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Abstract
StyleGAN is a neural network architecture that is able to generate photo-realistic

images. The diversity of generated images are ensured by latent vectors. These latent
vectors encodes important features of generated images. They provide us insight-full
information about properties of image generation in StyleGAN, which may also occur
similarly in other neural network architectures. Using pre-trained StyleGANmodels, we
have conducted several experiments to show properties on StyleGAN based on results
of style modification. The experiments have shown the influence of noise and styles in
StyleGAN and how latent vectors can be manipulated in generated images.

1 Introduction
Generative Adversarial Network [7] (GAN) is a deep neural net architecture which is able to
generate new data. It has been used in areas such as image generation [16, 2, 3], audio gen-
eration [4], language processing [13] and image-inpainting [14]. Recently, GAN architectures
[16, 11, 12] have shown that they are able to produce photo-realistic images. However, the
inner-workings of GANs are still not well understood. It is unclear where and how high-level
attributes in images are represented. While most GAN can generate images, they do not
enable controlled image modifications. For example, given a GAN that generate images of
human faces, we can not control high-level attributes such as the skin colour in generated
images.

StyleGAN has shown that it can produce photo-realistic images for human faces and
different furniture objects. A StyleGAN has two inputs: noise vectors and a randomized
latent vector. The noise is generated from normal distribution. It creates stochastic varia-
tions such as exact placement of hair or frickles within a face image. The randomized vector
is sampled from normal distribution. It determines more global features in images such the
shape of the head in face images. The latent vector and the noise ensures the variety in
generated images.

There are currently three literature towards the research of StyleGAN. The original Style-
GAN paper [12] has proposed and explained the architecture of StyleGAN. Image2StyleGAN [1]
can convert colour images to StyleGAN vectors. StyleGAN-Encoder [15] has experimented
to swap binary high-level attributes gender(male,female) and smile in face images by modi-
fying the intermediate vectors in StyleGAN.

This work has three contributions:

• We identify effects of noise and style interpolation in StyleGAN networks. We also
find the difference between Z and W in StyleGAN (Section 3).
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Figure 1: Figure retrieved from original StyleGAN paper [12]. Figure a shows the generator
architecture of ProGAN [11]. A ProGAN has vector z as input and image as output.
Figure b shows the generator architecture of StyleGAN. Compared to traditional generators,
StyleGAN generators are divided into synthesis and mapping network. The output of the
mapping network f outputs an intermediate w vector, this vector is used by the synthesis
network g to generate new images. Other components in the figure are explained in Section
2

• We propose a simple method to retrieve encodings of high-level attributes such as
gender and emotion in StyleGAN latent vectors (Section 4).

• We propose a method to modify high-level attributes such as gender and emotion in
existing face images using extrapolation on StyleGAN latent vectors (Section 5).

In Section 6 the conclusion are given. First the necessary background and related works
are explained in Section 2.

2 Related Works

GAN
GANs are first introduced by Goodfellow et al. in 2014 [7]. A traditional GAN consists of two
separate networks: a generator and a discriminator. The generator generates samples similar
to the training data, while the discriminator distinguishes training data from generated data.
Using appropriate training methods and tricks, the generator will be able to generated ‘fake’
data similar to training data. In the following subsections, will will only concern with the
generator.
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Figure 2: Illustrative example with two factors of variation (image attributes, e.g., mas-
culinity and hair length). (a) An example training set where some combination (e.g., long
haired males) is missing. (b) This forces the mapping from Z to image features to become
curved so that the forbidden combination disappears in Z to prevent the sampling of invalid
combinations. (c) The learned mapping from Z to W is able to ‘undo’ much of the warping.
Retrieved from original StyleGAN paper [12].

StyleGAN Generator

StyleGAN is introduced by Keras et al from Nvidia Research in 2018 [12]. The generator
is able to produce photo-realistic images for human faces, bedrooms, cars and cats. The
authors of StyleGAN paper have published five pre-trained networks. The model with human
face dataset have obtained highest FID score [12]. This model is intended to generate
1024× 1024 human face images. It was trained on Flickr-Faces-HQ (FFHQ) dataset, which
consists of 70,000 high-quality images at 10242 resolution.

The StyleGAN architecture is inspired by ProGAN [11]. The architecure of ProGAN
generator is shown in Figure 1a. The generator has a vector z has input. The z vector will
be propagated through the networks followed by series of operations such as convolution and
normalization. We will not discuss this architecture in details since they are uninteresting
for our experiments.

The architecture of StyleGAN is shown in Figure 1b. Compared to Progressive GAN
generators, StyleGAN generators can be divide into two parts: a mapping network f and a
synthesis network g.

The mapping network f is a Multilayer Perceptron with a latent code z ∈ Z as input. z is
a 512×1 vector sampled from a normal distribution N(0, 1). The mapping network outputs
a style vector w ∈W which also has the shape 512×1. The purpose of the mapping network
f is to let w learn the distribution of training dataset. For example, given a dataset where
long haired male are missing, the mapping networks forces style vector w not to contain the
combination of long hair and male. This constraint is harder to reinforce on the z vectors
since they are sampled randomly from a Gaussian. Figure 2 shows an illustrative example
of mappings from Z vectors and w vectors to binary features.

The synthesis network g creates new images using noise and style vector w. The synthesis
network can be divided in blocks. The synthesis network g consists of 7-9 blocks depending
on training image resolution (2562 − 10242). Each block contains 6 operations: upscaling
(1x), noise addition (2x), AdaIN (2x), and 3x3 convolution (1x). All blocks perform the
same operations except the first block, where a constant tensor is initialized. In each block,
vector w and noises are used as inputs. The learned affine transformation (shown as ‘A’
in Figure 1) converts vector w into 2 scalars: the style mean and the style variance. The
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learned per-channel scaling (shown as ‘B’ in Figure 1) fits the noise shape to the propagating
tensor and sum them. Each affine transform ‘A’ and scaling ‘B’ uses different weights. A
final RGB convolution will be applied to the output which transforms the tensor into an
RGB image.

AdaIN

In StyleGAN, the adapted style is injected into the synthesis network f through adaptive
instance normalization (AdaIN). AdaIN is a type of normalisation proposed by Huang [8].
The AdaIN operation is defined as:

AdaIN(xi, y) = ys,i ·
xi − µ(xi)
σ(xi)

+ yb,i (1)

Here ys,i stands for standard deviation of the adapted style, yb,i stands for mean of
the adapted style, xi stands for the feature tensor passed from the previous operations. µ
stands for the mean and σ stands for the variance. The purpose of AdaIN is to pass the
properties of the adapted style to the next style. The adapted styles are obtained from affine
transformation of w vectors. These affine weights are trained.

Logistic Regression
Logistic regression is used for the classification of categorical problems. A Logistic regressor
outputs a probability for a category based on the given data. The formula is defined as:

P (Y = 1|x) = 1

1 + e−
(
α+xT β

) (2)

Here x stands for the data vector, β stands for the weight vector and α stands for the
bias of the regressor. Since that the regressor outputs the probability of a class, the output
is bounded by [0,1].

Regularization is often used during the training to regressors and classifiers. Regular-
ization discourages a high complexity of models and prevent overfitting on the training set.
The objective is to have an accurate prediction of the data, while also having a relatively
simple weights.

L1 regularization [17] is a regularization method and it penalizes the absolute value
of weights. The advantage of L1 regularization is its’ interpretability. Given a strong
regularization parameter, the coefficients for unimportant features are shrunk to 0, and
important features are distinguished from unimportant features. The regressor reduces the
dimensionality of the dataset and yield to a more interpretable model compared to other
regularization methods [9].

StyleGAN-Encoder
StyleGAN-Encoder architecture [15] utilizes StyleGAN to modify high-level attributes in
existing face images. Coefficients of logistic classifiers are used to modify these attributes.
The program can successfully modify human smiles and gender. An example is shown in 3.

StyleGAN-Encoder performs in the following steps:

• A logistic classifier will be trained with w as the classifier input. The weights of the
classifiers are retrieved as direction vectors of the binary attribute.
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Figure 3: An example of how a styleGAN varies the similing attibutes in face images. These
images are generated with StyleGAN-Encoder [15]. Middle column shows the original image.
The leftmost image shows the generated image without smiling. Rightmost image shows
the generated image with smiling. The modifications are performed in w with regressor
coefficients.

• Given an existing image, it is possible to retrieve w̃ latent of the image. Perceptual
loss [10] are used to optimize the w̃ latent.

• Given an existing vector w, a new w′ can be generated with w′ = w ± λ · d. d stands
for the classifier weights retrieved from the classifier, while λ stands for the strength
parameter towards a class direction. During the generation of new images, both w and
w′ are used. Lower blocks in the synthesis network (42−642) uses w′ as the input style
vector, high blocks in (1282−102422) uses w as the input style vector. The new image
will show a preference towards a certain attribute, while maintaining other attributes
from the original image. The new generated images are shown in 3.

The author of StyleGAN-Encoder has also published his training data, the data contains
20307 Z,W latent vectors encoding human faces and their corresponding labels. The labels
are generated with Microsoft Face API 1.

3 StyleGAN Properties

3.1 Noise
Figure 9 shows the effect of noise inputs at different layers of the generator. The w vector
was kept the same, different noises were applied to the same image. In the example we
can see that noise do not affect the overall composition and the high-level identity in the
image. Bed-shapes, skin colour are displayed consistently in all generated images. Coarse
Noise (noises added at layer 22 − 322) determines the exact placement of smaller object in
images, while the fine noise (noises added at layer 622 − 2562) determines finer details such
as textures and shadow boundaries in generated images.

1https://azure.microsoft.com/en-us/services/cognitive-services/face/
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AUC w vectors z vectors
gender 0.907026 0.783424
young/old 0.894913 0.790319
glasses 0.927020 0.793470
smile 0.877382 0.713348

balanced accuracy w vectors w vectors
gender 0.907759 0.783334
young/old 0.899178 0.788602
glasses 0.940497 0.792567
smile 0.878751 0.713761

Table 1: Left table shows AUC score [5] of classifiers on binary attributes with Q or W as
classifier input. Right table shows the balanced accuracy score on same classifiers. Scores
are taken from 10-fold cross validation using L1 logistic classifier with c = 0.1.

Visually, noise in bedroom- and cat-StyleGAN has larger effect to the final image com-
pared to FFHQ-StyleGAN. Face noise seems to effect local attributes and finer attributes
more compared to generated bedroom- and cat images. For example, the eyebrow location
is not influenced by noise in generated images. We hypothesize that effects of noise are also
dependent on network parameters and training data: the original bedroom dataset contains
low resolution images, while FFHQ dataset contains high resolution face images, so noise
in bedroom-StyleGAN encode more diversities. Furthermore, the fixed shape of the objects
in training set also contributes the consistency in the generated image. The cat dataset
contains more varied poses and zoom levels compared to other dataset, so noises can effect
larger attributes such as shapes in generated images.

3.2 Linearity of W

In StyleGAN, the mapping network f is used to transform Z that is drawn from normal
distribution N(0, 1) to some representation in W , such that w can be used to encode high-
end attributes. It is hoped that attributes, such as gender, age are easily distinguished in
this representation. This property can be tested with logistic regression. Logistic regressors
linearly combines a set of characteristics in data to perform classification tasks. Simple
logistic classifier should have better performance based on w instead of z. Table 1 shows
the classification scores with W and Z as classifier inputs. For all four binary attributes,
regressors based on W inputs performs significantly better compared to regressors based on
Z inputs.

3.3 Style Interpolation
Style interpolation uses two (or more) existing latent vectors to generate new images. In
style interpolation, vectors w1 and w2 are used to create a new style vector w by w =
λ ·w1 + (1− λ) ·w2. New image can be generated using w subsequently. This interpolation
is also possible for z vectors.

Figure 8 shows the transition of style interpolation on W and Z. The figure shows that
the interpolation can generate high-quality images across all StyleGAN types. Interestingly,
both latents have produced smooth transitions during interpolation. However, it is notice-
able that Z interpolation can generate extra features in transition images (baldness in row
1, cat shape in row 3), while W interpolation seems to be consistent across all transitions.
We conjecture that extra feature do not appear in W latents due to the more linear nature
of W .
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Figure 4: PCA on stylegan-encoder dataset.

Figure 5: The first column shows five images with smallest PC1 values from StyleGAN-
Encoder dataset. The second column shows five images with largest PC1 values.

4 Interpretable attributes in W

In StyleGAN, W latent vectors encode high-level image attributes. It would be interesting
to understand how these attributes are correlated with the latents. We use PCA [6] and
logistic regression [9] to investigate this problem.

4.1 Principal Component Analysis
In StyleGAN, the vector w has 512 dimensions. We are interested if all dimensions are
encoding attributes during the generation of the images. Principal Component Analysis [6]
is a dimension reduction tool that can be used to reduce a large set of dimension to a smaller
set while holding most information in dataset. The first principal component accounts for as
much of the variability in the data as possible, each succeeding principal component account
for as much of the remaining variability as possible.

Figure 4a shows the cumulative sum of the PCA explained variance of StyleGAN-Encoder
dataset. The plot shows that first 100 principal components cover 80 % of all variances in
the data. Figure 4b project the data vectors onto the first and second principal components.
We can see that latents are clustered into 1 cluster. Figure 5 shows images with highest and
lowest PC1 scores from the data set. The distinction between two groups are clear: images
with low PC1 score contains more blue pixels, while images with high PC1 score contains
more red pixels. The colour is represented instead of the shapes in the principal component.
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Figure 6: The figures show the effect of fixing values encoding gender in w. In both figures,
the leftmost column shows the original image with labeled gender. Other columns show
generated images with new generated w, where values encoding gender was fixed. In the
left figure, 219 of 512 values in w are fixed. All images are photo-realistic while the gender
are consistent across all images. In the right figure, only 54 of 512 values in w are kept the
same, the gender is less consistent (4e image in row 1, 3rd image in row 4).

4.2 Direction Vectors
High-level attributes such as gender and emotions are individual factors hidden in W . It
should be possible to find values in w that modifies these attributes. StyleGAN-Encoder
shows the possibility to extract binary attributes with classifier weights, but it has flaws.
First, StyleGAN-Encoder mixes extrapolated vector w′ and original w to generate images,
therefore it is hard determine which vector is truly responsible for changes. Furthermore,
StyleGAN have shown that attributes are linearly separable [12]. This property is not
utilized by the encoder.

Based on current state of StyleGAN-Encoder, The following changes were made:

• During the generation of new images, only extrapolated vector w′ are used, so styles
are not mixed during the generation of images.

• Since that w is linear separable on binary attributes, L1 regularization is added to the
regressor. L1 regularization enforces a split between relevant and irrelevant values in
W , thus direction vector should encode relevant directions exclusively.

Figure 6 shows different generated images by fixing values encoding gender in w. The
figures show that the gender can be determined by 50 values in the latent vector. By fixing
the values, we are still able to generate photo-realistic images, but the attribute (gender in
this case) are consistent across all generated images.

5 Extrapolation of W vectors
Similar to StyleGAN-Encoder, we can also use direction vectors (Section 4.2) to modify
existing images. We conducted vector extrapolation based on the high-level attributes.
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Figure 7: Results of extrapolation based on gender direction vectors. Middle column shows
the original image. First and second columns show generated images with modified latents
towards direction ‘female’. Last two columns show generated images toward direction ‘male’.

New images with direction vector and modified w′ latents are created. The classifiers are
trained with logistic regressors and L1 regularization.

Figure 7 has shown that we are able to create photo realistic with extrapolation on
w vectors. The generated images contains the same background and skin colour, but the
gender change in the images are clearly visible. Figure 10 shows generated images with
different regularization parameter on classifiers. Lower regularization parameter implies
that stronger regularization are applied, so less values in the vector are modified. In the last
row, only 1 value in latent vector w is modified. The example shows that we are able to flip
binary attributes in new generated images. The example also shows that the regularization
parameter effects the resemblance with the original image. Generated images with weak
regularization are more similar to the original image, while stronger regularization are less
similar. Furthermore, the modified style vectors can also be combined using interpolation.
The result of combined latents are shown in Figure 11.

6 Discussion
The results of Section 3 have shown that StyleGAN inputs enforce the diversity of generated
images. The noise creates stochastic variations in images, while w vectors defines more
visible attributes. The tests are performed on face-, cat- and bedroom generator. The
generated images clearly shows changed attributes in images. We have also shown that
high-level attributes are distinguished easier from w vectors rather than Q vectors. This
is trained on 4 binary attributes of face latent vectors. However, it would be interesting if
the distinguishable property also hold for continuous- or multi-categorical attributes, such
as mouth size or hair colour.

We also performed PCA on values in w vectors. An interesting observation is that first
300 (of 512) principal components covers almost all variance in w. This indicates that w
vectors can be reduced to a smaller size. Moreover, the results show that first two principal

9



components do not necessarily contain any high-level attributes of human faces images. PC1
only tells us about the colouring in the image. This raises an interesting question: how are
the face attributes encoded within the principal components?

The extrapolation on w latent vectors have shown promising results. We are able to swap
one or multiple high-level attributes given an existing w vector. Modified w vectors are still
able output photo-realistic images (Shown in Figure 11). Unfortunately, the experiments
are evaluated on a small scale, when labels are available the experiments can be extended
to include more quantitative evaluations.

Prior methods such as [1] and [15] have brought us some insights into the inner-workings
of StyleGAN. In this work, we have taken a small step towards understanding and manip-
ulating the architecture of StyleGAN. There are still questions that we cannot yet answer.
For example: can we distinguish any attributes in intermediate images? How likely can
extrapolated images be generated using z and the mapping network? Further work will be
needed to understand these properties of StyleGAN.

7 Conclusions
We have studied multiple aspects of StyleGAN properties such as linearity and style-interpolation.
We performed experiments to validate these properties. Furthermore, we propose a simple
method to modify high-level attributes in images using logistic regression. The method can
classify on high-level binary attribute, such as gender and smile from intermediate vectors.
Furthermore, the method has also shown the possibility to modify these vectors such that
the high-level attributes in images are swapped.
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Figure 8: Output images of interpolation between two latents ( left-most and right-most
image). First 6 rows shows linear interpolation on Q latents. Last 6 rows shows linear
interpolation onW latents. ffhq-StyleGAN, bedroom-StyleGAN and cat-StyleGAN are used
to generate following images.
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Figure 9: Effect of noise inputs at different layers of our generator. The first column: the
original image without any noise. Second and Third columns: generated images with coarse
noise only. Fourth and Fifth columns: generated images with fine noise only.
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Figure 10: Extrapolated images with different direction vector. First row: 12 values in w
encoding gender were modified. Second row: 7 values were modified. Third row: only 1
value was modified. Hyperparameter λ is fitted according to regularization.

Figure 11: Results combining two extrapolated w latents with style interpolation.
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