, Figure 6) show the
greatest performance improvement, on average 48.6%. Although
the first assignment of category four (advanced issue in code under
test) shows a performance decrease, on average, the performance
difference of category four is 12.1%. Because of our crossover design,
we cannot determine that there is an improvement in the failure-
fixing time for the assignments of category four. Overall, the four
assignment variants with TestAxis are conducted 22.0% faster.

The participants did not manage to solve all assignments within
the time limit. When a participant hit the limit, we consider their
failure-fixing time to be the maximum time of 5 minutes for cate-
gories one-three and 10 minutes for category four. We observe a
high number of hit time limits for category two. In general, we see
a lower number of hit time limits for the with TestAxis assignment
variants, except for assignment 4a.

After each assignment, we conducted the post-assignment eval-
uation questionnaire. Overall, an interesting result is a decrease in
the average score of having to run the test locally to get more in-
formation from 3.4 to 1.6. Also, the perceived time spent on finding
out which test(s) failed dropped from 2.1 to 1.2, on average.

4.2 Usefulness of The Tool

After our experiments, we asked the participants how useful they
found the different informational elements of TestAxis. The ma-
jority of the participants find that the information provided by
TestAxis in the various features helps them understand a failure
better and fix it more quickly (● 4.4). The participants consider
the details tab containing meta-information such as the test name
and the interactive stack trace (shown in Figure 3), as well as the
changed code under test tab (as shown in Figure 6) most useful
(● 4.2 and● 4.4 , respectively). Participant 5 even indicates
that they “already like just having the overview of failed tests a lot

over a build log where I can see the name of the [failing] test but not

much more”. However, the participants rate the usefulness of the
test code feature slightly lower (● 3.9). Participant 8 mentioned
that the test code tab may be unnecessary since there is already
an “Open Test” button that opens the test in the main window of
the IDE. The participants signal the value of highlighting changes
in the code under test tab and consider it a very important part
of the code under test feature (● 4.6). Participant 13 explained
why they think this feature is relevant: “The highlights of the code
under test are very important since that’s what you would normally

do manually by thinking about what changed and what the test could

have covered. And this shows you everything automatically without

any margin for error.”

5 ANALYSIS AND DISCUSSION

The goal of our investigation is to gauge whether providing context
about test failures in the local IDE helps developers fix broken CI
builds faster. We implemented TestAxis and conducted an experi-
ment where we asked developers to solve test failures that require
different kinds of contextual information. In this section, we analyze
the results of our experiment, such as whether the performance
improvements are statistically significant, discuss the implications
of our results and propose answers to our research questions.

5.1 What is the influence of presenting the test

outcomes and metadata on the time a

developer needs to fix a failing test?

We designed the assignments of the first category to be solvable
with only the meta-information (the name and stack trace of the
failing test) presented in TestAxis (see Figure 3). The first category
contains simple test failures where the issue can be spotted in
the stack trace alone. We found that the average time participants
needed to solve the two assignments decreased by 13.4%when using
TestAxis. Also, the participants indicated they spent considerably
less time figuring out which tests failed with the help of TestAxis.
Moreover, TestAxis reduced the need to run the failing tests locally
to get more feedback. We thus see indications that presenting a test
failure in the IDE over a CI build log has a positive influence on the
failure-fixing time.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

RQ1

What is the influence of presenting the test outcomes and

metadata on the time a developer needs to fix a failing test?

• Developers solve test failures faster when the failure infor-
mation is presented in the IDE over a CI build log. In the
experiment, we saw an average performance increase of 13.4%.

• Developers indicate they need less time to find which test is
failing using TestAxis.

5.2 What is the influence of presenting the test

code on the time a developer needs to fix a

failing test?

The second assignment category featured test failures due to issues
in the test code. Figure 4 demonstrates how TestAxis presents
the test code. Many participants hit the time limit in this category,
10 participants for the assignments without TestAxis and 5 for
the assignments with. This could be caused by the participants
focusing more on the code under test than on the test code, which
they indicated in the post-assignment survey. The results show an
average improvement of the failure-fixing time of 13.8%. We see
clear indications that TestAxis helps to solve assignments where
the issue is in the test code more quickly.

RQ2

What is the influence of presenting the test code on the time a
developer needs to fix a failing test?

• Developers solve test failures more quickly when they have
quick access to the test code as part of the failure information.
In the experiment, we saw an average performance increase
of 13.8%.

5.3 What is the influence of presenting the code

under test, where the changed code is

highlighted, on the time a developer needs

to fix a failing test?

We evaluate the effect of showing changed code under test (RQ3,
Figure 6) in both the third and fourth category. In the third category,
we observe an average improvement in the failure-fixing time of
48.6%. The test cases in this category are straightforward, and the
issues are in one of the few highlighted code fragments of the
changed and covered code shown by TestAxis. The suggestions of
potential locations of the issue cut down the number of lines of code
to inspect drastically compared to inspecting the full code change
diff, which is likely the explanation for the significant increase in
failure-fixing performance. The participants have also indicated
that they spent the most time on the code under test while figuring
out the cause of the failure.

The fourth category consists of two assignments where the same
high-level end-to-end test fails, and the participants must find out
why. These assignments are more complex than the third category
and require a deeper investigation by the developer. Even though
we saw an average performance improvement of 12.1%, the results
for the two assignments in this category show different trends.

Assignment 4b showed an improvement in performance while as-
signment 4a showed a decrease in performance. By the design of
the study, we can thus not conclude anything about the results for
this category. We found that the more experienced developers that
perform the assignment with TestAxis need more time to solve
the assignment than the less experienced developers, contrary to
the other assignments. A possible explanation could be that the
less experienced participants find it easier to adopt new features,
such as the changed code under test feature, into their workflow,
whereas for more experienced developers it may be difficult to fit a
new type of feature in their existing tool belt.

We see clear indications that showing the changed code under
test positively influences the failure-fixing time for simple cases.
Our results are inconclusive about more complex cases.

RQ3

What is the influence of presenting the code under test, where

the changed code is highlighted, on the time a developer
needs to fix a failing test?

• Developers solve simple test failures more quickly when they
have an overview of the changed code under test. In the ex-
periment, we saw an average performance increase of 48.6%.
This improvement is statistically significant.

• The results cannot tell us whether there is a performance im-
pact when using the changed code under test failure for more
complicated tests, such as end-to-end tests. In the experiment,
we saw an average performance increase of 12.1% but cannot
rule out the effect of the participant distribution per category.

• More experienced developers are less efficient than less expe-
rienced developers when using the code under test feature.

5.4 Statistical Significance of the Measured

Performance Improvements

In Section 4.1, we present the performance results of all assignment
variants. For all assignments except one, we observe an improve-
ment of the average failure-fixing time when using TestAxis. We
use the two-tailed Mann-Whitney𝑈 test [22] to analyze whether
these improvements are statistically significant. We reject our null
hypothesis “there is no difference between performing an assign-
ment without or with TestAxis” when 𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05.

Table 1 shows the 𝑈 values per assignment. It also shows 𝑝-
values using a normal approximation. For assignment 3a and 3b we
can reject our null hypothesis and conclude that the improvements
are statistically significant. For all other assignments, we cannot
conclude that the performance improvements are statistically sig-
nificant.

Table 1: Statistical significance of the observed performance

improvements.

𝑈 𝑝 Reject 𝐻0
1a 24.0 0.215
1b 19.0 0.095
2a 20.0 0.092
2b 22.0 0.255

𝑈 𝑝 Reject 𝐻0
3a 12.5 0.022 ✓
3b 4.0 0.002 ✓
4a 28.0 0.355
4b 17.0 0.059

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

5.5 Impact of Running Tests Locally and

Determining Which Test Failed

In all assignments with TestAxis, the participants rarely had to
run a failing test locally in the IDE to get more information. Also,
the time needed to find out which tests failed dropped significantly
in the assignments with TestAxis compared to the ones without.
These two general findings contributed in almost all assignments
to an improvement of the failure-fixing time when using TestAxis.

Insight

Developers using TestAxis almost never run tests locally when
to gain more details.

5.6 To what extent do developers consider

contextual CI information in the IDE

useful?

After the assignments, we asked the participants about the useful-
ness of TestAxis and the different features they used. The partic-
ipants consider all three kinds of contextual information useful,
with the changed code under test feature being the most useful.
The participants think that TestAxis solves a real problem and that
it would save them time. Most participants would make TestAxis
part of their workflow, one of the participants indicated that they
would consider implementing it in their workflow “as is” and that
they would “not add much info further as I think its strength lies

in the clean and concise overview”. Overall, the participants find
TestAxis useful in helping them understand test failures better
and fix them more quickly. One of the participants described their
experience as “I thought it was super useful during the experiments.

I much rather preferred using TestAxis over the traditional CI logs

on GitHub. What TestAxis does, in my opinion, is recreate the steps I

manually take on a GitHub pull request to identify a failing test, and

it does so in the IDE so I don’t have to switch tabs and interrupt my

workflow.”

RQ4

To what extent do developers consider contextual CI informa-

tion in the IDE useful?
• The participants find TestAxis useful in helping them under-
stand a test failure better and fix it more quickly.

• The participants consider all three main features of TestAxis
(failure details, test code, and code under test) to be useful.
The (changed) code under test feature is considered to be most
useful.

• The participants believe that TestAxis solves a real problem.
• The usage of TestAxis would save the participants time and
they would make it part of their workflow.

• The participants strongly agree that TestAxis provides bene-
fits over inspecting CI build logs manually.

6 THREATS TO VALIDITY

To support the credibility of our results, we outline the threats to
the validity of our user experiment.

6.1 Internal Validity

Internal validity indicates the reliability of the cause-and-effect re-
lationship between the introduction of TestAxis and the observed
effects in the results.

While analyzing our results, we observed a learning effect. Our
participants were able to solve assignments quicker at the end of the
experiment. We expected this while designing the experiment and
mitigated the impact by randomizing the order of the assignments.
We base the results for each assignment on both early and late
executions in the experiment. Half the participants got the without
TestAxis variant of a category first, and the other half got the with
variant of the category first.

Creating two assignments that are similar enough to directly
compare is very complex (see Section 3.3). To mitigate this, we
compare the results of the without variant of a specific assignment
against the with variant, executed by another group. As then the
group composition could influence the results, we only consider
there to be an effect of using TestAxis when the results show the
same trend for both assignments of a category.

Another threat is whether the participants felt comfortable giv-
ing their honest opinions. The participants knew that their activity
was observed while conducting the assignments and filling out the
questionnaires. This could cause a Hawthorne effect, participants
answering questions more positively [1]. While it is not possible to
show that this was not the case, we do observe negative answers
to some of the questions. This suggests that the participants felt at
ease and comfortable sharing their opinions.

In the experiment, TestAxis is used for a short time. A longer
study of teams working with the tool in real projects is needed
to measure its true impact. The short time is not long enough
to incorporate a new feature such as the changed code under test
feature into one’s workflow. Participant 14 confirmed this by saying
“For the best experience, requires a user to learn the intuitions of the

tool”.

6.2 Construct Validity

Construct validity is concerned with the degree to which a test
actually measures the construct(s) it claims to be testing. The per-
formance results are based on quantitative data, the duration of
assignment executions. The timing results may be influenced by dif-
ferent behavior induced by the experiment environment. However,
the participants agree with the statement that they used the same
tactics during the assignments without TestAxis as they would
have done outside the experiment. In a follow-up study, a more ob-
jective approach that monitors IDE usage, such as WatchDog [5],
could be considered to get a better indication of which tasks are
most influenced by the usage of TestAxis.

6.3 External Validity

The external validity is concerned with the generalizability of the
results. As shown in Section 3.4, the participants are a diverse group
withmixed backgrounds. However, the group size is relatively small,
which may cause individual differences in their background to have
a greater effect on the results than in a larger group of participants.

How similar the test failures in the assignments are to real test
failures is an important factor for the generalizability of our results.

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

While the example project JPacman is smaller than most applica-
tions, it does feature an extensive test suite, modern build pipeline,
and design practices such as dependency injection. The short dura-
tion of the experiment requires a project that can be understood
quickly. The participants agree that JPacman allowed for interest-
ing cases that were suitable to answer the questions. The cases
we designed mimic test failures that could happen in any type of
software project. The participants neither agree nor disagree that
the assignments are similar to the ones they encounter in their own
projects, indicating that the generalizability of the assignments is a
threat to the validity of the results.

7 RELATEDWORK

CI builds and test failures are well-explored topics. This section
discusses a selection of the research done in these areas that is
related to our work.

7.1 Assistance in Fixing Failing Tests

Beller et al. monitor the behavior of developers after observing a
test failure [6]. Their results show that in more than 60% of the cases,
a developer starts reading the code under test. Another 17% reads
the test code first. However, after 5 seconds, a significant number
of users switch focus from the IDE to another window. A possible
explanation is that developers reach out to external resources to
help solve the issue.

The need for such external resources could be fulfilled by pro-
viding more context around the test failure. Zhang et al. proposed
an approach that explains the reasons for test failures through
comments in the test code [42]. For example, it adds comments
indicating which exception is thrown by a specific line. It also
suggests fixes by mutating the failing tests to see if it can find a
variant that would pass. Using a statistical algorithm, they deter-
mine and comment the production code most suspicious of causing
the failure.

ReAssert also mutates test code to try to make the test pass [15].
The tool suggests mutations that result in a passing test as repair
options. It can, for example, replace literals and change assertions.
This method only works if the test code is no longer in line with the
production code. If the failure is caused by a regression, mutating
the test code would capture the wrong behavior of the production
code.

7.2 CI Build Results in the IDE

There exist several IDE extensions that show the status of CI builds,
sometimes with additional information. The plugins have different
characteristics. Table 2 shows all IDE plugins displaying CI builds
that we identified in the JetBrains and Eclipse Marketplace. Three of
the plugins notify the developers of build status updates [9, 30, 31].
Half of the plugins only show raw information of the builds (like
the status or the logs) [3, 23, 31], while the others also interpret the
builds and show the test results [9, 30, 39].

Moreover, the TeamCity [30] plugin and the Hudson/Jenkins My-
lyn Builds Connector [39] also provide additional insights. Table 3
shows a comparison between the test insights features of these two
plugins and TestAxis. TeamCity displays which tests failed and
highlights stack traces. It also offers the ability to easily rerun a

test locally. The Hudson/Jenkins Mylyn Builds Connector plugin
shows the test results but also provides insights on execution times
and code changes made for this build.

TestAxis also gives these insights. It shows an interactive stack
trace together with execution details such as the run time. While
Hudson/JenkinsMylyn Builds Connector only shows a list of changes,
TestAxis incorporates these changes in the changed code under
test feature that both shows which code fragments were changed
and touched by the test. Furthermore, TestAxis also provides easy
access to the test code to understand the intent of the test or to spot
mistakes in the test itself. TestAxis is not limited to a specific CI
service and can be included in the build process of any CI tool.

One might expect that showing CI test results in the IDE is not
needed because developers can just execute the tests in their IDE
that shows a good interface to review and inspect failing tests. How-
ever, it turns out that developers actually do not often execute tests
in their IDE [6, 7]. Beller et al. also mention that “Despite the tool
overhead and a possibly slower reaction time, our low results on test

executions in the IDE suggest that developers increasingly prefer such

more complex setups [in which tests are run on CI servers] to manually

executing their tests in the IDE.” and continue by recommending
that IDE developers should improve CI integration [6].

7.3 The Augmented IDE

Our work also lies in the context of integrating additional sources of
information within the IDE. A key goal here is to improve software
understanding and development, and also reducing the context
switches between tools that software engineers typically use. A
notable examples is the work of Holmes and Begel: Deep Intel-
lisense [21], an IDE plugin that links bug reports, emails, code
changes to source code entities. Furthermore, the Eclipse plugin
Hipikat [14], tries to assist newcomers by recommending problem
reports, newsgroup articles, etc. related to the task at hand.

Other tools tackle the challenge of reducing the context switch-
ing from IDE to web browser. For example, Ponzanelli et al. bring
Stack Overflow into the IDE [25]. Another Eclipse plugin, Fish-
tail [29] harnesses programmer’s interactions history to bring rele-
vant web resources into the IDE. Similarly, TestKnight is a plug-in
for IntelliJ that helps developers engineer developer tests by (1)
providing suggestions on which parts should still be tested, of-
fering boilerplate test code solutions, and (3) adding support for
copying and pasting test cases with suggestions on which parts to
change [12].

8 CONCLUSION AND FUTUREWORK

Inspecting the results of a failing test in a CI build is a tedious
process. It often requires developers to manually inspect and scroll
through hundreds to thousands of lines of log output, while running
tests inside an IDE offers specific, detailed, and interactive feedback
on the test results. TestAxis brings CI test results to the IDE and
offers a similar experience to running a test locally. Moreover, it
exploits the change and coverage information available on the CI to
offer additional support while inspecting test failures. In this paper,
we explored how three different kinds of contextual information
reduce the time needed to fix a test failing on CI.

ICPC ’22, May 16–17, 2022, Virtual Event, USA Boone et al.

Table 2: IDE plugins that show CI build statuses and/or results.

Name IDE Users CI Service Build

Status

Build

Logs

Notifi-

cations

Test

Results

Test

Insights

TeamCity [30] IntelliJ 778,6K TeamCity ✓ ✓ ✓ ✓ ✓

Jenkins Control Plugin [9] IntelliJ 204,7K Jenkins ✓ ✓ ✓ ✓

IntelliJ GitLab Pipeline Viewer [31] IntelliJ 7,2K GitLab ✓ ✓

Github Tools [23] IntelliJ 6,3K Travis CI / CircleCI ✓

GitHub Actions [3] IntelliJ 3,1K GitHub Actions ✓ ✓

Hudson/Jenkins Mylyn Builds Connector [39] Eclipse Not reported Jenkins ✓ ✓ ✓ ✓

TestAxis IntelliJ - All ✓ ✓ ✓ ✓ ✓

Table 3: Comparison of IDE plugins with test insights.

Feature TeamCity [30] Hudson/Jenkins Mylyn Builds Connector [39] TestAxis

Interactive Stack Traces ✓ Indirectly through JUnit view ✓

Display of Test Code Link only Link only ✓

Code Under Test ✓

Code Changes ✓ ✓ ✓

Changed Code Under test ✓

Raw Build Log Inspection ✓ ✓

Rerun Test ✓ Indirectly through JUnit view Indirectly by opening test code in main window
Supported CI Providers TeamCity Jenkins All

Our results show that it is helpful to present the test results
and the test code in the environment of the developer. For simple
failures, we saw a statistically significant improvement in failure
fixing time when presenting the code under test which was changed
since the last successful build. For complex failures, our results were
diverging, possibly because more experienced developers tookmore
time to incorporate the new feature into their workflow, or because
the assignments were too difficult for our participants in the scope
of our experiment. Overall, the developers judged TestAxis as a
useful tool which they would integrate into their workflow and
emphasized the power of the unique presentation of changed code
under test. A central advantage of TestAxis is the combination of
information available on the CI and the familiar, local presentation
in the IDE. This enables us to give developers powerful insights
into their test failures.

While our study has shown that TestAxis can have a positive
effect on the type of cases we presented, more work is needed to
confirm its usefulness and performance improvement in real-life
projects. Due to the design of our study, we could only see indi-
cations that there is an effect after introducing TestAxis but not
that this effect is caused by TestAxis. Our experiment should be
repeated as a controlled experiment with a larger sample size or as
a longitudinal study on a real software project to achieve stronger
conclusions. Further, TestAxis could be extended to provide addi-
tional context for builds that fail for other reasons than tests, such
as dependency errors or static analysis warnings. A combination
with links to the code or automatic fixing suggestions could also
help leverage the unique combination of CI and IDE in these cases.

ACKNOWLEDGMENTS

This research was partially funded by the Dutch science foundation
NWO through the Vici “TestShift” grant (No. VI.C.182.032) and
conducted as part of Casper Boone’s master thesis [11].

REFERENCES

[1] J. G. Adair. 1984. The Hawthorne Effect: A Reconsideration of the Methodological
Artifact. Journal of Applied Psychology (1984), 69(2):334. https://doi.org/10.1037/
0021-9010.69.2.334

[2] Anunay Amar and Peter C. Rigby. 2019. Mining historical test logs to predict
bugs and localize faults in the test logs. In Proceedings of the 41st International

Conference on Software Engineering (ICSE ’19). IEEE Press, Montreal, Quebec,
Canada, 140–151. https://doi.org/10.1109/ICSE.2019.00031

[3] Andrey Artyukhov. 2020. GitHub Actions. https://plugins.jetbrains.com/plugin/
13793-github-actions

[4] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open Source
Software. In IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER). IEEE Computer Society, 470–481. https://doi.org/10.
1109/SANER.2016.105

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Transactions on Software Engineering 45, 3 (March 2019),
261–284. http://doi.org/10.1109/TSE.2017.2776152

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE

2015). Association for Computing Machinery, New York, NY, USA, 179–190.
http://doi.org/10.1145/2786805.2786843

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do De-
velopers Test?. In 37th IEEE/ACM International Conference on Software Engineering

(ICSE). IEEE, 559–562. https://doi.org/10.1109/ICSE.2015.193
[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke

the Build: An Explorative Analysis of Travis CI with GitHub. In 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR). 356–367.
https://doi.org/10.1109/MSR.2017.62

[9] David Boissier, Yuri Novitsky, and Michael Suhr. 2011. Jenkins Control Plugin.
https://plugins.jetbrains.com/plugin/6110-jenkins-control-plugin

[10] Casper Boone. 2021. TestAxis Replication Package. Zenodo (Sept. 2021). https:
//zenodo.org/record/5526015

[11] Casper Boone. 2021. TestAxis: Save Time Fixing Broken CI Builds Without Leaving

Your IDE. Master’s thesis. Delft University of Technology. http://resolver.tudelft.
nl/uuid:f8375d5f-3bbd-4559-863b-6951e9d6bab0

[12] Cristian-Alexandru Botocan, Piyush Deshmukh, Pavlos Makridis, Jorge Romeu
Huidobro, Mathanrajan Sundarrajan, Mauricio Aniche, and Andy Zaidman. 2022.
TestKnight: An Interactive Assistant to Stimulate Test Engineering. In Proceedings
of the 44th International Conference on Software Engineering (ICSE Companion).
ACM. To appear.

[13] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. 2020.
LogChunks: A Data Set for Build Log Analysis. In MSR ’20: 17th International

Conference on Mining Software Repositories (MSR). ACM, 583–587. https://doi.
org/10.1145/3379597.3387485

https://doi.org/10.1037/0021-9010.69.2.334
https://doi.org/10.1037/0021-9010.69.2.334
https://doi.org/10.1109/ICSE.2019.00031
https://plugins.jetbrains.com/plugin/13793-github-actions
https://plugins.jetbrains.com/plugin/13793-github-actions
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
http://doi.org/10.1109/TSE.2017.2776152
http://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/ICSE.2015.193
https://doi.org/10.1109/MSR.2017.62
https://plugins.jetbrains.com/plugin/6110-jenkins-control-plugin
https://zenodo.org/record/5526015
https://zenodo.org/record/5526015
http://resolver.tudelft.nl/uuid:f8375d5f-3bbd-4559-863b-6951e9d6bab0
http://resolver.tudelft.nl/uuid:f8375d5f-3bbd-4559-863b-6951e9d6bab0
https://doi.org/10.1145/3379597.3387485
https://doi.org/10.1145/3379597.3387485

Fixing Continuous Integration Tests From Within the IDE With Contextual Information ICPC ’22, May 16–17, 2022, Virtual Event, USA

[14] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. 2004. Learning from
project history: a case study for software development. In Proceedings of the 19th

Conference on Computer Supported Cooperative Work (CSCW). 82—-91.
[15] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:

Suggesting Repairs for Broken Unit Tests. In 2009 IEEE/ACM International Con-

ference on Automated Software Engineering. 433–444. https://doi.org/10.1109/
ASE.2009.17 ISSN: 1938-4300.

[16] John Downs, Beryl Plimmer, and John G. Hosking. 2012. Ambient awareness of
build status in collocated software teams. In 2012 34th International Conference on

Software Engineering (ICSE). 507–517. https://doi.org/10.1109/ICSE.2012.6227165
ISSN: 1558-1225.

[17] Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F. Bissyandé, and
Luís Cruz. 2019. An Analysis of 35+ Million Jobs of Travis CI. In 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME). IEEE,
291–295. https://doi.org/10.1109/ICSME.2019.00044

[18] D. Goodman and M. Elbaz. 2008. "It’s Not the Pants, it’s the People in the
Pants" Learnings from the Gap Agile Transformation What Worked, How We
Did it, and What Still Puzzles Us. In Agile 2008 Conference. 112–115. https:
//doi.org/10.1109/Agile.2008.87

[19] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexibility.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering

(ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA,
197–207. http://doi.org/10.1145/3106237.3106270

[20] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE 2016). Association for Computing Machinery, New York,
NY, USA, 426–437. http://doi.org/10.1145/2970276.2970358

[21] Reid Holmes and Andy Begel. 2008. Deep Intellisense: a tool for rehydrating
evaporated information. In Proceedings of the International working conference on

Mining software repositories (MSR). ACM, 23––26.
[22] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of

two random variables is stochastically larger than the other. The annals of

mathematical statistics (1947), 50–60. ISBN: 0003-4851 Publisher: JSTOR.
[23] Diego Marcher. 2019. Github Tools. https://plugins.jetbrains.com/plugin/13366-

github-tools
[24] Ade Miller. 2008. A Hundred Days of Continuous Integration. In Agile 2008

Conference. 289–293. https://doi.org/10.1109/Agile.2008.8
[25] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: stack

overflow in the IDE. In Proceedings of the International Conference on Software

Engineering (ICSE). IEEE, 1295–1298.
[26] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.

An Empirical Analysis of Build Failures in the Continuous Integration Work-
flows of Java-Based Open-Source Software. In 2017 IEEE/ACM 14th Interna-

tional Conference on Mining Software Repositories (MSR). 345–355. https:
//doi.org/10.1109/MSR.2017.54

[27] Gema Rodríguez-Pérez, Andy Zaidman, Alexander Serebrenik, Gregorio Robles,
and Jesús M. González-Barahona. 2018. What if a bug has a different origin?:
making sense of bugs without an explicit bug introducing change. In Proceedings

of the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM). ACM, 52:1–52:4. https://doi.org/10.1145/3239235.
3267436

[28] Gema Rodríguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M. Germán, and Jesus M. Gonzalez-Barahona. 2020. How bugs are born:
a model to identify how bugs are introduced in software components. Empirical

Software Engineering 25, 2 (March 2020), 1294–1340. https://doi.org/10.1007/
s10664-019-09781-y

[29] Nicholas Sawadsky and Gail C Murphy. 2011. Fishtail: from task context to source
code examples. In Proceedings of the 1st Workshop on Developing Tools as Plug-ins.
48–51.

[30] JetBrains s.r.o. 2007. TeamCity IntelliJ Plugin. https://plugins.jetbrains.com/
plugin/1820-teamcity

[31] Simon Stratmann. 2020. IntelliJ GitLab Pipeline Viewer. https://plugins.jetbrains.
com/plugin/13799-intellij-gitlab-pipeline-viewer

[32] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice
differences in industry software development. Journal of Systems and Software

87 (Jan. 2014), 48–59. https://doi.org/10.1016/j.jss.2013.08.032
[33] G. Tassey. 2002. The economic impacts of inadequate infrastructure for software

testing. National Institute of Standards and Technology.
[34] Fabian Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Are unit and

integration test definitions still valid for modern Java projects? An empirical
study on open-source projects. Journal of Systems and Software 159 (Jan. 2020),
110421. https://doi.org/10.1016/j.jss.2019.110421

[35] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch,
Harald C. Gall, and Andy Zaidman. 2020. How developers engage with static
analysis tools in different contexts. Empir. Softw. Eng. 25, 2 (2020), 1419–1457.
https://doi.org/10.1007/s10664-019-09750-5

[36] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE Computer Society, 38–49.
https://doi.org/10.1109/SANER.2018.8330195

[37] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. 2020.
Every build you break: developer-oriented assistance for build failure resolution.
Empirical Software Engineering 25, 3 (May 2020), 2218–2257. https://doi.org/10.
1007/s10664-019-09765-y

[38] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: An Open Source and a Financial Organization Perspec-
tive. In 2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME). 183–193. https://doi.org/10.1109/ICSME.2017.67
[39] Paul Verest. 2013. Hudson/Jenkins Mylyn Builds Connector. https://marketplace.

eclipse.org/content/hudsonjenkins-mylyn-builds-connector
[40] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.

2019. A Conceptual Replication of Continuous Integration Pain Points in the
Context of Travis CI. In Proceedings of the 2019 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations of

Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Comput-
ing Machinery, New York, NY, USA, 647–658.

[41] Andreas Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging.
Morgen Kaufmann.

[42] Sai Zhang, Cheng Zhang, and Michael D. Ernst. 2011. Automated documentation
inference to explain failed tests. In 2011 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2011). 63–72. https://doi.org/10.1109/
ASE.2011.6100145 ISSN: 1938-4300.

[43] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: A large-scale empirical study. In 32nd IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE). IEEE, 60–71.
https://doi.org/10.1109/ASE.2017.8115619

https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ICSE.2012.6227165
https://doi.org/10.1109/ICSME.2019.00044
https://doi.org/10.1109/Agile.2008.87
https://doi.org/10.1109/Agile.2008.87
http://doi.org/10.1145/3106237.3106270
http://doi.org/10.1145/2970276.2970358
https://plugins.jetbrains.com/plugin/13366-github-tools
https://plugins.jetbrains.com/plugin/13366-github-tools
https://doi.org/10.1109/Agile.2008.8
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1145/3239235.3267436
https://doi.org/10.1145/3239235.3267436
https://doi.org/10.1007/s10664-019-09781-y
https://doi.org/10.1007/s10664-019-09781-y
https://plugins.jetbrains.com/plugin/1820-teamcity
https://plugins.jetbrains.com/plugin/1820-teamcity
https://plugins.jetbrains.com/plugin/13799-intellij-gitlab-pipeline-viewer
https://plugins.jetbrains.com/plugin/13799-intellij-gitlab-pipeline-viewer
https://doi.org/10.1016/j.jss.2013.08.032
https://doi.org/10.1016/j.jss.2019.110421
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1007/s10664-019-09765-y
https://doi.org/10.1007/s10664-019-09765-y
https://doi.org/10.1109/ICSME.2017.67
https://marketplace.eclipse.org/content/hudsonjenkins-mylyn-builds-connector
https://marketplace.eclipse.org/content/hudsonjenkins-mylyn-builds-connector
https://doi.org/10.1109/ASE.2011.6100145
https://doi.org/10.1109/ASE.2011.6100145
https://doi.org/10.1109/ASE.2017.8115619

	Abstract
	1 Introduction
	2 TestAxis
	2.1 Build Notifications
	2.2 Presentation of Test Results
	2.3 Test Outcomes, Metadata and Test Code
	2.4 Changed Code Under Test
	2.5 Implementation

	3 Study Design
	3.1 Experiment Overview
	3.2 Example Project
	3.3 Assignment Design
	3.4 Participants
	3.5 Experiment Execution

	4 Results
	4.1 Time to fix failing tests
	4.2 Usefulness of The Tool

	5 Analysis and Discussion
	5.1 What is the influence of presenting the test outcomes and metadata on the time a developer needs to fix a failing test?
	5.2 What is the influence of presenting the test code on the time a developer needs to fix a failing test?
	5.3 What is the influence of presenting the code under test, where the changed code is highlighted, on the time a developer needs to fix a failing test?
	5.4 Statistical Significance of the Measured Performance Improvements
	5.5 Impact of Running Tests Locally and Determining Which Test Failed
	5.6 To what extent do developers consider contextual CI information in the IDE useful?

	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity
	6.3 External Validity

	7 Related Work
	7.1 Assistance in Fixing Failing Tests
	7.2 CI Build Results in the IDE
	7.3 The Augmented IDE

	8 Conclusion and Future Work
	Acknowledgments
	References

