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A B S T R A C T

There is a paradigm shift from two- to three-dimensional data, from maps to infor-
mation dense models. Self-driving cars, digitization of historic buildings or main-
tenance of highway infrastructure are a small selection of many applications that
use laser scanning to acquire three-dimensional data of our physical surroundings.
Most of these applications require more than the shape of their surroundings. For
example, a self-driving car needs to identify pedestrians, road signs and traffic
lights in order to navigate safely. Therefore the point cloud acquired by laser scan-
ning needs to be enriched with additional information. Automatic assignment of
the object type a point belongs to is called classification.

This research focuses on deep learning for point cloud classification, because it
revolutionized classification of imagery. PointNet is used to enable deep learning
directly on point cloud data sets. To date PointNet is proven for indoor point
clouds, this research explores the application of PointNet on an outdoor highway
scene. The methodology creates point cloud training data efficiently by reusing
known 2D object locations. Different spatial representations and sampling methods
for the points are tested.

On average the method classifies 50% of the points correctly in four object classes.
In combination with clustering of the point-wise predictions, the method predicts
60% of the 2D object locations successfully. The performance is comparable to the
47% average class accuracy PointNet achieves for 13 classes on the indoor data set.
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1 I N T R O D U C T I O N

�.� �����
From self-driving cars that navigate on busy crossroads, to archaeologists who
archive historical sites in high detail, or an infrastructure planner who maps a high-
way scene before maintenance. Many applications rely on three-dimensional (3D)
data of our physical surroundings. A popular method to acquire this data is laser
scanning, that acquire the data in the form of point clouds.

Consider the example of the infrastructure planner. It is important that every
road sign, traffic light or lamppost removed during maintenance of the highway
returns to it’s original location. The infrastructure planner can refer to a 3D scan of
the area made before the maintenance. He identifies the different objects in the scan
and creates a two-dimensional (2D) map with the object’s type and location. After
maintenance the map is used to return objects to their original locations.

In general laser scanning point clouds represent the outer surface of objects in the
scene. Points in the point cloud lack information on the object they belong to. The
process to add this information to each point is called classification. Classification
of point clouds can be automated using a computer algorithm that determines the
object type based on features. Properties of a point, statistics of a point’s neighbour-
hood or scene knowledge are all features. For example, the height or Z value of a
point can be used to discriminate points that are part of the ground surface. Or the
normal vector on neighbouring points of a point, which is similar for points in the
same plane.

The classification algorithm consists of a model and point cloud processing func-
tionality. The model determines the class label for a point. This model can be rule-
based or learned from example data. Traditional models are often rule-based, they
are based on manually engineered rules that discriminate points based on manually
engineered features [Friedl and Brodley, 1997]. The first learning algorithms were
also based on manually engineered features. Both manually engineered rules and
features involve domain and scene knowledge and the performance of the result-
ing models is application dependent. More recently, Deep Learning (DL) models
are used for classification problems. Especially in image classification these mod-
els achieve state-of-the-art accuracy. Instead of manually engineering features DL
models learn abstract features directly from examples, called training data.

The success of DL on imagery is owed to Convolutional Neural Network (CNN).
Images are often stored as two-dimensional matrices of pixel values. CNN networks
use convolutions to incorporate spatial information of these two-dimensional matri-
ces. The resulting abstract features of a pixel contain information of neighbouring
pixels. To apply the same principle to point clouds is non-trivial. Point clouds are
generally stored as an array of point records. However, these point records are in
no particular order. This poses a challenge to incorporate local spatial information
into the abstract features and create DL models that perform as well as CNN on
imagery.

This research is part of a project from the Dutch research institute TNO. The
project develops methodologies for automatic classification of highway scenes. The
highway scenes consist of roads with road markings, guard rails, gantries, road
side objects and vegetation and is captured by MLS. Currently, mapping of road
side objects is performed manually. An operator inspects the point clouds and pins
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2 ������������

object locations on a 2D CAD drawing. This research proposes a methodology to
create training data, perform classification and create the 2D CAD mapping auto-
matically. The accuracy of the CAD drawings is important, because the location of
road signs is critical to road safety. After automatic classification the operator has
to perform a manual check and add missing or change incorrect object locations.
Still, the automatic classification could reduce manual labor.

�.� ���������
There is a paradigm shift from 2D to 3D geo-information. 3D information models,
like Building Information Model (BIM), replace 2D CAD information resources. It is
important to reuse existing 2D information to classify new 3D data. The methodol-
ogy in this research reuses the known object locations to create point cloud training
data for the DL algorithm.

As stated, the application of DL directly to point clouds is non-trivial. Many
researchers apply CNN by transforming the point cloud to a raster representation.
Depending on the application these methods also require back-transformation of
the classification results. Transformation back and forth between different represen-
tations introduces computational overhead. With growing quantities of point cloud
data transformation becomes a bottleneck. This can be avoided by classification on
the original representation of these point clouds. To apply DL to a ”raw” point
cloud data set Qi et al. [2016] introduce PointNet.

In the original PointNet paper Qi et al. [2016] perform classification of an indoor
scene. The indoor scene consists of office rooms that partition the data set and
provide spatial structure. The methodology by Qi et al. [2016] relies on this struc-
ture, while the highway scene in this research and most other outdoor scenes lack
this structure. Because most geo-spatial applications consider outdoor scenes, it is
important to explore methods to apply PointNet on these scenes.

�.� �������� ��������
The research question of this research states:

To what extent is PointNet suitable for classification of raw point clouds of
a highway scene?

The suitability of PointNet for outdoor highway scenes depends on multiple as-
pects. The feasibility of a methodology with training data from two separate input
data sets of an outdoor scene is not yet proven. The representation of points may be
different from indoor scenes and is not yet defined. The sampling of points may be
different for outdoor scenes. Finally, the applicability of the model on different lo-
cations should be tested. The following questions are stated to collectively provide
an answer to the main research question.

• To what extent can training data automatically be generated from point clouds and
known 2D object locations?

• What is the best way to represent a 3D point for deep learning?

• What is the optimal sampling of points for classification of road side objects?

• Does the model generalize so it can be used at other locations?
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�.� �����
The methodology in this research performs the following steps. First, it creates train-
ing data from the MLS point cloud and 2D locations of road side objects. With the
training data PointNet is trained to perform point-wise classification. Finally, point-
wise predictions are mapped to 2D object locations. The classification accuracy of
both point-wise prediction and predicted 2D object locations are evaluated.

The goal is not to achieve state-of-the-art accuracy on point cloud classification.
The goal is to discover whether this methodology shows enough potential to pursue
this direction of research.

The research makes two main contributions to the field of research for point cloud
classification. First, the method to create training data from point cloud and object
locations. Second, the exploration of the suitability of PointNet for outdoor scenes.
To limit the scope it is important to state what is not part of the research.

The PointNet model was not adapted or optimized, but used as-is. Optimization
of the model architecture or parameters for the training process, hyper-parameters,
could improve classification accuracy [Probst et al., 2018]. However, this is beyond
the scope of the research.

The point cloud is considered static, the time dimension is excluded. This means
the methodology will not be applicable to dynamic data and classification of chang-
ing or moving objects. The data set contains X, Y, Z and intensity attributes for ev-
ery point. The original PointNet paper also uses RGB color attributes for each point,
these attributes are only available if the point cloud is combined with (panoramic)
photographs. This is not the case for the data set in this research, therefore RGB
attributes are excluded. Most laser scanning point clouds contain at least X, Y, Z
and intensity values. Because the methodology only depends on these values it is
applicable to most laser scanning point clouds.





2 T H E O R E T I C A L B A C KG R O U N D A N D
R E L AT E D W O R K

�.� ����� ������
A point cloud is a set of data points in a spatial reference system. In practice
the term is used to refer to 3D points representing the shape, size and location
of real-world objects. Point cloud data sets always contain at least X, Y and Z
attributes for every point. Other common attributes are RGB for color or intensity
of the laser reflection. The intensity value represents the reflective properties of
the object’s surface. These attributes provide information on the properties of the
scanned object and can be used in the classification process.

Point cloud data is the basis for many spatial information products ranging from
Digital Elevation Models (DEMs) to 3D Building Information Model (BIM). To cre-
ate these products extensive processing of the point cloud is needed. A typical
processing pipeline consist of partitioning, indexing, filtering, segmentation, classi-
fication, clustering, mapping, reconstruction and visualization.

Methods to acquire point cloud data are laser scanning, radar or dense-image-matching
techniques.

�.� ������ ����� ��������
A laser scanner consists of a laser, sensor and rotating mirror. The system measures
time between emitting a laser pulse and sensing its reflection (Figure 2.1). This
setup acquires many range measurements in 360 degrees around the device. Laser
scanners typically emit and detect millions of laser pulses per minute.

Object

Laser

Detector

Figure 2.1: The principle working of a laser scanner. A laser emits laser pulses, that refract
on the object’s surface and are detected by a detector.

A scanner can be mounted onto any platform. To measure the shape of a physical
object, e.g. a building or industrial site, laser scanners are often placed on a tripod.
This type of scan is called Terrestrial Laser Scanning (TLS) and in practice also refers
to a static scan. Given the static position of the scanner the range measurements
show the position of the points of reflection relative to the scanner.

To scan large urban areas the scanner is mounted on a vehicle called Mobile Laser
Scanning (MLS). For even larger areas, entire cities or countries Airborn lidar exists.
Most MLS systems have two scanners oriented to scan a line almost perpendicular
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to the direction of the vehicle. The system scans continuously while the vehicle
moves. Almost perpendicular, because two scan lines crossing diagonally cause
less occlusion sideways.

MLS requires additional sensors to determine the position and attitude of the
scanner over time. Often a Global Navigation Satellite System (GNSS) determines
the global position of the vehicle. The measurement frequency of a GNSS is about
once every two seconds. An Inertial Measurement Unit (IMU) increases the mea-
surement frequency of the position and measures the attitude of the scanner over
time.

�.� ������ ��������������

Object classification is the process of adding the label of the object class to a cluster
of points. There are two challenges; which points belong to the same object and
what is the class of this object. There are two ways to approach both challenges.

The first approach is to perform segmentation of the point cloud into clusters
of points that are likely to belong to the same object. After segmentation the clus-
ters can be classified to determine the class of object (object classification). In this
approach both segmentation and object classification are non-trivial. However, the
top object classification algorithms are all above 90% accuracy on data sets with per-
fectly segmented objects such as ModelNet40. This shows segmentation is the most
complex in this approach [Grilli et al., 2017].

The second approach assigns a class label to each individual point (point-wise
classification or semantic segmentation), and clusters nearby points with the same label
afterwards. Classification of individual points is also non-trivial [Hackel et al., 2016],
[Weinmann et al., 2015a].

Classification algorithms work well for objects, because data from points of the
entire object cluster is used. For segmentation or point-wise classification data of a
specific point can be used, but this is often not sufficient for accurate prediction. Ad-
ditional information of neighbouring points could improve point-wise classification.
However, the definition of a neighbourhood and the method to select neighbouring
points efficiently are non-trivial.

�.� ������� ��������

Point cloud classification algorithms rely on features. A feature in this context is any
bit of information that informs the classification problem. The development of these
features started based on the point, it’s neighbourhood and domain knowledge
[Vosselman, 2013], [Weinmann et al., 2015b]. Features that are based on domain
knowledge are often referred to as manually engineered features. Multiple aggregations
of neighbouring points improve these features [Hackel et al., 2016], [Yang et al.,
2017]. Also Yang et al. [2017] implement contextual features from scene knowledge.
Combining techniques results in extensive sets of features [Weinmann et al., 2015a].

Traditional point cloud classification models are rule-based and rely on manually
engineered features. There exist many types of features, e.g. point density his-
tograms, local shape descriptors and many other statistical descriptions. Because of
the required domain knowledge and scene knowledge, most traditional models are
developed for specific scenes or applications.

More recently Machine Learning (ML) algorithms became very popular. ML mod-
els learn to predict output with manually engineered features as input. Learning
the model instead of manually engineering rules reduces the amount of domain or
scene knowledge required.
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In their paper [Qi et al., 2016] state that creation or selection of manually engi-
neered features is non-trivial and its success very application dependent. Learning
methods based on those features are not limited to the original data, but are limited
to the capabilities of those features to describe the original data. This introduces an
unnecessary limitation for learning algorithms.

Deep Learning (DL) algorithms are a subcategory of ML and are large layered
networks of weights and biases. The values for these weights and biases are retrieved
by training the network. Training data propagates through the network in a specific
direction, this is the forward pass. With the results of the forward pass, the weights
and biases are updated in a backward pass. The network is capable of deriving
abstract features.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A fully connected neural network with one hidden layer. The data propagates
from the input (left) through the hidden layers to the output (right).

Learning algorithms require training data. Training a model with this data is
called supervised learning. During the training phase the model learns to predict
output for the input data. If successful, the model is able to predict output for
input data that has no annotations, this phase is called inference.

In general DL models improve with more training data. With each new training
sample the abstract features become more general. Training a DL model with too
little data may result in over-fitting. To over-fit means the model’s abstract features fit
tightly with the training data, but will fail to fit other data including the validation
data.

The abstract features learned by DL in combination with large quantities of avail-
able training data have proven very successful in image classification [Krizhevsky
et al., 2012].

�.� ������������� ������ �������
For classification of images Convolutional Neural Networks (CNNs) have domi-
nated the field of DL algorithms. CNN are similar to Neural Network (NN) (Fig-
ure 2.2), but use convolutions and pooling to reduce the number of trainable param-
eters. Reducing parameters reduces computation cost and improves the ability to
generalize.

The convolutional layer is the reason for the success of CNNs. Convolution is the
product of two functions which results in a third function. For the case of image
classification the input image can be described as i(x, y), a pixel value for every
position of x and y. The second function is a kernel k(x, y), this kernel is a 2D
matrix too. In a 2D convolution the kernel slides over every pixel and computes the
product of the pixel with neighbouring pixels and the weights of the kernel. This
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method incorporates spatial information from the image into the third function
f (x, y, the feature map (see Figure 2.3).
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Figure 2.3: A convolution with a 3x3 kernel. The kernel slides over the input image and their
product is the feature map.

Pooling is used to downsample the input or feature maps. Besides reducing
trainable parameters, the pooling layer also increases the area affected by the kernel
in the next convolution. The combination of convolutions and pooling creates a
pyramid structure. At the bottom of the pyramid (close to the input) small scale fea-
tures are detected, such as edges and textures. Near the top of the pyramid higher
scale features are detected, such as parts and objects [Olah et al., 2017]. Figure 2.4
shows an example of max-pooling. Max- and average-pooling are the most common
pooling variations. With max-pooling the highest value input within the kernel is
selected, with average-pooling the average value.

1 3 3 4
1 2 5 3
1 2 3 4
1 3 3 1

Input

�!
3 5
3 4

Result

Figure 2.4: Max-pooling with a 2x2 kernel.

To apply CNN to point clouds similar to image classification the representation
can be transformed. Point clouds can be transformed to a voxel representation, vox-
els are structured in a 3D raster [Zhou and Tuzel, 2017]. Alternatively, multiple 2D
projections can be made from the point cloud. These projections can be classified
with a CNN and the results back-transformed to a point cloud representation. Re-
cent papers focus on the application of Deep Learning (DL) algorithms directly on
raw point cloud data. This seems to be a promising method for semantic segmenta-
tion [Qi et al., 2016], [Qi et al., 2017].

�.� �������� �� ������������ ����� ����
Learning directly from raw point clouds is no trivial task. As stated before, DL
gained popularity for its success in image classification. Images are a structured
data type, a gray-scale image is a collection of values stored in a 2D raster. Every
value in this raster is spatially related to its neighbouring values. A point cloud
is an unstructured collection of points. There is no specific order of points and no
spatial relationship between a point or the next in the collection.

To make DL networks invariant to the order of the points, permutation invariant,
Ravanbakhsh et al. [2016] introduce an additional layer to transform the input. With
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this layer the resulting abstract features are identical despite variations in the order
of the input. Qi et al. [2016] implement this layer in PointNet and are the first to
perform classification directly on point clouds. PointNet achieves 48% average class
accuracy, or MIOU, on the indoor benchmark dataset S3DIS with 13 classes.

PointNet combines the learned features of all points in an area into a local feature.
Engelmann et al. [2017] suggest to learn features on multiple scales of neighbour-
hoods. Using multi-scale neighbourhoods is similar to the methods by Hackel et al.
[2016] and Yang et al. [2017]. PointNet++ is an implementation of this improve-
ment by Qi et al. [2017]. The effect of multi-scale neighbourhoods in DL networks
for point clouds is similar to the spatial filters in networks for image classification.
However, to ensure permutation invariance the multiple scales remain very local.

An alternative approach comes from the field of graph theory. The representation
of point cloud data as a graph is common. An example of this is the mesh data type,
a connected point cloud to represent surface reconstruction. For DL classification of
graph structures Kipf and Welling [2016] and Simonovsky and Komodakis [2017]
propose spatial filters on the edges in a graph. Landrieu and Simonovsky [2017]
proves the scalability of this approach and the application on point cloud data sets.
In a recent paper Wang et al. [2018] claims state-of-the-art over PointNet, with a
Graph Convolutional Neural Network (GCNN) with dynamic neighbourhood defi-
nitions. The GCNN achieves 56% MIOU on the S3DIS data set.

As stated in the introduction (Chapter 1) point cloud classification is an active
field of research. The PointNet network was released at the start of this research.
Therefore PointNet is part of the methodology in this research (Chapter 4). How-
ever, during the period of this research PointNet++ and the dynamic GCNN were
introduced by Qi et al. [2017] and Wang et al. [2018] respectively. In the conclusion
(Chapter 7) these progressions in classification of point clouds are included.

�.� ��������
For point-wise classification (or semantic segmentation) PointNet takes input samples
of a point cloud and returns class labels for each point of the input. Besides point-
wise classification the PointNet paper introduces similar architectures to perform
Object classification and Object-part segmentation. Figure 2.5 shows the architecture of
PointNet, the Semantic segmentation part of this network is used in this research.

Figure 2.5: PointNet architecture consisting of a classification and segmentation network [Qi
et al., 2016].

The input for PointNet is a 2D matrix attributes x number of points (see Figure 2.6).
Qi et al. [2016] partition the point cloud data set into 1 by 1 meter grid cells. The
points in a grid cell are a training sample. To keep the input dimensions the same
the number of points in a training sample is fixed. The number of points is a free
parameter, for the indoor data set S3DIS Qi et al. [2016] uses 4096 points per 1 by 1
meter sample.
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The kernel in PointNet’s convolutions is one-dimensional. One-dimensional ker-
nels create features for each point instead of including multiple (unrelated) points
into the feature map. Multiple convolutions with these one-dimensional kernels
result in Point Features.
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Figure 2.6: Convolution with a 9 ⇤ 1 kernel

PointNet creates a Global Feature by max-pooling all point features of a sample.
Both the Point Feature and the Global Feature are permutation invariant. The Global
Feature is concatenated to every individual point feature. The final combined feature
used for classification therewith contains information on the specific point and all
the points in that specific sample.
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Figure 2.7: Max-pooling of PointFeatures into GlobalFeature and concatenation of
GlobalFeature to each PointFeature
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�.� ����

�.�.� Mobile Laser Scanner point cloud
The first type of input data for this project is Mobile Laser Scanning (MLS) point
cloud (see Chapter 2). The point cloud is the main input data set, it contains the
geometrical information for classification. The point cloud is combined with the
point locations of the objects in the highway scene to create the training data set.

The attributes for each point are; X, Y, Z and Intensity. The intensity attribute is
the intensity of the laser reflection on the surface of the scanned object.

�.�.� CAD 2D map
The second type of input data is a 2D CAD file. The CAD files contain 2D point
locations of objects in the highway scene and are combined with the point cloud
data to create labels for each point in the point cloud data set.

The CAD files are created manually by an infrastructure planner (see Chapter 1).
The object locations are taken from MLS point clouds by visual inspection.

The file contains records in various geometric types Points, MultiPoints and LineStrings
in different layers. The object locations are stored both in the Point and MultiPoint
geometric type. The different object classes are stored in different layers.

�.�.� GPS POS dataset
The third data type is a trajectory of Global Navigation Satellite System (GNSS)
measurements. The trajectory is the position of the MLS over time. It is used to
compute a spatial reference for each point in the point cloud data set. This spatial
reference is the point’s distance to the trajectory, or assuming the MLS is a car, the
road.

The GNSS sensor measures at an interval of 2.5 seconds. The vehicle travels at
a speed of circa 80 km/h, therefore this produces a rather coarse trajectory. To
interpolate the GNSS measurements an Inertial Measurement Unit (IMU) measures
orientation and speed constantly.

�.�.� Ring Groningen
The first highway scene covers about 12 kilometer of the highway Ring Groningen
in Groningen, the Netherlands. The scene consists of large stretches of highway,
intersections and overpasses (see Figure 3.1).

The scans are acquired on a sunny summer day, the 27th of August 2016. These
weather conditions are perfect for laser scanning, because there is little humid in
the air or water on object’s surfaces to refract laser pulses.

The 2D CAD file of this area contains objects of different classes, four classes are
selected because these occur at least a 100 times. Less than 100 objects for a class
are expected to be too little to train a DL network (see Chapter 5). The classes are
the Lamppost, Road sign, Hectometer sign and Traffic light. In total 2811 objects of the

11
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(a) (b)

Figure 3.1: Coverage area (a) and close-up (b) of the Ring Groningen MLS point cloud, the
points are aggregated and colored by point density.

selected types are mapped in the Ring Groningen data set, the frequencies of objects
and points belonging to the objects per class are shown in Figure 3.2.
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Figure 3.2: Point frequency (a) and object frequency (b) per class for Ring Groningen train
data set

�.�.� Badhoevedorp West
The second highway scene covers 3.4 kilometers of the highway Badhoevedorp West
just north of Schiphol Airport. The scene consists of an S-shape stretch of highway
with an intersection and highway exit (see Figure 3.3).

The scans are acquired on a rainy autumn day, the 9th of November 2017. Com-
pared to the conditions of the Ring Groningen data set, these weather conditions
are less ideal. Rain causes refraction of the laser and less accurate measurements
[Rasshofer et al., 2011]. Another difference between scans acquired in autumn and
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summer is the representation of vegetation. In autumn trees and shrubs lose their
leafs which makes vegetation less dense causing less occlusion.

(a) (b)

Figure 3.3: Coverage area (a) and close-up (b) of the Badhoevedorp West MLS point cloud,
the points are aggregated and colored by point density.

Of the four classes from the Ring Groningen scene, three also occur in the Badho-
evedorp West scene. In total 801 objects of the classes Lamppost, Hectometer sign and
Traffic light (see Figure 3.4). The objects are represented by about 899M points, their
class frequencies are shown in Figure 3.4.
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Figure 3.4: Points frequency (a) and object frequency (b) per class for Badhoevedorp West
test data set
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�.� ��������
The entire methodology is implemented in Python, using the following libraries.
Numpy for numerical processes, Pandas for dataframe operations and Dask for en-
abling Pandas operations in parallel. Spatial operations rely on Geopandas and Scipy
spatial and graph operations are implemented using NetworkX. The deep learning
model was implemented in Tensorflow by Qi et al. [2016]. Finally, Bokeh enables
most of the visualizations and is extended with Holoviews for visualization of larger
amounts of data. iPyvolume enables visualization in 3D for point sets and other
geometric shapes.

For storage of data in between processing steps Apache Parquet is used with a
Python interface fastparquet.

�.� ��������
The setup for this project involves a single Jupyter Notebook running on a remote
server. Specifications for the machine are;

• CPU Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz

• GPU GeForce GTX 1080 Ti

• Memory 64GB

• OS Ubuntu 16.04.3 Xenial LTS



4 M E T H O D O LO GY

�.� ������������
This chapter describes a methodology to perform classification of outdoor point
clouds and builds on technologies listed in the Related works Chapter 2. Figure 4.1
shows the different processes, files and points of evaluation for this methodology.

Point cloud input 2D CAD map

Grid Grid

Join point cloud and labels

Ground filtering

Compute spatial reference

Dataset Training data inspection
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Train model
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Figure 4.1: Flow diagram of the methodology with processes (white), contributions (green),
input/intermediate/output files (gray, solid border) and points of evaluation
(gray, dashed border)

The aim is to perform point-wise classification of a point cloud using deep learn-
ing. The application of deep learning requires a training data set. To perform point-

15



16 �����������

wise classification the training data set should have a label for each point. The first
phase creates a data set that contains points with corresponding class labels (see
Phase 1 in Figure 4.1). To create this data set it integrates the data from a raw 3D
point cloud with the 2D CAD map that contains locations of objects. First, the two
data sets are partitioned, then a spatial join selects 3D points to assign a specific
label from the 2D CAD map. Incorrectly labeled points are filtered by applying
ground surface filtering. Finally, several spatial references are computed for each
3D point and values are normalized. Of these steps the process to reuse existing 2D
data and the computation of multiple spatial references are novel contributions.

The next phase is training the DL model (see Phase 2 in Figure 4.1). Standard
procedure is to divide the data set into three subsets, a training, validation and test
data set. The training and validation data subset are used to train the model and
validate the training process. The test data subset is used to test the model for final
point-wise classification accuracy.

After application of the model to the test set the point-wise predictions are clus-
tered (see Phase 3 in Figure 4.1). The clusters’ 2D centroids are the final predicted
object locations and are compared with the input CAD file to evaluate mapping
performance.

�.� ���� ������������
The methodology involves processing of two large input data sets to create a la-
belled data set. Memory limitations require partitioning of the data set. There is a
memory limitation for processing the data before DL, but also the DL network itself
can only process batches of data at a time because of limited GPU memory.

A two-dimensional grid is the simplest way to partition space. The grid partitions
space into grid cells based on a coverage area as described by the lower and upper
bound of the X and Y values of all points. A lower XY-pair and the grid size describe
each of its cells boundaries. This approach is identical to the original PointNet
paper, where a 1 meter grid size is used. The grid sizes used in this project are 1, 2,
5 and 10 meters. Larger grid sizes are used because objects in a highway scene are
larger and farther apart.

The Morton code (or Z-order) provides an efficient spatial index to optimize pro-
cessing. It computes an one-dimensional index value for the X and Y combination
of each grid cell by bit-wise interleaving the binary representations of X and Y Mor-
ton [1966]. A spatial index for both grid cells and object locations enables filtering
grid cells that do not contain an object at all, which drastically reduces the amount
of data to process. Also it reduces the computational expensive search for points
that are near the object by only considering points within the grid cell instead of all
points (see Section 4.3).

�.� ��������� ������
The second phase of the methodology focuses on the creation of one data set with
points and labels. The model architecture designed by Qi et al. [2016] requires
training with a data set with point-wise labels to perform point-wise classification.
To create this data set the point cloud and 2D CAD input are joined.

The join is performed in three steps. The first step is to match grid cells from both
data sets by Morton code. The next step is to create a 3D cylindrical buffer around
each 2D CAD point. The point specifies the center of the cylinders base, its radius
and height are related to the objects class. Finally, all points of the point cloud that
are within this buffer are labeled the class of the 2D point (see Figure 4.2). The
remainder of the points in the grid cell is labeled background class.
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(a) (b)

(c)

Figure 4.2: Spatial join of raw point cloud and 2D CAD map input. The input of the spa-
tial intersection a point cloud (gray) and 2D object location (blue) (a). A buffer
around the 2D object location (blue) intersects with the point cloud (b). The
points in the buffer are assigned the object class (c).

However, at the base of each object are also ground surface points (see Figure 4.2).
These points are within the cylindrical buffer, but are not part of the object. This
step of the methodology filters those points and assigns the background class label.
The ground surface points are filtered after assigning labels to avoid processing
grid cells that do not contain an object at all. Grid cells without objects contain only
background class points and therefore no potentially miss-classified object points.

The method to filter the miss-classified ground surface points consists of two
steps. First, the points in the grid cell are divided into subsets of points along
the Z-axis. A frequency histogram shows the amount of points per subset and the
largest subsets of points are selected. The Z-range with the ground surface points
is expected to be a large subset as the ground surface is a horizontal surface with
many points. The second step is to analyze the variance ratio between the X, Y
directions and the Z direction. The subset with the least variance in the Z direction
is assumed to be the ground surface. The variance ratio indicates ”flatness” of
the subset and the ground surface is expected to be horizontal. The points in the
Z-range that are part of the ground surface are labeled background class.

The ground filtering finalizes the process of labeling the data set. The result is
an automatically generated ground truth, with the notion that previous processing
steps are not perfect and so the ground truth is not 100% accurate.

�.� ������� ���������
The points in the ground truth data set are XYZ coordinates in the Amersfoort /
RD New spatial reference system (EPSG : 28992). These coordinates represent the
point its absolute position in the Netherlands. To provide the model with more
information alternative spatial references can be computed. In the original paper
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of PointNet the authors use a spatial reference for each points position in a room
(the authors apply PointNet to an indoor point cloud) and its position in the grid
cell. For this project all points have a position relative to the road and a certain
position within the grid cell too. In theory these spatial references provide similar
information for each point. From the position in the room arrangement of furniture
can be learned. From the position relative to the road a zonal arrangement of road
side objects. Expectations are that the distance of an object to the side of the road is
standardized and part of road safety regulations.

To represent each point this section introduces three spatial references. The first
is based on the original XYZ coordinate, let this be the global spatial reference. The
second spatial reference is the position of a point within the grid cell, let this be the
local spatial reference. Lastly, the position of a point relative to the side of the road,
let this be the trajectory reference.

To compute the global reference the origin of the coordinates is translated to the
center of the point cloud data set. The local reference is every points position rela-
tive to the center of the grid cell. To compute the trajectory reference the trajectory
data set is used (Chapter 3 for more detail). Because the vehicle drives on the road,
the trajectory path can be seen as the length-axis of the road. The distance from
each point to the nearest point on this trajectory is measured. This distance con-
tains a horizontal and vertical component. These values are the trajectory reference.
Finally the values of the global and trajectory are normalized for the entire data set
and the values of the local reference per grid cell. Normalization remaps the values
to a �1 to 1 scale. Normalization is needed for the learning process of the model,
because the initialization of the models weights is by default with small random
values. Without normalization the learned parameters may never reach the domain
of the data.

The ground truth data set now contains points with three spatial references, a
class label and multiple grid cell identifiers.

�.� ��������
The data set created in the previous sections is split into three parts, a training set, a
validation and test set. It is important to keep these sets strictly separated, because
a test with training data does not evaluate the model’s ability to classify unseen
data. Let all the points in a specific grid cell be a sample. Two methods to split
the data set are used; random and spatial. For a random split samples are randomly
selected from the entire data set. For a spatial split all the samples in the data set
are divided into three parts, e.g. north/mid/south. The different classes of objects
are not equally distributed throughout the scene. Therefore a spatial split could
result in certain classes of objects missing in the resulting parts of data set. If a class
is missing in the train set the model will not learn this class and if it is missing in
the validation or test set it cannot be verified that the model has learned this class.
Therefore the spatial split is only used in this project for experiments covering two
input scenes.

The samples contain varying amounts of points, because the input point cloud is
sparse and point density varies. The model requires samples to be of the same size
n number of points, which is a free parameter. Sampling is applied to select n points
from all points within the sample. This is under-sampling if n is larger than the total
amount of points in the sample or over-sampling if the sample contains less than n
points. The PointNet paper states that the model is robust to missing or duplicate
points. If the sample contains less points than a certain threshold the sample is
discarded, this threshold was set to 100 points for this research. Three methods
for sampling are used; random, grid-wise with density preservation and grid-wise
with density flattening. The original PointNet paper uses random sampling, the two
additional methods are expected to improve classification performance because they
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result in a more consistent point distribution. Random sampling selects n points
randomly, all points have the same probability of being selected. The grid-wise
methods first bins the sample in three dimensions. To preserve density variations
in the sample, probabilities for selecting points are based on the amount of points
in each three-dimensional bin, called a voxel. The third alternative forces even point
density by lowering probabilities for points in voxels containing many points.

The more data can be used for training the model, the better the model becomes.
This research applies two methods to increase the amount of training data. Many
samples contain more points than are used after sampling, the first method focuses
on reusing these points. By sampling these samples multiple times more training
samples are generated (see Figure 4.3). This method might perform better than sim-
ply increasing the number of points, because the GPU Memory limits the number of
points and more points in one sample might not necessarily improve performance
(see Chapter 5). In Section 4.3 the grid cells without objects are excluded from the
data set. The second method to enlarge the training data set is to reintroduce a
certain amount of these samples.

(a)

(b)

(c)

(d)

(e)

Figure 4.3: A grid cell with circa 12.000 points (a) subsampled to 3000 points (b), can generate
3 training samples (c,d,e) to create more training data.

�.� ���� ��������
The model is trained by feeding batches of training data, each batch contains multi-
ple samples. The model learns by going through all batches and updates its weights
after each batch. After all training data is processed the model is applied to the val-
idation data to show what it has learned. This process of training and validation
is repeated multiple times, every iteration is called an epoch. Training the model
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requires the specification of model specific parameters, as discussed above (spatial
references, grid size, number of points, sampling method and data split method).
In addition the model requires specification of hyper-parameters related to the model
structure (weight initialization, drop out, activation function and loss function) and
related to training (batch size, learning rate, learning rate decay and number of
epochs). The model is used as described in the original PointNet paper with similar
hyper-parameters, except for batch size. The batch size is lowered to allow for ex-
perimentation with higher amounts of points per sample, the total amount of batch
size times samples times number of points is limited by the GPU Memory.

After processing all epochs the validation results and the models weights are
stored. The validation results provide information on how the model has evolved
and its expected performance. The model can now be applied to new data just as
it was applied to the validation data set, given this new data is prepared in similar
fashion. The application of the model to the test data set results in point-wise label
predictions for data that has not been part of the training process.

�.� ������ ���������
The final goal of this methodology is to produce a 2D mapping of the predictions.
The prediction results for the test data set are still unrelated 3D points, be it with a
class label. This step in the methodology aims to create the relation between points
that belong to the same real-world object. This means to cluster points with the
same predicted label that are nearby.

Two methods to cluster points are used. For both methods the background class
points are excluded. The first method simply groups all points with the same pre-
dicted label that are in the same grid cell. This method assumes that there is only
one object of this predicted label in that grid cell.

The second method is the Connected Components method. This method involves
three steps. First the points are represented as nodes in a graph. Then nodes are
connected with an edge if the points are less than 0,2 meters apart and are predicted
the same class label. If there are objects in the sample this results in multiple sub
graphs separated by distance or class difference. Finally, for each sub graph the
points are assigned an object identifier.

Comparable to the isolates in the previous steps, very small components could
occur. To prevent mistaking a single object for multiple objects components of an
insignificant size are discarded. The amount of points for a connected component
to be insignificant depends on the resolution (total amount of points per hash) used
in classification.

For all of the remaining components a bounding box can be fitted around all
points. To map the objects to a two-dimensional CAD file (similar to the input file)
the centroid is projected on the ground surface.
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�.�.� Introduction
The previous chapter describes the methodology, it depends on multiple parame-
ters. This chapter introduces experiments to test the methodology. Every experi-
ment varies a parameter to test an assumption. The results (Chapter 5) show the
evaluations of these assumptions. The evaluations answer the research questions
and the main research question To what extent is PointNet suitable for classification of
raw point clouds of a highway scene? indirectly.

�.�.� Training data
The first research sub-question states To what extent can training data be created from
point clouds and known object locations?. As mentioned before, DL algorithms require
large amounts of training data. To answer the question it is important to assess the
quality and quantity of training data.

The quality of the training data is evaluated by visual inspection. The assumption
is that training data can be created by integrating raw point cloud data and the
provided CAD files containing point locations for the objects. The requirement for
training data is that each point of the point cloud is assigned a class label. These
labels are ground truth for further analysis. By inspection of multiple training
samples and estimation of miss-classified points an overall accuracy of the ground
truth is estimated.

The quantity of training data is evaluated by evaluating the classification accuracy
of different classes. There are different quantities of objects for each object class,
which may result in different classification accuracy (see Figure 3.2 in Chapter 3).

�.�.� Spatial reference
The next research sub-question is What is the best way to present spatial information
for deep learning?. The methodology introduces three spatial references (Chapter 4).
The position of a point within the Netherlands, or the global reference. The points
coordinates relative to the center of the grid cell, or the local reference. And the
distance to the trajectory, or the trajectory reference.

The first assumption relates to the global and local spatial reference. The as-
sumption is that if the model learns the local reference, the global reference will
be redundant. To test the contributions to classification accuracy of three spatial
references different models are trained and tested, with the local reference, with the
global reference and with the local and global reference combined.

The trajectory reference is assumed to increase the models performance. Because
the distance between a point and the road is expected to be a discriminating prop-
erty. To test this hypothesis the model is trained and tested with the local and
trajectory reference and compared with the results from the model trained only
with local reference.
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�.�.� Point sampling
The next research sub-question is What is the optimal sampling of points for classification
of road side objects?. The point density of the input point cloud is not homogeneous.
Variations in point density are inherent to laser scanning. The training samples
are of fixed number of points, this is a model requirement. The point sampling
to create a training sample, depends on the grid size, number of points and the
sampling method.

With larger grid sizes the chance a sample contains multiple objects of different
classes increases. The global feature that is computed for the entire sample will
contain point features from different classes. The assumption is that this could de-
crease the classification. The experiment involves training and testing four different
models with data samples with grid sizes 1, 2, 5 and 10 meters.

The number of points in each training sample is a model parameter. However,
every grid cell contains a maximum number of unique points. Grid cells with
that contain less points than the parameter specifies are randomly over-sampled
by duplicating points. The assumption is that more points improve the accuracy,
until more points are duplicated than unique points are added. The experiment to
test this assumption increases the number of points in four steps, with 1000, 2000,
4000 and 8000 points. The grid size will be the best performing grid size from the
previous experiment.

The variation in point density within the sample depends on the point sampling
method. Point sampling is used to create training samples of a fixed number of
points. The methodology describes three different methods for point sampling.
The expected difference is that random sampling introduces gaps in point coverage.
Whereas voxel sampling ensures consistent point density. Therefore voxel sampling
is expected to perform better. For the experiment three models are trained with
the different sampling methods, the same sampling method is also applied to the
testing data on inference.

�.�.� Generalization
The last research question is How does the model generalize to another location?. The
previous section elaborated on the performance of different spatial references. The
suitability of the methodology depends on the re-usability of the model for differ-
ent locations. The assumption is that the local spatial reference does generalize to a
different location, but the global reference does not. To test whether the spatial ref-
erences generalize to other areas all the three models (trained with local, global and
the combination of local and global) are applied to an area on a different location.

�.� �������

�.�.� Introduction
Each phase in the flow diagram (Figure 4.1 in Chapter 4) ends with a point of eval-
uation. First, the inspection of the generated training data (Phase 1 in Figure 4.1).
Second, the accuracy of point-wise prediction (Phase 2 in Figure 4.1) and last the ac-
curacy of mapping the clustered predictions (Phase 3 in Figure 4.1). The prediction
accuracy of the model is the most critical assessment of these three. Classification
accuracy variations are directly related to variations of the parameters in the train-
ing data generation process.

Conducting experiments multiple times shows variation in results. This variation
is caused by the random order of batches in a train session. The variation is not
significant to evaluation of some assumptions, for others the Discussion (Chapter 6)
elaborates on the variation.
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�.�.� Accuracy measure
The evaluation of point-wise classification accuracy requires an accuracy measure.
The Mean Intersection over Union (MIOU) accuracy is often used in point-wise
classification problems. The MIOU shows the mean of the point-wise classification
accuracy per class. For this research the MIOU excluding background class is used.
This measure is representative because background is the dominant class by a large
margin and causes incomparably high accuracy results.

�.�.� Training data quality
(a)

(b)

(c)

Figure 5.1: The automatically generated ground truth for a Hectometer sign (left) and Lamp-
post (right) (a). Followed by the prediction of the model (b) and the difference
between ground truth and prediction (c).

Figure 5.1 shows the ground truth and prediction results for two training samples.
The estimated percentage of incorrect labels in the ground truth is 12-14%. This
estimation is based on visual inspection of multiple samples. Common causes for
inaccuracy are grass, overhanging vegetation and guard rails. These types of objects
were not filtered by the ground filtering method and are within the intersection
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buffer. The figure also shows how the model handles ground points at the base of
an object. In some cases the ground points are included, in others excluded. Note
that the ground points at the base of each object already cause significant decrease
in point-wise classification accuracy. Other inaccuracies are from object variations
within a class, several experiments showed that not all objects within a class were
equal. For example the road sign class contained different types of road signs, e.g.
small triangular warning signs and larger rectangular signs with route directions.
Also the traffic light class contains both road side traffic lights on a pole and traffic
lights hanging above the road.

Overall the training data is inaccurate, the error sources mentioned above cause
points with an incorrect label, but following experiments prove that the model can
learn from this training data.

�.�.� Spatial reference
The experiment tests the assumption that if the model learns the global spatial
reference the local reference would be redundant. Figure 5.2 shows the results
for various combinations of spatial references. The model trained with only lo-
cal spatial reference achieves 32% accuracy. The model trained with global spatial
reference achieves 21% accuracy. 21% is the same performance as random class as-
signment, because there are 5 classes. The combination of the two spatial references
also achieves 32% accuracy. This means the model does not learn the global spa-
tial reference and performance is solely based on information from the local spatial
reference.
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Figure 5.2: Average class accuracy for various spatial references. The red bars indicate con-
tributing attributes. (grid size 5m, 4k points, random sampling)

Another assumption was that the trajectory reference would increase performance.
Figure 5.2 shows that the trajectory reference does not contribute to the performance
at all. The assumption was based on the idea of a zonal arrangement of objects on
the road side. Figure 5.3 shows the frequencies and their distance to the trajectory
for different object classes. The figure shows two peaks, one peak around 3 meters
and another around 7 meters distance from the road. The 4 meters in between are
exactly the width of one lane, which indicates the car changes lanes.

The last bar in Figure 5.2 shows the accuracy of the model trained with local
reference and the intensity value. The major increase in classification accuracy for
this model shows the importance of this intensity value.
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Figure 5.3: The object frequency and distance to the trajectory for different object classes in
the Ring Groningen data set.

�.�.� Point sampling
There are three experiments that provide insight in the aspect of point sampling.
The first experiment focuses on the grid size parameter. The assumption is that a
larger grid size is bad for classification performance, because of a higher chance that
multiple objects of different classes occur within one sample. Figure 5.4 shows that
this is not the case. Larger grid sizes achieve better performance, but performance
stagnates at 47% for the 5m grid size.

The second experiment tests the number of points parameter. The assumption is
that training the model with more points per sample results in higher classification
accuracy. Figure 5.5 shows that more points indeed increases performance. How-
ever, more than 4000 points has negative influence on the classification accuracy.
On average a 5 by 5 meter grid cell contains 8000 unique points. In theory a grid
cell containing 8000 unique points can be subsampled 8 times to create 8 training
samples with 1000 points. This multi-sampling generates unique training samples in
the sense that the samples contain unique points, while the object is the same. This
augmentation method did not contribute to classification accuracy.

The third experiment examines three different sampling methods. The assump-
tion is that random sampling introduces gaps, whereas a voxel (grid) sampling
would provide a more consistent representation. The expectation is that voxel sam-
pling performs better than random sampling. Figure 5.6 shows the differences
between different sampling methods with 4000 points on 5x5m samples. There is
no significant difference between the different methods.
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Figure 5.4: Average class accuracy for different grid sizes. The red bar indicates the best
performing grid size (local XYZ and intensity, 4k points, random sampling)
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Figure 5.5: Average class accuracy for different number of points per sample. The red bar
indicates the best performing number of points. (local XYZ and intensity, grid
size 5m, random sampling)

A follow-up assumption is that if there are so many points, the model learns well
regardless of the sampling method. To test this hypothesis the same experiment
is performed with only 100 points. Figure 5.7 shows that with only 100 points
the sampling method does actually matter and the training with consistent point
density performs better than the random and per-voxel-random method.

�.�.� Generalization
The previous experiment proves that the model learns from the local reference, but
not from the global reference. The assumption regarding generalization is that
the model with local reference does generalize to other areas, whereas the model
with the global reference does not. Figure 5.8 shows the average class accuracy for
different combinations of train and test scene. The first experiment tests the local,
global and combination of references for the model trained and tested with data
from the Ring Groningen dataset. Obviously, the results are similar to the results in
Figure 5.2. The second experiment tests these models trained on Ring Groningen
with test data from Badhoevedorp West another location. The results prove that the
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Figure 5.6: Average class accuracy for different sampling methods. All bars are blue, be-
cause there is no significant difference in classification accuracy. (local XYZ and
intensity, grid size 5m, 4k points)
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Figure 5.7: Average class accuracy for different sampling methods. The red bar indicates the
voxel flatten density method performs best with this number of points. (local XYZ
and intensity, grid size 5m, 100 points)

assumption is true. The model trained with global or the combination with global
reference achieves nearly 0% average class accuracy on the new location.

�.�.� Overall performance
The individual experiments optimize specific parameters. The combination of the
optimal settings should result in a overall best performance. The following results
evaluate the implicit assumption of the main research question, the overall suitabil-
ity of PointNet for classification of outdoor point cloud data. Figure 5.9 shows the
classification performance, Intersection over Union (IOU), per class excluding back-
ground class. Interesting to note is the similarity between the frequency of points
in the data set (Figure 3.2) and the accuracy per class (Figure 5.9)). This similarity
suggest that more points for a class result in higher classification accuracy, which
confirms earlier stated assumption that more training data increases performance.
The average performance of the model is 50% MIOU for the four object classes.

The confusion matrices (see Figure 5.10) show how the classes are confused by the
model. Both matrices state the absolute number of total points and objects, followed
by the percentages of confused points and objects. In general the classes that are
confused most are very similar in shape, e.g. the confusion between hectometer
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Figure 5.8: Average class accuracy for train and test the model with data of the same area
Ring Groningen (a) and with different areas, respectively Ring Groningen and
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random sampling)
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Figure 5.9: Point-wise classification accuracy per class (local XYZ and intensity, grid size 5m,
4k points, random sampling)

signs and road signs. The point-wise classification performance is 50% MIOU. The
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final object location accuracy is higher than the point-wise classification accuracy,
this is 60% MIOU.

(a)

(b)

Figure 5.10: The confusion matrix for the point-wise class prediction (a) and the final map-
pings of each object (b). Each class shows an absolute count between paren-
theses and a percentage of this count for confusion. The cells are colored by
percentage.
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The results show two samples from the training data set (see Figure 5.1). These
samples reveal an important downside of a grid. The boundaries of the grid cells cut
through the objects. Objects that are distributed over multiple grid cells are called
edge cases (see Figure 6.1). Edge cases cause two problems in this methodology.
First, samples that contain only half of the object might be harder to classify. Even
though classification is done point-wise, the global feature is less accurate if the
sample contains only half of the object.

Figure 6.1: A sketch top-view of hectometer sign and traffic light edge cases with a small
grid size

The second problem is caused by the spatial intersection. The intersection with
a buffer is a simple spatial operation, but computationally expensive. Therefore
objects are first matched based on the grid cell identifier. The consequence is that
the intersection method only considers point cloud points within the same grid
cell. Parts of an edge case object that are not in the same grid cell as the 2D object
location are not labelled.

The method uses a cylindrical buffer with class dependent sizes. The cylinder
is efficient because most objects in the highway scene are pole-like structures and
the signs or lights attached to the structure can be oriented in any direction. Deter-
mining the size of the cylinder, however, is not trivial. In this research the size of
the cylinders is based on the object class, though not all objects within a class ap-
pear to be identical. This results in object points outside of the buffer and therefore
incorrect class labels.

The ground filtering method relies on various assumptions. The most critical of
these assumptions is that all ground points are within a single bin along the Z-axis
(see Section 4.3). Sloped ground surface and areas with low vegetation (high grass)
are exceptions to this assumption, however appear relatively often. This causes
ground surface points at the base of objects to end up with an object class label in
training data. Throughout the project it appears that this noise is not disastrous for
the end result, however does likely decrease performance.

31
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Despite the inaccuracies the model is able to generalize. The estimated training
data 12-14% error, however, decreases the maximum achievable accuracy to around
86-88%.

�.� ������� ���������

The assumption is that if the model learns the local spatial reference, the global ref-
erence will be redundant (see Section 5.1.3). This assumption is correct, the model
is not able to learn the global reference, it only learns the local spatial reference. If
the two spatial references are combined the performance is similar to performance
achieved with the local reference only. The model does not learn the global ref-
erence, because it does not contain any information to classify other points of the
scene. The position of every point in a global reference system is unique, therefore
it does not generalize to other points in the scene. The local spatial reference in
PointNet is similar to the 2D position of objects in an image for image classification.
When the model learns training samples with the object on different positions and
rotations within the sample the resulting features will be robust to these variances.
With this insight augmentation techniques can be borrowed from image classifica-
tion for learning on point cloud data sets (see Section 7.2.6).

The second assumption is that the trajectory reference improves classification ac-
curacy (Section 5.1.3). Results prove that the trajectory reference does not contribute
to performance. The model performance is similar to the local reference without
the trajectory reference. The distance to the road, as implemented in this research,
is not a discriminating property to classify points (Section 5.2.4). The reason for
this could be that the error is larger than the information. A possible cause for
a systematic error in this value is the scanning vehicle changing lanes every once
in a while. Because the trajectory of the car changes the distance of points to the
trajectory changes. The width of one lane is just as wide as the road side area in
which the objects are placed. Figure 5.3 shows the object frequency per distance
to the trajectory and rules out this reasoning. It proves the car changing lanes is
actually recognizable in the trajectory reference. This systematic error is not larger
than the information and two peaks are clearly visible for every object class. The
problem is these peaks are aligned, at the same distance to the road. Still, the zonal
arrangement of objects at the side of the road could be at sub-meter level. If this is
true, differences of scanning vehicle’s position within lane could cause the object’s
distance peaks to spread. This error can be compensated by first detecting the true
side of the road or guardrails. However, this does complicates the methodology
significantly.

�.� ����� ��������

Grid size, number of points and sampling method determine what points are se-
lected for each training sample. The assumption is that larger grid sizes result in
lower classification performance (Section 5.1.4). On the contrary, the experiment
shows that training samples from larger grid sizes result in higher classification ac-
curacy (Section 5.2.5). The performance stagnates around 5 by 5 meter grid size. If
objects are further apart than 5 meters, grid cells still contain points of background
class and just one type of object. In this case global features (the feature for the
entire sample) describes only one object class. Also, smaller grid sizes cause more
edge cases, because there are more edges. Edge cases cause inaccurate class labels
in the ground truth, this introduces conflicting information in the training data set.
These findings suggest that the best grid size is as large as possible to reduce edge
cases, limited by the distance between objects.
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The second assumption states that classification accuracy improves with more
points per sample (Section 5.1.4). The experiments show that below 4000 points the
assumption is true and the performance increases with more points. The model
performs best with 4000 points and above 4000 points the performance decreases
(Section 5.2.5). The accuracy increases because the point density on real-world
objects is higher than point density of the ground surface (see Figure 6.2). With the
increase of points per sample the amount of points relative to background increases.
This creates a more equal balance between object classes and background classes.
DL algorithms are known to perform better with more equal class distributions.
The classification accuracy decreases after 4000 points, because on average a 5 meter
grid cell contains 8000 points. Therefore to reach 8000 points half of the samples
will include duplicate points.

x

2x

Figure 6.2: A sketch of the MLS scanning a traffic light. The angle with the ground surface
results in a lower point density for ground surface then for surfaces of the object.

The third assumption is that voxel sampling methods outperform random sam-
pling. The results show that this assumption is only correct in cases with very little
points. The experiment shows that with 4000 points per sample the amount of in-
formation is enough to compensate irregularities in sampling distribution for the
random sampling method. With 100 points the distribution of those points becomes
important. This makes a case for the voxel sampling method that flattens density
in circumstances with restricted computation power or time. Because the samples
with 100 points contain less data, the model trains significantly faster.

�.� ��������������
The results confirm the assumption that the model trained with the local reference
does generalize to other areas, but the global reference does not. Section 6.3 on
the experiments with spatial references also confirms this assumption. If the model
does not learn the global reference, there is nothing to generalize.

The results show that the performance of the model trained with local reference
also decreases. There are multiple possible reasons for the performance to decrease.
It could be due to the time of acquisition. The first scan was made on a summer
day, whereas the second data set was acquired on an autumn day with clouds and
a little rain. The shapes and intensity of reflections differ for vegetation in different
seasons. Also can wet surface produce difference in reflections of the laser.

To train the model for a certain number of classes it is important that each class
is represented in the training data set. If one class is dominantly present in the
training data set the model could predict all points to be this specific class and
its overall accuracy would still be high. To balance the total number of points for
each class in the training data set the model can be trained only with data samples
that actually contain an object. This reduces the points belonging to the background
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class (the dominant class in the scene) However, it also reduces the total amount of
training samples.



7 C O N C L U S I O N A N D
R E C O M M E N DAT I O N S
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�.�.� Introduction
The motivation for this research was the challenge of automatic classification of
objects in a highway scene from MLS point clouds. The main research question is
To what extent is PointNet suitable for classification of raw highway point clouds? The four
research sub-questions contribute to answering this question. The results regarding
the first question show that it is possible to automatically create training data with
the provided input data sets. The next set of experiments explain how to present the
spatial information of this data and how the model generalizes to different locations.
Final experiments showed how many points and how to select these points.

�.�.� Training data
The first research sub-question states To what extent can training data be created from
point clouds and known object locations? The results show that the method to create
usable training data works.

The results and discussion elaborate on many inaccuracies in the training data
and possible causes. The largest source of error is the ground filtering method.
The ground filtering method is not robust to the variations in real-world data. It is
not the correct way to filter ground surface points and many better methods exist
(see Section 7.2.5). The spatial intersection method is the correct way to start the
labelling process, but requires more refinement.

Even though the highway scene is a real-world data set it is important to note
that it is a man-made environment. For safety regulations many road sides are free
of vegetation and most objects have standard shapes, sizes, materials and position
relative to the highway. This significantly reduces noise in the data set.

To conclude the training data can be made from the point clouds and known ob-
ject locations. The accuracy of the method to create training data is circa 86%. This
means about 12 to 14% of the points are assigned an incorrect label. This inaccuracy
is largely compensated by the amount of data and regularization capabilities of DL.
Therefore the method is a prove of concept, but requires improvement to eliminate
inaccuracies.

�.�.� Spatial reference
The second research sub-question is What is the best way to present a 3D point for
deep learning? The research assessed three spatial references. The discussion shows
that the global reference has no value in the task of classification. The trajectory
reference is a contextual reference that, in this context, does not contribute to the
classification. The conclusion is therefore that the best way to present spatial infor-
mation is the local spatial reference.

35
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�.�.� Point sampling
The answer to What is the optimal sampling of points for classification of road side objects?
depends on three experiments. The grid size, number of points, and sampling methods
provide insight in how many points and how to sample those points.

The results show that the model performs best with a grid size of 5 by 5 meters
and 4000 points. These results are closely related to the object classes, specifically
their size and shape. More object points generally improve the classification accu-
racy, however than 4000 points overall do not improve classification accuracy. This
is due to the balance between object points and background points. The background
class is dominant in the scene and adding more points decreases balance between
classes. For the average accuracy of all object classes 4000 points performs best.

The method to sample these points is irrelevant for 4000 points. The assumption
that random sampling could introduce gaps in point coverage is only relevant for
amounts of points close to 100. With 4000 points the model has enough training data
to compensate any gaps in random sampling. For cases with little computational
resources grid sampling is a solution, because it ensures similar distribution of
points with less data to process.

�.�.� Generalization
The last research sub-question states How does the model generalize to another location?.
generalization in this context means that the model is applicable to other data. The
experiments show that only the local reference generalizes to point clouds at other
locations. However, even the model with local reference shows a decrease in per-
formance on the data of another location. This decrease can be explained by a
difference in time of acquisition. The conclusion is that the model with local ref-
erence and intensity does generalize to other locations and differences in summer
and winter.

�.�.� Summary
As stated, the main research question is To what extent PointNet suitable for classi-
fication of raw highway point clouds? The methodology presented in this research is
successful and achieves 50% point-wise classification accuracy and about 60% object
detection accuracy. These results are lower than the current state-of-the-art of 56%
point-wise classification accuracy by Wang et al. [2018]. However, the goal of this
research was not to achieve state-of-the-art performance (see Section 1.4). This re-
search is a successful exploration of PointNet on outdoor highway scene. In general
can be concluded that the methodology in this research is suitable for classification
of a raw point cloud of a highway scene. However, considering recent developments
(Chapter 2) of GCNN for point clouds it is important to look beyond PointNet for
a classifier of raw point clouds.

�.� ���������������

�.�.� Introduction
The conclusion from the previous chapter states that this methodology is suitable
for classification of raw point clouds of highway environments. However, the results
show many inaccuracies. Besides the current methodology many technologies sur-
faced during this research that could improve the methodology and inspire future
research.
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�.�.� Subdivision of classes
The objects in the data set used for this research are annotated with several classes.
It appears however, that the objects within a class are not identical. For example,
different types of road signs in the class road sign or hanging traffic lights and traffic
lights on a pole in the class traffic light. To improve classification accuracy these
classes can be subdivided.

Subdivision of the current classes increases the total amount of classes. More
classes generally decrease DL performance, simply because the classification prob-
lem becomes more complex. However, alternative hierarchical class structures exist.
In hierarchical class structures classes are like a decision tree. This limits the num-
ber of top-level classes.

�.�.� Incremental space partitioning
The laser scanning point clouds vary highly in density. However, a grid does not
account for density variations. The grid cells are the same size for the entire cover
area. This results in grid cells with varying amounts of points that need over- or
sub-sampling to create training samples of similar size.

Alternative space partitioning methods that do adapt to point density are for
example KD-tree or Octree. Both methods partition space in iterations until resulting
cells contain less than a certain number of points. Kuhn and Mayer [2015] shows
these methods are also suitable for very large point clouds. The resulting training
samples only require over-sampling and all unique points are used.

�.�.� Additional attributes
The results in this research show the importance of spatial reference and the in-
tensity value to represent each point (see Section 5.2.4). The MLS point clouds for
this research do not contain the RGB color values for each point. However, often
MLS point clouds are combined with panoramic photographs to add RGB color
data. The expectation is that RGB color values will contribute to classification per-
formance similar to the intensity value.

�.�.� Ground filtering
To create more accurate training data the methodology in this research uses a
ground filtering method to ensure all ground points are assigned the background
class label. The ground filtering method assumes all ground points are within a
fixed range along the Z-axis. This assumption is often not true, which causes inac-
curate ground filtering. The inaccuracies in ground filtering are the main cause for
inaccuracy of training data in this research.

Meng et al. [2010] list many alternatives for ground filtering. Best methods are
based on iterative point-wise filtering using clustering, morphological filters. This type
of algorithms requires more computation, but is also more robust.

�.�.� Augmentation
This research introduces the concept of multi-sampling to increase the amount of
training data. Multi-sampling is similar to augmentation because both methods aim
to increase the amount of training data. However, there is an important difference.
Multi-sampling creates multiple training samples per sample that contain measured
data. Augmentation creates more training samples by manipulating measured data.
Manipulation can be small rotation, translation, scaling or intensity changes. Suit-
able manipulation methods depend on the application. For example, in the case



38 ���������� ��� ���������������

of classification of road side objects scaling should be avoided as every object type
has standard dimensions. For further research augmentation can be implemented
to generate even more training data and is not limited by the amount of available
unique points.

�.�.� Deep learning hyper-parameters
The training of the model requires specification of several so-called hyper-parameters.
The model in this research is used as-is. This includes most of the hyper-parameters.
Generally the performance of a DL could increase by optimizing the hyper-parameters
[Probst et al., 2018].

�.�.� Alternative deep learning models
The related work (Chapter 2) elaborates on developments inspired by PointNet.
PointNet combines all point features into a global feature for the entire sample. The
global feature is then concatenated to every point feature. This research and recent
other work critique the global feature. The combination of all point features does
not incorporate local geometrical properties of a point’s direct neighbourhood. A
PointNet successor, PointNet++ Qi et al. [2017], and many other models introduce
new ways to aggregate multiple scale neighbourhoods to capture local geometric
properties. Wang et al. [2018] introduces Graph Convolutional Neural Network
(GCNN) with dynamic definitions of a point’s neighbourhood.

The methodology of this research could also work with a different classification
model. Future work could involve the implementation of a GCNN. Wang et al.
[2018] proves this network achieves higher MIOU accuracy. The assumption is that
this model will also be able to differentiate between different types of objects more
accurately. This can be useful for classification of specific types of road signs.

�.�.� Semi-supervised learning
The methodology in this research is build around a model for supervised point-
wise classification. This involves the creation of training data with a label for every
individual point. In their work on GCNN Kipf and Welling [2016] and Wang et al.
[2018] propose the alternative of semi-supervised classification. In semi-supervised
classification only 5-20% of the points in the training data set are assigned a class
label. The semi-supervised method would solve two important downsides of the
methodology in this research. The first is a reduction in computation time for the
spatial intersection between object locations and the point cloud. If only a small
number of points around the object location are to be considered for spatial inter-
section. The second improvement is in training data accuracy. Currently many
points are incorrect classified for the training data set, which is caused by the buffer
intersection. With a smaller buffer less points are labeled, but also less errors are in-
troduced. However, it will require a new method to actively label background class
points, instead of the current method where all remaining points are background.

�.�.�� Clustering
After application of the point-wise classification model the points are clustered. The
connected components algorithm connects points that have the same predicted label.
However, this requires the construction of a graph representation. In this research
the edges in the graph are based on a fixed distance (0,2 meters) between points.
There may be points that do not have connections to others at all, these are so called
isolates. For simplicity isolates are discarded. This can be solved by either querying
with a dynamic distance or for a fixed k Nearest Neighbours.
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The algorithm used for connected components requires the graph to be in memory.
Because the entire test data set is too large to keep in memory the graph is con-
structed per sample. This limits the graph to be within one grid cell, for edge cases
this means multiple clusters are created per object. The additional clusters can be
corrected in post-processing.

�.�.�� Post-processing
After clustering of the points with predicted labels for each cluster a centroid is
mapped. This mapping is the 2D CAD deliverable. There are two types of inaccura-
cies that occur in the process of clustering that can be corrected in post-processing.
The first type is edge cases that cause multiple clusters for a single object. If an
object is represented by multiple clusters this will also result in multiple mapped
centroids for one object. The second type is when the model predicts different
classes to the points of the same object. One of the resulting mappings should
overrule the others. For future iterations of the mapping method a simple buffer
operation could check for objects within a certain radius. Assuming all objects are at
least a certain distance apart other points that occur within this buffer are probably
incorrect and can be removed.

�.�.�� Open benchmark data sets
The data set in this research is a proprietary MLS scan. To provide results that
are reproducible for others the methodology should also be applied to an open
data set. Recently many high quality MLS and TLS bench mark data sets have
become available. The best options currently are Paris-Lille-3D [Roynard et al., 2017],
IQmulus [Brédif, M. and Vallet, B. and Serna, A. and Marcotegui, B. and Paparoditis,
2013], Paris-Rue-Madame [Serna et al., 2014],Semantic3D [Hackel et al., 2014].
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