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An antenna array at the base station can be used for mobile
source localization and to unravel multipath propagation struc-
tures in terms of angles and delays. A recently proposed tech-
nique for this purpose isthe SIJADE algorithm. We extend this
algorithm to a hexagonal array and apply it to measured indoor
channel data.

|. INTRODUCTION

Source localization is one of the recurring problemsin elec-
trical engineering. In mobile communications, source localiza-
tion by the base station is of interest for advanced handover
schemes, emergency localization, and potentially many user ser-
vices for which a GPS receiver is impractical. In a multipath
scenario, localization involves the estimation of the directions
and relative delays of the dominant multipath rays. It isoften as-
sumed that the directions and delays of the paths do not change
quickly, as fading affects only their powers, so that it makes
senseto estimate these parameters. The angle-delay parameters
are also essential for space-time selective transmission in the
downlink, especially in FDD systems.

Severa agorithms for joint high-resolution estimation of
multipath angles and delays have recently been introduced in
the literature [1-3]. These methods are based on the fact that
temporal shifts map to phase shiftsin the frequency domain.

In this paper, we will use the “shift-invariance joint angle-
delay estimation” (SIJADE) algorithm from [3], which esti-
mates the phase shifts using a multi-dimensional ESPRIT type
algorithm. It is applicable if we have an estimated channel im-
pulse response and assume linearly modulated sources with a
known pulse shape function and no appreciable doppler shifts.
We further assume amultipath model consisting of discreterays,
each parameterized by adelay, complex amplitude (fading), and
angle. Accurate resultsare only possibleif the data received by
the antennasis sampled at or above the Nyquist rate.

We apply the SIJADE algorithm to a measured indoor chan-
nel impulse response at 2.4 GHz and with bandwidth 500 MHz,
which was obtained using a 6 element hexagonal antenna array.

Il. DATA MODEL

Assume we transmit a digital sequence {s¢} over a linear
channel, and measuretheresponse using M antennas. The noise-
lessreceived datain general hastheformx(t) = 3 sch(t-KT). A

commonly used multiray propagation model, for specular mul-
tipath, writesthe M x 1 channel impulse response as

h©)= 3 a(e)Bg(t-Ty),
i=1

where g(t) is a known pulse shape function by which {s} is
modulated. Inthismodel, there arer distinct propagation paths,
each parameterized by (ai, Ti, Bi), where a; isthe direction of ar-
rival (DOA) at the antenna array, T; is the path delay, and 3; O
C isthe complex path attenuation (fading). The vector-valued
function a(a) is the array response vector to a signa from di-
rectiona. Several techniquesareavailableto estimateh(t), eg.,
using training sequences, blind channel estimation, or achannel
sounder.

The delay estimation algorithm is based on the properties
that in the frequency domain, (1) adelay is mapped into a phase
shift, (2) convolution by the known pulse shape function g(t)
becomes a pointwise multiplication which is easily inverted on
its nonzero support. Thus let us assume that the channel datais
available in the frequency domain as a matrix

H = [N(fmin) A(fmin+A¢) - N fmax)].-

If we have M antennas and N samples in frequency domain
spaced at A¢, then H has size M x N. We aso assume that the
channel has been sampled at or above the Nyquist rate deter-
mined by g(t) so that no aliasing has occurred, and that theinflu-
ence of g(t) has subsequently been removed by deconvolution
(see[3] for details). Then we can write the resulting data model
in the frequency domain asH = ABF, where

A=l[a(ay) ---a(ar)],  B=diag(B)
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(we usually omit the sizeindex of F).

If r <M, N, thenit is possible to estimate the ¢’s and hence
the 1;’s from the shift-invariance structure of F, independent of
the structure of A, which is essentially the ESPRIT algorithm.
To estimate the DOAs as well, we need to know the array man-
ifold structure. In general, the number of antennasis not large
enough to satisfy M > r. This problem isavoided by construct-
ing aHankel matrix out of H.



I1l. JOINT DELAY AND ANGLE ESTIMATION
A. Algorithmoutline

Our objectiveistoestimate{ (a;,T;)} fromtheshift-invariance
properties present in the data model H = ABF. For simplicity,
let usfirst assumethat our antennaarray isauniformlinear array
consisting of M omnidirectional antennas spaced at a distance
of A wavelengths. For an integer 2< m< N, define
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If we now construct ablock-Hankel matrix H : mM x (N-m+ 1)
from egual-sized submatrices of H as

H® Hayi - HiN-mei
H= o], HO=] : ,

H(m Hw,i - HmN-mi

then it is straightforward to show that H has a factorization

A

AD
‘H = ABF = ) BF.

Aq).m—l
The parameter m should be used to ensure that H is a rank-
deficient matrix (this putsalimit on the number of raysthat can
be estimated).

The algorithm proceeds by estimating the column span of
H, which is equal to the column span of .4 provided F is full
rank. Notethat A = (Ago A), where o denotes a column-wise
Kronecker product. The estimation of ® and © from the col-

umn span of # is based on exploiting the various shift-invariant
structures present in Ay o A. Define selection matrices

o =[m1 0 OIm, Je:=Im0[lm-12 01,
Jo:=1[01 Ima] O1Im, Je:=Im0[01 Iy,
and let Xo = JoH, Yo = JyoH, Xo = JoH, Yo = JoH. These
data matrices have the structure

Xo = ABF Xo A'BF
Yo = AOBF Yo = A'OGBF

@

where A' = Jyo A, A" = g A. If dimensions are such that these
arelow-rank factorizations, then we can apply the 2-D ESPRIT
algorithm [4, 5] to estimate ® and ©. In particular, since

Yo-AXe = A[®-AI]BF
Yo —AXo A'[©-\I|BF

Figure 1. Hexagona array

the @ are given by the rank reducing numbers of the pen-
cil (Yy,Xq), Whereas the 8; are the rank reducing numbers of
(Yg,Xg). These are the same as the nonzero eigenval ues of X];Y(p

and XgYe. (T denotes the M oore-Penrose pseudo-inverse.)

The correct pairing of the ¢ with the 6; follows from the
fact that X]Y, and X{Ye have the same eigenvectors, which is
caused by the common factor F. In particular, thereisan invert-
ible matrix V which diagonalizes both Xng, and XgYe. Various
algorithmshave been derived to compute such joint diagonaliza-
tions. Omitting further details, we propose to use the diagonal -
ization method in [4], although the algorithm in [5] can be used
aswell. Asin ESPRIT, the actual algorithm hasan intermediate
stepinwhichH isreducedtoitsr-dimensional principal column
span, and this step will form the main computational bottleneck.

This constitutes the basic SIJADE algorithm [3].

B. Data extension

Sincetheeigenvalues (@, 6;) areontheunit circleand the ar-
ray is symmetric, we can doublethe dimension of H by forward-
backward averaging. In particular, let J denote the exchange
matrix which reverses the ordering of rows, and define

He=[H JIHY], mMx2(N-m+1)),

where (c) indicatestaking the complex conjugate. SinceJA(® =
A®~(MDe~(M-1) it follows that He has a factorization

He = ABFe = A[BF, q:‘m+1@—'V'+lB(C)|:(C)] ]
The computation of ® and © from e proceeds as before.

C. Hexagonal array

The SIJADE algorithmisreadily extended to joint delay plus
both azimuth and el evation estimation using a two-dimensional
antennaarray. |n particular, we consider here auniform hexago-
nal array with radiusR (figure 1). A multipath ray fromdirection
(¢,a) generates at the i-th antenna a phase lead (with reference
to the array center)

o = 2%R[cos(i -1)I sn(i-1) [ .-



The algorithm below will estimate, for each multipath compo-
nent, the phase differences ¢1 = ¢ — 1, d3p = d3—¢,, and
baz = da—0s.

The algorithm starts again with a datamatrix H, which sim-
ply stacksthe frequency responsesat the antennasina6xN ma-
trix: H = ABF. We construct aHankel matrix # by mhorizontal
shifts, which givesthe model H = ABF where A = Ago A. Ex-
tension by forward-backward averaging is still possible: since
the array is centro-symmetric, we can define

7= [ 03><3 I3 :|

I3 Ozx3

sothat J”Al© = A, assuming zero phaseat the center of thearray.

As before, we set
He=[H JIJHO], IJ=J0J".

The difference is in the definition of the selection matrices.
There are 9 different baselines, but we will not use all of them.
The baseline block pairs which we consider are defined by?!

a ap a ag
Ayl = , Syl = s Ay = , Sy = R
. [as] i [eu] 2 [aa] V2 [as]
|83 |24
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and this defines corresponding (2 x 6) selection matrices Jy; €tc.
For a single multipath component, the shift-invariance structure
gives

ay1 = aa 021, 01 = e/t
a2 = aefs, B3, = el¥=2
ays = axaba3, 043 = /¥

where ¢;; isthe phase difference between antennasi and j. For
multiple components, we similarly obtain Ay = A1, €tc.,
where ©; 1 isadiagona matrix.

Along with aselection matrix for @, we finally obtain 4 cou-
pled matrix pencils from submatrices of He, with structure

Xo = ABF Xe1 = A'BF
{Yq, — A®BF {Yel = A'OxBF
xez — All/ BF Xe3 — AIIIIBF
{ Yoo = A"OxnBF {Yeg = A"OuBF

The parameter quadruples { (@, 621, 632,6043)} are given by the
rank-reducing numbers of each of the pencils, and they are cou-
pled because they all have the same right eigenvectors. This
problem is solved as before.

Once the parameter quadruples have been obtained, we can
solve the overdetermined system

-11 cos(0)  sin(0) . $21
2R .
~ l 1—1 i] [cos(z%;? sm(%)] [ZE((ZZ))(;O;((S))] = [¢32]
-1 - bas

i ( 2T
cos(5') sin(%)
1The longer baselines 1-3 etc. are omitted because in our application they
arelarger than A/2 which leads to aliasing and related small complications.
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Figure 2. Singular values of He, two rays, no noise.

This gives an estimate for the vector x = S'_n(Z) C_OS(G) from
sin(¢)sin(a)
which we estimate { and a as
. X
sn@) = x|, tan(o) =2
1

Because the system is overdetermined, we also obtain an idea
about the accuracy of these directions.

The number of raysthat can be estimatedislimited by r < 2m
andr < 2(N-m+1). With forward-backward averaging, we can
have at most two rays with equal delays.

IV. EXPERIMENTAL DATA

Our aim is to apply the SIJADE algorithm to experimental
indoor channel data at 2.4 GHz, measured in an office at FEL-
TNO (The Hague, The Netherlands) [6]. This office has dimen-
sions 5.6m x 5.0m, and height 3.5m, and has various metallic
objectsinit. The measurement set-up consists of atransmit an-
tenna (biconical horn) in the center of the room at a height of
3.0m, and areceiving antennacluster located at aheight of 1.5m
and a horizontal distance of 1.1m to the transmitter. The clus-
ter is a hexagonal array with six wideband antennas spaced at
R = 0.0625m (approximately 0.5A¢). The measurement datais
801 frequency-domain samples from a channel sounder, span-
ning the band 2.15-2.65 GHz. Thus, the spacing between two
samples is As = 0.625 MHz, and the total bandwidth is 500
MHz, corresponding to atime resolution of 2 ns. Sincewe have
frequency-domain channel data, it can directly be used to con-
struct adata matrix H: no Fourier transform is necessary.

A. Applicability of the SJADE algorithm

There are several issuesthat limit the applicability of the SI-
JADE algorithm in the present scenario.

— The frequency band of 500 MHz is rather wide. The angle
model is not precisely valid because the wavelength varies



significantly along the band, from 0.14m to 0.11m. If the
full band is used, then a(6, fmin) # a(6, fmax), and the data
matrix will not be low rank, even if there would be only a
single discrete path. Thereisaso aproblemin trandating a
phase shift into an angle. Thus, for the benefit of direction
estimation it would be necessary to run the algorithm on a
much smaller band, say 62.5 MHz (101 samples). Thisre-
duces the temporal resolution by the same factor, from 2 ns
to 16 ns(or from 60 cmto amost 5m). But at thisresolution,
many paths have approximately the same delay.

— If forward-backward averaging (conjugation) is used, then
we can resolve at most two paths that have approximately
the same delay.

— From therank of the Hankel matrix He, it appearsthat there
aremany paths (r > 10). Infact, the number of pathsishard
totell from therank, because of the wide-band problem men-
tioned above.

— If wetakethe shiftsin the Hankel matrix over only 1 sample
(Af = 0.625 MHZz), then we can estimate delays of upto 1.6
ps. However, the extent of the impulse responseisless than
0.1 ps, whichmeansthat all eigenvalues g would becloseto
1 and amost the same. An improved resolution is obtained
by taking larger shifts, e.g., over 16 samples. If the shift is
taken too large, then aliasing will occur.

— Because of the planar array configuration, the array cannot
distinguish between rays from above and rays from below.

B. Synthetic data

To test the applicability of the algorithm, we first try it on
synthetic data. We take r = 2 well-separated rays, with para-
meters (1,0, ) = (10ns,10°,4°) and (20ns, 100°,80°). Thereis
no noise. The singular values of He, with parametersm= 2 and
shift = 16, are shown infigure 2, for varying number of samples
N. Itisseenthat if morethan about 100 samplesare taken (band-
width larger than about 60 MHz), the gap between the two large
singular values and the others becomes rather small, and detec-
tion of the number of raysis not possible. Even with N = 100,
the gap isless than 2 orders of magnitude. Thiswill eventually
limit the total number of raysthat can be estimated.

For the 2-ray case, the accuracy of the estimated parameters
turns out to be quite good for any N, athough the delay esti-
mation improves dightly for larger N. It is more interesting to
look at the accuracy for a larger number of rays. Figure 3 and
table 1 show the singular values and estimated parameters for
synthetic datawith 8 rays. Two of the delays have been chosen
close. It isseen that if N issmall, the temporal resolution is not
sufficient and the algorithm gets confused, also for the angle es-
timates. For N = 400 or more, all parametersare estimated quite
accurately. However, as seen from the singular value plots, it is
almost futile to estimate the total number of incoming rays.
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Figure3. Synthetic datawith 8 rays, no noise. (a) Singular val-
uesof He. (b) Impulseresponseand estimated delays.

Table 1. Estimated parameters, synthetic data, varying N
T[ng]
true 10.0 140 16.0 200 250 30.0 350 400
100 10.0 145 133 205 239 289 353 401
400 10.0 140 159 20.0 249 299 34.8 400
800 10.0 139 156 199 249 30.0 348 400
o [deg]
true 10.0 40.0 80.0 100.0 150.0 -20.0 -50.0 -100.0
100 10.1 38.0 135.0 110.2 -104.5 -19.3 -57.6 -97.7

400 99396 721 99.2 1482 -19.3 -47.5 -100.2
800 9.9393 6911035 149.9 -20.2 -49.7 -99.8
{ [deg]

true 20.0 80.0 40.0 600 300 70.0 250 850
100 198574 107 728 900 781 226 66.0
400 200723 379 602 299 725 256 90.0
800 200 727 425 535 302 704 246 8438
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Figured. Actual data

Table 2. Estimated parameters, actual data
T[ng|
r=4| 70132 179 198 - - - -

6| 70128 16.319.7 214 29.7 - -

8| 70128 163195 21.3 281 30.8 408

o [deg]
r=4|612 535 104.2 31.9 - - - -
6 | 61.0 55.3 110.5 42.4 -91.6 -45.0 - -

8 |61.3 544 110.5 42.2 -96.9 95.1 -154.9 175.3

( [deg]
r=4 (386 36.2 709 49.9 - - - -
6 | 38.6 41.7 59.2 47.0 66.2 70.2 - -

8 139.2386 601458 746 254 546 328

C. Actual data

Now that we have seen that in principleit should be possible
to estimate the parameters of up to 8 rays, we try the algorithm
on actual data. Figure 4 shows the measured impulse responses
and singular value plots, and table 2 lists the estimated parame-
ters for N = 400 samples, m = 8 shifts over 30 samples, and

Figurebs.

varying assumed number of rays. The singular values show that
there is one strong ray and 3 other significant rays, followed by
adew of other raysthat cannot be distinguished from the rank
increase caused by the wide-band nature of the data. The esti-
mated parameters of the first 4 or 5 dominant rays do not vary
much with changing the number of assumed raysr, so they can
be considered to have been estimated fairly accurately. Estimat-
ing more rays turns out to be rather unsuccessful, as the results
change with varying r, mand N.

We can try to match the estimated parameters to the actual
room configuration. Only for the line-of-sight, pertinent datais
available: areported horizontal distance of approximately 1.1m
and a vertical distance of 1.5m, leading to a delay of T = 6.2ns
and { = 36°. Thus, the estimated parametersfor thefirst ray are
not too far off. The azimuthal angle of thefirst ray isnot known,
but using the estimated angle as areference, the subsequent rays
can be traced back to various metallic objects in the room (two
cupboards, a table and a support column), although this part is
rather speculative for lack of accurate room geometrics.
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