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ABSTRACT 
The topic of this paper is the study of the tidal velocity profiles within a region of fresh water 

influence (referred to as ROFI in this paper). These regions of fresh water influence occur where 

rivers discharge fresh water into salty seas.  

The main research question is how depth influences the behaviour of the tidal velocity profile in a 

region of fresh water influence. 

The approach for this investigation is to apply a model to two different ROFI systems, and compare 

the results. The first system considered is the Rhine ROFI, for which numerous field data have been 

collected (Simpson, et al. 1993) and a numerical model has been created (de Boer, Pietrzak and 

Winterwerp 2006). The second system is the Fraser ROFI in Canada, having similar tidal 

characteristics as the Rhine ROFI (Foreman, et al. 1995), but a much larger depth. The model used for 

this comparison is an analytic model, based on Prandle (Prandle 1982a).  

In order to do so, it was first necessary to understand the complex behaviour of the tidal velocity 

profile of the Rhine ROFI. The big difference between the behaviour for neap and spring tide can be 

explained by decomposing the tidal velocity vector into two counter rotating phasors. Also, two 

parameters turned out to be important: the depth-averaged velocity and the eddy viscosity.  

As second goal, and main objective of this paper, was to study the impact of the depth on the 

behaviour of the tidal velocity profile in the region of fresh water influence. This was done by 

comparing the shallow Rhine ROFI with the much deeper Fraser ROFI. It turned out that finding 

realistic values for the eddy viscosity coefficient was the biggest challenge. 

The ability of predicting vertical current profiles may serve many applications, such as offshore 

construction or oil leaks. Being able to apply this model to other ROFI’s around the world with 

different depths, is therefore a very useful aim. 
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1. INTRODUCTION 
Every day, more and more companies launch projects offshore. With these projects comes the need 

for more detailed knowledge of the vertical structure of currents. For example, the construction of 

the new wind farm “Luchterduinen” off the Dutch coast: what will be the forces exerted by the 

current? When will be the optimal time to install the wind turbines? Another example is the disaster 

with the Deepwater Horizon offshore oil drilling rig. How will the oil spill evolve? Where will it flow 

to, how fast will it mix? These are situations where the general logarithmic profile no longer meets 

the requirements, and a thorough understanding of the vertical structure of currents is required. 

All over the world rivers discharge into oceans and seas. Because of Earth’s rotation, the outflow 

turns to the right on the Northern hemisphere and follows the coast. The fresh water forms a river 

plume, which is also called a region of fresh water influence, or ROFI (Simpson, et al. 1993). Fresh 

water flowing on top of sea water causes vertical and horizontal density differences, which influence 

the current patterns. Contrary to the general idea of tidal currents, where the whole water mass 

moves in an alongshore direction, water particles at the surface may behave differently from water 

particles at 2/3 of the water depth. Water particles along the same vertical but at different depths, 

may have different velocity magnitudes and directions, and the vertical profile can differ completely 

from the often used logarithmic velocity profile. 

The Rhine and Meuse river system discharges fresh river water into the North Sea, creating the Rhine 

region of fresh water influence (ROFI) in front of the Dutch coast. The Rhine is one of Europe’s major 

rivers, with an average discharge of 2500 m³/s. In the North Sea, a semi-diurnal tide dominates, so a 

tidal cycle is about 12 hours long. Next to this semi-diurnal tide, there is also a semi-monthly 

spring/neap variation (de Boer, Pietrzak and Winterwerp 2006). 

In September and October 1990, data were collected in the Rhine ROFI by Simpson et al. (Simpson, et 

al. 1993). These data proved the existence of the semi-diurnal tidal cycle with semi-monthly 

variation, with two times a day high and low tide and twice a month spring and neap tide. These data 

also showed other important characteristics of the vertical structure. During spring tide, the vertical 

water column is very well mixed except near the mouth of the Rhine. But during neap tide, the water 

column is stratified.  

These different vertical structures have a big influence on the tidal current: during well-mixed 

conditions, the tidal currents are rectilinear, parallel to the coast; during stratified conditions, the 

tidal currents contain significant cross-shore components. In the latter case, the tidal motion 

becomes elliptic, and the ellipses at the surface rotate in the opposite direction of the ellipses at the 

bottom. The elliptic motion is a consequence of the fact that the tidal motion is composed of two 

counter rotating phasors. If the clockwise rotating phasor is dominating the other, this will result in 

an elliptic motion, rotating clockwise. If both phasors have (almost) the same amplitude, the 

resulting motion is rectilinear. The difference in elliptic behaviour for neap and spring tide is caused 

by stratification. Stratification shuts down the turbulence and therefore also changes the influence of 

boundary layers.  
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The objective of this Bachelor thesis is to explore the influence of depth on the region of fresh water 

influence. The model used for this investigation is an analytic Matlab model, written by de Boer and 

based on the analytic solution derived by Prandle (Prandle 1982a). The first goal is to obtain a 

thorough understanding of the complex behaviour in the Rhine ROFI. Only when fully understanding 

what happens at the Rhine ROFI, the influence of depth on a ROFI can be investigated, which is the 

second objective and main research goal. To study the impact of depth on the behaviour within a 

ROFI, two cases will be compared. The Rhine ROFI, as an example of a shallow situation, will be 

compared to the Fraser ROFI. The Fraser is a river in British Columbia, Canada, where it flows into the 

very deep Strait of Georgia. Comparing both cases will give insight in how depth can influence the 

vertical velocity structure in magnitude, direction and timing. 

The report has been structured by explaining the necessary theory in chapter 2. Here the system of 

equations describing a ROFI is derived, together with the derivation of the analytic solution following 

Prandle´s work (Prandle 1982a). In chapter 3, the used model, an analytic Matlab model written by 

de Boer, based on Prandle´s solution, is described. The results obtained by using this model and the 

comparison between the Rhine ROFI and the Fraser ROFI are discussed in chapter 4. Conclusions and 

recommendations are given in chapter 5. 
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2. THEORY  
2.1   SYSTEM OF EQUATIONS  
The Rhine region of fresh water influence can be described using a system of six equations. First, the 

selection of a coordinate system. In this approach is opted for a Cartesian system (𝑥, 𝑦, 𝑧), with the 𝑥-

axis pointing towards the east, the 𝑦-axis pointing towards the north and the vertical 𝑧-axis pointing 

up, going from −ℎ(𝑥, 𝑦, 𝑡) at the bottom to 𝜁(𝑥, 𝑦, 𝑡) at the surface, where ℎ is the average surface 

level and 𝜁 is the surface elevation. There are six unknowns: the velocities in respectively the 𝑥, 𝑦 and 

𝑧 direction, 𝑢, 𝑣 and 𝑤, 𝑝 the pressure and 𝑇 and 𝑆, the temperature and salinity respectively. To 

solve for these six unknowns, six equations are needed. The continuity equation, three momentum 

equations (one in each direction of the Cartesian coordinate system) and two transport equations 

(one for heat and one for salinity) can be used. For the derivation of the following six equations, read 

appendix A: Derivation of the system of equations. Equation 1.1 represents the continuity equation, 

equation 1.2 to 1.4 the equations of motion and equations 1.5 and 1.6 represent the transport 

equations for salinity and temperature. 

 

{
 
 
 
 
 

 
 
 
 
 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1:     

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, 𝑜𝑟         ∇𝑽 = 0                                        

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2:     
𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑥
+
𝜕𝑢𝑣

𝜕𝑦
+
𝜕𝑢𝑤

𝜕𝑧
− 𝑓𝑣 +

1

𝜌0

𝜕𝑝

𝜕𝑥
− 𝐹𝑥 −

𝜕

𝜕𝑧
(𝐸

𝜕𝑢

𝜕𝑧
) = 0

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3:     
𝜕𝑣

𝜕𝑡
+
𝜕𝑣𝑢

𝜕𝑥
+
𝜕𝑣2

𝜕𝑦
+
𝜕𝑣𝑤

𝜕𝑧
+ 𝑓𝑢 +

1

𝜌0

𝜕𝑝

𝜕𝑦
− 𝐹𝑦 −

𝜕

𝜕𝑧
(𝐸

𝜕𝑣

𝜕𝑧
) = 0

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4:     
𝜕𝑝

𝜕𝑧
= −𝜌𝑔                                                                                      

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5:     
𝜕𝑆

𝜕𝑡
+
𝜕𝑢𝑆

𝜕𝑥
+
𝜕𝑣𝑆

𝜕𝑦
+
𝜕𝑤𝑆

𝜕𝑧
− 𝐹𝑆 −

𝜕

𝜕𝑧
(𝐷𝑡

𝜕𝑆

𝜕𝑧
) = 𝑆𝑆𝑆                      

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6:     
𝜕𝑇

𝜕𝑡
+
𝜕𝑢𝑇

𝜕𝑥
+
𝜕𝑣𝑇

𝜕𝑦
+
𝜕𝑤𝑇

𝜕𝑧
− 𝐹𝑇 −

𝜕

𝜕𝑧
(𝐷𝑡

𝜕𝑇

𝜕𝑧
) =

1

𝜌
𝑄𝐻 + 𝑆𝑆𝑆     

 [1] 
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2.2   ANALYTIC SOLUTION BY PRANDLE  
The next step is to derive an analytic solution following Prandle (Prandle 1982a), while making a few 

simplifications based on the description in de Boer (de Boer, Pietrzak and Winterwerp 2006). 

The first simplification made is dropping all nonlinear terms. Also, the pressure term is expressed as 

the change of water level 𝜁 . Equations 1.2 and 1.3 turn into equations 2.2 and 2.3 after 

simplifications: 

 {
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2:     

𝜕𝑢

𝜕𝑡
− 𝑓𝑣 = −g

𝜕𝜁

𝜕𝑥
+

𝜕

𝜕𝑧
(𝐸

𝜕𝑢

𝜕𝑧
)

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3:     
𝜕𝑣

𝜕𝑡
+ 𝑓𝑢 = −g

𝜕𝜁

𝜕𝑦
+

𝜕

𝜕𝑧
(𝐸

𝜕𝑣

𝜕𝑧
)

 [2] 

The boundary conditions can be specified along the vertical 𝑧-axis. At the surface ( 𝑧 = 0), there is  

nothing influencing the horizontal velocities. This means that the influence of wind and waves is 

neglected: 

 𝑧 = 0:     
𝜕𝑢

𝜕𝑧
= 0,     

𝜕𝑣

𝜕𝑧
= 0 [3] 

While at the bottom (𝑧 = −𝐷), a linearised bottom friction 𝑠 =
8

3𝜋

𝑘𝑈

𝐸
  acts, where 𝑘 is a friction 

factor introduced by Prandle, 𝑈 is the depth-averaged velocity and 𝐸 is the eddy viscosity coefficient, 

which is constant over the entire depth. This results in the following boundary conditions: 

 𝑧 = −𝐷:     
𝜕𝑢

𝜕𝑧
= 𝑠𝑢,     

𝜕𝑣

𝜕𝑧
= 𝑠𝑣 [4] 

The system of equations can be solved for the velocities 𝑢 and 𝑣 by introducing a complex vector 

notation, where 𝑥 is the real axis and 𝑦 is the complex axis. The velocity vector can then be written as 

𝑼 = 𝑢 + 𝑖𝑣. For the derivation of the solution and some related properties, read appendix B:  

Derivation of the analytic solution, as here only the result has been presented. 

The velocity vector can be rewritten in terms of an anti-clockwise rotating vector of constant 

amplitude 𝑹+ and a clockwise rotating vector of constant amplitude 𝑹−, leading to  𝑼 = 𝑹 = 𝑹+ +

𝑹−. After some mathematical work we can find a solution for  𝑹+ and 𝑹−. 

 
𝑹±

〈𝑹±〉
=

cosh(𝜶±(𝑧−𝐷))−cos(𝜶±𝐷)−
𝜶±

𝑠
sinh (𝜶±𝐷)

−cos(𝜶±𝐷)+(
1

𝜶±𝐷
−
𝜶±

𝑠
)sinh (𝜶±𝐷)

 [5] 

Here 〈𝑼〉 is the depth-averaged velocity and 𝜶± is the inverse of the boundary layer height 𝜹±:  

 𝜶± = (1 + 𝑖)√
𝑓±𝜔

2𝐸
=

1

𝜹±
 [6] 

This solution is one of the methods used in the Matlab function Prandle_1982 (see appendix C) as 

will be covered in the next chapter. 
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2.3 RHINE ROFI 
This property of the velocity vector, writing it as the sum of two counter rotating vectors, can be 

applied to the vertical structure of the tidal currents in the Rhine ROFI. As mentioned in the 

introduction, the currents in the Rhine ROFI show entirely different behaviour for neap and spring 

tides. During neap tide, the water column becomes stratified, the tidal motion becomes elliptic. But 

during spring tide, the water column is well mixed over the entire vertical and the tidal motion 

becomes rectilinear again, see Figure 1. This behaviour was also observed in field measurements 

(Simpson, et al. 1993) and in the outcome of numerical models (de Boer, Pietrzak and Winterwerp 

2006). This behaviour can now be explained using the phasors. 

 

FIGURE 1: DIFFERENT BEHAVIOUR FOR SPRING AND NEAP TIDE: COUNTER ROTATING ELLIPSES (NEAP TIDE) AND 

RECTILINEAR MOTION (SPRING TIDE). 

A water mass flowing over the sea bottom encounters bottom friction. Separating the velocity vector 

into the two phasors, makes that both phasors will be affected by the bottom friction. They will not 

be equally affected, because of Earth’s rotation. The phasor rotating in the same direction as the 

Earth (anti-clockwise), 𝑹+, will experience less friction than the phasor rotating in the opposite 

direction, 𝑹−. This has also consequences for the thickness of the boundary layer, for 𝑹− the 

boundary layer will occupy the entire depth, while the boundary layer of 𝑹+ doesn’t even reach half 

way the vertical. But if the water column becomes stratified,  the stratification will shut down 

turbulence. The upper part is no longer under influence of the bottom friction, but it will now be 

under influence of the boundary layer between the strata. This is the reason why the behaviour 

between neap and spring tide is so different: the difference in depth-averaged velocity is such that 

stratification occurs, shutting down the turbulence and creating the elliptic motion. 
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3. METHOD 
In this project, the analytic solution of Prandle (see previous chapter) has been chosen. This analytic 

solution has been used for an analytic Matlab model, written by de Boer. This Matlab model is 

discussed in appendix C. 

However, for this investigation the vertical velocity profile during a tidal cycle is required, but this is 

not the direct outcome of the Matlab model. The next paragraphs will explain how such outcome is 

obtained. First a vertical velocity profile over the entire depth needs to be obtained. And then the 

tide needs to be integrated in the model, in order to reach the required outcome: the vertical 

velocity profile over a tidal cycle. 

3.1 USING PRANDLE_1982  TO OBTAIN VELOCITY PROFILES  
Prandle_1982 does not give the normalised velocity as direct outcome, but instead it provides one of 

the two phasors the velocity vector is composed of. The normalised velocity is the sum of two 

outcomes of Prandle_1982, the positive phasor and the negative phasor. Obtaining a vertical velocity 

profile is done by dividing the vertical in a discrete set of heights, and using the Matlab function 

Prandle_1982 to calculate the normalised velocity at each height. 

These velocities at different heights are then combined in one plot, which is done for different input 

values in the next figures. Figure 2 depicts the normalised magnitude profile. The horizontal axis 

represents the normalised magnitude 𝑈0 = |𝑈| 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔⁄ , the vertical axis the normalised depth 
𝑧

𝐷
, 

where 0 represents the bed and 1 the surface. For the three plots all input parameters have been 

kept constant, except for 𝑘, the friction constant, which is smallest in the leftmost plot, and largest in 

the rightmost plot. In other words, from left to right the friction increases.   

 

FIGURE 2: AMPLITUDE STRUCTURE FOR INCREASING BOTTOM FRICTION. 
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The same is done for the phase structure in Figure 3. The horizontal axis represents the phase 

difference, the angle between the alongshore axis and the direction of the tidal velocity. The vertical 

axis represents the normalised depth 
𝑧

𝐷
. Again, the friction constant 𝑘 is increasing from left to right, 

with the same values as in Figure 2, so the phase profile of the leftmost plot of Figure 3 is 

corresponding to the amplitude structure of the leftmost plot of Figure 2. 

 

FIGURE 3: PHASE STRUCTURE FOR INCREASING BOTTOM FRICTION. 

The easy plots in Figure 2 and Figure 3 indeed correspond to Figure 3 of (Prandle 1982b). This gives 

an indication of the correct use of Prandle_1982.  

3.2 MODELLING THE TIDAL MOTION  
The next step is to model the tidal motion. The tide is an oscillatory phenomenon with a period 𝑇. So 

if the tidal motion is split up into two counter rotating phasors, it takes one period for both phasors 

to make one rotation of 360°, where the positive phasor rotates anticlockwise and the negative 

clockwise. If 𝜔 represents the tidal frequency, the rotating phasors can be defined as 𝑅+ ∗ 𝑒𝑖𝜔𝑡 and 

𝑅− ∗ 𝑒−𝑖𝜔𝑡. 

This property of the tidal motion is demonstrated in Figure 4. At three instants during a period both 

phasors, and the resulting tidal vector, are plotted, together with the path they follow over the entire 

tidal period 𝑇. For both phasors, this path is circular. The form of the resulting tidal vector path 

depends on the rate of both phasors. Most of the time this is elliptic, but if both phasors have the 

same amplitude, the tidal vector path becomes a straight line, and if one phasor were zero, the tidal 

vector path would become a circle. 
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FIGURE 4: TIDAL MOTION SPLIT UP IN PHASORS. R+ IS RED, R- IS BLUE AND U IS BLACK. 

The first plot of Figure 4 gives the tidal motion at some random instant, clearly showing how 𝑈 is the 

sum of both phasors, while both phasors have opposite phase. The second plot shows the instant 

when the phasors are in anti-phase, and the third plot when they are in phase. 

3.3 USING PRANDLE_1982  TO MODEL VELOCITY PROFILES OVER 

ENTIRE TIDAL CYCLE  
The last step is to include the tidal motion in the vertical profiles, so that the vertical profile over an 

entire tidal cycle is the outcome. The vertical velocity profile shows the velocity profile at a fixed time 

instant for the entire depth, while the plot of the tidal motion shows the velocity profile at a fixed 

height for the entire tidal period. Combining both gives a rotating 3D vertical profile. 

Figure 5 shows the rotating vertical profile at three different instants. The velocity profile for 𝑈 is the 

sum of two runs of Prandle_1982, one giving the positive phasor, and one giving the negative phasor. 

This is illustrated in the plots by showing not only the velocity profile for 𝑈 (in black), but also 

showing both phasors, 𝑅+ in red rotating anti-clockwise and 𝑅− in blue rotating clockwise. On the 

left back wall the vertical profile of the cross-shore component at that instant is shown, on the right 

back wall the vertical profile of the alongshore component. 

 

FIGURE 5: VERTICAL PROFILE OF TIDAL MOTION SPLIT UP INTO TWO PHASORS. U IS IN BLACK, R+ IN RED AND R- IN 

BLUE. 
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3.4 COMPARISON RHINE AND FRASER RIVER  
In order to explore the influence of depth on the behaviour in a ROFI, two cases are compared, the 

Rhine and the Fraser. In the next table, characteristics of both rivers are given.  

 Rhine Fraser 

Depth 20 m 150 m 
Depth-averaged velocity 0.6 m/s 0.6 m/s 
Tidal frequency 1.4544e-04 rad/s 1.4544e-04 rad/s 
Friction constant 0.0025 0.0025 
Coriolis parameter 1.1493e-04 rad/s 1.1493e-04 rad/s 
Eddy viscosity coefficient 0.0010 – 0.0015  

TABLE 1: INPUT PARAMETERS FOR PRANDLE_1982 FOR BOTH RHINE AND FRASER. 

These values will be used in the next chapter. The values have been obtained by making a few 

simplifying assumptions. The tidal characteristics in the Strait of Georgia are similar to those in the 

North Sea. Therefore, small differences in tidal characteristics have been neglected1. The Coriolis 

parameter 𝑓 depends on the latitude, which is 52° for the Rhine, but 49° for the Fraser River. This is a 

small difference, resulting in a slightly smaller value for 𝑓 (less than 5% difference), and therefore it 

will be neglected, assuming 𝑓 to be the same for both ROFI’s. The value for the eddy viscosity 

coefficient at the Rhine was taken from de Boer (de Boer, Pietrzak and Winterwerp 2006), but no 

such value could be found for the Fraser. The eddy viscosity coefficient is an important parameter, 

having a big influence on the behaviour in the ROFI. The process of estimating a value for the Fraser 

river is outlined in the next paragraph. 

3.5 ESTIMATING THE EDDY VISCOSITY  
The eddy viscosity is used for modelling the complicated phenomenon of turbulence. To have a clear 

view on the influence of the eddy viscosity coefficient  𝐸 on the velocity profile, see appendix D. It is 

clear that a small change in 𝐸 can have a big impact, and therefore the choice for the value of 𝐸 will 

be crucial. 

The most important assumption in this model, and also a big restriction of the model, is the 

assumption of a constant eddy viscosity coefficient 𝐸over the entire depth. As a first approach, a 

definition presented by Prandle (Prandle 1982b) based on a formulation by Bowden (Bowden 1953), 

was used to define a relationship between the eddy viscosity coefficient and the depth: 𝐸 = 𝛼 ∗

𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 ∗ 𝐷. This alpha is a dimensionless constant, for which the value has been determined for 

the Rhine: 𝛼 = 0.0012 (de Boer, Pietrzak and Winterwerp 2006). This value was found by calibrating 

the model to numerous measurements2. 

This definition means that the eddy viscosity coefficient increases with depth. But is this realistic? 

The eddy viscosity is used to model turbulence. This turbulence is mainly caused near the boundaries 

of our domain, through bottom friction at the bed and for example wind friction at the surface 

(although in this approach all friction at the surface is neglected). For larger depths, the influence 

zone where the bed friction acts becomes relatively smaller. So, taken over the entire depth, there 

                                                           
1
 More information on the tide in the Strait of Georgia can be found in Foreman (Foreman, et al. 1995). 

2
 For observations and comparison between measurements and models see Simpson (Simpson, et al. 1993). 
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will be less turbulence, which has to be modeled using a smaller eddy viscosity coefficient 𝐸. It would 

be even more precise if the value of 𝐸 could differ over depth, using a larger value near the boundary 

and a smaller value in the upper part where there is nearly no mixing caused by turbulence. But, 

expecting 𝐸 to decrease with depth is not in line with Bowden’s formula. Therefore it might be useful 

to define an inverse relation between 𝐸 and 𝐷 for which 𝐸 decreases when 𝐷 increases.  

For this analysis two different relations between 𝐸 and 𝐷 will be used. The first relation is the one 

presented by Bowden, for which 𝐸~𝐷 : 𝐸1 = 𝛼 ∗ 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 ∗ 𝐷 . This relation was based on 

Buckingham’s pi theorem, in order to come up with a dimensionally consistent formulation, so that 

the coefficient 𝛼 is dimensionless. For the second relation an equation is required such that 𝐸 

decreases when the depth increases, for example 𝐸~1 𝐷⁄ . An expression similar to Bowden’s 

equation has been chosen here, but instead of multiplying with depth, dividing by depth. This gives 

the following equation: 𝐸2 = 𝛽 ∗ 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 𝐷⁄ . It is unknown whether this equation gives correct 

values for 𝐸, but it does give an idea of the behaviour for smaller 𝐸’s. The coefficient 𝛽 is chosen 

such that for the situation at the Rhine ROFI, so for 𝐷 = 20𝑚, the eddy viscosity coefficient 𝐸 is the 

same for both relations. This gives 𝛽 = 𝛼 ∗ 𝐷𝑅ℎ𝑖𝑛𝑒
2 = 0.0012 ∗ (20𝑚)2 = 0.48𝑚2. Note that, in 

contrast to 𝛼, 𝛽 is not a dimensionless parameter. Therefore, the depth should always be given in 

meters and the depth-averaged velocity in meters per second. Both relations are shown in the next 

plot, and it can be concluded that the second relation exhibits the desired behaviour, decreasing for 

increasing depth. 

 

FIGURE 6: RELATIONSHIP BETWEEN EDDY VISCOSITY AND DEPTH. BOWDEN'S EQUATION FOR E1 IN BLUE, THE INVERSE 

EQUATION FOR E2 IN ORANGE. 
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4. RESULTS 
All the necessary information has been gathered to finally look into what will happen if this model is 

applied to a river discharging into a deeper sea. In this particular case, the Rhine will be compared 

with the Fraser river. From the previous analysis, the only parameters that differ between those two 

rivers, are the depth and the related eddy viscosity coefficient (for two possible relationships have 

been defined in the previous chapter). All other input parameters for Prandle_1982 are constant, see 

Table 1.  

4.1   VELOCITY PROFILES FOR BOWDEN ’S EDDY VISCOSITY 

RELATION  
Using these values, Prandle_1982 has been used to plot the velocity profile for a range of depths 

between 10m and 1000m for both eddy viscosity relations. Starting from Bowden’s relation for the 

eddy viscosity: 𝐸1 = 𝛼 ∗ 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 ∗ 𝐷  . This relation gives an eddy viscosity of 𝐸1,𝑅ℎ𝑖𝑛𝑒 =

0.014 𝑚2 𝑠⁄  for the Rhine and 𝐸1,𝐹𝑟𝑎𝑠𝑒𝑟 = 0.1𝑚
2 𝑠⁄  for the Fraser. Figure 7 shows the amplitude 

structure for a range of depths, where the horizontal axis represents the range of depths and the 

vertical axis the normalised depth. The colours represent the amplitude structure, and the two 

vertical lines indicate the depth for the Rhine and for the Fraser.  

 

FIGURE 7: AMPLITUDE STRUCTURE FOR A RANGE OF DEPTHS, USING BOWDEN'S RELATION FOR E. 

From the above plot, representing the amplitude structure for a range of depths, one can say that for 

greater depth only in the bottom layers a large velocity gradient occurs, while for the largest, upper 

part of the water column, the velocity is almost constant over depth. This seems like a realistic 

behaviour, since for larger depth a smaller fraction of the water column is influenced by the bed 

friction. 

Figure 8 shows the phase structure for a range of depths, where the phase is expressed as the phase 

difference with respect to the surface layer.  
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FIGURE 8: PHASE STRUCTURE FOR A RANGE OF DEPTHS, USING BOWDEN'S RELATION FOR E. 

This plot indicates that there is a change in behaviour over depth. For smaller depths, the phase at 

the bed is ahead of the surface, while around a depth of 100m the behaviour shifts into the phase at 

the surface being ahead. 

4.2 VELOCITY PROFILES FOR THE INVERSE EDDY VISCOSITY 

RELATION  
Next is the second relationship for the eddy viscosity coefficient, the inverse relation, 𝐸2 =

𝛽 ∗ 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 𝐷⁄ , for which 𝐸 decreases as depth increases. All other input parameters remain the 

same as used for the plots for Bowden’s relation for 𝐸. This relation results in the same value for the 

eddy viscosity coefficient for the Rhine, 𝐸2,𝑅ℎ𝑖𝑛𝑒 = 0.014 𝑚
2 𝑠⁄ , but a much smaller eddy viscosity 

coefficient for the Fraser, 𝐸2,𝐹𝑟𝑎𝑠𝑒𝑟 = 0.001 𝑚
2 𝑠⁄ . Below, Figure 9 shows the amplitude structure 

for a range of depths, where the horizontal axis represents the range of depths and the vertical axis 

the normalised depth. The colours represent the amplitude structure, and the two vertical lines 

indicate the depth for the Rhine and for the Fraser.  

 

FIGURE 9: AMPLITUDE STRUCTURE FOR A RANGE OF DEPTHS, USING THE INVERSE RELATION FOR E. 

From the above plot, representing the amplitude structure for a range of depths, similar behaviour as 

for Bowden’s relation for 𝐸 is observed. For larger depth only in the bottom layers a large velocity 

gradient occurs, while for the largest, upper part of the water column, the velocity is constant over 

depth. The bottom layer is much smaller than for Bowden’s relation. This seems like a realistic 
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behaviour, since for larger depth a smaller fraction of the water column is influenced by the bed 

friction. Figure 10 shows the phase structure for a range of depths for our inverse relation for 𝐸. 

 

FIGURE 10: PHASE STRUCTURE FOR A RANGE OF DEPTHS, USING THE INVERSE RELATION FOR E. 

This plot gives a different image from the plot of the phase structure for Bowden’s relation. The 

biggest difference is the size of the phase differences, which is three times as large here, compared 

to the phase differences for Bowden. This is a consequence of the smaller eddy viscosities, since, as 

shown in appendix D, the phase differences become larger for smaller eddy viscosities, since smaller 

eddy viscosities represent less turbulence or less mixing. But, at closer inspection, there are also 

similarities between the phase structures of both eddy viscosity relations. In the shallow zone, the 

phase difference is focused in the lower half of the water column, with  the phase at the bottom 

being ahead of the phase at the surface. At larger depth, for a layer above the bottom layer, the 

phase lags behind the phase at the surface.  

4.3   COMPARISON VELOCITY PROFILES FOR RHINE AND FRASER  
Figure 11 shows, from left to right, the amplitude structure at the Rhine ROFI (which is the same for 

both eddy viscosity relations), and the amplitude structure at the Fraser ROFI for the two eddy 

viscosity relations.  

 

FIGURE 11: AMPLITUDE STRUCTURE FOR THE RHINE (LEFT) AND THE FRASER (MIDDLE FOR E ~  D, RIGHT FOR E ~  

1/D). 
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A first observation shows that for the Rhine more than half of the water column is influenced by the 

bed friction, while for the Fraser, for both eddy viscosity relations, a smaller fraction of the water 

column is influenced. This is the expected behaviour, showing the difference between the shallow 

and deep situations. Second, when looking at the two plots for the Fraser, the size of the boundary 

layer differs, being smaller for the inverse relation for 𝐸. Additionally, for Bowden’s relation, there is 

still a small gradient in the amplitude structure for the upper part of the water column, while for the 

inverse relation, the amplitude is constant over the entire upper part. This last behaviour means that 

the upper part of the water column moves as a rigid block, while the entire turbulence and mixing 

takes place in the small bottom layer where the bed friction acts.  

For the amplitude structure, it seems like the inverse relation for 𝐸 gives a more realistic result. But 

this amplitude structure shows only one component of the velocity profile. As such, for a complete 

analysis, the phase structures need to be compared as well. These phase structures are given in 

Figure 12, which shows, from left to right, the phase structure at the Rhine ROFI (which is the same 

for both eddy viscosity relations), and the phase structure at the Fraser ROFI for the two eddy 

viscosity relations. Again, the phase structure is plotted as the difference with the phase at the 

surface. 

 

FIGURE 12: PHASE STRUCTURE FOR THE RHINE (LEFT) AND THE FRASER (MIDDLE FOR E ~ D, RIGHT FOR E ~ 1/D). 

The left plot, depicting the phase structure for the Rhine, shows that the phase difference increases 

downwards, with a maximum near the bed of 5°, the phase at the bed being ahead of the surface. 

The middle plot, depicting the phase structure for the Fraser for Bowden’s eddy viscosity relation, 

shows only small phase differences, reaching a maximum somewhere under the middle of the water 

column of 3°, the phase lagging behind the phase at the surface. As a result of this, and related to the 

inverse eddy viscosity relation, two big differences are apparent. First of all, the phase differences 

are much bigger, reaching almost 10°, and second, the zone containing the phase differences is a 

small boundary layer near the bed, with the upper part of this layer having negative phases (so 

lagging behind) and the lower part having positive phases. The upper part of the vertical column has 

no phase difference with the surface. This contributes to the theory that for large depths, the upper 

part of the water column moves as a rigid block, while all mixing takes place in the lower boundary 

layer.  
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After comparing the results of both depth – eddy viscosity relations for the Fraser river with the 

Rhine, it looks like Bowden’s relation gives more of a scaled version of the shallow water situation, 

while the inverse relation gives a better representation of the deep situation, with the upper part 

behaving as a rigid block. 

4.4   COMPARISON SPRING AND NEAP TIDE FRASER  
For the Rhine there is also a big difference in the behaviour for spring and neap tides (see appendix 

D). Therefore it might be useful to have a look at the spring/neap behaviour of the Fraser ROFI. So 

far, a depth-averaged velocity of 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 = 0.6
𝑚
𝑠⁄  has been used. To simulate spring/neap 

behaviour, two different depth-averaged velocities will be applied, one representing neap tide, 

𝑈𝑛𝑒𝑎𝑝 = 0.43
𝑚
𝑠⁄ , and one representing spring tide, 𝑈𝑠𝑝𝑟𝑖𝑛𝑔 = 0.66

𝑚
𝑠⁄ . Also the eddy viscosity 

coefficient will be different for spring and neap tide, since it is dependent on the depth-averaged 

velocity.  

Figure 13 shows the elliptic profiles for spring tide (upper row) and neap tide (lower row). For these 

plots, the inverse eddy viscosity relation has been used. 

 

FIGURE 13: ELLIPTIC PROFILES FOR THE FRASER RIVER AT DIFFERENT TIMES DURING A TIDAL CYCLE. UPPER ROW 

REPRESENTS SPRING TIDE, LOWER ROW REPRESENTS NEAP TIDE. 

From these plots one can conclude that for both neap and spring tide, for the largest part of the 

water column, the tidal motion is rectilinear. Only in a small boundary layer the velocity profile 

behaves differently, with higher ellipticity and counter rotating ellipses. For spring tide these 

differences are larger, which is caused by higher velocities. But, in contrast to the Rhine, there is no 

big difference in behaviour between neap tide and spring tide in case of the Fraser.  
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5. CONCLUSIONS AND RECOMMENDATIONS 
Rivers, like the Rhine and the Fraser, discharging their fresh water into a salty sea, have a big impact 

on the currents in a large zone around the mouth of the river, the zone also known as the region of 

fresh water influence. The density differences influence the existing tidal motion in the coastal sea in 

a complex interaction.  

5.1 CONCLUSIONS  
The first goal of this project was to understand the complex behaviour of the tidal velocity profile in 

the Rhine ROFI, for which this model was built. This has been done by deriving the governing 

equations and an analytic solution, and by using the Matlab function Prandle_1982 for various sets of 

input parameters. Without a fresh water discharge, the tidal motion in the North Sea would be 

rectilinear, parallel to the coastline, having a regular vertical profile. But with the fresh water 

discharge from the Rhine, the behaviour in the Rhine ROFI becomes very different.  

On top of this, the difference between the depth-averaged velocity at spring tide and at neap tide 

crosses a critical limit, which results in different characteristics of the ROFI for spring and neap tides. 

During neap tide, the water column stratifies, which reduces the mixing between fresh water from 

the Rhine and salt water from the North Sea, and the tidal motion becomes elliptic, showing strong 

cross-shore components of the current. But during spring tide, the depth-averaged velocity is high 

enough to mix the entire water column, cancelling the stratification, and the tidal motion becomes 

rectilinear again.  

Besides the depth-averaged velocity, another parameter also plays an important role in modelling 

this behaviour: the eddy viscosity. This eddy viscosity coefficient 𝐸 is used to model the very complex 

phenomenon of turbulence. In this case, the neap tide, characterised by stratification which reduces 

the turbulence, is modelled using a lower value for 𝐸 than for spring tide, when more turbulence 

occurs. 

The second goal, and main objective of this project, was to investigate the influence of the depth on 

the behaviour of the tidal velocity profile in the region of fresh water influence. This investigation 

was done by comparing the Rhine with the Fraser, where the main difference between both ROFI’s is 

the depth, 20m for the Rhine against 150m for the Fraser.  

The biggest issue in this investigation turned out to be finding realistic values for the eddy viscosity 

coefficient for the Fraser ROFI. For the Rhine, numerous field measurements and a validated 

numerical model have provided a range of realistic values for 𝐸. Without these field data or some 

numerical model for the Fraser, it is almost impossible to find representative values for the eddy 

viscosity coefficient. Therefore the only option to assess a representative range was to use 

approximating equations, relating the eddy viscosity coefficient to the depth. One such equation was 

presented by Bowden, and using the field data and the numerical model, values for the 

dimensionless constant defining this relationship for the Rhine ROFI have been determined. Using 

Bowden’s equation, a first approximation for the eddy viscosity coefficient in the Fraser ROFI could 

be made.  
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Since 𝐸~𝐷 for this relationship, this resulted in a much bigger value for 𝐸 at the Fraser ROFI. For 

such a large depth, the assumption for a constant eddy viscosity over the entire depth becomes 

almost untenable. For large depths, there is actually almost no mixing over the largest part of the 

vertical, the mixing being concentrated near the boundaries. This means that the large upper part of 

the water column should be represented with a very small value for 𝐸, while the small boundary 

layer requires a larger value. Finding a representative constant value for E means a small value must 

be chosen. An inverse relation between the eddy viscosity and the depth therefore seems more 

appropriate, for example 𝐸~1 𝐷⁄ . Such an equation was also tested and this resulted in possible 

realistic velocity profiles, showing the upper part of the water column behaving more or less like a 

rigid block, while the mixing takes place near the bottom layer.  

For fresh water flowing in near the surface, this means at large depth that the river plume would 

undergo less mixing, with most turbulence near the bottom and some turbulence at the fresh/salt 

interface. 

This analytic model has proven to be a good tool to gain insight in the influence of depth on the 

behaviour of ROFI’s. In shallow situations, the bottom friction influences the entire vertical, while in 

very deep situations, the largest upper part of the vertical behaves as a rigid block, all turbulence 

taking place in a small boundary layer near the bottom. However, due to the numerous 

simplifications and assumptions, this model cannot be used for prediction. 

5.2 RECOMMENDATIONS  
To model ROFI’s in very deep coastal seas, such as the Strait of Georgia, this analytic model based on 

Prandle, is not very appropriate for prediction, due to the assumption of a constant eddy viscosity 

coefficient over the entire depth.  

Actually such an assumption is never realistic, but for the Rhine ROFI it was possible to find a value 

for 𝐸 through calibrating the model results with the measurements. So if this model is applied to a 

different ROFI, widespread measurements of the situation at that ROFI are required, in order to find 

out whether there exists some value for 𝐸 such that the model fairly represents the real behaviour. 

The approximating depth – eddy viscosity relations remain to be proven, even the existence of such 

relation. Only if for numerous ROFI’s realistic values for 𝐸 have been found, such a relation may be 

derived (if it exists). 

A better way to model the eddy viscosity in case of stratification is to leave the assumption of a 

constant eddy viscosity coefficient over the entire depth. For example, a different formulation for the 

eddy viscosity was presented by Howarth (Howarth 1998). He divides the depth into a few layers, 

and for each layer he takes a linearly changing eddy viscosity. Using this assumption, a new analytic 

solution can be derived for each layer, and boundary conditions must provide continuity over the 

layer boundaries. This method is also only possible if there is an extensive data set of measurements, 

to compare the approximate piecewise linear eddy viscosity with the real situation. It still remains an 

approximation, but it does take into account some effects of stratification. 

In any case, field data are necessary to develop a model of a ROFI. Using the assumption of a 

constant eddy viscosity over the entire depth gives an easier solution, but a piecewise linear eddy 

viscosity will represent the effects of stratification more accurately. 
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A. DERIVATION OF THE SYSTEM OF EQUATIONS 
In this appendix the six equations used for modelling the Rhine ROFI will be derived. But the concept 

of the total derivative needs to be introduced. After that, the six equations are derived along the 

description in the lecture notes of “An introduction to oceanography for civil and offshore engineers” 

(Pietrzak 2014).  

A.1   TOTAL DERIVATIVE  
This explanation of the total derivative follows the Gill’s (Gill 1982). The total derivative is the rate of 

change of a physical quantity that is subjected to a velocity field. This physical quantity can be 

anything, and is a function of position 𝑿 = (𝑥, 𝑦, 𝑧) and time 𝑡. The symbol 
𝐷

𝐷𝑡
 is used for total 

derivative. Here, the total derivative of some physical quantity 𝛾(𝑥, 𝑦, 𝑧, 𝑡) is derived: 
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𝜕𝛾

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝛾

𝜕𝑧

𝑑𝑧

𝑑𝑡
=

𝜕𝛾

𝜕𝑡
+

𝜕𝛾

𝜕𝑥
𝑢 +

𝜕𝛾

𝜕𝑦
𝑣 +

𝜕𝛾

𝜕𝑧
𝑤 =

𝜕𝛾

𝜕𝑡
+ 𝑽∇𝛾 [7] 

Where 𝑽 is the velocity vector. Therefore, the symbol  
𝐷

𝐷𝑡
 means: 

 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
𝑢 +

𝜕

𝜕𝑦
𝑣 +

𝜕

𝜕𝑧
𝑤 [8] 

This total derivative can now be used in the derivation of the system of equations.  

A.2   CONTINUITY EQUATION  
Consider a very small fluid element. On this element a mass balance is applied, which can be written 

in words as “rate of increase of mass in fluid element” = “flux of mass into fluid element” – “flux of 

mass out of fluid element”. In symbols the resulting mass balance is given by: 

 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 [9] 

For an incompressible fluid, the density is considered a constant, and the continuity equation 

simplifies to equation 10, which is equation 1.1 in the system of equations describing a ROFI. 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0, 𝑜𝑟       ∇𝑽 = 0 [10] 
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A.3   3D  EQUATIONS OF MOTION  
To derive the 3D equations of motion, start by applying Newton’s second law, “mass” * 

“acceleration” = “force”, to a very small fluid element: 

 𝜌𝑑𝑥𝑑𝑦𝑑𝑧 ∗
𝐷𝑽

𝐷𝑡
= 𝑭 [11] 

The right hand side in equation 11, 𝑭, is the resultant force acting on the element. The different 

forces exerted on the element are pressure forces, viscous forces and gravitational forces. This last 

category, the gravitational forces, can be split up into two categories: in vertical direction 

representing the weight of the small element 𝜌𝑔𝑑𝑥𝑑𝑦𝑑𝑧, while in the horizontal directions it is the 

Coriolis force. This is the effect of Earth’s rotation, as a consequence of our assumption that the 

coordinate system is fixed. We will make another assumption to simplify the Coriolis term, the so 

called f-plane approximation, where the Coriolis force is assumed to be constant with latitude. The 

Coriolis parameter 𝑓 is given by 𝑓 = 2 ∗ Ω ∗ sin (𝜑), where Ω is a constant representing the angular 

velocity of rotation of the Earth, with Ω =
2𝜋

1 𝑑𝑎𝑦
= 7.2921 ∗ 10−5

𝑟𝑎𝑑

𝑠
 and 𝜑 is the average latitude of 

the considered domain (52° for the Rhine ROFI).  

This leads to the following system of equation, also known as the Navier-Stokes equations. The right 

hand side of each equation consists of, respectively, the pressure term, the gravitational term and 

the viscosity term.  

 

{
 
 

 
 𝜌

𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝑓𝑣 + [

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
] 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
− 𝑓𝑢 + [

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
]

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
− 𝜌𝑔 + [

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
] 

 [12] 

By making some other assumptions, these equations can be simplified even more. First of all 

hydrostatic conditions are assumed, which simplifies the equation of motion in 𝑧-direction into 
𝜕𝑝

𝜕𝑧
= −𝜌𝑔. Since the differences in density are relatively small, the effects of density difference are 

assumed not to affect the horizontal momentum. Therefore, in the first two equations, describing 

the horizontal directions, density is assumed constant: 𝜌0 . This is the so called Boussinesq 

approximation.  

To simplify the viscosity terms, Reynolds turbulence model is applied. By using Reynolds averaging 

and introducing 𝐸 as the vertical eddy viscosity coefficient, the viscosity term can be rewritten, for 

example in 𝑥-direction, as 
𝜕𝜏𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥

𝜕𝑧
≈ −𝐹𝑥 −

𝜕

𝜕𝑧
(𝐸

𝜕𝑢

𝜕𝑧
), where 𝐹𝑥  contains the horizontal 

terms (which are neglected in our model). These assumptions lead to the 3D equations of motion as 

presented in the second chapter in equations 1.2, 1.3 and 1.4. 
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{
 
 

 
 
𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
+

𝜕𝑢𝑤

𝜕𝑧
− 𝑓𝑣 +

1

𝜌0

𝜕𝑝

𝜕𝑥
− 𝐹𝑥 −

𝜕

𝜕𝑧
(𝐸

𝜕𝑢

𝜕𝑧
) = 0

𝜕𝑣

𝜕𝑡
+

𝜕𝑣𝑢

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
+

𝜕𝑣𝑤

𝜕𝑧
+ 𝑓𝑢 +

1

𝜌0

𝜕𝑝

𝜕𝑦
− 𝐹𝑦 −

𝜕

𝜕𝑧
(𝐸

𝜕𝑣

𝜕𝑧
) = 0

𝜕𝑝

𝜕𝑧
= −𝜌𝑔                                                                                    

 [13] 

A.4   SALINITY AND HEAT  
Using similar assumptions for the conservation equations for salinity and temperature, the last two 

equations of the system of equations are given underneath. Here,  𝑆 is the salinity in PSU and 𝑇 is the 

temperature in °C. 𝑆𝑆𝑆 refers to sources and sinks, and 𝑄𝐻 refers to the heat exchange, while 𝐷𝑡 is  

diffusivity coefficient. These two equations form the last two equations in the system of equations 

[1]. 

 {

𝜕𝑆

𝜕𝑡
+

𝜕𝑢𝑆

𝜕𝑥
+

𝜕𝑣𝑆

𝜕𝑦
+

𝜕𝑤𝑆

𝜕𝑧
− 𝐹𝑆 −

𝜕

𝜕𝑧
(𝐷𝑡

𝜕𝑆

𝜕𝑧
) = 𝑆𝑆𝑆                

𝜕𝑇

𝜕𝑡
+

𝜕𝑢𝑇

𝜕𝑥
+

𝜕𝑣𝑇

𝜕𝑦
+

𝜕𝑤𝑇

𝜕𝑧
− 𝐹𝑇 −

𝜕

𝜕𝑧
(𝐷𝑡

𝜕𝑇

𝜕𝑧
) =

1

𝜌
𝑄𝐻 + 𝑆𝑆𝑆

 [14] 

Temperature, salinity and pressure are used to calculate the density according to the UNESCO 

equation of state, see (Gill 1982). 
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B. DERIVATION OF THE ANALYTIC SOLUTION 
B.1 ANALYTIC SOLUTION USING COMPLEX NOTATION  
The system of equations can be solved for 𝑢 and 𝑣 by introducing a complex vector notation, where 

𝑥 is the real axis and 𝑦 is the complex axis. The velocity vector can then be written as 𝑼 = 𝑢 + 𝑖𝑣, 

and 𝑢 and 𝑣  can be written as follows, where 𝜔 is the angular frequency and 𝑎, 𝑏, 𝑐  and 𝑑  are 

(unknown) coefficients. 

{
𝑢 = 𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡) = 𝑎

𝑒𝑖𝜔𝑡+𝑒−𝑖𝜔𝑡

2
+ 𝑏

𝑒𝑖𝜔𝑡−𝑒−𝑖𝜔𝑡

2𝑖
=

1

2
(𝑎 − 𝑖𝑏)𝑒𝑖𝜔𝑡 +

1

2
(𝑎 + 𝑖𝑏)𝑒−𝑖𝜔𝑡

𝑣 = 𝑐 cos(𝜔𝑡) + 𝑑 sin(𝜔𝑡) = 𝑐
𝑒𝑖𝜔𝑡+𝑒−𝑖𝜔𝑡

2
+ 𝑑

𝑒𝑖𝜔𝑡−𝑒−𝑖𝜔𝑡

2𝑖
=

1

2
(𝑐 − 𝑖𝑑)𝑒𝑖𝜔𝑡 +

1

2
(𝑐 + 𝑖𝑑)𝑒−𝑖𝜔𝑡

 [15] 

This way of writing 𝑢 and 𝑣 shows that the velocity vector 𝑼 can be rewritten in terms of an anti-

clockwise rotating vector of constant amplitude 𝑹+ and a clockwise rotating vector of constant 

amplitude 𝑹−, giving 𝑼 = 𝑹 = 𝑹+ + 𝑹−. Using the previous equations for 𝑢 and 𝑣, the following 

equations for 𝑹+ and 𝑹− are found. Note that 𝜑 is the phase in the complex plane. 

 {
𝑹+ =

1

2
[(𝑎 + 𝑑) + 𝑖(𝑐 − 𝑏)]𝑒𝑖𝜔𝑡 = |𝑹+|𝑒𝑖𝜑+𝑒𝑖𝜔𝑡      

𝑹− =
1

2
[(𝑎 − 𝑑) + 𝑖(𝑐 + 𝑏)]𝑒−𝑖𝜔𝑡 = |𝑹−|𝑒𝑖𝜑−𝑒−𝑖𝜔𝑡

 [16] 

Following the same method for the surface level, the pressure gradient vector 𝑮 is rewritten as 

follows: 𝑮 = 𝑮+ +𝑮− =
𝜕𝜁

𝜕𝑥
+ 𝑖

𝜕𝜁

𝜕𝑦
. Then, by filling in the complex notations for 𝑢, 𝑣,

𝜕𝜁

𝜕𝑥
  and  

𝜕𝜁

𝜕𝑦
 into 

the simplified equations of motion, and add (or subtract) both equations, the following equations are 

obtained: 

 {
𝑖(𝑓 + 𝜔)𝑹+ = 𝑮+ +

𝜕

𝜕𝑧
(𝐸

𝜕𝑹+

𝜕𝑧
)

𝑖(𝑓 − 𝜔)𝑹− = 𝑮− +
𝜕

𝜕𝑧
(𝐸

𝜕𝑹−

𝜕𝑧
)

 [17] 

From these equations a solution for 𝑹+ and 𝑹− can be found. The solution is assumed to be of the 

form 𝑹± = [𝑐1𝑒
−𝛼𝑧 + 𝑐2𝑒

𝛼𝑧 + 𝑐3]𝑒
±𝑖𝜔𝑡 , and the expression is divided by the depth-averaged 

current 〈𝑢〉 = ∫ 𝑢(𝑧)𝑑𝑧
𝐷

0
 (neglecting the varying surface 𝜁). The solution becomes: 

 
𝑹±

〈𝑹±〉
=

cosh(𝜶±(𝑧−𝐷))−cos(𝜶±𝐷)−
𝜶±

𝑠
sinh (𝜶±𝐷)

−cos(𝜶±𝐷)+(
1

𝜶±𝐷
−
𝜶±

𝑠
)sinh (𝜶±𝐷)

 [18] 

Where 𝜶± is the inverse of the boundary layer height 𝜹±:  

 𝜶± = (1 + 𝑖)√
𝑓±𝜔

2𝐸
=

1

𝜹±
 [19] 
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B.2 ELLIPSE PROPERTIES  
From the solutions 𝑹±  the main properties of the ellipse can be derived: the major and minor axis, 

the inclination (𝜓) and the phase (𝜑). 

{
  
 

  
 𝐴𝑚𝑎𝑗𝑜𝑟 = |𝑹

+| + |𝑹−| =
1

2
|(𝑎 + 𝑑) + 𝑖(𝑐 − 𝑏)| +

1

2
|(𝑎 − 𝑑) + 𝑖(𝑐 + 𝑏)|                      

𝐴𝑚𝑖𝑛𝑜𝑟 = |𝑹+| − |𝑹−| =
1

2
|(𝑎 + 𝑑) + 𝑖(𝑐 − 𝑏)| −

1

2
|(𝑎 − 𝑑) + 𝑖(𝑐 + 𝑏)|                       

𝜓 =
1

2
(𝜑+ + 𝜑−) =

1

2
arg ( 

1

2
[(𝑎 + 𝑑) + 𝑖(𝑐 − 𝑏)]) +

1

2
arg ( 

1

2
[(𝑎 − 𝑑) + 𝑖(𝑐 + 𝑏)])

𝜑 =
1

2
(𝜑+ − 𝜑−) =

1

2
arg ( 

1

2
[(𝑎 + 𝑑) + 𝑖(𝑐 − 𝑏)]) −

1

2
arg ( 

1

2
[(𝑎 − 𝑑) + 𝑖(𝑐 + 𝑏)])

 [20] 
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C. THE MATLAB FUNCTION PRANDLE_1982 
The Matlab function Prandle_1982 was written by Gerben de Boer and gives the normalised tidal 

velocity profile at a specific location. The function has three different methods to obtain this result, 

each giving exactly the same result. The first two methods follow the derivation explained by de Boer 

(de Boer, Pietrzak and Winterwerp 2006), which was used in the second chapter, the third method 

uses the (outdated) implicit method as introduced by (Prandle 1982a). It doesn’t matter which 

method is chosen. 

C.1 OUTPUT  
The desired result is the normalised tidal velocity profile in the form of a column vector. Each row in 

the column vector represents a height along the vertical between bottom and surface. Each element 

contains information about the magnitude and the direction of the tidal current at that specific 

location at the position along the vertical corresponding to that row. This information is presented as 

a complex number, where the real part represents the alongshore component, and the imaginary 

part the cross-shore component. The normalised velocity is the sum of both components: 

𝑈0 = 𝑢 + 𝑖𝑣. If the real velocity is desired, the normalised velocity profile 𝑈0 needs to be multiplied 

with the depth-averaged velocity 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔. 

The way the function is used for this project, the normalised tidal velocity is not the direct outcome 

of Prandle_1982. The output of the function is one of the two phasors making up the velocity vector. 

As explained in appendix B, the tidal velocity 𝑈 can be split up into two counter rotating phasors: 

𝑼 = 𝑹+ +𝑹−. The depth-averaged cross-shore velocity is assumed to be zero, because of the 

proximity of the coastal wall. Therefore, when 𝑹+ and 𝑹− are in anti-phase, which happens for 𝑡 =
𝑇

4
 

and 𝑡 =
3𝑇

4
, the depth-averaged cross-shore velocity needs to be zero: 𝑈𝑐𝑟𝑜𝑠𝑠−𝑠ℎ𝑜𝑟𝑒 = |𝑹

+| − |𝑹−| =

0. When 𝑹+ and 𝑹− are in phase, at 𝑡 = 0 and 𝑡 =
𝑇

2
, there is no cross-shore component, therefore 

the depth-averaged alongshore velocity must equal the depth-averaged velocity: 𝑈𝑎𝑙𝑜𝑛𝑔𝑠ℎ𝑜𝑟𝑒 =

𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 = |𝑹
+| + |𝑹−|. Combining both equations means that |𝑹+| = |𝑹−| =

|𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔|

2
. So, in 

order to obtain 𝑹+ or 𝑹−, the result given by Prandle_1982 should be halved. Depending on the 

input, Prandle_1982 either gives 𝑹+ or 𝑹−. The normalised tidal velocity profile is then obtained by 

adding both phasors, and eventually multiplied with 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 for the real tidal velocity profile. 

C.2 INPUT  
The function needs a set of parameter values characterising the specific location for which the 

normalised tidal velocity profile is required. First parameter is the depth D, in 𝑚, the distance from 

the bed to the surface, ignoring small scale bed and surface variations. The second input parameter is 

the eddy viscosity coefficient 𝐸, in 𝑚²/𝑠. It is important to note that, for the analytic solution, the 

eddy viscosity is assumed constant over the entire depth. Next a column vector 𝑧 is given, which 

defines the heights at which 𝑈0, the normalised tidal velocity, should be sampled. The first element 

of this vector is the lowest height, the last element is the height closest to the surface. The fourth 

input determines whether Prandle_1982 will give the positive or negative phasor. For the positive 
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phasor 𝑅+, we give 𝑓 + 𝜔, for the negative phasor 𝑅−, we give 𝑓 − 𝜔. Here 𝑓  is the Coriolis 

parameter, where the f-plane assumption is made (see appendix A), which means that the Coriolis 

force is constant with latitude in our domain. In this case, 𝑓 is defined as 𝑓 = 2 ∗ Ω ∗ sin (𝜑), where 

Ω is a constant representing the angular velocity of rotation of the Earth, with Ω =
2𝜋

1 𝑑𝑎𝑦
= 7.2921 ∗

10−5
𝑟𝑎𝑑

𝑠
 and 𝜑 is the average latitude of the considered domain (52° for the Rhine ROFI). 

The next input parameter is the depth-averaged velocity 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔, in 𝑚/𝑠, and the last parameter is 

the bed friction parameter 𝑘, a dimensionless friction constant.  

C.3 MATLAB SCRIPT  

function U0 = prandle_1982(D,E,z,w,Udepthavg,k) 

%PRANDLE_1982 tidal velocity profile of Prandle 1982 

% 

% U0 = prandle_1982(D,E,z,w,Udepthavg,k) returns the 

% normalized tidal velocity profile U0 = U(z)/avg(U) where 

% D [m]             the depth 

% E [m2/s]          the constant eddy viscosity, 

% z [m]             the height where U0 should be sampled 

% k [-]             a friction constant 

% w [rad/s] (omega) the radial frequency and 

% Udepthavg [m/s]   the depth averaged current. 

% 

% Do not forget to multiply the result U0 with Udepthavg to obtain real velocities. 

% 

%   -------------------------------------------------------------------- 

% $ Id: prandle_1982.m 8518 2013-04-26 07:55:16Z boer_g $ 

 

% $ Author: boer_g $ 

 

% $ HeadURL: 

https://svn.oss.deltares.nl/repos/openearthtools/trunk/matlab/general/phys_fun/prandle_1982.m 

$ 

 

% explicit one-line notation version 2 of de Boer et al, 2006: dx.doi.org/10.1007/s10236-005-

0042-1 

 

   s  = 8.*k.*abs(Udepthavg)./(3.*pi.*E); 

 

   a  = (1+1i).*sqrt(w./(2.*E)); 

 

   U0 = (cosh((z-D).*a) - cosh(D.*a) + (          - a./s).*sinh(D.*a))./... 

        (               - cosh(D.*a) + (1./(a.*D) - a./s).*sinh(D.*a)); 
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D. INFLUENCE OF THE EDDY VISCOSITY 

COEFFICIENT ON THE VELOCITY PROFILE 
D.1 INFLUENCE OF THE EDDY VISCOSITY COEFFICIEN T  
The eddy viscosity coefficient is used for turbulence modelling. The eddy viscosity coefficient 𝐸 

represents on a larger scale the transport and dissipation of energy due to small-scale turbulence. A 

large value for 𝐸 means much turbulence, smaller values represent less turbulence. In this project, 

the eddy viscosity coefficient is assumed to be constant over the entire depth.  

Figure 14 illustrates the influence of the value chosen for this constant 𝐸 on the velocity profile. It is 

obvious that it has a big influence on the ellipticity. For a high 𝐸 (lower row: 𝐸 = 0.04 𝑚
2

𝑠⁄ ), the 

tidal motion becomes almost rectilinear. For a smaller value for 𝐸  (upper row: 𝐸 = 0.004 𝑚
2

𝑠⁄ ), the 

tidal motion shows a clear elliptic behaviour. 

 

FIGURE 14: VERTICAL VELOCITY PROFILE FOR DIFFERENT VALUES FOR E. UPPER ROW: E = 0.004 M²/S, LOWER ROW: 

E = 0.04 M²/S. 
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D.2 INFLUENCE OF THE EDDY VISCOSITY COEFFICIEN T 

INTEGRATED IN THE TIDAL CYCLE  
The above plots were created while changing the value for 𝐸, but keeping all other input parameters 

the same. The values for 𝐸 where chosen in order to show the difference in behaviour. This is good 

to understand the influence of 𝐸, but may be far from a real situation.  

For a more realistic image, it is a good idea to look at the difference between spring and neap tide in 

the Rhine ROFI. The difference between spring and neap tide is the depth-averaged velocity: at neap 

tide, 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 = 0.43
𝑚
𝑠⁄ , while at spring tide, 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 = 0.66

𝑚
𝑠⁄ . Using Bowden’s relationship 

between 𝐸 and 𝐷: 𝐸 = 𝛼 ∗ 𝑈𝑑𝑒𝑝𝑡ℎ𝑎𝑣𝑔 ∗ 𝐷, for 𝛼 = 0.0012, the eddy viscosity coefficient at neap tide 

is 𝐸 = 0.01𝑚
2

𝑠⁄   and at spring tide 𝐸 = 0.015𝑚
2

𝑠⁄ . This results in the next series of plots in Figure 

15. 

 

FIGURE 15: VERTICAL VELOCITY PROFILES AT THE RHINE ROFI, UPPER ROW REPRESENTS NEAP TIDE, LOWER ROW 

SPRING TIDE. 

It is clear from these plots that for neap tide a nice elliptic behaviour occurs, but for spring tide the 

tidal motion becomes almost rectilinear. A small change in eddy viscosity therefore can lead to a big 

difference in behaviour, from stratification to mixing over the entire vertical, from elliptic behaviour 

to a rectilinear motion. 
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D.3 VELOCITY PROFILES FOR RANGE OF EDDY VISCOSITY 

COEFFICIENTS  
The next plots show the amplitude structure and phase structure over depth for a range of values of 

the eddy viscosity coefficient 𝐸. On the horizontal axis of Figure 16 one can see the range of eddy 

viscosities, while the vertical axis represents the normalised height in the water column.  

 

FIGURE 16: AMPLITUDE STRUCTURE FOR A RANGE OF EDDY VISCOSITY COEFFICIENTS, E RANGING FROM 1 M²/S TO 

10E-05 M²/S. 

 

FIGURE 17: AMPLITUDE PROFILES FOR A SET OF EDDY VISCOSITY COEFFICIENTS. EACH VALUE FOR E IS REPRESENTED 

BY DOTTED VERTICAL LINE IN FIGURE ABOVE. 

For large and intermediate values of 𝐸 the amplitude changes with depth. For very small values of E, 

there’s only a change in amplitude in a small layer near the bed. All water above this boundary layer 

moves at a more or less constant speed close to the depth-averaged velocity. The eddy viscosity 

coefficient for the Rhine ROFI is around 𝐸 ≈ 0.01𝑚
2

𝑠⁄ , which is the fourth plot from the left in 

Figure 17. The same plots can be given for the phase structure, where the phase is expressed with 

respect to the surface layer, see Figure 18 and Figure 19. 
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FIGURE 18: PHASE STRUCTURE FOR A RANGE OF EDDY VISCOSITY COEFFICIENTS, E RANGING FROM 1 M²/S TO 10E-05 

M²/S. 

 

FIGURE 19: PROFILES FOR A SET OF EDDY VISCOSITY COEFFICIENTS. EACH VALUE FOR E IS REPRESENTED BY DOTTED 

VERTICAL LINE IN FIGURE ABOVE. 

From these plots it can be said that there are different zones of behaviour. For very large eddy 

viscosity coefficients (𝐸 ≥ 0.1𝑚
2

𝑠⁄ ), there is no phase difference, the entire water column moves at 

the same phase. For slightly smaller values for 𝐸 (0.1𝑚
2

𝑠⁄ > 𝐸 > 0.003𝑚
2

𝑠⁄ ), the phase starts 

taking a lead on the phase at the surface, the lead growing along the vertical, being maximum at the 

bed. This is the situation at the Rhine ROFI (fourth plot from the left in Figure 19). For even smaller 

values (𝐸 ≤ 0.003𝑚
2

𝑠⁄ ), there are three layers of different behaviour: the upper layer where there 

is no phase difference, a middle layer where the phase lags behind, and the lower layer near the bed 

where the phase is ahead of the phase at the surface. For decreasing values of 𝐸, the two lower 

layers become smaller and the upper layer with no phase difference determines the behaviour of 

almost the entire water column, with exception of a small boundary layer near the bed where the 

phase first lags behind and then takes a lead on the phase at the surface. The Fraser is expected to be 

in this last case. 


